WorldWideScience

Sample records for polarimetric compact range

  1. A 160 GHZ Polarimetric Compact Range for Scale Model RCS Measurements

    National Research Council Canada - National Science Library

    Coulombe, Michael J; Horgan, T; Waldman, Jerry; Neilson, J; Carter, S; Nixon, William

    1996-01-01

    .... Cross-polarization rejection ratios of better than 40 dB are routinely achieved. The compact range reflector consists of a 60-inch diameter, CNC-machined aluminum mirror fed from the side to produce a clean 20-inch quiet zone...

  2. Compact polarimetric SAR product and calibration considerations for target analysis

    Science.gov (United States)

    Sabry, Ramin

    2016-10-01

    Compact polarimetric (CP) data exploitation is currently of growing interest considering the new generation of such Synthetic Aperture Radar (SAR) systems. These systems offer target detection and classification capabilities comparable to those of polarimetric SARs (PolSAR) with less stringent requirements. A good example is the RADARSAT Constellation Mission (RCM). In this paper, some characteristic CP products are described and effects of CP mode deviation from ideal circular polarization transmit on classifications are modeled. The latter is important for operation of typical CP modes (e.g., RCM). The developed model can be used to estimate the ellipticity variation from CP measured data, and hence, calibrate the classification products.

  3. The Potential of Polarimetric and Compact SAR Data in Rice Identification

    International Nuclear Information System (INIS)

    Shao, Y; Li, K; Liu, L; Yang, Z; Brisco, B

    2014-01-01

    Rice is a major food staple in the world, and provides food for more than one-third of the global population. The monitoring and mapping of paddy rice in a timely and efficient manner is very important for governments and decision makers. Synthetic Aperture Radar (SAR) has been proved to be a significant data source in rice monitoring. In this study, RADARSAT-2 polarimetric data were used to simulate compact polarimetry data. The simulated compact data and polarimetric data were then used to evaluate the information content for rice identification. The results indicate that polarimetric SAR can be used for rice identification based on the scattering mechanisms. The compact polarization RH and the RH/RL ratio are very promising for the discrimination of transplanted rice and direct-sown rice. These results require verification in further research

  4. Compact Polarimetric SAR Ship Detection with m-δ Decomposition Using Visual Attention Model

    Directory of Open Access Journals (Sweden)

    Lu Xu

    2016-09-01

    Full Text Available A few previous studies have illustrated the potentials of compact polarimetric Synthetic Aperture Radar (CP SAR in ship detection. In this paper, we design a ship detection algorithm of CP SAR from the perspective of computer vision. A ship detection algorithm using the pulsed cosine transform (PCT visual attention model is proposed to suppress background clutter and highlight conspicuous ship targets. It is the first time that a visual attention model is introduced to CP SAR application. The proposed algorithm is a quick and complete framework for practical use. Polarimetric features—the relative phase δ and volume scattering component—are extracted from m-δ decomposition to eliminate false alarms and modify the PCT model. The constant false alarm rate (CFAR algorithm based on lognormal distribution is adopted to detect ship targets, after a clutter distribution fitting procedure of the modified saliency map. The proposed method is then tested on three simulated circular-transmit-linear-receive (CTLR mode images, which covering East Sea of China. Compared with the detection results of SPAN and the saliency map with only single-channel amplitude, the proposed method achieves the highest detection rates and the lowest misidentification rate and highest figure of merit, proving the effectiveness of polarimetric information of compact polarimetric SAR ship detection and the enhancement from the visual attention model.

  5. Comparisons of Circular Transmit and Linear Receive Compact Polarimetric SAR Features for Oil Slicks Discrimination

    Directory of Open Access Journals (Sweden)

    Yu Li

    2015-01-01

    Full Text Available Compact polarimetric (CP synthetic aperture radar (SAR has proven its potential in distinguishing oil slicks and look-alikes. Polarimetric information can be retrieved directly from scattering vector or from reconstructed pseudo-Quad-Pol covariance matrix of CP SAR data. In this paper, we analysed features from Circular Transmit and Linear Receive (CTLR CP SAR data that are derived by taking both of these two methods. K-means clustering followed by accuracy assessment was also implemented for performance evaluation. Through experiments that were conducted based on L-band UAVSAR fully polarimetric data, it was found that optimum extraction methods varied for different features. The histogram analysis and segmentation results also demonstrated the comparable performance of CP SAR features in distinguishing different damping properties within oil slicks. This study proposed a framework of statistically analyzing polarimetric SAR (Pol-SAR features and provided guidelines for determining optimum feature extraction methods from CP SAR data and for marine oil-spills detection and classification.

  6. Investigation of the Capability of Compact Polarimetric SAR Interferometry to Estimate Forest Height

    Science.gov (United States)

    Zhang, Hong; Xie, Lei; Wang, Chao; Chen, Jiehong

    2013-08-01

    The main objective of this paper is to investigate the capability of compact Polarimetric SAR Interferometry (C-PolInSAR) on forest height estimation. For this, the pseudo fully polarimetric interferomteric (F-PolInSAR) covariance matrix is firstly reconstructed, then the three- stage inversion algorithm, hybrid algorithm, Music and Capon algorithm are applied to both C-PolInSAR covariance matrix and pseudo F-PolInSAR covariance matrix. The availability of forest height estimation is demonstrated using L-band data generated by simulator PolSARProSim and X-band airborne data acquired by East China Research Institute of Electronic Engineering, China Electronics Technology Group Corporation.

  7. Mappings with closed range and compactness

    International Nuclear Information System (INIS)

    Iyahen, S.O.; Umweni, I.

    1985-12-01

    The motivation for this note is the result of E.O. Thorp that a normed linear space E is finite dimensional if and only if every continuous linear map for E into any normed linear space has a closed range. Here, a class of Hausdorff topological groups is introduced; called r-compactifiable topological groups, they include compact groups, locally compact Abelian groups and locally convex linear topological spaces. It is proved that a group in this class which is separable, complete metrizable or locally compact, is necessarily compact if its image by a continuous group homomorphism is necessarily closed. It is deduced then that a Hausdorff locally convex is zero if its image by a continuous additive map is necessarily closed. (author)

  8. Compact Front-end Prototype for Next Generation RFI-rejecting Polarimetric L-band Radiometer

    DEFF Research Database (Denmark)

    Jensen, Brian Sveistrup; Søbjærg, Sten Schmidl; Skou, Niels

    2009-01-01

    Realizing the need for lower noise figure and smaller physical size in todays higly sensitive radiometers, this paper presents a new compact analog front-end (AFE) for use with the existing L-band (1400-1427 MHz) radiometer designed and operated by the Technical University of Denmark. Using subha...

  9. Polarimetric Multispectral Imaging Technology

    Science.gov (United States)

    Cheng, L.-J.; Chao, T.-H.; Dowdy, M.; Mahoney, C.; Reyes, G.

    1993-01-01

    The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration.

  10. A 160 GHZ Polarimetric Compact Range for Scale Model RCS Measurements

    National Research Council Canada - National Science Library

    Coulombe, Michael J; Horgan, T; Waldman, Jerry; Neilson, J; Carter, S; Nixon, William

    1996-01-01

    ...:16th scale-model targets. The transceiver consists of a fast switching, stepped, continuous wave, X-band synthesizer driving dual X16 transmit multiplier chains and dual X16 local oscillator multiplier chains...

  11. HIGH-RESOLUTION LINEAR POLARIMETRIC IMAGING FOR THE EVENT HORIZON TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Chael, Andrew A.; Johnson, Michael D.; Narayan, Ramesh; Doeleman, Sheperd S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Wardle, John F. C. [Brandeis University, Physics Department, Waltham, MA 02454 (United States); Bouman, Katherine L., E-mail: achael@cfa.harvard.edu [Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139 (United States)

    2016-09-20

    Images of the linear polarizations of synchrotron radiation around active galactic nuclei (AGNs) highlight their projected magnetic field lines and provide key data for understanding the physics of accretion and outflow from supermassive black holes. The highest-resolution polarimetric images of AGNs are produced with Very Long Baseline Interferometry (VLBI). Because VLBI incompletely samples the Fourier transform of the source image, any image reconstruction that fills in unmeasured spatial frequencies will not be unique and reconstruction algorithms are required. In this paper, we explore some extensions of the Maximum Entropy Method (MEM) to linear polarimetric VLBI imaging. In contrast to previous work, our polarimetric MEM algorithm combines a Stokes I imager that only uses bispectrum measurements that are immune to atmospheric phase corruption, with a joint Stokes Q and U imager that operates on robust polarimetric ratios. We demonstrate the effectiveness of our technique on 7 and 3 mm wavelength quasar observations from the VLBA and simulated 1.3 mm Event Horizon Telescope observations of Sgr A* and M87. Consistent with past studies, we find that polarimetric MEM can produce superior resolution compared to the standard CLEAN algorithm, when imaging smooth and compact source distributions. As an imaging framework, MEM is highly adaptable, allowing a range of constraints on polarization structure. Polarimetric MEM is thus an attractive choice for image reconstruction with the EHT.

  12. Design and implementation of the ESL compact range underhung bridge crane

    Science.gov (United States)

    Shamansky, H. T.; Dominek, A. K.; Burnside, W. D.

    1987-01-01

    As the indoor compact range technology has continued to increase, the need to handle larger and heavier targets has also increased. This need for target lifting and handling prompted the feasibility study of the use of an underhung bridge crane to be installed in the ESL (ElectroScience Laboratory, Ohio State University) compact range. This report documents both the design of the underhung bridge crane that was installed and the implementation of the design in the actual installation of the crane.

  13. Polarimetric imagery collection experiment

    Science.gov (United States)

    Romano, Joao M.; Felton, Melvin; Chenault, David; Sohr, Brian

    2010-04-01

    The Spectral and Polarimetric Imagery Collection Experiment (SPICE) is a collaborative effort between the US Army ARDEC and ARL that is focused on the collection of mid-wave and long-wave infrared imagery using hyperspectral, polarimetric, and broadband sensors. The objective of the program is to collect a comprehensive database of the different modalities over the course of 1 to 2 years to capture sensor performance over a wide variety of weather conditions, diurnal, and seasonal changes inherent to Picatinny's northern New Jersey location. Using the Precision Armament Laboratory (PAL) tower at Picatinny Arsenal, the sensors will autonomously collect the desired data around the clock at different ranges where surrogate 2S3 Self-Propelled Howitzer targets are positioned at different viewing perspectives in an open field. The database will allow for: 1) Understanding of signature variability under adverse weather conditions; 2) Development of robust algorithms; 3) Development of new sensors; 4) Evaluation of polarimetric technology; and 5) Evaluation of fusing the different sensor modalities. In this paper, we will present the SPICE data collection objectives, the ongoing effort, the sensors that are currently deployed, and how this work will assist researches on the development and evaluation of sensors, algorithms, and fusion applications.

  14. Coherent change detection and interferometric ISAR measurements in the folded compact range

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, K.W.

    1996-08-01

    A folded compact range configuration has been developed ant the Sandia National Laboratories` compact range antenna and radar-cross- section measurement facility as a means of performing indoor, environmentally-controlled, far-field simulations of synthetic aperture radar (SAR) measurements of distributed target samples (i.e. gravel, sand, etc.). The folded compact range configuration has previously been used to perform coherent-change-detection (CCD) measurements, which allow disturbances to distributed targets on the order of fractions of a wavelength to be detected. This report describes follow-on CCD measurements of other distributed target samples, and also investigates the sensitivity of the CCD measurement process to changes in the relative spatial location of the SAR sensor between observations of the target. Additionally, this report describes the theoretical and practical aspects of performing interferometric inverse-synthetic-aperture-radar (IFISAR) measurements in the folded compact range environment. IFISAR measurements provide resolution of the relative heights of targets with accuracies on the order of a wavelength. Several examples are given of digital height maps that have been generated from measurements performed at the folded compact range facility.

  15. Three axis vector atomic magnetometer utilizing polarimetric technique

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Swarupananda, E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India and Homi Bhabha National Institute, Department of Atomic Energy, Mumbai 400094 (India)

    2016-09-15

    The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity field gradient measurement as required for biomedical application.

  16. Polarimetric optimization for clutter suppression in spectral polarimetric weather radar

    NARCIS (Netherlands)

    Yin, J.; Unal, C.M.H.; Russchenberg, H.W.J.

    2017-01-01

    For the polarimetric-Doppler weather radar, sometimes there are artifacts caused by radar system itself or external sources displaying in the radar plan position indicator (PPI). These artifacts are not confined to specific range bins and also they are non-stationary when observed in the Doppler

  17. The joint essential numerical range, compact perturbations, and the Olsen problem

    Czech Academy of Sciences Publication Activity Database

    Müller, Vladimír

    2010-01-01

    Roč. 197, č. 3 (2010), s. 275-290 ISSN 0039-3223 R&D Projects: GA ČR GA201/09/0473; GA AV ČR IAA100190903 Institutional research plan: CEZ:AV0Z10190503 Keywords : joint essential numerical range * joint numerical range * compact perturbation * Olsen's problem Subject RIV: BA - General Mathematics Impact factor: 0.567, year: 2010 http://journals.impan.pl/cgi-bin/doi?sm197-3-5

  18. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Tomohiro, E-mail: tkita@ecei.tohoku.ac.jp; Tang, Rui; Yamada, Hirohito [Graduate School of Engineering, Tohoku University, 6-6-05 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8579 (Japan)

    2015-03-16

    We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range.

  19. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range

    International Nuclear Information System (INIS)

    Kita, Tomohiro; Tang, Rui; Yamada, Hirohito

    2015-01-01

    We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range

  20. Least limiting water range in assessing compaction in a Brazilian Cerrado latosol growing sugarcane

    Directory of Open Access Journals (Sweden)

    Wainer Gomes Gonçalves

    2014-04-01

    Full Text Available In the south-central region of Brazil, there is a trend toward reducing the sugarcane inter-harvest period and increasing traffic of heavy harvesting machinery on soil with high water content, which may intensify the compaction process. In this study, we assessed the structural changes of a distroferric Red Latosol (Oxisol by monitoring soil water content as a function of the Least Limiting Water Range (LLWR and quantified its effects on the crop yield and industrial quality of the first ratoon crop of sugarcane cultivars with different maturation cycles. Three cultivars (RB 83-5054, RB 84-5210 and RB 86-7515 were subjected to four levels of soil compaction brought about by a differing number of passes of a farm tractor (T0 = soil not trafficked, T2 = 2 passes, T10 = 10 passes, and T20 = 20 passes of the tractor in the same place in a 3 × 4 factorial arrangement with three replications. The deleterious effects on the soil structure from the farm machinery traffic were limited to the surface layer (0-10 cm of the inter-row area of the ratoon crop. The LLWR dropped to nearly zero after 20 tractor passes between the cane rows. We detected differences among the cultivars studied; cultivar RB 86-7515 stood out for its industrial processing quality, regardless of the level of soil compaction. Monitoring of soil moisture in the crop showed exposure to water stress conditions, although soil compaction did not affect the production variables of the sugarcane cultivars. We thus conclude that the absence of traffic on the plant row maintained suitable soil conditions for plant development and may have offset the harmful effects of soil compaction shown by the high values for bulk density between the rows of the sugarcane cultivars.

  1. Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Bozhevolnyi, Sergey I.; Søndergaard, Thomas

    2005-01-01

    We design, fabricate and investigate compact Z-add-drop (ZAD) filters for long-range surface plasmon polaritons (LR-SPPs) at telecom wavelengths. The ZAD filter for LR-SPPs consists of two ridge gratings formed by periodic gold thickness modulation at the intersections of three zigzag-crossed gold...... stripes embedded in polymer. We investigate influence of the grating length and crossing angle on the filter characteristics and demonstrate a 10o-ZAD filter based on 80-mm-long gratings that exhibit a 15-dB dip (centered at ~1.55 mm) in transmission of the direct arm along with the corresponding ~13-nm...

  2. Characterization and performance of a LWIR polarimetric imager

    Science.gov (United States)

    Eriksson, Johan; Bergström, David; Renhorn, Ingmar

    2017-10-01

    Polarimetric information has been shown to provide means for potentially enhancing the capacity of electro-optical sensors in areas such as target detection, recognition and identification. The potential benefit must be weighed against the added complexity of the sensor and the occurrence and robustness of polarimetric signatures. While progress in the design of novel systems for snapshot polarimetry may result in compact and lightweight polarimetric sensors, the aim of this work is to report on the design, characterization and performance of a polarimetric imager, primarily designed for polarimetric signature assessment of static scenes in the long wave thermal infrared. The system utilizes the division-of-time principle and is based on an uncooled microbolometer camera and a rotating polarizing filter. Methods for radiometric and polarimetric calibrations are discussed. A significant intrinsic polarization dependency of the microbolometer camera is demonstrated and it is shown that the ability to characterize, model and compensate for various instrument effects play a crucial role for polarimetric signature assessment.

  3. A compact, short-pulse laser for near-field, range-gated imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zutavern, F.J.; Helgeson, W.D.; Loubriel, G.M. [Sandia National Labs., Albuquerque, NM (United States); Yates, G.J.; Gallegos, R.A.; McDonald, T.E. [Los Alamos National Lab., NM (United States)

    1996-12-31

    This paper describes a compact laser, which produces high power, wide-angle emission for a near-field, range-gated, imaging system. The optical pulses are produced by a 100 element laser diode array (LDA) which is pulsed with a GaAs, photoconductive semiconductor switch (PCSS). The LDA generates 100 ps long, gain-switched, optical pulses at 904 nm when it is driven with 3 ns, 400 A, electrical pulses from a high gain PCSS. Gain switching is facilitated with this many lasers by using a low impedance circuit to drive an array of lasers, which are connected electrically in series. The total optical energy produced per pulse is 10 microjoules corresponding to a total peak power of 100 kW. The entire laser system, including prime power (a nine volt battery), pulse charging, PCSS, and LDA, is the size of a small, hand-held flashlight. System lifetime, which is presently limited by the high gain PCSS, is an active area of research and development. Present limitations and potential improvements will be discussed. The complete range-gated imaging system is based on complementary technologies: high speed optical gating with intensified charge coupled devices (ICCD) developed at Los Alamos National Laboratory (LANL) and high gain, PCSS-driven LDAs developed at Sandia National Laboratories (SNL). The system is designed for use in highly scattering media such as turbid water or extremely dense fog or smoke. The short optical pulses from the laser and high speed gating of the ICCD are synchronized to eliminate the back-scattered light from outside the depth of the field of view (FOV) which may be as short as a few centimeters. A high speed photodiode can be used to trigger the intensifier gate and set the range-gated FOV precisely on the target. The ICCD and other aspects of the imaging system are discussed in a separate paper.

  4. Surface accuracy of a large-scale compact antenna test range considering mechanism, metrology and alignment

    International Nuclear Information System (INIS)

    Zhou, Guofeng; Li, Xiaoxing; Li, Dongsheng; Luan, Jingdong; Zhao, Jinze

    2014-01-01

    A large compact range (CR) having a width of 23 m and height of 16 m that will generate a Φ15 m quiet zone is presented. The antenna consists of 30 blocks and 76 serrated reflectors. Its mechanical accuracy is reflected in two aspects: surface precision and gap precision. In addition, the root-mean-square (RMS) surface accuracy should be less than or equal to 0.075 mm for achieving the highest operating frequency of 40 GHz, and the gaps between two segments should be controlled strictly to the tolerance of 0.4 ± 0.2 mm for avoiding gap diffraction and compensating for inter-block interference due to thermal deformation. The surface accuracy in terms of mechanical structure, metrology and alignment approach is very tight. First, a high-accuracy honeycomb sandwich panel, anisotropic back structure and spatial parallel adjustment mechanism are introduced, and the error contributions of these three mechanisms are 0.03 mm, 0.01 mm and 0.005 mm, respectively. Second, a measurement network based on laser tracker metrology was established, and the RMS error of the measurement system is controlled to 0.025 mm through the optimization of the measuring stations and weighted coordinate regression. Third, an original alignment approach that divides the entire assembly into three key phases by marked point edge-constrained surface is proposed. By performing a few iterations of onsite adjustment, the reflectors were aligned in the prescribed positions, and the gap quality was controlled effectively. Finally, the on-site alignment of the large CR is introduced. The final antenna surface RMS accuracy was up to 0.054 mm, and the gaps achieved the desired design index. (paper)

  5. Polarimetric SAR interferometry applied to land ice: modeling

    DEFF Research Database (Denmark)

    Dall, Jørgen; Papathanassiou, Konstantinos; Skriver, Henning

    2004-01-01

    depths. The validity of the scattering models is examined using L-band polarimetric interferometric SAR data acquired with the EMISAR system over an ice cap located in the percolation zone of the Greenland ice sheet. Radar reflectors were deployed on the ice surface prior to the data acquisition in order......This paper introduces a few simple scattering models intended for the application of polarimetric SAR interfer-ometry to land ice. The principal aim is to eliminate the penetration bias hampering ice sheet elevation maps generated with single-channel SAR interferometry. The polarimetric coherent...... scattering models are similar to the oriented-volume model and the random-volume-over-ground model used in vegetation studies, but the ice models are adapted to the different geometry of land ice. Also, due to compaction, land ice is not uniform; a fact that must be taken into account for large penetration...

  6. Attenuation coefficients for fibrous self-compacting concrete in the energy range of 50-3000 keV

    Energy Technology Data Exchange (ETDEWEB)

    Bento, W.V.; Magalhaes, L.A.M.; Conti, C.C., E-mail: ccconti@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-04-01

    The fibrous self-compacting concrete is a high performance concrete with uniformly distributed iron fibers. Transmission measurements, with {sup 137}Cs and {sup 60}Co sources were performed for the attenuation coefficients determination for both ordinary and fibrous self-compacting concretes. The results were compared to each other and to the values found in the literature for ordinary concrete. The mass attenuation coefficient for the fibrous self-compacting concrete showed to be higher than those for ordinary concrete of about 5%, depending on the gamma energy. However, it should be noted that the density of fibrous self-compacting concrete is higher than ordinary concrete, 2.4 g/cm{sup 3} and 1.9 g/cm{sup 3} respectively, increasing still further the difference in mass attenuation coefficient. In addition to that, by using Monte Carlo simulations, with MCNP5 Monte Carlo computer code, the data was extended to the 50-3000 keV gamma energy range. (author)

  7. Polarimetric neutron scattering

    International Nuclear Information System (INIS)

    Tasset, F.

    2001-01-01

    Polarimetric Neutron Scattering in introduced, both by, explaining methodological issues and the corresponding instrumental developments. After a short overview of neutron spin polarization and the neutron polarization 3d-vector a pictorial approach of the microscopic theory is used to show how a polarized beam interacts with lattice and magnetic Fourier components in a crystal. Examples are given of using Spherical Neutron Polarimetry (SNP) and the corresponding Cryopad polarimeter for the investigation of non-collinear magnetic structures. (R.P.)

  8. Moving towards more intuitive display strategies for polarimetric image data

    Science.gov (United States)

    Ratliff, Bradley M.; Tyo, J. Scott

    2017-09-01

    The display of polarimetric imaging data has been a subject of considerable debate. Display strategies range from direct display of the Stokes vector images (or their derivatives) to false color representations. In many cases, direct interpretation of polarimetric image data using traditional display strategies is not intuitive and can at times result in confusion as to what benefit polarimetric information is actually providing. Here we investigate approaches that attempt to augment the s0 image with polarimetric information, rather than directly display it, as a means of enhancing the baseband s0 image. The benefit is that the polarization-enhanced visible or infrared image maintains a familiar look without the need for complex interpretation of the meaning of the polarimetric data, thus keeping the incorporation of polarimetric information transparent to the end user. The method can be applied to monochromatic or multi-band data, which allows color to be used for representing spectral data in multi- or hyper-spectropolarimetric applications. We take a more subjective approach to image enhancement than current techniques employ by simply seeking to improve contrast and shape information for polarized objects within a scene. We find that such approaches provide clear enhancement to the imagery when polarized objects are contained within the scene without the need for complex interpretation of polarization phenomenology.

  9. Design of narrow band photonic filter with compact MEMS for tunable resonant wavelength ranging 100 nm

    Directory of Open Access Journals (Sweden)

    Guanquan Liang

    2011-12-01

    Full Text Available A prototype of planar silicon photonic structure is designed and simulated to provide narrow resonant line-width (∼2 nm in a wide photonic band gap (∼210 nm with broad tunable resonant wavelength range (∼100 nm around the optical communication wavelength 1550 nm. This prototype is based on the combination of two modified basic photonic structures, i.e. a split tapered photonic crystal micro-cavity embedded in a photonic wire waveguide, and a slot waveguide with narrowed slabs. This prototype is then further integrated with a MEMS (microelectromechanical systems based electrostatic comb actuator to achieve “coarse tune” and “fine tune” at the same time for wide range and narrow-band filtering and modulating. It also provides a wide range tunability to achieve the designed resonance even fabrication imperfection occurs.

  10. Polarimetric studies of polyethylene terephtalate flexible substrates

    Science.gov (United States)

    Stchakovsky, M.; Garcia-Caurel, E.; Warenghem, M.

    2008-12-01

    Polymer sheets are currently used worldwide in a wide range of applications. The manufacturing process of these sheets involves extruding machines that stretch the material in both lateral and longitudinal directions with respect to the machine direction, thus inducing birefringence. In most cases, the film obtained is optically biaxial. Polarimetric spectroscopy (Ellipsometry and Mueller Matrix) combined with conoscopic observation are the methods of choice to study these properties. In this work we report an analysis of commercially available polyethylene terephtalate (PET) films used as substrate for food packaging as well as for embedded electronic devices such as solar cells or flexible displays. Initial observation of these films through polarizing microscope in conoscopic mode reveals first the trace of optical axis plane with respect to the film surface and second, whether the optical axis is acute or not. This preliminary study allows optimal sample positioning for further polarimetric studies. The measurements and modelling are done in both reflection and transmission mode on several spectroscopic polarimetric setups from UV to NIR. The models give as a main result, the dielectric tensor of the film as well as its orientation with respect to the laboratory reference frame.

  11. Development of a Compact Range-gated Vision System to Monitor Structures in Low-visibility Environments

    International Nuclear Information System (INIS)

    Ahn, Yong-Jin; Park, Seung-Kyu; Baik, Sung-Hoon; Kim, Dong-Lyul; Choi, Young-Soo; Jeong, Kyung-Min

    2015-01-01

    Image acquisition in disaster area or radiation area of nuclear industry is an important function for safety inspection and preparing appropriate damage control plans. So, automatic vision system to monitor structures and facilities in blurred smoking environments such as the places of a fire and detonation is essential. Vision systems can't acquire an image when the illumination light is blocked by disturbance materials, such as smoke, fog and dust. To overcome the imaging distortion caused by obstacle materials, robust vision systems should have extra-functions, such as active illumination through disturbance materials. One of active vision system is a range-gated imaging system. The vision system based on the range-gated imaging system can acquire image data from the blurred and darken light environments. Range-gated imaging (RGI) is a direct active visualization technique using a highly sensitive image sensor and a high intensity illuminant. Currently, the range-gated imaging technique providing 2D and range image data is one of emerging active vision technologies. The range-gated imaging system gets vision information by summing time sliced vision images. In the RGI system, a high intensity illuminant illuminates for ultra-short time and a highly sensitive image sensor is gated by ultra-short exposure time to only get the illumination light. Here, the illuminant illuminates objects by flashing strong light through disturbance materials, such as smoke particles and dust particles. In contrast to passive conventional vision systems, the RGI active vision technology enables operation even in harsh environments like low-visibility smoky environment. In this paper, a compact range-gated vision system is developed to monitor structures in low-visibility environment. The system consists of illumination light, a range-gating camera and a control computer. Visualization experiments are carried out in low-visibility foggy environment to see imaging capability

  12. Observations on the polarimetric imagery collection experiment database

    Science.gov (United States)

    Woolley, Mark; Michalson, Jacob; Romano, Joao

    2011-10-01

    The Spectral and Polarimetric Imagery Collection Experiment (SPICE) is an ongoing collaborative effort that commenced in February 2010 between the US Army ARDEC and Army Research Laboratory (ARL). SPICE is focused on the collection of mid-wave and long-wave infrared imagery using hyperspectral, polarimetric, and broadband sensors. The overall objective of SPICE is to collect a comprehensive database of the different modalities spanning multiple years to capture sensor performance encompassing a wide variety of meteorological (MET) conditions, diurnal, and seasonal changes inherent to Picatinny's northern New Jersey location. Utilizing the Precision Armament Laboratory (PAL) tower at Picatinny Arsenal, the sensors are autonomously collecting the desired data around the clock at multiple ranges containing surrogate 2S3 Self-Propelled Howitzer targets positioned at different orientations in an open woodland field. This database allows for: 1) Understanding of signature variability under adverse weather conditions; 2) Development of robust algorithms; 3) Development of new sensors; 4) Evaluation of polarimetric technology; and 5) Evaluation of fusing the different sensor modalities. In this paper, we will revisit the SPICE data collection objectives and the sensors deployed. We will present, in a statistical sense, the integrity of the data in the long-wave infrared (LWIR) polarimetric database collected from February through September 2010 and issues and lessons learned associated with a fully autonomous, around the clock data collection. We will also demonstrate sample LWIR polarimetric imagery and the performance of the Stokes parameters under adverse weather conditions.

  13. Bird Migration Echoes Observed by Polarimetric Radar

    OpenAIRE

    MINDA, Haruya; FURUZAWA, Fumie A.; SATOH, Shinsuke; NAKAMURA, Kenji

    2008-01-01

    A C-band polarimetric radar on Okinawa Island successfully observed large-scale bird migrations over the western Pacific Ocean. The birds generated interesting polarimetric signatures. This paper describes the signatures and speculates bird behavior.

  14. Compact Range Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Measures electrical properties and characteristics of antenna systems and performs radar cross section (RCS) measurements of objects. These data are used...

  15. Multispectral and polarimetric photodetection using a plasmonic metasurface

    Science.gov (United States)

    Pelzman, Charles; Cho, Sang-Yeon

    2018-01-01

    We present a metasurface-integrated Si 2-D CMOS sensor array for multispectral and polarimetric photodetection applications. The demonstrated sensor is based on the polarization selective extraordinary optical transmission from periodic subwavelength nanostructures, acting as artificial atoms, known as meta-atoms. The meta-atoms were created by patterning periodic rectangular apertures that support optical resonance at the designed spectral bands. By spatially separating meta-atom clusters with different lattice constants and orientations, the demonstrated metasurface can convert the polarization and spectral information of an optical input into a 2-D intensity pattern. As a proof-of-concept experiment, we measured the linear components of the Stokes parameters directly from captured images using a CMOS camera at four spectral bands. Compared to existing multispectral polarimetric sensors, the demonstrated metasurface-integrated CMOS system is compact and does not require any moving components, offering great potential for advanced photodetection applications.

  16. Investigation of Polarimetric SAR Data Acquired at Multiple Incidence Angles

    DEFF Research Database (Denmark)

    Svendsen, Morten Thougaard; Skriver, Henning; Thomsen, A.

    1998-01-01

    The dependence of different polarimetric parameters on the incidence angles in the range of 30° to 60° is investigated for a number of different crops using airborne SAR data. The purpose of the investigation is to determine the effect of the variation of incidence angle within a SAR image when...

  17. Ship Discrimination Using Polarimetric SAR Data and Coherent Time-Frequency Analysis

    Directory of Open Access Journals (Sweden)

    Canbin Hu

    2013-12-01

    Full Text Available This paper presents a new approach for the discrimination of ship responses using polarimetric SAR (PolSAR data. The PolSAR multidimensional information is analyzed using a linear Time-Frequency (TF decomposition approach, which permits to describe the polarimetric behavior of a ship and its background area for different azimuthal angles of observation and frequencies of illumination. This paper proposes to discriminate ships from their background by using characteristics of their polarimetric TF responses, which may be associated with the intrinsic nature of the observed natural or artificial scattering structures. A statistical descriptor related to polarimetric coherence of the signal in the TF domain is proposed for detecting ships in different complex backgrounds, including SAR azimuth ambiguities, artifacts, and small natural islands, which may induce numerous false alarms. Choices of the TF analysis direction, i.e., along separate azimuth or range axis, or simultaneously in both directions, are investigated and evaluated. TF decomposition modes including range direction perform better in terms of discriminating ships from range focusing artifacts. In comparison with original full-resolution polarimetric indicators, the proposed TF polarimetric coherence descriptor is shown to qualitatively enhance the ship/background contrast and improve discrimination capabilities. Using polarimetric RADARSAT-2 data acquired over complex scenes, experimental results demonstrate the efficiency of this approach in terms of ship location retrieval and response characterization.

  18. CLEAN Technique for Polarimetric ISAR

    Directory of Open Access Journals (Sweden)

    M. Martorella

    2008-01-01

    Full Text Available Inverse synthetic aperture radar (ISAR images are often used for classifying and recognising targets. To reduce the amount of data processed by the classifier, scattering centres are extracted from the ISAR image and used for classifying and recognising targets. This paper addresses the problem of estimating the position and the scattering vector of target scattering centres from polarimetric ISAR images. The proposed technique is obtained by extending the CLEAN technique, which was introduced in radar imaging for extracting scattering centres from single-polarisation ISAR images. The effectiveness of the proposed algorithm, namely, the Polarimetric CLEAN (Pol-CLEAN is tested on simulated and real data.

  19. POLCAL - POLARIMETRIC RADAR CALIBRATION

    Science.gov (United States)

    Vanzyl, J.

    1994-01-01

    Calibration of polarimetric radar systems is a field of research in which great progress has been made over the last few years. POLCAL (Polarimetric Radar Calibration) is a software tool intended to assist in the calibration of Synthetic Aperture Radar (SAR) systems. In particular, POLCAL calibrates Stokes matrix format data produced as the standard product by the NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). POLCAL was designed to be used in conjunction with data collected by the NASA/JPL AIRSAR system. AIRSAR is a multifrequency (6 cm, 24 cm, and 68 cm wavelength), fully polarimetric SAR system which produces 12 x 12 km imagery at 10 m resolution. AIRSTAR was designed as a testbed for NASA's Spaceborne Imaging Radar program. While the images produced after 1991 are thought to be calibrated (phase calibrated, cross-talk removed, channel imbalance removed, and absolutely calibrated), POLCAL can and should still be used to check the accuracy of the calibration and to correct it if necessary. Version 4.0 of POLCAL is an upgrade of POLCAL version 2.0 released to AIRSAR investigators in June, 1990. New options in version 4.0 include automatic absolute calibration of 89/90 data, distributed target analysis, calibration of nearby scenes with calibration parameters from a scene with corner reflectors, altitude or roll angle corrections, and calibration of errors introduced by known topography. Many sources of error can lead to false conclusions about the nature of scatterers on the surface. Errors in the phase relationship between polarization channels result in incorrect synthesis of polarization states. Cross-talk, caused by imperfections in the radar antenna itself, can also lead to error. POLCAL reduces cross-talk and corrects phase calibration without the use of ground calibration equipment. Removing the antenna patterns during SAR processing also forms a very important part of the calibration of SAR data. Errors in the

  20. Model Compaction Equation

    African Journals Online (AJOL)

    Petrophysical, Decompaction and Linear Regression techniques were used to investigate overpressure, degree of compaction and to derive a model compaction equation for. -1. -1 hydrostatic sandstones. Compaction coefficients obtained range from 0.0003 - 0.0005 m (averaging 0.0004 m ) and percentage compaction ...

  1. Polarimetric Segmentation Using Wishart Test Statistic

    DEFF Research Database (Denmark)

    Skriver, Henning; Schou, Jesper; Nielsen, Allan Aasbjerg

    2002-01-01

    ) approach, which is a merging algorithm for single channel SAR images. The polarimetric version described in this paper uses the above-mentioned test statistic for merging. The segmentation algorithm has been applied to polarimetric SAR data from the Danish dual-frequency, airborne polarimetric SAR, EMISAR......A newly developed test statistic for equality of two complex covariance matrices following the complex Wishart distribution and an associated asymptotic probability for the test statistic has been used in a segmentation algorithm. The segmentation algorithm is based on the MUM (merge using moments....... The results show clearly an improved segmentation performance for the full polarimetric algorithm compared to single channel approaches....

  2. ASTEROID POLARIMETRIC DATABASE V3.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is compiled by Dmitrij Lupishko of Kharkov University. This database tabulates the original data comprising degree of...

  3. ASTEROID POLARIMETRIC DATABASE V4.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is compiled by Dmitrij Lupishko of Kharkov University. This database tabulates the original data comprising degree of...

  4. ASTEROID POLARIMETRIC DATABASE V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is compiled by Dmitrij Lupishko of Kharkov University. This database tabulates the original data comprising degree of...

  5. ASTEROID POLARIMETRIC DATABASE V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is compiled by Dmitrij Lupishko of Kharkov University. This database tabulates the original data comprising degree of...

  6. Science Drivers for Polarimetric Exploration

    Science.gov (United States)

    Yanamandra-Fisher, Padma

    2017-04-01

    The versatility of polarimetric exploration is exploited to address: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. Polarized light occurs in three states: unpolarized, linear and circularized. Each mode of polarized light provides information about the scattering medium, from atmospheres to search for signatures of habitability. Spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. Linear polarization of reflected light by solar system objects provides insight into the scattering characteristics of aerosols and hazes in atmospheres and surficial properties of atmosphereless objects, circular polarization and related chirality (or handedness, a property of molecules that exhibit mirror-image symmetry, similar to right and left hands) can serve as diagnostic of biological activity. Atmospheric phenomena such as rainbows, clouds and haloes exhibit polarimetric signatures that can be used as diagnostics to probe the atmosphere and may be possible to extend this approach to other planets and exoplanets. Biological molecules exhibit an inherent handedness or circular polarization or chirality, assisting in search for the identification of astrobiological material in the solar system. Polarimetry is also utilized in the exploration of comets, asteroids, dust/regoliths. Renewed efforts for ground-based polarimetry are emerging, from probing planetary atmospheres to the study of magnetic field lines and taxonomy of asteroids. While imaging and spectroscopy are routinely performed by amateurs, there is growing interest and progress in developing polarimetric exploration amongst the amateur community, with encouraging results.I will present a review of these efforts and the goal to create a global " PACA* Polarimetry Network" of observers, modelers and instrument experts to fully

  7. Target detection and recognition with polarimetric SAR

    NARCIS (Netherlands)

    Dekker, R.J.; Broek, A.C. van den

    2000-01-01

    Target detection and recognition using polarimetric SAR data has been studied by using PHARUS and RAMSES data collected during the MIMEX campaign. Additionally very high-resolution ISAR data was used. A basic detection and recognition scheme has been developed, which includes polarimetric

  8. Interpulse phase coding for improving accuracy of polarimetric SAR

    Science.gov (United States)

    Giuli, Dino; Facheris, Luca

    1993-02-01

    Polarimetric measurements made by Synthetic Aperture Radar (SAR) may be in some cases, depending on the polarimetric response of distributed targets to be imaged, severely limited in their accuracy due to the joint effect of range ambiguities and weak crosspolarized signal response. Due to the utilization of alternate transmission of pulses at orthogonal polarizations, each ambiguous swath gives rise to one different kind of interference, depending whether its order is even or odd. Interference arising from even-order ambiguous swaths, differently from that arising from odd-order swaths, is generated by pulses transmitted on the same polarization channel of the pulse soliciting the desired echo signal, that they corrupt. Evidently, interference arising from odd-order swaths and affecting crosspolar measurements is most harmful, together with that arising from zones at low incidence angle, which carries a strong reflectivity contribution to the total interference on the desired signal. The paper discusses the utility of appropriate interpulse phase coding strategies, depending on the SAR geometry, than can be devised and utilized in the polarimetric interleaved-pulse measurement technique, with the task to reduce the interference generated by range ambiguities and affecting those target scattering matrix elements, whose measurement is expected to be most critical.

  9. Space-borne polarimetric SAR sensors or the golden age of radar polarimetry

    Directory of Open Access Journals (Sweden)

    Pottier E.

    2010-06-01

    , urban mapping etc…. In order to promote the exploitation of Polarimetric Spaceborne data, as it is starting today to proliferate with the launch of these Polarimetric SAR sensors, the PolSARpro Software, developed under contract to ESA and that is a toolbox for the scientific exploitation of Polarimetric SAR and Polarimetric-Interferometric data and a tool for high-level education in radar polarimetry, has been expanded and refined to include all elements necessary for the demonstration of a number of key applications. The PolSARpro Software, that already was supporting an important range of airborne and spaceborne polarimetric data sources, supports now the following additional data sources: ALOS-PALSAR (Dual-Pol fine mode and Quad-Pol mode, TerraSAR-X (Dual-pol mode and Radarsat-2 (Dual-Pol fine mode and Quad-Pol fine and standard modes, by offering a platform dedicated interface for E.O Scientific Investigator. A number of illustrations of key applications has been developed for the demonstration and the promotion of the Polarimetric Spaceborne missions, that are consistent with the activities incorporated in the GMES Services Element (GSE. The aim of this communication is to present the current state of the art in SAR Polarimetry ranging from theory to applications, with special emphasis in the analysis of data provided by the new Polarimetric Spaceborne SAR sensors, and samples of real polarimetric data will be presented for use in real-life examples of key applications.

  10. Polarimetric microlensing of circumstellar discs

    Science.gov (United States)

    Sajadian, Sedighe; Rahvar, Sohrab

    2015-12-01

    We study the benefits of polarimetry observations of microlensing events to detect and characterize circumstellar discs around the microlensed stars located at the Galactic bulge. These discs which are unresolvable from their host stars make a net polarization effect due to their projected elliptical shapes. Gravitational microlensing can magnify these signals and make them be resolved. The main aim of this work is to determine what extra information about these discs can be extracted from polarimetry observations of microlensing events in addition to those given by photometry ones. Hot discs which are closer to their host stars are more likely to be detected by microlensing, owing to more contributions in the total flux. By considering this kind of discs, we show that although the polarimetric efficiency for detecting discs is similar to the photometric observation, but polarimetry observations can help to constraint the disc geometrical parameters e.g. the disc inner radius and the lens trajectory with respect to the disc semimajor axis. On the other hand, the time-scale of polarimetric curves of these microlensing events generally increases while their photometric time-scale does not change. By performing a Monte Carlo simulation, we show that almost four optically thin discs around the Galactic bulge sources are detected (or even characterized) through photometry (or polarimetry) observations of high-magnification microlensing events during 10-yr monitoring of 150 million objects.

  11. Retrieval of ice thickness from polarimetric SAR data

    Science.gov (United States)

    Kwok, R.; Yueh, S. H.; Nghiem, S. V.; Huynh, D. D.

    1993-01-01

    We describe a potential procedure for retrieving ice thickness from multi-frequency polarimetric SAR data for thin ice. This procedure includes first masking out the thicker ice types with a simple classifier and then deriving the thickness of the remaining pixels using a model-inversion technique. The technique used to derive ice thickness from polarimetric observations is provided by a numerical estimator or neural network. A three-layer perceptron implemented with the backpropagation algorithm is used in this investigation with several improved aspects for a faster convergence rate and a better accuracy of the neural network. These improvements include weight initialization, normalization of the output range, the selection of offset constant, and a heuristic learning algorithm. The performance of the neural network is demonstrated by using training data generated by a theoretical scattering model for sea ice matched to the database of interest. The training data are comprised of the polarimetric backscattering coefficients of thin ice and the corresponding input ice parameters to the scattering model. The retrieved ice thickness from the theoretical backscattering coefficients is compare with the input ice thickness to the scattering model to illustrate the accuracy of the inversion method. Results indicate that the network convergence rate and accuracy are higher when multi-frequency training sets are presented. In addition, the dominant backscattering coefficients in retrieving ice thickness are found by comparing the behavior of the network trained backscattering data at various incidence angels. After the neural network is trained with the theoretical backscattering data at various incidence anges, the interconnection weights between nodes are saved and applied to the experimental data to be investigated. In this paper, we illustrate the effectiveness of this technique using polarimetric SAR data collected by the JPL DC-8 radar over a sea ice scene.

  12. ASTEROID POLARIMETRIC DATABASE V6.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is a collection of asteroid polarimetry results compiled by D.F. Lupishko and S.V. Vasiliev of Karazin Kharkiv National...

  13. ASTEROID POLARIMETRIC DATABASE V7.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is a collection of asteroid polarimetry results compiled by D.F. Lupishko and S.V. Vasiliev of Karazin Kharkiv National...

  14. ASTEROID POLARIMETRIC DATABASE V8.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is a collection of asteroid polarimetry results compiled by D.F. Lupishko of Karazin Kharkiv National University, Ukraine....

  15. ASTEROID POLARIMETRIC DATABASE V5.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is a collection of asteroid polarimetry results compiled by D.F. Lupishko of Karazin Kharkiv National University, Ukraine....

  16. Novel Polarimetric SAR Interferometry Algorithms, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Polarimetric SAR interferometry (PolInSAR) is a recently developed synthetic aperture radar (SAR) imaging mode that combines the capabilities of radar polarimetry...

  17. Novel Polarimetric SAR Interferometry Algorithms, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Polarimetric radar interferometry (PolInSAR) is a new SAR imaging mode that is rapidly becoming an important technique for bare earth topographic mapping, tree...

  18. Some OFDM waveforms for a fully polarimetric weather radar

    NARCIS (Netherlands)

    Van Genderen, P.; Krasnov, O.A.; Wang, Z.; Tigrek, R.F.

    2012-01-01

    Retrieval of cloud parameters in weather radar benefits from polarimetric measurements. Most polarimetric radars measure the full backscatter matrix (BSM) using a few alternating polarized sounding signals. Using specially encoded orthogonal frequency division multiplexing (OFDM) signals however,

  19. A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion.

    Science.gov (United States)

    Xiao, Shijun; Khan, Maroof H; Shen, Hao; Qi, Minghao

    2007-10-29

    We demonstrate highly compact third-order silicon microring add-drop filters. The microring resonator has a small radius of 2.5 mum and a very large free spectral range of 32 nm at 1.55 mum. Experimental results show a low add-drop crosstalk of around -20 dB. Box-like channel dropping response is demonstrated, and it has a passband of ~ 1 nm (125 GHz), fast rolling-off (slope ~ 0.2 dB/GHz), high out-of-band signal rejection of around 40 dB and a low drop loss. Simulation agrees well with experiments in power transmission, and the group delay is also simulated and the variation is less than 1 ps within the passband. The propagation loss in microring resonators is optimized.

  20. Science data collection with polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Woelders, Kim; Madsen, Søren Nørvang

    1996-01-01

    Discusses examples on the use of polarimetric SAR in a number of Earth science studies. The studies are presently being conducted by the Danish Center for Remote Sensing. A few studies of the European Space Agency's EMAC programme are also discussed. The Earth science objectives are presented......, and the potential of polarimetric SAR is discussed and illustrated with data collected by the Danish airborne EMISAR system during a number of experiments in 1994 and 1995. The presentation will include samples of data acquired for the different studies...

  1. A compact, self-compression-based sub-3 optical cycle source in the 3{--}4\\,\\mu {\\rm{m}} spectral range

    Science.gov (United States)

    Marcinkevičiūtė, Agnė; Garejev, Nail; Šuminas, Rosvaldas; Tamošauskas, Gintaras; Dubietis, Audrius

    2017-10-01

    We report on the experimental realization of a compact, Ti:sapphire laser-pumped mid-infrared light source, which delivers sub-3 optical cycle pulses in the 3{--}4 μ {{m}} spectral range. The light source employs difference frequency generation in potassium titanyl arsenate crystal by mixing the signal and idler waves from a commercial near-infrared optical parametric amplifier and subsequent optical parametric amplification in LiIO3 crystal. The amplified sub-100 fs mid-infrared pulses are self-compressed down to sub-3 optical cycles by nonlinear propagation in few mm thick YAG, CaF2 and BaF2 crystals featuring anomalous group velocity dispersion in that spectral range. The self-compression is performed without the onset of self-focusing effects, hence maintaining a homogenous beam profile with energy throughput efficiency of above 90%, yielding the self-compressed pulses with sub-30 μ {{J}} energy. Even larger self-compression factors (down to sub-2 optical cycles) were achieved in the filamentation regime, simultaneously producing an ultrabroadband supercontinuum, extending from the visible to the mid-infrared.

  2. An improved method for polarimetric image restoration in interferometry

    Science.gov (United States)

    Pratley, Luke; Johnston-Hollitt, Melanie

    2016-11-01

    Interferometric radio astronomy data require the effects of limited coverage in the Fourier plane to be accounted for via a deconvolution process. For the last 40 years this process, known as `cleaning', has been performed almost exclusively on all Stokes parameters individually as if they were independent scalar images. However, here we demonstrate for the case of the linear polarization P, this approach fails to properly account for the complex vector nature resulting in a process which is dependent on the axes under which the deconvolution is performed. We present here an improved method, `Generalized Complex CLEAN', which properly accounts for the complex vector nature of polarized emission and is invariant under rotations of the deconvolution axes. We use two Australia Telescope Compact Array data sets to test standard and complex CLEAN versions of the Högbom and SDI (Steer-Dwedney-Ito) CLEAN algorithms. We show that in general the complex CLEAN version of each algorithm produces more accurate clean components with fewer spurious detections and lower computation cost due to reduced iterations than the current methods. In particular, we find that the complex SDI CLEAN produces the best results for diffuse polarized sources as compared with standard CLEAN algorithms and other complex CLEAN algorithms. Given the move to wide-field, high-resolution polarimetric imaging with future telescopes such as the Square Kilometre Array, we suggest that Generalized Complex CLEAN should be adopted as the deconvolution method for all future polarimetric surveys and in particular that the complex version of an SDI CLEAN should be used.

  3. Polarimetric LIDAR with FRI sampling for target characterization

    Science.gov (United States)

    Wijerathna, Erandi; Creusere, Charles D.; Voelz, David; Castorena, Juan

    2017-09-01

    Polarimetric LIDAR is a significant tool for current remote sensing applications. In addition, measurement of the full waveform of the LIDAR echo provides improved ranging and target discrimination, although, data storage volume in this approach can be problematic. In the work presented here, we investigated the practical issues related to the implementation of a full waveform LIDAR system to identify polarization characteristics of multiple targets within the footprint of the illumination beam. This work was carried out on a laboratory LIDAR testbed that features a flexible arrangement of targets and the ability to change the target polarization characteristics. Targets with different retardance characteristics were illuminated with a linearly polarized laser beam and the return pulse intensities were analyzed by rotating a linear analyzer polarizer in front of a high-speed detector. Additionally, we explored the applicability and the limitations of applying a sparse sampling approach based on Finite Rate of Innovations (FRI) to compress and recover the characteristic parameters of the pulses reflected from the targets. The pulse parameter values extracted by the FRI analysis were accurate and we successfully distinguished the polarimetric characteristics and the range of multiple targets at different depths within the same beam footprint. We also demonstrated the recovery of an unknown target retardance value from the echoes by applying a Mueller matrix system model.

  4. Measurement of impulse current using polarimetric fiber optic sensor

    Science.gov (United States)

    Ginter, Mariusz

    2017-08-01

    In the paper the polarimetric current sensing solution used for measurements of high amplitude currents and short durations is presented. This type of sensor does not introduce additional resistance and inductance into the circuit, which is a desirable phenomenon in this type of measurement. The magneto element is a fiber optic coil made of spun fiber optic. The fiber in which the core is twisted around its axis is characterized by a small effect of interfering magnitudes, ie mechanical vibrations and pressure changes on the polarimeter. The presented polarimetric current sensor is completely fiber optic. Experimental results of a proposed sensor construction solution operating at 1550 nm and methods of elimination of influence values on the fiber optic current sensor were presented. The sensor was used to measure the impulse current. The generated current pulses are characterized by a duration of 23μs and amplitudes ranging from 1 to 3.5 kA. The currents in the discharge circuit are shown. The measurement uncertainty of the amplitude of the electric current in the range of measured impulses was determined and estimated to be no more than 2%.

  5. SMEX02 Aircraft Polarimetric Scanning Radiometer (PSR) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The Polarimetric Scanning Radiometer (PSR) is an airborne microwave imaging radiometer developed and operated by the National Oceanic and Atmospheric Administration...

  6. IHW COMET HALLEY POLARIMETRIC OBSERVATIONS, V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the polarimetric results reported to the International Halley Watch (IHW) Photometry and Polarimetry Network (PPN) by the various...

  7. CAMEX-3 POLARIMETRIC SCANNING RADIOMETER (PSR) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Polarimetric Scanning Radiometer (PSR) is a versatile airborne microwave imaging radiometer developed by the Georgia Institute of Technology and the NOAA...

  8. An ultra-compact in-situ 3He polarizer for high Q-range SANS: on-beam test and future upgrades

    Science.gov (United States)

    Salhi, Zahir; Babcock, Earl; Bingöl, Kendal; Starostin, Denis; Pistel, Patrick; Lumma, Nils; Radulescu, Aurel; Ioffe, Alexander

    2017-06-01

    We present an ultra-compact 3He polarizer to be used as a polarization analyzer for separation of incoherent background for soft matter research. The 3He will be polarized in-situ within a very compact, 18 cm long, magnetic cavity that can be placed between the sample and the detector tank of small-angle scattering diffractometer KWS2 at MLZ [1]. This allows for the angular coverage of 38°, that corresponds to the maximal momentum transfer Qmaxλ=0.85 Å-1 for neutrons with wavelength λ=4.5Å. The Qmax can be extended to 1.28 Å-1 following the recent upgrade of KWS2 for neutron wavelength λ=3Å. The optical pumping will be done by the diode laser array bar frequency narrowed by the ultra-compact volume Bragg grating. The full system will be readily hand transportable and thus useful as an instrument add-on.

  9. Validation of Distributed Soil Moisture: Airborne Polarimetric SAR vs. Ground-based Sensor Networks

    Science.gov (United States)

    Jagdhuber, T.; Kohling, M.; Hajnsek, I.; Montzka, C.; Papathanassiou, K. P.

    2012-04-01

    The knowledge of spatially distributed soil moisture is highly desirable for an enhanced hydrological modeling in terms of flood prevention and for yield optimization in combination with precision farming. Especially in mid-latitudes, the growing agricultural vegetation results in an increasing soil coverage along the crop cycle. For a remote sensing approach, this vegetation influence has to be separated from the soil contribution within the resolution cell to extract the actual soil moisture. Therefore a hybrid decomposition was developed for estimation of soil moisture under vegetation cover using fully polarimetric SAR data. The novel polarimetric decomposition combines a model-based decomposition, separating the volume component from the ground components, with an eigen-based decomposition of the two ground components into a surface and a dihedral scattering contribution. Hence, this hybrid decomposition, which is based on [1,2], establishes an innovative way to retrieve soil moisture under vegetation. The developed inversion algorithm for soil moisture under vegetation cover is applied on fully polarimetric data of the TERENO campaign, conducted in May and June 2011 for the Rur catchment within the Eifel/Lower Rhine Valley Observatory. The fully polarimetric SAR data were acquired in high spatial resolution (range: 1.92m, azimuth: 0.6m) by DLR's novel F-SAR sensor at L-band. The inverted soil moisture product from the airborne SAR data is validated with corresponding distributed ground measurements for a quality assessment of the developed algorithm. The in situ measurements were obtained on the one hand by mobile FDR probes from agricultural fields near the towns of Merzenhausen and Selhausen incorporating different crop types and on the other hand by distributed wireless sensor networks (SoilNet clusters) from a grassland test site (near the town of Rollesbroich) and from a forest stand (within the Wüstebach sub-catchment). Each SoilNet cluster

  10. Polarimetric Signatures from a Crop Covered Land Surface Measured by an L-band Polarimetric Radiometer

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    This paper describes preliminary results from field measurements of polarimetric azimuth signatures with the EMIRAD L-band polarimetric radiometer, performed over a land test site at the Institut National de la Recherche Agronomique in Avignon, France. Scans of 180 degrees in azimuth were carried...... out in order to identify an eventual dependence of the Stokes vector on the look-direction. Results indicate a clear signature, for bare soil as well as for the crop-covered surface, and variations of more than 10 K are observed....

  11. Characterization of polarimetric and total intensity behaviour of a complete sample of PACO radio sources in the radio bands

    Science.gov (United States)

    Galluzzi, V.; Massardi, M.; Bonaldi, A.; Casasola, V.; Gregorini, L.; Trombetti, T.; Burigana, C.; Bonato, M.; De Zotti, G.; Ricci, R.; Stevens, J.; Ekers, R. D.; Bonavera, L.; di Serego Alighieri, S.; Liuzzo, E.; López-Caniego, M.; Paladino, R.; Toffolatti, L.; Tucci, M.; Callingham, J. R.

    2018-03-01

    We present high sensitivity (σP ≃ 0.6 mJy) polarimetric observations in seven bands, from 2.1 to 38 GHz, of a complete sample of 104 compact extragalactic radio sources brighter than 200 mJy at 20 GHz. Polarization measurements in six bands, in the range 5.5-38 GHz, for 53 of these objects were reported by Galluzzi et al. We have added new measurements in the same six bands for another 51 sources and measurements at 2.1 GHz for the full sample of 104 sources. Also, the previous measurements at 18, 24, 33, and 38 GHz were re-calibrated using the updated model for the flux density absolute calibrator, PKS1934-638, not available for the earlier analysis. The observations, carried out with the Australia Telescope Compact Array, achieved a 90 per cent detection rate (at 5σ) in polarization. 89 of our sources have a counterpart in the 72-231 MHz GLEAM (GaLactic and Extragalactic All-sky Murchison Widefield Array) survey, providing an unparalleled spectral coverage of 2.7 decades of frequency for these sources. While the total intensity data from 5.5 to 38 GHz could be interpreted in terms of single component emission, a joint analysis of more extended total intensity spectra presented here, and of the polarization spectra, reveals that over 90 per cent of our sources show clear indications of at least two emission components. We interpret this as an evidence of recurrent activity. Our high sensitivity polarimetry has allowed a 5σ detection of the weak circular polarization for ˜ 38 per cent of the data set, and a deeper estimate of 20 GHz polarization source counts than has been possible so far.

  12. Scattering Mechanism Identification Based on Polarimetric HRRP of Manmade Target

    Directory of Open Access Journals (Sweden)

    Wu Jiani

    2016-04-01

    Full Text Available In this paper, we analyze the space polarization and frequency dispersion characteristics of the polarimetric High Resolution Range Profile (HRRP of manmade targets. We integrate these characteristics and propose a novel scheme for scattering mechanism identification. Using a polarization decomposition technique, the scheme first identifies the scattering mechanism of the scattering centers. Specially, it uses an algorithm to compensate for the polarization orientation angle in order to decrease the errors in judgment caused by the varying azimuth. Then, based on the frequency dispersion characteristics, we design threedimensional parameters to discriminate between the scattering centers, in order to decrease the inaccuracy in the discriminations. Finally, we conduct simulations based on electromagnetic data to validate the feasibility of the proposed scheme and to demonstrate that it provides a basis for practical use in target recognition.

  13. Polarimetric Edge Detector Based on the Complex Wishart Distribution

    DEFF Research Database (Denmark)

    Skriver, Henning; Schou, Jesper; Nielsen, Allan Aasbjerg

    2001-01-01

    A new edge detector for polarimetric SAR data has been developed. The edge detector is based on a newly developed test statistic for equality of two complex covariance matrices following the complex Wishart distribution and an associated asymptotic probability for the test statistic. The new...... for the full polarimetric detector compared to single channel approaches....

  14. Masses of Negative Multinomial Distributions: Application to Polarimetric Image Processing

    Directory of Open Access Journals (Sweden)

    Philippe Bernardoff

    2013-01-01

    Full Text Available This paper derives new closed-form expressions for the masses of negative multinomial distributions. These masses can be maximized to determine the maximum likelihood estimator of its unknown parameters. An application to polarimetric image processing is investigated. We study the maximum likelihood estimators of the polarization degree of polarimetric images using different combinations of images.

  15. Target detection with polarimetric C-band SAR

    NARCIS (Netherlands)

    Broek, A.C. van den; Dekker, R.J.; Smith, A.J.E.; Vries, F.P.P. de

    1999-01-01

    We have studied an optimal target detection procedure for polarimetric SAR data by using PHARUS data collected during the MIMEX campaign. The detection method is especially suitable when no a priory knowledge of the target is available. We have found that polarimetric whitening filtering preceding

  16. The CASLEO Polarimetric Survey of Main Belt Asteroids: Updated results

    Science.gov (United States)

    Gil-Hutton, R.; Cellino, A.; Cañada-Assandri, M.

    2011-10-01

    We present updated results of the polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina, using the 2.15 m telescope and the Torino and CASPROF polarimeters. The goals of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids belonging to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. The survey began in 2003, and data for a sample of more than 170 asteroids have been obtained, most of them having been polarimetrically observed for the first time. Using these data we find phase-polarization curves and polarimetric parameters for several taxonomic classes.

  17. Construction of Polarimetric Radar-Based Reference Rain Maps for the Iowa Flood Studies Campaign

    Science.gov (United States)

    Petersen, Walt; Krajewski, Witek; Wolff, David; Gatlin, Patrick

    2015-04-01

    The Global Precipitation Measurement (GPM) Mission Iowa Flood Studies (IFloodS) campaign was conducted in central and northeastern Iowa during the months of April-June, 2013. Specific science objectives for IFloodS included quantification of uncertainties in satellite and ground-based estimates of precipitation, 4-D characterization of precipitation physical processes and associated parameters (e.g., size distributions, water contents, types, structure etc.), assessment of the impact of precipitation estimation uncertainty and physical processes on hydrologic predictive skill, and refinement of field observations and data analysis approaches as they pertain to future GPM integrated hydrologic validation and related field studies. In addition to field campaign archival of raw and processed satellite data (including precipitation products), key ground-based platforms such as the NASA NPOL S-band and D3R Ka/Ku-band dual-polarimetric radars, University of Iowa X-band dual-polarimetric radars, a large network of paired rain gauge platforms, and a large network of 2D Video and Parsivel disdrometers were deployed. In something of a canonical approach, the radar (NPOL in particular), gauge and disdrometer observational assets were deployed to create a consistent high-quality distributed (time and space sampling) radar-based ground "reference" rainfall dataset, with known uncertainties, that could be used for assessing the satellite-based precipitation products at a range of space/time scales. Subsequently, the impact of uncertainties in the satellite products could be evaluated relative to the ground-benchmark in coupled weather, land-surface and distributed hydrologic modeling frameworks as related to flood prediction. Relative to establishing the ground-based "benchmark", numerous avenues were pursued in the making and verification of IFloodS "reference" dual-polarimetric radar-based rain maps, and this study documents the process and results as they pertain specifically

  18. Construction of Polarimetric Radar-Based Reference Rain Maps for the Iowa Flood Studies Campaign

    Science.gov (United States)

    Petersen, Walter; Wolff, David; Krajewski, Witek; Gatlin, Patrick

    2015-01-01

    The Global Precipitation Measurement (GPM) Mission Iowa Flood Studies (IFloodS) campaign was conducted in central and northeastern Iowa during the months of April-June, 2013. Specific science objectives for IFloodS included quantification of uncertainties in satellite and ground-based estimates of precipitation, 4-D characterization of precipitation physical processes and associated parameters (e.g., size distributions, water contents, types, structure etc.), assessment of the impact of precipitation estimation uncertainty and physical processes on hydrologic predictive skill, and refinement of field observations and data analysis approaches as they pertain to future GPM integrated hydrologic validation and related field studies. In addition to field campaign archival of raw and processed satellite data (including precipitation products), key ground-based platforms such as the NASA NPOL S-band and D3R Ka/Ku-band dual-polarimetric radars, University of Iowa X-band dual-polarimetric radars, a large network of paired rain gauge platforms, and a large network of 2D Video and Parsivel disdrometers were deployed. In something of a canonical approach, the radar (NPOL in particular), gauge and disdrometer observational assets were deployed to create a consistent high-quality distributed (time and space sampling) radar-based ground "reference" rainfall dataset, with known uncertainties, that could be used for assessing the satellite-based precipitation products at a range of space/time scales. Subsequently, the impact of uncertainties in the satellite products could be evaluated relative to the ground-benchmark in coupled weather, land-surface and distributed hydrologic modeling frameworks as related to flood prediction. Relative to establishing the ground-based "benchmark", numerous avenues were pursued in the making and verification of IFloodS "reference" dual-polarimetric radar-based rain maps, and this study documents the process and results as they pertain specifically

  19. Polarimetric scattering and SAR information retrieval

    CERN Document Server

    Jin, Ya-Qiu

    2013-01-01

    Taking an innovative look at Synthetic Aperture Radar (SAR), this practical reference fully covers new developments in SAR and its various methodologies and enables readers to interpret SAR imagery An essential reference on polarimetric Synthetic Aperture Radar (SAR), this book uses scattering theory and radiative transfer theory as a basis for its treatment of topics. It is organized to include theoretical scattering models and SAR data analysis techniques, and presents cutting-edge research on theoretical modelling of terrain surface. The book includes quantitative app

  20. Feature-Based Nonlocal Polarimetric SAR Filtering

    Directory of Open Access Journals (Sweden)

    Xiaoli Xing

    2017-10-01

    Full Text Available Polarimetric synthetic aperture radar (PolSAR images are inherently contaminated by multiplicative speckle noise, which complicates the image interpretation and image analyses. To reduce the speckle effect, several adaptive speckle filters have been developed based on the weighted average of the similarity measures commonly depending on the model or probability distribution, which are often affected by the distribution parameters and modeling texture components. In this paper, a novel filtering method introduces the coefficient of variance ( CV and Pauli basis (PB to measure the similarity, and the two features are combined with the framework of the nonlocal mean filtering. The CV is used to describe the complexity of various scenes and distinguish the scene heterogeneity; moreover, the Pauli basis is able to express the polarimetric information in PolSAR image processing. This proposed filtering combines the CV and Pauli basis to improve the estimation accuracy of the similarity weights. Then, the similarity of the features is deduced according to the test statistic. Subsequently, the filtering is proceeded by using the nonlocal weighted estimation. The performance of the proposed filter is tested with the simulated images and real PolSAR images, which are acquired by AIRSAR system and ESAR system. The qualitative and quantitative experiments indicate the validity of the proposed method by comparing with the widely-used despeckling methods.

  1. Investigation of the capability of the Compact Polarimetry mode to Reconstruct Full Polarimetry mode using RADARSAT2 data

    Directory of Open Access Journals (Sweden)

    S. Boularbah

    2012-06-01

    Full Text Available Recently, there has been growing interest in dual-pol systems that transmit one polarization and receive two polarizations. Souyris et al. proposed a DP mode called compact polarimetry (CP which is able to reduce the complexity, cost, mass, and data rate of a SAR system while attempting to maintain many capabilities of a fully polarimetric system. This paper provides a comparison of the information content of full quad-pol data and the pseudo quad-pol data derived from compact polarimetric SAR modes. A pseudo-covariance matrix can be reconstructed following Souyris’s approach and is shown to be similar to the full polarimetric (FP covariance matrix. Both the polarimetric signatures based on the kennaugh matrix and the Freeman and Durden decomposition in the context of this compact polarimetry mode are explored. The Freeman and Durden decomposition is used in our study because of its direct relationship to the reflection symmetry. We illustrate our results by using the polarimetric SAR images of Algiers city in Algeria acquired by the RadarSAT2 in C-band.

  2. Evaluation of the Wishart test statistics for polarimetric SAR data

    DEFF Research Database (Denmark)

    Skriver, Henning; Nielsen, Allan Aasbjerg; Conradsen, Knut

    2003-01-01

    A test statistic for equality of two covariance matrices following the complex Wishart distribution has previously been used in new algorithms for change detection, edge detection and segmentation in polarimetric SAR images. Previously, the results for change detection and edge detection have been...... quantitatively evaluated. This paper deals with the evaluation of segmentation. A segmentation performance measure originally developed for single-channel SAR images has been extended to polarimetric SAR images, and used to evaluate segmentation for a merge-using-moment algorithm for polarimetric SAR data....

  3. Effects of surface materials on polarimetric-thermal measurements: applications to face recognition.

    Science.gov (United States)

    Short, Nathaniel J; Yuffa, Alex J; Videen, Gorden; Hu, Shuowen

    2016-07-01

    Materials, such as cosmetics, applied to the face can severely inhibit biometric face-recognition systems operating in the visible spectrum. These products are typically made up of materials having different spectral properties and color pigmentation that distorts the perceived shape of the face. The surface of the face emits thermal radiation, due to the living tissue beneath the surface of the skin. The emissivity of skin is approximately 0.99; in comparison, oil- and plastic-based materials, commonly found in cosmetics and face paints, have an emissivity range of 0.9-0.95 in the long-wavelength infrared part of the spectrum. Due to these properties, all three are good thermal emitters and have little impact on the heat transferred from the face. Polarimetric-thermal imaging provides additional details of the face and is also dependent upon the thermal radiation from the face. In this paper, we provide a theoretical analysis on the thermal conductivity of various materials commonly applied to the face using a metallic sphere. Additionally, we observe the impact of environmental conditions on the strength of the polarimetric signature and the ability to recover geometric details. Finally, we show how these materials degrade the performance of traditional face-recognition methods and provide an approach to mitigating this effect using polarimetric-thermal imaging.

  4. C- and L-band multi-temporal polarimetric signatures of crops

    DEFF Research Database (Denmark)

    Skriver, Henning; Nielsen, Flemming; Thomsen, Anton

    1996-01-01

    Polarimetric SAR-data of agricultural fields have been acquired by the Danish polarimetric SAR (EMISAR) during a number of missions at the Danish test site Foulum during 1994 and 1995. EMISAR has operated in a fully polarimetric mode at C-band since the fall of 1993 and at L-band since the beginn......Polarimetric SAR-data of agricultural fields have been acquired by the Danish polarimetric SAR (EMISAR) during a number of missions at the Danish test site Foulum during 1994 and 1995. EMISAR has operated in a fully polarimetric mode at C-band since the fall of 1993 and at L-band since...... the beginning of 1995. The SAR system is installed on a Danish Air Force Gulfstream aircraft, and a significant amount of polarimetric SAR data have been acquired on various missions. Polarimetric parameters for a number of different agricultural crops are shown, and the advantage of having polarimetric, multi...

  5. Nonlinear Polarimetric Microscopy for Biomedical Imaging

    Science.gov (United States)

    Samim, Masood

    A framework for the nonlinear optical polarimetry and polarimetric microscopy is developed. Mathematical equations are derived in terms of linear and nonlinear Stokes Mueller formalism, which comprehensively characterize the polarization properties of the incoming and outgoing radiations, and provide structural information about the organization of the investigated materials. The algebraic formalism developed in this thesis simplifies many predictions for a nonlinear polarimetry study and provides an intuitive understanding of various polarization properties for radiations and the intervening medium. For polarimetric microscopy experiments, a custom fast-scanning differential polarization microscope is developed, which is also capable of real-time three-dimensional imaging. The setup is equipped with a pair of high-speed resonant and galvanometric scanning mirrors, and supplemented by advanced adaptive optics and data acquisition modules. The scanning mirrors when combined with the adaptive optics deformable mirror enable fast 3D imaging. Deformable membrane mirrors and genetic algorithm optimization routines are employed to improve the imaging conditions including correcting the optical aberrations, maximizing signal intensities, and minimizing point-spread-functions of the focal volume. A field-programmable-gate array (FPGA) chip is exploited to rapidly acquire and process the multidimensional data. Using the nonlinear optical polarimetry framework and the home-built polarization microscope, a few biologically important tissues are measured and analyzed to gain insight as to their structure and dynamics. The structure and distribution of muscle sarcomere myosins, connective tissue collagen, carbohydrate-rich starch, and fruit fly eye retinal molecules are characterized with revealing polarization studies. In each case, using the theoretical framework, polarization sensitive data are analyzed to decipher the molecular orientations and nonlinear optical

  6. CLPX-Airborne: Polarimetric Ku-Band Scatterometer (POLSCAT) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains Ku-band polarimetric scatterometer (POLSCAT) data collected as part of the Cold Land Processes Field Experiment (CLPX) to enable the...

  7. Change detection in polarimetric SAR data over several time points

    DEFF Research Database (Denmark)

    Conradsen, Knut; Nielsen, Allan Aasbjerg; Skriver, Henning

    2014-01-01

    A test statistic for the equality of several variance-covariance matrices following the complex Wishart distribution is introduced. The test statistic is applied successfully to detect change in C-band EMISAR polarimetric SAR data over four time points....

  8. NAMMA NASA POLARIMETRIC DOPPLER WEATHER RADAR (NPOL) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Polarimetric Radar (NPOL), developed by a research team from Wallops Flight Facility, is a fully transportable and self-contained S-band research radar that...

  9. CLPX-Airborne: Multiband Polarimetric Scanning Radiometer (PSR) Imagery

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides multiband polarimetric brightness temperature images over three 25 x 25 km Meso-cell Study Areas (MSAs) in Northern Colorado. The purpose of...

  10. NAMMA NASA POLARIMETRIC DOPPLER WEATHER RADAR (NPOL) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA NASA Polarimetric Doppler Weather Radar (NPOL) dataset used the NPOL, developed by a research team from Wallops Flight Facility, is a fully transportable...

  11. Digital Beamforming Synthetic Aperture Radar (DBSAR) Polarimetric Upgrade

    Science.gov (United States)

    Rincon, Rafael F.; Perrine, Martin; McLinden, Matthew; Valett, Susan

    2011-01-01

    The Digital Beamforming Synthetic Aperture Radar (DBSAR) is a state-of-the-art radar system developed at NASA/Goddard Space Flight Center for the development and implementation of digital beamforming radar techniques. DBSAR was recently upgraded to polarimetric operation in order to enhance its capability as a science instrument. Two polarimetric approaches were carried out which will be demonstrated in upcoming flight campaigns.

  12. Pulse-based internal calibration of polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Skou, Niels; Christensen, Erik Lintz

    1994-01-01

    Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops and devel......Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops...

  13. Polarimetric Coherence Optimization for Multibaseline SAR Data

    Science.gov (United States)

    Neumann, M.; Ferro-Famil, L.; Reigber, A.

    2007-03-01

    This paper analyzes different approaches for polarimetric optimization of multibaseline interferometric coherences. Two general methods are developed which simultaneously optimize coherences for more than two datasets. The first method is based on multiset canonical correlation analysis, and it provides every dataset with a distinguished dominant scattering mechanism. The second optimization method is constrained to the use of an identical scattering mechanism for every dataset. A framework for a multibaseline orthogonal optimal scattering mechanisms decomposition is presented. The both methods are evaluated on real data acquired by DLR's ESAR sensor at L-band. As experimental results indicate, preferring simultaneous multibaseline coherence optimization to single-baseline optimization improves the estimation of the dominant scattering mechanisms and their interferometric phases.

  14. Forest biomass estimation from polarimetric SAR interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Mette, T.

    2007-07-01

    Polarimetric SAR interferometry (Pol-InSAR) is a radar remote sensing technique that allows extracting forest heights by means of model-based inversions. Forest biomass is closely related to forest height, and can be derived from it with allometric relations. This work investigates the combination of the two methods to estimate forest biomass from Pol-InSAR. It develops a concept for the use of height-biomass allometry, and outlines the Pol-InSAR height inversion. The methodology is validated against a set of forest inventory data and Pol-InSAR data at L-band of the test site Traunstein. The results allow drawing conclusions on the potential of Pol-InSAR forest biomass missions. (orig.)

  15. Microphysical properties of frozen particles inferred from Global Precipitation Measurement (GPM) Microwave Imager (GMI) polarimetric measurements

    Science.gov (United States)

    Gong, Jie; Wu, Dong L.

    2017-02-01

    Scattering differences induced by frozen particle microphysical properties are investigated, using the vertically (V) and horizontally (H) polarized radiances from the Global Precipitation Measurement (GPM) Microwave Imager (GMI) 89 and 166 GHz channels. It is the first study on frozen particle microphysical properties on a global scale that uses the dual-frequency microwave polarimetric signals.From the ice cloud scenes identified by the 183.3 ± 3 GHz channel brightness temperature (Tb), we find that the scattering by frozen particles is highly polarized, with V-H polarimetric differences (PDs) being positive throughout the tropics and the winter hemisphere mid-latitude jet regions, including PDs from the GMI 89 and 166 GHz TBs, as well as the PD at 640 GHz from the ER-2 Compact Scanning Submillimeter-wave Imaging Radiometer (CoSSIR) during the TC4 campaign. Large polarization dominantly occurs mostly near convective outflow regions (i.e., anvils or stratiform precipitation), while the polarization signal is small inside deep convective cores as well as at the remote cirrus region. Neglecting the polarimetric signal would easily result in as large as 30 % error in ice water path retrievals. There is a universal bell curve in the PD-TBV relationship, where the PD amplitude peaks at ˜ 10 K for all three channels in the tropics and increases slightly with latitude (2-4 K). Moreover, the 166 GHz PD tends to increase in the case where a melting layer is beneath the frozen particles aloft in the atmosphere, while 89 GHz PD is less sensitive than 166 GHz to the melting layer. This property creates a unique PD feature for the identification of the melting layer and stratiform rain with passive sensors.Horizontally oriented non-spherical frozen particles are thought to produce the observed PD because of different ice scattering properties in the V and H polarizations. On the other hand, turbulent mixing within deep convective cores inevitably promotes the random

  16. Polarimetric ISAR: Simulation and image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, David H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-21

    In polarimetric ISAR the illumination platform, typically airborne, carries a pair of antennas that are directed toward a fixed point on the surface as the platform moves. During platform motion, the antennas maintain their gaze on the point, creating an effective aperture for imaging any targets near that point. The interaction between the transmitted fields and targets (e.g. ships) is complicated since the targets are typically many wavelengths in size. Calculation of the field scattered from the target typically requires solving Maxwell’s equations on a large three-dimensional numerical grid. This is prohibitive to use in any real-world imaging algorithm, so the scattering process is typically simplified by assuming the target consists of a cloud of independent, non-interacting, scattering points (centers). Imaging algorithms based on this scattering model perform well in many applications. Since polarimetric radar is not very common, the scattering model is often derived for a scalar field (single polarization) where the individual scatterers are assumed to be small spheres. However, when polarization is important, we must generalize the model to explicitly account for the vector nature of the electromagnetic fields and its interaction with objects. In this note, we present a scattering model that explicitly includes the vector nature of the fields but retains the assumption that the individual scatterers are small. The response of the scatterers is described by electric and magnetic dipole moments induced by the incident fields. We show that the received voltages in the antennas are linearly related to the transmitting currents through a scattering impedance matrix that depends on the overall geometry of the problem and the nature of the scatterers.

  17. Polarimetric survey of main-belt asteroids. V. The unusual polarimetric behavior of V-type asteroids

    Science.gov (United States)

    Gil-Hutton, R.; López-Sisterna, C.; Calandra, M. F.

    2017-03-01

    Aims: We present the results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained using the CASPROF and CASPOL polarimeters at the 2.15 m telescope. The CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation and CASPOL is a polarimeter based on a CCD detector, which allows us to observe fainter objects with better signal-to-noise ratio. Results: The survey began in 1995 and data on a large sample of asteroids were obtained until 2012. A second period began in 2013 using a polarimeter with a more sensitive detector in order to study small asteroids, families, and special taxonomic groups. We obtained 55 polarimetric measurements for 28 V-type main belt asteroids, all of them polarimetrically observed for the first time. The data obtained in this survey let us find polarimetric parameters for (1459) Magnya and for a group of 11 small V-type objects with similar polarimetric behavior. These polarization curves are unusual since they show a shallow minimum and a small inversion angle in comparison with (4) Vesta, although they have a steeper slope at α0. This polarimetric behavior could be explained by differences in the regoliths of these asteroids. The observations of (2579) Spartacus, and perhaps also (3944) Halliday, indicate a inversion angle larger than 24-25°. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  18. Compact vortices

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Losano, L.; Marques, M.A.; Zafalan, I. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)

    2017-02-15

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane. (orig.)

  19. Color-XHDR - A Compact High-Speed Color Extreme High Dynamic Range Video Capability for Rocket Engine Testing, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative Imaging and Research proposes to develop a 21st Century color, high-speed extreme high dynamic range (Color-XHDR) video recording technology that will...

  20. Color-XHDR - A Compact High-Speed Color Extreme High Dynamic Range Video Capability for Rocket Engine Testing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative Imaging and Research (I2R) proposes to develop a 21st Century high-speed, color extreme high dynamic range (Color-XHDR) video recording system that will...

  1. On the Use of Generalized Volume Scattering Models for the Improvement of General Polarimetric Model-Based Decomposition

    Directory of Open Access Journals (Sweden)

    Qinghua Xie

    2017-01-01

    Full Text Available Recently, a general polarimetric model-based decomposition framework was proposed by Chen et al., which addresses several well-known limitations in previous decomposition methods and implements a simultaneous full-parameter inversion by using complete polarimetric information. However, it only employs four typical models to characterize the volume scattering component, which limits the parameter inversion performance. To overcome this issue, this paper presents two general polarimetric model-based decomposition methods by incorporating the generalized volume scattering model (GVSM or simplified adaptive volume scattering model, (SAVSM proposed by Antropov et al. and Huang et al., respectively, into the general decomposition framework proposed by Chen et al. By doing so, the final volume coherency matrix structure is selected from a wide range of volume scattering models within a continuous interval according to the data itself without adding unknowns. Moreover, the new approaches rely on one nonlinear optimization stage instead of four as in the previous method proposed by Chen et al. In addition, the parameter inversion procedure adopts the modified algorithm proposed by Xie et al. which leads to higher accuracy and more physically reliable output parameters. A number of Monte Carlo simulations of polarimetric synthetic aperture radar (PolSAR data are carried out and show that the proposed method with GVSM yields an overall improvement in the final accuracy of estimated parameters and outperforms both the version using SAVSM and the original approach. In addition, C-band Radarsat-2 and L-band AIRSAR fully polarimetric images over the San Francisco region are also used for testing purposes. A detailed comparison and analysis of decomposition results over different land-cover types are conducted. According to this study, the use of general decomposition models leads to a more accurate quantitative retrieval of target parameters. However, there

  2. CAMEX-4 MOBILE X-BAND POLARIMETRIC WEATHER RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 Mobile X-Band Polarimetric Weather Radar dataset was collected by the Mobile X-band Polarimetric Weather Radar on Wheels (X-POW), which is a Doppler...

  3. Sample Extraction Bsaed on Helix Scattering for Polarimetric SAR Calibratio

    Science.gov (United States)

    Chang, Y.; Yang, J.; Li, P.; Zhao, L.; Shi, L.

    2017-09-01

    Polarimetric calibration (PolCAL) of Synthetic Aperture Radar (SAR) images is a significant preprocessing for further applications. Since the reflection symmetry property of distributed objects can provide stable constraints for PolCAL. It is reasonable to extract these reference samples before calibration. The helix scattering generally appears in complex urban area and disappears for a natural scatterer, making it a good measure to extract distributed objects. In this paper, a novel technique that extracts reflecting symmetry samples is proposed by using helix scattering. The helix scattering information is calculated by Yamaguchi four-component decomposition algorithm. An adaptive threshold selection algorithm based on generalized Gaussian distribution is also utilized to scale the helix scattering components automatically, getting rid of the problem of various numerical range. The extracting results will be taken as PolCAL reference samples and the Quegan method are utilized to calibrate these PolSAR images. A C-band airborne PolSAR data was taken as examples to evaluate its ability in improving calibration precision. Traditional method i.e. extracting samples with span power was also evaluated as contrast experiment. The results showed that the samples extracting method based on helix scattering can improve the Polcal precision preferably.

  4. SAMPLE EXTRACTION BSAED ON HELIX SCATTERING FOR POLARIMETRIC SAR CALIBRATIO

    Directory of Open Access Journals (Sweden)

    Y. Chang

    2017-09-01

    Full Text Available Polarimetric calibration (PolCAL of Synthetic Aperture Radar (SAR images is a significant preprocessing for further applications. Since the reflection symmetry property of distributed objects can provide stable constraints for PolCAL. It is reasonable to extract these reference samples before calibration. The helix scattering generally appears in complex urban area and disappears for a natural scatterer, making it a good measure to extract distributed objects. In this paper, a novel technique that extracts reflecting symmetry samples is proposed by using helix scattering. The helix scattering information is calculated by Yamaguchi four-component decomposition algorithm. An adaptive threshold selection algorithm based on generalized Gaussian distribution is also utilized to scale the helix scattering components automatically, getting rid of the problem of various numerical range. The extracting results will be taken as PolCAL reference samples and the Quegan method are utilized to calibrate these PolSAR images. A C-band airborne PolSAR data was taken as examples to evaluate its ability in improving calibration precision. Traditional method i.e. extracting samples with span power was also evaluated as contrast experiment. The results showed that the samples extracting method based on helix scattering can improve the Polcal precision preferably.

  5. Polarimetric C-Band SAR Observations of Sea Ice in the Greenland Sea

    DEFF Research Database (Denmark)

    Thomsen, Bjørn Bavnehøj; Nghiem, S.V.; Kwok, R.

    1998-01-01

    The fully polarimetric EMISAR acquired C-band radar signatures of sea ice in the Greenland Sea during a campaign in March 1995. The authors present maps of polarimetric signatures over an area containing various kinds of ice and discuss the use of polarimetric SAR for identification of ice types...

  6. Discussion on Application of Polarimetric Synthetic Aperture Radar in Marine Surveillance

    Directory of Open Access Journals (Sweden)

    Zhang Jie

    2016-12-01

    Full Text Available Synthetic Aperture Radar (SAR, an important earth observation sensor, has been used in a wide range of applications for land and marine surveillance. Polarimetric SAR (PolSAR can obtain abundant scattering information of a target to improve the ability of target detection, classification, and quantitative inversion. In this paper, the important role of PolSAR in ocean monitoring is discussed with factors such as sea ice, ships, oil spill, waves, internal waves, and seabed topography. Moreover, the future development direction of PolSAR is put forward to get an inspiration for further research of PolSAR in marine surveillance applications.

  7. Initial assessment of an airborne Ku-band polarimetric SAR.

    Energy Technology Data Exchange (ETDEWEB)

    Raynal, Ann Marie; Doerry, Armin Walter

    2013-02-01

    Polarimetric synthetic aperture radar (SAR) has been used for a variety of dual-use research applications since the 1940s. By measuring the direction of the electric field vector from radar echoes, polarimetry may enhance an analysts understanding of scattering effects for both earth monitoring and tactical surveillance missions. Polarimetry may provide insight into surface types, materials, or orientations for natural and man-made targets. Polarimetric measurements may also be used to enhance the contrast between scattering surfaces such as man-made objects and their surroundings. This report represents an initial assessment of the utility of, and applications for, polarimetric SAR at Ku-band for airborne or unmanned aerial systems.

  8. Knowledge-based sea ice classification by polarimetric SAR

    DEFF Research Database (Denmark)

    Skriver, Henning; Dierking, Wolfgang

    2004-01-01

    Polarimetric SAR images acquired at C- and L-band over sea ice in the Greenland Sea, Baltic Sea, and Beaufort Sea have been analysed with respect to their potential for ice type classification. The polarimetric data were gathered by the Danish EMISAR and the US AIRSAR which both are airborne...... systems. A hierarchical classification scheme was chosen for sea ice because our knowledge about magnitudes, variations, and dependences of sea ice signatures can be directly considered. The optimal sequence of classification rules and the rules themselves depend on the ice conditions/regimes. The use...... of the polarimetric phase information improves the classification only in the case of thin ice types but is not necessary for thicker ice (above about 30 cm thickness)...

  9. Radar Measurement of Human Polarimetric Micro-Doppler

    Directory of Open Access Journals (Sweden)

    David Tahmoush

    2013-01-01

    Full Text Available We use polarimetric micro-Doppler for the detection of arm motion, especially for the classification of whether someone has their arms swinging and is thus unloaded. The arm is often bent at the elbow, providing a surface somewhat similar to a dihedral. This is distinct from the more planar surfaces of the body which allows us to isolate the signals of the arm (and knee. The dihedral produces a double bounce that can be seen in polarimetric radar data by measuring the phase difference between HH and VV. This measurement can then be used to determine whether the subject is unloaded.

  10. Authentication of gold nanoparticle encoded pharmaceutical tablets using polarimetric signatures.

    Science.gov (United States)

    Carnicer, Artur; Arteaga, Oriol; Suñé-Negre, Josep M; Javidi, Bahram

    2016-10-01

    The counterfeiting of pharmaceutical products represents concerns for both industry and the safety of the general public. Falsification produces losses to companies and poses health risks for patients. In order to detect fake pharmaceutical tablets, we propose producing film-coated tablets with gold nanoparticle encoding. These coated tablets contain unique polarimetric signatures. We present experiments to show that ellipsometric optical techniques, in combination with machine learning algorithms, can be used to distinguish genuine and fake samples. To the best of our knowledge, this is the first report using gold nanoparticles encoded with optical polarimetric classifiers to prevent the counterfeiting of pharmaceutical products.

  11. POLARIMETRIC OBSERVATIONS OF {sigma} ORIONIS E

    Energy Technology Data Exchange (ETDEWEB)

    Carciofi, A. C.; Faes, D. M. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, 05508-900 Sao Paulo, SP (Brazil); Townsend, R. H. D. [Department of Astronomy, University of Wisconsin-Madison, Sterling Hall, 475 N. Charter Street, Madison, WI 53706 (United States); Bjorkman, J. E., E-mail: carciofi@usp.br [Ritter Observatory, Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States)

    2013-03-20

    Some massive stars possess strong magnetic fields that confine plasma in the circumstellar environment. These magnetospheres have been studied spectroscopically, photometrically, and, more recently, interferometrically. Here we report on the first firm detection of a magnetosphere in continuum linear polarization, as a result of monitoring {sigma} Ori E at the Pico dos Dias Observatory. The non-zero intrinsic polarization indicates an asymmetric structure whose minor elongation axis is oriented 150. Degree-Sign 0 east of the celestial north. A modulation of the polarization was observed with a period of half of the rotation period, which supports the theoretical prediction of the presence of two diametrally opposed, corotating blobs of gas. A phase lag of -0.085 was detected between the polarization minimum and the primary minimum of the light curve, suggestive of a complex shape of the plasma clouds. We present a preliminary analysis of the data with the Rigidly Rotating Magnetosphere model, which could not reproduce simultaneously the photometric and polarimetric data. A toy model comprising two spherical corotating blobs joined by a thin disk proved more successful in reproducing the polarization modulation. With this model we were able to determine that the total scattering mass of the thin disk is similar to the mass of the blobs (2M{sub b}/M{sub d} = 1.2) and that the blobs are rotating counterclockwise on the plane of the sky. This result shows that polarimetry can provide a diagnostic of the geometry of clouds, which will serve as an important constraint for improving the Rigidly Rotating Magnetosphere model.

  12. Development and Validation of a Polarimetric-MCScene 3D Atmospheric Radiation Model

    Energy Technology Data Exchange (ETDEWEB)

    Berk, Alexander [Spectral Sciences, Inc., Burlington, MA (United States); Hawes, Frederick [Spectral Sciences, Inc., Burlington, MA (United States); Fox, Marsha [Spectral Sciences, Inc., Burlington, MA (United States)

    2016-03-15

    Polarimetric measurements can substantially enhance the ability of both spectrally resolved and single band imagery to detect the proliferation of weapons of mass destruction, providing data for locating and identifying facilities, materials, and processes of undeclared and proliferant nuclear weapons programs worldwide. Unfortunately, models do not exist that efficiently and accurately predict spectral polarized signatures for the materials of interest embedded in complex 3D environments. Having such a model would enable one to test hypotheses and optimize both the enhancement of scene contrast and the signal processing for spectral signature extraction. The Phase I set the groundwork for development of fully validated polarimetric spectral signature and scene simulation models. This has been accomplished 1. by (a) identifying and downloading state-of-the-art surface and atmospheric polarimetric data sources, (b) implementing tools for generating custom polarimetric data, and (c) identifying and requesting US Government funded field measurement data for use in validation; 2. by formulating an approach for upgrading the radiometric spectral signature model MODTRAN to generate polarimetric intensities through (a) ingestion of the polarimetric data, (b) polarimetric vectorization of existing MODTRAN modules, and (c) integration of a newly developed algorithm for computing polarimetric multiple scattering contributions; 3. by generating an initial polarimetric model that demonstrates calculation of polarimetric solar and lunar single scatter intensities arising from the interaction of incoming irradiances with molecules and aerosols; 4. by developing a design and implementation plan to (a) automate polarimetric scene construction and (b) efficiently sample polarimetric scattering and reflection events, for use in a to be developed polarimetric version of the existing first-principles synthetic scene simulation model, MCScene; and 5. by planning a validation field

  13. OPTICAL PHOTOMETRIC AND POLARIMETRIC INVESTIGATION OF NGC 1931

    International Nuclear Information System (INIS)

    Pandey, A. K.; Eswaraiah, C.; Sharma, Saurabh; Yadav, Ram Kesh; Samal, M. R.; Chauhan, N.; Chen, W. P.; Jose, J.; Ojha, D. K.; Chandola, H. C.

    2013-01-01

    We present optical photometric and polarimetric observations of stars toward NGC 1931 with the aim of deriving cluster parameters such as distance, reddening, age, and luminosity/mass function as well as understanding dust properties and star formation in the region. The distance to the cluster is found to be 2.3 ± 0.3 kpc and the reddening E(B – V) in the region is found to be variable. The stellar density contours reveal two clusters in the region. The observations suggest a differing reddening law within the cluster region. Polarization efficiency of the dust grains toward the direction of the cluster is found to be less than that for the general diffuse interstellar medium (ISM). The slope of the mass function (–0.98 ± 0.22) in the southern region in the mass range of 0.8 ☉ < 9.8 is found to be shallower in comparison to that in the northern region (–1.26 ± 0.23), which is comparable to the Salpeter value (–1.35). The K-band luminosity function (KLF) of the region is found to be comparable to the average value of the slope (∼0.4) for young clusters obtained by Lada and Lada; however, the slope of the KLF is steeper in the northern region as compared to the southern region. The region is probably ionized by two B2 main-sequence-type stars. The mean age of the young stellar objects (YSOs) is found to be 2 ± 1 Myr, which suggests that the identified YSOs could be younger than the ionizing sources of the region. The morphology of the region, the distribution and ages of the YSOs, and ionizing sources indicate a triggered star formation in the region.

  14. Laboratory Measurements of Single-Particle Polarimetric Spectrum

    Science.gov (United States)

    Gritsevich, M.; Penttila, A.; Maconi, G.; Kassamakov, I.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.

    2017-12-01

    Measuring scattering properties of different targets is important for material characterization, remote sensing applications, and for verifying theoretical results. Furthermore, there are usually simplifications made when we model targets and compute the scattering properties, e.g., ideal shape or constant optical parameters throughout the target material. Experimental studies help in understanding the link between the observed properties and computed results. Experimentally derived Mueller matrices of studied particles can be used as input for larger-scale scattering simulations, e.g., radiative transfer computations. This method allows to bypass the problem of using an idealized model for single-particle optical properties. While existing approaches offer ensemble- and orientation-averaged particle properties, our aim is to measure individual particles with controlled or known orientation. With the newly developed scatterometer, we aim to offer novel possibility to measure single, small (down to μm-scale) targets and their polarimetric spectra. This work presents an experimental setup that measures light scattered by a fixed small particle with dimensions ranging between micrometer and millimeter sizes. The goal of our setup is nondestructive characterization of such particles by measuring light of multiple wavelengths scattered in 360° in a horizontal plane by an ultrasonically levitating sample, whilst simultaneously controlling its 3D position and orientation. We describe the principles and design of our instrument and its calibration. We also present example measurements of real samples. This study was conducted under the support from the European Research Council, in the frame of the Advanced Grant project No. 320773 `Scattering and Absorption of Electromagnetic Waves in Particulate Media' (SAEMPL).

  15. Multi-Feature Segmentation for High-Resolution Polarimetric SAR Data Based on Fractal Net Evolution Approach

    Directory of Open Access Journals (Sweden)

    Qihao Chen

    2017-06-01

    Full Text Available Segmentation techniques play an important role in understanding high-resolution polarimetric synthetic aperture radar (PolSAR images. PolSAR image segmentation is widely used as a preprocessing step for subsequent classification, scene interpretation and extraction of surface parameters. However, speckle noise and rich spatial features of heterogeneous regions lead to blurred boundaries of high-resolution PolSAR image segmentation. A novel segmentation algorithm is proposed in this study in order to address the problem and to obtain accurate and precise segmentation results. This method integrates statistical features into a fractal net evolution algorithm (FNEA framework, and incorporates polarimetric features into a simple linear iterative clustering (SLIC superpixel generation algorithm. First, spectral heterogeneity in the traditional FNEA is substituted by the G0 distribution statistical heterogeneity in order to combine the shape and statistical features of PolSAR data. The statistical heterogeneity between two adjacent image objects is measured using a log likelihood function. Second, a modified SLIC algorithm is utilized to generate compact superpixels as the initial samples for the G0 statistical model, which substitutes the polarimetric distance of the Pauli RGB composition for the CIELAB color distance. The segmentation results were obtained by weighting the G0 statistical feature and the shape features, based on the FNEA framework. The validity and applicability of the proposed method was verified with extensive experiments on simulated data and three real-world high-resolution PolSAR images from airborne multi-look ESAR, spaceborne single-look RADARSAT-2, and multi-look TerraSAR-X data sets. The experimental results indicate that the proposed method obtains more accurate and precise segmentation results than the other methods for high-resolution PolSAR images.

  16. Polarimetric ice sounding at P-band: First results

    DEFF Research Database (Denmark)

    Dall, Jørgen

    2009-01-01

    For polar ice sheets valuable stress and strain information can be deduced from the crystal orientation fabric (COF) and its prevailing c-axis alignment. Polarimetric radio echo sounding is a promising technique to measure the anisotropic electromagnetic propagation and reflection properties...

  17. Polarimetric synthetic aperture radar data and the complex Wishart distribution

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2003-01-01

    When working with multi-look fully polarimetric synthetic aperture radar (SAR) data an appropriate way of representing the backscattered signal consists of the so-called covariance matrix. For each pixel this is a 3 by 3 Hermitian, positive definite matrix which follows a complex Wishart distribu...

  18. Polarimetric Signatures of Sea Ice. Part 1; Theoretical Model

    Science.gov (United States)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Drinkwater, M. R.

    1995-01-01

    Physical, structural, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for polarimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are related to wave propagation, attenuation, and scattering. Temperature and salinity, which are determining factors for the thermodynamic phase distribution in sea ice, are consistently used to derive both effective permittivities and polarimetric scattering coefficients. Polarimetric signatures of sea ice depend on crystal sizes and brine volumes, which are affected by ice growth rates. Desalination by brine expulsion, drainage, or other mechanisms modifies wave penetration and scattering. Sea ice signatures are further complicated by surface conditions such as rough interfaces, hummocks, snow cover, brine skim, or slush layer. Based on the same set of geophysical parameters characterizing sea ice, a composite model is developed to calculate effective permittivities and backscattering covariance matrices at microwave frequencies for interpretation of sea ice polarimetric signatures.

  19. Processing of dual-orthogonal cw polarimetric radar signals

    NARCIS (Netherlands)

    Babur, G.

    2009-01-01

    The thesis consists of two parts. The first part is devoted to the theory of dual-orthogonal polarimetric radar signals with continuous waveforms. The thesis presents a comparison of the signal compression techniques, namely correlation and de-ramping methods, for the dual-orthogonal sophisticated

  20. L-Band Polarimetric Correlation Radiometer with Subharmonic Sampling

    DEFF Research Database (Denmark)

    Rotbøll, Jesper; Søbjærg, Sten Schmidl; Skou, Niels

    2001-01-01

    A novel L-band radiometer trading analog complexity for digital ditto has been designed and built. It is a fully polarimetric radiometer of the correlation type and it is based on the sub-harmonic sampling principle in which the L-band signal is directly sampled by a fast A to D converter...

  1. Project PHARUS: Towards a polarimetric C-band airborne SAR

    NARCIS (Netherlands)

    Hoogeboom, P.; Koomen, P.J.; Otten, M.P.G.; Pouwels, H.; Snoeij, P.

    1989-01-01

    A few years ago three institutes in the Netherlands developed a plan to design and build a polarimetric C-band aircraft SAR system of a novel design, called PHARUS (PHased Array Universal SAR), meant as a replacement for our current digital SLAR system. These institutes are the Physics and

  2. Ice sheet anisotropy measured with polarimetric ice sounding radar

    DEFF Research Database (Denmark)

    Dall, Jørgen

    2010-01-01

    For polar ice sheets, valuable stress and strain information can be deduced from crystal orientation fabrics (COF) and their prevailing c-axis alignment. Polarimetric radio echo sounding is a promising technique to measure the anisotropic electromagnetic propagation and reflection properties asso...

  3. The Danish polarimetric SAR for remote sensing applications

    DEFF Research Database (Denmark)

    Christensen, Erik Lintz; Madsen, Søren Nørvang; Dall, Jørgen

    1994-01-01

    Presents the Danish polarimetric SAR system, EMISAR, and the approach taken in the system design to achieve a reliable high performance system. The design and implementation of the antenna system as well as the analog and digital hardware are discussed. The SAR utilises a dual polarised microstri...

  4. A novel L-band polarimetric radiometer featuring subharmonic sampling

    DEFF Research Database (Denmark)

    Rotbøll, J.; Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    A novel L-band radiometer trading analog components for digital circuits has been designed, built and operated. It is a fully polarimetric radiometer of the correlation type, and it is based on the subharmonic sampling principle in which the L-band signal is directly sampled by a fast A to D...

  5. VLBA polarimetric monitoring of 3C 111

    Science.gov (United States)

    Beuchert, T.; Kadler, M.; Perucho, M.; Großberger, C.; Schulz, R.; Agudo, I.; Casadio, C.; Gómez, J. L.; Gurwell, M.; Homan, D.; Kovalev, Y. Y.; Lister, M. L.; Markoff, S.; Molina, S. N.; Pushkarev, A. B.; Ros, E.; Savolainen, T.; Steinbring, T.; Thum, C.; Wilms, J.

    2018-02-01

    Context. While studies of large samples of jets of active galactic nuclei (AGN) are important in order to establish a global picture, dedicated single-source studies are an invaluable tool for probing crucial processes within jets on parsec scales. These processes involve in particular the formation and geometry of the jet magnetic field as well as the flow itself. Aims: We aim to better understand the dynamics within relativistic magneto-hydrodynamical flows in the extreme environment and close vicinity of supermassive black holes. Methods: We analyze the peculiar radio galaxy 3C 111, for which long-term polarimetric observations are available. We make use of the high spatial resolution of the VLBA network and the MOJAVE monitoring program, which provides high data quality also for single sources and allows us to study jet dynamics on parsec scales in full polarization with an evenly sampled time-domain. While electric vectors can probe the underlying magnetic field, other properties of the jet such as the variable (polarized) flux density, feature size, and brightness temperature, can give valuable insights into the flow itself. We complement the VLBA data with data from the IRAM 30-m Telescope as well as the SMA. Results: We observe a complex evolution of the polarized jet. The electric vector position angles (EVPAs) of features traveling down the jet perform a large rotation of ≳180∘ across a distance of about 20 pc. As opposed to this smooth swing, the EVPAs are strongly variable within the first parsecs of the jet. We find an overall tendency towards transverse EVPAs across the jet with a local anomaly of aligned vectors in between. The polarized flux density increases rapidly at that distance and eventually saturates towards the outermost observable regions. The transverse extent of the flow suddenly decreases simultaneously to a jump in brightness temperature around where we observe the EVPAs to turn into alignment with the jet flow. Also the gradient

  6. Pharmaceutical powder compaction technology

    National Research Council Canada - National Science Library

    Çelik, Metin

    2011-01-01

    ... through the compaction formulation process and application. Compaction of powder constituents both active ingredient and excipients is examined to ensure consistent and reproducible disintegration and dispersion profiles...

  7. COMPARISON BETWEEN SPECTRAL, SPATIAL AND POLARIMETRIC CLASSIFICATION OF URBAN AND PERIURBAN LANDCOVER USING TEMPORAL SENTINEL – 1 IMAGES

    Directory of Open Access Journals (Sweden)

    K. Roychowdhury

    2016-06-01

    Full Text Available Landcover is the easiest detectable indicator of human interventions on land. Urban and peri-urban areas present a complex combination of landcover, which makes classification challenging. This paper assesses the different methods of classifying landcover using dual polarimetric Sentinel-1 data collected during monsoon (July and winter (December months of 2015. Four broad landcover classes such as built up areas, water bodies and wetlands, vegetation and open spaces of Kolkata and its surrounding regions were identified. Polarimetric analyses were conducted on Single Look Complex (SLC data of the region while ground range detected (GRD data were used for spectral and spatial classification. Unsupervised classification by means of K-Means clustering used backscatter values and was able to identify homogenous landcovers over the study area. The results produced an overall accuracy of less than 50% for both the seasons. Higher classification accuracy (around 70% was achieved by adding texture variables as inputs along with the backscatter values. However, the accuracy of classification increased significantly with polarimetric analyses. The overall accuracy was around 80% in Wishart H-A-Alpha unsupervised classification. The method was useful in identifying urban areas due to their double-bounce scattering and vegetated areas, which have more random scattering. Normalized Difference Built-up index (NDBI and Normalized Difference Vegetation Index (NDVI obtained from Landsat 8 data over the study area were used to verify vegetation and urban classes. The study compares the accuracies of different methods of classifying landcover using medium resolution SAR data in a complex urban area and suggests that polarimetric analyses present the most accurate results for urban and suburban areas.

  8. Validation of Forested Inundation Extent Revealed by L-Band Polarimetric and Interferometric SAR Data

    Science.gov (United States)

    Chapman, Bruce; Celi, Jorge; Hamilton, Steve; McDonald, Kyle

    2013-01-01

    UAVSAR, NASA's airborne Synthetic Aperture Radar (SAR), conducted an extended observational campaign in Central and South America in March 2013, primarily related to volcanic deformations along the Andean Mountain Range but also including a large number of flights studying other scientific phenomena. During this campaign, the L-Band SAR collected data over the Napo River in Ecuador. The objectives of this experiment were to acquire polarimetric and interferometric L-Band SAR data over an inundated tropical forest in Ecuador simultaneously with on-the-ground field work ascertaining the extent of inundation, and to then derive from this data a quantitative estimate for the error in the SAR-derived inundation extent. In this paper, we will first describe the processing and preliminary analysis of the SAR data. The polarimetric SAR data will be classified by land cover and inundation state. The interferometric SAR data will be used to identify those areas where change in inundation extent occurred, and to measure the change in water level between two observations separated by a week. Second, we will describe the collection of the field estimates of inundation, and have preliminary comparisons of inundation extent measured in the field field versus that estimated from the SAR data.

  9. Polarimetric Imaging Of Protoplanetary Disks From The Optical To Sub-Mm

    Science.gov (United States)

    De Boer, Jos; Ménard, F.; Pinte, C.; van der Plas, G.; Snik, F.

    2017-10-01

    To learn how planets form from the smallest building blocks within protoplanetary disks, we first need to know how dust grains grow from micron to mm sizes. Polarimetry across the spectrum has proven to be sensitive to grain properties like dust size distribution and composition and thus can be used to characterize the scattering grains. However, polarization measured with radio interferometric arrays is rarely studied in concert with optical polarimetry. Our team has successfully calibrated the NIR polarimetric imaging mode of VLT/SPHERE, hence upgrading the instrument from a high-contrast imager to a robust tool for quantitative characterization. In this presentation, we will discuss which lessons can be learned by comparing polarimetry in the optical and sub-mm and explore for which science cases both techniques can complement each other. When we combine the polarimetric capabilities of the most advanced optical high-contrast imagers (e.g., Gemini GPI or VLT SPHERE) with that of ALMA we will be able to study the spatial distribution of an extensive range of different grains, which allows us to take an essential step towards a deeper understanding of planet formation.

  10. Development and Testing of Operational Dual-Polarimetric Radar Based Lightning Initiation Forecast Techniques

    Science.gov (United States)

    Woodard, Crystal; Carey, Lawrence D.; Petersen, Walter A.; Felix, Mariana; Roeder, William P.

    2011-01-01

    Lightning is one of Earth s natural dangers, destructive not only to life but also physical property. According to the National Weather Service, there are on average 58 lightning fatalities each year, with over 300 related injuries (NWS 2010). The ability to forecast lightning is critical to a host of activities ranging from space vehicle launch operations to recreational sporting events. For example a single lightning strike to a Space Shuttle could cause billions of dollars of damage and possible loss of life. While forecasting that provides longer lead times could provide sporting officials with more time to respond to possible threatening weather events, thus saving the lives of player and bystanders. Many researchers have developed and tested different methods and tools of first flash forecasting, however few have done so using dual-polarimetric radar variables and products on an operational basis. The purpose of this study is to improve algorithms for the short-term prediction of lightning initiation through development and testing of operational techniques that rely on parameters observed and diagnosed using C-band dual-polarimetric radar.

  11. Analysis of Radarsat-2 Full Polarimetric Data for Forest Mapping

    Science.gov (United States)

    Maghsoudi, Yasser

    Forests are a major natural resource of the Earth and control a wide range of environmental processes. Forests comprise a major part of the planet's plant biodiversity and have an important role in the global hydrological and biochemical cycles. Among the numerous potential applications of remote sensing in forestry, forest mapping plays a vital role for characterization of the forest in terms of species. Particularly, in Canada where forests occupy 45% of the territory, representing more than 400 million hectares of the total Canadian continental area. In this thesis, the potential of polarimetric SAR (PolSAR) Radarsat-2 data for forest mapping is investigated. This thesis has two principle objectives. First is to propose algorithms for analyzing the PolSAR image data for forest mapping. There are a wide range of SAR parameters that can be derived from PolSAR data. In order to make full use of the discriminative power offered by all these parameters, two categories of methods are proposed. The methods are based on the concept of feature selection and classifier ensemble. First, a nonparametric definition of the evaluation function is proposed and hence the methods NFS and CBFS. Second, a fast wrapper algorithm is proposed for the evaluation function in feature selection and hence the methods FWFS and FWCBFS. Finally, to incorporate the neighboring pixels information in classification an extension of the FWCBFS method i.e. CCBFS is proposed. The second objective of this thesis is to provide a comparison between leaf-on (summer) and leaf-off (fall) season images for forest mapping. Two Radarsat-2 images acquired in fine quad-polarized mode were chosen for this study. The images were collected in leaf-on and leaf-off seasons. We also test the hypothesis whether combining the SAR parameters obtained from both images can provide better results than either individual datasets. The rationale for this combination is that every dataset has some parameters which may be

  12. AirMOSS: L1 S-0 Polarimetric Data from AirMOSS P-band SAR, La Selva, 2012-2015

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides level 1 (L1) polarimetric radar backscattering coefficient (sigma-0), multilook complex, polarimetrically calibrated, and georeferenced data...

  13. INVENTORY OF IRRIGATED RICE ECOSYSTEM USING POLARIMETRIC SAR DATA

    Directory of Open Access Journals (Sweden)

    P. Srikanth

    2012-08-01

    Full Text Available An attempt has been made in the current study to assess the potential of polarimetric SAR data for inventory of kharif rice and the major competing crop like cotton. In the process, physical process of the scattering mechanisms occurring in rice and cotton crops at different phonological stages was studied through the use of temporal Radarsat 2 Fine quadpol SAR data. The temporal dynamics of the volume, double and odd bounce, entropy, anisotropy, alpha parameters and polarimertic signatures, classification through isodata clustering and Wishart techniques were assessed. The Wishart (H-a classification showed higher overall as well as rice and cotton crop accuracies compared to the isodata clustering from Freeman 3-component decomposition. The classification of temporal SAR data sets independently showed that the rice crop forecasting can be advanced with the use of appropriate single date polarimetric SAR data rather than using temporal SAR amplitude data sets with the single polarization in irrigated rice ecosystems

  14. Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields

    DEFF Research Database (Denmark)

    Sales, Morten; Strobl, Markus; Shinohara, Takenao

    2018-01-01

    -destructively with the potential to probe the interior of bulk samples which is not amenable otherwise. Using a pioneering polarimetric set-up for ToF neutron instrumentation in combination with a newly developed tailored reconstruction algorithm, the magnetic field generated by a current carrying solenoid has been measured......Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non...... and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic fields in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic...

  15. EMISAR: A Dual-frequency, Polarimetric Airborne SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Christensen, Erik Lintz

    2002-01-01

    . The SAR is operated at high altitudes on a Gulfstream G-3 jet aircraft. The system is very well calibrated and has low sidelobes and low cross-polar contamination. Digital technology has been utilized to realize a flexible and highly stable radar with variable resolution, swath width, and imaging geometry....... Thermal control and several calibration loops have been built into the system to ensure system stability and absolute calibration. Accurately measured antenna gains and radiation patterns are included in the calibration. The processing system is developed to support data calibration, which is the key......EMISAR is a fully polarimetric, dual frequency (L- and C-band) SAR system designed for remote sensing applications. The data are usually processed to 2×2 m resolution. The system has the capability of C-band cross-track single-pass interferometry and fully polarimetric repeat-pass interferometry...

  16. Change detection in a time series of polarimetric SAR data

    DEFF Research Database (Denmark)

    Conradsen, Knut; Nielsen, Allan Aasbjerg; Skriver, Henning

    2014-01-01

    A test statistic for the equality of several variance-covariance matrices following the complex Wishart distribution with an associated probability of finding a smaller value of the test statistic is introduced. Unlike tests based on pairwise comparisons between all temporally consecutive acquisi...... acquisitions the new omnibus test statistic and the probability measure successfully detects change in two short series of L- and C-band polarimetric EMISAR data....

  17. RADARSAT-2 Polarimetric Radar Imaging for Lake Ice Mapping

    Science.gov (United States)

    Pan, F.; Kang, K.; Duguay, C. R.

    2016-12-01

    Changes in lake ice dates and duration are useful indicators for assessing long-term climate trends and variability in northern countries. Lake ice cover observations are also a valuable data source for predictions with numerical ice and weather forecasting models. In recent years, satellite remote sensing has assumed a greater role in providing observations of lake ice cover extent for both modeling and climate monitoring purposes. Polarimetric radar imaging has become a promising tool for lake ice mapping at high latitudes where meteorological conditions and polar darkness severely limit observations from optical sensors. In this study, we assessed and characterized the physical scattering mechanisms of lake ice from fully polarimetric RADARSAT-2 datasets obtained over Great Bear Lake, Canada, with the intent of classifying open water and different ice types during the freeze-up and break-up periods. Model-based and eigen-based decompositions were employed to construct the coherency matrix into deterministic scattering mechanisms. These procedures as well as basic polarimetric parameters were integrated into modified convolutional neural networks (CNN). The CNN were modified via introduction of a Markov random field into the higher iterative layers of networks for acquiring updated priors and classifying ice and open water areas over the lake. We show that the selected polarimetric parameters can help with interpretation of radar-ice/water interactions and can be used successfully for water-ice segmentation, including different ice types. As more satellite SAR sensors are being launched or planned, such as the Sentinel-1a/b series and the upcoming RADARSAT Constellation Mission, the rapid volume growth of data and their analysis require the development of robust automated algorithms. The approach developed in this study was therefore designed with the intent of moving towards fully automated mapping of lake ice for consideration by ice services.

  18. The Impact of Warm-Rain Microphysical Processes on Rain Rate and Polarimetric Observables at X-Band

    Science.gov (United States)

    Xie, Xinxin; Evaristo, Raquel; Troemel, Silke; Simmer, Clemens

    2015-04-01

    Microphysical processes govern the evolution of drop size distribution (DSD) during the development of precipitating systems. Thus, an accurate knowledge on precipitating systems from a microphysical perspective is required for better quantitative precipitation estimates (QPE). Additionally, detection of microphysical processes in 3D polarimetric radar volumes paves the way for better parameterizations in numerical weather predictions (NWP). In this study, we focus on the impact of different microphysical processes on rain rate (RR) and polarimetric observables at X band. Microphysical processes during the evolution of warm-rain precipitating systems, including size sorting, evaporation, coalescence and breakup, are taken into account. Assuming that vertical rain shaft is composed of liquid spheroids distributed in a normalized Gamma size distribution, microphysical processes are reconstructed. The variation of RR governed by microphysical processes is also examined. Unique fingerprints caused by microphysical processes have been identified in polarimetric radar observations. For size sorting, large rain drops concentrating near ground surface or at leading edge induce strong Zdr (differential reflectivity) accompanied by small Zh (reflectivity). A larger mean size in DSD results in stronger Zdr during size sorting. The increasing mean size due to evaporation and coalescence enhances Zdr, while Zh during evaporation is reduced by the depletion of small rain drops. The reduction of Zh ranges between -10 dB and 0 dB considering different DSDs during evaporation. Zh, Zdr and Kdp (specific differential phase) all decrease when large rain drops break up. The evolution of DSD which depends on the ongoing microphysical processes results in a variation in RR. Though size sorting due to differential sedimentation occurs, RR approaches stable within 15 min. Suffering from vertical wind shear, RR is reduced because of the categorization of rain drops with different terminal

  19. Polarimetric signatures of sea ice. 1: Theoretical model

    Science.gov (United States)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Drinkwater, M. R.

    1995-01-01

    Physical, structral, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for polarimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are related to wave propagation, attenuation, and scattering. Temperature and salinity, which are determining factors for the thermodynamic phase distribution in sea ice, are consistently used to derive both effective permittivities and polarimetric scattering coefficients. Polarmetric signatures of sea ice depend on crystal sizes and brine volumes, which are affected by ice growth rates. Desalination by brine expulsion, drainage, or other mechanisms modifies wave penetration and scattering. Sea ice signatures are further complicated by surface conditions such as rough interfaces, hummocks, snow cover, brine skim, or slush layer. Based on the same set of geophysical parameters characterizing sea ice, a composite model is developed to calculate effective permittivities and backscattering covariance matrices at microwave frequencies to interpretation of sea ice polarimetric signatures.

  20. Hydrometeor classification from polarimetric radar measurements: a clustering approach

    Directory of Open Access Journals (Sweden)

    J. Grazioli

    2015-01-01

    Full Text Available A data-driven approach to the classification of hydrometeors from measurements collected with polarimetric weather radars is proposed. In a first step, the optimal number of hydrometeor classes (nopt that can be reliably identified from a large set of polarimetric data is determined. This is done by means of an unsupervised clustering technique guided by criteria related both to data similarity and to spatial smoothness of the classified images. In a second step, the nopt clusters are assigned to the appropriate hydrometeor class by means of human interpretation and comparisons with the output of other classification techniques. The main innovation in the proposed method is the unsupervised part: the hydrometeor classes are not defined a priori, but they are learned from data. The approach is applied to data collected by an X-band polarimetric weather radar during two field campaigns (from which about 50 precipitation events are used in the present study. Seven hydrometeor classes (nopt = 7 have been found in the data set, and they have been identified as light rain (LR, rain (RN, heavy rain (HR, melting snow (MS, ice crystals/small aggregates (CR, aggregates (AG, and rimed-ice particles (RI.

  1. Searching for Jet Emission in LMXBs: A Polarimetric View

    Directory of Open Access Journals (Sweden)

    Maria Cristina Baglio

    2017-10-01

    Full Text Available We present results taken from a study aiming at detecting the emission from relativistic particles jets in neutron star-low mass X-ray binaries using optical polarimetric observations. First, we focus on a polarimetric study performed on the persistent LMXB 4U 0614+091. Once corrected for interstellar effects, we measured an intrinsic linear polarization in the r-band of ~3% at a 3σ confidence level. This is in-line with the observation of an infrared excess in the spectral energy distribution (SED of the source, reported in a previous work, which the authors linked to the optically thin synchrotron emission of a jet. We then present a study performed on the transitional millisecond pulsar PSR J1023+0038 during quiescence. We measured a linear polarization of 1.09 ± 0.27% and 0.90 ± 0.17% in the V and R bands, respectively. The phase-resolved polarimetric curve of the source in the R-band reveals a hint of a sinusoidal modulation at the source orbital period. The NIR -optical SED of the system did not suggest the presence of a jet. We conclude that the optical linear polarization observed for PSR J1023+0038 is possibly due to Thomson scattering with electrons in the disc, as also suggested by the hint of the modulation of the R-band linear polarization at the system orbital period.

  2. Dual-Polarimetric Radar-Based Tornado Debris Paths Associated with EF-4 and EF-5 Tornadoes over Northern Alabama During the Historic Outbreak of 27 April 2011

    Science.gov (United States)

    Carey, Lawrence D.; Schultz, Chrstopher J.; Schultz, Elise V.; Petersen, Walter A.; Gatlin, Patrick N.; Knupp, Kevin R.; Molthan, Andrew L.; Jedlovec, Gary J.; Darden, Christopher B.

    2012-01-01

    An historic tornado and severe weather outbreak devastated much of the southeastern United States between 25 and 28 April 2011. On 27 April 2011, northern Alabama was particularly hard hit by a large number of tornadoes, including several that reached EF-4 and EF-5 on the Enhanced Fujita damage scale. In northern Alabama alone, there were approximately 100 fatalities and hundreds of more people who were injured or lost their homes during the havoc caused by these violent tornadic storms. Two long-track and violent (EF-4 and EF-5) tornadoes occurred within range of the University of Alabama in Huntsville (UAHuntsville) Advanced Radar for Meteorological and Operational Research (ARMOR, C-band dual-polarimetric). A unique capability of dual-polarimetric radar is the near-real time identification of lofted debris associated with ongoing tornadoes on the ground. The focus of this paper is to analyze the dual-polarimetric radar-inferred tornado debris signatures and identify the associated debris paths of the long-track EF-4 and EF-5 tornadoes near ARMOR. The relative locations of the debris and damage paths for each tornado will be ascertained by careful comparison of the ARMOR analysis with NASA MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite imagery of the tornado damage scenes and the National Weather Service tornado damage surveys. With the ongoing upgrade of the WSR-88D (Weather Surveillance Radar 1988 Doppler) operational network to dual-polarimetry and a similar process having already taken place or ongoing for many private sector radars, dual-polarimetric radar signatures of tornado debris promise the potential to assist in the situational awareness of government and private sector forecasters and emergency managers during tornadic events. As such, a companion abstract (Schultz et al.) also submitted to this conference explores The use of dual-polarimetric tornadic debris

  3. A New Polarimetric Study of Cygnus A Using JVLA from 2-18GHz

    Science.gov (United States)

    Lerato Sebokolodi, Makhuduga; Perley, Rick; Carilli, Chris; Smirnov, Oleg M.; Makhathini, Sphesihle

    2018-01-01

    Polarimetric studies of Cygnus A [5, 1, 2, 3] have shown that this radio galaxy has unusually large rotation measures ranging from -4000 to +3000 rad m -2 for the eastern lobe (E-lobe) and -2000 to +1300 rad m -2 for western lobe(W-lobe). A challenge since then has been to identify the medium(s) responsible for these high Faraday rotations (FR). Although a majority of the FR must arise from the surrounding cluster gas, an unknown portion may arise either in the sheath or within the lobes. In these cases, some depolarization must result, along with a non λ 2 rotation of the plane of polarization. Detecting such a depolarization will enable an estimate of the internal (and/or sheath) thermal gas density. [1] found significant depolarization associated with the inner regions of the E-lobe and no depolarization associated with the W-lobe. This depolarization could be either internal to the source (Faraday depolarization) or due to unresolved small-scale fluctuations in the foreground screen (beam depolarization) [1]. The former is expected to impose significant deviations in the λ2 -law, none of which have been found to date, nor could have been found due to the limited number of frequencies employed in these studies.Since 2015, new JVLA polarimetric observations of Cygnus A have been taken, in all four configurations, covering the frequency range from 2 to 18GHz. These new data provide thousands of frequency channels at high resolution and sensitivity – opening a new opportunity to study in great detail the physics of the jets, lobes and the magnetic field of the X-ray cluster medium and lobes. Our objective is to analyze these new polarimetric data with the expectation of extending the previous work and more importantly, to investigate the possibility of any significantdeviations from the λ2-law. Initial analysis shows significant deviations from λ2 -law associated with the W-lobe. We will present these results in detail, and also the results from RM

  4. Design and development of a microwave multifrequency polarimetric scatterometer for biosphere remote sensing

    International Nuclear Information System (INIS)

    Stjernman, A.

    1995-05-01

    The main topic of this research report is the design and development of a multifrequency, polarimetric scatterometer for biosphere remote sensing. The system was developed using a standard HP network analyzer, a crossed log-periodic dipole antenna and a reflector. The scatterometer functions in a linear polarization basis between the L- and X-bands and gathers full-polarimetric information. The standard S-parameter measurements using the network analyzer were related to surface and volume scattering coefficients of rough surface, snow cover and vegetation media. The scatterometer measurements were carried out in the frequency domain to make use of narrow band filters in the receiver chain. The fast Fourier transform was used to convert the frequency domain measurements to the time domain. The range resolution of the system was 20 cm; azimuthal and elevation resolutions are determined by the antenna beam widths. Range side lobes were reduced by making use of appropriate weighting (Kaiser-Bessel window) functions. The accuracy of target characterization depends on the quality of scatterometer calibration. A novel technique to estimate the absolute gain and crosstalk of the radar system was developed. Using a distortion matrix approach, the cross-polarization response of the system was improved by 10 to 25 dB. The radar measurements were validated by comparing point target radar observations with the corresponding theoretical values. Also, measurements of fading decorrelation distance and decorrelation bandwidth or rough surfaces were in good agreement with the theory. Backscatter observations of vegetation and snow cover were comparable to earlier published values for a similar environment. 50 refs, 56 figs, 1 tab

  5. Design and development of a microwave multifrequency polarimetric scatterometer for biosphere remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Stjernman, A.

    1995-05-01

    The main topic of this research report is the design and development of a multifrequency, polarimetric scatterometer for biosphere remote sensing. The system was developed using a standard HP network analyzer, a crossed log-periodic dipole antenna and a reflector. The scatterometer functions in a linear polarization basis between the L- and X-bands and gathers full-polarimetric information. The standard S-parameter measurements using the network analyzer were related to surface and volume scattering coefficients of rough surface, snow cover and vegetation media. The scatterometer measurements were carried out in the frequency domain to make use of narrow band filters in the receiver chain. The fast Fourier transform was used to convert the frequency domain measurements to the time domain. The range resolution of the system was 20 cm; azimuthal and elevation resolutions are determined by the antenna beam widths. Range side lobes were reduced by making use of appropriate weighting (Kaiser-Bessel window) functions. The accuracy of target characterization depends on the quality of scatterometer calibration. A novel technique to estimate the absolute gain and crosstalk of the radar system was developed. Using a distortion matrix approach, the cross-polarization response of the system was improved by 10 to 25 dB. The radar measurements were validated by comparing point target radar observations with the corresponding theoretical values. Also, measurements of fading decorrelation distance and decorrelation bandwidth or rough surfaces were in good agreement with the theory. Backscatter observations of vegetation and snow cover were comparable to earlier published values for a similar environment. 50 refs, 56 figs, 1 tab.

  6. Characterization of Mediterranean hail-bearing storms using an operational polarimetric X-band radar

    Directory of Open Access Journals (Sweden)

    G. Vulpiani

    2015-11-01

    It is based on an iterative approach that uses a very short-length (1 km moving window, allowing proper capture of the observed high radial gradients of the differential phase. The parameterization of the attenuation correction algorithm, which uses the reconstructed differential phase shift, is derived from electromagnetic simulations based on 3 years of drop size distribution (DSD observations collected in Rome (Italy. A fuzzy logic hydrometeor classification algorithm was also adopted to support the analysis of the storm characteristics. The precipitation field amounts were reconstructed using a combined polarimetric rainfall algorithm based on reflectivity and specific differential phase. The first storm was observed on 21 February when a winter convective system that originated in the Tyrrhenian Sea, marginally hit the central-eastern coastline of Sicily, causing a flash flood in Catania. Due to an optimal location (the system is located a few kilometers from the city center, it was possible to retrieve the storm characteristics fairly well, including the amount of rainfall field at the ground. Extemporaneous signal extinction, caused by close-range hail core causing significant differential phase shift in a very short-range path, is documented. The second storm, on 21 August 2013, was a summer mesoscale convective system that originated from a Mediterranean low pressure system lasting a few hours that eventually flooded the city of Syracuse. The undergoing physical process, including the storm dynamics, is inferred by analyzing the vertical sections of the polarimetric radar measurements. The high registered amount of precipitation was fairly well reconstructed, although with a trend toward underestimation at increasing distances. Several episodes of signal extinction were clearly manifested during the mature stage of the observed supercells.

  7. Fuzzy Inverse Compactness

    Directory of Open Access Journals (Sweden)

    Halis Aygün

    2008-01-01

    Full Text Available We introduce definitions of fuzzy inverse compactness, fuzzy inverse countable compactness, and fuzzy inverse Lindelöfness on arbitrary -fuzzy sets in -fuzzy topological spaces. We prove that the proposed definitions are good extensions of the corresponding concepts in ordinary topology and obtain different characterizations of fuzzy inverse compactness.

  8. Integrating polarimetric synthetic aperture radar and imaging spectrometry for wildland fuel mapping in southern California

    Science.gov (United States)

    P.E. Dennison; D.A. Roberts; J. Regelbrugge; S.L. Ustin

    2000-01-01

    Polarimetric synthetic aperture radar (SAR) and imaging spectrometry exemplify advanced technologies for mapping wildland fuels in chaparral ecosystems. In this study, we explore the potential of integrating polarimetric SAR and imaging spectrometry for mapping wildland fuels. P-band SAR and ratios containing P-band polarizations are sensitive to variations in stand...

  9. Spectral Polarimetric Features Analysis of Wind Turbine Clutter in Weather Radar

    NARCIS (Netherlands)

    Yin, J.; Krasnov, O.A.; Unal, C.M.H.; Medagli, S.; Russchenberg, H.W.J.

    2017-01-01

    Wind turbine clutter has gradually become a concern for the radar community for its increasing size and quantity worldwide. Based on the S-band polarimetric Doppler PARSAX radar measurements, this paper demonstrates the micro-Doppler features and spectral-polarimetric characteristic of wind turbine

  10. Polarimetric Scattering Properties of Landslides in Forested Areas and the Dependence on the Local Incidence Angle

    Directory of Open Access Journals (Sweden)

    Takashi Shibayama

    2015-11-01

    Full Text Available This paper addresses the local incidence angle dependence of several polarimetric indices corresponding to landslides in forested areas. Landslide is deeply related to the loss of human lives and their property. Various kinds of remote sensing techniques, including aerial photography, high-resolution optical satellite imagery, LiDAR and SAR interferometry (InSAR, have been available for landslide investigations. SAR polarimetry is potentially an effective measure to investigate landslides because fully-polarimetric SAR (PolSAR data contain more information compared to conventional single- or dual-polarization SAR data. However, research on landslide recognition utilizing polarimetric SAR (PolSAR is quite limited. Polarimetric properties of landslides have not been examined quantitatively so far. Accordingly, we examined the polarimetric scattering properties of landslides by an assessment of how the decomposed scattering power components and the polarimetric correlation coefficient change with the local incidence angle. In the assessment, PolSAR data acquired from different directions with both spaceborne and airborne SARs were utilized. It was found that the surface scattering power and the polarimetric correlation coefficient of landslides significantly decrease with the local incidence angle, while these indices of surrounding forest do not. This fact leads to establishing a method of effective detection of landslide area by polarimetric information.

  11. Polsar Land Cover Classification Based on Hidden Polarimetric Features in Rotation Domain and Svm Classifier

    Science.gov (United States)

    Tao, C.-S.; Chen, S.-W.; Li, Y.-Z.; Xiao, S.-P.

    2017-09-01

    Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR) data utilization. Rollinvariant polarimetric features such as H / Ani / text-decoration: overline">α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets' scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM) classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification

  12. Compact cryocooler heat exchangers

    International Nuclear Information System (INIS)

    Luna, J.; Frederking, T.H.K.

    1991-01-01

    Compact heat exchangers are subject to different constraints as a room temperature gas is cooled down by a cold stream returning from a JT valve (or a similar cryoprocess component). In particular, the optimization of exchangers for liquid helium systems has to cover a wide range in temperature and density of the fluid. In the present work we address the following thermodynamic questions: 1. The optimization of intermediate temperatures which optimize stage operation (a stage is assumed to have a constant cross section); 2. The optimum temperature difference available for best overall economic performance values. The results are viewed in the context of porous media concepts applied to rather low speeds of fluid flow in narrow passages. In this paper examples of fluid/solid constraints imposed in this non-classical low temperature area are presented

  13. Polarimetric radar characteristics of storms with and without lightning activity

    Science.gov (United States)

    Mattos, Enrique V.; Machado, Luiz A. T.; Williams, Earle R.; Albrecht, Rachel I.

    2016-12-01

    This paper analyzes the cloud microphysics in different layers of storms as a function of three-dimensional total lightning density. A mobile X-band polarimetric radar and very high frequency (VHF) sources from Lightning Mapping Array (LMA) observations during the 2011/2012 Brazil spring-summer were used to determine the microphysical signatures of radar vertical profiles and lightning density. This study quantified the behavior of 5.3 million vertical profiles of the horizontal reflectivity (ZH), differential reflectivity (ZDR), specific differential phase (KDP), and correlation coefficient (ρHV). The principal changes in the polarimetric variables occurred only for VHF source rate density greater than 14 VHF sources per km2 in 4 min. These storms showed an enhanced positive KDP in the mixed 1 layer (from 0 to -15°C) probably associated with supercooled liquid water signatures, whereas regions with negative ZDR and KDP and moderate ZH in the mixed 2 layer (from -15 to -40°C) were possibly associated with the presence of conical graupel. The glaciated (above -40°C) and upper part of the mixed 2 layers showed a significant trend to negative KDP with an increase in lightning density, in agreement with vertical alignment of ice particle by the cloud electric field. A conceptual model that presents the microphysical signatures in storms with and without lightning activity was constructed. The observations documented in this study provide an understanding of how the combinations of polarimetric variables could help to identify storms with different lightning density and vice versa.

  14. Microphysical retrievals from simultaneous polarimetric and profiling radar observations

    Directory of Open Access Journals (Sweden)

    M. P. Morris

    2009-12-01

    Full Text Available The character of precipitation detected at the surface is the final product of many microphysical interactions in the cloud above, the combined effects of which may be characterized by the observed drop size distribution (DSD. This necessitates accurate retrieval of the DSD from remote sensing data, especially radar as it offers large areal coverage, high spatial resolution, and rigorous quality control and testing. Combined instrument observations with a UHF wind profiler, an S-band polarimetric weather radar, and a video disdrometer are analyzed for two squall line events occuring during the calendar year 2007. UHF profiler Doppler velocity spectra are used to estimate the DSD aloft, and are complemented by DSDs retrieved from an exponential model applied to polarimetric data. Ground truth is provided by the disdrometer. A complicating factor in the retrieval from UHF profiler spectra is the presence of ambient air motion, which can be corrected using the method proposed by Teshiba et al. (2009, in which a comparison between idealized Doppler spectra calculated from the DSDs retrieved from KOUN and those retrieved from contaminated wind profiler spectra is performed. It is found that DSDs measured using the distrometer at the surface and estimated using the wind profiler and polarimetric weather radar generally showed good agreement. The DSD retrievals using the wind profiler were improved when the estimates of the vertical wind were included into the analysis, thus supporting the method of Teshiba et al. (2009. Furthermore, the the study presents a method of investigating the time and height structure of DSDs.

  15. Polarimetric purity and the concept of degree of polarization

    Science.gov (United States)

    Gil, José J.; Norrman, Andreas; Friberg, Ari T.; Setälä, Tero

    2018-02-01

    The concept of degree of polarization for electromagnetic waves, in its general three-dimensional version, is revisited in the light of the implications of the recent findings on the structure of polarimetric purity and of the existence of nonregular states of polarization [J. J. Gil et al., Phys Rev. A 95, 053856 (2017), 10.1103/PhysRevA.95.053856]. From the analysis of the characteristic decomposition of a polarization matrix R into an incoherent convex combination of (1) a pure state Rp, (2) a middle state Rm given by an equiprobable mixture of two eigenstates of R, and (3) a fully unpolarized state Ru -3 D, it is found that, in general, Rm exhibits nonzero circular and linear degrees of polarization. Therefore, the degrees of linear and circular polarization of R cannot always be assigned to the single totally polarized component Rp. It is shown that the parameter P3 D proposed formerly by Samson [J. C. Samson, Geophys. J. R. Astron. Soc. 34, 403 (1973), 10.1111/j.1365-246X.1973.tb02404.x] takes into account, in a proper and objective form, all the contributions to polarimetric purity, namely, the contributions to the linear and circular degrees of polarization of R as well as to the stability of the plane containing its polarization ellipse. Consequently, P3 D constitutes a natural representative of the degree of polarimetric purity. Some implications for the common convention for the concept of two-dimensional degree of polarization are also analyzed and discussed.

  16. Beaconless search and rescue using polarimetric synthetic aperture radar

    Science.gov (United States)

    McCandless, Samuel W.; Huxtable, Barton D.; Mansfield, Arthur W.; Wallace, Ronald; Larsen, Rudolph; Rais, Houra

    1996-03-01

    In developing a beaconless search and rescue capability to quickly locate small aircraft that have crashed in remote areas, NASA's Search and Rescue (S&R) Program brings together advanced polarimetric synthetic aperture radar processing, field and laboratory tests, and state-of-the-art automated target detection algorithms. This paper provides the status of this program, which began with experiments conducted in concert with the JPL DC-8 AirSAR in 1989 at the Duke University Forest. The program is being conducted by NASA's Goddard Space Flight Center (GSFC) under the auspices of the Search and Rescue Office.

  17. HAWC+/SOFIA Polarimetric Observations of OMC-1

    Science.gov (United States)

    Chuss, David; Andersson, B.-G.; Bally, John; Dowell, Charles D.; Harper, Doyal; Lazarian, Alex; Michail, Joseph M.; Morris, Mark; Novak, Giles; Siah, Javad; Vaillancourt, John; Werner, Michael; HAWC+ Science Team

    2018-01-01

    Astrophysical dust grains become partially aligned due to magnetic fields that permeate the interstellar medium. Measurements of far-infrared polarized emission provide a tool to characterize magnetic fields and test their effect on star formation in molecular clouds. The HAWC+ camera provides polarimetric imaging capability for SOFIA in four bands between 50 and 300 microns. As part of the science commissioning of the instrument, HAWC+ has obtained more than 1000 independent measurements of polarization in the OMC-1 star forming region. The observations were made at a wavelength of 89 microns with an angular resolution of 8 arcseconds. We present these preliminary data and initial analysis.

  18. Millimeter Wave Polarimetric Radar Remote Sensing of Ice Clouds.

    Science.gov (United States)

    Tang, Chengxian

    Ice clouds play important roles in many practical and theoretical researches. This thesis investigates the electromagnetic scattering properties of ice crystals at 94 and 220 GHz, and polarimetric radar techniques for ice crystal type discrimination and ice mass content estimation. The scattering amplitude matrix is computed for pristine ice crystals of different sizes and from different incidence directions using the Finite Difference Time Domain method. Hexagonal plates, stellar crystals, and hexagonal columns with empirical aspect ratios are considered. The results show that the co-polarized scattering amplitudes are not sensitive to the azimuthal incidence angle but dependent on the polar incidence angle theta as functions of costheta or sintheta raised to a power which depends on particle size. Cross-polarized scattering amplitudes are negligible when the wave polarization is aligned with respect to the particle symmetry axis. Numerical computations are performed to examine the dependence of polarimetric radar parameters on the parameters in the gamma size and Gaussian canting angle distributions, and on radar elevation angle. The computed Mueller matrix elements related to the cross-correlation of the co-polarized and cross-polarized scattering amplitudes are less than 5% of the total irradiance. The linear depolarization ratio, circular depolarization ratio, and dual-frequency ratio are found depolarization ratio, circular depolarization ratio, and dual-frequency ratio are found useful for differentiating between planar ice crystals and columns. Five relationships between ice mass content and polarimetric radar parameters are derived based on numerical simulations representing various assumed ice mass contents and gamma size distributions. The specific differential phase at incidence angles away from the zenith, and effective reflectivity factor together with dual-frequency ratio can provide reasonable estimates for ice mass content. Simulations based on in

  19. A WFS-SVM Model for Soil Salinity Mapping in Keriya Oasis, Northwestern China Using Polarimetric Decomposition and Fully PolSAR Data

    Directory of Open Access Journals (Sweden)

    Ilyas Nurmemet

    2018-04-01

    Full Text Available Timely monitoring and mapping of salt-affected areas are essential for the prevention of land degradation and sustainable soil management in arid and semi-arid regions. The main objective of this study was to develop Synthetic Aperture Radar (SAR polarimetry techniques for improved soil salinity mapping in the Keriya Oasis in the Xinjiang Uyghur Autonomous Region (Xinjiang, China, where salinized soil appears to be a major threat to local agricultural productivity. Multiple polarimetric target decomposition, optimal feature subset selection (wrapper feature selector, WFS, and support vector machine (SVM algorithms were used for optimal soil salinization classification using quad-polarized PALSAR-2 data. A threefold exercise was conducted. First, 16 polarimetric decomposition methods were implemented and a wide range of polarimetric parameters and SAR discriminators were derived in order to mine hidden information in PolSAR data. Second, the optimal polarimetric feature subset that constitutes 19 polarimetric elements was selected adopting the WFS approach; optimum classification parameters were identified, and the optimal SVM classification model was obtained by employing a cross-validation method. Third, the WFS-SVM classification model was constructed, optimized, and implemented based on the optimal match of polarimetric features and optimum classification parameters. Soils with different salinization degrees (i.e., highly, moderately and slightly salinized soils were extracted. Finally, classification results were compared with the Wishart supervised classification and conventional SVM classification to examine the performance of the proposed method for salinity mapping. Detailed field investigations and ground data were used for the validation of the adopted methods. The overall accuracy and kappa coefficient of the proposed WFS-SVM model were 87.57% and 0.85, respectively that were much higher than those obtained by the Wishart supervised

  20. Multi-Frequency Polarimetric SAR Classification Based on Riemannian Manifold and Simultaneous Sparse Representation

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2015-07-01

    Full Text Available Normally, polarimetric SAR classification is a high-dimensional nonlinear mapping problem. In the realm of pattern recognition, sparse representation is a very efficacious and powerful approach. As classical descriptors of polarimetric SAR, covariance and coherency matrices are Hermitian semidefinite and form a Riemannian manifold. Conventional Euclidean metrics are not suitable for a Riemannian manifold, and hence, normal sparse representation classification cannot be applied to polarimetric SAR directly. This paper proposes a new land cover classification approach for polarimetric SAR. There are two principal novelties in this paper. First, a Stein kernel on a Riemannian manifold instead of Euclidean metrics, combined with sparse representation, is employed for polarimetric SAR land cover classification. This approach is named Stein-sparse representation-based classification (SRC. Second, using simultaneous sparse representation and reasonable assumptions of the correlation of representation among different frequency bands, Stein-SRC is generalized to simultaneous Stein-SRC for multi-frequency polarimetric SAR classification. These classifiers are assessed using polarimetric SAR images from the Airborne Synthetic Aperture Radar (AIRSAR sensor of the Jet Propulsion Laboratory (JPL and the Electromagnetics Institute Synthetic Aperture Radar (EMISAR sensor of the Technical University of Denmark (DTU. Experiments on single-band and multi-band data both show that these approaches acquire more accurate classification results in comparison to many conventional and advanced classifiers.

  1. G0-WISHART Distribution Based Classification from Polarimetric SAR Images

    Science.gov (United States)

    Hu, G. C.; Zhao, Q. H.

    2017-09-01

    Enormous scientific and technical developments have been carried out to further improve the remote sensing for decades, particularly Polarimetric Synthetic Aperture Radar(PolSAR) technique, so classification method based on PolSAR images has getted much more attention from scholars and related department around the world. The multilook polarmetric G0-Wishart model is a more flexible model which describe homogeneous, heterogeneous and extremely heterogeneous regions in the image. Moreover, the polarmetric G0-Wishart distribution dose not include the modified Bessel function of the second kind. It is a kind of simple statistical distribution model with less parameter. To prove its feasibility, a process of classification has been tested with the full-polarized Synthetic Aperture Radar (SAR) image by the method. First, apply multilook polarimetric SAR data process and speckle filter to reduce speckle influence for classification result. Initially classify the image into sixteen classes by H/A/α decomposition. Using the ICM algorithm to classify feature based on the G0-Wshart distance. Qualitative and quantitative results show that the proposed method can classify polaimetric SAR data effectively and efficiently.

  2. Algorithm for wind speed estimate with polarimetric radar

    Directory of Open Access Journals (Sweden)

    Ю. А. Авер’янова

    2013-07-01

    Full Text Available The connection of wind speed and drops behavior is substantiated as well as the drop behavior influence onto the polarization characteristics of electromagnetic waves. The expression to calculate the wind speed taking into account the Weber number for the critical regime of drop deformation is obtained. The critical regime of drop deformation is the regime when drop is divided into two parts. The dependency of critical wind speed on the drop diameter is calculated and shown. The concept o polarization spectrum that is introduced in the previous papers is used to estimate the dynamic processes in the atmosphere. At the moment when the drop is under the influence of the wind that is equal to the critical wind speed the drop will be divided into two parts. This process will be reflected as the appearance of the two equal components of polarization spectra of reflected electromagnetic waves at the orthogonal antennas of Doppler Polarimetric Radar. Owing the information about the correspondence of the polarization component energy level to the drop diameter it is possible to estimate the wind speed with the obtained dependency. The process of the wind speed estimate with polarimetric radar is presented with the developed common algorithm

  3. Heavy Rainfall Monitoring by Polarimetric C-Band Weather Radars

    Directory of Open Access Journals (Sweden)

    Roberto Cremonini

    2010-11-01

    Full Text Available Piemonte region, in the north-western Italy, is characterized by complex orography and Mediterranean influence that often causes extreme rainfall event, during the warm season. Although the region is monitored by a dense gauge network (more than one gauge per 100 km2, the ground measurements are often inadequate to properly observe intense and highly variable precipitations. Polarimetric weather radars provide a unique way to monitor rainfall over wide areas, with the required spatial detail and temporal resolution. Nevertheless, most European weather radar networks are operating at C-band, which may seriously limit quantitative precipitation estimation in heavy rainfall due to relevant power signal attenuation. Phase measurements, unlike power measurements, are not affected by signal attenuation. For this reason, polarimetric radars, for which the differential phase shift measurements are available, provide an additional way in which to estimate precipitation, which is immune to signal attenuation. In this work differential phase based rainfall estimation techniques are applied to analyze two flash-floods: the first one occurred on the Ligurian Apennines on 16 August 2006 and the second occurred on 13 September 2008, causing rain accumulations above 270 mm in few hours.

  4. Compaction behaviour of soils

    OpenAIRE

    Kurucuk, Nurses

    2017-01-01

    Soil compaction is widely applied in geotechnical engineering practice. It is used to maximise the dry density of soils to reduce subsequent settlement under working loads or to reduce the permeability of soils. The durability and stability of structures are highly related to the appropriate compaction achievement. The structural failure of roads and airfields, and the damage caused by foundation settlement can often be traced back to the failure in achieving adequate compaction. For that rea...

  5. Self-Compacting Concrete

    OpenAIRE

    Okamura, Hajime; Ouchi, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  6. Pharmaceutical powder compaction technology

    National Research Council Canada - National Science Library

    Çelik, Metin

    2011-01-01

    "Revised to reflect modern pharmaceutical compacting techniques, this Second Edition guides pharmaceutical engineers, formulation scientists, and product development and quality assurance personnel...

  7. Compact Polarimetry Potentials

    Science.gov (United States)

    Truong-Loi, My-Linh; Dubois-Fernandez, Pascale; Pottier, Eric

    2011-01-01

    The goal of this study is to show the potential of a compact-pol SAR system for vegetation applications. Compact-pol concept has been suggested to minimize the system design while maximize the information and is declined as the ?/4, ?/2 and hybrid modes. In this paper, the applications such as biomass and vegetation height estimates are first presented, then, the equivalence between compact-pol data simulated from full-pol data and compact-pol data processed from raw data as such is shown. Finally, a calibration procedure using external targets is proposed.

  8. Investigating the Innermost Jet Structures of Blazar S5 0716+714 Using Uniquely Dense Intra-day Photo-polarimetric Observations

    Directory of Open Access Journals (Sweden)

    Gopal Bhatta

    2016-10-01

    Full Text Available The sub-hour timescale variability commonly observed in blazars—widely known as intra-day or microvariability—has been extensively studied in optical photo-polarimetric bands over the past 25–30 years. In addition, there have been comprehensive theoretical discussions on the topic, with various models and scenarios proposed; however, the phenomenon still remains relatively poorly understood. Here we present the summary of our optical microvariability studies over the past few years based on multi-frequency photo-polarimetric Whole Earth Blazar Telescope (WEBT observation campaigns. The primary objective of the study was to explore the characteristics of the source microvariability on timescales of a few minutes to a few days using exceptionally dense photo-polarimetric observations. The results show that the source often displays fast variability with an amplitude as large as 0.3 mag within a few hours, as well as color variability on similar time scales often characterized by “bluer-when-brighter” trend. Similarly, the correlation between variability in flux and polarization appears to depend upon the configuration of the optical polarization angle relative to the positional angle of the innermost radio core of the jet. Other fascinating observations include a sudden and temporary disappearance in the observed variability lasting for ∼6 h. In addition, the modeling of individual microflares strongly suggests that the phenomenon of microvariability can be best explained by convolved emission from compact emission sites distributed stochastically in the turbulent jet. Besides, analysis of some of the well resolved micro-flares exhibiting high degrees of polarization points towards a complex magnetic geometry pervading the jet with the possible presence of small-scale regions of highly ordered and enhanced magnetic field similar to so-called “magnetic islands”.

  9. Dynamic compaction of ceramic powders

    Energy Technology Data Exchange (ETDEWEB)

    Cline, C.F.

    1982-06-10

    Dynamic consolidation is a technique for densifying powder ensembles to near theoretical with or without external application of heat. The technique itself is simple: the confined powder, initially at a green density of approx. 50% encounters a high pressure shock wave which exceeds the yield strength and densifies as the wave proceeds through the compact. The time scales and pressure range from 1-10's of microseconds and 10-100's of kilobars (10 Kb = 1 GPa). The short time scale of the pressure pulse during the compaction stage inhibits kinetic processes which have longer time constants. The pressure pulse can be delivered to the green compact by a number of techniques, i.e. high explosive, projectile. The methods differ in the degree that one can control the amplitude, duration, and nature of the pressure pulse. The lecture compares powders compacted by explosive and light gas guns and when possible characterize their resulting structures and properties, using AlN as example. 14 figures.

  10. REMOVAL OF SPECTRO-POLARIMETRIC FRINGES BY TWO-DIMENSIONAL PATTERN RECOGNITION

    International Nuclear Information System (INIS)

    Casini, R.; Judge, P. G.; Schad, T. A.

    2012-01-01

    We present a pattern-recognition-based approach to the problem of the removal of polarized fringes from spectro-polarimetric data. We demonstrate that two-dimensional principal component analysis can be trained on a given spectro-polarimetric map in order to identify and isolate fringe structures from the spectra. This allows us, in principle, to reconstruct the data without the fringe component, providing an effective and clean solution to the problem. The results presented in this paper point in the direction of revising the way that science and calibration data should be planned for a typical spectro-polarimetric observing run.

  11. A Common Calibration Source Framework for Fully-Polarimetric and Interferometric Radiometers

    Science.gov (United States)

    Kim, Edward J.; Davis, Brynmor; Piepmeier, Jeff; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    Two types of microwave radiometry--synthetic thinned array radiometry (STAR) and fully-polarimetric (FP) radiometry--have received increasing attention during the last several years. STAR radiometers offer a technological solution to achieving high spatial resolution imaging from orbit without requiring a filled aperture or a moving antenna, and FP radiometers measure extra polarization state information upon which entirely new or more robust geophysical retrieval algorithms can be based. Radiometer configurations used for both STAR and FP instruments share one fundamental feature that distinguishes them from more 'standard' radiometers, namely, they measure correlations between pairs of microwave signals. The calibration requirements for correlation radiometers are broader than those for standard radiometers. Quantities of interest include total powers, complex correlation coefficients, various offsets, and possible nonlinearities. A candidate for an ideal calibration source would be one that injects test signals with precisely controllable correlation coefficients and absolute powers simultaneously into a pair of receivers, permitting all of these calibration quantities to be measured. The complex nature of correlation radiometer calibration, coupled with certain inherent similarities between STAR and FP instruments, suggests significant leverage in addressing both problems together. Recognizing this, a project was recently begun at NASA Goddard Space Flight Center to develop a compact low-power subsystem for spaceflight STAR or FP receiver calibration. We present a common theoretical framework for the design of signals for a controlled correlation calibration source. A statistical model is described, along with temporal and spectral constraints on such signals. Finally, a method for realizing these signals is demonstrated using a Matlab-based implementation.

  12. New polarimetric and spectroscopic evidence of anomalous enrichment in spinel-bearing calcium-aluminium-rich inclusions among L-type asteroids

    Science.gov (United States)

    Devogèle, M.; Tanga, P.; Cellino, A.; Bendjoya, Ph.; Rivet, J.-P.; Surdej, J.; Vernet, D.; Sunshine, J. M.; Bus, S. J.; Abe, L.; Bagnulo, S.; Borisov, G.; Campins, H.; Carry, B.; Licandro, J.; McLean, W.; Pinilla-Alonso, N.

    2018-04-01

    Asteroids can be classified into several groups based on their spectral reflectance. Among these groups, the one belonging to the L-class in the taxonomic classification based on visible and near-infrared spectra exhibit several peculiar properties. First, their near-infrared spectrum is characterized by a strong absorption band interpreted as the diagnostic of a high content of the FeO bearing spinel mineral. This mineral is one of the main constituents of Calcium-Aluminum-rich Inclusions (CAI) the oldest mineral compounds found in the solar system. In polarimetry, they possess an uncommonly large value of the inversion angle incompatible with all known asteroid belonging to other taxonomical classes. Asteroids found to possess such a high inversion angle are commonly called Barbarians based on the first asteroid on which this property was first identified, (234) Barbara. In this paper we present the results of an extensive campaign of polarimetric and spectroscopic observations of L-class objects. We have derived phase-polarization curves for a sample of 7 Barbarians, finding a variety of inversion angles ranging between 25 and 30°. Spectral reflectance data exhibit variations in terms of spectral slope and absorption features in the near-infrared. We analyzed these data using a Hapke model to obtain some inferences about the relative abundance of CAI and other mineral compounds. By combining spectroscopic and polarimetric results, we find evidence that the polarimetric inversion angle is directly correlated with the presence of CAI, and the peculiar polarimetric properties of Barbarians are primarily a consequence of their anomalous composition.

  13. RECONSTRUCCIÓN TRIDIMENSIONAL DE ROSTROS A PARTIR DE IMÁGENES DE RANGO POR MEDIO DE FUNCIONES DE BASE RADIAL DE SOPORTE COMPACTO TRI-DIMENSIONAL RECONSTRUCTION OF FACES FROM RANGE IMAGES THROUGH COMPACT SUPPORT RADIAL BASIS FUNCTIONS

    Directory of Open Access Journals (Sweden)

    Jaime A. Echeverri A.

    2007-07-01

    Full Text Available En este trabajo se muestra la utilización de funciones de base radial de soporte compacto para la reconstrucción tridimensional de rostros. En trabajos anteriores se habían explorado diferentes técnicas y diferentes funciones de base radial para reconstrucción de superficies; ahora presentamos los algoritmos y los resultados de la utilización de funciones de base radial de soporte compacto las cuales presentan ventajas comparativas en términos del tiempo de construcción de un interpolante para la reconstrucción. Se presentan comparaciones con técnicas ampliamente utilizadas en este campo y se detalla el proceso global de reconstrucción de superficies.In previous works, we have explored several radial basis techniques and functions for the reconstruction of surfaces. We now present the use of compact support radial basis functions for the tri-dimensional reconstruction of human faces. Therefore, we present algorithms and results coming from the application of compact support radial basis functions which have revealed comparative advantages in terms of the amount of time needed for the construction of an interpolant to be used in the reconstruction. We are also presenting some comparisons with techniques widely used in this field and we explain in detail the global process for the surfaces reconstruction.

  14. The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI: a new tool for aerosol and cloud remote sensing

    Directory of Open Access Journals (Sweden)

    D. J. Diner

    2013-08-01

    Full Text Available The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI is an eight-band (355, 380, 445, 470, 555, 660, 865, 935 nm pushbroom camera, measuring polarization in the 470, 660, and 865 nm bands, mounted on a gimbal to acquire multiangular observations over a ±67° along-track range. The instrument has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. AirMSPI employs a photoelastic modulator-based polarimetric imaging technique to enable accurate measurements of the degree and angle of linear polarization in addition to spectral intensity. A description of the AirMSPI instrument and ground data processing approach is presented. Example images of clear, hazy, and cloudy scenes over the Pacific Ocean and California land targets obtained during flights between 2010 and 2012 are shown, and quantitative interpretations of the data using vector radiative transfer theory and scene models are provided to highlight the instrument's capabilities for determining aerosol and cloud microphysical properties and cloud 3-D spatial distributions. Sensitivity to parameters such as aerosol particle size distribution, ocean surface wind speed and direction, cloud-top and cloud-base height, and cloud droplet size is discussed. AirMSPI represents a major step toward realization of the type of imaging polarimeter envisioned to fly on NASA's Aerosol-Cloud-Ecosystem (ACE mission in the next decade.

  15. CAMEX-4 MOBILE X-BAND POLARIMETRIC WEATHER RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — Mobile X-band Polarimetric Weather Radar on Wheels (X-POW)is a Doppler scanning radar operating at 9.3 GHz.with horizontal and vertical polarization. Used for...

  16. GPM Ground Validation NASA S-Band Dual Polarimetric (NPOL) Doppler Radar OLYMPEX V2

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA S-Band Dual Polarimetric (NPOL) Doppler Radar OLYMPEX V2 dataset consists of rain rate, reflectivity, Doppler velocity, and other...

  17. The Development of Polarimetric and Nonpolarimetric Multiwavelength Focal Plane Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — High-performance polarimetric and nonpolarimetric sensing is crucial to upcoming NASA missions, including ACE and CLARREO and the multi-agency VIIRS NPP project. The...

  18. GPM GROUND VALIDATION NASA S-BAND DUAL POLARIMETRIC (NPOL) DOPPLER RADAR IFLOODS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA S-Band Dual Polarimetric (NPOL) Doppler Radar IFloodS data set was collected from April 30, 2013 to June 16, 2013 near Traer, Iowa as...

  19. GPM GROUND VALIDATION IOWA X-BAND POLARIMETRIC MOBILE DOPPLER WEATHER RADARS IFLOODS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Iowa X-band Polarimetric Mobile Doppler Weather Radars IFloodS dataset was gathered during the IFloodS campaign from April to June 2013...

  20. Polarimetric Multiwavelength Focal Plane Arrays for ACE and CLARREO, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — High-performance polarimetric and nonpolarimetric sensing is crucial to upcoming NASA missions, including ACE and CLARREO and the multi-agency VIIRS NPP project. The...

  1. CLPX-Airborne: Polarimetric Ku-Band Scatterometer (POLSCAT) Data, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains Ku-band polarimetric scatterometer (POLSCAT) data collected as part of the Cold Land Processes Field Experiment (CLPX) to enable the...

  2. An Icon-Based Synoptic Visualization of Fully Polarimetric Radar Data

    Directory of Open Access Journals (Sweden)

    Iain H. Woodhouse

    2012-03-01

    Full Text Available The visualization of fully polarimetric radar data is hindered by traditional remote sensing methodologies for displaying data due to the large number of parameters per pixel in such data, and the non-scalar nature of variables such as phase difference. In this paper, a new method is described that uses icons instead of image pixels to represent the image data so that polarimetric properties and geographic context can be visualized together. The icons are parameterized using the alpha-entropy decomposition of polarimetric data. The resulting image allows the following five variables to be displayed simultaneously: unpolarized power, alpha angle, polarimetric entropy, anisotropy and orientation angle. Examples are given for both airborne and laboratory-based imaging.

  3. GPM Ground Validation NOAA X-band Polarimetric Radar (NOXP) IPHEx V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NOAA X-band dual-Polarimetric radar (NOXP) IPHEx dataset consists of differential reflectivity, differential phase shift, co-polar cross...

  4. Retrieval of the raindrop size distribution from polarimetric radar data using double-moment normalisation

    OpenAIRE

    Raupach, Timothy H.; Berne, Alexis

    2016-01-01

    A new technique for estimating the raindrop size distribution (DSD) from polarimetric radar data is proposed. Two statistical moments of the DSD are estimated from polarimetric variables, and the DSD is reconstructed. The technique takes advantage of the relative invariance of the double-moment normalised DSD. The method was tested using X-band radar data and networks of disdrometers in three different climatic regions. Radar-derived estimates of the DSD compare reasonably well to observation...

  5. Polarimetric SAR image classification based on discriminative dictionary learning model

    Science.gov (United States)

    Sang, Cheng Wei; Sun, Hong

    2018-03-01

    Polarimetric SAR (PolSAR) image classification is one of the important applications of PolSAR remote sensing. It is a difficult high-dimension nonlinear mapping problem, the sparse representations based on learning overcomplete dictionary have shown great potential to solve such problem. The overcomplete dictionary plays an important role in PolSAR image classification, however for PolSAR image complex scenes, features shared by different classes will weaken the discrimination of learned dictionary, so as to degrade classification performance. In this paper, we propose a novel overcomplete dictionary learning model to enhance the discrimination of dictionary. The learned overcomplete dictionary by the proposed model is more discriminative and very suitable for PolSAR classification.

  6. Estimating soil moisture using the Danish polarimetric SAR

    DEFF Research Database (Denmark)

    Jiankang, Ji; Thomsen, A.; Skriver, Henning

    1995-01-01

    The results of applying data from the Danish polarimetric SAR (EMISAR) to estimate soil moisture for bare fields are presented. Fully calibrated C-band SAR images for hh, vv and cross polarizations have been used in this study. The measured surface roughness data showed that classical roughness...... autocorrelation functions (Gaussian and Exponential) were not able to fit natural surfaces well. A Gauss-Exp hybrid model which agreed better with the measured data has been proposed. Theoretical surface scattering models (POM, IEM), as well as an empirical model for retrieval of soil moisture and surface rms...... height from coand cross-polarized ratio, have been examined, but the results are less satisfactory. As soil moisture response to backscattering coefficient σo is mainly coupled to surface roughness effect for bare fields, a bilinear model coupling volumetric soil moisture mv and surface rms height σ...

  7. Classification of Polarimetric SAR Data Using Dictionary Learning

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Nielsen, Allan Aasbjerg; Dahl, Anders Lindbjerg

    2012-01-01

    This contribution deals with classification of multilook fully polarimetric synthetic aperture radar (SAR) data by learning a dictionary of crop types present in the Foulum test site. The Foulum test site contains a large number of agricultural fields, as well as lakes, forests, natural vegetation......, grasslands and urban areas, which make it ideally suited for evaluation of classification algorithms. Dictionary learning centers around building a collection of image patches typical for the classification problem at hand. This requires initial manual labeling of the classes present in the data and is thus...... a method for supervised classification. Sparse coding of these image patches aims to maintain a proficient number of typical patches and associated labels. Data is consecutively classified by a nearest neighbor search of the dictionary elements and labeled with probabilities of each class. Each dictionary...

  8. Analytical Aspects of Total Starch Polarimetric Determination in Some Cereals

    Directory of Open Access Journals (Sweden)

    Rodica Caprita

    2016-10-01

    Full Text Available Starch is the most important digestible polysaccharide present in foods and feeds. The starch concentration in cereals cannot be determined directly, because the starch is contained within a structurally and chemically complex matrix. Fine grinding and boiling in dilute HCl are preparative steps necessary for complete release of the starch granules from the protein matrix. Starch can be determined using simple and inexpensive physical methods, such as density, refractive index or optical rotation assessment. The polarimetric method allows the determination even of small starch contents due to its extremely high specific rotation. For more accurate results, the contribution of free sugars is eliminated by dissolution in 40% (V/V ethanol. The influence of other optically active substances, which might interfere, is removed by filtration/clarification prior to the optical rotation measurement.

  9. Tropical Mangrove Mapping Using Fully-Polarimetric Radar Data

    Directory of Open Access Journals (Sweden)

    Bambang Trisasongko

    2009-09-01

    Full Text Available Although mangrove is one of important ecosystems in the world, it has been abused and exploited by human for various purposes. Monitoring mangrove is therefore required to maintain a balance between economy and conservation and provides up-to-date information for rehabilitation. Optical remote sensing data have delivered such information, however ever-changing atmospheric disturbance may significantly decrease thematic content. In this research, Synthetic Aperture Radar (SAR fully polarimetric data were evaluated to present an alternative for mangrove mapping. Assessment using three statistical trees was performed on both tonal and textural data. It was noticeable that textural data delivered fairly good improvement which reduced the error rate to around 5-6% at L-band. This suggests that insertion of textural data is more important than any information derived from decomposition algorithm.

  10. Segment-based change detection for polarimetric SAR data

    DEFF Research Database (Denmark)

    Skriver, Henning; Nielsen, Allan Aasbjerg; Conradsen, Knut

    2006-01-01

    single-channel SAR images but multi-channel algorithms have also been described. Different approaches have been used for image segmentation. Edge detection combined with region growing is one approach, where segments are created by growing regions from a previously edge detected and edge thinned image....... This method relies primarily on a robust edge detector, which preferably provides a constant false alarm rate. For single-channel SAR images this is fulfilled by the ratio edge detector, and for polarimetric SAR data, an edge detector based on the above mentioned test statistic fulfils this. Another approach......, wetlands, lakes, and urban areas. Also, other test sites over for instance urban areas have been used to assess the improvement by the segment-based change detection method. In the paper, results from pixel-based change detection, i.e. without segmentation, and from segment-based change detection, where...

  11. Polarimetric Exploration of Solar System Small Bodies: Search for Habitability

    Science.gov (United States)

    Yanamandra-Fisher, Padma A.

    2015-08-01

    The overarching goals for the remote sensing and robotic exploration of our solar system and exoplanetary systems are: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. These goals can be realized with the inclusion of spectrophotopolarimetry as a complementary approach to standard techniques of imaging and spectroscopy. Since all objects have unique polarimetric signatures, like fingerprints, much can be learned about the scattering object. Although polarization, in general, is elliptical by nature, special cases such as linear and circular polarimetric signatures provide insight into the various types of scattering media and are valuable tools to be developed. Additionally, spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. The search for habitability can benefit from spectrophotopolarimetry. While linear polarization of reflected light by solar system objects (planetary atmospheres, satellites, rings systems, comets, asteroids, dust, etc.) provides insight into the scattering characteristics of aerosols and hazes in atmospheres and surficial properties of atmosphereless objects, circular polarization and related chirality) or handedness, a property of molecules that exhibit mirror-image symmetry, similar to right and left hands) can serve as diagnostic of biological activity. All known life forms on earth are chiral and pre-dominantly left-handed. However, many of these applications suffer from lack of detailed observations, instrumentation, dedicated missions and numerical/retrieval methods. I will present a review of the field, with advances made in instrumentation, measurements and applications to prospective missions.

  12. Polarimetric Radar Retrievals in Southeast Texas During Hurricane Harvey

    Science.gov (United States)

    Wolff, D. B.; Petersen, W. A.; Tokay, A.; Marks, D. A.; Pippitt, J. L.; Kirstetter, P. E.

    2017-12-01

    Hurricane Harvey hit the Texas Gulf Coast as a major hurricane on August 25, 2017 before exiting the state as a tropical storm on September 1, 2017. In its wake, it left a flood of historic proportions, with some areas measuring 60 inches of rain over a five-day period. Although the storm center stayed west of the immediate Houston area training bands of precipitation impacted the Houston area for five full days. The National Weather Service (NWS) WSR88D dual-polarimetric radar (KHGX), located southeast of Houston, maintained operations for the entirety of the event. The Harris County Flood Warning System (HCFWS) had 150 rain gauges deployed in its network and seven NWS Automated Surface Observing Systems (ASOS) rain gauges are also located in the area. In this study, we used the full radar data set to retrieve daily and event-total precipitation estimates within 120 km of the KHGX radar for the period August 25-29, 2017. These estimates were then compared to the HCFWS and ASOS gauges. Three different polarimetric hybrid rainfall retrievals were used: Ciffeli et al. 2011; Bringi et al. 2004; and, Chen et al. 2017. Each of these hybrid retrievals have demonstrated robust performance in the past. However, both daily and event-total comparisons from each of these retrievals compared to those of HCFWS and ASOS rain gauge networks resulted in significant underestimates by the radar retrievals. These radar underestimates are concerning. Sources of error and variance will be investigated to understand the source of radar-gauge disagreement. One current hypothesis is that due to the large number of small drops often found in hurricanes, the differential reflectivity and specific differential phase are relatively small so that the hybrid algorithms use only the reflectivity/rain rate procedure (so called Z-R relationships), and hence rarely invoke the ZDR or KDP procedures. Thus, an alternative Z-R relationship must be invoked to retrieve accurate rain rate estimates.

  13. Assessment of GF-3 Polarimetric SAR Data for Physical Scattering Mechanism Analysis and Terrain Classification.

    Science.gov (United States)

    Yin, Junjun; Yang, Jian; Zhang, Qingjun

    2017-12-01

    On 10 August 2016 China launched the GF-3, its first C-band polarimetric synthetic aperture radar (SAR) satellite, which was put into operation at the end of January, 2017. GF-3 polarimetric SAR has many advantages such as high resolution and multi-polarization imaging capabilities. Polarimetric SAR can fully characterize the backscatter property of targets, and thus it is of great interest to explore the physical scattering mechanisms of terrain types, which is very important in interpreting polarimetric SAR imagery and for its further usages in Earth observations. In this paper, focusing on target scattering characterization and feature extraction, we generalize the Δ α B / α B method, which was proposed under the reflection symmetric assumption, for the general backscatter process to account for both the reflection symmetry and asymmetry cases. Then, we evaluate the performances of physical scattering mechanism analysis methods for GF-3 polarimetric SAR imagery. Radarsat-2 data acquired over the same area is used for cross validation. Results show that GF-3 polarimetric SAR data has great potential for target characterization, especially for ocean area observation.

  14. The ROHP-PAZ mission and the polarimetric and non-polarimetric effects of rain and other fozen hydrometeors on GNSS Radio-Occultation signals.

    Science.gov (United States)

    De La Torre Juarez, M.; Padulles, R.; Cardellach, E.; Tomás, S.; Turk, J.; Ao, C. O.; Oliveras, S.; Rius, A.

    2015-12-01

    The Radio Occultation and Heavy Precipitation experiment aboard the PAZ Low Earth Orbiter (ROHP-PAZ) will test, for the first time, the new polarimetric radio occultation (RO) concept. This is a mission of opportunity: The Spanish Ministry of Science and Innovation (MICINN) approved in 2009 a proposal to include a polarimetric Global Navigation Satellite System (GNSS) RO payload on board of the Spanish Earth Observation satellite PAZ. The launch of the satellite is scheduled for October 2015, and it will be followed by a 6-month commissioning phase period and has an expected life of 7 years, with a goal of 10 years.The concept is similar to that used in some polarimetric weather radars: to measure the differential phase shift between the two polarimetric components of the received signal, although in this case we will use the forward scattering geometry instead of the backscattering one. It will allow us to retrieve precipitation and other hydrometeors information, and simultaneous thermodynamic vertical profiles which will help to the understanding of the thermodynamic processes beyond heavy rain events. A sensitivity analysis has been performed, showing that the rain-induced effect is above PAZ detectability threshold in 90% of the events with along-ray averaged rain rate higher than 5 mm/h. Also, a ground field campaign has been conducted prior to the launch of the satellite. The measurements from the campaign have shown the first experimental evidences that precipitation and frozen hydrometeors induce a noticeable effect into the polarimetric RO observables. We will present here the actual status of the mission and the results from the field campaign. We will also discuss the results of the theoretical study of the thermodynamics and the effects of rain and frozen hydrometeors into standard and polarimetric RO, based on a large collocation exercise of COSMIC and TerrasSar-X with TRMM, GPM and CloudSat.

  15. Compact instantaneous water heater

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Jorge G.W.; Machado, Antonio R.; Ferraz, Andre D.; Rocha, Ivan C.C. da; Konishi, Ricardo [Companhia de Gas de Santa Catarina (SCGAS), Florianopolis, SC (Brazil); Lehmkuhl, Willian A.; Francisco Jr, Roberto W.; Hatanaka, Ricardo L.; Pereira, Fernando M.; Oliveira, Amir A.M. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-07-01

    This paper presents an experimental study of combustion in an inert porous medium in a liquid heating device application. This project aims to increase efficiency in the application of natural gas in residential and commercial sectors with the use of advanced combustion and heat transfer. The goal is to facilitate the development of a high performance compact water heater allowing hot water supply for up to two simultaneous showers. The experiment consists in a cylindrical porous burner with an integrated annular water heat exchanger. The reactants were injected radially into the burner and the flame stabilizes within the porous matrix. The water circulates in a coiled pipe positioned at the center of the burner. This configuration allows for heat transfer by conduction and radiation from the solid matrix to the heat exchanger. This article presented preliminary experimental results of a new water heater based on an annular porous burner. The range of equivalence ratios tested varied from 0.65 to 0.8. The power range was varied from 3 to 5 kW. Increasing the equivalence ratio or decreasing the total power input of the burner resulted in increased thermal efficiencies of the water heater. Thermal efficiencies varying from 60 to 92% were obtained. The condition for the goal of a comfortable bath was 20 deg C for 8-12 L/min. This preliminary prototype has achieved water temperature of 11deg C for 5 L/min. Further optimizations will be necessary in order to achieve intense heating with high thermal efficiency. (author)

  16. Phased array compaction cell for measurement of the transversely isotropic elastic properties of compacting sediments

    Energy Technology Data Exchange (ETDEWEB)

    Nihei, K.T.; Nakagawa, S.; Reverdy, F.; Meyer, L.R.; Duranti, L.; Ball, G.

    2010-12-15

    Sediments undergoing compaction typically exhibit transversely isotropic (TI) elastic properties. We present a new experimental apparatus, the phased array compaction cell, for measuring the TI elastic properties of clay-rich sediments during compaction. This apparatus uses matched sets of P- and S-wave ultrasonic transducers located along the sides of the sample and an ultrasonic P-wave phased array source, together with a miniature P-wave receiver on the top and bottom ends of the sample. The phased array measurements are used to form plane P-waves that provide estimates of the phase velocities over a range of angles. From these measurements, the five TI elastic constants can be recovered as the sediment is compacted, without the need for sample unloading, recoring, or reorienting. This paper provides descriptions of the apparatus, the data processing, and an application demonstrating recovery of the evolving TI properties of a compacting marine sediment sample.

  17. External polarimetric calibration of the Danish polarimetric C-band SAR

    DEFF Research Database (Denmark)

    Skriver, Henning; Dall, Jørgen; Madsen, Søren Nørvang

    1994-01-01

    on a masking procedure using the cross-correlation between co- and cross-polarized returns. The cross-talk estimated for the EMISAR data is low (below -30 dB), virtually independent of range, and stable between different acquisitions-within a mission and between missions. The cross-talk is reduced by 8 d...

  18. Compaction of FGD-gypsum

    NARCIS (Netherlands)

    Stoop, B.T.J.; Larbi, J.A.; Heijnen, W.M.M.

    1996-01-01

    It is shown that it is possible to produce compacted gypsum with a low porosity and a high strength on a laboratory scale by uniaxial compaction of flue gas desulphurization (FGD-) gypsum powder. Compacted FGD-gypsum cylinders were produced at a compaction pres-sure between 50 and 500 MPa yielding

  19. Spectral and polarimetric characterization of gazeous and telluric planets with SEE COAST

    Science.gov (United States)

    Boccaletti, A.; Baudoz, P.; Mawet, D.; Schneider, J.; Tinetti, G.; Galicher, R.; Stam, D.; Cavarroc, C.; Hough, J.; Doel, P.; Pinfield, D.; Keller, C.-U.; Beuzit, J.-L.; Udry, S.; Ferrari, A.; Martin, E.; Ménard, F.; Sein, E.

    2011-07-01

    SEE COAST stands for Super Earth Explorer - Coronagraphic Off-Axis Space Telescope. The concept was initially proposed to ESA for Cosmic Vision. None of the direct detection exoplanet proposals were selected in 2007 and we are now pursuing our efforts to consolidate the astrophysical program and the technical developments for the next call for proposal. The prime objective of SEE COAST is to contribute to the understanding of the formation and evolution of planetary systems. Exploring the diversity of these objects is therefore the main driver to define the instrumentation. In the next decade the improvement of radial velocity instruments and obviously temporal coverage will provide us with a large numbers of long period giants as well as telluric planets, namely Super Earths. Obtaining the spectral and polarimetric signatures of these objects in the visible range to measure atmospheric parameters (molecular composition, clouds, soils, …) will be unique and with important scientific returns. A space mission complementary to near IR instruments like SPHERE, GPI, JWST and later ELTs for the full characterization of giants and Super Earths is a first secure step towards the longer term goal that is the characterization of telluric planets with mass and atmosphere comparable to that of the Earth. An overview of the astrophysical motivation and the trade-off that lead to a simple integrated concept of a space-based high contrast imaging instrument are given here.

  20. Spectral and polarimetric characterization of gazeous and telluric planets with SEE COAST

    Directory of Open Access Journals (Sweden)

    Keller C.-U.

    2011-07-01

    Full Text Available SEE COAST stands for Super Earth Explorer – Coronagraphic Off-Axis Space Telescope. The concept was initially proposed to ESA for Cosmic Vision. None of the direct detection exoplanet proposals were selected in 2007 and we are now pursuing our efforts to consolidate the astrophysical program and the technical developments for the next call for proposal. The prime objective of SEE COAST is to contribute to the understanding of the formation and evolution of planetary systems. Exploring the diversity of these objects is therefore the main driver to define the instrumentation. In the next decade the improvement of radial velocity instruments and obviously temporal coverage will provide us with a large numbers of long period giants as well as telluric planets, namely Super Earths. Obtaining the spectral and polarimetric signatures of these objects in the visible range to measure atmospheric parameters (molecular composition, clouds, soils, … will be unique and with important scientific returns. A space mission complementary to near IR instruments like SPHERE, GPI, JWST and later ELTs for the full characterization of giants and Super Earths is a first secure step towards the longer term goal that is the characterization of telluric planets with mass and atmosphere comparable to that of the Earth. An overview of the astrophysical motivation and the trade-off that lead to a simple integrated concept of a space-based high contrast imaging instrument are given here.

  1. Compaction and flow rule of oxide nanopowders

    Science.gov (United States)

    Boltachev, G. Sh.; Lukyashin, K. E.; Maximenko, A. L.; Maksimov, R. N.; Shitov, V. A.; Shtern, M. B.

    2017-09-01

    Transparent Al2O3 ceramics have attracted considerable interest for use in a wide range of optical, electronic and structural applications. The fabrication of these ceramics using powder metallurgy processes requires the development of theoretical approaches to the compaction of nanopowders. In this work, we investigate the compaction processes of two model granular systems imitating Al2O3 nanosized powders. System I is a loosely aggregated powder, and system II is a powder strongly inclined to agglomeration (for instance, calcined powder). The processes of isostatical (uniform), biaxial, and uniaxial compaction as well as uniaxial compaction with simultaneous shear deformation are studied. The energy parameters of compaction such as the energy change of elastic interparticle interactions and dispersion interactions, dissipative energy losses related to the processes of interparticle friction, and the total work of compaction are calculated for all the processes. The nonapplicability of the associated flow rule to the description of deformation processes of oxide nanopowders is shown and an alternative plastic flow rule is suggested. A complete system of determining the relationship of the flow including analytical approximations of yield surfaces is obtained.

  2. Compaction of Ti–6Al–4V powder using high velocity compaction technique

    International Nuclear Information System (INIS)

    Khan, Dil Faraz; Yin, Haiqing; Li, He; Qu, Xuanhui; Khan, Matiullah; Ali, Shujaat; Iqbal, M. Zubair

    2013-01-01

    Highlights: • We compacted Ti–6Al–4V powder by HVC technique. • As impact force rises up, the green density of the compacts increases gradually. • At impact force 1.857 kN relative sintered density of the compacts reaches 99.88%. • Spring back of the green compact’s decreases gradually with increasing impact force. • Mechanical properties of the samples increases with increasing impact force. - Abstract: High velocity compaction technique was applied to the compaction of pre-alloyed, hydride–dehydride Ti–6Al–4V powder. The powder was pressed in single stroke with a compaction speed of 7.10–8.70 ms −1 . When the speed was 8.70 ms −1 , the relative density of the compacts reaches up to 85.89% with a green density of 3.831 g cm −3 . The green samples were sintered at 1300 °C in Ar-gas atmosphere. Scanning electron microscope (SEM) was used to examine the surface of the sintered samples. Density and mechanical properties such as Vickers micro hardness and bending strength of the powder samples were investigated. Experimental results indicated that with the increase in impact force, the density and mechanical properties of the compacts increased. The sintered compacts exhibited a maximum relative density of 99.88% with a sintered density of 4.415 g cm −3 , hardness of 364–483 HV and the bending strength in the range of 103–126.78 MPa. The springback of the compacts decreased with increasing impact force

  3. Polarimetric Emission of Rain Events: Simulation and Experimental Results at X-Band

    Directory of Open Access Journals (Sweden)

    Nuria Duffo

    2009-06-01

    Full Text Available Accurate models are used today for infrared and microwave satellite radiance simulations of the first two Stokes elements in the physical retrieval, data assimilation etc. of surface and atmospheric parameters. Although in the past a number of theoretical and experimental works have studied the polarimetric emission of some natural surfaces, specially the sea surface roughened by the wind (Windsat mission, very limited studies have been conducted on the polarimetric emission of rain cells or other natural surfaces. In this work, the polarimetric emission (four Stokes elements of a rain cell is computed using the polarimetric radiative transfer equation assuming that raindrops are described by Pruppacher-Pitter shapes and that their size distribution follows the Laws-Parsons law. The Boundary Element Method (BEM is used to compute the exact bistatic scattering coefficients for each raindrop shape and different canting angles. Numerical results are compared to the Rayleigh or Mie scattering coefficients, and to Oguchi’s ones, showing that above 1-2 mm raindrop size the exact formulation is required to model properly the scattering. Simulation results using BEM are then compared to the experimental data gathered with a X-band polarimetric radiometer. It is found that the depolarization of the radiation caused by the scattering of non-spherical raindrops induces a non-zero third Stokes parameter, and the differential phase of the scattering coefficients induces a non-zero fourth Stokes parameter.

  4. Atmospheric polarimetric effects on GNSS radio occultations: the ROHP-PAZ field campaign

    Science.gov (United States)

    Padullés, R.; Cardellach, E.; de la Torre Juárez, M.; Tomás, S.; Turk, F. J.; Oliveras, S.; Ao, C. O.; Rius, A.

    2016-01-01

    This study describes the first experimental observations showing that hydrometeors induce polarimetric signatures in global navigation satellite system (GNSS) signals. This evidence is relevant to the PAZ low Earth orbiter, which will test the concept and applications of polarimetric GNSS radio occultation (RO) (i.e. ROs obtained with a dual-polarization antenna). A ground field campaign was carried out in preparation for PAZ to verify the theoretical sensitivity studies on this concept (Cardellach et al., 2015). The main aim of the campaign is to identify and understand the factors that might affect the polarimetric GNSS observables. Studied for the first time, GNSS signals measured with two polarimetric antennas (H, horizontal, and V, vertical) are shown to discriminate between heavy rain events by comparing the measured phase difference between the H and V phase delays (ΔΦ) in different weather scenarios. The measured phase difference indicates higher dispersion under rain conditions. When individual events are examined, significant increases in ΔΦ occur when the radio signals cross rain cells. Moreover, the amplitude of such a signal is much higher than the theoretical prediction for precipitation; thus, other sources of polarimetric signatures have been explored and identified. Modelling of other hydrometeors, such as melting particles and ice crystals, have been proposed to explain the obtained measurements, with good agreement in more than 90 % of the cases.

  5. Application of Deep Networks to Oil Spill Detection Using Polarimetric Synthetic Aperture Radar Images

    Directory of Open Access Journals (Sweden)

    Guandong Chen

    2017-09-01

    Full Text Available Polarimetric synthetic aperture radar (SAR remote sensing provides an outstanding tool in oil spill detection and classification, for its advantages in distinguishing mineral oil and biogenic lookalikes. Various features can be extracted from polarimetric SAR data. The large number and correlated nature of polarimetric SAR features make the selection and optimization of these features impact on the performance of oil spill classification algorithms. In this paper, deep learning algorithms such as the stacked autoencoder (SAE and deep belief network (DBN are applied to optimize the polarimetric feature sets and reduce the feature dimension through layer-wise unsupervised pre-training. An experiment was conducted on RADARSAT-2 quad-polarimetric SAR image acquired during the Norwegian oil-on-water exercise of 2011, in which verified mineral, emulsions, and biogenic slicks were analyzed. The results show that oil spill classification achieved by deep networks outperformed both support vector machine (SVM and traditional artificial neural networks (ANN with similar parameter settings, especially when the number of training data samples is limited.

  6. Fitting a Two-Component Scattering Model to Polarimetric SAR Data

    Science.gov (United States)

    Freeman, A.

    1998-01-01

    Classification, decomposition and modeling of polarimetric SAR data has received a great deal of attention in the recent literature. The objective behind these efforts is to better understand the scattering mechanisms which give rise to the polarimetric signatures seen in SAR image data. In this Paper an approach is described, which involves the fit of a combination of two simple scattering mechanisms to polarimetric SAR observations. The mechanisms am canopy scatter from a cloud of randomly oriented oblate spheroids, and a ground scatter term, which can represent double-bounce scatter from a pair of orthogonal surfaces with different dielectric constants or Bragg scatter from a moderately rough surface, seen through a layer of vertically oriented scatterers. An advantage of this model fit approach is that the scattering contributions from the two basic scattering mechanisms can be estimated for clusters of pixels in polarimetric SAR images. The solution involves the estimation of four parameters from four separate equations. The model fit can be applied to polarimetric AIRSAR data at C-, L- and P-Band.

  7. Generation of circularly polarized radiation from a compact plasma-based extreme ultraviolet light source for tabletop X-ray magnetic circular dichroism studies

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Daniel; Rudolf, Denis, E-mail: d.rudolf@fz-juelich.de; Juschkin, Larissa [RWTH Aachen University, Experimental Physics of EUV, Steinbachstraße 15, 52074 Aachen (Germany); Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-9), JARA-FIT, 52425 Jülich (Germany); Weier, Christian; Adam, Roman; Schneider, Claus M. [Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-6), JARA-FIT, 52425 Jülich (Germany); Winkler, Gerrit; Frömter, Robert [Institut für Angewandte Physik, Universität Hamburg, Jungiusstraße 11, 20355 Hamburg (Germany); Danylyuk, Serhiy [RWTH Aachen University, Chair for Technology of Optical Systems, JARA-FIT, Steinbachstraße 15, 52074 Aachen (Germany); Bergmann, Klaus [Fraunhofer Institute for Laser Technology, Steinbachstrasse 15, 52074 Aachen (Germany); Grützmacher, Detlev [Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-9), JARA-FIT, 52425 Jülich (Germany)

    2014-10-15

    Generation of circularly polarized light in the extreme ultraviolet (EUV) spectral region (about 25 eV–250 eV) is highly desirable for applications in spectroscopy and microscopy but very challenging to achieve in a small-scale laboratory. We present a compact apparatus for generation of linearly and circularly polarized EUV radiation from a gas-discharge plasma light source between 50 eV and 70 eV photon energy. In this spectral range, the 3p absorption edges of Fe (54 eV), Co (60 eV), and Ni (67 eV) offer a high magnetic contrast often employed for magneto-optical and electron spectroscopy as well as for magnetic imaging. We simulated and designed an instrument for generation of linearly and circularly polarized EUV radiation and performed polarimetric measurements of the degree of linear and circular polarization. Furthermore, we demonstrate first measurements of the X-ray magnetic circular dichroism at the Co 3p absorption edge with a plasma-based EUV light source. Our approach opens the door for laboratory-based, element-selective spectroscopy of magnetic materials and spectro-microscopy of ferromagnetic domains.

  8. Improved cloud-phase determination of low-level liquid and mixed-phase clouds by enhanced polarimetric lidar

    Directory of Open Access Journals (Sweden)

    R. A. Stillwell

    2018-02-01

    Full Text Available The unambiguous retrieval of cloud phase from polarimetric lidar observations is dependent on the assumption that only cloud scattering processes affect polarization measurements. A systematic bias of the traditional lidar depolarization ratio can occur due to a lidar system's inability to accurately measure the entire backscattered signal dynamic range, and these biases are not always identifiable in traditional polarimetric lidar systems. This results in a misidentification of liquid water in clouds as ice, which has broad implications on evaluating surface energy budgets. The Clouds Aerosol Polarization and Backscatter Lidar at Summit, Greenland employs multiple planes of linear polarization, and photon counting and analog detection schemes, to self evaluate, correct, and optimize signal combinations to improve cloud classification. Using novel measurements of diattenuation that are sensitive to both horizontally oriented ice crystals and counting system nonlinear effects, unambiguous measurements are possible by over constraining polarization measurements. This overdetermined capability for cloud-phase determination allows for system errors to be identified and quantified in terms of their impact on cloud properties. It is shown that lidar system dynamic range effects can cause errors in cloud-phase fractional occurrence estimates on the order of 30 % causing errors in attribution of cloud radiative effects on the order of 10–30 %. This paper presents a method to identify and remove lidar system effects from atmospheric polarization measurements and uses co-located sensors at Summit to evaluate this method. Enhanced measurements are achieved in this work with non-orthogonal polarization retrievals as well as analog and photon counting detection facilitating a more complete attribution of radiative effects linked to cloud properties.

  9. Improved cloud-phase determination of low-level liquid and mixed-phase clouds by enhanced polarimetric lidar

    Science.gov (United States)

    Stillwell, Robert A.; Neely, Ryan R., III; Thayer, Jeffrey P.; Shupe, Matthew D.; Turner, David D.

    2018-02-01

    The unambiguous retrieval of cloud phase from polarimetric lidar observations is dependent on the assumption that only cloud scattering processes affect polarization measurements. A systematic bias of the traditional lidar depolarization ratio can occur due to a lidar system's inability to accurately measure the entire backscattered signal dynamic range, and these biases are not always identifiable in traditional polarimetric lidar systems. This results in a misidentification of liquid water in clouds as ice, which has broad implications on evaluating surface energy budgets. The Clouds Aerosol Polarization and Backscatter Lidar at Summit, Greenland employs multiple planes of linear polarization, and photon counting and analog detection schemes, to self evaluate, correct, and optimize signal combinations to improve cloud classification. Using novel measurements of diattenuation that are sensitive to both horizontally oriented ice crystals and counting system nonlinear effects, unambiguous measurements are possible by over constraining polarization measurements. This overdetermined capability for cloud-phase determination allows for system errors to be identified and quantified in terms of their impact on cloud properties. It is shown that lidar system dynamic range effects can cause errors in cloud-phase fractional occurrence estimates on the order of 30 % causing errors in attribution of cloud radiative effects on the order of 10-30 %. This paper presents a method to identify and remove lidar system effects from atmospheric polarization measurements and uses co-located sensors at Summit to evaluate this method. Enhanced measurements are achieved in this work with non-orthogonal polarization retrievals as well as analog and photon counting detection facilitating a more complete attribution of radiative effects linked to cloud properties.

  10. Evaluation of Polarimetric SAR Decomposition for Classifying Wetland Vegetation Types

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Hong

    2015-07-01

    Full Text Available The Florida Everglades is the largest subtropical wetland system in the United States and, as with subtropical and tropical wetlands elsewhere, has been threatened by severe environmental stresses. It is very important to monitor such wetlands to inform management on the status of these fragile ecosystems. This study aims to examine the applicability of TerraSAR-X quadruple polarimetric (quad-pol synthetic aperture radar (PolSAR data for classifying wetland vegetation in the Everglades. We processed quad-pol data using the Hong & Wdowinski four-component decomposition, which accounts for double bounce scattering in the cross-polarization signal. The calculated decomposition images consist of four scattering mechanisms (single, co- and cross-pol double, and volume scattering. We applied an object-oriented image analysis approach to classify vegetation types with the decomposition results. We also used a high-resolution multispectral optical RapidEye image to compare statistics and classification results with Synthetic Aperture Radar (SAR observations. The calculated classification accuracy was higher than 85%, suggesting that the TerraSAR-X quad-pol SAR signal had a high potential for distinguishing different vegetation types. Scattering components from SAR acquisition were particularly advantageous for classifying mangroves along tidal channels. We conclude that the typical scattering behaviors from model-based decomposition are useful for discriminating among different wetland vegetation types.

  11. Polarimetric study of the interstellar medium in Taurus Dark Clouds

    International Nuclear Information System (INIS)

    Hsu, J.

    1985-01-01

    An optical linear polarimetric survey was completed for more than 300 stars in an area of 6.5 0 x 10 0 toward the Taurus Dark Clouds Complex. It was found that the orientation of the magnetic field is roughly perpendicular to the elongation direction of the dust lanes, indicating cloud contraction along the magnetic field lines. The distance to the front edge of the dark clouds in Taurus is determined to be 126 pc. There is only insignificant amount of obscuring material between the cloud complex and the Sun. Besides the polarization data, the reddenings of about 250 stars were also obtained from the UBV photometry. The mean polarization to reddening ratio in the Taurus region is 4.6, which is similar to that of the general interstellar matter. The wavelengths of maximum polarization were determined for 30 stars in Taurus. They show an average value of lambda/sub max/ = 0.57 μm, which is only slightly higher than the mean value of the general interstellar medium, lambda/sub max/ = 0.55 μm. A few stars that show higher values of lambda/sub max/ are found near the small isolated regions of very high extinction. One such highly obscured small region where very complex long chain molecules have been discovered in the ratio spectra, is the Taurus Molecular Cloud 1

  12. Status of PEM-based polarimetric MSE development at KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Jinseok; Chung, Jinil; Oh, Seungtae; Ko, Wonha [National Fusion Research Institute, Daejeon (Korea, Republic of); Bock, Maarten de; Ong, Henry; Lange, Guido [Eindhoven University of Technology, Eindhoven (Netherlands)

    2014-10-15

    A multi-chord PEM (photo elastic modulator)-based polarimetric motional Stark effect (MSE) system is under development for the KSTAR tokamak. The conceptual design for the front optics was optimized to preserve not only the polarization state of the input light for the MSE measurements but also the signal intensity of the existing charge exchange spectroscopy (CES) system that will share the front optics with the MSE. The optics design incorporates how to determine the number of channels and the number of fibers for each channel. A dielectric coating will be applied on the mirror to minimize the relative reflectivity and the phase shift between the two orthogonal polarization components of the incident light. Lenses with low stress-birefringence constants will be adopted to minimize non-linear and random changes in the polarization through the lenses, which is a trade-off with the rather high Faraday rotation in the lenses because the latter effect is linear and can be relatively easily calibrated out. Intensive spectrum measurements and their comparisons with the simulated spectra are done to assist the design of the bandpass filter system that will also use tilting stages to remotely control the passband. Following the system installation in 2014, the MSE measurements are expected to be performed during the 2015 KSTAR campaign.

  13. Modeling the photo-polarimetric characteristics of brown dwarfs

    Science.gov (United States)

    Sanghavi, Suniti; Millar-Blanchaer, Max; Jensen-Clem, Rebecca; Shporer, Avi; Nilsson, Ricky; Tinyanont, Samaporn; Riedel, Adric; Kataria, Tiffany; Mawet, Dimitri

    2018-01-01

    An envelope of scatterers like free electrons, atoms/molecules, or haze/clouds affect the Stokes vector of radiation emitted by an oblate body.Due to their high rotation rates, brown dwarfs (BDs) are often considerably oblate. We present a conics-based radiative transfer (RT) scheme for computing the disc-resolved and disc-integrated polarized emission of an oblate body like a BD or extrasolar giant planet (EGP) bearing homogenous or patchy clouds. Using this capability, we theoretically examine the photo-polarimetric signal of BDs as a function of the scattering properties of its atmosphere like cloud optical thickness and grain size concurrently with BD properties like oblateness and inclination angle. The effect of oblateness is examined with and without the temperature gradients caused by gravitational darkening, revealing that the latter can considerably amplify the disc-integrated polarization. The signal depends on both oblateness and inclination angle, with the degree of polarization (DoP) increasing with oblateness and decreasing with inclination, a property useful for assessing the exact spatial orientation of the rotation axis in favorable cases. Our examination of BD cloud properties shows a relative blue-shift in the near-infrared (NIR) for increasing droplet size in optically thick clouds - interesting in view of the observed relative brightening in the J-band for L/T transition BDs. For large cloud grains, the polarization decreases sharply, while the transmitted intensity shows a steady increase, thus reducing the DoP.

  14. Inhomogeneous compact extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Bronnikov, K.A. [Center of Gravity and Fundamental Metrology, VNIIMS, 46 Ozyornaya st., Moscow 119361 (Russian Federation); Budaev, R.I.; Grobov, A.V.; Dmitriev, A.E.; Rubin, Sergey G., E-mail: kb20@yandex.ru, E-mail: buday48@mail.ru, E-mail: alexey.grobov@gmail.com, E-mail: alexdintras@mail.ru, E-mail: sergeirubin@list.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow (Russian Federation)

    2017-10-01

    We show that an inhomogeneous compact extra space possesses two necessary features— their existence does not contradict the observable value of the cosmological constant Λ{sub 4} in pure f ( R ) theory, and the extra dimensions are stable relative to the 'radion mode' of perturbations, the only mode considered. For a two-dimensional extra space, both analytical and numerical solutions for the metric are found, able to provide a zero or arbitrarily small Λ{sub 4}. A no-go theorem has also been proved, that maximally symmetric compact extra spaces are inconsistent with 4D Minkowski space in the framework of pure f ( R ) gravity.

  15. Geotechnical Aspects of Explosive Compaction

    Directory of Open Access Journals (Sweden)

    Mahdi Shakeran

    2016-01-01

    Full Text Available Explosive Compaction (EC is the ground modification technique whereby the energy released from setting off explosives in subsoil inducing artificial earthquake effects, which compact the soil layers. The efficiency of EC predominantly depends on the soil profile, grain size distribution, initial status, and the intensity of energy applied to the soil. In this paper, in order to investigate the geotechnical aspects, which play an important role in performance of EC, a database has been compiled from thirteen-field tests or construction sites around the world, where EC has been successfully applied for modifying soil. This research focuses on evaluation of grain size distribution and initial stability status of deposits besides changes of soil penetration resistance due to EC. Results indicated suitable EC performance for unstable and liquefiable deposits having particle sizes ranging from gravel to silty sand with less than 40% silt content and less than 10% clay content. However, EC is most effective in fine-to-medium sands with a fine content less than 5% and hydraulically deposited with initial relative density ranging from 30% to 60%. Moreover, it has been observed that EC can be an effective method to improve the density, stability, and resistance of the target soils.

  16. Forest Structure Characterization Using Jpl's UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Tomography

    Science.gov (United States)

    Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi

    2013-01-01

    This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.

  17. Estimation and Removing of Anisotropic Scattering for Multiaspect Polarimetric SAR Image

    Directory of Open Access Journals (Sweden)

    Li Yang

    2015-06-01

    Full Text Available Multiaspect Synthetic Aperture Radar (SAR can generate high resolution images and target scattering signatures in different azimuth angles from the coherent integration of all subaperture images. However, mixed anisotropic scatters limit the application of traditional imaging theory. Anisotropic scattering may introduce errors in polarimetric parameters by decreasing the reliability of terrain classification and detection of variability. Thus a method is proposed for estimating and removing anisotropic scattering in multiaspect polarimetric SAR images. The proposed algorithm is based on the maximum likelihood and likelihood-ratio tests for the two-class case, while considering the speckle effect, the mechanism of removing the anisotropic scattering, and the monotonicity of the Constant False Alarm Rate (CFAR detection function. We compare the polarimetric entropy before and after removing the anisotropic subapertures, and then validate the algorithm's potential in retrieving the target signature using a P-band quad-pol airborne SAR with circular trajectory.

  18. Fast polarimetric dehazing method for visibility enhancement in HSI colour space

    Science.gov (United States)

    Zhang, Wenfei; Liang, Jian; Ren, Liyong; Ju, Haijuan; Bai, Zhaofeng; Wu, Zhaoxin

    2017-09-01

    Image haze removal has attracted much attention in optics and computer vision fields in recent years due to its wide applications. In particular, the fast and real-time dehazing methods are of significance. In this paper, we propose a fast dehazing method in hue, saturation and intensity colour space based on the polarimetric imaging technique. We implement the polarimetric dehazing method in the intensity channel, and the colour distortion of the image is corrected using the white patch retinex method. This method not only reserves the detailed information restoration capacity, but also improves the efficiency of the polarimetric dehazing method. Comparison studies with state of the art methods demonstrate that the proposed method obtains equal or better quality results and moreover the implementation is much faster. The proposed method is promising in real-time image haze removal and video haze removal applications.

  19. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning

    Directory of Open Access Journals (Sweden)

    Sun Xun

    2016-12-01

    Full Text Available In this paper, we propose a supervised classification algorithm for Polarimetric Synthetic Aperture Radar (PolSAR images using multiple-feature fusion and ensemble learning. First, we extract different polarimetric features, including extended polarimetric feature space, Hoekman, Huynen, H/alpha/A, and fourcomponent scattering features of PolSAR images. Next, we randomly select two types of features each time from all feature sets to guarantee the reliability and diversity of later ensembles and use a support vector machine as the basic classifier for predicting classification results. Finally, we concatenate all prediction probabilities of basic classifiers as the final feature representation and employ the random forest method to obtain final classification results. Experimental results at the pixel and region levels show the effectiveness of the proposed algorithm.

  20. A high resolution polarimetric L-band SAR-design and first results

    DEFF Research Database (Denmark)

    Skou, Niels; Granholm, Johan; Woelders, Kim

    1995-01-01

    An L-band polarimetric SAR system has been developed as part of the dual frequency (L- and C-band), polarimetric, airborne EMISAR system. The SAR features a unique combination of fine resolution (2×2 m) and wide swath (9.3 km). The transmitter power is 6 kW. From a flight altitude of 41,000 ft...... conventional PIN diode switch matrix able to sustain the 6 kW peak power from the transmitter still exhibiting low loss (0.3 dB) and high isolation (more than 50 dB). Thus system cross talk (between polarizations) is dominated by antenna cross talk and is some -35 dB. Polarimetric imagery has been acquired...

  1. Contribution of polarimetric imaging for the characterization of fibrous surface properties at different scales

    Science.gov (United States)

    Tourlonias, Michel; Bigué, Laurent; Bueno, Marie-Ange

    2010-01-01

    The point in using polarimetric imaging for surface characterization is highlighted in this paper. A method for the evaluation of nonwoven surface properties at microscopic and macroscopic scales is described. This method is based on a polarimetric apparatus and various image processing operations are then performed depending on the studied scale. Polarimetric imaging applied to nonwovens, particularly degree of polarization imaging, highlights texture inhomogeneities. At both scales, image processing techniques were designed to analyze surface zones of different textures. At the macroscopic scale, a basic image processing was developed in order to detect the nonwoven manufacturing process defects. Moreover at the microscopic scale, i.e. at the fiber scale, image processing was adapted to evaluate fiber orientation within nonwovens, which is known to be an important information for mechanical behavior prediction.

  2. Detection of buried pipes by polarimetric borehole radar; Polarimetric borehole radar ni yoru maisetsukan no kenshutsu jikken

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Niitsuma, H. [Tohoku University, Sendai (Japan); Nakauchi, T. [Osaka Gas Co. Ltd., Osaka (Japan)

    1997-05-27

    If the borehole radar is utilized for detection of buried pipes, the underground radar measurement becomes possible even in the situation where the mesurement on the earth surface is difficult, for example, such a place as under the road where there is much traffic. However, since buried pipes are horizontally installed and the existing borehole radar can send/receive only vertical polarization, the measurement conducted comes to be poor in efficiency from a viewpoint of the polarization utilization. Therefore, by introducing the polarimetric borehole radar to the detection of buried pipes, a basic experiment was conducted for the effective detection of horizontal buried pipes. Proposing the use of a slot antenna which can send/receive horizontal polarization in borehole in addition to a dipole antenna which sends/receives vertical polarization, developed was a step frequency type continuous wave radar of a network analyzer basis. As a result of the experiment, it was confirmed that reflection from buried pipes is largely dependent on polarization. Especially, it was found that in the slot dipole cross polarization mesurement, reflection from buried pipes can be emphasized. 4 refs., 5 figs.

  3. Real Compact Surfaces

    Indian Academy of Sciences (India)

    The classification of real compact surfaces is a main result which is at the same time easy to understand and non- trivial, simple in formulation and rich in consequences. The aim of this article is to explain the theorem by means of many drawings. It is an invitation to a visual approach of mathematics. First Definitions and ...

  4. Hadrons in compact stars

    Indian Academy of Sciences (India)

    physics pp. 817–825. Hadrons in compact stars. DEBADES BANDYOPADHYAY. Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064, India ... There is a growing interplay between the physics of dense matter in relativistic .... Kaplan and Nelson [7] first showed in a chiral SU(3)L × SU(3)R model that.

  5. Complex Wishart distribution based analysis of polarimetric synthetic aperture radar data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Skriver, Henning; Conradsen, Knut

    2007-01-01

    Multi-look, polarimetric synthetic aperture radar (SAR) data are often worked with in the so-called covariance matrix representation. For each pixel this representation gives a 3x3 Hermitian, positive definite matrix which follows a complex Wishart distribution. Based on this distribution a test ...... covering agricultural fields near Foulum, Denmark, are used. Soon the Japanese ALOS, the German TerraSAR-X and the Canadian RADARSAT-2 will acquire space-borne, polarimetric data making analysis based on these methods important....

  6. Comparison between Multitemporal and Polarimetric SAR Data for Land Cover Classification

    DEFF Research Database (Denmark)

    Skriver, Henning

    2008-01-01

    The investigation focuses on the determination of the land cover type using SAR data, including single polarisation, dual polarisation and fully polarimetric data, at L-band. The analysed data set was acquired during the AgriSAR 2006 campaign by the airborne ESAR system over the Gormin agricultural...... site (Northeast Germany). The multitemporal acquisitions significantly improve the classification results for single and dual polarization configurations. The best results for the single and dual polarization configurations are better than for the polarimetric mode. Overall, the cross...

  7. Exploration of a Polarized Surface Bidirectional Reflectance Model Using the Ground-Based Multiangle SpectroPolarimetric Imager

    Directory of Open Access Journals (Sweden)

    David J. Diner

    2012-12-01

    Full Text Available Accurate characterization of surface reflection is essential for retrieval of aerosols using downward-looking remote sensors. In this paper, observations from the Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI are used to evaluate a surface polarized bidirectional reflectance distribution function (PBRDF model. GroundMSPI is an eight-band spectropolarimetric camera mounted on a rotating gimbal to acquire pushbroom imagery of outdoor landscapes. The camera uses a very accurate photoelastic-modulator-based polarimetric imaging technique to acquire Stokes vector measurements in three of the instrument’s bands (470, 660, and 865 nm. A description of the instrument is presented, and observations of selected targets within a scene acquired on 6 January 2010 are analyzed. Data collected during the course of the day as the Sun moved across the sky provided a range of illumination geometries that facilitated evaluation of the surface model, which is comprised of a volumetric reflection term represented by the modified Rahman-Pinty-Verstraete function plus a specular reflection term generated by a randomly oriented array of Fresnel-reflecting microfacets. While the model is fairly successful in predicting the polarized reflection from two grass targets in the scene, it does a poorer job for two manmade targets (a parking lot and a truck roof, possibly due to their greater degree of geometric organization. Several empirical adjustments to the model are explored and lead to improved fits to the data. For all targets, the data support the notion of spectral invariance in the angular shape of the unpolarized and polarized surface reflection. As noted by others, this behavior provides valuable constraints on the aerosol retrieval problem, and highlights the importance of multiangle observations.

  8. Meterwavelength Single-pulse Polarimetric Emission Survey. IV. The Period Dependence of Component Widths of Pulsars

    Science.gov (United States)

    Skrzypczak, Anna; Basu, Rahul; Mitra, Dipanjan; Melikidze, George I.; Maciesiak, Krzysztof; Koralewska, Olga; Filothodoros, Alexandros

    2018-02-01

    The core component width in normal pulsars, with periods (P) > 0.1 s, measured at the half-power point at 1 GHz, has a lower boundary line (LBL) that closely follows the P ‑0.5 scaling relation. This result is of fundamental importance for understanding the emission process and requires extended studies over a wider frequency range. In this paper we have carried out a detailed study of the profile component widths of 123 normal pulsars observed in the Meterwavelength Single-pulse Polarimetric Emission Survey at 333 and 618 MHz. The components in the pulse profile were separated into core and conal classes. We found that at both frequencies, the core, as well as the conal component widths versus period, had a LBL that followed the P ‑0.5 relation with a similar lower boundary. The radio emission in normal pulsars has been observationally shown to arise from a narrow range of heights around a few hundred kilometers above the stellar surface. In the past the P ‑0.5 relation has been considered as evidence for emission arising from last open dipolar magnetic field lines. We show that the P ‑0.5 dependence only holds if the trailing and leading half-power points of the component are associated with the last open field line. In such a scenario we do not find any physical motivation that can explain the P ‑0.5 dependence for both core and conal components as evidence for dipolar geometry in normal pulsars. We believe the period dependence is a result of a currently unexplained physical phenomenon.

  9. Microphysical Structures of Hurricane Irma Observed by Polarimetric Radar

    Science.gov (United States)

    Didlake, A. C.; Kumjian, M. R.

    2017-12-01

    This study examines dual-polarization radar observations of Hurricane Irma as its center passed near the WSR-88D radar in Puerto Rico, capturing needed microphysical information of a mature tropical cyclone. Twenty hours of observations continuously sampled the inner core precipitation features. These data were analyzed by annuli and azimuth, providing a bulk characterization of the primary eyewall, secondary eyewall, and rainbands as they varied around the storm. Polarimetric radar variables displayed distinct signatures of convective and stratiform precipitation in the primary eyewall and rainbands that were organized in a manner consistent with the expected kinematic asymmetry of a storm in weak environmental wind shear but with moderate low-level storm-relative flow. In the front quadrants of the primary eyewall, vertical profiles of differential reflectivity (ZDR) exhibit increasing values with decreasing height consistent with convective precipitation processes. In particular, the front-right quadrant exhibits a signature in reflectivity (ZH) and ZDR indicating larger, sparser drops, which is consistent with a stronger updraft present in this quadrant. In the rear quadrants, a sharply peaked ZDR maximum occurs within the melting layer, which is attributed of stratiform processes. In the rainbands, the convective to stratiform transition can be seen traveling from the front-right to the front-left quadrant. The front-right quadrant exhibits lower co-polar correlation coefficient (ρHV) values in the 3-8 km altitude layer, suggesting larger vertical spreading of various hydrometeors that occurs in convective vertical motions. The front-left quadrant exhibits larger ρHV values, suggesting less diversity of hydrometeor shapes, consistent with stratiform processes. The secondary eyewall did not exhibit a clear signature of processes preferred in a specific quadrant, and a temporal analysis of the secondary eyewall revealed a complex evolution of its structure

  10. OIL DETECTION IN A COASTAL MARSH WITH POLARIMETRIC SAR

    Directory of Open Access Journals (Sweden)

    E. Ramsey III

    2012-09-01

    Full Text Available The NASA UAVSAR was deployed June 2010 to support Deep Water Horizon oil spill response activities specifically, oil detection and characterization, oil extent mapping in wetlands, coastal resource impact detection, and ecosystem recovery. The UAVSAR platform demonstrated enhanced capability to act rapidly and provide targeted mapping response. Our research focused on the effectiveness of high spatial resolution and fully polarimetric L-band Synthetic Aperture Radar (PolSAR for mapping oil in wetlands, specifically within Barataria Bay in eastern coastal Louisiana. Barataria Bay contained a numerous site observations confirming spatially extensive shoreline oil impacts, multiple oil spill UAVSAR collections, and a near anniversary 2009 collection. PolSAR oil detection relied on decomposition and subsequent classifications of the single look complex (SLC calibrated radar cross sections representing the complex elements of the scattering matrix. Initial analyses results found that shoreline marsh structural damage as well as oil on marsh plants and sediments without canopy structural damage were exhibited as anomalous features on post-spill SLC scenes but were not evident on the pre-spill SLC scene collected in 2009. Pre-spill and post-spill Freeman-Durden (FD and Cloude-Pottier (CP decompositions and the Wishart classifications seeded with the FD and CP classes (Wishart-FD also highlighted these nearshore features as a change in dominate scatter from pre-spill to post-spill. SLC analyses also indicated penetration of oil ladened waters into interior marshes well past the immediate shorelines; however, these post-spill SLC analyses results could not be validated due to the lack of observational data and possible flooding in the pre-spill SLC scene.

  11. Soft b-compact spaces

    Directory of Open Access Journals (Sweden)

    Alkan Özkan

    2016-04-01

    Full Text Available In this paper, a new class of generalized soft open sets in soft generalized topological spaces as a generalization of compact spaces, called soft b-compact spaces, is introduced and studied. A soft generalized topological space is soft b-compact if every soft b-open soft cover of (F,E contains a finite soft subcover. We characterize soft b-compact space and study some of their basic properties.

  12. Weakly compact operators and interpolation

    OpenAIRE

    Maligranda, Lech

    1992-01-01

    The class of weakly compact operators is, as well as the class of compact operators, a fundamental operator ideal. They were investigated strongly in the last twenty years. In this survey, we have collected and ordered some of this (partly very new) knowledge. We have also included some comments, remarks and examples. The class of weakly compact operators is, as well as the class of compact operators, a fundamental operator ideal. They were investigated strongly in the last twenty years. I...

  13. Dual-Polarimetric Radar-Based Tornado Debris Signatures and Paths Associated with Tornadoes Over Northern Alabama During the Historic Outbreak of 27 April 2011

    Science.gov (United States)

    Carey, Lawrence D.; Schultz, Christopher J.; Schultz, Elise V.; Petersen, Walter A.; Gatlin, Patrick N.; Knupp, Kevin R.; Molthan, Andrew L.; Jedloved, Gary J.; Carcione, Brian C.; Darden, Christopher B.; hide

    2012-01-01

    A historic tornado and severe weather outbreak devastated much of the southeastern United States between 25 and 28 April 2011. On 27 April 2011, northern Alabama was particularly hard hit by 40 tornadoes, including 6 that reached EF-4 to EF-5 on the Enhanced Fujita damage scale. In northern Alabama alone, there were approximately 100 fatalities and hundreds of people who were injured or lost their homes during the havoc caused by these violent tornadic storms. Many of these tornadoes occurred within range of the University of Alabama in Huntsville (UAHuntsville) Advanced Radar for Meteorological and Operational Research (ARMOR, C-band dual-polarimetric). A unique capability of dual-polarimetric radar is the near-real time identification of lofted debris associated with ongoing tornadoes. The focus of this paper is to analyze the dual-polarimetric radar-inferred tornado debris signatures in 6 tornadoes in North Alabama on April 27, 2011. Several of these debris signatures were disseminated in real-time to the NWS Huntsville and local media to confirm storm spotter reports, confidence to enhance wording within warnings, and accurately pinpoint the locations of tornadoes for residents downstream of the storm. Also, the debris signature locations were used in post-event storm surveys to help locate areas of damage in regions where damage went unreported, or to help separate tornado tracks that were in close proximity to each other. Furthermore, the relative locations of the debris and damage paths for long track EF-4 and EF-5 tornadoes will be ascertained by careful comparison of the ARMOR analysis with NASA MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite imagery of the tornado damage scenes and the National Weather Service tornado damage surveys.

  14. Analysis of laboratory compaction methods of roller compacted concrete

    Science.gov (United States)

    Trtík, Tomáš; Chylík, Roman; Bílý, Petr; Fládr, Josef

    2017-09-01

    Roller-Compacted Concrete (RCC) is an ordinary concrete poured and compacted with machines typically used for laying of asphalt road layers. One of the problems connected with this technology is preparation of representative samples in the laboratory. The aim of this work was to analyse two methods of preparation of RCC laboratory samples with bulk density as the comparative parameter. The first method used dynamic compaction by pneumatic hammer. The second method of compaction had a static character. The specimens were loaded by precisely defined force in laboratory loading machine to create the same conditions as during static rolling (in the Czech Republic, only static rolling is commonly used). Bulk densities obtained by the two compaction methods were compared with core drills extracted from real RCC structure. The results have shown that the samples produced by pneumatic hammer tend to overestimate the bulk density of the material. For both compaction methods, immediate bearing index test was performed to verify the quality of compaction. A fundamental difference between static and dynamic compaction was identified. In static compaction, initial resistance to penetration of the mandrel was higher, after exceeding certain limit the resistance was constant. This means that the samples were well compacted just on the surface. Specimens made by pneumatic hammer actively resisted throughout the test, the whole volume was uniformly compacted.

  15. Compact Spreader Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  16. Compact spreader schemes

    Energy Technology Data Exchange (ETDEWEB)

    Placidi, M.; Jung, J.-Y.; Ratti, A.; Sun, C., E-mail: csun@lbl.gov

    2014-12-21

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  17. Compact stellarators as reactors

    International Nuclear Information System (INIS)

    Lyon, J.F.; Valanju, P.; Zarnstorff, M.C.; Hirshman, S.; Spong, D.A.; Strickler, D.; Williamson, D.E.; Ware, A.

    2001-01-01

    Two types of compact stellarators are examined as reactors: two- and three-field-period (M=2 and 3) quasi-axisymmetric devices with volume-average =4-5% and M=2 and 3 quasi-poloidal devices with =10-15%. These low-aspect-ratio stellarator-tokamak hybrids differ from conventional stellarators in their use of the plasma-generated bootstrap current to supplement the poloidal field from external coils. Using the ARIES-AT model with B max =12T on the coils gives Compact Stellarator reactors with R=7.3-8.2m, a factor of 2-3 smaller R than other stellarator reactors for the same assumptions, and neutron wall loadings up to 3.7MWm -2 . (author)

  18. Compact fusion reactors

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  19. Compact SAW aerosol generator

    OpenAIRE

    Winkler, A.; Harazim, S.; Collins, D.J.; Br?nig, R.; Schmidt, H.; Menzel, S.B.

    2017-01-01

    In this work, we discuss and demonstrate the principle features of surface acoustic wave (SAW) aerosol generation, based on the properties of the fluid supply, the acoustic wave field and the acoustowetting phenomena. Furthermore, we demonstrate a compact SAW-based aerosol generator amenable to mass production fabricated using simple techniques including photolithography, computerized numerical control (CNC) milling and printed circuit board (PCB) manufacturing. Using this device, we present ...

  20. Sensitivity of C-Band Polarimetric Radar-Based Drop Size Distribution Measurements to Maximum Diameter Assumptions

    Science.gov (United States)

    Carey, Lawrence D.; Petersen, Walter A.

    2011-01-01

    The estimation of rain drop size distribution (DSD) parameters from polarimetric radar observations is accomplished by first establishing a relationship between differential reflectivity (Z(sub dr)) and the central tendency of the rain DSD such as the median volume diameter (D0). Since Z(sub dr) does not provide a direct measurement of DSD central tendency, the relationship is typically derived empirically from rain drop and radar scattering models (e.g., D0 = F[Z (sub dr)] ). Past studies have explored the general sensitivity of these models to temperature, radar wavelength, the drop shape vs. size relation, and DSD variability. Much progress has been made in recent years in measuring the drop shape and DSD variability using surface-based disdrometers, such as the 2D Video disdrometer (2DVD), and documenting their impact on polarimetric radar techniques. In addition to measuring drop shape, another advantage of the 2DVD over earlier impact type disdrometers is its ability to resolve drop diameters in excess of 5 mm. Despite this improvement, the sampling limitations of a disdrometer, including the 2DVD, make it very difficult to adequately measure the maximum drop diameter (D(sub max)) present in a typical radar resolution volume. As a result, D(sub max) must still be assumed in the drop and radar models from which D0 = F[Z(sub dr)] is derived. Since scattering resonance at C-band wavelengths begins to occur in drop diameters larger than about 5 mm, modeled C-band radar parameters, particularly Z(sub dr), can be sensitive to D(sub max) assumptions. In past C-band radar studies, a variety of D(sub max) assumptions have been made, including the actual disdrometer estimate of D(sub max) during a typical sampling period (e.g., 1-3 minutes), D(sub max) = C (where C is constant at values from 5 to 8 mm), and D(sub max) = M*D0 (where the constant multiple, M, is fixed at values ranging from 2.5 to 3.5). The overall objective of this NASA Global Precipitation Measurement

  1. Polarimetric borehole radar measurement near Nojima fault and its application to subsurface crack characterization; Polarimetric borehole radar ni yoru Nojima danso shuhen no chika kiretsu keisoku jikken

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Taniguchi, Y.; Miwa, T.; Niitsuma, H. [Tohoku University, Sendai (Japan); Ikeda, R. [National Research Institute for Disaster Prevention, Tsukuba (Japan); Makino, K. [Geophysical Surveying and Consulting Co. Ltd., Tokyo (Japan)

    1997-05-27

    Practical application of subsurface crack characterization by the borehole radar measurement to which the radar polarimetric method was introduced was attempted to measuring objects for which the borehole radar has not been much used, for example, the inside of low loss rock mass or fracture zone where cracks tightly exist. A system was trially manufactured which makes the radar polarimetric measurement possible in the borehole at a 1000m depth and with a about 10cm diameter, and a field experiment was conducted for realizing the subsurface crack characterization near the Nojima fault. For the measuring experiment by the polarimetric borehole radar, used were Iwaya borehole and Hirabayashi borehole drilled in the north of Awaji-shima, Hyogo-ken. In a comparison of both polarization systems of Hirabayashi borehole, reflected waves at depths of 1038m and 1047m are relatively stronger in both polarization systems than those with the same polarization form and at different depths, whereas reflected waves around a 1017m depth are strong only as to the parallel polarization system. Characteristics of the polarization in this experiment indirectly reflect crack structures. 6 refs., 6 figs., 1 tab.

  2. A method for manufacturing compacts

    International Nuclear Information System (INIS)

    Baschwitz, Robert; Raymond, Jean.

    1974-01-01

    Description is given of a method for preparing compacts with high matrix density. The method is characterized by the steps of forming the mixture by simultaneously pouring the components directly into a compacting matrix comprising coated particles and a graphite binder mixture in the granular form, then compressing the compact after having brought the material to be compacted to a temperature at which the binder is in the fluid state. The method can be applied to the manufacture of compacts for high temperature nuclear reactors [fr

  3. Empirical Soil Moisture Estimation with Spaceborne L-band Polarimetric Radars: Aquarius, SMAP, and PALSAR-2

    Science.gov (United States)

    Burgin, M. S.; van Zyl, J. J.

    2017-12-01

    Traditionally, substantial ancillary data is needed to parametrize complex electromagnetic models to estimate soil moisture from polarimetric radar data. The Soil Moisture Active Passive (SMAP) baseline radar soil moisture retrieval algorithm uses a data cube approach, where a cube of radar backscatter values is calculated using sophisticated models. In this work, we utilize the empirical approach by Kim and van Zyl (2009) which is an optional SMAP radar soil moisture retrieval algorithm; it expresses radar backscatter of a vegetated scene as a linear function of soil moisture, hence eliminating the need for ancillary data. We use 2.5 years of L-band Aquarius radar and radiometer derived soil moisture data to determine two coefficients of a linear model function on a global scale. These coefficients are used to estimate soil moisture with 2.5 months of L-band SMAP and L-band PALSAR-2 data. The estimated soil moisture is compared with the SMAP Level 2 radiometer-only soil moisture product; the global unbiased RMSE of the SMAP derived soil moisture corresponds to 0.06-0.07 cm3/cm3. In this study, we leverage the three diverse L-band radar data sets to investigate the impact of pixel size and pixel heterogeneity on soil moisture estimation performance. Pixel sizes range from 100 km for Aquarius, over 3, 9, 36 km for SMAP, to 10m for PALSAR-2. Furthermore, we observe seasonal variation in the radar sensitivity to soil moisture which allows the identification and quantification of seasonally changing vegetation. Utilizing this information, we further improve the estimation performance. The research described in this paper is supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2017. All rights reserved.

  4. Fiber-based polarimetric stress sensor for measuring the Young's modulus of biomaterials

    Science.gov (United States)

    Harrison, Mark C.; Armani, Andrea M.

    2015-03-01

    Polarimetric optical fiber-based stress and pressure sensors have proven to be a robust tool for measuring and detecting changes in the Young's modulus (E) of materials in response to external stimuli, including the real-time monitoring of the structural integrity of bridges and buildings. These sensors typically work by using a pair of polarizers before and after the sensing region of the fiber, and often require precise alignment to achieve high sensitivity. The ability to perform similar measurements in natural and in engineered biomaterials could provide significant insights and enable research advancement and preventative healthcare. However, in order for this approach to be successful, it is necessary to reduce the complexity of the system by removing free-space components and the need for alignment. As the first step in this path, we have developed a new route for performing these measurements. By generalizing and expanding established theoretical analyses for these types of sensors, we have developed a predictive theoretical model. Additionally, by replacing the conventional free space components and polarization filters with a polarimeter, we have constructed a sensor system with higher sensitivity and which is semi-portable. In initial experiments, a series of polydimethylsiloxane (PDMS) samples with several base:curing agent ratios ranging from 5:1 up to 30:1 were prepared to simulate tissues with different stiffnesses. By simultaneously producing stress-strain curves using a load frame and monitoring the polarization change of light traveling through the samples, we verified the accuracy of our theoretical model.

  5. Diffusion through statically compacted clay

    International Nuclear Information System (INIS)

    Ho, C.L.; Shebl, M.A.A.

    1994-01-01

    This paper presents experimental work on the effect of compaction on contaminant flow through clay liners. The experimental program included evaluation of soil properties, compaction, permeability and solute diffusion. A permeameter was built of non reactive materials to test samples compacted at different water contents and compactive efforts. The flow of a permeating solute, LiCl, was monitored. Effluent samples were collected for solute concentration measurements. The concentrations were measured by performing atomic adsorption tests. The analyzed results showed different diffusion characteristics when compaction conditions changed. At each compactive effort, permeability decreased as molding water content increased. Consequently, transit time (measured at relative concentration 50%) increased and diffusivity decreased. As compactive effort increased for soils compacted dry of optimum, permeability and diffusion decreased. On the other hand, as compactive effort increased for soils compacted wet of optimum, permeability and diffusivity increased. Tortuosity factor was indirectly measured from the diffusion and retardation rate. Tortuosity factor also decreased as placement water content was increased from dry of optimum to wet of optimum. Then decreases were more pronounced for low compactive effort tests. 27 refs., 7 figs., 5 tabs

  6. Discrimination of Oil Slicks and Lookalikes in Polarimetric SAR Images Using CNN.

    Science.gov (United States)

    Guo, Hao; Wu, Danni; An, Jubai

    2017-08-09

    Oil slicks and lookalikes (e.g., plant oil and oil emulsion) all appear as dark areas in polarimetric Synthetic Aperture Radar (SAR) images and are highly heterogeneous, so it is very difficult to use a single feature that can allow classification of dark objects in polarimetric SAR images as oil slicks or lookalikes. We established multi-feature fusion to support the discrimination of oil slicks and lookalikes. In the paper, simple discrimination analysis is used to rationalize a preferred features subset. The features analyzed include entropy, alpha, and Single-bounce Eigenvalue Relative Difference (SERD) in the C-band polarimetric mode. We also propose a novel SAR image discrimination method for oil slicks and lookalikes based on Convolutional Neural Network (CNN). The regions of interest are selected as the training and testing samples for CNN on the three kinds of polarimetric feature images. The proposed method is applied to a training data set of 5400 samples, including 1800 crude oil, 1800 plant oil, and 1800 oil emulsion samples. In the end, the effectiveness of the method is demonstrated through the analysis of some experimental results. The classification accuracy obtained using 900 samples of test data is 91.33%. It is here observed that the proposed method not only can accurately identify the dark spots on SAR images but also verify the ability of the proposed algorithm to classify unstructured features.

  7. Wind direction over the ocean determined by an airborne, imaging, polarimetric radiometer system

    DEFF Research Database (Denmark)

    Laursen, Brian; Skou, Niels

    2001-01-01

    The speed and direction of winds over the ocean can be determined by polarimetric radiometers. This has been established by theoretical work and demonstrated experimentally using airborne radiometers carrying out circle flights and thus measuring the full 360° azimuthal response from the sea surf...

  8. Detection and Monitoring of Inundation with Polarimetric L-Band SAR

    Science.gov (United States)

    Chapman, B. D.; Celi, J. E.; Hamilton, S. K.; McDonald, K. C.

    2014-12-01

    It has been known for decades that at wavelengths L-band or longer, SAR is a sensitive indicator of inundation underneath forest canopies. The high resolution detection of below-canopy inundation is difficult to accomplish at regional to continental scales using other types of remote sensing sensors, making it a compelling SAR measurement especially useful for studying wetland inundation dynamics, particularly in difficult-to-reach access, canopy-covered tropical forest environments. Most results have utilized spaceborne SAR observations with less than fully polarimetric data. Since one of the objectives of the NISAR mission is to characterize and understand the fundamental process that drives changes to ecosystems such as wetland inundated areas, we will discuss the sensitivity of L-band SAR to inundation. We will illustrate the detection of inundation using fully polarimetric L-band SAR data from UAVSAR, NASA's airborne SAR, over a tropical forest region in Ecuador and Peru. At the same time as the data collection, measurements were made on the ground to characterize vegetation and inundation characteristics. The field data were used to validate the results of classifying the vanZyl decomposition of the polarimetric data. We compare this classification with that possible with a reduced subset of the polarimetric observations.

  9. Polarimetric Determination of Starch in Raw Materials and Discharged Waste from Beer Production

    Directory of Open Access Journals (Sweden)

    Anca Farcas

    2013-11-01

    Full Text Available Brewer’s spent grain (BGS is a by-product of thebrewing process, consisting of the solid fraction of barley malt remainingafter separation of worth. In this research, raw materials and discharged waste from beer production were evaluated on the basis of starch content, using Ewers polarimetric method.

  10. The Solar Orbiter Mission and its Polarimetric and Helioseismic Imager (SO/PHI)

    Energy Technology Data Exchange (ETDEWEB)

    Gandorfer, Achim; Solanki, Sami K; Woch, Joachim [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Strasse 2, D-37191 Katlenburg-Lindau (Germany); Pillet, Valentin MartInez [Instituto de Astrofisica de Canarias, C/ VIa Lactea, s/n, E38205 - La Laguna (Tenerife) (Spain); Herrero, Alberto Alvarez [Instituto Nacional de Tecnica Aeroespacial, E-28850, Torrejon de Ardoz, Madrid (Spain); Appourchaux, Thierry, E-mail: gandorfer@mps.mpg.de [Institut d' Astrophysique Spatiale, CNRS-Universite Paris XI UMR8617, 91405 Orsay Cedex (France)

    2011-01-01

    We briefly outline the scientific and instrumental aspects of ESA's Solar Orbiter mission. Special emphasis is given to the Polarimetric and Helioseismic Imager, the instrument with the highest relevance for helioseismology applications, which will observe gas motions and the vector magnetic field in the photosphere at high spatial and temporal resolution.

  11. Applications of Polarimetric Radar to the Hydrometeorology of Urban Floods in St. Louis

    Science.gov (United States)

    Chaney, M. M.; Smith, J. A.; Baeck, M. L.

    2017-12-01

    Predicting and responding to flash flooding requires accurate spatial and temporal representation of rainfall rates. The polarimetric upgrade of all US radars has led to optimism about more accurate rainfall rate estimation from the NEXRAD network of WSR-88D radars in the US. Previous work has proposed different algorithms to do so, but significant uncertainties remain, especially for extreme short-term rainfall rates that control flash floods in urban settings. We will examine the relationship between radar rainfall estimates and gage rainfall rates for a catalog of 30 storms in St. Louis during the period of polarimetric radar measurements, 2012-2016. The storms are selected to provide a large sample of extreme rainfall measurements at the 15-minute to 3-hour time scale. A network of 100 rain gages and a lack of orographic or coastal effects make St. Louis an interesting location to study these relationships. A better understanding of the relationships between polarimetric radar measurements and gage rainfall rates will aid in refining polarimetric radar rainfall algorithms, in turn helping hydrometeorologists predict flash floods and other hazards associated with severe rainfall. Given the fact that St. Louis contains some of the flashiest watersheds in the United States (Smith and Smith, 2015), it is an especially important urban area in which to have accurate, real-time rainfall data. Smith, Brianne K, and James A Smith. "The Flashiest Watersheds in the Contiguous United States." American Meteorological Society (2015): 2365-2381. Web.

  12. Maritime target and sea clutter measurements with a coherent Doppler polarimetric surveillance radar

    NARCIS (Netherlands)

    Smith, A.J.E.; Gelsema, S.J.; Kester, L.J.H.M.; Melief, H.W.; Premel Cabic, G.; Theil, A.; Woudenberg, E.

    2002-01-01

    Doppler polarimetry in a surveillance radar for the maritime surface picture is considered. This radar must be able to detect low-RCS targets in littoral environments. Measurements on such targets have been conducted with a coherent polarimetric measurement radar in March 2001 and preliminary

  13. Forest mapping using bi-aspect polarimetric SAR data in southwest China

    Science.gov (United States)

    Zhang, Fengli; Xu, Maosong; Xia, Zhongsheng; Wan, Zi; Li, Kun; Li, Xiaofang

    2009-10-01

    Synthetic aperture radar (SAR) provides a powerful tool for forestry inventory because of its all-weather and all-day capabilities. In this paper forest mapping method using bi-aspect polarimetric SAR data acquired from ascending and descending path has been studied. Zhazuo forest farm in Guizhou province was selected as test site and an 8-temporal field experiment was designed to obtain bio-physical parameters and spatial structure parameters of the 12 sample plots. Then the Michigan Microwave Canopy Scattering model (MIMICS) was employed to analyze the seasonal variation of these 4 types of managed forests. Using polarimetric Radarsat 2 data, scattering mechanisms of each forest type were determined and polarimetric variables were extracted and analyzed for forest discrimination. Considering the inherent geometric distortion of SAR imaging in hilly areas, a geometric correction strategy using bi-aspect SAR images and high resolution DEM was proposed. Then support vector machines method was adopted for classification of the whole test area. Experiments show that the bi-aspect geometric strategy is useful for hilly areas especially for shadow elimination in SAR image, and polarimetric SAR data is helpful to forest mapping.

  14. Airborn Ku-band polarimetric radar remote sensing of terrestrial snow cover

    Science.gov (United States)

    Simon H. Yueh; Steve J. Dinardo; Ahmed Akgiray; Richard West; Donald W. Cline; Kelly Elder

    2009-01-01

    Characteristics of the Ku-band polarimetric scatterometer (POLSCAT) data acquired from five sets of aircraft flights in the winter months of 2006-2008 for the second Cold Land Processes Experiment (CLPX-II) in Colorado are described in this paper. The data showed the response of the Ku-band radar echoes to snowpack changes for various types of background vegetation in...

  15. Feature level fusion of polarimetric infrared and GPR data for landmine detection

    NARCIS (Netherlands)

    Cremer, F.; Jong, W. de; Schutte, K.; Yarovoy, A.G.; Kovalenko, V.; Bloemenkamp, R.F.

    2003-01-01

    Feature-level sensor fusion is the process where specific information (i.e. features) from objects detected by different sensors are combined and classified. This paper focuses on the feature-level fusion procedure for a sensor combination consisting of a polarimetric infrared (IR) imaging sensor

  16. Design of a Small, Low Cost, P-Band Airborne Polarimetric Synthetic Aperture Radar

    NARCIS (Netherlands)

    Figueras i Ventura, J.; Hoogeboom, P.

    2004-01-01

    A preliminary study of the design of a small, low cost, P-band airborne, polarimetric Synthetic Aperture Radar desired by the Wageningen University and the Borneo Orangutan Survival Foundation (BOS) to carry out forest biomass monitoring in Indonesia is presented. The requirements of the application

  17. Unsupervised polarimetric synthetic aperture radar image classification based on sketch map and adaptive Markov random field

    Science.gov (United States)

    Shi, Junfei; Li, Lingling; Liu, Fang; Jiao, Licheng; Liu, Hongying; Yang, Shuyuan; Liu, Lu; Hao, Hongxia

    2016-04-01

    Markov random field (MRF) model is an effective tool for polarimetric synthetic aperture radar (PolSAR) image classification. However, due to the lack of suitable contextual information in conventional MRF methods, there is usually a contradiction between edge preservation and region homogeneity in the classification result. To preserve edge details and obtain homogeneous regions simultaneously, an adaptive MRF framework is proposed based on a polarimetric sketch map. The polarimetric sketch map can provide the edge positions and edge directions in detail, which can guide the selection of neighborhood structures. Specifically, the polarimetric sketch map is extracted to partition a PolSAR image into structural and nonstructural parts, and then adaptive neighborhoods are learned for two parts. For structural areas, geometric weighted neighborhood structures are constructed to preserve image details. For nonstructural areas, the maximum homogeneous regions are obtained to improve the region homogeneity. Experiments are taken on both the simulated and real PolSAR data, and the experimental results illustrate that the proposed method can obtain better performance on both region homogeneity and edge preservation than the state-of-the-art methods.

  18. Polarimetric SAR Target Scattering Interpretation in Rotation Domain: Theory and Application

    Directory of Open Access Journals (Sweden)

    Chen Siwei

    2017-10-01

    Full Text Available Backscattering of radar targets is sensitive to the relative geometry between target orientations and the radar line of sight. This scattering diversity makes imaging radar represented by polarimetric Synthetic Aperture Radar (SAR information processing and applications very difficult. This situation has become one of the main bottlenecks in the interpretation of the target scattering mechanism and quantitative applications. In this work, we review and introduce a new interpretation of the target scattering mechanism in the rotation domain along the radar line of sight. This concept includes the recently established uniform polarimetric matrix rotation theory and polarimetric coherence pattern visualization and interpretation in the rotation domain. The core idea of target scattering interpretation in the rotation domain is to extend the amount of target information acquired at a given geometry to the rotation domain, which then provides fundamentals for the deep mining and utilization of target scattering information. This work mainly focuses on the investigation of derived new polarimetric feature sets and application demonstrations. Comparison study results validate the promising potential for the application of the established interpretation framework in the rotation domain with respect to target discrimination and classification.

  19. Polarimetric Determination of Starch in Raw Materials and Discharged Waste from Beer Production

    OpenAIRE

    Anca Farcas; Maria Tofana; Sonia Socaci; Stancuta Scrob; Liana Salanta; Doinita Bors

    2013-01-01

    Brewer’s spent grain (BGS) is a by-product of thebrewing process, consisting of the solid fraction of barley malt remainingafter separation of worth. In this research, raw materials and discharged waste from beer production were evaluated on the basis of starch content, using Ewers polarimetric method.

  20. Probe-Fed Stacked Microstrip Patch Antenna for High-Resolution Polarimetric C-Band SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Skou, Niels

    2000-01-01

    The paper describes a C-band, dual-linear polarization wideband antenna for use in the next-generation of the Danish high-resolution, airborne polarimetric synthetic aperture radar (SAR) system, EMISAR. The design and performance of a probe-fed, stacked microstrip patch element, operating from 4...

  1. The PHARUS Project; Real Time Digital Processing of Airborne Polarimetric Radar Signals

    NARCIS (Netherlands)

    Pouwels, H.; Hoogeboom, P.; Koomen, P.J.; Snoeij, P.

    1992-01-01

    The Dutch PHARUS project aims for the developrlenÈ of a polarimetric C-band aircraft SAR, to be finalized in 1994. The PHARUS systen consists of three subsystens: the radar, the subsystem for the onboard data processing and recording and the ground-based subsystem for SAR processing. PHARUS is a

  2. The Design and Development of a Polarimetric Phased Array Airborne SAR Sensor

    NARCIS (Netherlands)

    Snoeij, P.; Pouwels, H.; Koomen, P.J.; Vermeulen, B.C.B.; Hoogeboom, P.

    1996-01-01

    A polarimetric C-band airborne SAR has been developed in the Netherlands. The system makes use of a phased array antenna with solid state amplifiers. The project consists of two phases, a definition phase and a realization phase. The definition phase consisted of the actual realization of a SAR

  3. Dependence of compressive strength of green compacts on pressure, density and contact area of powder particles

    International Nuclear Information System (INIS)

    Salam, A.; Akram, M.; Shahid, K.A.; Javed, M.; Zaidi, S.M.

    1994-08-01

    The relationship between green compressive strength and compacting pressure as well as green density has been investigated for uniaxially pressed aluminium powder compacts in the range 0 - 520 MPa. Two linear relationships occurred between compacting pressure and green compressive strength which corresponded to powder compaction stages II and III respectively, increase in strength being large during stage II and quite small in stage III with increasing pressure. On the basis of both, the experimental results and a previous model on cold compaction of powder particles, relationships between green compressive strength and green density and interparticle contact area of the compacts has been established. (author) 9 figs

  4. A Compact UWB Diversity Antenna

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2014-01-01

    Full Text Available A compact printed ultrawideband (UWB diversity antenna with a size of 30 mm × 36 mm operating at a frequency range of 3.1–10.6 GHz is proposed. The antenna is composed of two semielliptical monopoles fed by two microstrip lines. Two semicircular slots, two rectangular slots, and one stub are introduced in the ground plane to adjust the impedance bandwidth of the antenna and improve the isolation between two feeding ports. The simulated and measured results show that impedance bandwidth of the proposed antenna can cover the whole UWB band with a good isolation of < −15 dB. The radiation patterns, peak antenna gain, and envelope correlation coefficient are also measured and discussed. The measured results show that the proposed antenna can be a good candidate for some portable MIMO/diversity UWB applications.

  5. Optimal shapes of compact strings

    International Nuclear Information System (INIS)

    Maritan, A.; Micheletti, C.; Trovato, A.; Banavar, J.R.

    2000-07-01

    Optimal geometrical arrangements, such as the stacking of atoms, are of relevance in diverse disciplines. A classic problem is the determination of the optimal arrangement of spheres in three dimensions in order to achieve the highest packing fraction; only recently has it been proved that the answer for infinite systems is a face-centred-cubic lattice. This simply stated problem has had a profound impact in many areas, ranging from the crystallization and melting of atomic systems, to optimal packing of objects and subdivision of space. Here we study an analogous problem-that of determining the optimal shapes of closely packed compact strings. This problem is a mathematical idealization of situations commonly encountered in biology, chemistry and physics, involving the optimal structure of folded polymeric chains. We find that, in cases where boundary effects are not dominant, helices with a particular pitch-radius ratio are selected. Interestingly, the same geometry is observed in helices in naturally-occurring proteins. (author)

  6. Investigation of Polarimetric and Electrical Characteristics of Natural and Triggered Lightning Strikes

    Science.gov (United States)

    Hyland, P. T.; Biggerstaff, M. I.; Uman, M. A.; Jordan, D. M.; Hill, J. D.; Pilkey, J. T.; Ngin, T.; Blakeslee, R. J.; Krehbiel, P. R.; Rison, W.; Winn, W. P.; Eack, K.; Trueblood, J.; Edens, H. E.

    2013-12-01

    For the past three summers, the University of Oklahoma has deployed three mobile, polarimetric radars to the International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, Florida and Langmuir Laboratory near Socorro, New Mexico for the purpose of investigating the relationship between cloud structure and the propagation of triggered and natural lightning channels. This presentation will highlight observations from select natural and triggered events at these two facilities. During the summer of 2012, University of Oklahoma radar operators made a launch recommendation to the ICLRT during the passage of Tropical Storm Debby over northeast Florida that resulted in a successful triggered flash with 11 return strokes. The trigger was attempted as precipitation streamers within the stratiform rainbands of Tropical Storm Debby approached the launch site. According to the National Lightning Detection Network (NLDN), there were no reported natural cloud-to-ground (CG) flashes within 60 km of the ICLRT 20 hours before and eight hours after the triggered flash. The recommendation was made based on previous analyses of the storm structure of trigger attempts from the ICLRT that indicated the coincidence of several successful triggers with descending regions of enhanced radar reflectivity, or descending precipitation packets (DePPs). Polarimetric data from the frequency-agile Rapid-scanning X-band Polarimetric (RaXPol) radar as well as data from the lightning mapping array (LMA) and electric field meter (EFM) networks from the ICLRT for this event will be presented. Past analyses also revealed ice alignment signatures in differential phase and specific differential phase as strong electric fields near the top of electrified clouds cause small ice particles to become vertically aligned. These signatures are especially noticeable for circularly polarized radars. Polarimetric data from the Shared Mobile Atmospheric Research & Teaching (SMART) radar and Ra

  7. Airborne polarimetric Doppler weather radar: trade-offs between various engineering specifications

    Science.gov (United States)

    Vivekanandan, Jothiram; Loew, Eric

    2018-01-01

    NCAR EOL is investigating potential configurations for the next-generation airborne phased array radar (APAR) that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. The APAR will operate at C band. The APAR will use the electronic scanning (e-scan) feature to acquire the optimal number of independent samples for recording research-quality measurements. Since the airborne radar has only a limited time for collecting measurements over a specified region (moving aircraft platform ˜ 100 m s-1), beam multiplexing will significantly enhance its ability to collect high-resolution, research-quality measurements. Beam multiplexing reduces errors in radar measurements while providing rapid updates of scan volumes. Beamwidth depends on the size of the antenna aperture. Beamwidth and directivity of elliptical, circular, and rectangular antenna apertures are compared and radar sensitivity is evaluated for various polarimetric configurations and transmit-receive (T/R) elements. In the case of polarimetric measurements, alternate transmit with alternate receive (single-channel receiver) and simultaneous reception (dual-channel receiver) is compared. From an overall architecture perspective, element-level digitization of T/R module versus digital sub-array is considered with regard to flexibility in adaptive beamforming, polarimetric performance, calibration, and data quality. Methodologies for calibration of the radar and removing bias in polarimetric measurements are outlined. The above-mentioned engineering options are evaluated for realizing an optimal APAR system suitable for measuring the high temporal and spatial resolutions of Doppler and polarimetric measurements of precipitation and clouds.

  8. Polarimetric survey of main-belt asteroids⋆. III. Results for 33 X-type objects

    Science.gov (United States)

    Cañada-Assandri, M.; Gil-Hutton, R.; Benavidez, P.

    2012-06-01

    Aims: We present results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained with the Torino and CASPROF polarimeters at the 2.15 m telescope. The Torino polarimeter is an instrument that allows the simultaneous measurement of polarization in five different bands, and the CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation. Results: The survey began in 2003, and up to 2009 data of a sample of more than 170 asteroids were obtained. In this paper the results for 33 X-type objects are presented, several of them are being polarimetrically observed for the first time. Using these data we found polarization curves and polarimetric parameters for different groups among this taxonomic class and that there are objects with very different albedo in the sub-classes of the X taxonomic complex. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/542/A11

  9. Compact synchrotron radiation source

    International Nuclear Information System (INIS)

    Liu, N.; Wang, T.; Tian, J.; Lin, Y.; Chen, S.; He, W.; Hu, Y.; Li, Q.

    1985-01-01

    A compact 800 MeV synchrotron radiation source is discussed. The storage ring has a circumference of 30.3 m, two 90 degree and four 45 degree bending magnet sections, two long straight sections and four short straight sections. The radius of the bending magnet is 2.224m. The critical wave length is 24A. The injector is a 15 Mev Microtron Electrons are accelerated from 15 Mev to 800 Mev by ramping the field of the ring. The expected stored current will be around 100 ma

  10. Compact neutron flux monitor

    International Nuclear Information System (INIS)

    Madhavi, V.; Phatak, P.R.; Bahadur, C.; Bayala, A.K.; Jakati, R.K.; Sathian, V.

    2003-01-01

    Full text: A compact size neutron flux monitor has been developed incorporating standard boards developed for smart radiation monitors. The sensitivity of the monitors is 0.4cps/nV. It has been tested up to 2075 nV flux with standard neutron sources. It shows convincing results even in high flux areas like 6m away from the accelerator in RMC (Parel) for 106/107 nV. These monitors have a focal and remote display, alarm function with potential free contacts for centralized control and additional provision of connectivity via RS485/Ethernet. This paper describes the construction, working and results of the above flux monitor

  11. Compact Q-balls

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D., E-mail: bazeia@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil); Losano, L.; Marques, M.A. [Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil); Menezes, R. [Departamento de Ciências Exatas, Universidade Federal da Paraíba, 58297-000 Rio Tinto, PB (Brazil); Departamento de Física, Universidade Federal de Campina Grande, 58109-970 Campina Grande, PB (Brazil); Rocha, R. da [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, 09210-580 Santo André (Brazil)

    2016-07-10

    In this work we deal with non-topological solutions of the Q-ball type in two space–time dimensions, in models described by a single complex scalar field that engenders global symmetry. The main novelty is the presence of stable Q-balls solutions that live in a compact interval of the real line and appear from a family of models controlled by two distinct parameters. We find analytical solutions and study their charge and energy, and show how to control the parameters to make the Q-balls classically and quantum mechanically stable.

  12. Compact synchrotron light sources

    CERN Document Server

    Weihreter, Ernst

    1996-01-01

    This book covers a new niche in circular accelerator design, motivated by the promising industrial prospects of recent micromanufacturing methods - X-ray lithography, synchrotron radiation-based micromachining and microanalysis techniques. It describes the basic concepts and the essential challenges for the development of compact synchrotron radiation sources from an accelerator designer's point of view and gives an outline of the actual state of the art. The volume is intended as an introduction and as a reference for physicists, engineers and managers involved in this rapidly developing fiel

  13. Soliton microcomb range measurement

    Science.gov (United States)

    Suh, Myoung-Gyun; Vahala, Kerry J.

    2018-02-01

    Light detection and ranging systems are used in many engineering and environmental sensing applications. Their relatively large size and cost, however, tend to be prohibitive for general use in autonomous vehicles and drones. Suh and Vahala and Trocha et al. show that optical frequency combs generated by microresonator devices can be used for precision ranging and the tracking of fast-moving objects. The compact size of the microresonators could broaden the scope for widespread applications, providing a platform for miniaturized laser ranging systems suitable for photonic integration.

  14. Effects of Initial Powder Compact Thickness, Lubrication, and Particle Morphology on the Cold Compaction Behavior of Ti Powder

    Science.gov (United States)

    Lou, Jia; Gabbitas, Brian; Zhang, Deliang; Yang, Fei

    2015-08-01

    This work investigates the compaction behavior of hydride-dehydride CP-Ti powder from green density/compaction pressure curves. These were obtained through a modification of selected processing conditions, such as variation in compact thickness, the use of internal lubrication, and additions of plasma rotating electrode process powder. A modified Cooper-Eaton equation, which treats the compaction process to be a combination of particle rearrangement (PR) and plastic deformation (PD) mechanisms, was used to simulate the curves. A comparison with aluminum and iron compaction is also carried out in this study. The research indicated that the cold compaction of titanium powder can be separated into two stages: a PR stage (stage I), which occurs at a compacting pressure in the range of 0 to 200 MPa, followed by a further PR stage initiated by PD, when the compaction pressure is in the range of 200 to 1000 MPa. The existence of stage II is due to the low plastic deformability of titanium and low density achieved at the end of stage I.

  15. Scalable Nonlinear Compact Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Debojyoti [Argonne National Lab. (ANL), Argonne, IL (United States); Constantinescu, Emil M. [Univ. of Chicago, IL (United States); Brown, Jed [Univ. of Colorado, Boulder, CO (United States)

    2014-04-01

    In this work, we focus on compact schemes resulting in tridiagonal systems of equations, specifically the fifth-order CRWENO scheme. We propose a scalable implementation of the nonlinear compact schemes by implementing a parallel tridiagonal solver based on the partitioning/substructuring approach. We use an iterative solver for the reduced system of equations; however, we solve this system to machine zero accuracy to ensure that no parallelization errors are introduced. It is possible to achieve machine-zero convergence with few iterations because of the diagonal dominance of the system. The number of iterations is specified a priori instead of a norm-based exit criterion, and collective communications are avoided. The overall algorithm thus involves only point-to-point communication between neighboring processors. Our implementation of the tridiagonal solver differs from and avoids the drawbacks of past efforts in the following ways: it introduces no parallelization-related approximations (multiprocessor solutions are exactly identical to uniprocessor ones), it involves minimal communication, the mathematical complexity is similar to that of the Thomas algorithm on a single processor, and it does not require any communication and computation scheduling.

  16. Classification of Polarimetric SAR Image Based on Support Vector Machine Using Multiple-Component Scattering Model and Texture Features

    Directory of Open Access Journals (Sweden)

    Lamei Zhang

    2010-01-01

    Full Text Available The classification of polarimetric SAR image based on Multiple-Component Scattering Model (MCSM and Support Vector Machine (SVM is presented in this paper. MCSM is a potential decomposition method for a general condition. SVM is a popular tool for machine learning tasks involving classification, recognition, or detection. The scattering powers of single-bounce, double-bounce, volume, helix, and wire scattering components are extracted from fully polarimetric SAR images. Combining with the scattering powers of MCSM and the selected texture features from Gray-level cooccurrence matrix (GCM, SVM is used for the classification of polarimetric SAR image. We generate a validity test for the proposed method using Danish EMISAR L-band fully polarimetric data of Foulum Area (DK, Denmark. The preliminary result indicates that this method can classify most of the areas correctly.

  17. GPM GROUND VALIDATION NASA S-BAND DUAL POLARIMETRIC (NPOL) DOPPLER RADAR MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA S-band Dual Polarimetric (NPOL) Doppler Radar MC3E dataset was collected by the NASA NPOL radar, which was developed by a research...

  18. PolSAR Land Cover Classification Based on Roll-Invariant and Selected Hidden Polarimetric Features in the Rotation Domain

    Directory of Open Access Journals (Sweden)

    Chensong Tao

    2017-07-01

    Full Text Available Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR. Target polarimetric response is strongly dependent on its orientation. Backscattering responses of the same target with different orientations to the SAR flight path may be quite different. This target orientation diversity effect hinders PolSAR image understanding and interpretation. Roll-invariant polarimetric features such as entropy, anisotropy, mean alpha angle, and total scattering power are independent of the target orientation and are commonly adopted for PolSAR image classification. On the other aspect, target orientation diversity also contains rich information which may not be sensed by roll-invariant polarimetric features. In this vein, only using the roll-invariant polarimetric features may limit the final classification accuracy. To address this problem, this work uses the recently reported uniform polarimetric matrix rotation theory and a visualization and characterization tool of polarimetric coherence pattern to investigate hidden polarimetric features in the rotation domain along the radar line of sight. Then, a feature selection scheme is established and a set of hidden polarimetric features are selected in the rotation domain. Finally, a classification method is developed using the complementary information between roll-invariant and selected hidden polarimetric features with a support vector machine (SVM/decision tree (DT classifier. Comparison experiments are carried out with NASA/JPL AIRSAR and multi-temporal UAVSAR data. For AIRSAR data, the overall classification accuracy of the proposed classification method is 95.37% (with SVM/96.38% (with DT, while that of the conventional classification method is 93.87% (with SVM/94.12% (with DT, respectively. Meanwhile, for multi-temporal UAVSAR data, the mean overall classification accuracy of the proposed method is up to 97.47% (with SVM/99.39% (with DT, which is also higher

  19. Advances in compact torus research

    International Nuclear Information System (INIS)

    1986-05-01

    A compact torus is a low aspect ratio, axisymmetric, closed magnetic field line configuration with no vessel wall or magnetic field coils linking the hole in the plasma toroid. This concept offers reactor advantages such as simplicity, high β, and the possibility of translation. Several methods have been used to generate compact toroids, including plasma guns, high energy particle rings, and field-reversed theta pinches. This document summarizes the results of recent work on compact toroids, presented at the first IAEA Technical Committee Meeting on Compact Torus Research held in Sydney, Australia from 4 to 7 March 1985

  20. Acoustic emission during the compaction of brittle UO2 particles

    International Nuclear Information System (INIS)

    Hegron, Lise

    2014-01-01

    One of the options considered for recycling minor actinides is to incorporate about 10% to UO 2 matrix. The presence of open pores interconnected within this fuel should allow the evacuation of helium and fission gases to prevent swelling of the pellet and ultimately its interaction with the fuel clad surrounding it. Implementation of minor actinides requires working in shielded cell, reducing their retention and outlawing additions of organic products. The use of fragmentable particles of several hundred micrometers seems a good solution to control the microstructure of the green compacts and thus control the open porosity after sintering. The goal of this study is to monitor the compaction of brittle UO 2 particles by acoustic emission and to link the particle characteristics to the open porosity obtained after the compact sintering. The signals acquired during tensile strength tests on individual granules and compacts show that the acoustic emission allows the detection of the mechanism of fragmentation and enables identification of a characteristic waveform of this fragmentation. The influences of compaction stress, of the initial particle size distribution and of the internal cohesion of the granules, on the mechanical strength of the compact and on the microstructure and open porosity of the sintered pellets, are analyzed. By its ability to identify the range of fragmentation of the granules during compaction, acoustic emission appears as a promising technique for monitoring the compaction of brittle particles in the manufacture of a controlled porosity fuel. (author) [fr

  1. Polarimetric synthetic aperture radar application for tropical peatlands classification: a case study in Siak River Transect, Riau Province, Indonesia

    Science.gov (United States)

    Novresiandi, Dandy Aditya; Nagasawa, Ryota

    2017-01-01

    Mapping spatial distributions of tropical peatlands is important for properly estimating carbon emissions and for providing information that aids in the sustainable management of tropical peatlands, particularly in Indonesia. This study evaluated the performance of phased array type L-band synthetic aperture radar (SAR) (PALSAR) dual-polarization and fully polarimetric data for tropical peatlands classification. The study area was in Siak River Transect, Riau Province, Indonesia, a rapidly developing region, where the peatland has been intensively converted mostly into oil palm plantations over the last two decades. Thus, polarimetric features derived after polarimetric decompositions, backscatter coefficients measurements, and the radar vegetation index were evaluated to classify tropical peatlands using the decision tree classifier. Overall, polarimetric features generated by the combination of dual-polarization and fully polarimetric data yielded an overall accuracy (OA) of 69% and a kappa coefficient (K) of 0.57. The integration of an additional feature, "distance to river," to the algorithm increased the OA to 76% and K to 0.66. These results indicated that the methodology in this study might serve as an efficient tool in tropical peatlands classification, especially when involving the use of L-band SAR dual-polarization and fully polarimetric data.

  2. Polarimetric Radar Characteristics of Simulated and Observed Intense Convection Between Continental and Maritime Environment

    Science.gov (United States)

    Matsui, T.; Dolan, B.; Tao, W. K.; Rutledge, S. A.; Iguchi, T.; Barnum, J. I.; Lang, S. E.

    2017-12-01

    This study presents polarimetric radar characteristics of intense convective cores derived from observations as well as a polarimetric-radar simulator from cloud resolving model (CRM) simulations from Midlatitude Continental Convective Clouds Experiment (MC3E) May 23 case over Oklahoma and a Tropical Warm Pool-International Cloud Experiment (TWP-ICE) Jan 23 case over Darwin, Australia to highlight the contrast between continental and maritime convection. The POLArimetric Radar Retrieval and Instrument Simulator (POLARRIS) is a state-of-art T-matrix-Mueller-Matrix-based polarimetric radar simulator that can generate synthetic polarimetric radar signals (reflectivity, differential reflectivity, specific differential phase, co-polar correlation) as well as synthetic radar retrievals (precipitation, hydrometeor type, updraft velocity) through the consistent treatment of cloud microphysics and dynamics from CRMs. The Weather Research and Forecasting (WRF) model is configured to simulate continental and maritime severe storms over the MC3E and TWP-ICE domains with the Goddard bulk 4ICE single-moment microphysics and HUCM spectra-bin microphysics. Various statistical diagrams of polarimetric radar signals, hydrometeor types, updraft velocity, and precipitation intensity are investigated for convective and stratiform precipitation regimes and directly compared between MC3E and TWP-ICE cases. The result shows MC3E convection is characterized with very strong reflectivity (up to 60dBZ), slight negative differential reflectivity (-0.8 0 dB) and near-zero specific differential phase above the freezing levels. On the other hand, TWP-ICE convection shows strong reflectivity (up to 50dBZ), slight positive differential reflectivity (0 1.0 dB) and differential phase (0 0.8 dB/km). Hydrometeor IDentification (HID) algorithm from the observation and simulations detect hail-dominant convection core in MC3E, while graupel-dominant convection core in TWP-ICE. This land-ocean contrast

  3. High Impact Technology Compact Combustion (HITCC) Compact Core Technologies

    Science.gov (United States)

    2016-01-01

    were combusted in a vitiated stream. The molecular weight and hydrogen -to-carbon ratios of these fuels were measured by Princeton University [17...AFRL-RQ-WP-TR-2016-0010 HIGH IMPACT TECHNOLOGY COMPACT COMBUSTION (HITCC) COMPACT CORE TECHNOLOGIES Andrew W. Caswell Combustion ...ANDREW W. CASWELL CHARLES J. CROSS, Branch Chief Program Engineer Combustion Branch Combustion Branch Turbine Engine Division Turbine

  4. Isometric coactions of compact quantum groups on compact ...

    Indian Academy of Sciences (India)

    We propose a notion of isometric coaction of a compact quantum group on a compact quantum metric space in the framework of Rieffel, where the metric structure is given by a Lipnorm. Within this setting we study the problem of the existence of a quantum isometry group.

  5. The Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Schmidt, J.

    1987-01-01

    The author discusses his lab's plan for completing the Compact Ignition Tokamak (CIT) conceptual design during calendar year 1987. Around July 1 they froze the subsystem envelopes on the device to continue with the conceptual design. They did this by formalizing a general requirements document. They have been developing the management plan and submitted a version to the DOE July 10. He describes a group of management activities. They released the vacuum vessel Request For Proposals (RFP) on August 5. An RFP to do a major part of the system engineering on the device is being developed. They intend to assemble the device outside of the test cell, then move it into the the test cell, install it there, and bring to the test cell many of the auxiliary facilities from TFTR, for example, power supplies

  6. Compacting spent fuel rods

    International Nuclear Information System (INIS)

    Wachter, W.J.

    1988-01-01

    A method and apparatus for compacting spent fuel rods comprises transferring the rods from a nuclear fuel rod assembly into a different nuclear fuel rod container having a smaller cross section than the assembly. The individual rods are moved from a fuel assembly and through a transition funnel by movable grippers at opposite ends of the funnel. One movable gripper reciprocates between gripping and release positions in a gap between the fuel assembly and the transition funnel. All of the fuel rods are withdrawn concurrently and are merged towards one another into a tighter array within the transition funnel and emerge as a bundle. A movable and a stationary bundle gripper are provided between the funnel and the storage container to advance the bundle of fuel rods into the container. (author)

  7. Compact particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Elizondo-Decanini, Juan M.

    2017-08-29

    A compact particle accelerator having an input portion configured to receive power to produce particles for acceleration, where the input portion includes a switch, is provided. In a general embodiment, a vacuum tube receives particles produced from the input portion at a first end, and a plurality of wafer stacks are positioned serially along the vacuum tube. Each of the plurality of wafer stacks include a dielectric and metal-oxide pair, wherein each of the plurality of wafer stacks further accelerate the particles in the vacuum tube. A beam shaper coupled to a second end of the vacuum tube shapes the particles accelerated by the plurality of wafer stacks into a beam and an output portion outputs the beam.

  8. Compact vacuum insulation embodiments

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  9. Compact vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  10. Compact semiconductor lasers

    CERN Document Server

    Yu, Siyuan; Lourtioz, Jean-Michel

    2014-01-01

    This book brings together in a single volume a unique contribution by the top experts around the world in the field of compact semiconductor lasers to provide a comprehensive description and analysis of the current status as well as future directions in the field of micro- and nano-scale semiconductor lasers. It is organized according to the various forms of micro- or nano-laser cavity configurations with each chapter discussing key technical issues, including semiconductor carrier recombination processes and optical gain dynamics, photonic confinement behavior and output coupling mechanisms, carrier transport considerations relevant to the injection process, and emission mode control. Required reading for those working in and researching the area of semiconductors lasers and micro-electronics.

  11. COMPACTION CHARACTERISTICS OF IGUMALE SHALE

    African Journals Online (AJOL)

    *

    In 1933 Proctor first conducted tests on compaction for application to construction of earth fill dams in California. Results published by. Proctor (1933) showed that with a given amount of compaction, there exists for each soil a moisture content, termed the optimum moisture content (OMC) at which a maximum dry density.

  12. Roller-compacted concrete pavements.

    Science.gov (United States)

    2010-09-01

    Roller-compacted concrete (RCC) gets its name from the heavy vibratory steel drum and rubber-tired rollers used to help compact it into its final form. RCC has similar strength properties and consists of the same basic ingredients as conventional con...

  13. The effects of thermal equilibrium and contrast in LWIR polarimetric images.

    Science.gov (United States)

    Tyo, J Scott; Ratliff, Bradley M; Boger, James K; Black, Wiley T; Bowers, David L; Fetrow, Matthew P

    2007-11-12

    Long-wave infrared (LWIR) polarimetric signatures provide the potential for day-night detection and identification of objects in remotely sensed imagery. The source of optical energy in the LWIR is usually due to thermal emission from the object in question, which makes the signature dependent primarily on the target and not on the external environment. In this paper we explore the impact of thermal equilibrium and the temperature of (unseen) background objects on LWIR polarimetric signatures. We demonstrate that an object can completely lose its polarization signature when it is in thermal equilibrium with its optical background, even if it has thermal contrast with the objects that appear behind it in the image.

  14. Retrieval of the raindrop size distribution from polarimetric radar data using double-moment normalisation

    Directory of Open Access Journals (Sweden)

    T. H. Raupach

    2017-07-01

    Full Text Available A new technique for estimating the raindrop size distribution (DSD from polarimetric radar data is proposed. Two statistical moments of the DSD are estimated from polarimetric variables, and the DSD is reconstructed using a double-moment normalisation. The technique takes advantage of the relative invariance of the double-moment normalised DSD. The method was tested using X-band radar data and networks of disdrometers in three different climatic regions. Radar-derived estimates of the DSD compare reasonably well to observations. In the three tested domains, in terms of DSD moments, rain rate, and characteristic drop diameter, the proposed method performs similarly to and often better than a state-of-the-art DSD-retrieval technique. The approach is flexible because no specific DSD model is prescribed. In addition, a method is proposed to treat noisy radar data to improve DSD-retrieval performance with radar measurements.

  15. Retrieval of the raindrop size distribution from polarimetric radar data using double-moment normalisation

    Science.gov (United States)

    Raupach, Timothy H.; Berne, Alexis

    2017-07-01

    A new technique for estimating the raindrop size distribution (DSD) from polarimetric radar data is proposed. Two statistical moments of the DSD are estimated from polarimetric variables, and the DSD is reconstructed using a double-moment normalisation. The technique takes advantage of the relative invariance of the double-moment normalised DSD. The method was tested using X-band radar data and networks of disdrometers in three different climatic regions. Radar-derived estimates of the DSD compare reasonably well to observations. In the three tested domains, in terms of DSD moments, rain rate, and characteristic drop diameter, the proposed method performs similarly to and often better than a state-of-the-art DSD-retrieval technique. The approach is flexible because no specific DSD model is prescribed. In addition, a method is proposed to treat noisy radar data to improve DSD-retrieval performance with radar measurements.

  16. Photo-polarimetric sensitivities to layering and mixing of absorbing aerosols

    Directory of Open Access Journals (Sweden)

    O. V. Kalashnikova

    2011-09-01

    Full Text Available We investigate to what extent multi-angle polarimetric measurements are sensitive to vertical mixing/layering of absorbing aerosols, adopting calibration uncertainty of 1.5% in intensity and 0.5% in the degree of linear polarization of Multiangle Spectro-Polarimetric Imager (MSPI. Employing both deterministic and Monte Carlo radiative transfer codes with polarization, we conduct modeling experiments to determine how the measured Stokes vector elements are affected at UV and short visible wavelengths by the vertical distribution, mixing and layering of smoke and dust aerosols for variety of microphysical parameters. We find that multi-angular polarimetry holds the potential to infer dust-layer heights and thicknesses at blue visible channel due to its lesser sensitivity to changes in dust coarse mode optical properties, but higher sensitivity to the dust vertical profiles. Our studies quantify requirements for obtaining simultaneous information on aerosol layer height and absorption under MSPI measurement uncertainties.

  17. Investigation of hydrometeor classification uncertainties through the POLARRIS polarimetric radar simulator

    Science.gov (United States)

    Dolan, B.; Rutledge, S. A.; Barnum, J. I.; Matsui, T.; Tao, W. K.; Iguchi, T.

    2017-12-01

    POLarimetric Radar Retrieval and Instrument Simulator (POLARRIS) is a framework that has been developed to simulate radar observations from cloud resolving model (CRM) output and subject model data and observations to the same retrievals, analysis and visualization. This framework not only enables validation of bulk microphysical model simulated properties, but also offers an opportunity to study the uncertainties associated with retrievals such as hydrometeor classification (HID). For the CSU HID, membership beta functions (MBFs) are built using a set of simulations with realistic microphysical assumptions about axis ratio, density, canting angles, size distributions for each of ten hydrometeor species. These assumptions are tested using POLARRIS to understand their influence on the resulting simulated polarimetric data and final HID classification. Several of these parameters (density, size distributions) are set by the model microphysics, and therefore the specific assumptions of axis ratio and canting angle are carefully studied. Through these sensitivity studies, we hope to be able to provide uncertainties in retrieved polarimetric variables and HID as applied to CRM output. HID retrievals assign a classification to each point by determining the highest score, thereby identifying the dominant hydrometeor type within a volume. However, in nature, there is rarely just one a single hydrometeor type at a particular point. Models allow for mixing ratios of different hydrometeors within a grid point. We use the mixing ratios from CRM output in concert with the HID scores and classifications to understand how the HID algorithm can provide information about mixtures within a volume, as well as calculate a confidence in the classifications. We leverage the POLARRIS framework to additionally probe radar wavelength differences toward the possibility of a multi-wavelength HID which could utilize the strengths of different wavelengths to improve HID classifications. With

  18. Agricultural Monitoring in Northeastern Ontario, Canada, Using Multi-Temporal Polarimetric RADARSAT-2 Data

    Directory of Open Access Journals (Sweden)

    Jeffrey W. Cable

    2014-03-01

    Full Text Available The purpose of this research is to analyze how changes in acquisition time and incidence angle affect various C-band synthetic aperture radar (SAR polarimetric intensities, co-polarized phase information, polarimetric response plots and decomposition parameters for various crops typical of Northern Ontario, Canada. We examine how these parameters may be used to monitor the growth stages of five common cash crops, namely, barley (Hordeum vulgare, canola (Brassica napus, oat (Avena sativa, soybean (Glycine max and wheat (Triticum spp.. In total, nine RADARSAT-2 polarimetric images were analyzed across a 14-week period beginning in June and ending in September 2011 using two incidence angles of approximately 26° and 41°. As expected, the backscatter intensities for all targets were found to show a higher response when acquired at the steeper incidence angle (26°. All cash crop targets showed a rise and fall in backscatter response over the course of the growing season, coinciding with changing growth stages. Slight phase differences were observed for cereal crops, possibly due to one of the polarizations penetrating between the rows allowing double-bounce to occur. The polarimetric response plots and decompositions offered insight into the scattering mechanisms of each crop type, generally showing an increase in volume scattering as the crops reached maturity. Specifically, the contributions of the crops increased towards the volume scattering component and zones 4 and 2, as the crops matured in regards to the Freeman-Durden and Cloude-Pottier decompositions respectively. Overall, soybean and canola showed a more similar response in comparison to the cereal cash crops. Although the study focused on Northern Ontario, it is anticipated that these results would be relevant in investigations of multi-temporal RADARSAT-2 for agricultural zones with similar crop types.

  19. On the possibility of noninvasive polarimetric determination of glucose content in skin

    Science.gov (United States)

    Pravdin, A. B.; Spivak, V. A.; Yakovlev, D. A.

    2016-01-01

    Based on real structure and optical properties of the dermis, we analyzed the possibility of polarimetric measurement of glucose content in the skin. It was shown that, at physiological concentrations of glucose in the interstitial fluid, the optical activity of glucose is not manifested in the polarization and optical properties of the tissue, since the optical activity of glucose is almost completely suppressed by the linear birefringence of the dermis.

  20. Compact networked radars for Army unattended ground sensors

    Science.gov (United States)

    Wikner, David A.; Viveiros, Edward A.; Wellman, Ronald; Clark, John; Kurtz, Jim; Pulskamp, Jeff; Proie, Robert; Ivanov, Tony; Polcawich, Ronald G.; Adler, Eric D.

    2010-04-01

    The Army Research Laboratory is in partnership with the University of Florida - Electronics Communications Laboratory to develop compact radar technology and demonstrate that it is scalable to a variety of ultra-lightweight platforms (portable sensor applications. The advantage of this compact radar is its steerable beam technology and relatively long-range capability compared to other small, battery-powered radar concepts. This paper will review the ongoing development of the sensor and presents a sample of the collected data thus far.

  1. Research on visible and near infrared spectral-polarimetric properties of soil polluted by crude oil

    Science.gov (United States)

    Shen, Hui-yan; Zhou, Pu-cheng; Pan, Bang-long

    2017-10-01

    Hydrocarbon contaminated soil can impose detrimental effects on forest health and quality of agricultural products. To manage such consequences, oil leak indicators should be detected quickly by monitoring systems. Remote sensing is one of the most suitable techniques for monitoring systems, especially for areas which are uninhabitable and difficulty to access. The most available physical quantities in optical remote sensing domain are the intensity and spectral information obtained by visible or infrared sensors. However, besides the intensity and wavelength, polarization is another primary physical quantity associated with an optical field. During the course of reflecting light-wave, the surface of soil polluted by crude oil will cause polarimetric properties which are related to the nature of itself. Thus, detection of the spectralpolarimetric properties for soil polluted by crude oil has become a new remote sensing monitoring method. In this paper, the multi-angle spectral-polarimetric instrument was used to obtain multi-angle visible and near infrared spectralpolarimetric characteristic data of soil polluted by crude oil. And then, the change rule between polarimetric properties with different affecting factors, such as viewing zenith angle, incidence zenith angle of the light source, relative azimuth angle, waveband of the detector as well as different grain size of soil were discussed, so as to provide a scientific basis for the research on polarization remote sensing for soil polluted by crude oil.

  2. IMPROVED SEARCH OF PRINCIPAL COMPONENT ANALYSIS DATABASES FOR SPECTRO-POLARIMETRIC INVERSION

    International Nuclear Information System (INIS)

    Casini, R.; Lites, B. W.; Ramos, A. Asensio; Ariste, A. López

    2013-01-01

    We describe a simple technique for the acceleration of spectro-polarimetric inversions based on principal component analysis (PCA) of Stokes profiles. This technique involves the indexing of the database models based on the sign of the projections (PCA coefficients) of the first few relevant orders of principal components of the four Stokes parameters. In this way, each model in the database can be attributed a distinctive binary number of 2 4n bits, where n is the number of PCA orders used for the indexing. Each of these binary numbers (indices) identifies a group of ''compatible'' models for the inversion of a given set of observed Stokes profiles sharing the same index. The complete set of the binary numbers so constructed evidently determines a partition of the database. The search of the database for the PCA inversion of spectro-polarimetric data can profit greatly from this indexing. In practical cases it becomes possible to approach the ideal acceleration factor of 2 4n as compared to the systematic search of a non-indexed database for a traditional PCA inversion. This indexing method relies on the existence of a physical meaning in the sign of the PCA coefficients of a model. For this reason, the presence of model ambiguities and of spectro-polarimetric noise in the observations limits in practice the number n of relevant PCA orders that can be used for the indexing

  3. Assessment of Polarimetric SAR Interferometry for Improving Ship Classification based on Simulated Data

    Directory of Open Access Journals (Sweden)

    Jordi J. Mallorqui

    2008-12-01

    Full Text Available This paper uses a complete and realistic SAR simulation processing chain, GRECOSAR, to study the potentialities of Polarimetric SAR Interferometry (POLInSAR in the development of new classification methods for ships. Its high processing efficiency and scenario flexibility have allowed to develop exhaustive scattering studies. The results have revealed, first, vessels’ geometries can be described by specific combinations of Permanent Polarimetric Scatterers (PePS and, second, each type of vessel could be characterized by a particular spatial and polarimetric distribution of PePS. Such properties have been recently exploited to propose a new Vessel Classification Algorithm (VCA working with POLInSAR data, which, according to several simulation tests, may provide promising performance in real scenarios. Along the paper, explanation of the main steps summarizing the whole research activity carried out with ships and GRECOSAR are provided as well as examples of the main results and VCA validation tests. Special attention will be devoted to the new improvements achieved, which are related to simulations processing a new and highly realistic sea surface model. The paper will show that, for POLInSAR data with fine resolution, VCA can help to classify ships with notable robustness under diverse and adverse observation conditions.

  4. Segmentation of Polarimetric SAR Images Usig Wavelet Transformation and Texture Features

    Science.gov (United States)

    Rezaeian, A.; Homayouni, S.; Safari, A.

    2015-12-01

    Polarimetric Synthetic Aperture Radar (PolSAR) sensors can collect useful observations from earth's surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR) are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT). Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM) and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  5. Polarimetric infrared imaging simulation of a synthetic sea surface with Mie scattering.

    Science.gov (United States)

    He, Si; Wang, Xia; Xia, Runqiu; Jin, Weiqi; Liang, Jian'an

    2018-03-01

    A novel method to simulate the polarimetric infrared imaging of a synthetic sea surface with atmospheric Mie scattering effects is presented. The infrared emission, multiple reflections, and infrared polarization of the sea surface and the Mie scattering of aerosols are all included for the first time. At first, a new approach to retrieving the radiative characteristics of a wind-roughened sea surface is introduced. A two-scale method of sea surface realization and the inverse ray tracing of light transfer calculation are combined and executed simultaneously, decreasing the consumption of time and memory dramatically. Then the scattering process that the infrared light emits from the sea surface and propagates in the aerosol particles is simulated with a polarized light Monte Carlo model. Transformations of the polarization state of the light are calculated with the Mie theory. Finally, the polarimetric infrared images of the sea surface of different environmental conditions and detection parameters are generated based on the scattered light detected by the infrared imaging polarimeter. The results of simulation examples show that our polarimetric infrared imaging simulation can be applied to predict the infrared polarization characteristics of the sea surface, model the oceanic scene, and guide the detection in the oceanic environment.

  6. SEGMENTATION OF POLARIMETRIC SAR IMAGES USIG WAVELET TRANSFORMATION AND TEXTURE FEATURES

    Directory of Open Access Journals (Sweden)

    A. Rezaeian

    2015-12-01

    Full Text Available Polarimetric Synthetic Aperture Radar (PolSAR sensors can collect useful observations from earth’s surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT. Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  7. Quantitative Estimation of Above Ground Crop Biomass using Ground-based, Airborne and Spaceborne Low Frequency Polarimetric Synthetic Aperture Radar

    Science.gov (United States)

    Koyama, C.; Watanabe, M.; Shimada, M.

    2016-12-01

    Estimation of crop biomass is one of the important challenges in environmental remote sensing related to agricultural as well as hydrological and meteorological applications. Usually passive optical data (photographs, spectral data) operating in the visible and near-infrared bands is used for such purposes. The virtue of optical remote sensing for yield estimation, however, is rather limited as the visible light can only provide information about the chemical characteristics of the canopy surface. Low frequency microwave signals with wavelength longer 20 cm have the potential to penetrate through the canopy and provide information about the whole vertical structure of vegetation from the top of the canopy down to the very soil surface. This phenomenon has been well known and exploited to detect targets under vegetation in the military radar application known as FOPEN (foliage penetration). With the availability of polarimetric interferometric SAR data the use PolInSAR techniques to retrieve vertical vegetation structures has become an attractive tool. However, PolInSAR is still highly experimental and suitable data is not yet widely available. In this study we focus on the use of operational dual-polarization L-band (1.27 GHz) SAR which is since the launch of Japan's Advanced Land Observing Satellite (ALOS, 2006-2011) available worldwide. Since 2014 ALOS-2 continues to deliver such kind of partial polarimetric data for the entire land surface. In addition to these spaceborne data sets we use airborne L-band SAR data acquired by the Japanese Pi-SAR-L2 as well as ultra-wideband (UWB) ground based SAR data operating in the frequency range from 1-4 GHz. By exploiting the complex dual-polarization [C2] Covariance matrix information, the scattering contributions from the canopy can be well separated from the ground reflections allowing for the establishment of semi-empirical relationships between measured radar reflectivity and the amount of fresh-weight above

  8. Highly compact polarization-independent grating coupler.

    Science.gov (United States)

    Shao, Shiqian; Wang, Yi

    2010-06-01

    We propose a compact polarization-independent output grating coupler, which consists of T-shaped grooves. For only 20 periods on a silicon-on-insulator wafer with a 260nm thick top silicon layer, the output coupling efficiencies for both the TE and the TM modes are larger than 50% in the wavelength range of 1480-1580nm and are approximately 58% around 1550nm. The polarization-dependent loss of the device is within 0.05dB in the range of 1510-1580nm.

  9. Investigation of HMA compactability using GPR technique

    Science.gov (United States)

    Plati, Christina; Georgiou, Panos; Loizos, Andreas

    2014-05-01

    In-situ field density is often regarded as one of the most important controls used to ensure that an asphalt pavement being placed is of high quality. The achieved density results from the effectiveness of the applied compaction mode on the Hot Mix Asphalt (HMA) layer. It is worthwhile mentioning that the proper compaction of HMA increases pavement fatigue life, decreases the amount of permanent deformation or rutting, reduces the amount of oxidation or aging, decreases moisture damage or stripping, increases strength and internal stability, and may decrease slightly the amount of low-temperature cracking that may occur in the mix. Conventionally, the HMA density in the field is assessed by direct destructive methods, including through the cutting of samples or drilling cores. These methods are characterized by a high accuracy, although they are intrusive and time consuming. In addition, they provide local information, i.e. information only for the exact test location. To overcome these limitations, the use of non-intrusive techniques is often recommended. The Ground Penetrating Radar (GPR) technique is an example of a non-intrusive technique that has been increasingly used for pavement investigations over the years. GPR technology is practical and application-oriented with the overall design concept, as well as the hardware, usually dependent on the target type and the material composing the target and its surroundings. As the sophistication of operating practices increases, the technology matures and GPR becomes an intelligent sensor system. The intelligent sensing deals with the expanded range of GPR applications in pavements such as determining layer thickness, detecting subsurface distresses, estimating moisture content, detecting voids and others. In addition, the practice of using GPR to predict in-situ field density of compacted asphalt mixture material is still under development and research; however the related research findings seem to be promising

  10. Rules of thumb for minimising subsoil compaction

    DEFF Research Database (Denmark)

    Schjønning, Per; Lamandé, Mathieu; Keller, T

    2012-01-01

    Subsoil compaction is persistent and can affect important soil functions including soil productivity. The aim of this study was to develop recommendations on how to avoid subsoil compaction for soils exposed to traffic by machinery at field capacity. We measured the vertical stress in the tyre......–soil contact area for two traction tyres at ca. 30- and 60-kN wheel loads on a loamy sand at field capacity. Data on resulting stress distributions were combined with those from the literature for five implement tyres tested at a range of inflation pressures and wheel loads. The vertical stress in the soil...... profile was then predicted using the Söhne model for all tests in the combined data set. The predicted stress at 20 cm depth correlated with the maximum stress in the contact area, tyre inflation pressure, tyre–soil contact area and mean ground pressure. At 100 cm depth, the predicted vertical stress...

  11. Compact toroid development, activity plan for spheromaks

    International Nuclear Information System (INIS)

    1984-06-01

    This document contains the description, goals, status, plans, and approach for the investigation of the properties of a magnetic configuration for plasma confinement identified as the spheromak. This component of the magnetic fusion development program has been characterized by its potential for physical compactness and a flexible range of output power. The included material represents the second phase of spheromak program planning. The first was completed in February 1983 and was reported in DOE/ER-0160, Compact Toroid Development. This planning builds on that previous report and concentrates on the detailed plans for the next several years of the current DOE sponsored program. It has been deliberately restricted to the experimental and theoretical efforts possible within the present scale of effort. A third phase of this planning exercise will examine the subsequent effort and resources needed to achieve near-term (1987 to 1990) spheromak technical objectives

  12. Compact Dexterous Robotic Hand

    Science.gov (United States)

    Lovchik, Christopher Scott (Inventor); Diftler, Myron A. (Inventor)

    2001-01-01

    A compact robotic hand includes a palm housing, a wrist section, and a forearm section. The palm housing supports a plurality of fingers and one or more movable palm members that cooperate with the fingers to grasp and/or release an object. Each flexible finger comprises a plurality of hingedly connected segments, including a proximal segment pivotally connected to the palm housing. The proximal finger segment includes at least one groove defining first and second cam surfaces for engagement with a cable. A plurality of lead screw assemblies each carried by the palm housing are supplied with power from a flexible shaft rotated by an actuator and output linear motion to a cable move a finger. The cable is secured within a respective groove and enables each finger to move between an opened and closed position. A decoupling assembly pivotally connected to a proximal finger segment enables a cable connected thereto to control movement of an intermediate and distal finger segment independent of movement of the proximal finger segment. The dexterous robotic hand closely resembles the function of a human hand yet is light weight and capable of grasping both heavy and light objects with a high degree of precision.

  13. Compact stellarator coils

    International Nuclear Information System (INIS)

    Pomphrey, N.; Berry, L.A.; Boozer, A.H.

    2001-01-01

    Experimental devices to study the physics of high-beta (β>∼4%), low aspect ratio (A<∼4.5) stellarator plasmas require coils that will produce plasmas satisfying a set of physics goals, provide experimental flexibility, and be practical to construct. In the course of designing a flexible coil set for the National Compact Stellarator Experiment, we have made several innovations that may be useful in future stellarator design efforts. These include: the use of Singular Value Decomposition methods for obtaining families of smooth current potentials on distant coil winding surfaces from which low current density solutions may be identified; the use of a Control Matrix Method for identifying which few of the many detailed elements of the stellarator boundary must be targeted if a coil set is to provide fields to control the essential physics of the plasma; the use of Genetic Algorithms for choosing an optimal set of discrete coils from a continuum of potential contours; the evaluation of alternate coil topologies for balancing the tradeoff between physics objective and engineering constraints; the development of a new coil optimization code for designing modular coils, and the identification of a 'natural' basis for describing current sheet distributions. (author)

  14. Compact neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  15. Compact vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  16. A compact tritium AMS system

    International Nuclear Information System (INIS)

    Roberts, M.L.; Hamm, R.W.; Dingley, K.H.; Chiarappa-Zucca, M.L.; Love, A.H.

    2000-01-01

    Tritium ( 3 H) is a radioisotope that is extensively utilized in biological and environmental research. For biological research, 3 H is generally quantified by liquid scintillation counting requiring gram-sized samples and counting times of several hours. For environmental research, 3 H is usually quantified by 3 He in-growth which requires gram-sized samples and in-growth times of several months. In contrast, provisional studies at LLNL's Center for Accelerator Mass Spectrometry have demonstrated that accelerator mass spectrometry (AMS) can be used to quantify 3 H in milligram-sized biological samples with a 100 to 1000-fold improvement in detection limits when compared to scintillation counting. This increased sensitivity is expected to have great impact on the biological and environmental research community. However, in order to make the 3 H AMS technique more broadly accessible, smaller, simpler, and less expensive AMS instrumentation must be developed. To meet this need, a compact, relatively low cost prototype 3 H AMS system has been designed and built based on an LLNL ion source/sample changer and an AccSys Technology radio frequency quadrupole (RFQ) linac. With the prototype system, 3 H/ 1 H ratios ranging from 1x10 -10 to 1x10 -13 have be measured from milligram-sized samples. With improvements in system operation and sample preparation methodology, the sensitivity limit of the system is expected to increase to approximately 1x10 -15

  17. Compact dynamic microfluidic iris array

    Science.gov (United States)

    Kimmle, Christina; Doering, Christoph; Steuer, Anna; Fouckhardt, Henning

    2011-09-01

    A dynamic microfluidic iris is realized. Light attenuation is achieved by absorption of an opaque liquid (e.g. black ink). The adjustment of the iris diameter is achieved by fluid displacement via a transparent elastomer (silicone) half-sphere. This silicone calotte is hydraulically pressed against a polymethylmethacrylate (PMMA) substrate as the bottom window, such that the opaque liquid is squeezed away, this way opening the iris. With this approach a dynamic range of more than 60 dB can be achieved with response times in the ms to s regime. The design allows the realization of a single iris as well as an iris array. So far the master for the molded silicone structure was fabricated by precision mechanics. The aperture diameter was changed continuously from 0 to 8 mm for a single iris and 0 to 4 mm in case of a 3 x 3 iris array. Moreover, an iris array was combined with a PMMA lens array into a compact module, the distance of both arrays equaling the focal length of the lenses. This way e.g. spatial frequency filter arrays can be realized. The possibility to extend the iris array concept to an array with many elements is demonstrated. Such arrays could be applied e.g. in light-field cameras.

  18. Cooling of hypernuclear compact stars

    Science.gov (United States)

    Raduta, Adriana R.; Sedrakian, Armen; Weber, Fridolin

    2018-04-01

    We study the thermal evolution of hypernuclear compact stars constructed from covariant density functional theory of hypernuclear matter and parametrizations which produce sequences of stars containing two-solar-mass objects. For the input in the simulations, we solve the Bardeen-Cooper-Schrieffer gap equations in the hyperonic sector and obtain the gaps in the spectra of Λ, Ξ0, and Ξ- hyperons. For the models with masses M/M⊙ ≥ 1.5 the neutrino cooling is dominated by hyperonic direct Urca processes in general. In the low-mass stars the (Λp) plus leptons channel is the dominant direct Urca process, whereas for more massive stars the purely hyperonic channels (Σ-Λ) and (Ξ-Λ) are dominant. Hyperonic pairing strongly suppresses the processes on Ξ-s and to a lesser degree on Λs. We find that intermediate-mass 1.5 ≤ M/M⊙ ≤ 1.8 models have surface temperatures which lie within the range inferred from thermally emitting neutron stars, if the hyperonic pairing is taken into account. Most massive models with M/M⊙ ≃ 2 may cool very fast via the direct Urca process through the (Λp) channel because they develop inner cores where the S-wave pairing of Λs and proton is absent.

  19. Classification and Monitoring of Reed Belts Using Dual-Polarimetric TerraSAR-X Time Series

    Directory of Open Access Journals (Sweden)

    Iris Heine

    2016-06-01

    Full Text Available Synthetic aperture radar polarimetry (PolSAR and polarimetric decomposition techniques have proven to be useful tools for wetland mapping. In this study we classify reed belts and monitor their phenological changes at a natural lake in northeastern Germany using dual-co-polarized (HH, VV TerraSAR-X time series. The time series comprises 19 images, acquired between August 2014 and May 2015, in ascending and descending orbit. We calculated different polarimetric indices using the HH and VV intensities, the dual-polarimetric coherency matrix including dominant and mean alpha scattering angles, and entropy and anisotropy (normalized eigenvalue difference as well as combinations of entropy and anisotropy for the analysis of the scattering scenarios. The image classifications were performed with the random forest classifier and validated with high-resolution digital orthophotos. The time series analysis of the reed belts revealed significant seasonal changes for the double-bounce–sensitive parameters (intensity ratio HH/VV and intensity difference HH-VV, the co-polarimetric coherence phase and the dominant and mean alpha scattering angles and in the dual-polarimetric coherence (amplitude, anisotropy, entropy, and anisotropy-entropy combinations; whereas in summer dense leaves cause volume scattering, in winter, after leaves have fallen, the reed stems cause predominately double-bounce scattering. Our study showed that the five most important parameters for the classification of reed are the intensity difference HH-VV, the mean alpha scattering angle, intensity ratio HH/VV, and the coherence (phase. Due to the better separation of reed and other vegetation (deciduous forest, coniferous forest, meadow, winter acquisitions are preferred for the mapping of reed. Multi-temporal stacks of winter images performed better than summer ones. The combination of ascending and descending images also improved the result as it reduces the influence of the sensor

  20. Good environmental performance from Compact

    International Nuclear Information System (INIS)

    Kinnunen, L.

    1996-01-01

    For Rovaniemi and the designers of the town's new Suosiola power plant, it was clear from the start that it would be based on atmospheric-pressurized fluidized bed technology. In a bid to keep environmental emissions to a minimum, the decision fell to Foster Wheeler's new Compact CFB boiler. Work on developing the Compact boiler has been carried out since 1989. Flow models and cold air and hot air tests were completed in 1990. The first Compact boiler, an 18 MW unit, was commissioned at Kuhmo in 1993; this was followed by one at Kokkola in 1994

  1. The United Nations Global Compact

    DEFF Research Database (Denmark)

    Rasche, Andreas; Waddock, Sandra; McIntosh, Malcolm

    2013-01-01

    This article reviews the interdisciplinary literature on the UN Global Compact. The review identifies three research perspectives, which scholars have used to study the UN Global Compact so far: a historical perspective discussing the Global Compact in the context of UN-business relations......, an operational perspective discussing the composition and impact of its participants, as well as a governance perspective discussing the constraints and opportunities of the initiative as an institutionalized arena for addressing global governance gaps. The authors contrast these three perspectives and identify...

  2. COMPACTNESS IN INTUITIONISTIC FUZZY MULTISET TOPOLOGY

    OpenAIRE

    Kunnambath, Shinoj Thekke; John, Sunil Jacob

    2017-01-01

    – In this paper, we discussVarious properties of Compact and Homeomorphic Intuitionistic Fuzzy Multiset Topological spacesarious properties of Compact and Homeomorphic Intuitionistic Fuzzy Multiset Topological spaces

  3. What Is Business's Social Compact?

    Science.gov (United States)

    Avishai, Bernard

    1994-01-01

    Under the "new" social compact, businesses must focus on continuous learning and thus have both an obligation to support teaching and an opportunity to profit from it. Learning organizations must also be teaching organizations. (SK)

  4. Compact, Ultrasensitive Formaldehyde Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Small Business Innovative Research Phase II proposal seeks to develop a compact UV laser ?based sensor for Earth science and planetary atmosphere exploration....

  5. Mechanical Compaction of Porous Sandstone Compaction mécanique des grès poreux

    Directory of Open Access Journals (Sweden)

    Wong T. F.

    2006-12-01

    Full Text Available In many reservoir engineering and tectonic problems, the ability to predict both the occurrence and extent of inelastic deformation and failure hinges upon a fundamental understanding of the phenomenology and micromechanics of compaction in reservoir rock. This paper reviews recent research advances on mechanical compaction of porous sandstone, with focus on the synthesis of laboratory data, quantitative microstructural characterization of damage, and theoretical models based on elastic contact and fracture mechanics. The mechanical attributes of compaction in nominally dry and saturated samples have been studied under hydrostatic and nonhydrostatic loadings over a broad range of pressure conditions. Specific topics reviewed herein include: comparison of mechanical and acoustic emission data with continuum plasticity theory; microstructural control of onset and development of compaction; strain hardening and spatial evolution of damage during compaction; and the weakening effect of water on compactive yield and porosity change. Pour de nombreux problèmes de tectonique et d'ingénierie de réservoir, la capacité à prévoir à la fois la fréquence, l'ampleur de la déformation inélastique et les ruptures repose sur une compréhension fondamentale de la phénoménologie et de la micromécanique de compaction dans les roches-réservoirs. Cet article présente les résultats de recherches récentes sur la compaction mécanique des grès poreux. On insiste plus particulièrement sur la synthèse des données de laboratoire, la caractérisation microstructurale quantitative de l'endommagement, ainsi que sur les modèles théoriques basés sur un contact élastique et sur la mécanique de la rupture. Les attributs mécaniques de la compaction sur des échantillons initialement secs et saturés ont été étudiés sous des chargements hydrostatiques et non hydrostatiques dans une large gamme de pression. Les sujets spécifiques étudiés ici

  6. Compaction with Automatic Jog Introduction

    Science.gov (United States)

    1986-11-01

    conserve area. For these reasons, compaction algorithms have gained widespread attention in the VLSI literature S ,[4, 5, 9, 111, and have been incorporated...graph is (V,E), then Dijkstra’s algorithm runs in time 6 (IEl - IVI log IV!) using Fibonacci heaps [3]. In contrast, the longest- path algorithm of...however, so that hierarchical compaction can alleviate much of the resource -. 33 pa. .1 N’, problem. It also may be suited to use in channel routing

  7. Compact Stars with Sequential QCD Phase Transitions.

    Science.gov (United States)

    Alford, Mark; Sedrakian, Armen

    2017-10-20

    Compact stars may contain quark matter in their interiors at densities exceeding several times the nuclear saturation density. We explore models of such compact stars where there are two first-order phase transitions: the first from nuclear matter to a quark-matter phase, followed at a higher density by another first-order transition to a different quark-matter phase [e.g., from the two-flavor color-superconducting (2SC) to the color-flavor-locked (CFL) phase]. We show that this can give rise to two separate branches of hybrid stars, separated from each other and from the nuclear branch by instability regions, and, therefore, to a new family of compact stars, denser than the ordinary hybrid stars. In a range of parameters, one may obtain twin hybrid stars (hybrid stars with the same masses but different radii) and even triplets where three stars, with inner cores of nuclear matter, 2SC matter, and CFL matter, respectively, all have the same mass but different radii.

  8. IHW COMET HALLEY POLARIMETRIC OBSERVATIONS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's International Halley Watch (IHW) has created a Comet Halley Archive. The collection of data spans the full wavelength range as submitted by scientists to the...

  9. Imaging and Non-Imaging Polarimetric Methods for Remote Sensing

    Science.gov (United States)

    2016-02-09

    means of processing polarization data. In this project, the DRM has been expanded to include a full functional formalism, allowing for a range of...this project, the DRM has been expanded to include a full functional formalism, allowing for a range of new tools in polarimeter design to be brought...matrix W−1 is generally referred to as the data reduction matrix ( DRM ).28 While the above discussion approaches the problem from a linear algebra

  10. The effects of host galaxy properties on merging compact binaries detectable by LIGO

    Science.gov (United States)

    O'Shaughnessy, R.; Bellovary, J. M.; Brooks, A.; Shen, S.; Governato, F.; Christensen, C. R.

    2017-01-01

    Cosmological simulations of galaxy formation can produce present-day galaxies with a large range of assembly and star formation histories. A detailed study of the metallicity evolution and star formation history of such simulations can assist in predicting Laser Interferometer Gravitational-Wave Observatory (LIGO)-detectable compact object binary mergers. Recent simulations of compact binary evolution suggest that the compact object merger rate depends sensitively on the progenitor's metallicity. Rare low-metallicity star formation during galaxy assembly can produce more detected compact binaries than typical star formation. Using detailed simulations of galaxy and chemical evolution, we determine how sensitively the compact binary populations of galaxies with a similar present-day appearance depend on the details of their assembly. We also demonstrate by concrete example the extent to which dwarf galaxies overabundantly produce compact binary mergers, particularly binary black holes, relative to more massive galaxies. We discuss the implications for transient multimessenger astronomy with compact binary sources.

  11. A Classification Method Based on Polarimetric Entropy and GEV Mixture Model for Intertidal Area of PolSAR Image

    Directory of Open Access Journals (Sweden)

    She Xiaoqiang

    2017-10-01

    Full Text Available This paper proposes a classification method for the intertidal area using quad-polarimetric synthetic aperture radar data. In this paper, a systematic comparison of four well-known multipolarization features is provided so that appropriate features can be selected based on the characteristics of the intertidal area. Analysis result shows that the two most powerful multipolarization features are polarimetric entropy and anisotropy. Furthermore, through our detailed analysis of the scattering mechanisms of the polarimetric entropy, the Generalized Extreme Value (GEV distribution is employed to describe the statistical characteristics of the intertidal area based on the extreme value theory. Consequently, a new classification method is proposed by combining the GEV Mixture Models and the EM algorithm. Finally, experiments are performed on the Radarsat-2 quad-polarization data of the Dongtan intertidal area, Shanghai, to validate our method.

  12. Investigating the Effect of Compaction Characteristics on the Erodibility of Cohesive Soils Using the JET Method

    Science.gov (United States)

    Asghari Tabrizi, A.; LaRocque, L. A.; Chaudhry, M.; Imran, J.

    2013-12-01

    Several flood disasters occur every year all over the world, mostly due to levee and dam failure which result in human fatalities as well as devastating economic damages. To model and predict earthen embankment failures for the preparation of emergency action plans and risk assessments, the soil erodibility by flowing water is an essential parameter. The determination of erodibility becomes even more complicated for cohesive soils because of the large number of parameters controlling their erosion behavior (e.g. clay content, plasticity, compaction effort, compaction water content) and the difficulty of estimating these parameters. In this study the effect of the compaction energy and compaction water content on the erodibility of a sandy loam soil was assessed. Soil samples were prepared in a standard diameter compaction mold, 101.6 mm, for three levels of compaction effort and water content (i.e. low, medium, and high) with two replications for each case (18 tests total) and examined using the jet erosion test (JET). Observations from qualitative and statistical analyses of the data are: 1) a wide range of erodibility, from very erodible to very resistant, was produced by changes in the compaction characteristics; 2) for a given compaction energy, the erosion resistance based on the detachment rate coefficient kd tends to become minimum near the optimum compaction water content. On the dry side of optimum compaction water content, kd decreases with steep gradients by increasing the water content, while it increases with a flatter gradient on the wet side; 3) At a given water content, the soil erosion resistance increases with compaction efforts; 4) compaction water content influences soil erosibility more than compaction energy, especially on the dry side of the optimum compaction water content; and 5) for a given compaction effort, the critical shear stress increases with water content up to an optimum water content and then it decreases which is in consistent

  13. Estimating the Concentration of Large Raindrops from Polarimetric Radar and Disdrometer Observations

    Science.gov (United States)

    Carey, Lawrence D.; Petersen, Walter A; Gatlink, Patrick N.

    2013-01-01

    Estimation of rainfall integral parameters, including radar observables, and empirical relations between them are sensitive to the truncation of the drop size distribution (DSD), particularly at the large drop end. The sensitivity of rainfall integral parameters to the maximum drop diameter (D(sub max)) is exacerbated at C-band since resonance effects are pronounced for large drops in excess of 5 mm diameter (D). Due to sampling limitations, it is often difficult to reliably estimate D(sub max) with disdrometers. The resulting uncertainties in D(sub max0 potentially increase errors in radar retrieval methods, particularly at C-band, that rely on disdrometer observations for DSD input to radar models. In fact, D(sub max) is typically an assumed DSD parameter in the development of radar retrieval methods. Because of these very uncertainties, it is difficult to independently confirm disdrometer estimates of D(sub max) with polarimetric radar observations. A couple of approaches can be taken to reduce uncertainty in large drop measurement. Longer integration times can be used for the collection of larger disdrometer samples. However, integration periods must be consistent with a radar resolution volume (RRV) and the temporal and spatial scales of the physical processes affecting the DSD therein. Multiple co-located disdrometers can be combined into a network to increase the sample size within a RRV. However, over a reasonable integration period, a single disdrometer sample volume is many orders of magnitudes less than a RRV so it is not practical to devise a network of disdrometers that has an equivalent volume to a typical RRV. Since knowledge of DSD heterogeneity and large drop occurrence in time and space is lacking, the specific accuracy or even general representativeness of disdrometer based D(sub max) and large drop concentration estimates within a RRV are currently unknown. To address this complex issue, we begin with a simpler question. Is the frequency of

  14. Compact Intracloud Discharges

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David A. [Univ. of Colorado, Boulder, CO (United States)

    1998-11-01

    In November of 1993, mysterious signals recorded by a satellite-borne broadband VHF radio science experiment called Blackboard led to a completely unexpected discovery. Prior to launch of the ALEXIS satellite, it was thought that its secondary payload, Blackboard, would most often detect the radio emissions from lightning when its receiver was not overwhelmed by noise from narrowband communication carriers. Instead, the vast majority of events that triggered the instrument were isolated pairs of pulses that were one hundred times more energetic than normal thunderstorm electrical emissions. The events, which came to be known as TIPPs (for transionospheric pulse pairs), presented a true mystery to the geophysics community. At the time, it was not even known whether the events had natural or anthropogenic origins. After two and one half years of research into the unique signals, two ground-based receiver arrays in New Mexico first began to detect and record thunderstorm radio emissions that were consistent with the Blackboard observations. On two occasions, the ground-based systems and Blackboard even recorded emissions that were produced by the same exact events. From the ground based observations, it has been determined that TIPP events areproduced by brief, singular, isolated, intracloud electrical discharges that occur in intense regions of thunderstorms. These discharges have been dubbed CIDS, an acronym for compact intracloud discharges. During the summer of 1996, ground-based receiver arrays were used to record the electric field change signals and broadband HF emissions from hundreds of CIDS. Event timing that was accurate to within a few microseconds made possible the determination of source locations using methods of differential time of arrival. Ionospheric reflections of signals were recorded in addition to groundwave/line-of-sight signals and were used to determine accurate altitudes for the discharges. Twenty-four CIDS were recorded from three

  15. A long-lasting compact group

    Science.gov (United States)

    Governato, Fabio; Bhatia, Rajiv; Chincarini, Guido

    1991-04-01

    The dynamical evolution of a compact group of four galaxies has been studied using Aarseth's NBODY2 code. An important departure from previous studies is the wider range of masses chosen for the individual galaxies, which are representative of those existing in Hickson's catalog. The first merging occurs after 4.3 billion yr, while the group lasts for as many as nine billion yr before merging into a single remnant. Two other simulations test the dependence of the results on the galaxy models adopted and the general set of initial conditions. Another run, with four identical galaxies and no special initial conditions, is used as a standard of reference.

  16. Atmospheric and precipitation sounding with polarimetric radio-occultations aboard PAZ LEO

    Science.gov (United States)

    Padulles, Ramon; Cardellach, Estel; Tomás, Sergio; Oliveras, Santi; Rius, Antonio; de la Torre, Manuel; Turk, Joseph; Ao, Chi; Kursinski, Robert; Shreiner, Bill; Ector, Dave; Cucurull, Lidia; Wickert, Jens

    2015-04-01

    The Radio Occultation and Heavy Precipitation experiment aboard the PAZ Low Earth Orbiter (ROHP-PAZ) is a mission of opportunity: The Spanish Ministry of Science and Innovation (MICINN) approved in 2009 a proposal to include a polarimetric Global Navigation Satellite System (GNSS) Radio-Occultation (RO) payload on board of the Spanish Earth Observation satellite PAZ. This will be a new technique that has never been tested before, that aims to improve the knowledge of the precipitation through simultaneous thermodynamic and vertical rain profiles. The concept is similar to that used in some polarimetric weather radars: to measure the differential phase shift between the two polarimetric antennas, although here we will use the forward scattering geometry instead of the backscattering.The depolarization effect increases as the propagation line aligns with the plane of the drops' flattening (nominally perpendicular to the local gravity, i.e., parallel to the local horizon). The RO signals cross the lower troposphere tangentially, i.e., along the local horizon, which should maximize the depolarization effect. The satellite launch is scheduled for March 2015, and it will be followed by a 6-month commissioning phase period and has an expected life of 7 years, with a goal of 10 years. A sensitivity analysis have been performed, showing that we should be able to detect the 90% of all the events with along-ray averaged rain rate higher than 5 mm/h. Also, a ground field campaign has been conducted prior to the launch of the satellite. Results from the campaign also show a good correlation between phase shifts increases and heavy rain events. We will present here the status of the mission, which will have been launched few weeks before the EGU, together with some preliminary data analysis from both the actual satellite data and the prior-to-launch work.

  17. A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data

    DEFF Research Database (Denmark)

    Conradsen, Knut; Nielsen, Allan Aasbjerg; Schou, Jesper

    2003-01-01

    . Based on this distribution, a test statistic for equality of two such matrices and an associated asymptotic probability for obtaining a smaller value of the test statistic are derived and applied successfully to change detection in polarimetric SAR data. In a case study, EMISAR L-band data from April 17...... to HH, VV, or HV data alone, the derived test statistic reduces to the well-known gamma likelihood-ratio test statistic. The derived test statistic and the associated significance value can be applied as a line or edge detector in fully polarimetric SAR data also....

  18. Compact magnetic confinement fusion: Spherical torus and compact torus

    Directory of Open Access Journals (Sweden)

    Zhe Gao

    2016-05-01

    Full Text Available The spherical torus (ST and compact torus (CT are two kinds of alternative magnetic confinement fusion concepts with compact geometry. The ST is actually a sub-category of tokamak with a low aspect ratio; while the CT is a toroidal magnetic configuration with a simply-connected geometry including spheromak and field reversed pinch. The ST and CT have potential advantages for ultimate fusion reactor; while at present they can also provide unique fusion science and technology contributions for mainstream fusion research. However, some critical scientific and technology issues should be extensively investigated.

  19. Co-compact Gabor Systems on Locally Compact Abelian Groups

    DEFF Research Database (Denmark)

    Jakobsen, Mads Sielemann; Lemvig, Jakob

    2016-01-01

    In this work we extend classical structure and duality results in Gabor analysis on the euclidean space to the setting of second countable locally compact abelian (LCA) groups. We formulate the concept of rationally oversampling of Gabor systems in an LCA group and prove corresponding characteriz......In this work we extend classical structure and duality results in Gabor analysis on the euclidean space to the setting of second countable locally compact abelian (LCA) groups. We formulate the concept of rationally oversampling of Gabor systems in an LCA group and prove corresponding...

  20. A New Ka-Band Scanning Radar Facility: Polarimetric and Doppler Spectra Measurements of Snow Events

    Science.gov (United States)

    Oue, M.; Kollias, P.; Luke, E. P.; Mead, J.

    2017-12-01

    Polarimetric radar analyses offer the capability of identification of ice hydrometeor species as well as their spatial distributions. In addition to polarimetric parameter observations, Doppler spectra measurements offer unique insights into ice particle properties according to particle fall velocities. In particular, millimeter-wavelength radar Doppler spectra can reveal supercooled liquid cloud droplets embedded in ice precipitation clouds. A Ka-band scanning polarimetric radar, named KASPR, was installed in an observation facility at Stony Brook University, located 22 km west of the KOKX NEXRAD radar at Upton, NY. The KASPR can measure Doppler spectra and full polarimetric variables, including radar reflectivity, differential reflectivity (ZDR), differential phase (φDP), specific differential phase (KDP), correlation coefficient (ρhv), and linear depolarization ratio (LDR). The facility also includes a micro-rain radar and a microwave radiometer capable of measuring reflectivity profiles and integrated liquid water path, respectively. The instruments collected initial datasets during two snowstorm events and two snow shower events in March 2017. The radar scan strategy was a combination of PPI scans at 4 elevation angles (10, 20, 45, and 60°) and RHI scans in polarimetry mode, and zenith pointing with Doppler spectra collection. During the snowstorm events the radar observed relatively larger ZDR (1-1.5 dB) and enhanced KDP (1-2 ° km-1) at heights corresponding to a plate/dendrite crystal growth regime. The Doppler spectra showed that slower-falling particles ( 1 m s-1). The weakly increased ZDR could be produced by large, faster falling particles such as quasi-spherical aggregates, while the enhanced KDP could be produced by highly-oriented oblate, slowly-falling particles. Below 2 km altitude, measurements of dual wavelength ratio (DWR) based on Ka and S-band reflectivities from the KASPR and NEXRAD radars were available. Larger DWR (>10 dB) suggested

  1. Identification of hydrometeor mixtures in polarimetric radar measurements and their linear de-mixing

    Science.gov (United States)

    Besic, Nikola; Ventura, Jordi Figueras i.; Grazioli, Jacopo; Gabella, Marco; Germann, Urs; Berne, Alexis

    2017-04-01

    The issue of hydrometeor mixtures affects radar sampling volumes without a clear dominant hydrometeor type. Containing a number of different hydrometeor types which significantly contribute to the polarimetric variables, these volumes are likely to occur in the vicinity of the melting layer and mainly, at large distance from a given radar. Motivated by potential benefits for both quantitative and qualitative applications of dual-pol radar, we propose a method for the identification of hydrometeor mixtures and their subsequent linear de-mixing. This method is intrinsically related to our recently proposed semi-supervised approach for hydrometeor classification. The mentioned classification approach [1] performs labeling of radar sampling volumes by using as a criterion the Euclidean distance with respect to five-dimensional centroids, depicting nine hydrometeor classes. The positions of the centroids in the space formed by four radar moments and one external parameter (phase indicator), are derived through a technique of k-medoids clustering, applied on a selected representative set of radar observations, and coupled with statistical testing which introduces the assumed microphysical properties of the different hydrometeor types. Aside from a hydrometeor type label, each radar sampling volume is characterized by an entropy estimate, indicating the uncertainty of the classification. Here, we revisit the concept of entropy presented in [1], in order to emphasize its presumed potential for the identification of hydrometeor mixtures. The calculation of entropy is based on the estimate of the probability (pi ) that the observation corresponds to the hydrometeor type i (i = 1,ṡṡṡ9) . The probability is derived from the Euclidean distance (di ) of the observation to the centroid characterizing the hydrometeor type i . The parametrization of the d → p transform is conducted in a controlled environment, using synthetic polarimetric radar datasets. It ensures balanced

  2. Processing and Analysis of Polarimetric Ship Signatures from MARSIE: Report on Results for Polar Epsilon

    Science.gov (United States)

    2006-10-01

    observations de la surface équivalente radar de navires cibles pour les canaux de copolarisation et de polarisation croisée, la réduction de la...motion, environmental conditions, etc. on the observed polarimetric signatures; • The differences in the elemental scatterer distributions among the...calculée pour plusieurs navires. Les valeurs estimées de SER totale pour les canaux HV et VH étaient d’environ 10 dB inférieures aux valeurs

  3. Fitting a Two-Component Scattering Model to Polarimetric SAR Data from Forests

    Science.gov (United States)

    Freeman, Anthony

    2007-01-01

    Two simple scattering mechanisms are fitted to polarimetric synthetic aperture radar (SAR) observations of forests. The mechanisms are canopy scatter from a reciprocal medium with azimuthal symmetry and a ground scatter term that can represent double-bounce scatter from a pair of orthogonal surfaces with different dielectric constants or Bragg scatter from a moderately rough surface, which is seen through a layer of vertically oriented scatterers. The model is shown to represent the behavior of polarimetric backscatter from a tropical forest and two temperate forest sites by applying it to data from the National Aeronautic and Space Agency/Jet Propulsion Laboratory's Airborne SAR (AIRSAR) system. Scattering contributions from the two basic scattering mechanisms are estimated for clusters of pixels in polarimetric SAR images. The solution involves the estimation of four parameters from four separate equations. This model fit approach is justified as a simplification of more complicated scattering models, which require many inputs to solve the forward scattering problem. The model is used to develop an understanding of the ground-trunk double-bounce scattering that is present in the data, which is seen to vary considerably as a function of incidence angle. Two parameters in the model fit appear to exhibit sensitivity to vegetation canopy structure, which is worth further exploration. Results from the model fit for the ground scattering term are compared with estimates from a forward model and shown to be in good agreement. The behavior of the scattering from the ground-trunk interaction is consistent with the presence of a pseudo-Brewster angle effect for the air-trunk scattering interface. If the Brewster angle is known, it is possible to directly estimate the real part of the dielectric constant of the trunks, a key variable in forward modeling of backscatter from forests. It is also shown how, with a priori knowledge of the forest height, an estimate for the

  4. Preliminary results of post-irradiation examination of the AGR-1 TRISO fuel compacts

    Energy Technology Data Exchange (ETDEWEB)

    Paul Demkowicz; John Hunn; Robert Morris; Jason Harp; Philip Winston; Charles Baldwin; Fred Montgomery; Scott Ploger; Isabella van Rooyen

    2012-10-01

    Five irradiated fuel compacts from the AGR-1 experiment have been examined in detail in order to assess in-pile fission product release behavior. Compacts were electrolytically deconsolidated and analyzed using the leach-burn-leach technique to measure fission product inventory in the compact matrix and identify any particles with a defective SiC layer. Loose particles were then gamma counted to measure the fission product inventory. One particle with a defective SiC layer was found in the five compacts examined. The fractional release of Ag 110m from the particles was significant. The total fraction of silver released from all the particles within a compact ranged from 0-0.63 and individual particles within a single compact often exhibited a very wide range of silver release. The average fractional release of Eu-154 from all particles in a compact was 2.4×10-4—1.3×10-2, which is indicative of release through intact coatings. The fractional Cs-134 inventory in the compact matrix was <2×10-5 when all coatings remained intact, indicating good cesium retention. Approximately 1% of the palladium inventory was found in the compact matrix for two of the compacts, indicating significant release through intact coatings.

  5. Compact Polarimetry in a Low Frequency Spaceborne Context

    Science.gov (United States)

    Truong-Loi, M-L.; Freeman, A.; Dubois-Fernandez, P.; Pottier, E.

    2011-01-01

    Compact polarimetry has been shown to be an interesting alternative mode to full polarimetry when global coverage and revisit time are key issues. It consists on transmitting a single polarization, while receiving on two. Several critical points have been identified, one being the Faraday rotation (FR) correction and the other the calibration. When a low frequency electromagnetic wave travels through the ionosphere, it undergoes a rotation of the polarization plane about the radar line of sight for a linearly polarized wave, and a simple phase shift for a circularly polarized wave. In a low frequency radar, the only possible choice of the transmit polarization is the circular one, in order to guaranty that the scattering element on the ground is illuminated with a constant polarization independently of the ionosphere state. This will allow meaningful time series analysis, interferometry as long as the Faraday rotation effect is corrected for the return path. In full-polarimetric (FP) mode, two techniques allow to estimate the FR: Freeman method using linearly polarized data, and Bickel and Bates theory based on the transformation of the measured scattering matrix to a circular basis. In CP mode, an alternate procedure is presented which relies on the bare surface scattering properties. These bare surfaces are selected by the conformity coefficient, invariant with FR. This coefficient is compared to other published classifications to show its potential in distinguishing three different scattering types: surface, doublebounce and volume. The performances of the bare surfaces selection and FR estimation are evaluated on PALSAR and airborne data. Once the bare surfaces are selected and Faraday angle estimated over them, the correction can be applied over the whole scene. The algorithm is compared with both FP techniques. In the last part of the paper, the calibration of a CP system from the point of view of classical matrix transformation methods in polarimetry is

  6. Characterization of Compaction Process on UO2 Powder Pelletisation

    International Nuclear Information System (INIS)

    Rachmawati, M; Langenati, R; Saputra, T.T; Mahpudin, A; Histori; Sutarya, D; Zahedi

    1998-01-01

    Determination of compaction pressure of pelletization which is based on density characterization in conjunction with satisfactory green strength of the UO 2 pellet, is carried out in this experiment. Cameco UO 2 powder has been mixed up with Zn-stearate lubricant prior to compaction process. The compaction pressure is varied from the range of 2 Mp up to 6 Mp. The mechanical strength is determined using diametral compression strength with the speed of loading of 0.1 mm.min 1 . The density measurement and compression strength test are performed on each of the applied pressure. The result shows that compaction at 5 Mp gives the maximum green strength of UO 2 pellet, while the maximum density is achieved at 5.7 Mp. The maximum green strength and green density of UO 2 (+ TiO 2 ) pellets is achieved at the addition of 0.25% and 0.125% TiO 2 respectively. The compaction pressure which is showing the maximum pellet green strength but still having the required density, is chosen to be the determinant compaction pressure in condition of pelletization

  7. Are soils in urban ecosystems compacted? A citywide analysis.

    Science.gov (United States)

    Edmondson, Jill L; Davies, Zoe G; McCormack, Sarah A; Gaston, Kevin J; Leake, Jonathan R

    2011-10-23

    Soil compaction adversely influences most terrestrial ecosystem services on which humans depend. This global problem, affecting over 68 million ha of agricultural land alone, is a major driver of soil erosion, increases flood frequency and reduces groundwater recharge. Agricultural soil compaction has been intensively studied, but there are no systematic studies investigating the extent of compaction in urban ecosystems, despite the repercussions for ecosystem function. Urban areas are the fastest growing land-use type globally, and are often assumed to have highly compacted soils with compromised functionality. Here, we use bulk density (BD) measurements, taken to 14 cm depth at a citywide scale, to compare the extent of surface soil compaction between different urban greenspace classes and agricultural soils. Urban soils had a wider BD range than agricultural soils, but were significantly less compacted, with 12 per cent lower mean BD to 7 cm depth. Urban soil BD was lowest under trees and shrubs and highest under herbaceous vegetation (e.g. lawns). BD values were similar to many semi-natural habitats, particularly those underlying woody vegetation. These results establish that, across a typical UK city, urban soils were in better physical condition than agricultural soils and can contribute to ecosystem service provision.

  8. Intervalo hídrico ótimo no perfil explorado pelas raízes de feijoeiro em um latossolo sob diferentes níveis de compactação Least limiting water range in an oxisol profile penetrated by common bean roots under different compaction levels

    Directory of Open Access Journals (Sweden)

    Douglas Rodrigo Kaiser

    2009-08-01

    Full Text Available O intervalo hídrico ótimo (IHO é integrador dos fatores de crescimento das plantas, e a densidade crítica obtida é um indicativo da qualidade estrutural do solo. O objetivo deste trabalho foi determinar o IHO em um Latossolo argiloso. Amostras de solo com estrutura preservada foram coletadas num experimento com três níveis de compactação: PD - plantio direto continuado por seis anos, PDc - plantio direto com compactação adicional e Esc - escarificação. Para a curva de resistência, coletaram-se 107 amostras na camada de 0 a 0,20 m em diferentes condições de umidade. Para a curva de retenção de água, coletaram-se amostras nas camadas de 0 a 0,05; 0,05 a 0,10; 0,10 a 0,15; 0,20 a 0,25; e 0,30 a 0,35 m. O modelo de resistência à penetração ajustado, com base na densidade e umidade, explicou 33 % da variação obtida na resistência do solo à penetração, sendo todos os parâmetros de ajuste significativos. A densidade crítica do IHO é dependente do valor de resistência à penetração considerado limitante, sendo de 1,36; 1,40; 1,45; e 1,49 Mg m-3 para valores de RP de 1,5; 2,0; 2,5; e 3,0 MPa, respectivamente. A aeração do solo passa a ser limitante com densidades acima de 1,32 Mg m-3. A compactação do solo reduziu o seu IHO na camada próxima a 0,10 m de profundidade. Quando se adotou a resistência crítica de 2 MPa, o IHO foi nulo nas camadas de 0,05 a 0,12 m no PD, de 0,05 a 0,17 m no Esc e de 0,03 a 0,22 m no PDc. Com a utilização de 3 MPa como resistência crítica, ocorreu ampliação, em que o IHO tem valor positivo, no perfil do solo; o IHO foi nulo apenas na camada de 0,05 a 0,15 m do PDc. As raízes do feijoeiro não cresceram na camada de solo onde o IHO foi nulo com resistência crítica de 3 MPa.The least limiting water range (LLWR integrates the plant growth factors and the critical bulk density is an indicator of the soil structural quality. The objective of this study was to determine the LLWR of a

  9. Compact Chern–Simons vortices

    Directory of Open Access Journals (Sweden)

    D. Bazeia

    2017-09-01

    Full Text Available We introduce and investigate new models of the Chern–Simons type in the three-dimensional spacetime, focusing on the existence of compact vortices. The models are controlled by potentials driven by a single real parameter that can be used to change the profile of the vortex solutions as they approach their boundary values. One of the models unveils an interesting new behavior, the tendency to make the vortex compact, as the parameter increases to larger and larger values. We also investigate the behavior of the energy density and calculate the total energy numerically.

  10. Professional Windows Embedded Compact 7

    CERN Document Server

    Phung, Samuel; Joubert, Thierry; Hall, Mike

    2011-01-01

    Learn to program an array of customized devices and solutions As a compact, highly efficient, scalable operating system, Windows Embedded Compact 7 (WEC7) is one of the best options for developing a new generation of network-enabled, media-rich, and service-oriented devices. This in-depth resource takes you through the benefits and capabilities of WEC7 so that you can start using this performance development platform today. Divided into several major sections, the book begins with an introduction and then moves on to coverage of OS design, application development, advanced application developm

  11. Modeling of compact loop antennas

    International Nuclear Information System (INIS)

    Baity, F.W.

    1987-01-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak

  12. Isometric coactions of compact quantum groups on compact ...

    Indian Academy of Sciences (India)

    a compact quantum metric space in the framework of Rieffel, where the metric structure is given by a ... For finite classical metric spaces, this problem was studied by Banica [2]. He has given a definition for a quantum symmetry of a classical finite metric space. With this ..... The graph theory we need concerns flow networks.

  13. Compaction dynamics of crunchy granular material

    Directory of Open Access Journals (Sweden)

    Guillard François

    2017-01-01

    Full Text Available Compaction of brittle porous material leads to a wide variety of densification patterns. Static compaction bands occurs naturally in rocks or bones, and have important consequences in industry for the manufacturing of powder tablets or metallic foams for example. Recently, oscillatory compaction bands have been observed in brittle porous media like snow or cereals. We will discuss the great variety of densification patterns arising during the compaction of puffed rice, including erratic compaction at low velocity, one or several travelling compaction bands at medium velocity and homogeneous compaction at larger velocity. The conditions of existence of each pattern are studied thanks to a numerical spring lattice model undergoing breakage and is mapped to the phase diagram of the patterns based on dimensionless characteristic quantities. This also allows to rationalise the evolution of the compaction behaviour during a single test. Finally, the localisation of compaction bands is linked to the strain rate sensitivity of the material.

  14. Compaction dynamics of crunchy granular material

    Science.gov (United States)

    Guillard, François; Golshan, Pouya; Shen, Luming; Valdès, Julio R.; Einav, Itai

    2017-06-01

    Compaction of brittle porous material leads to a wide variety of densification patterns. Static compaction bands occurs naturally in rocks or bones, and have important consequences in industry for the manufacturing of powder tablets or metallic foams for example. Recently, oscillatory compaction bands have been observed in brittle porous media like snow or cereals. We will discuss the great variety of densification patterns arising during the compaction of puffed rice, including erratic compaction at low velocity, one or several travelling compaction bands at medium velocity and homogeneous compaction at larger velocity. The conditions of existence of each pattern are studied thanks to a numerical spring lattice model undergoing breakage and is mapped to the phase diagram of the patterns based on dimensionless characteristic quantities. This also allows to rationalise the evolution of the compaction behaviour during a single test. Finally, the localisation of compaction bands is linked to the strain rate sensitivity of the material.

  15. Compacting biomass waste materials for use as fuel

    Science.gov (United States)

    Zhang, Ou

    Every year, biomass waste materials are produced in large quantity. The combustibles in biomass waste materials make up over 70% of the total waste. How to utilize these waste materials is important to the nation and the world. The purpose of this study is to test optimum processes and conditions of compacting a number of biomass waste materials to form a densified solid fuel for use at coal-fired power plants or ordinary commercial furnaces. Successful use of such fuel as a substitute for or in cofiring with coal not only solves a solid waste disposal problem but also reduces the release of some gases from burning coal which cause health problem, acid rain and global warming. The unique punch-and-die process developed at the Capsule Pipeline Research Center, University of Missouri-Columbia was used for compacting the solid wastes, including waste paper, plastics (both film and hard products), textiles, leaves, and wood. The compaction was performed to produce strong compacts (biomass logs) under room temperature without binder and without preheating. The compaction conditions important to the commercial production of densified biomass fuel logs, including compaction pressure, pressure holding time, back pressure, moisture content, particle size, binder effects, and mold conditions were studied and optimized. The properties of the biomass logs were evaluated in terms of physical, mechanical, and combustion characteristics. It was found that the compaction pressure and the initial moisture content of the biomass material play critical roles in producing high-quality biomass logs. Under optimized compaction conditions, biomass waste materials can be compacted into high-quality logs with a density of 0.8 to 1.2 g/cm3. The logs made from the combustible wastes have a heating value in the range 6,000 to 8,000 Btu/lb which is only slightly (10 to 30%) less than that of subbituminous coal. To evaluate the feasibility of cofiring biomass logs with coal, burn tests were

  16. Polarimetric rainfall retrieval from a C-Band weather radar in a tropical environment (The Philippines)

    Science.gov (United States)

    Crisologo, I.; Vulpiani, G.; Abon, C. C.; David, C. P. C.; Bronstert, A.; Heistermann, Maik

    2014-11-01

    We evaluated the potential of polarimetric rainfall retrieval methods for the Tagaytay C-Band weather radar in the Philippines. For this purpose, we combined a method for fuzzy echo classification, an approach to extract and reconstruct the differential propagation phase, Φ DP , and a polarimetric self-consistency approach to calibrate horizontal and differential reflectivity. The reconstructed Φ DP was used to estimate path-integrated attenuation and to retrieve the specific differential phase, K DP . All related algorithms were transparently implemented in the Open Source radar processing software wradlib. Rainfall was then estimated from different variables: from re-calibrated reflectivity, from re-calibrated reflectivity that has been corrected for path-integrated attenuation, from the specific differential phase, and from a combination of reflectivity and specific differential phase. As an additional benchmark, rainfall was estimated by interpolating the rainfall observed by rain gauges. We evaluated the rainfall products for daily and hourly accumulations. For this purpose, we used observations of 16 rain gauges from a five-month period in the 2012 wet season. It turned out that the retrieval of rainfall from K DP substantially improved the rainfall estimation at both daily and hourly time scales. The measurement of reflectivity apparently was impaired by severe miscalibration while K DP was immune to such effects. Daily accumulations of rainfall retrieved from K DP showed a very low estimation bias and small random errors. Random scatter was, though, strongly present in hourly accumulations.

  17. Full polarimetric millimetre wave radar for stand-off security screening

    Science.gov (United States)

    Blackhurst, Eddie; Salmon, Neil; Southgate, Matthew

    2017-10-01

    The development and measurements are described of a frequency modulated continuous wave (FMCW) mono-static millimetre wave full polarimetric radar, operating at k-band (18 to 26 GHz). The system has been designed to explore the feasibility of using full polarimetry for the detection of concealed weapons, and person borne improvised explosive devices (PBIED). The philosophy of this scheme is a means to extract the maximum information content from a target which is normally in the single spatial pixel (sometimes sub-pixel) configuration in stand-off (tens of metres) and crowd surveillance scenarios. The radar comprises a vector network analyser (VNA), an orthomode transducer and a conical horn antenna. A calibration strategy is discussed and demonstrated using a variety of known calibration targets with known reflective properties, including a flat metal plate, dihedral reflector, metal sphere, helix and dipole. The orthomode transducer is based on a high performance linear polarizer of the turnstile type with isolation better than - 35dB between orthogonal polarisations. The calibration enables the polarimetric Sinclair scattering matrix to be measured at each frequency for coherent polarimetry, and this can be extended using multiple measurements via the Kennaugh matrix to investigate incoherent full polarimetry.

  18. Handheld SFDI/polarimetric imaging device for objective evaluation of hypertrophic scars (Conference Presentation)

    Science.gov (United States)

    Ramella-Roman, Jessica C.; Montejo, Karla; Sevilla, Nicole; Stoff, Susan; Gonzalez, Mariacarla; Chue-Sang, Joseph

    2017-02-01

    Scars can be debilitating and cause serious functional limitations, significantly reduced physical function and loss of ability to perform normal daily activities. Scar formation is not fully understood and the treatment options have been hampered by the lack of an objective diagnostic tool to assess scars. Presently, assessment of hypertrophic scars has been based on subjective clinician rankings using a four-parameter scale called the Vancouver Scar Scale (VSS) or the Patient Observer Scar Assessment Scale (POSAS) but no objective, standardized tool for quantifying scar severity is available, despite known inadequacies of the subjective scales. We have developed a hand-held multi modal system consisting of a combined Spatial Frequency Domain Imager (SFDI) used for the assessment of tissue molecular components and a polarimeter for structural measurements. The SFDI capability is provided by an Arduino board controlled spectrally and polarimetric diverse Light Emitting Diodes (LED) ring illuminator. For SFDI imagery, the LEDs are combined with sinusoidal patterns. A single pattern snapshot SFDI approach is used to observe and quantify the biological components in the scar tissue including: oxygenated and de oxygenated hemoglobin, water, and melanin. The SFDI system is integrated with a reduced Mueller Matrix polarimetric system, whose illumination is also included in the LED's ring, and providing for the assessment of collagen orientation through Mueller Matrix decomposition. The design of the system and experimental work on phantoms will be presented.

  19. Using WSR-88D Polarimetric Data to Identify Bird-Contaminated Doppler Velocities

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2013-01-01

    Full Text Available As an important part of Doppler velocity data quality control for radar data assimilation and other quantitative applications, an automated technique is developed to identify and remove contaminated velocities by birds, especially migrating birds. This technique builds upon the existing hydrometeor classification algorithm (HCA for dual-polarimetric WSR-88D radars developed at the National Severe Storms Laboratory, and it performs two steps. In the first step, the fuzzy-logic method in the HCA is simplified and used to identify biological echoes (mainly from birds and insects. In the second step, another simple fuzzy logic method is developed to detect bird echoes among the biological echoes identified in the first step and thus remove bird-contaminated velocities. The membership functions used by the fuzzy logic method in the second step are extracted from normalized histograms of differential reflectivity and differential phase for birds and insects, respectively, while the normalized histograms are constructed by polarimetric data collected during the 2012 fall migrating season and sorted for bird and insects, respectively. The performance and effectiveness of the technique are demonstrated by real-data examples.

  20. Multi-Temporal Polarimetric RADARSAT-2 for Land Cover Monitoring in Northeastern Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Jeffrey W. Cable

    2014-03-01

    Full Text Available For successful applications of microwave remote sensing endeavors it is essential to understand how surface targets respond to changing synthetic aperture radar (SAR parameters. The purpose of the study is to examine how two particular parameters, acquisition time and incidence angle, influences the response from various land use/land cover types (forests, urban infrastructure, surface water and marsh wetland targets using nine RADARSAT-2 C-band fine-beam (FQ7 and FQ21 fully polarimetric SAR data acquired during the 2011 growing season over northern Ontario, Canada. The results indicate that backscatter from steep incidence angle acquisitions was typically higher than shallow angles. Wetlands showed an increase in HH and HV intensity due to the growth of emergent vegetation over the course of the summer. The forest and urban targets displayed little variation in backscatter over time. The surface water target showed the greatest difference with respect to incidence angle, but was also determined to be the most affected by wind conditions. Analysis of the co-polarized phase difference revealed the urban target as greatly influenced by the incidence angle. The observed phase differences of the wetland target for all acquisitions also suggested evidence of double-bounce interactions, while the forest and surface water targets showed little to no phase difference. In addition, Cloude-Pottier and Freeman-Durden decompositions, when analyzed in conjunction with polarimetric response plots, provided supporting information to confidently identify the various targets and their scattering mechanisms.

  1. Algorithm Development for the Optimum Rainfall Estimation Using Polarimetric Variables in Korea

    Directory of Open Access Journals (Sweden)

    Cheol-Hwan You

    2015-01-01

    Full Text Available In this study, to get an optimum rainfall estimation using polarimetric variables observed from Bislsan radar which is the first polarimetric radar in Korea, rainfall cases for 84 hours caused by different conditions, which are Changma front and typhoon, Changma front only, and typhoon only, occurred in 2011, were analyzed. And rainfall algorithms were developed by using long period drop size distributions with six different raindrop axis ratio relations. The combination of the relations between R and Z, ZDR, R and KDP, ZDR, and R and KDP with different rainfall intensity would be an optimum rainfall algorithm if the reference of rainfall would be defined correctly. In the case the reference is not defined adequately, the relation between R and Z, ZDR, KDP, AH and R and Z, KDP, AH can be used as a representative rainfall relation. Particularly if the qualified ZDR is not available, the relation between R and Z, KDP, AH can be used as an optimum rainfall relation in Korea.

  2. Landslide Mapping in Vegetated Areas Using Change Detection Based on Optical and Polarimetric SAR Data

    Directory of Open Access Journals (Sweden)

    Simon Plank

    2016-04-01

    Full Text Available Mapping of landslides, quickly providing information about the extent of the affected area and type and grade of damage, is crucial to enable fast crisis response, i.e., to support rescue and humanitarian operations. Most synthetic aperture radar (SAR data-based landslide detection approaches reported in the literature use change detection techniques, requiring very high resolution (VHR SAR imagery acquired shortly before the landslide event, which is commonly not available. Modern VHR SAR missions, e.g., Radarsat-2, TerraSAR-X, or COSMO-SkyMed, do not systematically cover the entire world, due to limitations in onboard disk space and downlink transmission rates. Here, we present a fast and transferable procedure for mapping of landslides, based on change detection between pre-event optical imagery and the polarimetric entropy derived from post-event VHR polarimetric SAR data. Pre-event information is derived from high resolution optical imagery of Landsat-8 or Sentinel-2, which are freely available and systematically acquired over the entire Earth’s landmass. The landslide mapping is refined by slope information from a digital elevation model generated from bi-static TanDEM-X imagery. The methodology was successfully applied to two landslide events of different characteristics: A rotational slide near Charleston, West Virginia, USA and a mining waste earthflow near Bolshaya Talda, Russia.

  3. POLARIMETRIC DETECTION OF EXOPLANETS TRANSITING T AND L BROWN DWARFS

    International Nuclear Information System (INIS)

    Sengupta, Sujan

    2016-01-01

    While scattering of light by atoms and molecules yields large amounts of polarization at the B-band of both T and L dwarfs, scattering by dust grains in the cloudy atmosphere of L dwarfs gives rise to significant polarization at the far-optical and infrared wavelengths where these objects are much brighter. However, the observable disk-averaged polarization should be zero if the clouds are uniformly distributed and the object is spherically symmetric. Therefore, in order to explain the observed large polarization of several L dwarfs, rotation-induced oblateness or horizontally inhomogeneous cloud distribution in the atmosphere is invoked. On the other hand, when an extra-solar planet of Earth-size or larger transits the brown dwarf along the line of sight, the asymmetry induced during the transit gives rise to a net non-zero, time-dependent polarization. Employing atmospheric models for a range of effective temperature and surface gravity appropriate for T and L dwarfs, I derive the time-dependent polarization profiles of these objects during the transit phase and estimate the peak amplitude of polarization that occurs during the inner contact points of the transit ingress/egress phase. It is found that peak polarization in the range of 0.2%–1.0% at I and J band may arise of cloudy L dwarfs occulted by Earth-size or larger exoplanets. Such an amount of polarization is higher than what can be produced by rotation-induced oblateness of even rapidly rotating L dwarfs. Hence, I suggest that time-resolved imaging polarization could be a potential technique for detecting transiting exoplanets around L dwarfs.

  4. POLARIMETRIC DETECTION OF EXOPLANETS TRANSITING T AND L BROWN DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Sujan, E-mail: sujan@iiap.res.in [Indian Institute of Astrophysics, Koramangala 2nd Block, Bangalore 560 034 (India)

    2016-10-01

    While scattering of light by atoms and molecules yields large amounts of polarization at the B-band of both T and L dwarfs, scattering by dust grains in the cloudy atmosphere of L dwarfs gives rise to significant polarization at the far-optical and infrared wavelengths where these objects are much brighter. However, the observable disk-averaged polarization should be zero if the clouds are uniformly distributed and the object is spherically symmetric. Therefore, in order to explain the observed large polarization of several L dwarfs, rotation-induced oblateness or horizontally inhomogeneous cloud distribution in the atmosphere is invoked. On the other hand, when an extra-solar planet of Earth-size or larger transits the brown dwarf along the line of sight, the asymmetry induced during the transit gives rise to a net non-zero, time-dependent polarization. Employing atmospheric models for a range of effective temperature and surface gravity appropriate for T and L dwarfs, I derive the time-dependent polarization profiles of these objects during the transit phase and estimate the peak amplitude of polarization that occurs during the inner contact points of the transit ingress/egress phase. It is found that peak polarization in the range of 0.2%–1.0% at I and J band may arise of cloudy L dwarfs occulted by Earth-size or larger exoplanets. Such an amount of polarization is higher than what can be produced by rotation-induced oblateness of even rapidly rotating L dwarfs. Hence, I suggest that time-resolved imaging polarization could be a potential technique for detecting transiting exoplanets around L dwarfs.

  5. The classification of 2-compact groups

    OpenAIRE

    Andersen, Kasper K. S.; Grodal, Jesper

    2006-01-01

    We prove that any connected 2-compact group is classified by its 2-adic root datum, and in particular the exotic 2-compact group DI(4), constructed by Dwyer-Wilkerson, is the only simple 2-compact group not arising as the 2-completion of a compact connected Lie group. Combined with our earlier work with Moeller and Viruel for p odd, this establishes the full classification of p-compact groups, stating that, up to isomorphism, there is a one-to-one correspondence between connected p-compact gr...

  6. Decomposition of Polarimetric SAR Images Based on Second- and Third-order Statics Analysis

    Science.gov (United States)

    Kojima, S.; Hensley, S.

    2012-12-01

    There are many papers concerning the research of the decomposition of polerimetric SAR imagery. Most of them are based on second-order statics analysis that Freeman and Durden [1] suggested for the reflection symmetry condition that implies that the co-polarization and cross-polarization correlations are close to zero. Since then a number of improvements and enhancements have been proposed to better understand the underlying backscattering mechanisms present in polarimetric SAR images. For example, Yamaguchi et al. [2] added the helix component into Freeman's model and developed a 4 component scattering model for the non-reflection symmetry condition. In addition, Arii et al. [3] developed an adaptive model-based decomposition method that could estimate both the mean orientation angle and a degree of randomness for the canopy scattering for each pixel in a SAR image without the reflection symmetry condition. This purpose of this research is to develop a new decomposition method based on second- and third-order statics analysis to estimate the surface, dihedral, volume and helix scattering components from polarimetric SAR images without the specific assumptions concerning the model for the volume scattering. In addition, we evaluate this method by using both simulation and real UAVSAR data and compare this method with other methods. We express the volume scattering component using the wire formula and formulate the relationship equation between backscattering echo and each component such as the surface, dihedral, volume and helix via linearization based on second- and third-order statics. In third-order statics, we calculate the correlation of the correlation coefficients for each polerimetric data and get one new relationship equation to estimate each polarization component such as HH, VV and VH for the volume. As a result, the equation for the helix component in this method is the same formula as one in Yamaguchi's method. However, the equation for the volume

  7. Sub-Seasonal Variability of Tropical Rainfall Observed by TRMM and Ground-based Polarimetric Radar

    Science.gov (United States)

    Dolan, Brenda; Rutledge, Steven; Lang, Timothy; Cifelli, Robert; Nesbitt, Stephen

    2010-05-01

    Studies of tropical precipitation characteristics from the TRMM-LBA and NAME field campaigns using ground-based polarimetric S-band data have revealed significant differences in microphysical processes occurring in the various meteorological regimes sampled in those projects. In TRMM-LMA (January-February 1999 in Brazil; a TRMM ground validation experiment), variability is driven by prevailing low-level winds. During periods of low-level easterlies, deeper and more intense convection is observed, while during periods of low-level westerlies, weaker convection embedded in widespread stratiform precipitation is common. In the NAME region (North American Monsoon Experiment, summer 2004 along the west coast of Mexico), strong terrain variability drives differences in precipitation, with larger drops and larger ice mass aloft associated with convection occurring over the coastal plain compared to convection over the higher terrain of the Sierra Madre Occidental, or adjacent coastal waters. Comparisons with the TRMM precipitation radar (PR) indicate that such sub-seasonal variability in these two regions are not well characterized by the TRMM PR reflectivity and rainfall statistics. TRMM PR reflectivity profiles in the LBA region are somewhat lower than S-Pol values, particularly in the more intense easterly regime convection. In NAME, mean reflectivities are even more divergent, with TRMM profiles below those of S-Pol. In both regions, the TRMM PR does not capture rain rates above 80 mm hr-1 despite much higher rain rates estimated from the S-Pol polarimetric data, and rain rates are generally lower for a given reflectivity from TRMM PR compared to S-Pol. These differences between TRMM PR and S-Pol may arise from the inability of Z-R relationships to capture the full variability of microphysical conditions or may highlight problems with TRMM retrievals over land. In addition to the TRMM-LBA and NAME regions, analysis of sub-seasonal precipitation variability and

  8. Compactness in fuzzy function spaces

    African Journals Online (AJOL)

    In [3] we defined a notion of compactness in FCS, the category of fuzzy convergence spaces as defined by Lowen/Lowen/Wuyts [8]. In their paper the latter also introduced a fuzzy convergence structure c-lim for fuzzy function spaces thus proving that FCS is a topological quasitopos. In this paper we start the investigation of ...

  9. Permeation characteristics of compacted bentonite

    International Nuclear Information System (INIS)

    Banno, Katsunori; Nishi, Kenji; Yoshida, Hiroshi

    1991-01-01

    Bentonite has properties such as impermeability, hygroscopic swelling, which seem to make it a promising water cut-off material. In this research, performance tests were conducted with various types of compacted bentonite toward the application of bentonite to cut-off technology. (author)

  10. Learning from the Jordan Compact

    Directory of Open Access Journals (Sweden)

    Katharina Lenner

    2018-02-01

    Full Text Available Analysis of the implementation of the Jordan Compact offers three key lessons: governmental approval is important but not sufficient, the incorporation of critical voices is crucial, and meeting numeric targets is not the same as achieving underlying goals.

  11. Mesoscale Simulations of Power Compaction

    Energy Technology Data Exchange (ETDEWEB)

    Lomov, I; Fujino, D; Antoun, T; Liu, B

    2009-08-06

    Mesoscale 3D simulations of metal and ceramic powder compaction in shock waves have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating shock compaction of porous well-characterized ductile metal using Steinberg material model. Results of the simulations with handbook values for parameters of solid 2024 aluminum have good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not so well studied as metals, so material model for ceramic (tungsten carbide) has been fitted to shock compression experiments of non-porous samples and further calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powder have been performed and showed good agreement with experimental data. Numerical shock wave profile has same character and thickness as measured with VISAR. Numerical results show reshock states above the single-shock Hugoniot line also observed in experiments. They found that to receive good quantitative agreement with experiment it is essential to perform 3D simulations.

  12. Engineering aspects of compact stellarators

    International Nuclear Information System (INIS)

    Nelson, B.E.; Benson, R.D.; Brooks, A.

    2003-01-01

    Compact stellarators could combine the good confinement and high beta of a tokamak with the inherently steady state, disruption-free characteristics of a stellarator. Two U.S. compact stellarator facilities are now in the conceptual design phase: the National Compact Stellarator Experiment (NCSX) and the Quasi- Poloidal Stellarator (QPS). NCSX has a major radius of 1.4 m and a toroidal field up to 2 T. The primary feature of both NCSX and QPS is the set of modular coils that provide the basic magnetic configuration. These coils represent a major engineering challenge due to the complex shape, precise geometric accuracy, and high current density of the windings. The winding geometry is too complex for conventional hollow copper conductor construction. Instead, the modular coils will be wound with flexible, multi strand cable conductor that has been compacted to a 75% copper packing fraction. Inside the NCSX coil set and surrounding the plasma is a highly contoured vacuum vessel. The vessel consists of three identical, 120 deg. segments that are bolted together at double sealed joints. The QPS device has a major radius of 0.9 m, a toroidal field of 1 T, and an aspect ratio of only 2.7. Instead of an internal vacuum vessel, the QPS modular coils will operate in an external vacuum tank. (author)

  13. Compactness of eventually different families

    DEFF Research Database (Denmark)

    Schrittesser, David

    2018-01-01

    We show that there is an effectively closed maximal eventually different family in spaces of the form ∏ An with each An countable and discrete (for example, Baire space) and give an exact criterion for when there exists an effectively compact such family. The proof generalizes and simplifies...

  14. DNA compaction by nonbinding macromolecules

    NARCIS (Netherlands)

    Vries, de R.J.

    2012-01-01

    Compaction of DNA by nonbinding macromolecules such as uncharged flexible polymer chains and negatively charged globular proteins is thought to have various applications in biophysics, for example in the formation of a nucleoid structure in bacteria. A simple experimental model that has been very

  15. Compact He-Ne lasers

    Science.gov (United States)

    Eskin, N. I.; Ischenko, P. I.; Kozel, Stanislav M.; Kaplitsky, V. E.; Kononenko, V. I.

    1999-01-01

    The presented laser is a brand new elaboration of the compact gas laser with longitudinal excitation. This development has no analogues and is protected by the patent of Russia. Its main features are: monoblock construction of the had, internal mirrors, optical contact, small size and weight, long term of work and storage.

  16. VizieR Online Data Catalog: Main-belt asteroids polarimetric survey. II. (Gil-Hutton+, 2012)

    Science.gov (United States)

    Gil-Hutton, R.; Canada-Assandri, M.

    2012-01-01

    Results for the objects observed during the polarimetric survey of main-belt asteroids. The observations were carried out during different observing runs between May 2004 and November 2009 at the 2.15m telescope of the CASLEO, San Juan, Argentina, using the Torino and CASPROF polarimeters. (3 data files).

  17. Use of Radarsat-2 polarimetric SAR images for fuel moisture mapping in the Kruger National Park, South Africa

    CSIR Research Space (South Africa)

    Kong, M

    2015-08-01

    Full Text Available Fully polarimetric Radarsat-2 imagery from wet and dry conditions over the South African Lowveld is compared to assess its value for fuel moisture mapping. Imagery was acquired at two different dates, in May (end of summer, wet) and in August (mid...

  18. Basics and first experiments demonstrating isolation improvements in the agile polarimetric FM-CW radar – PARSAX

    NARCIS (Netherlands)

    Krasnov, O.A.; Babur, G.P.; Wang, Z.; Ligthart, L.P.; Van der Zwan, F.

    2010-01-01

    The article describes the IRCTR PARSAX radar system, the S-band high-resolution Doppler polarimetric frequency modulated continuous wave (FM-CW) radar with dual-orthogonal sounding signals, which has the possibility to measure all elements of the radar target polarization scattering matrix

  19. High-resolution polarimetric X-band weather radar observations at the Cabauw Experimental Site for Atmospheric Research

    NARCIS (Netherlands)

    Otto, T.; Russchenberg, H.W.J.

    2013-01-01

    In 2007, the horizontally scanning polarimetric X-band radar IDRA (IRCTR Drizzle Radar) was installed on top of the 213 m high mast at the Dutch meteorological observatory Cabauw Experimental Site for Atmospheric Research (CESAR) at Netherlands. This radar complements a large variety of measurement

  20. Clustering of Multi-Temporal Fully Polarimetric L-Band SAR Data for Agricultural Land Cover Mapping

    Science.gov (United States)

    Tamiminia, H.; Homayouni, S.; Safari, A.

    2015-12-01

    Recently, the unique capabilities of Polarimetric Synthetic Aperture Radar (PolSAR) sensors make them an important and efficient tool for natural resources and environmental applications, such as land cover and crop classification. The aim of this paper is to classify multi-temporal full polarimetric SAR data using kernel-based fuzzy C-means clustering method, over an agricultural region. This method starts with transforming input data into the higher dimensional space using kernel functions and then clustering them in the feature space. Feature space, due to its inherent properties, has the ability to take in account the nonlinear and complex nature of polarimetric data. Several SAR polarimetric features extracted using target decomposition algorithms. Features from Cloude-Pottier, Freeman-Durden and Yamaguchi algorithms used as inputs for the clustering. This method was applied to multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Canada, during June and July in 2012. The results demonstrate the efficiency of this approach with respect to the classical methods. In addition, using multi-temporal data in the clustering process helped to investigate the phenological cycle of plants and significantly improved the performance of agricultural land cover mapping.

  1. An omnibus likelihood test statistic and its factorization for change detection in time series of polarimetric SAR data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2016-01-01

    Based on an omnibus likelihood ratio test statistic for the equality of several variance-covariance matrices following the complex Wishart distribution with an associated p-value and a factorization of this test statistic, change analysis in a short sequence of multilook, polarimetric SAR data...

  2. Comparison of vehicle-mounted forward-looking polarimetric infrared and downward-looking infrared sensors for landmine detection

    NARCIS (Netherlands)

    Cremer, F.; Schavemaker, J.G.M.; Jong, W. de; Schutte, K.

    2003-01-01

    This paper gives a comparison of two vehicle-mounted infrared systems for landmine detection. The first system is a down-ward looking standard infrared camera using processing methods developed within the EU project LOTUS. The second system is using a forward-looking polarimetric infrared camera.

  3. Calibration of Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) polarization measurements, and in-flight comparisons with the Research Scanning Polarimeter (RSP) and the Spectropolarimeter for Planetary EXploration (SPEX)

    Science.gov (United States)

    van Harten, G.; Diner, D. J.; Rheingans, B. E.; Daugherty, B. J.; Xu, F.; Bull, M. A.; Tkatcheva, I. N.; Garay, M. J.; Seidel, F.; Chipman, R. A.; Smit, M.

    2016-12-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) is a remote sensing instrument for the characterization of atmospheric aerosols and clouds. AirMSPI, flying onboard the NASA ER-2 aircraft at 20 km altitude, participates in field campaigns since 2013, including ORACLES (2016). The pushbroom camera is mounted on a programmable, motorized gimbal for multi-angle observations at 10x10 m2 resolution. Eight spectral bands within 355-935 nm are recorded, 3 of which also measure linear polarization. Photoelastic modulators (PEMs) encode the polarized and total intensities in each polarimetric pixel as the amplitude and offset of a modulated intensity pattern, such that the ratio of the two is insensitive to pixel-to-pixel differences. This technique, developed to enable the high-accuracy imaging polarimetry required for aerosol species discrimination, will also be applied in the Multi-Angle Imager for Aerosols (MAIA) satellite instrument. We present the calibration and accuracy validation of AirMSPI polarization measurements. The main calibration, describing the instrument's response to any degree (DoLP) and angle of linear polarization, is performed in the lab using a recently updated, carefully designed and characterized polarization state generator (PSG-2). Validation measurements using an independent polarimeter show agreement in DoLP to within 0.001 for several DoLPs across the 0-1 range. The PEMs' retardances and phases, which are different and not necessarily stable in flight, are extracted from measurements of the on-board validator, a partially polarized light source located inside the instrument housing, which is viewed before and after each target. Although this calibration does not rely on the validator's DoLP, and the validator was not designed for DoLP calibration, the frequent measurements of its DoLP provide an upper limit for AirMSPI's in-flight polarimetric stability, which is 0.001. A correction for the actual PEM retardances and phases in the

  4. Compaction and relaxation of biofilms

    KAUST Repository

    Valladares Linares, R.

    2015-06-18

    Operation of membrane systems for water treatment can be seriously hampered by biofouling. A better characterization of biofilms in membrane systems and their impact on membrane performance may help to develop effective biofouling control strategies. The objective of this study was to determine the occurrence, extent and timescale of biofilm compaction and relaxation (decompaction), caused by permeate flux variations. The impact of permeate flux changes on biofilm thickness, structure and stiffness was investigated in situ and non-destructively with optical coherence tomography using membrane fouling monitors operated at a constant crossflow velocity of 0.1 m s−1 with permeate production. The permeate flux was varied sequentially from 20 to 60 and back to 20 L m−2 h−1. The study showed that the average biofilm thickness on the membrane decreased after elevating the permeate flux from 20 to 60 L m−2 h−1 while the biofilm thickness increased again after restoring the original flux of 20 L m−2 h−1, indicating the occurrence of biofilm compaction and relaxation. Within a few seconds after the flux change, the biofilm thickness was changed and stabilized, biofilm compaction occurred faster than the relaxation after restoring the original permeate flux. The initial biofilm parameters were not fully reinstated: the biofilm thickness was reduced by 21%, biofilm stiffness had increased and the hydraulic biofilm resistance was elevated by 16%. Biofilm thickness was related to the hydraulic biofilm resistance. Membrane performance losses are related to the biofilm thickness, density and morphology, which are influenced by (variations in) hydraulic conditions. A (temporarily) permeate flux increase caused biofilm compaction, together with membrane performance losses. The impact of biofilms on membrane performance can be influenced (increased and reduced) by operational parameters. The article shows that a (temporary) pressure increase leads to more

  5. Utilization of AERONET polarimetric measurements for improving retrieval of aerosol microphysics: GSFC, Beijing and Dakar data analysis

    International Nuclear Information System (INIS)

    Fedarenka, Anton; Dubovik, Oleg; Goloub, Philippe; Li, Zhengqiang; Lapyonok, Tatyana; Litvinov, Pavel; Barel, Luc; Gonzalez, Louis; Podvin, Thierry; Crozel, Didier

    2016-01-01

    The study presents the efforts on including the polarimetric data to the routine inversion of the radiometric ground-based measurements for characterization of the atmospheric aerosols and analysis of the obtained advantages in retrieval results. First, to operationally process the large amount of polarimetric data the data preparation tool was developed. The AERONET inversion code adapted for inversion of both intensity and polarization measurements was used for processing. Second, in order to estimate the effect from utilization of polarimetric information on aerosol retrieval results, both synthetic data and the real measurements were processed using developed routine and analyzed. The sensitivity study has been carried out using simulated data based on three main aerosol models: desert dust, urban industrial and urban clean aerosols. The test investigated the effects of utilization of polarization data in the presence of random noise, bias in measurements of optical thickness and angular pointing shift. The results demonstrate the advantage of polarization data utilization in the cases of aerosols with pronounced concentration of fine particles. Further, the extended set of AERONET observations was processed. The data for three sites have been used: GSFC, USA (clean urban aerosol dominated by fine particles), Beijing, China (polluted industrial aerosol characterized by pronounced mixture of both fine and coarse modes) and Dakar, Senegal (desert dust dominated by coarse particles). The results revealed considerable advantage of polarimetric data applying for characterizing fine mode dominated aerosols including industrial pollution (Beijing). The use of polarization corrects particle size distribution by decreasing overestimated fine mode and increasing the coarse mode. It also increases underestimated real part of the refractive index and improves the retrieval of the fraction of spherical particles due to high sensitivity of polarization to particle shape

  6. Observations of compact radio nuclei in Cygnus A, Centaurus A, and other extended radio sources

    International Nuclear Information System (INIS)

    Kellermann, K.I.; Clark, B.G.; Niell, A.E.; Shaffer, D.B.

    1975-01-01

    Observations of Cygnus A show a compact radio core 2 milli-arcsec in extent oriented in the same direction as the extended components. Other large double- or multiple-component sources, including Centaurus A, have also been found to contain compact radio nuclei with angular sizes in the range 1--10 milli-arcsec

  7. Computing the Polarimetric and Photometric Variability of Be Stars

    Science.gov (United States)

    Marr, K. C.; Jones, C. E.; Halonen, R. J.

    2018-01-01

    We investigate variations in the linear polarization as well as in the V-band and B-band color–magnitudes for classical Be star disks. We present two models: disks with enhanced disk density and disks that are tilted or warped from the stellar equatorial plane. In both cases, we predict variation in observable properties of the system as the disk rotates. We use a non-LTE radiative transfer code BEDISK (Sigut & Jones) in combination with a Monte Carlo routine that includes multiple scattering (Halonen et al.) to model classical Be star systems. We find that a disk with an enhanced density region that is one order of magnitude denser than the disk’s base density shows as much as ∼ 0.2 % variability in the polarization while the polarization position angle varies by ∼ 8^\\circ . The ΔV magnitude for the same system shows variations of up to ∼ 0.4 mag while the Δ(B–V) color varies by at most ∼ 0.01 mag. We find that disks tilted from the equatorial plane at small angles of ∼ 30^\\circ more strongly reflect the values of polarization and color–magnitudes reported in the literature than disks tilted at larger angles. For this model, the linear polarization varies by ∼ 0.3 % , the polarization position angle varies by ∼ 60^\\circ , the ΔV magnitude varies up to 0.35 mag, and the Δ(B–V) color varies by up to 0.1 mag. We find that the enhanced disk density models show ranges of polarization and color–magnitudes that are commensurate with what is reported in the literature for all sizes of the density-enhanced regions. From this, we cannot determine any preference for small or large density-enhanced regions.

  8. Utilization of AERONET polarimetric measurements for improving retrieval of aerosol microphysics: GSFC, Beijing and Dakar data analysis

    Science.gov (United States)

    Fedarenka, Anton; Dubovik, Oleg; Goloub, Philippe; Li, Zhengqiang; Lapyonok, Tatyana; Litvinov, Pavel; Barel, Luc; Gonzalez, Louis; Podvin, Thierry; Crozel, Didier

    2016-08-01

    The study presents the efforts on including the polarimetric data to the routine inversion of the radiometric ground-based measurements for characterization of the atmospheric aerosols and analysis of the obtained advantages in retrieval results. First, to operationally process the large amount of polarimetric data the data preparation tool was developed. The AERONET inversion code adapted for inversion of both intensity and polarization measurements was used for processing. Second, in order to estimate the effect from utilization of polarimetric information on aerosol retrieval results, both synthetic data and the real measurements were processed using developed routine and analyzed. The sensitivity study has been carried out using simulated data based on three main aerosol models: desert dust, urban industrial and urban clean aerosols. The test investigated the effects of utilization of polarization data in the presence of random noise, bias in measurements of optical thickness and angular pointing shift. The results demonstrate the advantage of polarization data utilization in the cases of aerosols with pronounced concentration of fine particles. Further, the extended set of AERONET observations was processed. The data for three sites have been used: GSFC, USA (clean urban aerosol dominated by fine particles), Beijing, China (polluted industrial aerosol characterized by pronounced mixture of both fine and coarse modes) and Dakar, Senegal (desert dust dominated by coarse particles). The results revealed considerable advantage of polarimetric data applying for characterizing fine mode dominated aerosols including industrial pollution (Beijing). The use of polarization corrects particle size distribution by decreasing overestimated fine mode and increasing the coarse mode. It also increases underestimated real part of the refractive index and improves the retrieval of the fraction of spherical particles due to high sensitivity of polarization to particle shape

  9. Polarimetric survey of main-belt asteroids. II. Results for 58 B- and C-type objects

    Science.gov (United States)

    Gil-Hutton, R.; Cañada-Assandri, M.

    2012-03-01

    Aims: We present results of a polarimetric survey of main-belt asteroids at Complejo Astronómico el Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained with the Torino and CASPROF polarimeters at the 2.15m telescope. The Torino polarimeter is an instrument that allows simultaneous measurement of polarization in five different bands, and the CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation. Results: The survey began in 2003, and up to 2009 data on a sample of more than 170 asteroids were obtained. In this paper the results for 58 B- and C-type objects are presented, most of them polarimetrically observed for the first time. Using these data we find phase-polarization curves and polarimetric parameters for these taxonomic classes. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.Tables 1 and 2 are available in electronic form at CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/539/A115

  10. Polarimetric survey of main-belt asteroids. I. Results for fifty seven S-, L-, and K-type objects

    Science.gov (United States)

    Gil-Hutton, R.; Cañada-Assandri, M.

    2011-05-01

    Aims: We present the first results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties, similar to those shown by the asteroid (234) Barbara. Methods: The data were obtained with the Torino and CASPROF polarimeters at the 2.15 m telescope. The Torino polarimeter is an instrument that allows the simultaneous measurement of polarization in five different bands, and the CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation. Results: The survey began in 2003, and up to 2009 data on a sample of more than 170 asteroids were obtained. In this paper the results of 57 S-, L-, and K-type objects are presented, most of them are being polarimetrically observed for the first time. Using these data we find phase-polarization curves and polarimetric parameters for these taxonomic classes. Furthermore, we also find two candidates, (397) Vienna and (458) Hercynia, that could have a phase-polarization curve with a large inversion angle. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.Tables 1 and 2 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?j/A+A/529/A86

  11. Performance Considerations for the SIMPL Single Photon, Polarimetric, Two-Color Laser Altimeter as Applied to Measurements of Forest Canopy Structure and Composition

    Science.gov (United States)

    Dabney, Philip W.; Harding, David J.; Valett, Susan R.; Vasilyev, Aleksey A.; Yu, Anthony W.

    2012-01-01

    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) is a multi-beam, micropulse airborne laser altimeter that acquires active and passive polarimetric optical remote sensing measurements at visible and near-infrared wavelengths. SIMPL was developed to demonstrate advanced measurement approaches of potential benefit for improved, more efficient spaceflight laser altimeter missions. SIMPL data have been acquired for wide diversity of forest types in the summers of 2010 and 2011 in order to assess the potential of its novel capabilities for characterization of vegetation structure and composition. On each of its four beams SIMPL provides highly-resolved measurements of forest canopy structure by detecting single-photons with 15 cm ranging precision using a narrow-beam system operating at a laser repetition rate of 11 kHz. Associated with that ranging data SIMPL provides eight amplitude parameters per beam unlike the single amplitude provided by typical laser altimeters. Those eight parameters are received energy that is parallel and perpendicular to that of the plane-polarized transmit pulse at 532 nm (green) and 1064 nm (near IR), for both the active laser backscatter retro-reflectance and the passive solar bi-directional reflectance. This poster presentation will cover the instrument architecture and highlight the performance of the SIMPL instrument with examples taken from measurements for several sites with distinct canopy structures and compositions. Specific performance areas such as probability of detection, after pulsing, and dead time, will be highlighted and addressed, along with examples of their impact on the measurements and how they limit the ability to accurately model and recover the canopy properties. To assess the sensitivity of SIMPL's measurements to canopy properties an instrument model has been implemented in the FLIGHT radiative transfer code, based on Monte Carlo simulation of photon transport. SIMPL data collected in 2010 over

  12. Rate type isotach compaction of consolidated sandstone

    NARCIS (Netherlands)

    Waal, J.A. de; Thienen-Visser, K. van; Pruiksma, J.P.

    2015-01-01

    Laboratory experiments on samples from a consolidated sandstone reservoir are presented that demonstrate rate type compaction behaviour similar to that observed on unconsolidated sands and soils. Such rate type behaviour can have large consequences for reservoir compaction, surface subsidence and

  13. Sequential normal compactness versur topological normal compactness in variational analysis

    Czech Academy of Sciences Publication Activity Database

    Fabian, Marián; Mordukhovich, B. S.

    2003-01-01

    Roč. 54, č. 6 (2003), s. 1057-1067 ISSN 0362-546X R&D Projects: GA ČR GA201/01/1198 Institutional research plan: CEZ:AV0Z1019905; CEZ:AV0Z1019905 Keywords : variational analysis * sequential and topological normal compactness * Banach spaces Subject RIV: BA - General Mathematics Impact factor: 0.354, year: 2003

  14. Planck 2013 results. XXVIII. The Planck Catalogue of Compact Sources

    DEFF Research Database (Denmark)

    Planck Collaboration,; Ade, P. A. R.; Aghanim, N.

    2013-01-01

    The Planck Catalogue of Compact Sources (PCCS) is the catalogue of sources detected in the Planck nominal mission data. It consists of nine single-frequency catalogues of compact sources containing reliable sources, both Galactic and extragalactic, detected over the entire sky. The PCCS covers...... the frequency range between 30--857 GHz with higher sensitivity (it is 90% complete at 180 mJy in the best channel) and better angular resolution (from ~33' to ~5') than previous all-sky surveys in the microwave band. By definition its reliability is >80% and more than 65% of the sources have been detected...

  15. DSD Characteristics of a Mid-Winter Tornadic Storm Using C-Band Polarimetric Radar and Two 2D-Video Disdrometers

    Science.gov (United States)

    Thurai, M.; Petersen, W. A.; Carey, L. A.

    2010-01-01

    Drop size distributions in an evolving tornadic storm are examined using C-band polarimetric radar observations and two 2D-video disdrometers. The E-F2 storm occurred in mid-winter (21 January 2010) in northern Alabama, USA, and caused widespread damage. The evolution of the storm occurred within the C-band radar coverage and moreover, several minutes prior to touch down, the storm passed over a site where several disdrometers including two 2D video disdrometers (2DVD) had been installed. One of the 2DVDs is a low profile unit and the other is a new next generation compact unit currently undergoing performance evaluation. Analyses of the radar data indicate that the main region of precipitation should be treated as a "big-drop" regime case. Even the measured differential reflectivity values (i.e. without attenuation correction) were as high as 6-7 dB within regions of high reflectivity. Standard attenuation-correction methods using differential propagation phase have been "fine tuned" to be applicable to the "big drop" regime. The corrected reflectivity and differential reflectivity data are combined with the co-polar correlation coefficient and specific differential phase to determine the mass-weighted mean diameter, Dm, and the width of the mass spectrum, (sigma)M, as well as the intercept parameter , Nw. Significant areas of high Dm (3-4 mm) were retrieved within the main precipitation areas of the tornadic storm. The "big drop" regime assumption is substantiated by the two sets of 2DVD measurements. The Dm values calculated from 1-minute drop size distributions reached nearly 4 mm, whilst the maximum drop diameters were over 6 mm. The fall velocity measurements from the 2DVD indicate almost all hydrometeors to be fully melted at ground level. Drop shapes for this event are also being investigated from the 2DVD camera data.

  16. UV written compact broadband optical couplers

    DEFF Research Database (Denmark)

    Olivero, Massimo; Svalgaard, Mikael

    2005-01-01

    In this paper the first demonstration of compact asymmetric directional couplers made by UV writing is presented. The combined performance in terms bandwidth, loss and compactness exceeds that reported using other, more elaborate fabrication techniques.......In this paper the first demonstration of compact asymmetric directional couplers made by UV writing is presented. The combined performance in terms bandwidth, loss and compactness exceeds that reported using other, more elaborate fabrication techniques....

  17. Raytheon's next generation compact inline cryocooler architecture

    International Nuclear Information System (INIS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.

    2014-01-01

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (≤25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing

  18. Compact neutron generator development at LBNL

    International Nuclear Information System (INIS)

    Reijonen, J.; English, G.; Firestone, R.; Giquel, F.; King, M.; Leung, K-N.; Sun, M.

    2003-01-01

    A wide variety of applications ranging from medical (BNCT, Boron Neutron Capture Therapy) and basic science (neutron imaging, material studies) to homeland security (explosive detection and nuclear material non-proliferation) are in need of compact, high flux neutron generators. The Plasma and Ion Source Technology Group in the Lawrence Berkeley National Laboratory is developing various neutron generators for these applications. These neutron generators employed either the D-D or the D-T fusion reaction for the neutron production. The deuterium or deuterium-tritium gas mixture is ionized in an RF-driven plasma source. The ions are then accelerated to ∼100 keV energy using high current, high voltage DC-power supply to a target where the 2.45 MeV (for D-D reaction) or 14 MeV (for the D-T reaction) neutrons are generated. The development of two different types of neutron tubes are being discussed in this presentation, namely compact, pulsed operation neutron generators and cw, high yield neutron generators. These generators are currently operating at D-D neutron yields of 108 n/s and 109 n/s respectively. A facility, incorporating the larger neutron generator, has been constructed for Prompt Gamma Activation Analysis (PGAA) and Neutron Activation Analysis (NAA) measurements

  19. Equationally Compact Acts : Coproducts / Peeter Normak

    Index Scriptorium Estoniae

    Normak, Peeter

    1998-01-01

    In this article equational compactness of acts and its generalizations are discussed. As equational compactness does not carry over to coproducts a slight generalization of c-equational campactness is introduced. It is proved that a coproduct of acts is c-equationally compact if and only if all components are c-equationally campact

  20. Invariant subsets under compact quantum group actions

    OpenAIRE

    Huang, Huichi

    2012-01-01

    We investigate compact quantum group actions on unital $C^*$-algebras by analyzing invariant subsets and invariant states. In particular, we come up with the concept of compact quantum group orbits and use it to show that countable compact metrizable spaces with infinitely many points are not quantum homogeneous spaces.

  1. Polarimetric mountain based radio-occultation for rain detection: The ROHP-PAZ ground campaign

    Science.gov (United States)

    Padulles, Ramon; Cardellach, Estel; Tomas, Sergio; de la Torre, Manuel; Turk, Joe

    2014-05-01

    The Radio Occultation and Heavy Precipitation experiment aboard the PAZ Low Earth Orbiter (ROHP-PAZ) is a mission of opportunity: The Spanish Ministry of Science and Innovation (MICINN) approved in 2009 a proposal to include a polarimetric Global Navigation Satellite System (GNSS) Radio-Occultation (RO) payload on board of the Spanish Earth Observation satellite PAZ. This will be a new technique that has never been tested before, that aims to improve the knowledge of precipitation through simultaneous thermodynamic and vertical rain profiles. Prior to the launch of the satellite, expected for 2014, a ground experimental campaign is being conducted with the goal of starting the process of identifying and understanding all the factors that might affect the polarimetric RO observables. The campaign is being carried out at the top of Puig Sesolles, a 1667m peak in the Natural Park of Montseny (41º46'24 N, 2º26'17 E), 50 km N-NE from Barcelona, with clear views over the horizon to the South (East to West) direction, an area in which intense precipitation events tend to occur a few times per year. The campaign uses a ICE-CSIC/IEEC's GOLD-RTR open-loop receiver initially designed for collecting GNSS signals reflected off the sea surface. The receiver has been adjusted to track occulting GNSS radio-links. A double polarization (H and V) GNSS antenna has been designed and manufactured by the Polytechnic University of Barcelona (UPC) team for this particular ground-based experiment. The antenna is a phase-array made of 7 elements, each of them being a square patch built using a Rogers 4003 substrate, and symmetrically fed by four probes. It provides a pattern of 12.9 dB peak gain, 45 degrees half-power beam-width, and <-35 dB cross-polar isolation at the peak (better than -30 dB in the main lobe). The preliminary results show that not only precipitation, but also other factors are affecting the GNSS signal, wich means that the polarimetric signal is richer than expected

  2. Compact Reversed-Field Pinch Reactors (CRFPR): preliminary engineering considerations

    Energy Technology Data Exchange (ETDEWEB)

    Hagenson, R.L.; Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Embrechts, M.J.; Schnurr, N.M.; Battat, M.E.; LaBauve, R.J.; Davidson, J.W.

    1984-08-01

    The unique confinement physics of the Reversed-Field Pinch (RFP) projects to a compact, high-power-density fusion reactor that promises a significant reduction in the cost of electricity. The compact reactor also promises a factor-of-two reduction in the fraction of total cost devoted to the reactor plant equipment (i.e., fusion power core (FPC) plus support systems). In addition to operational and developmental benefits, these physically smaller systems can operate economically over a range of total power output. After giving an extended background and rationale for the compact fusion approaches, key FPC subsystems for the Compact RFP Reactor (CRFPR) are developed, designed, and integrated for a minimum-cost, 1000-MWe(net) system. Both the problems and promise of the compact, high-power-density fusion reactor are quantitatively evaluated on the basis of this conceptual design. The material presented in this report both forms a framework for a broader, more expanded conceptual design as well as suggests directions and emphases for related research and development.

  3. Compact Reversed-Field Pinch Reactors (CRFPR): preliminary engineering considerations

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Embrechts, M.J.; Schnurr, N.M.; Battat, M.E.; LaBauve, R.J.; Davidson, J.W.

    1984-08-01

    The unique confinement physics of the Reversed-Field Pinch (RFP) projects to a compact, high-power-density fusion reactor that promises a significant reduction in the cost of electricity. The compact reactor also promises a factor-of-two reduction in the fraction of total cost devoted to the reactor plant equipment [i.e., fusion power core (FPC) plus support systems]. In addition to operational and developmental benefits, these physically smaller systems can operate economically over a range of total power output. After giving an extended background and rationale for the compact fusion approaches, key FPC subsystems for the Compact RFP Reactor (CRFPR) are developed, designed, and integrated for a minimum-cost, 1000-MWe(net) system. Both the problems and promise of the compact, high-power-density fusion reactor are quantitatively evaluated on the basis of this conceptual design. The material presented in this report both forms a framework for a broader, more expanded conceptual design as well as suggests directions and emphases for related research and development

  4. On the die compaction of powders used in pharmaceutics.

    Science.gov (United States)

    Aryanpour, Gholamreza; Farzaneh, Masoud

    2017-07-06

    Die compaction is widely used in the compaction of pharmaceutical powders (tableting). It is well known that the powder densification is a result of particle rearrangement and particle deformation. The former is considered to be the governing mechanism of densification in an initial stage of compaction and the latter is regarded as the governing mechanism in the compaction at the higher pressure range. As a more realistic assumption, one can consider that a simultaneous performance of both the rearrangement and deformation mechanisms takes place from the beginning of compaction. To mathematically formulate this assumption, a piston equation is presented where the material relative density is given as a function of the applied pressure on the powder. From the equation, it is possible to obtain the contribution of each mechanism to the material densification at each value of the applied pressure. In the continuation, the piston equation is applied to the tabletting of some pharmaceutical powders. These are the powders of Ascorbic Acid, Avicel ® PH 101, Avicel ® PH 301, Emcompress ® , Sodium Chloride, and Tablettose ® whose tableting results have been previously published in the literature. The results show the piston equation as a suitable approach to describe the tabletting of pharmaceutical powders.

  5. Compact analyzer: an interactive simulator

    International Nuclear Information System (INIS)

    Ipakchi, A.; Khadem, M.; Colley, R.W.

    1985-01-01

    Compact Analyzer is a computer system that combines dynamic simulation models with interactive and color graphics user interface functions to provide a cost-effective simulator for dynamic analysis and evaluation of power plant operation, with engineering and training applications. Most dynamic simulation packages such as RETRAN and TRAC are designed for a batch-mode operation. With advancements in computer technology and man/machine interface capabilities, it is possible to integrate such codes with interactive and graphic functions into advanced simulators. The US Nuclear Regulatory Commission has sponsored development of plant analyzers with such characteristics. The Compact Analyzer is an Electric Power Research Institute (EPRI)-sponsored project, which currently utilizes the EPRI modular modeling system (MMS) for process simulation, and uses an adaptable color graphic package for dynamic display of the simulation results

  6. Probability on compact Lie groups

    CERN Document Server

    Applebaum, David

    2014-01-01

    Probability theory on compact Lie groups deals with the interaction between “chance” and “symmetry,” a beautiful area of mathematics of great interest in its own sake but which is now also finding increasing applications in statistics and engineering (particularly with respect to signal processing). The author gives a comprehensive introduction to some of the principle areas of study, with an emphasis on applicability. The most important topics presented are: the study of measures via the non-commutative Fourier transform, existence and regularity of densities, properties of random walks and convolution semigroups of measures, and the statistical problem of deconvolution. The emphasis on compact (rather than general) Lie groups helps readers to get acquainted with what is widely seen as a difficult field but which is also justified by the wealth of interesting results at this level and the importance of these groups for applications. The book is primarily aimed at researchers working in probability, s...

  7. Compact sources for eyesafe illumination

    Science.gov (United States)

    Baranova, Nadia; Pu, Rui; Stebbins, Kenneth; Bystryak, Ilya; Rayno, Michael; Ezzo, Kevin; DePriest, Christopher

    2018-02-01

    Q-peak has demonstrated a compact, pulsed eyesafe laser architecture operating with >10 mJ pulse energies at repetition rates as high as 160 Hz. The design leverages an end-pumped solid-state laser geometry to produce adequate eyesafe beam quality (M2˜4), while also providing a path toward higher-density laser architectures for pulsed eyesafe applications. The baseline discussed in this paper has shown a unique capability for high-pulse repetition rates in a compact package, and offers additional potential for power scaling based on birefringence compensation. The laser consists of an actively Q-switched oscillator cavity producing pulse widths designed to fit within a volume of 3760 cm3. We will discuss details of the optical system design, modeled thermal effects and stress-induced birefringence, as well as experimental advantages of the end-pumped laser geometry, along with proposed paths to higher eyesafe pulse energies.

  8. FAMECE Compaction Study - Phase I

    Science.gov (United States)

    1980-08-01

    apparatus chosen for the compaction study is model CN-992, manufactured by Soiltest. In(c., of’ Evanston, Illinois. This model is part of the Army Soill...Figure 17) is model CL-700, nmanufactured by Soiltest, Inc.. of Evanston, Illinois. It has a foot adapter (CL-701) for low-shear-strength soils. It will be...moderate plasticity. 12. Soil Characteristics. Samples of’ thc three soil types were analyzed -with stand- ardl soils testinig eq(uipmlent. Sieve, or

  9. Efficient Estimation of Spectral Moments and the Polarimetric Variables on Weather Radars, Sonars, Sodars, Acoustic Flow Meters, Lidars, and Similar Active Remote Sensing Instruments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A method for estimation of Doppler spectrum, its moments, and polarimetric variables on pulsed weather radars which uses over sampled echo components at a rate...

  10. Polarimetric and Interferometric Synthetic Aperture Radar (Pol-InSAR); a new way to quantify three-dimensional structure of Earth and planetary surfaces Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This study will employ a three phased approach: SAR image formation and calibration. DBSAR polarimetric and interferometric data analysis. PolInSAR algorithm...

  11. GHRSST Level 3U Global Subskin Sea Surface Temperature from the WindSat Polarimetric Radiometer on the Coriolis satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The WindSat Polarimetric Radiometer, launched on January 6, 2003 aboard the Department of Defense Coriolis satellite, was designed to measure the ocean surface wind...

  12. Strange matter in compact stars

    Science.gov (United States)

    Klähn, Thomas; Blaschke, David B.

    2018-02-01

    We discuss possible scenarios for the existence of strange matter in compact stars. The appearance of hyperons leads to a hyperon puzzle in ab-initio approaches based on effective baryon-baryon potentials but is not a severe problem in relativistic mean field models. In general, the puzzle can be resolved in a natural way if hadronic matter gets stiffened at supersaturation densities, an effect based on the quark Pauli quenching between hadrons. We explain the conflict between the necessity to implement dynamical chiral symmetry breaking into a model description and the conditions for the appearance of absolutely stable strange quark matter that require both, approximately masslessness of quarks and a mechanism of confinement. The role of strangeness in compact stars (hadronic or quark matter realizations) remains unsettled. It is not excluded that strangeness plays no role in compact stars at all. To answer the question whether the case of absolutely stable strange quark matter can be excluded on theoretical grounds requires an understanding of dense matter that we have not yet reached.

  13. Durability of Self Compacting Concrete

    International Nuclear Information System (INIS)

    Benmarce, A.; Boudjehem, H.; Bendjhaiche, R.

    2011-01-01

    Self compacting concrete (SCC) seem to be a very promising materials for construction thanks to their properties in a fresh state. Studying of the influence of the parameters of specific designed mixes to their mechanical, physical and chemical characteristics in a state hardened is an important stage so that it can be useful for new-to-the-field researchers and designers (worldwide) beginning studies and work involving self compacting concrete. The objective of this research is to study the durability of self compacting concrete. The durability of concrete depends very much on the porosity; the latter determines the intensity of interactions with aggressive agents. The pores inside of concrete facilitate the process of damage, which began generally on the surface. We are interested to measure the porosity of concrete on five SCC with different compositions (w/c, additives) and vibrated concrete to highlight the influence of the latter on the porosity, thereafter on the compressive strength and the transfer properties (oxygen permeability, chloride ion diffusion, capillary absorption). (author)

  14. Calibration Performance and Capabilities of the New Compact Ocean Wind Vector Radiometer System

    Science.gov (United States)

    Brown, S. T.; Focardi, P.; Kitiyakara, A.; Maiwald, F.; Montes, O.; Padmanabhan, S.; Redick, R.; Russell, D.; Wincentsen, J.

    2014-12-01

    The paper describes performance and capabilities of a new satellite conically imaging microwave radiometer system, the Compact Ocean Wind Vector Radiometer (COWVR), being built by the Jet Propulsion Laboratory (JPL) for an Air Force demonstration mission. COWVR is an 18-34 GHz fully polarimetric radiometer designed to provide measurements of ocean vector winds with an accuracy that meets or exceeds that provided by WindSat, but using a simpler design which has both calibration and cost advantages. Heritage conical radiometer systems, such as WindSat, AMSR, GMI or SSMI(S), all have a similar overall architecture and have exhibited significant intra-channel and inter-sensor calibration biases, due in part to the relative independence of the radiometers between the different polarizations and frequencies in the system. The COWVR system uses a broadband compact hybrid combining architecture and Electronic Polarization Basis Rotation to minimize the number of free calibration parameters between polarization and frequencies, as well as providing a definitive calibration reference from the modulation of the mean polarized signal from the Earth. This second calibration advantage arises because the sensor modulates the incoming polarized signal at the input antenna aperture in a known way based only on the instrument geometry which forces relative calibration consistency between the polarimetric channels of the sensor and provides a gain and offset calibration independent of a model or other ancillary data source, which has typically been a weakness in the calibration and inter-calibration of heritage microwave sensors. This paper will give a description of the COWVR instrument and an overview of the technology demonstration mission. We will discuss the overall calibration approach for this system, its advantages over existing systems and how many of the calibration issues that impact existing satellite radiometers can be eliminated in future operational systems based on

  15. The Ecosystems SAR (EcoSAR) an Airborne P-band Polarimetric InSAR for the Measurement of Vegetation Structure, Biomass and Permafrost

    Science.gov (United States)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn; hide

    2014-01-01

    EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).

  16. Advanced radioactive waste compaction techniques: Final report

    International Nuclear Information System (INIS)

    Volodzko, M.; McGrath, R.N.; Kinsman, J.F.; Palo, W.J.

    1988-08-01

    The purpose of this test program is to provide definitive information on the volume reduction capabilities of conventional compactors used in the nuclear industry for the treatment of dry active waste and the effects of preshredding on compaction. The test program presents comprehensive data on compacted densities of dry active waste collected at five facilities generating this waste and using conventional compactors. Waste materials presently classified as ''non-compactable'' which would lend themselves to preshredding and compaction are identified. An ALARA evaluation of shredding operations and an economic evaluation of preshredding prior to compaction are also presented. 32 figs., 72 tabs

  17. Modified polarimetric bidirectional reflectance distribution function with diffuse scattering: surface parameter estimation

    Science.gov (United States)

    Zhan, Hanyu; Voelz, David G.

    2016-12-01

    The polarimetric bidirectional reflectance distribution function (pBRDF) describes the relationships between incident and scattered Stokes parameters, but the familiar surface-only microfacet pBRDF cannot capture diffuse scattering contributions and depolarization phenomena. We propose a modified pBRDF model with a diffuse scattering component developed from the Kubelka-Munk and Le Hors et al. theories, and apply it in the development of a method to jointly estimate refractive index, slope variance, and diffuse scattering parameters from a series of Stokes parameter measurements of a surface. An application of the model and estimation approach to experimental data published by Priest and Meier shows improved correspondence with measurements of normalized Mueller matrix elements. By converting the Stokes/Mueller calculus formulation of the model to a degree of polarization (DOP) description, the estimation results of the parameters from measured DOP values are found to be consistent with a previous DOP model and results.

  18. On the calibration of the polarimetric slope - albedo relation for asteroids: Work in progress

    Directory of Open Access Journals (Sweden)

    A. Cellino

    2011-09-01

    Full Text Available Asteroid polarimetry is known to be an excellent tool to derive information on the geometric albedo of these objects. This is made possible by the existence of a relation between the albedo and the morphology of the curve which describes the variation of the degree of linear polarization of asteroid light as a function of the illumination conditions. A major problem is that the calibration of the commonly accepted form of the polarization - albedo relation includes numerical coefficients which are affected by fairly high uncertainties. Following some recommendations issued by IAU Commission 15, we are trying to improve the albedo - polarization relation by taking advantage of new polarimetric data obtained in dedicated observation campaigns. We present here some very preliminary results.

  19. PRELIMINARY RESULTS OF ESTIMATING SOIL MOISTURE OVER BARE SOIL USING FULL-POLARIMETRIC ALOS-2 DATA

    Directory of Open Access Journals (Sweden)

    A. Sekertekin

    2016-10-01

    Full Text Available Synthetic Aperture Radar (SAR imaging system is one of the most effective way for Earth observation. The aim of this study is to present the preliminary results about estimating soil moisture using L-band Synthetic Aperture Radar (SAR data. Full-polarimetric (HH, HV, VV, VH ALOS-2 data, acquired on 22.04.2016 with the incidence angle of 30.4o, were used in the study. Simultaneously with the SAR acquisition, in-situ soil moisture samples over bare agricultural lands were collected and evaluated using gravimetric method. Backscattering coefficients for all polarizations were obtained and linear regression analysis was carried out with in situ moisture measurements. The best correlation coefficient was observed with VV polarization. Cross-polarized backscattering coefficients were not so sensitive to soil moisture content. In the study, it was observed that soil moisture maps can be retrieved with the accuracy about 14% (RMSE.

  20. Bilateral bad pixel and Stokes image reconstruction for microgrid polarimetric imagers

    Science.gov (United States)

    LeMaster, Daniel A.; Ratliff, Bradley M.

    2015-09-01

    Uncorrected or poorly corrected bad pixels reduce the effectiveness of polarimetric clutter suppression. In conventional microgrid processing, bad pixel correction is accomplished as a separate step from Stokes image reconstruction. Here, these two steps are combined to speed processing and provide better estimates of the entire image, including missing samples. A variation on the bilateral filter enables both edge preservation in the Stokes imagery and bad pixel suppression. Understanding the newly presented filter requires two key insights. First, the adaptive nature of the bilateral filter is extended to correct for bad pixels by simply incorporating a bad pixel mask. Second, the bilateral filter for Stokes estimation is the sum of the normalized bilateral filters for estimating each analyzer channel individually. This paper describes the new approach and compares it to our legacy method using simulated imagery.

  1. Space-based detection of space debris by photometric and polarimetric characteristics

    Science.gov (United States)

    Pang, Shuxia; Wang, Hu; Lu, Xiaoyun; Shen, Yang; Pan, Yue

    2017-10-01

    The number of space debris has been increasing dramatically in the last few years, and is expected to increase as much in the future. As the orbital debris population grows, the risk of collision between debris and other orbital objects also grows. Therefore, space debris detection is a particularly important task for space environment security, and then supports for space debris modeling, protection and mitigation. This paper aims to review space debris detection systematically and completely. Firstly, the research status of space debris detection at home and abroad is presented. Then, three kinds of optical observation methods of space debris are summarized. Finally, we propose a space-based detection scheme for space debris by photometric and polarimetric characteristics.

  2. Synergy of optical and polarimetric microwave data for forest resource assessment

    International Nuclear Information System (INIS)

    Miguel-Ayanz, J.S.

    1997-01-01

    Data acquired during the Mac-Europe 91 campaign over the Black Forest ( Germany) are used to study the synergy of optical imaging spectrometer data ( AVIRIS) and polarimetric microwave data ( AIRSAR) for forest resource assessment. Original and new derived bands from AIRSAR and AVIRIS data are used to predict age and biomass. The best predictors ( bands) are selected through a multivariate stepwise regression analysis of each of the datasets separately. Then the joint AIRSAR-AVIRIS dataset is analysed. This study shows how the synergistic use of AIRSAR and AVIRIS data improves significantly the predictions obtained from the individual datasets for both age and biomass over the test site. In the analysis of AVIRIS data a new approach for processing large datasets as those provided by imaging spectrometers is presented, so that maximum likelihood classification of these datasets becomes feasible. (author)

  3. Spectro-polarimetric study of the early evolutionary phases of the most massive galaxies

    International Nuclear Information System (INIS)

    Vernet, Joel

    2001-01-01

    This research thesis addresses the study of the early phases of evolution of the most massive galaxies (giant elliptic), a fundamental process which is a matter of study for various reasons exposed by the author in his introduction. While presented results are based on spectro-polarimetric observations, the author first presents specific instruments and methods used by spectropolarimetry which provides access to variations of all vectorial properties of light, without loss of information. Then, he reports the study of a near powerful radio-galaxy, Cygnus A, the study of nine radio-galaxies with a high redshift, and the study of a far ultra-luminous infrared galaxy (SMM J02399-0136). Results are then discussed and perspectives of research are proposed. Appendices present the theoretical study of the contribution of massive stars to the diffuse extragalactic ionizing background, and observations made on a near radio-galaxy (NGC 6251)

  4. Semi-supervised Learning for Classification of Polarimetric SAR Images Based on SVM-Wishart

    Directory of Open Access Journals (Sweden)

    Hua Wen-qiang

    2015-02-01

    Full Text Available In this study, we propose a new semi-supervised classification method for Polarimetric SAR (PolSAR images, aiming at handling the issue that the number of train set is small. First, considering the scattering characters of PolSAR data, this method extracts multiple scattering features using target decomposition approach. Then, a semi-supervised learning model is established based on a co-training framework and Support Vector Machine (SVM. Both labeled and unlabeled data are utilized in this model to obtain high classification accuracy. Third, a recovery scheme based on the Wishart classifier is proposed to improve the classification performance. From the experiments conducted in this study, it is evident that the proposed method performs more effectively compared with other traditional methods when the number of train set is small.

  5. Link between interplanetary & cometary dust: Polarimetric observations and space studies with Rosetta & Eye-Sat

    Science.gov (United States)

    Levasseur-Regourd, Anny-Chantal; Gaboriaud, Alain; Buil, Christian; Ressouche, Antoine; Lasue, J.; Palun, Adrien; Apper, Fabien; Elmaleh, Marc

    Intensity and linear polarization observations of the solar light scattered by interplanetary dust, the so-called zodiacal light, provide information on properties of the dust particles, such as their spatial density, local changes, morphology and albedo. Earth-based polarimetric observations, with a resolution of 5° or more, have been used to derive the polarization phase curve of interplanetary dust particles and to establish that the polarization at 90° phase angle increases with increasing solar distance, at least up to 1.5 au in the ecliptic, while the albedo decreases [1, 2]. Analysis of such studies will be revisited. Numerical simulations of the polarimetric behavior of interplanetary dust particles strongly suggest that, in the inner solar system, interplanetary dust particles consist of absorbing (e.g., organic compounds) and less absorbing (e.g., silicates) materials, that radial changes originate in a decrease of organics with decreasing solar distance (probably due to alteration processes), and that a significant fraction of the interplanetary dust is of cometary origin, in agreement with dynamical studies [3, 4]. The polarimetric behaviors of interplanetary dust and cometary dust particles seem to present striking similarities. The properties of cometary dust particles, as derived from remote polarimetric observations of comets including 67P/Churyumov-Gerasimenko, the target of the Rosetta rendezvous mission, at various wavelengths, will be summarized [5, 6]. The ground truth expected from Rosetta dust experiments, i.e., MIDAS, COSIMA, GIADA, about dust particles’ morphology, composition, and evolution (with distance to the nucleus before Philae release and with distance to the Sun before and after perihelion passage) over the year and a half of nominal mission, will be discussed. Finally, the Eye-Sat nanosatellite will be presented. This triple cubesat, developed by students from engineering schools working as interns at CNES, is to be launched

  6. ESA'S POLarimetric Airborne Radar Ice Sounder (POLARIS): design and first results

    DEFF Research Database (Denmark)

    Dall, Jørgen; Kristensen, Steen Savstrup; Krozer, Viktor

    2010-01-01

    -of-concept campaign was conducted in Greenland. This study outlines the design and implementation of the system, and based on first results it is concluded that in the central dry snow zone of Greenland, POLARIS can resolve shallow and deep internal ice layers, penetrate the thickest ice encountered and detect......The Technical University of Denmark has developed and tested a P-band ice sounding radar for European Space Agency (ESA). With the recent by the International Telecommunication Union (ITU) allocation of a radar band at 435 MHz, increased interest in space-based sounding of the Earth s ice caps has...... been encountered. ESA s POLarimetric Airborne Radar Ice Sounder (POLARIS) is intended to provide a better understanding of P-band scattering and propagation through ice sheets and to verify novel surface clutter suppression techniques in preparation for a potential space-based ice sounding mission...

  7. EMISAR: An Absolutely Calibrated Polarimetric L- and C-band SAR

    DEFF Research Database (Denmark)

    Christensen, Erik Lintz; Skou, Niels; Dall, Jørgen

    1998-01-01

    and low cross-polar contamination. Digital technology has been utilized to realize a flexible and highly stable radar with variable resolution, swath width, and imaging geometry. Thermal control and several calibration loops have been built into the system to ensure system stability and absolute......EMISAR is a high-resolution (2×2 m), fully polarimetric, dual-frequency (L- and C-band) synthetic aperture radar (SAR) system designed for remote-sensing applications. The SAR is operated at high altitudes on a Gulfstream G-3 jet aircraft. The system is very well calibrated and has low sidelobes...... calibration. Accurately measured antenna gains and radiation patterns are included in the calibration. The processing system is developed to support data calibration, which is the key to most of the current applications. Recent interferometric enhancements are important for many scientific applications...

  8. On Intuitionistic Fuzzy β-Almost Compactness and β-Nearly Compactness.

    Science.gov (United States)

    Renuka, R; Seenivasan, V

    2015-01-01

    The concept of intuitionistic fuzzy β-almost compactness and intuitionistic fuzzy β-nearly compactness in intuitionistic fuzzy topological spaces is introduced and studied. Besides giving characterizations of these spaces, we study some of their properties. Also, we investigate the behavior of intuitionistic fuzzy β-compactness, intuitionistic fuzzy β-almost compactness, and intuitionistic fuzzy β-nearly compactness under several types of intuitionistic fuzzy continuous mappings.

  9. Numerical simulation of intelligent compaction technology for construction quality control.

    Science.gov (United States)

    2014-12-01

    Intelligent compaction (IC) technique is a fast-developing technology for compaction quality control and acceptance. Proof rolling using the intelligent compaction rollers after completing compaction can eectively identify : the weak spots and sig...

  10. Oil detection in a coastal marsh with polarimetric Synthetic Aperture Radar (SAR)

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Suzuoki, Yukihiro; Jones, Cathleen E.

    2011-01-01

    The National Aeronautics and Space Administration's airborne Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) was deployed in June 2010 in response to the Deepwater Horizon oil spill in the Gulf of Mexico. UAVSAR is a fully polarimetric L-band Synthetic Aperture Radar (SAR) sensor for obtaining data at high spatial resolutions. Starting a month prior to the UAVSAR collections, visual observations confirmed oil impacts along shorelines within northeastern Barataria Bay waters in eastern coastal Louisiana. UAVSAR data along several flight lines over Barataria Bay were collected on 23 June 2010, including the repeat flight line for which data were collected in June 2009. Our analysis of calibrated single-look complex data for these flight lines shows that structural damage of shoreline marsh accompanied by oil occurrence manifested as anomalous features not evident in pre-spill data. Freeman-Durden (FD) and Cloude-Pottier (CP) decompositions of the polarimetric data and Wishart classifications seeded with the FD and CP classes also highlighted these nearshore features as a change in dominant scattering mechanism. All decompositions and classifications also identify a class of interior marshes that reproduce the spatially extensive changes in backscatter indicated by the pre- and post-spill comparison of multi-polarization radar backscatter data. FD and CP decompositions reveal that those changes indicate a transform of dominant scatter from primarily surface or volumetric to double or even bounce. Given supportive evidence that oil-polluted waters penetrated into the interior marshes, it is reasonable that these backscatter changes correspond with oil exposure; however, multiple factors prevent unambiguous determination of whether UAVSAR detected oil in interior marshes.

  11. Ground-Based Polarimetric Remote Sensing of Dust Aerosol Properties in Chinese Deserts near Hexi Corridor

    Directory of Open Access Journals (Sweden)

    Hua Xu

    2014-01-01

    Full Text Available One-year observation of dust aerosol properties near Hexi Corridor was obtained from polarimetric measurements by ground-based sunphotometer in the county of Minqin in northwestern China from March 2012 to February 2013. We observed an annual mean AOD of 0.22±0.22 at 0.50 μm and Ångström exponents of 0.1–1.0 fitting a bimode normal distribution centered at 0.18 and 0.50, respectively. The effective radii of fine (0.13–0.17 μm and coarse (2.49–3.49 μm modes were found stable at all seasons together with the appearance of a third mode of particle radius at 0.4–1.0 μm when AOD was larger than 0.6. It is noticeable that the real (1.5–1.7 and imaginary (0.0005 to 0.09 parts of complex refractive indices were higher than other studies performed in other desert regions of China, while single scattering albedo was relatively lower (~0.84–0.89 at wavelengths of 0.44, 0.67, 0.87, and 1.02 μm. This is partially due to calcite or hematite in the soil in Minqin or the influence of anthropogenic aerosols containing carbon. Moreover, from our novel polarimetric measurement, the scattering phase function (F11 and degree of linear polarization for incident unpolarized light (-F12/F11 of dust aerosols were also obtained within this deserted area.

  12. Oil Detection in a Coastal Marsh with Polarimetric Synthetic Aperture Radar (SAR

    Directory of Open Access Journals (Sweden)

    Cathleen E. Jones

    2011-12-01

    Full Text Available The National Aeronautics and Space Administration’s airborne Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR was deployed in June 2010 in response to the Deepwater Horizon oil spill in the Gulf of Mexico. UAVSAR is a fully polarimetric L-band Synthetic Aperture Radar (SAR sensor for obtaining data at high spatial resolutions. Starting a month prior to the UAVSAR collections, visual observations confirmed oil impacts along shorelines within northeastern Barataria Bay waters in eastern coastal Louisiana. UAVSAR data along several flight lines over Barataria Bay were collected on 23 June 2010, including the repeat flight line for which data were collected in June 2009. Our analysis of calibrated single-look complex data for these flight lines shows that structural damage of shoreline marsh accompanied by oil occurrence manifested as anomalous features not evident in pre-spill data. Freeman-Durden (FD and Cloude-Pottier (CP decompositions of the polarimetric data and Wishart classifications seeded with the FD and CP classes also highlighted these nearshore features as a change in dominant scattering mechanism. All decompositions and classifications also identify a class of interior marshes that reproduce the spatially extensive changes in backscatter indicated by the pre- and post-spill comparison of multi-polarization radar backscatter data. FD and CP decompositions reveal that those changes indicate a transform of dominant scatter from primarily surface or volumetric to double or even bounce. Given supportive evidence that oil-polluted waters penetrated into the interior marshes, it is reasonable that these backscatter changes correspond with oil exposure; however, multiple factors prevent unambiguous determination of whether UAVSAR detected oil in interior marshes.

  13. QuadCam - A Quadruple Polarimetric Camera for Space Situational Awareness

    Science.gov (United States)

    Skuljan, J.

    A specialised quadruple polarimetric camera for space situational awareness, QuadCam, has been built at the Defence Technology Agency (DTA), New Zealand, as part of collaboration with the Defence Science and Technology Laboratory (Dstl), United Kingdom. The design was based on a similar system originally developed at Dstl, with some significant modifications for improved performance. The system is made up of four identical CCD cameras looking in the same direction, but in a different plane of polarisation at 0, 45, 90 and 135 degrees with respect to the reference plane. A standard set of Stokes parameters can be derived from the four images in order to describe the state of polarisation of an object captured in the field of view. The modified design of the DTA QuadCam makes use of four small Raspberry Pi computers, so that each camera is controlled by its own computer in order to speed up the readout process and ensure that the four individual frames are taken simultaneously (to within 100-200 microseconds). In addition, a new firmware was requested from the camera manufacturer so that an output signal is generated to indicate the state of the camera shutter. A specialised GPS unit (also developed at DTA) is then used to monitor the shutter signals from the four cameras and record the actual time of exposure to an accuracy of about 100 microseconds. This makes the system well suited for the observation of fast-moving objects in the low Earth orbit (LEO). The QuadCam is currently mounted on a Paramount MEII robotic telescope mount at the newly built DTA space situational awareness observatory located on Whangaparaoa Peninsula near Auckland, New Zealand. The system will be used for tracking satellites in low Earth orbit and geostationary belt as well. The performance of the camera has been evaluated and a series of test images have been collected in order to derive the polarimetric signatures for selected satellites.

  14. Portable polarimetric fiber stress sensor system for visco-elastic and biomimetic material analysis

    Science.gov (United States)

    Harrison, Mark C.; Armani, Andrea M.

    2015-05-01

    Non-destructive materials characterization methods have significantly changed our fundamental understanding of material behavior and have enabled predictive models to be developed. However, the majority of these efforts have focused on crystalline and metallic materials, and transitioning to biomaterials, such as tissue samples, is non-trivial, as there are strict sample handling requirements and environmental controls which prevent the use of conventional equipment. Additionally, the samples are smaller and more complex in composition. Therefore, more advanced sample analysis methods capable of operating in these environments are needed. In the present work, we demonstrate an all-fiber-based material analysis system based on optical polarimetry. Unlike previous polarimetric systems which relied on free-space components, our method combines an in-line polarizer, polarization-maintaining fiber, and a polarimeter to measure the arbitrary polarization state of the output, eliminating all free-space elements. Additionally, we develop a more generalized theoretical analysis which allows more information about the polarization state to be obtained via the polarimeter. We experimentally verify our system using a series of elastomer samples made from polydimethylsiloxane (PDMS), a commonly used biomimetic material. By adjusting the base:curing agent ratio of the PDMS, we controllably tune the Young's modulus of the samples to span over an order of magnitude. The measured results are in good agreement with those obtained using a conventional load-frame system. Our fiber-based polarimetric stress sensor shows promise for use as a simple research tool that is portable and suitable for a wide variety of applications.

  15. WindSat Space Borne Polarimetric Microwave Radiometer: Data Products and System Performance

    Science.gov (United States)

    Truesdale, D.; Gaiser, P.; Bettenhausen, M. H.; Li, L.; Twarog, E.

    2017-12-01

    WindSat, a satellite-based multi-frequency polarimetric microwave radiometer developed by the Naval Research Laboratory for the U.S. Navy and the NPOESS Integrated Program Office (IPO), has collected over 14 years of fully-polarimetric microwave measurements from space since its launch in 2003. The primary WindSat mission was to demonstrate the capability to retrieve the ocean surface wind vector from a space-based microwave radiometer. The WindSat data is now being used to produce near-real-time products for the ocean surface wind vector, sea surface temperature (SST) and atmospheric columnar water vapor and cloud liquid water over the ocean at the U.S. Navy's Fleet Numerical Meteorological and Oceanographic Center (FNMOC). Several groups are assimilating WindSat data products into numerical weather models with positive results. In addition to providing environmental products over the ocean, the WindSat data set has been exploited for retrievals over land and ice. In particular, the WindSat channel set is well suited to retrieving soil moisture and land surface temperature. We have also built on heritage algorithms to derive sea ice concentration. This paper will provide highlights of WindSat environmental products. The success of the WindSat mission is directly traceable to the on-orbit sensor calibration. WindSat was designed with a one-year mission requirement and three year goal. Now in WindSat's fifteenth year on orbit, we continue to monitor the instrument performance and the calibration stability. Key system performance and calibration parameters include the receiver gains and NEDTs. These parameters are susceptible to component aging and changes in the payload thermal behavior. We will present trends in NEDT and receiver gains over the life of the mission. In addition to its primary mission, the long life of WindSat enables it to provide many forms of risk reduction and lessons learned for future microwave imagers.

  16. A Combined Use of Decomposition and Texture for Terrain Classification of Fully Polarimetric SAR Images

    Science.gov (United States)

    Rodionova, N. V.

    2007-03-01

    This p aper presents two-stag e unsupervised terrain classification of fully polarimetr ic SA R data using Freeman and Durden decomposition based on three simp le scattering mechanisms: surface, volume and double bounce (first step), and textur al features (uncorrelated uniformity , contr ast, inv erse mo men t and entropy) obtained from grey lev el co-occurrence matr ices (GLCM) (second step). Textural f eatures ar e defined in moving w indow 5x5 pixels w ith N=32 (N - number of grey lev els) . This algorith m preserves th e purity of domin ant polarimetric scattering properties and defines textural features in each scatter ing category. It is shown better object discrimin ation after app lying textur e w ith in fix ed scattering category. Speckle r eduction is one of th e main mo ments in imag e interpr etation improvement because of its great influen ce on textur e. Results from unfiltered and Lee filtered polar imetr ic SAR imag es show that the v alues of contrast and en tropy decr ease and th e values of uniformity and inverse moment increase with speckle reduction, that's tru e for all polarizations (HH, VV, HV). Th e d iscr imination b etw een objects increases after speckle f ilter ing. Polar ization influen ce on textur e features is def ined by calculating th e features in SAR images w ith HH , VV and HV polarizations before and after speck le filter ing, and then creating RG B images. It is shown mor e polarization inf luence on textur e features (uniformity , inverse mo ment and entropy) before filtering and less influen ce - after speck le f iltering. I t's not true for contrast wher e polar ization influen ce is not ch anged practically w ith filtering. SIR-C/X-SA R SLC L-band imag es of Moscow r egion are used for illustr ation.

  17. Feasibility Study of Rain Rate Monitoring from Polarimetric GNSS Propagation Parameters

    Directory of Open Access Journals (Sweden)

    Hao An

    2016-12-01

    Full Text Available In this work, the feasibility of estimating rain rate based on polarimetric Global Navigation Satellite Systems (GNSS signals is explored in theory. After analyzing the cause of polarimetric signals, three physical-mathematical relation models between co-polar phase shift (KHH, KVV, specific differential phase shift (KDP, and rain rate (R are respectively investigated. These relation models are simulated based on four different empirical equations of nonspherical raindrops and simulated Gamma raindrop size distribution. They are also respectively analyzed based on realistic Gamma raindrop size distribution and maximum diameter of raindrops under three different rain types: stratiform rain, cumuliform rain, and mixed clouds rain. The sensitivity of phase shift with respect to some main influencing factors, such as shape of raindrops, frequency, as well as elevation angle, is also discussed, respectively. The numerical results in this study show that the results by scattering algorithms T-matrix are consistent with those from Rayleigh Scattering Approximation. It reveals that they all have the possibility to estimate rain rate using the KHH-R, KVV-R or KDP-R relation. It can also be found that the three models are all affected by shape of raindrops and frequency, while the elevation angle has no effect on KHH-R. Finally, higher frequency L1 or B1 and lower elevation angle are recommended and microscopic characteristics of raindrops, such as shape and size distribution, are deemed to be important and required for further consideration in future experiments. Since phase shift is not affected by attenuation and not biased by ground clutter cancellers, this method has considerable potential in precipitation monitoring, which provides new opportunities for atmospheric research.

  18. Image Enhancement and Speckle Reduction of Full Polarimetric SAR Data by Gaussian Markov Random Field

    Science.gov (United States)

    Mahdian, M.; Motagh, M.; Akbari, V.

    2013-09-01

    In recent years, the use of Polarimetric Synthetic Aperture Radar (PolSAR) data in different applications dramatically has been increased. In SAR imagery an interference phenomenon with random behavior exists which is called speckle noise. The interpretation of data encounters some troubles due to the presence of speckle which can be considered as a multiplicative noise affecting all coherent imaging systems. Indeed, speckle degrade radiometric resolution of PolSAR images, therefore it is needful to perform speckle filtering on the SAR data type. Markov Random Field (MRF) has proven to be a powerful method for drawing out eliciting contextual information from remotely sensed images. In the present paper, a probability density function (PDF), which is fitted well with the PolSAR data based on the goodness-of-fit test, is first obtained for the pixel-wise analysis. Then the contextual smoothing is achieved with the MRF method. This novel speckle reduction method combines an advanced statistical distribution with spatial contextual information for PolSAR data. These two parts of information are combined based on weighted summation of pixel-wise and contextual models. This approach not only preserves edge information in the images, but also improves signal-to-noise ratio of the results. The method maintains the mean value of original signal in the homogenous areas and preserves the edges of features in the heterogeneous regions. Experiments on real medium resolution ALOS data from Tehran, and also high resolution full polarimetric SAR data over the Oberpfaffenhofen test-site in Germany, demonstrate the effectiveness of the algorithm compared with well-known despeckling methods.

  19. Retrieval of Macro- and Micro-Physical Properties of Oceanic Hydrosols from Polarimetric Observations

    Science.gov (United States)

    Ibrahim, Amir; Gilerson, Alexander; Chowdhary, Jacek; Ahmed, Samir

    2016-01-01

    Remote sensing has mainly relied on measurements of scalar radiance and its spectral and angular features to retrieve micro- and macro-physical properties of aerosols/hydrosols. However, it is recognized that measurements that include the polarimetric characteristics of light provide more intrinsic information about particulate scattering. To take advantage of this, we used vector radiative transfer (VRT) simulations and developed an analytical relationship to retrieve the macro and micro-physical properties of the oceanic hydrosols. Specifically, we investigated the relationship between the observed degree of linear polarization (DoLP) and the ratio of attenuation-to- absorption coefficients (c/a) in water, from which the scattering coefficient can be readily computed (b equals c minus a), after retrieving a. This relationship was parameterized for various scattering geometries, including sensor zenith/azimuth angles relative to the Sun's principal plane, and for varying Sun zenith angles. An inversion method was also developed for the retrieval of the microphysical properties of hydrosols, such as the bulk refractive index and the particle size distribution. The DoLP vs c/a relationship was tested and validated against in-situ measurements of underwater light polarization obtained by a custom-built polarimeter and measurements of the coefficients a and c, obtained using an in-water WET (Western Environmental Technologies) Labs ac-s (attenuation coefficients In-Situ Spectrophotometer) instrument package. These measurements confirmed the validity of the approach, with retrievals of attenuation coefficients showing a high coefficient of determination depending on the wavelength. We also performed a sensitivity analysis of the DoLP at the Top of Atmosphere (TOA) over coastal waters showing the possibility of polarimetric remote sensing application for ocean color.

  20. Response Of Lowland Rice To Soil Compaction

    International Nuclear Information System (INIS)

    Idawati; Haryanto

    2000-01-01

    Soil compaction, as a new tillage practice for paddy soil, is to substitute pudding in order to reduce land preparation cost. To study response of lowland rice to soil compaction, a pot experiment has been conducted which took place in the greenhouse of P3TIR-BATAN. Soil for experiment was taken from pusakanegara. Two factors (degree of soil compaction and rice variety) were combined. Degree of compaction was split into 3 levels (DI = normal; D215% more compact than normal; 30 % more compact than normal), and rice variety into 2 levels (IR64 and Atomita IV). KH 2 32 PO 4 solution was injected into the soil surrounding rice clump to test the root activity at blooming stage of rice plant. Data resulted from this experiment is presented together with additional data from some other experiments of fertilization in the research s erie to study soil compaction. Some information's from experiment results are as following. Both rice varieties tested gave the same response to soil compaction. Root activity, according to data of 32 P absorbed by plant, was not harmed by soil compaction at the degree tested in the experiment. This prediction is supported by the growth by rice observed at generative growth stage, in pot experiment as well as in field experiment, which showed that soil compaction tested did not decrease rice yield but in opposite in tended to increase the yield. In practising soil compaction in land preparation, fertilizers should be applied by deep placement to have higher increasing is rice yield

  1. A long-lasting compact group

    Energy Technology Data Exchange (ETDEWEB)

    Governato, F.; Chincarini, G.; Bhatia, R. (Osservatorio Astronomico di Brera (Italy) Milano, Universita, Milan (Italy) Osservatorio Astronomico di Brera, Milan (Italy) Padova, Osservatorio Astronomico, Padua (Italy))

    1991-04-01

    The dynamical evolution of a compact group of four galaxies has been studied using Aarseth's NBODY2 code. An important departure from previous studies is the wider range of masses chosen for the individual galaxies, which are representative of those existing in Hickson's catalog. The first merging occurs after 4.3 billion yr, while the group lasts for as many as nine billion yr before merging into a single remnant. Two other simulations test the dependence of the results on the galaxy models adopted and the general set of initial conditions. Another run, with four identical galaxies and no special initial conditions, is used as a standard of reference. 13 refs.

  2. Aperture synthesis observations of recombination lines from compact HII regions

    International Nuclear Information System (INIS)

    Gorkom, J.H. van.

    1980-01-01

    This thesis describes a continuation of early attempts to attain a high spectral dynamic range in general and to study recombination lines from compact HII regions in particular. These observations are made with the WSRT, until recently, the only instrument with sufficient angular resolution and sensitivity to provide at 6 cm detailed line maps of compact HII regions. An investigation into the spectral stability of the WSRT is described. Chromatic errors were found and their effects on maps are shown. These errors were found in the 80 channel filter spectrometer which was still in use at that time. The advent of the digital line backend (DLB) improved the dynamic range by an order of magnitude. An experiment is described which was partially aimed at testing the spectral stability of the DLB. It concerns a search for HI emission from the high velocity system of NGC 1275. Recombination line observations of the compact components in five giant HII regions are presented. The author discusses the radiative transfer problem in recombination lines and shows that non-LTE effects and pressure broadening can be of importance in compact HII regions. Observations obtained with the DLB are also presented. Because of the much better instrumental quality and improved insight into calibration procedures, mapping the H110α emission of DR21 and both the H110α and H166α emission of W3 was succeeded. (Auth.)

  3. Portable compact multifunction IR calibrator

    International Nuclear Information System (INIS)

    Wyatt, C.L.; Jacobsen, L.; Steed, A.

    1988-01-01

    A compact portable multifunction calibrator designed for future sensor systems is described which enables a linearity calibration for all detectors simultaneously using a near small-area source, a high-resolution mapping of the focal plane with 10 microrad setability and with a blur of less than 100 microrad, system spectral response calibration (radiometer) using a Michelson interferometer source, relative spectral response (spectrometer) using high-temperature external commercial blackbody simulators, and an absolute calibration using an internal low-temperature extended-area source. 5 references

  4. Simplified compact containment BWR plant

    International Nuclear Information System (INIS)

    Heki, H.; Nakamaru, M.; Tsutagawa, M.; Hiraiwa, K.; Arai, K.; Hida, T.

    2004-01-01

    The reactor concept considered in this paper has a small power output, a compact containment and a simplified BWR configuration with comprehensive safety features. The Compact Containment Boiling Water Reactor (CCR), which is being developed with matured BWR technologies together with innovative systems/components, is expected to prove attractive in the world energy markets due to its flexibility in regard to both energy demands and site conditions, its high potential for reducing investment risk and its safety features facilitating public acceptance. The flexibility is achieved by CCR's small power output of 300 MWe class and capability of long operating cycle (refueling intervals). CCR is expected to be attractive from view point of investment due to its simplification/innovation in design such as natural circulation core cooling with the bottom located short core, internal upper entry control rod drives (CRDs) with ring-type dryers and simplified ECCS system with high pressure containment concept. The natural circulation core eliminates recirculation pumps and the maintenance of such pumps. The internal upper entry CRDs reduce the height of the reactor vessel (RPV) and consequently reduce the height of the primary containment vessel (PCV). The safety features mainly consist of large water inventory above the core without large penetration below the top of the core, passive cooling system by isolation condenser (IC), passive auto catalytic recombiner and in-vessel retention (IVR) capability. The large inventory increases the system response time in the case of design-base accidents, including loss of coolant accidents. The IC suppresses PCV pressure by steam condensation without any AC power. The recombiner decreases hydrogen concentration in the PCV in the case of a severe accident. Cooling the molten core inside the RPV if the core should be damaged by loss of core coolability could attain the IVR. The feasibility of CCR safety system has been confirmed by LOCA

  5. Compact objects in Horndeski gravity

    Science.gov (United States)

    Silva, Hector O.; Maselli, Andrea; Minamitsuji, Masato; Berti, Emanuele

    2016-04-01

    Horndeski gravity holds a special position as the most general extension of Einstein’s theory of general relativity (GR) with a single scalar degree of freedom and second-order field equations. Because of these features, Horndeski gravity is an attractive phenomenological playground to investigate the consequences of modifications of GR in cosmology and astrophysics. We present a review of the progress made so far in the study of compact objects (black holes (BHs) and neutron stars (NSs)) within Horndeski gravity. In particular, we review our recent work on slowly rotating BHs and present some new results on slowly rotating NSs.

  6. Matter in compact binary mergers

    Science.gov (United States)

    Read, Jocelyn; LIGO Scientific Collaboration, Virgo Scientific Collaboration

    2018-01-01

    Mergers of binary neutron stars or neutron-star/black-hole systems are promising targets for gravitational-wave detection. The dynamics of merging compact objects, and thus their gravitational-wave signatures, are primarily determined by the mass and spin of the components. However, the presence of matter can make an imprint on the final orbits and merger of a binary system. I will outline efforts to understand the impact of neutron-star matter on gravitational waves, using both theoretical and computational input, so that gravitational-wave observations can be used to measure the properties of source systems with neutron-star components.

  7. Self-compacting concrete (SCC)

    DEFF Research Database (Denmark)

    Geiker, Mette Rica

    2008-01-01

    In many aspects Self-Compacting Concrete (SCC, “Self-Consolidating Concrete” in North America) can be considered the concrete of the future. SCC is a family of tailored concretes with special engineered properties in the fresh state. SCC flows into the formwork and around even complicated...... reinforcement arrangements under its own weight. Thus, SCC is not vibrated like conventional concrete. This drastically improves the working environment during construction, the productivity, and potentially improves the homogeneity and quality of the concrete. In addition SCC provides larger architectural...

  8. Compact Radiometers Expand Climate Knowledge

    Science.gov (United States)

    2010-01-01

    To gain a better understanding of Earth's water, energy, and carbon cycles, NASA plans to embark on the Soil Moisture Active and Passive mission in 2015. To prepare, Goddard Space Flight Center provided Small Business Innovation Research (SBIR) funding to ProSensing Inc., of Amherst, Massachusetts, to develop a compact ultrastable radiometer for sea surface salinity and soil moisture mapping. ProSensing incorporated small, low-cost, high-performance elements into just a few circuit boards and now offers two lightweight radiometers commercially. Government research agencies, university research groups, and large corporations around the world are using the devices for mapping soil moisture, ocean salinity, and wind speed.

  9. A Novel Ship Detection Method Using Model-Based Decomposition as a Polarimetric Band-Stop Filter

    Science.gov (United States)

    Sugimoto, Mitsunobu; Marino, Armando; Ouchi, Kazuo; Nakamura, Yasuhiro

    2013-08-01

    In this study, a novel ship detection method using model-based decomposition is suggested. The model-based decomposition is one of the popular analytical methods of POLSAR (polarimetric SAR) data. Since most of the scattering on the sea is surface scattering, the model-based decomposition can be used as a band-stop filter, to block out surface scattering component. As a result, ships, which generally have more complex scattering process, can be detected. Advanced Land Observation Satellite-Phased Array L-band SAR (ALOS-PALSAR) polarimetric SAR data and available reference data for validation are used in the study. The result was processed using adaptive-CFAR (constant false alarm rate) technique and compared with the reference data.

  10. The relationship between the particle properties, mechanical behavior, and surface roughness of some pharmaceutical excipient compacts

    International Nuclear Information System (INIS)

    Narayan, Padma; Hancock, Bruno C.

    2003-01-01

    supported the model descriptions and hypotheses. The initial average particle size of the excipients did not directly correlate with compact roughness, probably due to particle deformation during compression. Average roughness values ranged between 0.1 and 1.0 μm for the compacted materials studied. The mechanical properties of the compacts, such as indentation hardness, elastic modulus, and brittle fracture index were also correlated with the roughness values. Pertinent correlations were found between average roughness, compact mechanical properties and the excipient type (either brittle or ductile). From this study, it can be concluded that brittle excipient powders generally produced smooth and brittle compacts, and plastic materials produced rough and ductile compacts. Surface roughness was hence found to be a useful descriptive property for pharmaceutical composites and supporting a model based on the excipient powder properties

  11. Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations

    Science.gov (United States)

    Wang, Mingjun; Zhao, Kun; Xue, Ming; Zhang, Guifu; Liu, Su; Wen, Long; Chen, Gang

    2016-10-01

    The evolution of microphysical characteristics of a rainband in Typhoon Matmo (2014) over eastern China, through its onset, developing, mature, and dissipating stages, is documented using observations from an S band polarimetric Doppler radar and a two-dimensional video disdrometer (2DVD). The drop size distributions observed by the 2DVD and retrieved from the polarimetric radar measurements indicate that the convection in the rainband generally contains smaller drops and higher number concentrations than the typical maritime type convection described in Bringi et al. (2003). The average mass-weighted mean diameter (Dm) of convective precipitation in the rainband is about 1.41 mm, and the average logarithmic normalized intercept (Nw) is 4.67 log10 mm-1 m-3. To further investigate the dominant microphysical processes, the evolution of the vertical structures of polarimetric variables is examined. Results show that complex ice processes are involved above the freezing level, while it is most likely that the accretion and/or coalescence processes dominate below the freezing level throughout the rainband life cycle. A combined examination of the polarimetric measurements and profiles of estimated vertical liquid and ice water contents indicates that the conversion of cloud water into rainwater through cloud water accretion by raindrops plays a dominant role in producing heavy rainfall. The high estimated precipitation efficiency of 50% also suggests that cloud water accretion is the dominant mechanism for producing heavy rainfall. This study represents the first time that radar and 2DVD observations are used together to characterize the microphysical characteristics and precipitation efficiency for typhoon rainbands in China.

  12. Polarimetric survey of main-belt asteroids. IV. New results from the first epoch of the CASLEO survey

    Science.gov (United States)

    Gil-Hutton, R.; Cellino, A.; Bendjoya, Ph.

    2014-09-01

    Aims: We present results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained using the Torino and CASPROF polarimeters at the 2.15m telescope. The Torino polarimeter is an instrument that allows simultaneous measurement of polarization in five different bands, and the CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation. Results: The survey began in 1995, and until 2012 data on a large sample of asteroids were obtained. We here present and analyze the unpublished results for 129 asteroids of different taxonomic types, 56 which were polarimetrically observed for the first time. We find that the asteroids (402) Chloe and (729) Watsonia are Barbarians, and asteroid (269) Justitia shows a phase - polarization curve that seems to have a small inversion angle. Data obtained in UBVRI colors allow us to sketch an analysis of the wavelength dependence of the degree of linear polarization for 31 asteroids, in spite of some large error bars in some cases. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/569/A122

  13. Compact Visualisation of Video Summaries

    Directory of Open Access Journals (Sweden)

    Janko Ćalić

    2007-01-01

    Full Text Available This paper presents a system for compact and intuitive video summarisation aimed at both high-end professional production environments and small-screen portable devices. To represent large amounts of information in the form of a video key-frame summary, this paper studies the narrative grammar of comics, and using its universal and intuitive rules, lays out visual summaries in an efficient and user-centered way. In addition, the system exploits visual attention modelling and rapid serial visual presentation to generate highly compact summaries on mobile devices. A robust real-time algorithm for key-frame extraction is presented. The system ranks importance of key-frame sizes in the final layout by balancing the dominant visual representability and discovery of unanticipated content utilising a specific cost function and an unsupervised robust spectral clustering technique. A final layout is created using an optimisation algorithm based on dynamic programming. Algorithm efficiency and robustness are demonstrated by comparing the results with a manually labelled ground truth and with optimal panelling solutions.

  14. Spectrometers for compact neutron sources

    Science.gov (United States)

    Voigt, J.; Böhm, S.; Dabruck, J. P.; Rücker, U.; Gutberlet, T.; Brückel, T.

    2018-03-01

    We discuss the potential for neutron spectrometers at novel accelerator driven compact neutron sources. Such a High Brilliance Source (HBS) relies on low energy nuclear reactions, which enable cryogenic moderators in very close proximity to the target and neutron optics at comparably short distances from the moderator compared to existing sources. While the first effect aims at increasing the phase space density of a moderator, the second allows the extraction of a large phase space volume, which is typically requested for spectrometer applications. We find that competitive spectrometers can be realized if (a) the neutron production rate can be synchronized with the experiment repetition rate and (b) the emission characteristics of the moderator can be matched to the phase space requirements of the experiment. MCNP simulations for protons or deuterons on a Beryllium target with a suitable target/moderator design yield a source brightness, from which we calculate the sample fluxes by phase space considerations for different types of spectrometers. These match closely the figures of todays spectrometers at medium flux sources. Hence we conclude that compact neutron sources might be a viable option for next generation neutron sources.

  15. High flux compact neutron generators

    International Nuclear Information System (INIS)

    Reijonen, J.; Lou, T.-P.; Tolmachoff, B.; Leung, K.-N.; Verbeke, J.; Vujic, J.

    2001-01-01

    Compact high flux neutron generators are developed at the Lawrence Berkeley National Laboratory. The neutron production is based on D-D or D-T reaction. The deuterium or tritium ions are produced from plasma using either a 2 MHz or 13.56 MHz radio frequency (RF) discharge. RF-discharge yields high fraction of atomic species in the beam which enables higher neutron output. In the first tube design, the ion beam is formed using a multiple hole accelerator column. The beam is accelerated to energy of 80 keV by means of a three-electrode extraction system. The ion beam then impinges on a titanium target where either the 2.4 MeV D-D or 14 MeV D-T neutrons are generated. The MCNP computation code has predicted a neutron flux of ∼10 11 n/s for the D-D reaction at beam intensity of 1.5 A at 150 kV. The neutron flux measurements of this tube design will be presented. Recently new compact high flux tubes are being developed which can be used for various applications. These tubes also utilize RF-discharge for plasma generation. The design of these tubes and the first measurements will be discussed in this presentation

  16. Quark matter in compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, H., E-mail: harg@cefet-rj.b [Centro Federal de Educacao Tecnologica do Rio de Janeiro, Av. Maracana 249, 20271-110, Rio de Janeiro, RJ (Brazil); Duarte, S.B., E-mail: sbd@cbpf.b [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil); Oliveira, J.C.T., E-mail: jcto@cbpf.b [Departamento de Fisica, Universidade Federal de Roraima, Campus do Paricarana s/n, 69310-270, Boa Vista, RR (Brazil)

    2010-02-15

    Recently reported massive compact stars (Mapprox2M{sub o}) have provided strong constraints on the properties of the ultradense matter beyond the saturation nuclear density. Therefore, realistic quark or hybrid star models must be compatible with these observational data. Some used equations of state (EoS) describing quark matter are in general too soft and hence are not suitable to explain the stability of high compact star masses. In this work, we present the calculations of static spherically symmetric quark star structure by using an equation of state which takes into account the superconducting colour-flavour locked phase of the strange quark matter. In addition, some fundamental aspects of QCD (asymptotic freedom and confinement) are considered by means of a phenomenological description of the deconfined quark phase, the density-dependent quark mass model. We discuss the influence of the obtained quark matter equation of state on the mass-radius relationship of quark stars. Massive quark stars are found due to the stiffness of the equation of state, when reasonable values of the superconducting gap, taken as a free parameter, are used.

  17. Evaluation of Digital Classification of Polarimetric SAR Data for Iron-Mineralized Laterites Mapping in the Amazon Region

    Directory of Open Access Journals (Sweden)

    Cleber G. Oliveira

    2013-06-01

    Full Text Available This study evaluates the potential of C- and L-band polarimetric SAR data for the discrimination of iron-mineralized laterites in the Brazilian Amazon region. The study area is the N1 plateau located on the northern border of the Carajás Mineral Province, the most important Brazilian mineral province which has numerous mineral deposits, particularly the world’s largest iron deposits. The plateau is covered by low-density savanna-type vegetation (campus rupestres which contrasts visibly with the dense equatorial forest. The laterites are subdivided into three units: chemical crust, iron-ore duricrust, and hematite, of which only the latter two are of economic interest. Full polarimetric data from the airborne R99B sensor of the SIVAM/CENSIPAM (L-band system and the RADARSAT-2 satellite (C-band were evaluated. The study focused on an assessment of distinct schemes for digital classification based on decomposition theory and hybrid approach, which incorporates statistical analysis as input data derived from the target decomposition modeling. The results indicated that the polarimetric classifications presented a poor performance, with global Kappa values below 0.20. The accuracy for the identification of units of economic interest varied from 55% to 89%, albeit with high commission error values. In addition, the results using L-band were considered superior compared to C-band, which suggest that the roughness scale for laterite discrimination in the area is nearer to L than to C-band.

  18. EFFECT OF POLARIMETRIC NOISE ON THE ESTIMATION OF TWIST AND MAGNETIC ENERGY OF FORCE-FREE FIELDS

    International Nuclear Information System (INIS)

    Tiwari, Sanjiv Kumar; Venkatakrishnan, P.; Gosain, Sanjay; Joshi, Jayant

    2009-01-01

    The force-free parameter α, also known as helicity parameter or twist parameter, bears the same sign as the magnetic helicity under some restrictive conditions. The single global value of α for a whole active region gives the degree of twist per unit axial length. We investigate the effect of polarimetric noise on the calculation of global α value and magnetic energy of an analytical bipole. The analytical bipole has been generated using the force-free field approximation with a known value of constant α and magnetic energy. The magnetic parameters obtained from the analytical bipole are used to generate Stokes profiles from the Unno-Rachkovsky solutions for polarized radiative transfer equations. Then we add random noise of the order of 10 -3 of the continuum intensity (I c ) in these profiles to simulate the real profiles obtained by modern spectropolarimeters such as Hinode (SOT/SP), SVM (USO), ASP, DLSP, POLIS, and SOLIS etc. These noisy profiles are then inverted using a Milne-Eddington inversion code to retrieve the magnetic parameters. Hundred realizations of this process of adding random noise and polarimetric inversion is repeated to study the distribution of error in global α and magnetic energy values. The results show that (1) the sign of α is not influenced by polarimetric noise and very accurate values of global twist can be calculated, and (2) accurate estimation of magnetic energy with uncertainty as low as 0.5% is possible under the force-free condition.

  19. Automated chromatographic system with polarimetric detection laser applied in the control of fermentation processes and seaweed extracts characterization

    International Nuclear Information System (INIS)

    Fajer, V.; Naranjo, S.; Mora, W.; Patinno, R.; Coba, E.; Michelena, G.

    2012-01-01

    There are presented applications and innovations of chromatographic and polarimetric systems in which develop methodologies for measuring the input molasses and the resulting product of a fermentation process of alcohol from a rich honey and evaluation of the fermentation process honey servery in obtaining a drink native to the Yucatan region. Composition was assessed optically active substances in seaweed, of interest to the pharmaceutical industry. The findings provide measurements alternative raw materials and products of the sugar industry, beekeeping and pharmaceutical liquid chromatography with automated polarimetric detection reduces measurement times up to 15 min, making it comparable to the times of high chromatography resolution, significantly reducing operating costs. By chromatography system with polarimetric detection (SCDP) is new columns have included standard size designed by the authors, which allow process samples with volumes up to 1 ml and reduce measurement time to 15 min, decreasing to 5 times the volume sample and halving the time of measurement. Was evaluated determining the concentration of substances using the peaks of the chromatograms obtained for the different columns and calculate the uncertainty of measurements. The results relating to the improvement of a data acquisition program (ADQUIPOL v.2.0) and new programs for the preparation of chromatograms (CROMAPOL CROMAPOL V.1.0 and V.1.2) provide important benefits, which allow a considerable saving of time the processing of the results and can be applied in other chromatography systems with the appropriate adjustments. (Author)

  20. A NEW SAR CLASSIFICATION SCHEME FOR SEDIMENTS ON INTERTIDAL FLATS BASED ON MULTI-FREQUENCY POLARIMETRIC SAR IMAGERY

    Directory of Open Access Journals (Sweden)

    W. Wang

    2017-11-01

    Full Text Available We present a new classification scheme for muddy and sandy sediments on exposed intertidal flats, which is based on synthetic aperture radar (SAR data, and use ALOS-2 (L-band, Radarsat-2 (C-band and TerraSAR-X (X-band fully polarimetric SAR imagery to demonstrate its effectiveness. Four test sites on the German North Sea coast were chosen, which represent typical surface compositions of different sediments, vegetation, and habitats, and of which a large amount of SAR is used for our analyses. Both Freeman-Durden and Cloude-Pottier polarimetric decomposition are utilized, and an additional descriptor called Double-Bounce Eigenvalue Relative Difference (DERD is introduced into the feature sets instead of the original polarimetric intensity channels. The classification is conducted following Random Forest theory, and the results are verified using ground truth data from field campaigns and an existing classification based on optical imagery. In addition, the use of Kennaugh elements for classification purposes is demonstrated using both fully and dual-polarization multi-frequency and multi-temporal SAR data. Our results show that the proposed classification scheme can be applied for the discrimination of muddy and sandy sediments using L-, C-, and X-band SAR images, while SAR imagery acquired at short wavelengths (C- and X-band can also be used to detect more detailed features such as bivalve beds on intertidal flats.

  1. Geomorphological mapping of ice-free areas using polarimetric RADARSAT-2 data on Fildes Peninsula and Ardley Island, Antarctica

    Science.gov (United States)

    Schmid, T.; López-Martínez, J.; Guillaso, S.; Serrano, E.; D'Hondt, O.; Koch, M.; Nieto, A.; O'Neill, T.; Mink, S.; Durán, J. J.; Maestro, A.

    2017-09-01

    Satellite-borne Synthetic Aperture Radar (SAR) has been used for characterizing and mapping in two relevant ice-free areas in the South Shetland Islands. The objective has been to identify and characterize land surface covers that mainly include periglacial and glacial landforms, using fully polarimetric SAR C band RADARSAT-2 data, on Fildes Peninsula that forms part of King George Island, and Ardley Island. Polarimetric parameters obtained from the SAR data, a selection of field based training and validation sites and a supervised classification approach, using the support vector machine were chosen to determine the spatial distribution of the different landforms. Eight periglacial and glacial landforms were characterized according to their scattering mechanisms using a set of 48 polarimetric parameters. The mapping of the most representative surface covers included colluvial deposits, stone fields and pavements, patterned ground, glacial till and rock outcrops, lakes and glacier ice. The overall accuracy of the results was estimated at 81%, a significant value when mapping areas that are within isolated regions where access is limited. Periglacial surface covers such as stone fields and pavements occupy 25% and patterned ground over 20% of the ice-free areas. These are results that form the basis for an extensive monitoring of the ice-free areas throughout the northern Antarctic Peninsula region.

  2. ZnTiO3 ceramic nanopowder microstructure changes during compaction

    Directory of Open Access Journals (Sweden)

    Labus N.

    2013-01-01

    Full Text Available ZnTiO3 nanopowder as a constitutive component in compact production was primarily characterized. Scanning electron micrographs of as received powder were recorded. Mercury porosimetry and nitrogen adsorption were also performed on loose powder. Particle size distribution in a water powder suspension was determined with a laser particle size analyser. Compaction was performed on different pressures in a range from 100 to 400 MPa using the uniaxial double sided compaction technique without binder and lubricant. Micrographs of compacted specimens were obtained using scanning electron microscopy and atomic force microscopy. Pore size distribution was also determined by mercury porosimetry and nitrogen adsorption. Results revealed that with increasing pressure during compaction interagglomerate pores diminish in size until they reach some critical diameter related to the intra-agglomerate pore size.

  3. Thermal properties of compacted pharmaceutical excipients.

    Science.gov (United States)

    Krok, Alexander; Vitorino, Nuno; Zhang, Jianyi; Frade, Jorge Ribeiro; Wu, Chuan-Yu

    2017-12-20

    Thermal properties of powders are critical material attributes that control temperature rise during tableting and roll compaction. In this study, various analytical methods were used to measure the thermal properties of widely used pharmaceutical excipients including microcrystalline cellulose (MCC) of three different grades (Avicel PH 101; Avicel PH 102 and Avicel DG), lactose and mannitol. The effect of relative density on the measured thermal properties was investigated by compressing the powders into specimen of different relative densities. Differential thermal analysis (DTA) was employed to explore endothermic or exothermic events in the temperature range endured during typical pharmaceutical manufacturing processes, such as tabletting and roll compaction. Thermogravimetric analysis (TGA) was performed to analyse the water/solvent content, either in the form as solvates or as loosely bound molecules on the particle surface. Thermal conductivity analysis (TCA) was conducted to measure thermal conductivity and volumetric heat capacity. It is shown that, for the MCC powders, almost no changes in morphology or structural changes were observed during heating to temperatures up to 200°C. An increase in relative density or temperature leads to a high thermal conductivity and the volumetric heat capacity. Among all MCC powders considered, Avicel DG showed the highest increase in thermal conductivity and the volumetric heat capacity, but this heat capacity was not sensitive to the measurement temperature. For lactose and mannitol, some endothermic events occurred during heating. The thermal conductivity increased with the increase in temperature and relative density. A model was also developed to describe the variation of the thermal conductivity and the volumetric heat capacity with the relative density and the temperature. It was shown that the empirical model can well predict the dependency of the thermal conductivity and the volumetric heat capacity on the

  4. Method for preparing porous metal hydride compacts

    Science.gov (United States)

    Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

    1980-01-21

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  5. Soil compaction and growth of woody plants

    International Nuclear Information System (INIS)

    Kozlowski, T.T.

    1999-01-01

    Although soil compaction in the field may benefit or inhibit the growth of plants, the harmful effects are much more common. This paper emphasizes the deleterious effects of predominantly high levels of soil compaction on plant growth and yield. High levels of soil compaction are common in heavily used recreation areas, construction sites, urban areas, timber harvesting sites, fruit orchards, agroforestry systems and tree nurseries. Compaction can occur naturally by settling or slumping of soil or may be induced by tillage tools, heavy machinery, pedestrian traffic, trampling by animals and fire. Compaction typically alters soil structure and hydrology by increasing soil bulk density; breaking down soil aggregates; decreasing soil porosity, aeration and infiltration capacity; and by increasing soil strength, water runoff and soil erosion. Appreciable compaction of soil leads to physiological dysfunctions in plants. Often, but not always, reduced water absorption and leaf water deficits develop. Soil compaction also induces changes in the amounts and balances of growth hormones in plants, especially increases in abscisic acid and ethylene. Absorption of the major mineral nutrients is reduced by compaction of both surface soils and subsoils. The rate of photosynthesis of plants growing in very compacted soil is decreased by both stomatal and non-stomatal inhibition. Total photosynthesis is reduced as a result of smaller leaf areas. As soils become increasingly compacted respiration of roots shifts toward an anaerobic state. Severe soil compaction adversely influences regeneration of forest stands by inhibiting seed germination and growth of seedlings, and by inducing seedling mortality. Growth of woody plants beyond the seedling stage and yields of harvestable plant products also are greatly decreased by soil compaction because of the combined effects of high soil strength, decreased infiltration of water and poor soil aeration, all of which lead to a decreased

  6. Soil compaction and growth of woody plants

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, T.T. [Univ. of California, Berkeley (United States). Dept. of Environmental Science, Policy and Management

    1999-07-01

    Although soil compaction in the field may benefit or inhibit the growth of plants, the harmful effects are much more common. This paper emphasizes the deleterious effects of predominantly high levels of soil compaction on plant growth and yield. High levels of soil compaction are common in heavily used recreation areas, construction sites, urban areas, timber harvesting sites, fruit orchards, agroforestry systems and tree nurseries. Compaction can occur naturally by settling or slumping of soil or may be induced by tillage tools, heavy machinery, pedestrian traffic, trampling by animals and fire. Compaction typically alters soil structure and hydrology by increasing soil bulk density; breaking down soil aggregates; decreasing soil porosity, aeration and infiltration capacity; and by increasing soil strength, water runoff and soil erosion. Appreciable compaction of soil leads to physiological dysfunctions in plants. Often, but not always, reduced water absorption and leaf water deficits develop. Soil compaction also induces changes in the amounts and balances of growth hormones in plants, especially increases in abscisic acid and ethylene. Absorption of the major mineral nutrients is reduced by compaction of both surface soils and subsoils. The rate of photosynthesis of plants growing in very compacted soil is decreased by both stomatal and non-stomatal inhibition. Total photosynthesis is reduced as a result of smaller leaf areas. As soils become increasingly compacted respiration of roots shifts toward an anaerobic state. Severe soil compaction adversely influences regeneration of forest stands by inhibiting seed germination and growth of seedlings, and by inducing seedling mortality. Growth of woody plants beyond the seedling stage and yields of harvestable plant products also are greatly decreased by soil compaction because of the combined effects of high soil strength, decreased infiltration of water and poor soil aeration, all of which lead to a decreased

  7. Classification of Forest Regrowth Stage using Polarimetric Decomposition and Foliage Projective Cover

    Science.gov (United States)

    Clewley, D.; Lucas, R.; Bunting, P.; Moghaddam, M.

    2012-12-01

    Within Queensland, Australia extensive clearing of vegetation for agriculture has occurred within the Brigalow Belt Bioregion (BBB), reducing forests dominated by Acacia harpophylla (brigalow) to 10 % of their former extent. Where cleared land is left abandoned or unmanaged regeneration is rapid, Regenerating vegetation represents a more efficient and cost effective method for carbon sequestration than direct planting and offers a number of benefits over plantation forest, particularly in terms of provision of habitat for native fauna. To effectively protect regenerating vegetation, maps of the distribution of forests at different stages of regeneration are required. Whilst mapping approaches have traditionally focused on optical data, the high canopy cover of brigalow regrowth in all but the very early stages limits discrimination of forests at different stages of growth. The combination of optical data, namely Landsat derived Foliage Projective Cover (FPC) and Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (SAR) backscatter data have previously been investigated for mapping regrowth. This study therefore aimed to investigate the potential of the alpha-Entropy (α/H) decomposition (S Cloude and E Pottier, "An entropy based classification scheme for land applications of polarimetric SAR," 1997, IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 1, pp. 68-78) applied to polarimetric ALOS PALSAR backscatter for mapping regrowth stage combined with FPC data to account for canopy variations. The study focused on the Tara Downs subregion, located in the Western Darling Downs, within the south of the BBB. PALSAR data were acquired over the study site in fully-polarimetric mode (incidence angle mid swath ~ 26 degrees). From these data α/H layers were generated and stacked with FPC data. Considering only those areas known to contain brigalow prior to clearing and with an FPC > 9 %, k-means clustering was applied, with

  8. Materials for nuclear diffusion-bonded compact heat exchangers

    International Nuclear Information System (INIS)

    Li, Xiuqing; Smith, Tim; Kininmont, David; Dewson, Stephen John

    2009-01-01

    This paper discusses the characteristics of materials used in the manufacture of diffusion bonded compact heat exchangers. Heatric have successfully developed a wide range of alloys tailored to meet process and customer requirements. This paper will focus on two materials of interest to the nuclear industry: dual certified SS316/316L stainless steel and nickel-based alloy Inconel 617. Dual certified SS316/316L is the alloy used most widely in the manufacture of Heatric's compact heat exchangers. Its excellent mechanical and corrosion resistance properties make it a good choice for use with many heat transfer media, including water, carbon dioxide, liquid sodium, and helium. As part of Heatric's continuing product development programme, work has been done to investigate strengthening mechanisms of the alloy; this paper will focus in particular on the effects of nitrogen addition. Another area of Heatric's programme is Alloy 617. This alloy has recently been developed for diffusion bonded compact heat exchanger for high temperature nuclear applications, such as the intermediate heat exchanger (IHX) for the very high temperature nuclear reactors for production of electricity, hydrogen and process heat. This paper will focus on the effects of diffusion bonding process and cooling rate on the properties of alloy 617. This paper also compares the properties and discusses the applications of these two alloys to compact heat exchangers for various nuclear processes. (author)

  9. Compact heat exchanger technologies for the HTRs recuperator application

    International Nuclear Information System (INIS)

    Thonon, B.; Breuil, E.

    2001-01-01

    Modern HTR nuclear power plants which are now under development (projects GT-MHR, PBMR) are based on the direct cycle concept. This concept leads to a more important efficiency compared to the steam cycle but requires the use of high performance components such as an helium/helium heat exchanger called recuperator to guarantee the cycle efficiency. Using this concept, a net plant efficiency of around 50% can be achieved in the case of an electricity generating plant. As geometric constraints are particularly important for such a gas reactor to limit the size of the primary vessels, compact heat exchangers operating at high pressure and high temperature are attractive potential solutions for the recuperator application. In this frame, Framatome and CEA have reviewed the various technologies of compact heat exchangers used in industry. The first part of the paper will give a short description of the heat exchangers technologies and their ranges of application. In a second part, a selection of potential compact heat exchangers technologies are proposed for the recuperator application. This selection will be based upon their capabilities to cope with the operating conditions parameters (pressure, temperature, flow rate) and with other parameters such as fouling, corrosion, compactness, weight, maintenance and reliability. (author)

  10. Path dependence and strength anisotropy of mechanical behavior in cold-compacted powders

    Science.gov (United States)

    Galen, Steven A.

    2005-12-01

    The problem of compaction of powders at low homologous temperatures has been studied over the last twenty years in many fields including powder metallurgy, ceramics, pharmaceutical, agricultural, and mining. Recent emphasis of research efforts has been on the use of phenomenological models that are capable of predicting compaction loads and density distributions in the final product. However, the mechanical properties of the compact cannot be predicted from current models since they consider strength as a function of density alone. A number of studies have shown that strength is dependent on other variables besides density, including the stress path used for consolidation. In prior work, path dependence in ductile powders has been shown experimentally. In this thesis, a ceramic, dibasic calcium phosphate, was consolidated using a variety of stress paths, ranging from nearly isostatic to nearly closed-die. Yield loci were shown to be dependent on stress path as well as compact density. Strength anisotropy in ductile and brittle powders was shown to exist after closed-die compaction and is dependent on compact density. Ductile powders become increasingly anisotropic with density. Brittle powders exhibit anisotropy during the early stages of compaction, but this diminishes as densification continues. Separate mechanisms to explain these behaviors are proposed and supported with experimental data from tensile strength testing, SEM fracture surface analysis and surface area testing. Finally, path dependence and strength anisotropy are shown to have a common origin, namely, directionality of microstructure resulting from initial particle morphology and particle deformation during compaction.

  11. Khinchin's inequality, Dunford–Pettis and compact operators on the ...

    Indian Academy of Sciences (India)

    Abstract. We prove that if X, Y are Banach spaces, a compact Hausdorff space and. U: C( ,X) → Y is a bounded linear operator, and if U is a Dunford–Pettis operator the range of the representing measure G( ) ⊆ DP (X, Y ) is an uniformly Dunford–Pettis family of operators and G is continuous at ∅. As applications of this ...

  12. The potential of linear discriminative Laplacian eigenmaps dimensionality reduction in polarimetric SAR classification for agricultural areas

    Science.gov (United States)

    Shi, Lei; Zhang, Lefei; Zhao, Lingli; Yang, Jie; Li, PingXiang; Zhang, Liangpei

    2013-12-01

    In this paper, the linear discriminative Laplacian eigenmaps (LDLE) dimensionality reduction (DR) algorithm is introduced to C-band polarimetric synthetic aperture radar (PolSAR) agricultural classification. A collection of homogenous areas of the same crop class usually presents physical parameter variation, such as the biomass and soil moisture. Furthermore, the local incidence angle also impacts a lot on the same crop category when the vegetation layer is penetrable with C-band radar. We name this phenomenon as the "observed variation of the same category" (OVSC). The most common PolSAR features, e.g., the Freeman-Durden and Cloude-Pottier decompositions, show an inadequate performance with OVSC. In our research, more than 40 coherent and incoherent PolSAR decomposition models are stacked into the high-dimensionality feature cube to describe the various physical parameters. The LDLE algorithm is then performed on the observed feature cube, with the aim of simultaneously pushing the local samples of the same category closer to each other, as well as maximizing the distance between local samples of different categories in the learnt subspace. Finally, the classification result is obtained by nearest neighbor (NN) or Wishart classification in the reduced feature space. In the simulation experiment, eight crop blocks are picked to generate a test patch from the 1991 Airborne Synthetic Aperture Radar (AIRSAR) C-band fully polarimetric data from of Flevoland test site. Locality preserving projections (LPP) and principal component analysis (PCA) are then utilized to evaluate the DR results of the proposed method. The classification results show that LDLE can distinguish the influence of the physical parameters and achieve a 99% overall accuracy, which is better than LPP (97%), PCA (88%), NN (89%), and Wishart (88%). In the real data experiment, the Chinese Hailaer nationalized farm RadarSat2 PolSAR test set is used, and the classification accuracy is around 94%, which

  13. (U) Influence of Compaction Model Form on Planar and Cylindrical Compaction Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, David A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carney, Theodore Clayton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fichtl, Christopher Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramsey, Scott D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-05

    The dynamic compaction response of CeO2 is examined within the frameworks of the Ramp and P-a compaction models. Hydrocode calculations simulating the dynamic response of CeO2 at several distinct pressures within the compaction region are investigated in both planar and cylindrically convergent geometries. Findings suggest additional validation of the compaction models is warranted under complex loading configurations.

  14. Compact Microwave Fourier Spectrum Analyzer

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  15. Spiral Inflector For Compact Cyclotron

    CERN Document Server

    Karamysheva, G A

    2004-01-01

    Compact cyclotron for explosives detection by nuclear resonance absorption of γ-rays in nitrogen is under development [1] Cyclotron will be equipped with the external ion source. The injection system consists of a double-drift beam bunching system, a spiral inflector, beam diagnostics, focusing and adjustment elements [2]. The spiral inflector for ion bending from axial to median plane is used. Computer model of spiral inflector for the Customs cyclotron is developed. 3D electrostatic field calculations of the designed inflector are performed. Calculated electric field map and magnetic field map of the cyclotron [3] are used for beam dynamic simulations. Numeric simulations are carried out for 500 particles using code for calculation of particle dynamics by integration of differential equations in Cartesian coordinate system written in MATLAB. Direct Coulomb particle-to-particle method is used to take into account space-charge effects.

  16. Experimental studies of compact toroids

    International Nuclear Information System (INIS)

    1991-01-01

    The Berkeley Compact Toroid Experiment (BCTX) device is a plasma device with a Marshall-gun generated, low aspect ratio toroidal plasma. The device is capable of producing spheromak-type discharges and may, with some modification, produce low-aspect ratio tokamak configurations. A unique aspect of this experimenal devie is its large lower hybrid (LH) heating system, which consists of two 450MHz klystron tubes generating 20 megawatts each into a brambilla-type launching structure. Successful operation with one klystron at virtually full power (18 MW) has been accomplished with 110 μs pulse length. A second klystron is currently installed in its socket and magnet but has not been added to the RF drive system. This report describes current activities and accomplishments and describes the anticipated results of next year's activity

  17. Compact Digital High Voltage Charger

    CERN Document Server

    Li, Ge

    2005-01-01

    The operation of classical resonant circuit developed for the pulse energizing is investigated. The HV pulse or generator is very compact by a soft switching circuit made up of IGBT working at over 30 kHZ. The frequencies of macro pulses andμpulses can be arbitrarily tuned below resonant frequency to digitalize the HV pulse power. Theμpulses can also be connected by filter circuit to get the HVDC power. The circuit topology is given and its novel control logic is analyzed by flowchart. The circuit is part of a system consisting of a AC or DC LV power supply, a pulse transformer, the pulse generator implemented by LV capacitor and leakage inductance of the transformer, a HV DC or pulse power supply and the charged HV capacitor of the modulators.

  18. Quasistatic evolution of compact toroids

    International Nuclear Information System (INIS)

    Sgro, A.G.; Spencer, R.L.; Lilliequist, C.

    1981-01-01

    Some results are presented of simulations of the post formation evolution of compact toroids. The simulations were performed with a 1-1/2 D transport code. Such a code makes explicit use of the fact that the shapes of the flux surfaces in the plasma change much more slowly than do the profiles of the physical variables across the flux surfaces. Consequently, assuming that the thermodynamic variables are always equilibrated on a flux surface, one may calculate the time evolution of these profiles as a function of a single variable that labels the flux surfaces. Occasionally, during the calculation these profiles are used to invert the equilibrium equation to update the shapes of the flux surfaces. In turn, these shapes imply certain geometric cofficients, such as A = 2 >, which contain the geometric information required by the 1-D equations

  19. Magnetohydodynamics stability of compact stellarators

    International Nuclear Information System (INIS)

    Fu, G.Y.; Ku, L.P.; Cooper, W.A.; Hirshman, S.H.

    2000-01-01

    Recent stability results of external kink modes and vertical modes in compact stellarators are presented. The vertical mode is found to be stabilized by externally generated poloidal flux. A simple stability criterion is derived in the limit of large aspect ratio and constant current density. For a wall at infinite distance from the plasma, the amount of external flux needed for stabilization is given by Fi = (k2 minus k)=(k2 + 1), where k is the axisymmetric elongation and Fi is the fraction of the external rotational transform. A systematic parameter study shows that the external kink mode in QAS can be stabilized at high beta (approximately 5%) without a conducting wall by magnetic shear via 3D shaping. It is found that external kinks are driven by both parallel current and pressure gradient. The pressure contributes significantly to the overall drive through the curvature term and the Pfirsch-Schluter current

  20. General Relativity&Compact Stars

    Energy Technology Data Exchange (ETDEWEB)

    Glendenning, Norman K.

    2005-08-16

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10{sup 14} times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed.

  1. Compact autonomous navigation system (CANS)

    Science.gov (United States)

    Hao, Y. C.; Ying, L.; Xiong, K.; Cheng, H. Y.; Qiao, G. D.

    2017-11-01

    Autonomous navigation of Satellite and constellation has series of benefits, such as to reduce operation cost and ground station workload, to avoid the event of crises of war and natural disaster, to increase spacecraft autonomy, and so on. Autonomous navigation satellite is independent of ground station support. Many systems are developed for autonomous navigation of satellite in the past 20 years. Along them American MANS (Microcosm Autonomous Navigation System) [1] of Microcosm Inc. and ERADS [2] [3] (Earth Reference Attitude Determination System) of Honeywell Inc. are well known. The systems anticipate a series of good features of autonomous navigation and aim low cost, integrated structure, low power consumption and compact layout. The ERADS is an integrated small 3-axis attitude sensor system with low cost and small volume. It has the Earth center measurement accuracy higher than the common IR sensor because the detected ultraviolet radiation zone of the atmosphere has a brightness gradient larger than that of the IR zone. But the ERADS is still a complex system because it has to eliminate many problems such as making of the sapphire sphere lens, birefringence effect of sapphire, high precision image transfer optical fiber flattener, ultraviolet intensifier noise, and so on. The marginal sphere FOV of the sphere lens of the ERADS is used to star imaging that may be bring some disadvantages., i.e. , the image energy and attitude measurements accuracy may be reduced due to the tilt image acceptance end of the fiber flattener in the FOV. Besides Japan, Germany and Russia developed visible earth sensor for GEO [4] [5]. Do we have a way to develop a cheaper/easier and more accurate autonomous navigation system that can be used to all LEO spacecraft, especially, to LEO small and micro satellites? To return this problem we provide a new type of the system—CANS (Compact Autonomous Navigation System) [6].

  2. General Relativity and Compact Stars

    International Nuclear Information System (INIS)

    Glendenning, Norman K.

    2005-01-01

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10 14 times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed

  3. Physics of Compact Advanced Stellarators

    International Nuclear Information System (INIS)

    Zarnstorff, M.C.; Berry, L.A.; Brooks, A.; Fredrickson, E.; Fu, G.-Y.; Hirshman, S.; Hudson, S.; Ku, L.-P.; Lazarus, E.; Mikkelsen, D.; Monticello, D.; Neilson, G.H.; Pomphrey, N.; Reiman, A.; Spong, D.; Strickler, D.; Boozer, A.; Cooper, W.A.; Goldston, R.; Hatcher, R.; Isaev, M.; Kessel, C.; Lewandowski, J.; Lyon, J.; Merkel, P.; Mynick, H.; Nelson, B.E.; Nuehrenberg, C.; Redi, M.; Reiersen, W.; Rutherford, P.; Sanchez, R.; Schmidt, J.; White, R.B.

    2001-01-01

    Compact optimized stellarators offer novel solutions for confining high-beta plasmas and developing magnetic confinement fusion. The 3-D plasma shape can be designed to enhance the MHD stability without feedback or nearby conducting structures and provide drift-orbit confinement similar to tokamaks. These configurations offer the possibility of combining the steady-state low-recirculating power, external control, and disruption resilience of previous stellarators with the low-aspect ratio, high beta-limit, and good confinement of advanced tokamaks. Quasi-axisymmetric equilibria have been developed for the proposed National Compact Stellarator Experiment (NCSX) with average aspect ratio 4-4.4 and average elongation of approximately 1.8. Even with bootstrap-current consistent profiles, they are passively stable to the ballooning, kink, vertical, Mercier, and neoclassical-tearing modes for beta > 4%, without the need for external feedback or conducting walls. The bootstrap current generates only 1/4 of the magnetic rotational transform at beta = 4% (the rest is from the coils), thus the equilibrium is much less nonlinear and is more controllable than similar advanced tokamaks. The enhanced stability is a result of ''reversed'' global shear, the spatial distribution of local shear, and the large fraction of externally generated transform. Transport simulations show adequate fast-ion confinement and thermal neoclassical transport similar to equivalent tokamaks. Modular coils have been designed which reproduce the physics properties, provide good flux surfaces, and allow flexible variation of the plasma shape to control the predicted MHD stability and transport properties

  4. Compact L-edge densitometer for uranium concentration assay

    International Nuclear Information System (INIS)

    Brooks, M.L.; Russo, P.A.; Sprinkle, J.K. Jr.

    1985-02-01

    A new L-edge densitometer has been designed around a compact, commercial x-ray generator weighing less than 5 kg. The dc generator x-ray spectrum was tailored to produce a continuum of x-ray energies from 14 to 20 keV. The x rays were transmitted through uranium reference solutions, and the measured transmissions near the uranium L/sub III/-absorption edge were used to compute the uranium concentration assay result. The range of uranium concentrations in the reference solutions included 5 to 50 g/l. In this concentration range, the assay uncertainty for short count times and the flatness of the specific assay response were better than 0.5%. Thus, the precision and accuracy of this compact densitometer are equal to those demonstrated previously for the L-edge technique. The compact dimensions and optimized transmission geometry increase the practicality, versatility, and range of the L-edge applications. 12 references, 12 figures, 4 tables

  5. Dynamical properties of compact groups of galaxies

    Science.gov (United States)

    Hickson, Paul; De Oliveira, Claudia M.; Huchra, John P.; Palumbo, Giorgio G.

    1992-01-01

    Radial velocities are presented for 457 galaxies in the 100 Hickson compact groups. More than 84 percent of the galaxies measured have velocities within 1000 km/s of the median velocity in the group. Ninety-two groups have at least three accordant members, and 69 groups have at least four. The radial velocities of these groups range from 1380 to 42,731 km/s with a median of 8889 km/s, corresponding to a median distance of 89/h Mpc. The apparent space density of these systems ranges from 300 to as much as 10 exp 8 sq h/sq Mpc, which exceeds the densities in the centers of rich clusters. The median projected separation between galaxies is 39/h kpc, comparable to the sizes of the galaxies themselves. A significant correlation is found between crossing time and the fraction of gas-rich galaxies in the groups, and a weak anticorrelation is found between crossing time and the luminosity contrast of the first-ranked galaxy.

  6. Compact containment boiling water reactor (CCR)

    International Nuclear Information System (INIS)

    2006-01-01

    investment risks and to facilitate public acceptance. To meet the output targets, the power range chosen for the LSBWR is from 100 to 300 MW(e). To overcome the disadvantages of economies of scale for small sized reactors, the following design approaches have been used for the LSBWR: - Simplification of systems by combining direct cycle and natural circulation and by relying on passive safety means. - Simplification of structure by integration of the reactor building and the turbine building. - Elimination of the fuel pool and refueling machine (for a 15-year operation cycle). - Using a modular design to ensure a short construction period. - Adoption of a seismic isolation and a ship hull structure (marine type protective enclosure structure). - Improvement in availability by implementing longer operating cycles (3 to 5 years). The reactor concept presented herein (the CCR) takes a follow-up on the LSBWR. It has a small power output, the capability of long operating cycles and a simplified and compact BWR type configuration with comprehensive safety features. To be economically competitive, the CCR design includes simplification of systems and compact structure, modular structures for short construction periods and improved availability. For comprehensive safety, the CCR targets to eliminate off-site emergency planning by using highly reliable equipment and systems, such as a reactor pressure vessel (RPV) with large inventory and the core being located at its bottom, the capability of in-vessel retention of a core melt (IVR) and a compact pressurized containment vessel (PCV) with high-integrity, incorporating several passive features. The CCR concept is to provide economic flexibility for a variety of site conditions and electricity demands, to mitigate investment risks, and to facilitate public acceptance. The principal stakeholders are: - Toshiba Corporation. - The Japan Atomic Power Company (JAPC)

  7. Compressed Data Structures for Range Searching

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Vind, Søren Juhl

    2015-01-01

    We study the orthogonal range searching problem on points that have a significant number of geometric repetitions, that is, subsets of points that are identical under translation. Such repetitions occur in scenarios such as image compression, GIS applications and in compactly representing sparse...

  8. A range of equipment for dental radiography

    International Nuclear Information System (INIS)

    Bergman, G.P.M.; Clement, S.L.

    1980-01-01

    A brief review of the history of dental radiography is followed by a description of the latest Philips equipment, ranging from compact units for intra-oral radiography to advanced systems for panoramic techniques and skull radiography. The advantages of automatic exposure control and automatic film processing are also discussed. In conclusion, some probable future trends are forecast. (Auth.)

  9. Analysis of Dual- and Full-Circular Polarimetric SAR Modes for Rice Phenology Monitoring: An Experimental Investigation through Ground-Based Measurements

    Directory of Open Access Journals (Sweden)

    Yuta Izumi

    2017-04-01

    Full Text Available Circularly polarized synthetic aperture radar (CP-SAR is known to be insensitive to polarization mismatch losses caused by the Faraday rotation effect and antenna misalignment. Additionally, the dual-circular polarimetric (DCP mode has proven to have more polarimetric information than that of the corresponding mode of linear polarization, i.e., the dual-linear polarimetric (DLP mode. Owing to these benefits, this paper investigates the feasibility of CP-SAR for rice monitoring. A ground-based CP-radar system was exploited, and C-band anechoic chamber data of a self-cultivated Japanese rice paddy were acquired from germination to ripening stages. Temporal variations of polarimetric observables derived from full-circular polarimetric (FCP and DCP as well as synthetically generated DLP data are analyzed and assessed with regard to their effectiveness in phenology retrieval. Among different observations, the H / α ¯ plane and triangle plots obtained by three scattering components (surface, double-bounce, and volume scattering for both the FCP and DCP modes are confirmed to have reasonable capability in discriminating the relevant intervals of rice growth.

  10. Influence of compaction on chloride ingress

    NARCIS (Netherlands)

    Zlopasa, J.

    2012-01-01

    Experiences from practice show the need for more of an understanding and optimization of the compaction process in order to design a more durable concrete structure. Local variations in compaction are very often the reason for initiation of local damage and initiation of chloride induced corrosion.

  11. Ultrasonic compaction of granular geological materials.

    Science.gov (United States)

    Feeney, Andrew; Sikaneta, Sakalima; Harkness, Patrick; Lucas, Margaret

    2017-04-01

    It has been shown that the compaction of granular materials for applications such as pharmaceutical tableting and plastic moulding can be enhanced by ultrasonic vibration of the compaction die. Ultrasonic vibrations can reduce the compaction pressure and increase particle fusion, leading to higher strength products. In this paper, the potential benefits of ultrasonics in the compaction of geological granular materials in downhole applications are explored, to gain insight into the effects of ultrasonic vibrations on compaction of different materials commonly encountered in sub-sea drilling. Ultrasonic vibrations are applied, using a resonant 20kHz compactor, to the compaction of loose sand and drill waste cuttings derived from oolitic limestone, clean quartz sandstone, and slate-phyllite. For each material, a higher strain for a given compaction pressure was achieved, with higher sample density compared to that in the case of an absence of ultrasonics. The relationships between the operational parameters of ultrasonic vibration amplitude and true strain rate are explored and shown to be dependent on the physical characteristics of the compacting materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Quantification of the compactibility of pharmaceutical powders

    DEFF Research Database (Denmark)

    Sonnergaard, Jørn

    2006-01-01

    The purpose of this study is to investigate and to quantify the compactibility of pharmaceutical powders by a simple linear relationship between the diametral compressive strength of tablets and the applied compaction pressure. The mechanical strength of the tablets is characterized as the crushing...

  13. The double explosive layer cylindrical compaction method

    NARCIS (Netherlands)

    Stuivinga, M.E.C.; Verbeek, H.J.; Carton, E.P.

    1999-01-01

    The standard cylindrical configuration for shock compaction is useful for the compaction of composite materials which have some plastic behavior. It can also be used to densify hard ceramics up to about 85% of the theoretical density (TMD), when low detonation velocity explosives (2-4 km s-1) are

  14. Compact Process Development at Babcock & Wilcox

    Energy Technology Data Exchange (ETDEWEB)

    Eric Shaber; Jeffrey Phillips

    2012-03-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of compaction trials have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel at packing fractions exceeding 46% by volume. Results from these trials are included. The scale-up effort is nearing completion with the process installed and operable using nuclear fuel materials. Final process testing is in progress to certify the process for manufacture of qualification test fuel compacts in 2012.

  15. Computing Decoupled Residuals for Compact Disc Players

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2006-01-01

    In order to improve Compact Disc Players playability regarding playing Compact Discs with surface faults, like scratches and fingerprints etc, the attention has been put on fault tolerant control schemes. Almost every of those methods are based on fault detection. The standard approach is to use...

  16. Land Cover Changes Detection in Polarimetric SAR Data Using Algebra, Similarity and Distance Based Methods

    Science.gov (United States)

    Najafi, A.; Hasanlou, M.; Akbari, V.

    2017-09-01

    Monitoring and surveillance changes around the world need powerful methods, so detection, visualization, and assessment of significant changes are essential for planning and management. Incorporating polarimetric SAR images due to interactions between electromagnetic waves and target and because of the high spatial resolution almost one meter can be used to study changes in the Earth's surface. Full polarized radar images comparing to single polarized radar images use amplitude and phase information of the surface in different available polarization (HH, HV, VH, and VV). This study is based on the decomposition of full polarized airborne UAVSAR images and integration of these features with algebra method involves Image Differencing (ID) and Image Ratio (IR) algorithms with the mathematical nature and distance-based method involves Canberra (CA) and Euclidean (ED) algorithms with measuring distance between corresponding vector and similarity-based method involves Taminoto (TA) and Kulczynski (KU) algorithms with dependence corresponding vector for change detecting purposes on two real PolSAR datasets. Assessment of incorporated methods is implemented using ground truth data and different criteria for evaluating such as overall accuracy (OA), area under ROC curve (AUC) and false alarms rate (FAR). The output results show that ID, IR, and CA have superiority to detect changes comparing to other implemented algorithms. Also, numerical results show that the highest performance in two datasets has OA more than 90%. In other assessment criteria, mention algorithms have low FAR and high AUC value indices to detect changes in PolSAR images.

  17. Structural Classification of Marshes with Polarimetric SAR Highlighting the Temporal Mapping of Marshes Exposed to Oil

    Directory of Open Access Journals (Sweden)

    Elijah Ramsey

    2015-09-01

    Full Text Available Empirical relationships between field-derived Leaf Area Index (LAI and Leaf Angle Distribution (LAD and polarimetric synthetic aperture radar (PolSAR based biophysical indicators were created and applied to map S. alterniflora marsh canopy structure. PolSAR and field data were collected near concurrently in the summers of 2010, 2011, and 2012 in coastal marshes, and PolSAR data alone were acquired in 2009. Regression analyses showed that LAI correspondence with the PolSAR biophysical indicator variables equaled or exceeded those of vegetation water content (VWC correspondences. In the final six regressor model, the ratio HV/VV explained 49% of the total 77% explained LAI variance, and the HH-VV coherence and phase information accounted for the remainder. HV/HH dominated the two regressor LAD relationship, and spatial heterogeneity and backscatter mechanism followed by coherence information dominated the final three regressor model that explained 74% of the LAD variance. Regression results applied to 2009 through 2012 PolSAR images showed substantial changes in marsh LAI and LAD. Although the direct cause was not substantiated, following a release of freshwater in response to the 2010 Deepwater Horizon oil spill, the fairly uniform interior marsh structure of 2009 was more vertical and dense shortly after the oil spill cessation. After 2010, marsh structure generally progressed back toward the 2009 uniformity; however, the trend was more disjointed in oil impact marshes.

  18. Improving Wishart Classification of Polarimetric SAR Data Using the Hopfield Neural Network Optimization Approach

    Directory of Open Access Journals (Sweden)

    Íñigo Molina

    2012-11-01

    Full Text Available This paper proposes the optimization relaxation approach based on the analogue Hopfield Neural Network (HNN for cluster refinement of pre-classified Polarimetric Synthetic Aperture Radar (PolSAR image data. We consider the initial classification provided by the maximum-likelihood classifier based on the complex Wishart distribution, which is then supplied to the HNN optimization approach. The goal is to improve the classification results obtained by the Wishart approach. The classification improvement is verified by computing a cluster separability coefficient and a measure of homogeneity within the clusters. During the HNN optimization process, for each iteration and for each pixel, two consistency coefficients are computed, taking into account two types of relations between the pixel under consideration and its corresponding neighbors. Based on these coefficients and on the information coming from the pixel itself, the pixel under study is re-classified. Different experiments are carried out to verify that the proposed approach outperforms other strategies, achieving the best results in terms of separability and a trade-off with the homogeneity preserving relevant structures in the image. The performance is also measured in terms of computational central processing unit (CPU times.

  19. POLAMI: Polarimetric Monitoring of AGN at Millimetre Wavelengths - I. The programme, calibration and calibrator data products

    Science.gov (United States)

    Agudo, Iván; Thum, Clemens; Molina, Sol N.; Casadio, Carolina; Wiesemeyer, Helmut; Morris, David; Paubert, Gabriel; Gómez, José L.; Kramer, Carsten

    2018-02-01

    We describe the POLAMI (Polarimetric Monitoring of AGN at Millimetre Wavelengths) programme for the monitoring of all four Stokes parameters of a sample of bright radio-loud active galactic nuclei with the IRAM 30-m telescope at 3.5 and 1.3 mm. The programme started in 2006 October and accumulated, until 2014 August, 2300 observations at 3.5 mm, achieving a median time sampling interval of 22 d for the sample of 37 sources. This first paper explains the source selection, mostly blazars, the observing strategy and data calibration and gives the details of the instrumental polarization corrections. The sensitivity (1σ) reached at 3.5 mm is 0.5 per cent (linear polarization degree), 4.7° (polarization angle), and 0.23 per cent (circular polarization), while the corresponding values at 1.3 mm are 1.7 per cent, 9.9° and 0.72 per cent, respectively. The data quality is demonstrated by the time sequences of our calibrators Mars and Uranus. For the quasar 3C 286, widely used as a linear polarization calibrator, we give improved estimates of its linear polarization, and show for the first time occasional detections of its weak circular polarization, which suggests a small level of variability of the source at millimeter wavelengths.

  20. Detecting emergence, growth, and senescence of wetland vegetation with polarimetric synthetic aperture radar (SAR) data

    Science.gov (United States)

    Gallant, Alisa L.; Kaya, Shannon G.; White, Lori; Brisco, Brian; Roth, Mark F.; Sadinski, Walter J.; Rover, Jennifer

    2014-01-01

    Wetlands provide ecosystem goods and services vitally important to humans. Land managers and policymakers working to conserve wetlands require regularly updated information on the statuses of wetlands across the landscape. However, wetlands are challenging to map remotely with high accuracy and consistency. We investigated the use of multitemporal polarimetric synthetic aperture radar (SAR) data acquired with Canada’s Radarsat-2 system to track within-season changes in wetland vegetation and surface water. We speculated, a priori, how temporal and morphological traits of different types of wetland vegetation should respond over a growing season with respect to four energy-scattering mechanisms. We used ground-based monitoring data and other ancillary information to assess the limits and consistency of the SAR data for tracking seasonal changes in wetlands. We found the traits of different types of vertical emergent wetland vegetation were detected well with the SAR data and corresponded with our anticipated backscatter responses. We also found using data from Landsat’s optical/infrared sensors in conjunction with SAR data helped remove confusion of wetland features with upland grasslands. These results suggest SAR data can provide useful monitoring information on the statuses of wetlands over time.