WorldWideScience

Sample records for polar water molecule

  1. Electron and positron collisions with polar molecules: studies with the benchmark water molecule

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Rui; Tennyson, Jonathan [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Faure, Alexandre [Laboratoire d' Astrophysique, UMR 5571 CNRS, Universite Joseph-Fourier, BP 53, 38041 Grenoble cedex 09 (France)], E-mail: j.tennyson@ucl.ac.uk

    2009-07-15

    It is difficult to measure low-energy cross sections for collisions of charged particles with strongly dipolar systems since the magnitude of such cross sections is completely dominated by collisions in the forward direction. Theoretically, it is possible to account for the strong forward scattering using the Born approximation but the procedure for combining Born 'top-up' with the more sophisticated treatments required to treat the scattering in other directions is not unique. This comment describes recent progress in describing both electron and positron collisions with polar molecules taking the important water molecule as a benchmark. Previous calculations on electron water at collision energies below 7 eV are compared with new experiments. Positron water studies up to 10 eV are re-analysed based on given experimental acceptance profiles, which depend on the details of the apparatus and method used in the measurements. It is suggested that theory is capable of giving reliable results for elastic and rotationally inelastic electron/positron collisions with strongly dipolar species.

  2. Ultracold Polar Molecules

    Science.gov (United States)

    2016-04-01

    AFRL-AFOSR-UK-TR-2016-0005 Ultracold Polar Molecules Jeremy Hutson UNIVERSITY OF DURHAM Final Report 04/01/2016 DISTRIBUTION A: Distribution approved...DATES COVERED (From - To) 15-Jan-2010 to 14-Jul-2015 4. TITLE AND SUBTITLE Final Report on Grant FA8655-10-1-3033 on Ultracold Polar Molecules 5a...formation of ultracold 87RbCs molecules in their rovibrational ground state by magnetoassociation followed by STIRAP, resulting in 14 papers acknowledging

  3. Water adsorption on non polar ZnO surfaces: from single molecules to multilayers

    Science.gov (United States)

    Kenmoe, Stephane; Biedermann, P. Ulrich

    2015-03-01

    The interface between water and ZnO plays an important role in many domains of technological relevance. Following the vital role of adsorbed water on substrate properties and the fascinating properties of interfacial water, there is a great interest in characterizing this interface. We use DFT to study the possible aggregation regimes that can form on the ZnO non-polar low-index (1010) and (1120) surfaces. We study the adsorption of water monomers, small water clusters like water dimers, water chains, ladder-like water structures, water thin films and water multilayers. Based on this, trends in binding energy as well as the binding mechanisms are analyzed to understand the driving forces and the nature of the fundamental interactions that stabilize the adsorbed layers.

  4. Cold guided beams of polar molecules

    International Nuclear Information System (INIS)

    Motsch, Michael

    2010-01-01

    This thesis reports on experiments characterizing cold guided beams of polar molecules which are produced by electrostatic velocity filtering. This filtering method exploits the interaction between the polar molecules and the electric field provided by an electrostatic quadrupole guide to extract efficiently the slow molecules from a thermal reservoir. For molecules with large and linear Stark shifts such as deuterated ammonia (ND 3 ) or formaldehyde (H 2 CO), fluxes of guided molecules of 10 10 -10 11 molecules/s are produced. The velocities of the molecules in these beams are in the range of 10-200 m/s and correspond to typical translational temperatures of a few Kelvin. The maximum velocity of the guided molecules depends on the Stark shift, the molecular mass, the geometry of the guide, and the applied electrode voltage. Although the source is operated in the near-effusive regime, the number density of the slowest molecules is sensitive to collisions. A theoretical model, taking into account this velocity-dependent collisional loss of molecules in the vicinity of the nozzle, reproduces the density of the guided molecules over a wide pressure range. A careful adjustment of pressure allows an increase in the total number of molecules, whilst yet minimizing losses due to collisions of the sought-for slow molecules. This is an important issue for future applications. Electrostatic velocity filtering is suited for different molecular species. This is demonstrated by producing cold guided beams of the water isotopologs H 2 O, D 2 O, and HDO. Although these are chemically similar, they show linear and quadratic Stark shifts, respectively, when exposed to external electric fields. As a result, the flux of HDO is larger by one order of magnitude, and the flux of the individual isotopologs shows a characteristic dependence on the guiding electric field. The internal-state distribution of guided molecules is studied with a newly developed diagnostic method: depletion

  5. Photoionization of water molecules by a train of attosecond pulses assisted by a near-infrared laser: delay and polarization control

    Science.gov (United States)

    Martini, Lara; Boll, Diego I. R.; Fojón, Omar A.

    2017-08-01

    Basic reactions involving water molecules are essential to understand the interaction between radiation and the biological tissue because living cells are composed mostly by water. Therefore, the knowledge of ionization of the latter is crucial in many domains of Biology and Physics. So, we study theoretically the photoionization of water molecules by extreme ultraviolet attopulse trains assisted by lasers in the near-infrared range. We use a separable Coulomb-Volkov model in which the temporal evolution of the system can be divided into three stages allowing spatial and temporal separation for the Coulomb and Volkov final state wavefunctions. First, we analyze photoelectron angular distributions for different delays between the attopulse train and the assistant laser field. We compare our results for water and Ne atoms as they belong to the same isoelectronic series. Moreover, we contrast our calculations with previous theoretical and experimental work for Ar atoms due to the similarities of the orbitals involved in the reaction. Second, we study the effect of varying the relative orientations of the attopulse and laser field polarizations and we compare our predictions with other theories and experiments. We expect these studies contribute to the improvement of polarization experiments and the development of the attopulse trains and assistant laser fields technologies. Finally, we hope our work promote progress on the control of the chemical reactivity of water molecules since this could be useful in different fields such as radiobiology and medical physics.

  6. Polarization response of clathrate hydrates capsulated with guest molecules

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Qun; Li, Jinshan, E-mail: ljs915@263.net, E-mail: myang@scu.edu.cn; Huang, Hui [Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900 (China); Wang, Xinqin; Yang, Mingli, E-mail: ljs915@263.net, E-mail: myang@scu.edu.cn [Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065 (China)

    2016-05-28

    Clathrate hydrates are characterized by their water cages encapsulating various guest atoms or molecules. The polarization effect of these guest-cage complexes was studied with combined density functional theory and finite-field calculations. An addition rule was noted for these systems whose total polarizability is approximately equal to the polarizability sum of the guest and the cage. However, their distributional polarizability computed with Hirshfeld partitioning scheme indicates that the guest–cage interaction has considerable influence on their polarization response. The polarization of encapsulated guest is reduced while the polarization of water cage is enhanced. The counteraction of these two opposite effects leads to the almost unchanged total polarizability. Further analysis reveals that the reduced polarizability of encapsulated guest results from the shielding effect of water cage against the external field and the enhanced polarizability of water cage from the enhanced bonding of hydrogen bonds among water molecules. Although the charge transfer through the hydrogen bonds is rather small in the water cage, the polarization response of clathrate hydrates is sensitive to the changes of hydrogen bonding strength. The guest encapsulation strengthens the hydrogen bonding network and leads to enhanced polarizability.

  7. Decelerating and Trapping Large Polar Molecules.

    Science.gov (United States)

    Patterson, David

    2016-11-18

    Manipulating the motion of large polyatomic molecules, such as benzonitrile (C 6 H 5 CN), presents significant difficulties compared to the manipulation of diatomic molecules. Although recent impressive results have demonstrated manipulation, trapping, and cooling of molecules as large as CH 3 F, no general technique for trapping such molecules has been demonstrated, and cold neutral molecules larger than 5 atoms have not been trapped (M. Zeppenfeld, B. G. U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, G. Rempe, Nature 2012, 491, 570-573). In particular, extending Stark deceleration and electrostatic trapping to such species remains challenging. Here, we propose to combine a novel "asymmetric doublet state" Stark decelerator with recently demonstrated slow, cold, buffer-gas-cooled beams of closed-shell volatile molecules to realize a general system for decelerating and trapping samples of a broad range of volatile neutral polar prolate asymmetric top molecules. The technique is applicable to most stable volatile molecules in the 100-500 AMU range, and would be capable of producing trapped samples in a single rotational state and at a motional temperature of hundreds of mK. Such samples would immediately allow for spectroscopy of unprecedented resolution, and extensions would allow for further cooling and direct observation of slow intramolecular processes such as vibrational relaxation and Hertz-level tunneling dynamics. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Topological px+ipy superfluid phase of fermionic polar molecules

    NARCIS (Netherlands)

    Levinsen, J.; Cooper, N.R.; Shlyapnikov, G.V.

    2011-01-01

    We discuss the topological px+ipy superfluid phase in a 2D gas of single-component fermionic polar molecules dressed by a circularly polarized microwave field. This phase emerges because the molecules may interact with each other via a potential Vo(r) that has an attractive dipole-dipole 1/r^3 tail,

  9. An electrostatic elliptical mirror for neutral polar molecules

    OpenAIRE

    Flórez, A. Isabel González; Meek, Samuel A.; Haak, Henrik; Conrad, Horst; Santambrogio, Gabriele; Meijer, Gerard

    2011-01-01

    Focusing optics for neutral molecules finds application in shaping and steering molecular beams. Here we present an electrostatic elliptical mirror for polar molecules consisting of an array of microstructured gold electrodes deposited on a glass substrate. Alternating positive and negative voltages applied to the electrodes create a repulsive potential for molecules in low-field-seeking states. The equipotential lines are parallel to the substrate surface, which is bent in an elliptical shap...

  10. Exp6-polar thermodynamics of dense supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Bastea, S; Fried, L E

    2007-12-13

    We introduce a simple polar fluid model for the thermodynamics of dense supercritical water based on a Buckingham (exp-6) core and point dipole representation of the water molecule. The proposed exp6-polar thermodynamics, based on ideas originally applied to dipolar hard spheres, performs very well when tested against molecular dynamics simulations. Comparisons of the model predictions with experimental data available for supercritical water yield excellent agreement for the shock Hugoniot, isotherms and sound speeds, and are also quite good for the self-diffusion constant and relative dielectric constant. We expect the present approach to be also useful for other small polar molecules and their mixtures.

  11. An electrostatic elliptical mirror for neutral polar molecules.

    Science.gov (United States)

    González Flórez, A Isabel; Meek, Samuel A; Haak, Henrik; Conrad, Horst; Santambrogio, Gabriele; Meijer, Gerard

    2011-11-14

    Focusing optics for neutral molecules finds application in shaping and steering molecular beams. Here we present an electrostatic elliptical mirror for polar molecules consisting of an array of microstructured gold electrodes deposited on a glass substrate. Alternating positive and negative voltages applied to the electrodes create a repulsive potential for molecules in low-field-seeking states. The equipotential lines are parallel to the substrate surface, which is bent in an elliptical shape. The mirror is characterized by focusing a beam of metastable CO molecules and the results are compared to the outcome of trajectory simulations.

  12. Orienting Asymmetric Molecules by Laser Fields with Twisted Polarization

    Science.gov (United States)

    Gershnabel, E.; Averbukh, I. Sh.

    2018-02-01

    We study interaction of generic asymmetric molecules with laser fields having twisted polarization, using a pair of strong time-delayed short laser pulses with crossed linear polarizations as an example. We show that such an excitation not only provides unidirectional rotation of the most polarizable molecular axis, but also induces a directed torque along this axis, which results in a transient orientation of the molecules. The asymmetric molecules are chiral in nature and different molecular enantiomers experience the orienting action in opposite directions causing out-of-phase oscillations of their dipole moments. The resulting microwave radiation was recently suggested to be used for analysis or discrimination of chiral molecular mixtures. We reveal the mechanism behind this laser-induced orientation effect, show that it is classical in nature, and envision further applications of light with twisted polarization.

  13. Dipolar collisions of polar molecules in the quantum regime.

    Science.gov (United States)

    Ni, K-K; Ospelkaus, S; Wang, D; Quéméner, G; Neyenhuis, B; de Miranda, M H G; Bohn, J L; Ye, J; Jin, D S

    2010-04-29

    Ultracold polar molecules offer the possibility of exploring quantum gases with interparticle interactions that are strong, long-range and spatially anisotropic. This is in stark contrast to the much studied dilute gases of ultracold atoms, which have isotropic and extremely short-range (or 'contact') interactions. Furthermore, the large electric dipole moment of polar molecules can be tuned using an external electric field; this has a range of applications such as the control of ultracold chemical reactions, the design of a platform for quantum information processing and the realization of novel quantum many-body systems. Despite intense experimental efforts aimed at observing the influence of dipoles on ultracold molecules, only recently have sufficiently high densities been achieved. Here we report the experimental observation of dipolar collisions in an ultracold molecular gas prepared close to quantum degeneracy. For modest values of an applied electric field, we observe a pronounced increase in the loss rate of fermionic potassium-rubidium molecules due to ultracold chemical reactions. We find that the loss rate has a steep power-law dependence on the induced electric dipole moment, and we show that this dependence can be understood in a relatively simple model based on quantum threshold laws for the scattering of fermionic polar molecules. In addition, we directly observe the spatial anisotropy of the dipolar interaction through measurements of the thermodynamics of the dipolar gas. These results demonstrate how the long-range dipolar interaction can be used for electric-field control of chemical reaction rates in an ultracold gas of polar molecules. Furthermore, the large loss rates in an applied electric field suggest that creating a long-lived ensemble of ultracold polar molecules may require confinement in a two-dimensional trap geometry to suppress the influence of the attractive, 'head-to-tail', dipolar interactions.

  14. Bacteriophage in polar inland waters

    Science.gov (United States)

    Säwström, Christin; Lisle, John; Anesio, A.M.; Priscu, John C.; Laybourn-Parry, J.

    2008-01-01

    Bacteriophages are found wherever microbial life is present and play a significant role in aquatic ecosystems. They mediate microbial abundance, production, respiration, diversity, genetic transfer, nutrient cycling and particle size distribution. Most studies of bacteriophage ecology have been undertaken at temperate latitudes. Data on bacteriophages in polar inland waters are scant but the indications are that they play an active and dynamic role in these microbially dominated polar ecosystems. This review summarises what is presently known about polar inland bacteriophages, ranging from subglacial Antarctic lakes to glacial ecosystems in the Arctic. The review examines interactions between bacteriophages and their hosts and the abiotic and biotic variables that influence these interactions in polar inland waters. In addition, we consider the proportion of the bacteria in Arctic and Antarctic lake and glacial waters that are lysogenic and visibly infected with viruses. We assess the relevance of bacteriophages in the microbial loop in the extreme environments of Antarctic and Arctic inland waters with an emphasis on carbon cycling.

  15. Do Identical Polar Diatomic Molecules Form Stacked or Linear ...

    Indian Academy of Sciences (India)

    ias

    The interaction of two identical polar neutral molecules is modeled by two equal but oppositely charged point particles at a fixed distance of sep- aration. The total Coulomb potential energy of this system is calculated as a function of this dis- tance, x, and the distance, y, between their cen- ters of mass. We find that when the ...

  16. Dielectric relaxation phenomena of rigid polar liquid molecules ...

    Indian Academy of Sciences (India)

    journal of. October 2001 physics pp. 775–793. Dielectric relaxation phenomena of rigid polar liquid molecules under giga hertz electric field. K DUTTA, S K SIT and S ... BDH, England, n-hexane and n-heptane from M/s. E Merck ... used in medicine as drug to induce sleep and relieve pain and in the manufacture of D.D.T..

  17. Dielectric relaxation phenomena of rigid polar liquid molecules ...

    Indian Academy of Sciences (India)

    The dielectric relaxation phenomena of rigid polar liquid molecules chloral and ethyltrichloroacetate () in benzene, -hexane and -heptane () under 4.2, 9.8 and 24.6 GHz electric fields at 30°C are studied to show the possible existence of double relaxation times 2 and 1 for rotations of the whole and the flexible ...

  18. Do Identical Polar Diatomic Molecules Form Stacked or Linear ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 8. Do Identical Polar Diatomic Molecules Form Stacked or Linear Dimers?: Hydrogen Bonding is Not Just Dipole-Dipole Interactions. C W Williams Richard N Zare E Arunan. General Article Volume 19 Issue 8 August 2014 pp 704-712 ...

  19. Fermi liquid of two-dimensional polar molecules

    NARCIS (Netherlands)

    Lu, Z.K; Shlyapnikov, G.V.

    2012-01-01

    We study Fermi-liquid properties of a weakly interacting two-dimensional gas of single-component fermionic polar molecules with dipole moments d oriented perpendicularly to the plane of their translational motion. This geometry allows the minimization of inelastic losses due to chemical reactions

  20. Simulating electric field interactions with polar molecules using spectroscopic databases.

    Science.gov (United States)

    Owens, Alec; Zak, Emil J; Chubb, Katy L; Yurchenko, Sergei N; Tennyson, Jonathan; Yachmenev, Andrey

    2017-03-24

    Ro-vibrational Stark-associated phenomena of small polyatomic molecules are modelled using extensive spectroscopic data generated as part of the ExoMol project. The external field Hamiltonian is built from the computed ro-vibrational line list of the molecule in question. The Hamiltonian we propose is general and suitable for any polar molecule in the presence of an electric field. By exploiting precomputed data, the often prohibitively expensive computations associated with high accuracy simulations of molecule-field interactions are avoided. Applications to strong terahertz field-induced ro-vibrational dynamics of PH 3 and NH 3 , and spontaneous emission data for optoelectrical Sisyphus cooling of H 2 CO and CH 3 Cl are discussed.

  1. Three dimensional alignment of molecules using elliptically polarized laser fields

    DEFF Research Database (Denmark)

    Larsen, J.J.; Bjerre, N.; Hald, K.

    2000-01-01

    We demonstrate, theoretically and experimentally, that an intense, elliptically polarized, nonresonant laser field can simultaneously force all three axes of a molecule to align along given axes fixed in space, thus inhibiting the free rotation in all three Euler angles. Theoretically, the effect...... is illustrated through time dependent quantum mechanical calculations. Experimentally, 3, 4-dibromothiophene molecules are aligned with a nanosecond laser pulse. The alignment is probed by 2D ion imaging of the fragments from a 20 fs laser pulse induced Coulomb explosion....

  2. High-order harmonic generation from polar molecules

    DEFF Research Database (Denmark)

    Etches, Adam

    When a molecule is submitted to a very intense laser pulse it emits coherent bursts of light in each optical half-cycle of the laser field. This process is known as high-order harmonic generation because the spectrum consists of many peaks at energies corresponding to an integer amount of laser...... generation is extended to polar molecules by including the laser-induced Stark shift of each molecular orbitals. The Stark shift is shown to have a major influence on the relative strength of harmonic bursts in neighbouring half-cycles, as well as leaving an imprint on the phase of the harmonics...

  3. Dielectric relaxation phenomena of rigid polar liquid molecules ...

    Indian Academy of Sciences (India)

    Abstract. The dielectric relaxation phenomena of rigid polar liquid molecules chloral and ethyl- trichloroacetate (j) in benzene, n-hexane and n-heptane (i) under 4.2, 9.8 and 24.6 GHz electric fields at 30ÆC are studied to show the possible existence of double relaxation times τ2 and τ1 for rotations of the whole and the ...

  4. Chip-based microtrap arrays for cold polar molecules

    Science.gov (United States)

    Hou, Shunyong; Wei, Bin; Deng, Lianzhong; Yin, Jianping

    2017-12-01

    Compared to the atomic chip, which has been a powerful platform to perform an astonishing range of applications from rapid Bose-Einstein condensate (BEC) production to the atomic clock, the molecular chip is only in its infant stages. Recently a one-dimensional electric lattice was demonstrated to trap polar molecules on a chip. This excellent work opens up the way to building a molecular chip laboratory. Here we propose a two-dimensional (2D) electric lattice on a chip with concise and robust structure, which is formed by arrays of squared gold wires. Arrays of microtraps that originate in the microsize electrodes offer a steep gradient and thus allow for confining both light and heavy polar molecules. Theoretical analysis and numerical calculations are performed using two types of sample molecules, N D3 and SrF, to justify the possibility of our proposal. The height of the minima of the potential wells is about 10 μm above the surface of the chip and can be easily adjusted in a wide range by changing the voltages applied on the electrodes. These microtraps offer intriguing perspectives for investigating cold molecules in periodic potentials, such as quantum computing science, low-dimensional physics, and some other possible applications amenable to magnetic or optical lattice. The 2D adjustable electric lattice is expected to act as a building block for a future gas-phase molecular chip laboratory.

  5. Far-from-Equilibrium Quantum Magnetism with Ultracold Polar Molecules

    Science.gov (United States)

    Hazzard, Kaden R. A.; Manmana, Salvatore R.; Foss-Feig, Michael; Rey, Ana Maria

    2013-02-01

    Recent theory has indicated how to emulate tunable models of quantum magnetism with ultracold polar molecules. Here we show that present molecule optical lattice experiments can accomplish three crucial goals for quantum emulation, despite currently being well below unit filling and not quantum degenerate. The first is to verify and benchmark the models proposed to describe these systems. The second is to prepare correlated and possibly useful states in well-understood regimes. The third is to explore many-body physics inaccessible to existing theoretical techniques. Our proposal relies on a nonequilibrium protocol that can be viewed either as Ramsey spectroscopy or an interaction quench. The proposal uses only routine experimental tools available in any ultracold molecule experiment. To obtain a global understanding of the behavior, we treat short times pertubatively, develop analytic techniques to treat the Ising interaction limit, and apply a time-dependent density matrix renormalization group to disordered systems with long range interactions.

  6. Molecular simulation of polar molecules interaction with MOFs family materials

    International Nuclear Information System (INIS)

    De Toni, M.

    2012-01-01

    The topic of this thesis is the adsorption of simple molecular fluids in nano-porous materials. Many industrial processes are based on this phenomenon, including ionic exchange, selective separation and heterogeneous catalysis. I used molecular simulation to study the adsorption properties of polar molecules of industrial interest (CO 2 and H 2 O) in a new class of crystalline microporous hybrid organic-inorganic materials called Metal-Organic Frameworks (MOFs). They have exceptional adsorption properties due to their topological variety and their versatility, allowed by the large range of possibilities offered by organic and coordination chemistry and functionalizations. I first studied the adsorption of CO 2 in a family of materials called IRMOFs, which share the same topology but have different porous volume, in order to characterize the effect of confinement on their adsorption performance. In particular, a general behavior has been highlighted: the critical temperature decreases when the confinement increases. Then, I looked at a recently synthesized cationic MOF called Zn2(CBTACN). After having localized the extra-framework halogen anions in the unit cell of the material, something which was not possible experimentally, I characterized CO 2 adsorption in this system first as a pure gas and then as a component of different mixtures. Finally, I was interested in the hydrothermal stability of MOFs, a crucial issue for their use in industrial applications. I observed the hydration mechanism of system that is analogous to the MOF-5 (IRMOF-0h) and shed light on some collaborative effects of the attack of water that were unknown to in the literature. (author)

  7. DFT study of water adsorption on lignite molecule surface.

    Science.gov (United States)

    Gao, Zhengyang; Ding, Yi; Yang, Weijie; Han, Wentao

    2017-01-01

    High moisture content is a main characteristic of low-rank coal, such as lignite. Numerous oxygen containing functional groups in lignite make it represent some special properties, and these functional groups affect the adsorption mechanisms of water molecules on lignite surface. This study reports some typical water · · · lignite conformations, along with a detailed analysis of the geometry, electrostatic potential distribution, reduced density gradient of interaction, and interaction energy decomposition. The results show that water molecules tend to aggregate around functional groups, and hydrogen bonds play a dominant role in the interaction. The adsorption energy of water cluster on lignite surface is larger than that of isolated water molecule, a good linear relationship between the interaction distance and adsorption energy of layers has been found. Since water is a polar molecule, the local minima and maxima of electrostatic potential in conformations increase along with more water adsorbing on lignite surface. Reduced density gradient analysis shows that H-bonds, van der Waals interaction, and a little steric make up the interaction between water cluster and lignite molecule. In these studied conformations which mainly are H-bond complexes, electrostatic and exchange repulsion play a dominant role, whereas polarization and dispersion make relatively small contribution to the interaction. Attractive and repulsive interaction both affect the stability of water · · · lignite conformations.

  8. Tunable disorder in a crystal of cold polar molecules

    International Nuclear Information System (INIS)

    Herrera, Felipe; Krems, Roman V.; Litinskaya, Marina

    2010-01-01

    We show that a two-species mixture of polar molecules trapped on an optical lattice gives rise to a system of rotational excitons in the presence of tunable impurities. The exciton-impurity interactions can be controlled by an external electric field, which can be exploited for quantum simulation of localization phenomena in disordered media. We demonstrate that an external electric field can be used to induce resonant enhancement of the exciton-impurity scattering cross sections and delocalization of excitonic states in a correlated one-dimensional disorder potential.

  9. Polarization and ellipticity of high-order harmonics from aligned molecules generated by linearly polarized intense laser pulses

    International Nuclear Information System (INIS)

    Le, Anh-Thu; Lin, C. D.; Lucchese, R. R.

    2010-01-01

    We present theoretical calculations for polarization and ellipticity of high-order harmonics from aligned N 2 , CO 2 , and O 2 molecules generated by linearly polarized lasers. Within the rescattering model, the two polarization amplitudes of the harmonics are determined by the photo-recombination amplitudes for photons emitted with polarization parallel or perpendicular to the direction of the same returning electron wave packet. Our results show clear species-dependent polarization states, in excellent agreement with experiments. We further note that the measured polarization ellipse of the harmonic furnishes the needed parameters for a 'complete' experiment in molecules.

  10. Inducing elliptically polarized high-order harmonics from aligned molecules with linearly polarized femtosecond pulses

    DEFF Research Database (Denmark)

    Etches, Adam; Madsen, Christian Bruun; Madsen, Lars Bojer

    2010-01-01

    A recent paper reported elliptically polarized high-order harmonics from aligned N2 using a linearly polarized driving field [X. Zhou et al., Phys. Rev. Lett. 102, 073902 (2009)]. This observation cannot be explained in the standard treatment of the Lewenstein model and has been ascribed to many...... of additional contributions, which can be interpreted as quantum orbits in which the active electron is ionized at one atomic center within the molecule and recombines at another. The associated exchange harmonics are responsible for the nonvanishing ellipticity and result from a correlation between...... the ionization site and the recombination site in high-order harmonic generation....

  11. 3D-Printed Beam Splitter for Polar Neutral Molecules

    Science.gov (United States)

    Gordon, Sean D. S.; Osterwalder, Andreas

    2017-04-01

    We describe a macroscopic beam splitter for polar neutral molecules. A complex electrode structure is required for the beam splitter which would be very difficult to produce with traditional manufacturing methods. Instead, we make use of a nascent manufacturing technique: 3D printing of a plastic piece, followed by electroplating. This fabrication method opens a plethora of avenues for research, since 3D printing imposes practically no limitations on possible shapes, and the plating produces chemically robust, conductive construction elements with an almost free choice of surface material. It has the added advantage of dramatically reduced production cost and time. Our beam splitter is an electrostatic hexapole guide that smoothly transforms into two bent quadrupoles. We demonstrate the correct functioning of this device by separating a supersonic molecular beam of ND3 into two correlated fractions. It is shown that this device can be used to implement experiments with differential detection wherein one of the fractions serves as a probe and the other as a reference. Reverse operation would allow the merging of two beams of polar neutral molecules.

  12. Conserved water molecules in bacterial serine hydroxymethyltransferases.

    Science.gov (United States)

    Milano, Teresa; Di Salvo, Martino Luigi; Angelaccio, Sebastiana; Pascarella, Stefano

    2015-10-01

    Water molecules occurring in the interior of protein structures often are endowed with key structural and functional roles. We report the results of a systematic analysis of conserved water molecules in bacterial serine hydroxymethyltransferases (SHMTs). SHMTs are an important group of pyridoxal-5'-phosphate-dependent enzymes that catalyze the reversible conversion of l-serine and tetrahydropteroylglutamate to glycine and 5,10-methylenetetrahydropteroylglutamate. The approach utilized in this study relies on two programs, ProACT2 and WatCH. The first software is able to categorize water molecules in a protein crystallographic structure as buried, positioned in clefts or at the surface. The other program finds, in a set of superposed homologous proteins, water molecules that occur approximately in equivalent position in each of the considered structures. These groups of molecules are referred to as 'clusters' and represent structurally conserved water molecules. Several conserved clusters of buried or cleft water molecules were found in the set of 11 bacterial SHMTs we took into account for this work. The majority of these clusters were not described previously. Possible structural and functional roles for the conserved water molecules are envisaged. This work provides a map of the conserved water molecules helpful for deciphering SHMT mechanism and for rational design of molecular engineering experiments. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Spectral simulations of polar diatomic molecules immersed in He clusters: application to the ICl (X) molecule

    Energy Technology Data Exchange (ETDEWEB)

    Villarreal, P [Instituto de Matematicas y Fasica Fundamental (CSIC), Serrano 123, E-28006-Madrid (Spain); Lara-Castells, M P de [Instituto de Matematicas y Fasica Fundamental (CSIC), Serrano 123, E-28006-Madrid (Spain); Prosmiti, R [Instituto de Matematicas y Fasica Fundamental (CSIC), Serrano 123, E-28006-Madrid (Spain); Delgado-Barrio, G [Instituto de Matematicas y Fasica Fundamental (CSIC), Serrano 123, E-28006-Madrid (Spain); Lopez-Duran, D [Instituto de Matematicas y Fasica Fundamental (CSIC), Serrano 123, E-28006-Madrid (Spain); Gianturco, F A [Department of Chemistry and INFM, The University of Rome, Citta Universitaria, 00185, Rome (Italy); Jellinek, J [Chemistry Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2007-09-15

    A recently developed quantum-chemistry-like methodology to study molecules solvated in atomic clusters is applied to the ICl (iodine chloride) polar diatomic molecule immersed in clusters of He atoms. The atoms of the solvent clusters are treated as the 'electrons' and the solvated molecule as a structured 'nucleus' of the combined solvent-solute system. The helium-helium and helium-dopant interactions are represented by parametrized two-body and ab initio three-body potentials, respectively. The ground-state wavefunctions are used to compute the infrared (IR) spectra of the solvated molecule. In agreement with the experimental observations, the computed spectra exhibit considerable differences depending on whether the solvent cluster is comprised of bosonic ({sup 4}He) or fermionic ({sup 3}He) atoms. The source of these differences is attributed to the different spin-statistics of the solvent clusters. The bosonic versus fermionic nature of the solvent is reflected in the IR absorption selection rules. Only P and R branches with single state transitions appear in the spectrum when the molecule is solvated in a bosonic cluster. On the other hand, when the solvent represents a fermionic environment, quasi-degenerate multiplets of spin states contribute to each branch and, in addition, the Q-branch becomes also allowed. Combined, these two factors explain the more congested nature of the spectrum in the fermionic case.

  14. Spectral simulations of polar diatomic molecules immersed in He clusters: application to the ICl (X) molecule

    International Nuclear Information System (INIS)

    Villarreal, P; Lara-Castells, M P de; Prosmiti, R; Delgado-Barrio, G; Lopez-Duran, D; Gianturco, F A; Jellinek, J

    2007-01-01

    A recently developed quantum-chemistry-like methodology to study molecules solvated in atomic clusters is applied to the ICl (iodine chloride) polar diatomic molecule immersed in clusters of He atoms. The atoms of the solvent clusters are treated as the 'electrons' and the solvated molecule as a structured 'nucleus' of the combined solvent-solute system. The helium-helium and helium-dopant interactions are represented by parametrized two-body and ab initio three-body potentials, respectively. The ground-state wavefunctions are used to compute the infrared (IR) spectra of the solvated molecule. In agreement with the experimental observations, the computed spectra exhibit considerable differences depending on whether the solvent cluster is comprised of bosonic ( 4 He) or fermionic ( 3 He) atoms. The source of these differences is attributed to the different spin-statistics of the solvent clusters. The bosonic versus fermionic nature of the solvent is reflected in the IR absorption selection rules. Only P and R branches with single state transitions appear in the spectrum when the molecule is solvated in a bosonic cluster. On the other hand, when the solvent represents a fermionic environment, quasi-degenerate multiplets of spin states contribute to each branch and, in addition, the Q-branch becomes also allowed. Combined, these two factors explain the more congested nature of the spectrum in the fermionic case

  15. Adsorption of polar organic molecules on sediments: Case-study on Callovian-Oxfordian claystone.

    Science.gov (United States)

    Rasamimanana, S; Lefèvre, G; Dagnelie, R V H

    2017-08-01

    The release and transport of anthropogenic organic matter through the geosphere is often an environmental criterion of safety. Sedimentary rocks are widely studied in this context as geological barriers for waste management. It is the case of Callovian-Oxfordian claystone (COx), for which several studies report adsorption of anthropogenic organic molecules. In this study, we evaluated and reviewed adsorption data of polar organic molecules on COx claystone. Experiments were performed on raw claystone, decarbonated and clay fractions. Adsorption isotherms were measured with adsorbates of various polarities: adipate, benzoate, ortho-phthalate, succinate, gluconate, oxalate, EDTA, citrate. A significant adsorption was observed for multidentate polycarboxylic acids as evidenced with phthalate, succinate, oxalate, gluconate, EDTA and citrate (R d  = 1.53, 3.52, 8.4, 8.8, 12.4, 54.7 L kg -1 respectively). Multiple linear regression were performed as a statistical analysis to determine the predictors from these adsorption data. A linear correlation between adsorption data (R d ) and dipole moment (μ) of adsorbates was evidenced (R 2  = 0.91). Molecules with a high dipole moment, μ(D) > 2.5, displayed a significant adsorption, R d ≫1 L kg -1 . A qualitative correlation can be easily estimated using the water/octanol partition coefficient, P ow , of adsorbates (R 2  = 0.77). In this case, two opposite trends were distinguished for polar and apolar molecules. The use of organic carbon content in sediments is relevant for predicting adsorption of apolar compounds, log (P ow )>+1. The oxides/clays contents may be relevant regarding polar molecules, log ( apparent P ow )<-1. The proposed scheme offers a general methodology for investigation of geo-barriers towards heterogeneous organic plumes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Beam broadening of polar molecules and clusters in deflection experiments.

    Science.gov (United States)

    Bulthuis, J; Kresin, V V

    2012-01-07

    A beam of rotating dipolar particles (molecules or clusters) will broaden when passed through an electric or magnetic field gradient region. This broadening, which is a common experimental observable, can be expressed in terms of the variance of the distribution of the resulting polarization orientation (the direction cosine). Here, the broadening for symmetric-top and linear rotors is discussed. These two types of rotors have qualitatively different low-field orientation distribution functions, but behave similarly in a strong field. While analytical expressions for the polarization variance can be derived from first-order perturbation theory, for experimental guidance it is important to identify the applicability and limitations of these expressions, and the general dependence of the broadening on the experimental parameters. For this purpose, the analytical results are compared with the full diagonalization of the rotational Stark-effect matrices. Conveniently for experimental estimations, it is found that for symmetric tops, the dependence of the broadening parameter on the rotational constant, the axial ratio, and the field strength remains similar to the analytical expression even outside of the perturbative regime. Also, it is observed that the shape envelope, the centroid, and the width of the orientation distribution function for a symmetric top are quite insensitive to the value of its rotational constant (except at low rotational temperatures).

  17. Spin-orbital dynamics in a system of polar molecules

    Science.gov (United States)

    Syzranov, Sergey V.; Wall, Michael L.; Gurarie, Victor; Rey, Ana Maria

    2014-11-01

    Spin-orbit coupling in solids normally originates from the electron motion in the electric field of the crystal. It is key to understanding a variety of spin-transport and topological phenomena, such as Majorana fermions and recently discovered topological insulators. Implementing and controlling spin-orbit coupling is thus highly desirable and could open untapped opportunities for the exploration of unique quantum physics. Here we show that dipole-dipole interactions can produce an effective spin-orbit coupling in two-dimensional ultracold polar molecule gases. This spin-orbit coupling generates chiral excitations with a non-trivial Berry phase 2π. These excitations, which we call chirons, resemble low-energy quasiparticles in bilayer graphene and emerge regardless of the quantum statistics and for arbitrary ratios of kinetic to interaction energies. Chirons manifest themselves in the dynamics of the spin density profile, spin currents and spin coherences, even for molecules pinned in a deep optical lattice and should be observable in current experiments.

  18. Engineering and control of cold molecules. Making manipulating and exploiting ultra-cold polar molecules

    International Nuclear Information System (INIS)

    Bigelow, N.P.; Haimberger, C.; Kleinert, J.; Tscherneck, M.; Holmes, M.E.

    2005-01-01

    In the last 12 months several groups have demonstrated the use of photo association to create cold heteronuclear (polar) molecules. We report on the formation of translationally cold NaCs molecules starting from a laser-cooled atomic vapor of Na and Cs atoms. Colliding atoms are transferred into bound molecular states in a two-step photoactivated process. We find a translational temperature of T ≅ 260 mK. To increase the density and number of trapped atoms, dark-spot techniques are used on the MOT and a Zeeman slowed sodium beam is used to load the sodium atoms into the trap. Spectroscopy of these molecules is underway using time-of-flight ion detection and trap-loss. Initial REMPI measurements indicate that both singlet and triplet states are being populated by the spontaneous-decay driven process. We measure a rate constant for molecule formation of K NaCs = 7.43 · 10 15 cm 3 s -1 . (author)

  19. Anisotropic diffusion of water molecules in hydroxyapatite nanopores

    Science.gov (United States)

    Prakash, Muthuramalingam; Lemaire, Thibault; Caruel, Matthieu; Lewerenz, Marius; de Leeuw, Nora H.; Di Tommaso, Devis; Naili, Salah

    2017-07-01

    New insights into the dynamical properties of water in hydroxyapatite (HAP) nanopores, a model system for the fluid flow within nanosize spaces inside the collagen-apatite structure of bone, were obtained from molecular dynamics simulations of liquid water confined between two parallel HAP surfaces of different sizes (20 Å ≤ H ≤ 240 Å). Calculations were conducted using a core-shell interatomic potential for HAP together with the extended simple point charge model for water. This force field gives an activation energy for water diffusion within HAP nanopores that is in excellent agreement with available experimental data. The dynamical properties of water within the HAP nanopores were quantified in terms of the second-order water diffusion tensor. Results indicate that water diffuses anisotropically within the HAP nanopores, with the solvent molecules moving parallel to the surface twice as fast as the perpendicular direction. This unusual dynamic behaviour is linked to the strong polarizing effect of calcium ions, and the synergic interactions between the water molecules in the first hydration layer of HAP with the calcium, hydroxyl, and phosphate ions, which facilitates the flow of water molecules in the directions parallel to the HAP surface.

  20. Polarization properties of below-threshold harmonics from aligned molecules H2+ in linearly polarized laser fields.

    Science.gov (United States)

    Dong, Fulong; Tian, Yiqun; Yu, Shujuan; Wang, Shang; Yang, Shiping; Chen, Yanjun

    2015-07-13

    We investigate the polarization properties of below-threshold harmonics from aligned molecules in linearly polarized laser fields numerically and analytically. We focus on lower-order harmonics (LOHs). Our simulations show that the ellipticity of below-threshold LOHs depends strongly on the orientation angle and differs significantly for different harmonic orders. Our analysis reveals that this LOH ellipticity is closely associated with resonance effects and the axis symmetry of the molecule. These results shed light on the complex generation mechanism of below-threshold harmonics from aligned molecules.

  1. Evidence for Nuclear Tensor Polarization of Deuterium Molecules in Storage Cells

    International Nuclear Information System (INIS)

    van den Brand, J.; Bulten, H.; Zhou, Z.; Unal, O.; van den Brand, J.; Ferro-Luzzi, M.; Botto, T.; Bouwhuis, M.; Heimberg, P.; de Jager, C.; de Lange, D.; Nooren, G.; Papadakis, N.; Passchier, I.; Poolman, H.; Steijger, J.; Vodinas, N.; de Vries, H.; van den Brand, J.; Ferro-Luzzi, M.; Lang, J.; Alarcon, R.; Dolfini, S.; Ent, R.; Higinbotham, D.

    1997-01-01

    Deuterium molecules were obtained by recombination, on a copper surface, of deuterium atoms prepared in specific hyperfine states. The molecules were stored for about 5ms in an open-ended cylindrical cell, placed in a 23mT magnetic field, and their tensor polarization was measured by elastic scattering of 704MeV electrons. The results of the measurements are consistent with the deuterium molecules retaining the tensor polarization of the initial atoms. copyright 1997 The American Physical Society

  2. Rapid and accurate prediction and scoring of water molecules in protein binding sites.

    Directory of Open Access Journals (Sweden)

    Gregory A Ross

    Full Text Available Water plays a critical role in ligand-protein interactions. However, it is still challenging to predict accurately not only where water molecules prefer to bind, but also which of those water molecules might be displaceable. The latter is often seen as a route to optimizing affinity of potential drug candidates. Using a protocol we call WaterDock, we show that the freely available AutoDock Vina tool can be used to predict accurately the binding sites of water molecules. WaterDock was validated using data from X-ray crystallography, neutron diffraction and molecular dynamics simulations and correctly predicted 97% of the water molecules in the test set. In addition, we combined data-mining, heuristic and machine learning techniques to develop probabilistic water molecule classifiers. When applied to WaterDock predictions in the Astex Diverse Set of protein ligand complexes, we could identify whether a water molecule was conserved or displaced to an accuracy of 75%. A second model predicted whether water molecules were displaced by polar groups or by non-polar groups to an accuracy of 80%. These results should prove useful for anyone wishing to undertake rational design of new compounds where the displacement of water molecules is being considered as a route to improved affinity.

  3. Rapid and Accurate Prediction and Scoring of Water Molecules in Protein Binding Sites

    Science.gov (United States)

    Ross, Gregory A.; Morris, Garrett M.; Biggin, Philip C.

    2012-01-01

    Water plays a critical role in ligand-protein interactions. However, it is still challenging to predict accurately not only where water molecules prefer to bind, but also which of those water molecules might be displaceable. The latter is often seen as a route to optimizing affinity of potential drug candidates. Using a protocol we call WaterDock, we show that the freely available AutoDock Vina tool can be used to predict accurately the binding sites of water molecules. WaterDock was validated using data from X-ray crystallography, neutron diffraction and molecular dynamics simulations and correctly predicted 97% of the water molecules in the test set. In addition, we combined data-mining, heuristic and machine learning techniques to develop probabilistic water molecule classifiers. When applied to WaterDock predictions in the Astex Diverse Set of protein ligand complexes, we could identify whether a water molecule was conserved or displaced to an accuracy of 75%. A second model predicted whether water molecules were displaced by polar groups or by non-polar groups to an accuracy of 80%. These results should prove useful for anyone wishing to undertake rational design of new compounds where the displacement of water molecules is being considered as a route to improved affinity. PMID:22396746

  4. The spontaneous synchronized dance of pairs of water molecules

    Energy Technology Data Exchange (ETDEWEB)

    Roncaratti, Luiz F. [Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia (Italy); Instituto de Física, Universidade de Brasília, 70910-900 Brasília (Brazil); Cappelletti, David, E-mail: david.cappelletti@unipg.it; Pirani, Fernando [Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia (Italy)

    2014-03-28

    Molecular beam scattering experiments have been performed to study the effect of long-range anisotropic forces on the collision dynamics of two small polar molecules. The main focus of this paper is on water, but also ammonia and hydrogen sulphide molecules have been investigated, and some results will be anticipated. The intermolecular distances mainly probed are of the order of 1 nm and therefore much larger than the molecular dimensions. In particular, we have found that the natural electric field gradient, generated by different spatial orientations of the permanent electric dipoles, is able to promote the transformation of free rotations into coupled pendular states, letting the molecular partners involved in the collision complex swinging to and fro around the field direction. This long-ranged concerted motion manifested itself as large increases of the magnitude of the total integral cross section. The experimental findings and the theoretical treatment developed to shed light on the details of the process suggest that the transformation from free rotations to pendular states depends on the rotational level of both molecules, on the impact parameter, on the relative collision velocity, on the dipole moment product and occurs in the time scale of picoseconds. The consequences of this intriguing phenomenon may be important for the interpretation and, in perspective, for the control of elementary chemical and biological processes, given by polar molecules, ions, and free radicals, occurring in several environments under various conditions.

  5. [Progress in sample preparation and analytical methods for trace polar small molecules in complex samples].

    Science.gov (United States)

    Zhang, Qianchun; Luo, Xialin; Li, Gongke; Xiao, Xiaohua

    2015-09-01

    Small polar molecules such as nucleosides, amines, amino acids are important analytes in biological, food, environmental, and other fields. It is necessary to develop efficient sample preparation and sensitive analytical methods for rapid analysis of these polar small molecules in complex matrices. Some typical materials in sample preparation, including silica, polymer, carbon, boric acid and so on, are introduced in this paper. Meanwhile, the applications and developments of analytical methods of polar small molecules, such as reversed-phase liquid chromatography, hydrophilic interaction chromatography, etc., are also reviewed.

  6. Measurement of the nuclear polarization of hydrogen and deuterium molecules using a Lamb-shift polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Engels, Ralf, E-mail: r.w.engels@fz-juelich.de; Gorski, Robert; Grigoryev, Kiril; Mikirtychyants, Maxim; Rathmann, Frank; Seyfarth, Hellmut; Ströher, Hans; Weiss, Philipp [Institut für Kernphysik, Forschungszentrum Jülich, Wilhelm-Johnen-Str. 1, 52428 Jülich (Germany); Kochenda, Leonid; Kravtsov, Peter; Trofimov, Viktor; Tschernov, Nikolay; Vasilyev, Alexander; Vznuzdaev, Marat [Laboratory of Cryogenic and Superconductive Technique, Petersburg Nuclear Physics Institute, Orlova Roscha 1, 188300 Gatchina (Russian Federation); Schieck, Hans Paetz gen. [Institut für Kernphysik, Universität zu Köln, Zülpicher Str. 77, 50937 Köln (Germany)

    2014-10-15

    Lamb-shift polarimeters are used to measure the nuclear polarization of protons and deuterons at energies of a few keV. In combination with an ionizer, the polarization of hydrogen and deuterium atoms was determined after taking into account the loss of polarization during the ionization process. The present work shows that the nuclear polarization of hydrogen or deuterium molecules can be measured as well, by ionizing the molecules and injecting the H{sub 2}{sup +} (or D{sub 2}{sup +}) ions into the Lamb-shift polarimeter.

  7. Visualizing water molecules in transmembrane proteins using radiolytic labeling methods.

    Science.gov (United States)

    Orban, Tivadar; Gupta, Sayan; Palczewski, Krzysztof; Chance, Mark R

    2010-02-09

    Essential to cells and their organelles, water is both shuttled to where it is needed and trapped within cellular compartments and structures. Moreover, ordered waters within protein structures often colocalize with strategically placed polar or charged groups critical for protein function, yet it is unclear if these ordered water molecules provide structural stabilization, mediate conformational changes in signaling, neutralize charged residues, or carry out a combination of all these functions. Structures of many integral membrane proteins, including G protein-coupled receptors (GPCRs), reveal the presence of ordered water molecules that may act like prosthetic groups in a manner quite unlike bulk water. Identification of "ordered" waters within a crystalline protein structure requires sufficient occupancy of water to enable its detection in the protein's X-ray diffraction pattern, and thus, the observed waters likely represent a subset of tightly bound functional waters. In this review, we highlight recent studies that suggest the structures of ordered waters within GPCRs are as conserved (and thus as important) as conserved side chains. In addition, methods of radiolysis, coupled to structural mass spectrometry (protein footprinting), reveal dynamic changes in water structure that mediate transmembrane signaling. The idea of water as a prosthetic group mediating chemical reaction dynamics is not new in fields such as catalysis. However, the concept of water as a mediator of conformational dynamics in signaling is just emerging, because of advances in both crystallographic structure determination and new methods of protein footprinting. Although oil and water do not mix, understanding the roles of water is essential to understanding the function of membrane proteins.

  8. Imaging and manipulation of a polar molecule on Ag(111)

    DEFF Research Database (Denmark)

    Lin, R.; Braun, K.F.; Tang, H.

    2001-01-01

    A scanning tunneling microscope (STM) was applied to image and laterally manipulate isolated phosphangulene molecules on Ag(111) at 6 K. Atomic-resolution images clearly revealed three characteristic types of appearances (three-lobed, fish and bump shape) for the adsorbed molecules, which could...... correspond to three distinct binding configurations. From a detailed analysis of the relative distance between neighboring three-lobed molecules we determine the adsorption site. Applying the lateral manipulation technique ws demonstrate that the molecule can be pulled, slid or pushed by the tip...... on the surface. Accompanying with the reposition, molecular rotation and/or changing of binding configurations can also be induced. It is found that the dipole moment of the molecule has minor effects on its lateral movement. The results demonstrate that due to many degrees of freedom for large molecules...

  9. Imaging and manipulation of a polar molecule oil Ag(111)

    DEFF Research Database (Denmark)

    Lin, Rong; Braun, K.F.; Tang, H.

    2001-01-01

    A scanning tunneling microscope (STM) was applied to image and laterally manipulate isolated phosphangulene molecules on Ag(111) at 6 K. Atomic-resolution images clearly revealed three characteristic types of appearances (three-lobed, fish and bump shape) for the adsorbed molecules, which could...... correspond to three distinct binding configurations. From a detailed analysis of the relative distance between neighboring three-lobed molecules we determine the adsorption site. Applying the lateral manipulation technique ws demonstrate that the molecule can be pulled, slid or pushed by the tip...... on the surface. Accompanying with the reposition, molecular rotation and/or changing of binding configurations can also be induced. It is found that the dipole moment of the molecule has minor effects on its lateral movement. The results demonstrate that due to many degrees of freedom for large molecules...

  10. Beam dynamics in a storage ring for neutral (polar) molecules

    International Nuclear Information System (INIS)

    Lambertson, Glen R.

    2003-01-01

    The force from a non-uniform electric field on the electric dipole moment of a molecule may be used to circulate and focus molecules in a storage ring. The nature of the forces from multipole electrodes for bending and focusing are described for strong-field-seeking and for weak-field-seeking molecules. Fringe-field forces are analyzed. Examples of storage ring designs are presented; these include long straight sections and provide bunching and acceleration

  11. Imaging and manipulation of a polar molecule oil Ag(111)

    DEFF Research Database (Denmark)

    Lin, Rong; Braun, K.F.; Tang, H.

    2001-01-01

    A scanning tunneling microscope (STM) was applied to image and laterally manipulate isolated phosphangulene molecules on Ag(111) at 6 K. Atomic-resolution images clearly revealed three characteristic types of appearances (three-lobed, fish and bump shape) for the adsorbed molecules, which could...

  12. Proposal for the formation of ultracold paramagnetic polar molecules

    Science.gov (United States)

    Dulieu, Olivier; Borsalino, Dimitri; Luc, Eliane; Bouloufa-Maafa, Nadia; Zuchowski, Piotr

    2016-05-01

    Alkali-alkaline-earth dimers, such as RbCa and RbSr, possess (in their ground electronic state) both a permanent magnetic and electric dipole moment in the molecular frame, allowing their manipulation with external fields at ultracold temperatures. Such molecules have been proposed as candidates for quantum simulators. We propose an efficient method combining a photoassociation step and a stimulated Raman process to create ultracold RbSr and RbCa molecules in their absolute ground state, suitable for studying dipolar interactions in quantum gases. Our model is based on new accurate quantum chemistry computations of potential energy surfaces of ground and excited molecular states and of relevant transition dipole moments of these molecules. The results are in good agreement with recent low-resolution spectroscopic data recorded with Helium nanodroplets.

  13. Polarization shaping of high-order harmonics in laser-aligned molecules

    Science.gov (United States)

    Skantzakis, E.; Chatziathanasiou, S.; Carpeggiani, P. A.; Sansone, G.; Nayak, A.; Gray, D.; Tzallas, P.; Charalambidis, D.; Hertz, E.; Faucher, O.

    2016-01-01

    The present work reports on the generation of short-pulse coherent extreme ultraviolet radiation of controlled polarization. The proposed strategy is based on high-order harmonics generated in pre-aligned molecules. Field-free molecular alignment produced by a short linearly-polarized infrared laser pulse is used to break the isotropy of a gas medium. Driving the aligned molecules by a circularly-polarized infrared pulse allows to transfer the anisotropy of the medium to the polarization of the generated harmonic light. The ellipticity of the latter is controlled by adjusting the angular distribution of the molecules at the time they interact with the driving pulse. Extreme ultraviolet radiation produced with high degree of ellipticity (close to circular) is demonstrated. PMID:27995974

  14. Effect of dipole polarizability on positron binding by strongly polar molecules

    International Nuclear Information System (INIS)

    Gribakin, G F; Swann, A R

    2015-01-01

    A model for positron binding to polar molecules is considered by combining the dipole potential outside the molecule with a strongly repulsive core of a given radius. Using existing experimental data on binding energies leads to unphysically small core radii for all of the molecules studied. This suggests that electron–positron correlations neglected in the simple model play a large role in determining the binding energy. We account for these by including the polarization potential via perturbation theory and non-perturbatively. The perturbative model makes reliable predictions of binding energies for a range of polar organic molecules and hydrogen cyanide. The model also agrees with the linear dependence of the binding energies on the polarizability inferred from the experimental data (Danielson et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235203). The effective core radii, however, remain unphysically small for most molecules. Treating molecular polarization non-perturbatively leads to physically meaningful core radii for all of the molecules studied and enables even more accurate predictions of binding energies to be made for nearly all of the molecules considered. (paper)

  15. Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer

    International Nuclear Information System (INIS)

    Shegai, Timur; Li, Zhipeng; Zhang, Zhenyu; Xu, Hongxing; Haran, Gilad

    2008-01-01

    The interaction of light with metal nanoparticles leads to novel phenomena mediated by surface plasmon excitations. In this paper we use single molecules to characterize the interaction of surface plasmons with light, and show that such interaction can strongly modulate the polarization of the emitted light. The simplest nanostructures that enable such polarization modulation are asymmetric silver nanocrystal trimers, where individual Raman scattering molecules are located in the gap between two of the nanoparticles. The third particle breaks the dipolar symmetry of the two-particle junction, generating a wavelength-dependent polarization pattern. Indeed, the scattered light becomes elliptically polarized and its intensity pattern is rotated in the presence of the third particle. We use a combination of spectroscopic observations on single molecules, scanning electron microscope imaging, and generalized Mie theory calculations to provide a full picture of the effect of particles on the polarization of the emitted light. Furthermore, our theoretical analysis allows us to show that the observed phenomenon is very sensitive to the size of the trimer particles and their relative position, suggesting future means for precise control of light polarization on the nanoscale.

  16. Ionization of oriented carbonyl sulfide molecules by intense circularly polarized laser pulses

    DEFF Research Database (Denmark)

    Dimitrovski, Darko; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    We present combined experimental and theoretical results on strong-field ionization of oriented carbonyl sulfide molecules by circularly polarized laser pulses. The obtained molecular frame photoelectron angular distributions show pronounced asymmetries perpendicular to the direction...... of the molecular electric dipole moment. These findings are explained by a tunneling model invoking the laser-induced Stark shifts associated with the dipoles and polarizabilities of the molecule and its unrelaxed cation. The focus of the present article is to understand the strong-field ionization of one......-dimensionally-oriented polar molecules, in particular asymmetries in the emission direction of the photoelectrons. In the following article [Phys. Rev. A 83, 023406 (2011)] the focus is to understand strong-field ionization from three-dimensionally-oriented asymmetric top molecules, in particular the suppression of electron...

  17. Autodissociation of a water molecule in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Geissler, Phillip L.; Dellago, Christoph; Chandler, David; Hutter, Jurg; Parrinello, Michele

    2000-04-01

    The dissociation of a water molecule in liquid water is the fundamental event in acid-base chemistry, determining the pH of water.Because the microscopic dynamics of this autodissociation are difficult to probe, both by experiment and by computer simulation, its mechanism has been unknown. Here we report several autodissociation trajectories generated by ab initio molecular dynamics [1]. These trajectories, which were harvested using transition path sampling [2-4], reveal the mechanism for the first time. Rare fluctuations in solvation energies destabilize an oxygen-hydrogen bond. Through the transfer of one or more protons along a hydrogen bond.

  18. Quantum mechanical force field for water with explicit electronic polarization.

    Science.gov (United States)

    Han, Jaebeom; Mazack, Michael J M; Zhang, Peng; Truhlar, Donald G; Gao, Jiali

    2013-08-07

    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10(6) self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across

  19. Effects of small molecules water that may retard kidney stone formation.

    Science.gov (United States)

    Li, Yang; Pan, Jichuan; Zhang, Yue; Chang, Yangtao; Yang, Xiaoxiong; Yang, Baoyu; Mao, Xu; Wang, Zhonghui; Gao, Bing; Lu, Xiuli

    2018-02-01

    Water intake is important for preventing kidney stones. Small molecules water is a more active restructured water under magnetic field. Here, we studied the relation between small molecules water and crystal formation in the rat kidney. The small molecules water was prepared by a water machine providing a 0.8-T magnetic field. Calcium oxalate crystals were induced by 0.75% EG (ethylene glycol) in male Sprague-Dawley rats by drinking small molecules water and plain water for up to 6 weeks, respectively. Urinary ions were assayed. Osteopontin mRNA expression and urinary LDH were detected. Crystals were observed using a light microscope and a polarizing microscope. A significantly reduced urinary calcium and phosphorus excretion occurred in the 2nd and the 4th week after treatment of small molecules water. Crystals were initially detected in 40% of the experimental rats in the small molecules water group at the 6th week, later than the control group in which crystals were detected in 60% of rats at the 4th week. After 6 weeks of treatment, crystals were observed to form in renal cortex, medulla and papilla in the control group, whereas only to form in renal medulla and papilla in the small molecules water group. OPN mRNA expression significantly increased earlier in the 2nd week after treatment of the small molecules water compared to the control (P = 0.016). Small molecules water may retard crystal formation, reduce urinary calcium and phosphorus excretion and promote earlier OPN mRNA expression in the rat kidney.

  20. Photofragment angular momentum polarization in the photolysis of symmetric top molecules: Production, detection, and rotational depolarization

    International Nuclear Information System (INIS)

    Shternin, Peter S.; Suits, Arthur G.; Vasyutinskii, Oleg S.

    2012-01-01

    Highlights: ► We describe the product polarization in the photolysis of symmetric top molecules. ► The polarization is written in terms of the anisotropy transforming coefficients. ► We studied the role of the angular momentum depolarization due to molecular rotation. ► We present a compact spherical tensor expression for the 2 + 1 REMPI absorption signal. - Abstract: We present the fully quantum mechanical distribution of the photofragment angular momentum polarization in the photolysis of an isotropic ensemble of symmetric top molecules. The distribution is written in terms of the recently established anisotropy transforming coefficients c k d q k K (P.S. Shternin, O.S. Vasyutinskii, Chem. Phys. 128 (2008) 194314) which contain all dynamical information on the photolysis dynamics and can be either determined from experiment, or calculated from theory. Explicit expressions for the coefficients c k d q k K for the case of photolysis of symmetric top molecules were obtained within the full quantum mechanical approach and then simplified using the quasiclassical approximation in the high-J limit. The role of the photofragment angular momentum depolarization due to molecular rotation was analyzed for three important particular cases: photolysis of diatomic molecules, photolysis of symmetric top molecules when the angular momentum polarization of atomic photofragments are detected, photolysis of symmetric top molecules when the angular momentum polarization of molecular photofragments are detected. The obtained rotation factors were compared with the results of previous studies. The paper also presents a compact spherical tensor expression for the 2 + 1 REMPI absorption signal which can be used for direct determination of the coefficients c k d q k K from experiment. A comparison was made between the anisotropy transforming coefficients c k d q k K and the polarization parameters A q K introduced very recently by (T.P. Rakitzis, A.J. Alexander, J. Chem. Phys

  1. Origins of Water Molecules in the Photosystem II Crystal Structure.

    Science.gov (United States)

    Sakashita, Naoki; Watanabe, Hiroshi C; Ikeda, Takuya; Saito, Keisuke; Ishikita, Hiroshi

    2017-06-20

    The cyanobacterial photosystem II (PSII) crystal structure includes more than 1300 water molecules in each monomer unit; however, their precise roles in water oxidation are unclear. To understand the origins of water molecules in the PSII crystal structure, the accessibility of bulk water molecules to channel inner spaces in PSII was investigated using the water-removed PSII structure and molecular dynamics (MD) simulations. The inner space of the channel that proceeds toward the D1-Glu65/D2-Glu312 pair (E65/E312 channel) was entirely filled with water molecules from the bulk region. In the same channel, a diamond-shaped cluster of water molecules formed near redox-active TyrZ in MD simulations. Reorientation of the D2-Leu352 side chain resulted in formation of a hexagonal water network at the Cl - 2 binding site. Water molecules could not enter the main region of the O4-water chain, which proceeds from the O4 site of the Mn 4 CaO 5 cluster. However, in the O4-water chain, the two water binding sites that are most distant from the protein bulk surface were occupied by water molecules that approached along the E65/E312 channel, one of which formed an H-bond with the O4 site. These findings provide key insights into the significance of the channel ends, which may utilize water molecules during the PSII photocycle.

  2. Polarized View of Supercooled Liquid Water Clouds

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Wasilewski, Andrzej P.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven E.; Arnold, G. Thomas

    2016-01-01

    Supercooled liquid water (SLW) clouds, where liquid droplets exist at temperatures below 0 C present a well known aviation hazard through aircraft icing, in which SLW accretes on the airframe. SLW clouds are common over the Southern Ocean, and climate-induced changes in their occurrence is thought to constitute a strong cloud feedback on global climate. The two recent NASA field campaigns POlarimeter Definition EXperiment (PODEX, based in Palmdale, California, January-February 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, based in Houston, Texas in August- September 2013) provided a unique opportunity to observe SLW clouds from the high-altitude airborne platform of NASA's ER-2 aircraft. We present an analysis of measurements made by the Research Scanning Polarimeter (RSP) during these experiments accompanied by correlative retrievals from other sensors. The RSP measures both polarized and total reflectance in 9 spectral channels with wavelengths ranging from 410 to 2250 nm. It is a scanning sensor taking samples at 0.8deg intervals within 60deg from nadir in both forward and backward directions. This unique angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135deg and 165deg. Simple parametric fitting algorithms applied to the polarized reflectance provide retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT),which allows retrieval of the droplet size distribution without assuming a size distribution shape. We present an overview of the RSP campaign datasets available from the NASA GISS website, as well as two detailed examples of the retrievals. In these case studies we focus on cloud fields with spatial features

  3. Modeling the adiabatic creation of ultracold polar 23Na40K molecules

    Science.gov (United States)

    Seeßelberg, Frauke; Buchheim, Nikolaus; Lu, Zhen-Kai; Schneider, Tobias; Luo, Xin-Yu; Tiemann, Eberhard; Bloch, Immanuel; Gohle, Christoph

    2018-01-01

    In this work we model and realize stimulated Raman adiabatic passage (STIRAP) in the diatomic 23Na40K molecule from weakly bound Feshbach molecules to the rovibronic ground state via the |vd=5 ,J =Ω =1 〉 excited state in the d3Π electronic potential. We demonstrate how to set up a quantitative model for polar molecule production by taking into account the rich internal structure of the molecules and the coupling laser phase noise. We find excellent agreement between the model predictions and the experiment, demonstrating the applicability of the model in the search for an ideal STIRAP transfer path. In total we produce 5000 fermionic ground-state molecules. The typical phase-space density of the sample is 0.03 and induced dipole moments of up to 0.54 D can be observed.

  4. Prospects for quantum computing with an array of ultracold polar paramagnetic molecules.

    Science.gov (United States)

    Karra, Mallikarjun; Sharma, Ketan; Friedrich, Bretislav; Kais, Sabre; Herschbach, Dudley

    2016-03-07

    Arrays of trapped ultracold molecules represent a promising platform for implementing a universal quantum computer. DeMille [Phys. Rev. Lett. 88, 067901 (2002)] has detailed a prototype design based on Stark states of polar (1)Σ molecules as qubits. Herein, we consider an array of polar (2)Σ molecules which are, in addition, inherently paramagnetic and whose Hund's case (b) free-rotor pair-eigenstates are Bell states. We show that by subjecting the array to combinations of concurrent homogeneous and inhomogeneous electric and magnetic fields, the entanglement of the array's Stark and Zeeman states can be tuned and the qubit sites addressed. Two schemes for implementing an optically controlled CNOT gate are proposed and their feasibility discussed in the face of the broadening of spectral lines due to dipole-dipole coupling and the inhomogeneity of the electric and magnetic fields.

  5. Prospects for quantum computing with an array of ultracold polar paramagnetic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Karra, Mallikarjun; Sharma, Ketan; Friedrich, Bretislav, E-mail: bretislav.friedrich@fhi-berlin.mpg.de [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany); Kais, Sabre [Departments of Chemistry, Physics and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Herschbach, Dudley [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138 (United States)

    2016-03-07

    Arrays of trapped ultracold molecules represent a promising platform for implementing a universal quantum computer. DeMille [Phys. Rev. Lett. 88, 067901 (2002)] has detailed a prototype design based on Stark states of polar {sup 1}Σ molecules as qubits. Herein, we consider an array of polar {sup 2}Σ molecules which are, in addition, inherently paramagnetic and whose Hund’s case (b) free-rotor pair-eigenstates are Bell states. We show that by subjecting the array to combinations of concurrent homogeneous and inhomogeneous electric and magnetic fields, the entanglement of the array’s Stark and Zeeman states can be tuned and the qubit sites addressed. Two schemes for implementing an optically controlled CNOT gate are proposed and their feasibility discussed in the face of the broadening of spectral lines due to dipole-dipole coupling and the inhomogeneity of the electric and magnetic fields.

  6. Molecular density functional theory of water including density-polarization coupling.

    Science.gov (United States)

    Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel

    2016-06-22

    We present a three-dimensional molecular density functional theory of water derived from first-principles that relies on the particle's density and multipolar polarization density and includes the density-polarization coupling. This brings two main benefits: (i) scalar density and vectorial multipolar polarization density fields are much more tractable and give more physical insight than the full position and orientation densities, and (ii) it includes the full density-polarization coupling of water, that is known to be non-vanishing but has never been taken into account. Furthermore, the theory requires only the partial charge distribution of a water molecule and three measurable bulk properties, namely the structure factor and the Fourier components of the longitudinal and transverse dielectric susceptibilities.

  7. Probing membrane protein structure using water polarization transfer solid-state NMR.

    Science.gov (United States)

    Williams, Jonathan K; Hong, Mei

    2014-10-01

    Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected (1)H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane domain of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins. Copyright © 2014 Elsevier Inc. All

  8. Pulse train induced rotational excitation and orientation of a polar molecule.

    Science.gov (United States)

    Tyagi, Ashish; Arya, Urvashi; Vidhani, Bhavna; Prasad, Vinod

    2014-08-14

    We investigate theoretically the rotational excitation and field free molecular orientation of polar HBr molecule, interacting with train of ultrashort laser pulses. By adjusting the number of pulses, pulse period and the intensity of the pulse, one can suppress a population while simultaneously enhancing the desired population in particular rotational state. We have used train of laser pulses of different shaped pulse envelopes. The dynamics and orientation of molecules in the presence of pulse train of different shapes is studied and explained. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Microscopic evidence for the dissociation of water molecules on cleaved GaN(11[combining macron]00).

    Science.gov (United States)

    Wu, Shih-Yu; Lang, Liang-Wei; Cai, Pei-Yang; Chen, Yun-Wen; Lai, Yu-Ling; Lin, Ming-Wei; Hsu, Yao-Jane; Lee, Wei-I; Kuo, Jer-Lai; Luo, Meng-Fan; Kuo, Chien-Cheng

    2018-01-03

    The dissociation of water molecules absorbed on a cleaved non-polar GaN(11[combining macron]00) surface was studied primarily with synchrotron-based photoemission spectra and density-functional-theory calculations. The adsorbed water molecules are spontaneously dissociated into hydrogen atoms and hydroxyl groups at either 300 or 130 K, which implies a negligible activation energy (macron]00) respectively. These results highlight the promising applications of the non-polar GaN(11[combining macron]00) surface in water dissociation and hydrogen generation.

  10. Short bent-core molecules: X-ray, polarization, dielectricity, texture and electro-optics investigations.

    Science.gov (United States)

    Torgova, S; Sreenilayam, S P; Panarin, Yu P; Francescangeli, O; Vita, F; Vij, J K; Pozhidaev, E; Minchenko, M; Ferrero, C; Strigazzi, A

    2017-08-30

    Bent-core liquid crystals based on 1,2,4-oxadiazole as a central unit have been the first mesogens to exhibit a ferroelectric response in the nematic phase. This behavior has been widely recognized as due to the presence of smectic-like polar cybotactic clusters permeating the nematic phase. Unfortunately, these compounds exhibited rather high melting points, about 120 °C, due to the presence of four benzene rings in the molecules. Here we describe the synthesis and physical characterization of a new series of BC mesogens, featuring the same bent core as the previous compounds but shorter outer substituents. By keeping only two benzene rings, we were able to lower the melting points to about 70 °C. However, while X-ray diffraction and dielectric spectroscopy measurements confirm the cybotactic nature of the nematic phase of these compounds, polarization and electro-optical measurements ascribe their polar response to flexoelectricity rather than to spontaneous polarization. Finally, texture investigation suggests the biaxiality of the nematic phase, which is indicated also by conoscopic measurements. These results are important for recognizing size and rigidity limitations in designing bent-core liquid crystal molecules suitable for applications.

  11. Shear-stress-induced structural arrangement of water molecules in nanoscale Couette flow with slipping at wall boundary

    International Nuclear Information System (INIS)

    Lin, Jau-Wen

    2014-01-01

    This study investigated the structuring of water molecules in a nanoscale Couette flow with the upper plate subjected to lateral forces with various magnitudes and water slipping against a metal wall. It was found that when the upper plate is subjected to a force, the water body deforms into a parallelepiped. Water molecules in the channel are then gradually arranged into lattice positions, creating a layered structure. The structural arrangement of water molecules is caused by the water molecules accommodating themselves to the increase in energy under the application of a lateral force on the moving plate. The ordering arrangement of water molecules increases the rotational degree of freedom, allowing the molecules to increase their Coulomb potential energy through polar rotation that accounts for the energy input through the upper plate. With a force continuously applied to the upper plate, the water molecules in contact with the upper plate move forward until slip between the water and upper plate occurs. The relation between the structural arrangement of water molecules, slip at the wall, and the shear force is studied. The relation between the slip and the locking/unlocking of water molecules to metal atoms is also studied

  12. Classical study of the rovibrational dynamics of a polar diatomic molecule in static electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Inarrea, Manuel, E-mail: manuel.inarrea@unirioja.e [Area de Fisica, Universidad de la Rioja, E-26006 Logrono (Spain); Salas, J. Pablo [Area de Fisica, Universidad de la Rioja, E-26006 Logrono (Spain); Gonzalez-Ferez, Rosario [Instituto ' Carlos I' de Fisica Teorica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain); Schmelcher, Peter [Theoretische Chemie, Physikalisch-Chemisches Institut, D-69120 Heidelberg (Germany); Physikalisches Institut, Universitaet Heidelberg, D-69120 Heidelberg (Germany)

    2010-01-04

    We study the classical dynamics of a polar diatomic molecule in the presence of a strong static homogeneous electric field. Our full rovibrational investigation includes the interaction with the field due to the permanent electric dipole moment and the polarizability of the molecule. Using the LiCs molecule as a prototype, we explore the stability of the equilibrium points and their bifurcations as the field strength is increased. The phase space structure and its dependence on the energy and field strength are analyzed in detail. We demonstrate that depending on the field strength and on the energy, the phase space is characterized either by regular features or by small stochastic layers of chaotic motion.

  13. Solvation thermodynamics and heat capacity of polar and charged solutes in water

    Science.gov (United States)

    Sedlmeier, Felix; Netz, Roland R.

    2013-03-01

    The solvation thermodynamics and in particular the solvation heat capacity of polar and charged solutes in water is studied using atomistic molecular dynamics simulations. As ionic solutes we consider a F- and a Na+ ion, as an example for a polar molecule with vanishing net charge we take a SPC/E water molecule. The partial charges of all three solutes are varied in a wide range by a scaling factor. Using a recently introduced method for the accurate determination of the solvation free energy of polar solutes, we determine the free energy, entropy, enthalpy, and heat capacity of the three different solutes as a function of temperature and partial solute charge. We find that the sum of the solvation heat capacities of the Na+ and F- ions is negative, in agreement with experimental observations, but our results uncover a pronounced difference in the heat capacity between positively and negatively charged groups. While the solvation heat capacity ΔCp stays positive and even increases slightly upon charging the Na+ ion, it decreases upon charging the F- ion and becomes negative beyond an ion charge of q = -0.3e. On the other hand, the heat capacity of the overall charge-neutral polar solute derived from a SPC/E water molecule is positive for all charge scaling factors considered by us. This means that the heat capacity of a wide class of polar solutes with vanishing net charge is positive. The common ascription of negative heat capacities to polar chemical groups might arise from the neglect of non-additive interaction effects between polar and apolar groups. The reason behind this non-additivity is suggested to be related to the second solvation shell that significantly affects the solvation thermodynamics and due to its large spatial extent induces quite long-ranged interactions between solvated molecular parts and groups.

  14. Free enthalpies of replacing water molecules in protein binding pockets.

    Science.gov (United States)

    Riniker, Sereina; Barandun, Luzi J; Diederich, François; Krämer, Oliver; Steffen, Andreas; van Gunsteren, Wilfred F

    2012-12-01

    Water molecules in the binding pocket of a protein and their role in ligand binding have increasingly raised interest in recent years. Displacement of such water molecules by ligand atoms can be either favourable or unfavourable for ligand binding depending on the change in free enthalpy. In this study, we investigate the displacement of water molecules by an apolar probe in the binding pocket of two proteins, cyclin-dependent kinase 2 and tRNA-guanine transglycosylase, using the method of enveloping distribution sampling (EDS) to obtain free enthalpy differences. In both cases, a ligand core is placed inside the respective pocket and the remaining water molecules are converted to apolar probes, both individually and in pairs. The free enthalpy difference between a water molecule and a CH(3) group at the same location in the pocket in comparison to their presence in bulk solution calculated from EDS molecular dynamics simulations corresponds to the binding free enthalpy of CH(3) at this location. From the free enthalpy difference and the enthalpy difference, the entropic contribution of the displacement can be obtained too. The overlay of the resulting occupancy volumes of the water molecules with crystal structures of analogous ligands shows qualitative correlation between experimentally measured inhibition constants and the calculated free enthalpy differences. Thus, such an EDS analysis of the water molecules in the binding pocket may give valuable insight for potency optimization in drug design.

  15. Possible sequestration of polar gas molecules by superhalogen supported aluminum nitride nanoflakes.

    Science.gov (United States)

    Chakraborty, Debdutta; Chattaraj, Pratim Kumar

    2016-11-01

    The feasibility of having MF 3 (where M = Rh, Ir, Pd, Pt, Ag, Au) supported AlN nanoflakes (AlNF) was investigated through density functional theory based calculations. The thermodynamic analysis reveals that the superhalogen MF 3 molecules can bind with the host AlNF in a thermodynamically favorable way. The nature of interaction in between the metal centers and the host is of partly covalent type whereas the F centers bind with the host in a non-covalent fashion as vindicated by natural bond orbital and atoms-in a-molecule analyses. An ab initio molecular dynamics study carried out at 298 K temperature confirms the stability of the MF 3 @AlNF moieties in a dynamical context. The MF 3 guests can reduce the HOMO-LUMO gaps of the host nanoflakes. In general, the MF 3 @AlNF complexes can sequestrate polar adsorbates such as CO, NO, and H 2 O in a thermodynamically favorable way in most of the cases. An ab initio molecular dynamics calculation illustrates that the MF 3 @AlNF can adsorb the chosen representative polar molecules in a more favorable way as compared to the corresponding adsorption scenario in the case of pristine AlNF.

  16. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    Energy Technology Data Exchange (ETDEWEB)

    Goodson, Boyd McLean [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.

  17. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    International Nuclear Information System (INIS)

    Goodson, Boyd M.

    1999-01-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI

  18. Coccolithophorids in polar waters: Trigonaspis spp. revisited

    DEFF Research Database (Denmark)

    Thomsen, Helge Abildhauge; Østergaard, Jette B.

    2015-01-01

    of crystallites that cover the surfaces of both the tower-shaped flagellar pole coccoliths and the disc-shaped body coccoliths are the keystone features of the genus. Circumstantial evidence exists linking species of Trigonaspis with species of Pappomonas in haploid-diploid life cycles.......A group of weakly calcified coccolithophorid genera and species were described from polar regions several decades ago. In the interim period a few additional findings have been reported adding to the morphological and biogeographical databases of some of the species. The holococcolithophorid genus...... Trigonaspis is revisited here with the purpose of providing, based on additional sampling from both polar regions, an update on species morphology, life history aspects and biogeography. The genus Trigonaspis as currently circumscribed comprises four taxa – two from each polar region. The triangular plates...

  19. How many molecular layers of polar solvent molecules control chemistry? The concept of compensating dipoles.

    Science.gov (United States)

    Langhals, Heinz; Braun, Patricia; Dietl, Christian; Mayer, Peter

    2013-09-27

    The extension of the solvent influence of the shell into the volume of a polar medium was examined by means of anti-collinear dipoles on the basis of the E(T)(30) solvent polarity scale (i.e., the molar energy of excitation of a pyridinium-N-phenolatebetaine dye; generally: E(T) =28,591 nm kcal mol(-1)/λmax) where no compensation effects were found. As a consequence, solvent polarity effects are concentrated to a very thin layer of a few thousand picometres around the solute where extensions into the bulk solvent become unimportant. A parallelism to the thin surface layer of water to the gas phase is discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Two-center minima in harmonic spectra from aligned polar molecules

    International Nuclear Information System (INIS)

    Etches, Adam; Gaarde, Mette B.; Madsen, Lars Bojer

    2011-01-01

    We extend a model of two-center interference to include the superposition of opposite orientations in aligned polar molecules. We show that the position of the minimum in the harmonic spectrum from both aligned and oriented CO depends strongly on the relative recombination strength at different atoms, not just the relative phase. We reinterpret the minimum in aligned CO as an interference between opposite orientations, and obtain good agreement with numerical calculations. Inclusion of the first-order Stark effect shifts the position of the interference minimum in aligned CO even though aligned molecules do not posses total permanent dipoles. We explain the shift in terms of the phase that the electron of oriented CO accumulates due to the Stark effect.

  1. Two-center minima in harmonic spectra from aligned polar molecules

    DEFF Research Database (Denmark)

    Etches, Adam; Gaarde, Mette B.; Madsen, Lars Bojer

    2011-01-01

    We extend a model of two-center interference to include the superposition of opposite orientations in aligned polar molecules. We show that the position of the minimum in the harmonic spectrum from both aligned and oriented CO depends strongly on the relative recombination strength at different...... atoms, not just the relative phase. We reinterpret the minimum in aligned CO as an interference between opposite orientations, and obtain good agreement with numerical calculations. Inclusion of the first-order Stark effect shifts the position of the interference minimum in aligned CO even though...... aligned molecules do not posses total permanent dipoles. We explain the shift in terms of the phase that the electron of oriented CO accumulates due to the Stark effect....

  2. Coccolithophorids in polar waters: Wigwamma spp. revisited

    DEFF Research Database (Denmark)

    Thomsen, Helge Abildhauge; Østergaard, Jette B.; Heldal, Mikal

    2013-01-01

    A contingent of weakly calcified coccolithophorid genera and species were described from polar regions almost 40 years ago. In the interim period a few additional findings have been reported enlarging the realm of some of the species. The genus Wigwamma is revisited here with the purpose of provi...... appearance of the coccolith armour of the cell...

  3. Optically stimulated slowing of polar heavy-atom molecules with a constant beat phase

    Science.gov (United States)

    Yin, Yanning; Xu, Supeng; Xia, Meng; Xia, Yong; Yin, Jianping

    2018-04-01

    Polar heavy-atom molecules have been well recognized as promising candidates for precision measurements and tests of fundamental physics. A much slower molecular beam to increase the interaction time should lead to a more sensitive measurement. Here we theoretically demonstrate the possibility of the stimulated longitudinal slowing of heavy-atom molecules by the coherent optical bichromatic force with a constant beat phase. Taking the YbF meolecule as an example, we show that a rapid and short-distance deceleration of heavy molecules by a phase-compensation method is feasible with moderate conditions. A molecular beam of YbF with a forward velocity of 120 m/s can be decelerated below 10 m/s within a distance of 3.5 cm and with a laser irradiance for each traveling wave of 107.2 W/cm 2 . Our proposed slowing method could be a promising approach to break through the space constraint or the limited capture efficiency of molecules loadable into a magneto-optical trap in traditional deceleration schemes, opening the possibility for a significant improvement of the precision measurement sensitivity.

  4. A Density-Dependent Switch Drives Stochastic Clustering and Polarization of Signaling Molecules

    Science.gov (United States)

    Jilkine, Alexandra; Angenent, Sigurd B.; Wu, Lani F.; Altschuler, Steven J.

    2011-01-01

    Positive feedback plays a key role in the ability of signaling molecules to form highly localized clusters in the membrane or cytosol of cells. Such clustering can occur in the absence of localizing mechanisms such as pre-existing spatial cues, diffusional barriers, or molecular cross-linking. What prevents positive feedback from amplifying inevitable biological noise when an un-clustered “off” state is desired? And, what limits the spread of clusters when an “on” state is desired? Here, we show that a minimal positive feedback circuit provides the general principle for both suppressing and amplifying noise: below a critical density of signaling molecules, clustering switches off; above this threshold, highly localized clusters are recurrently generated. Clustering occurs only in the stochastic regime, suggesting that finite sizes of molecular populations cannot be ignored in signal transduction networks. The emergence of a dominant cluster for finite numbers of molecules is partly a phenomenon of random sampling, analogous to the fixation or loss of neutral mutations in finite populations. We refer to our model as the “neutral drift polarity model.” Regulating the density of signaling molecules provides a simple mechanism for a positive feedback circuit to robustly switch between clustered and un-clustered states. The intrinsic ability of positive feedback both to create and suppress clustering is a general mechanism that could operate within diverse biological networks to create dynamic spatial organization. PMID:22102805

  5. A density-dependent switch drives stochastic clustering and polarization of signaling molecules.

    Directory of Open Access Journals (Sweden)

    Alexandra Jilkine

    2011-11-01

    Full Text Available Positive feedback plays a key role in the ability of signaling molecules to form highly localized clusters in the membrane or cytosol of cells. Such clustering can occur in the absence of localizing mechanisms such as pre-existing spatial cues, diffusional barriers, or molecular cross-linking. What prevents positive feedback from amplifying inevitable biological noise when an un-clustered "off" state is desired? And, what limits the spread of clusters when an "on" state is desired? Here, we show that a minimal positive feedback circuit provides the general principle for both suppressing and amplifying noise: below a critical density of signaling molecules, clustering switches off; above this threshold, highly localized clusters are recurrently generated. Clustering occurs only in the stochastic regime, suggesting that finite sizes of molecular populations cannot be ignored in signal transduction networks. The emergence of a dominant cluster for finite numbers of molecules is partly a phenomenon of random sampling, analogous to the fixation or loss of neutral mutations in finite populations. We refer to our model as the "neutral drift polarity model." Regulating the density of signaling molecules provides a simple mechanism for a positive feedback circuit to robustly switch between clustered and un-clustered states. The intrinsic ability of positive feedback both to create and suppress clustering is a general mechanism that could operate within diverse biological networks to create dynamic spatial organization.

  6. On the Several Molecules and Nanostructures of Water

    Directory of Open Access Journals (Sweden)

    Cynthia Kolb Whitney

    2012-01-01

    Full Text Available This paper investigates the water molecule from a variety of viewpoints. Water can involve different isotopes of Hydrogen and Oxygen, it can form differently shaped isomer molecules, and, when frozen, it occupies space differently than most other substances do. The tool for conducting the investigation of all this is called ‘Algebraic Chemistry’. This tool is a quantitative model for predicting the energy budget for all sorts of changes between different ionization states of atoms that are involved in chemical reactions and in changes of physical state. The model is based on consistent patterns seen in empirical data about ionization potentials, together with rational scaling laws that can interpolate and extrapolate for situations where no data are available. The results of the investigation of the water molecule include comments, both positive and negative, about technologies involving heavy water, poly water, Brown’s gas, and cold fusion.

  7. Adsorption Study of a Water Molecule on Vacancy-Defected Nonpolar CdS Surfaces

    Science.gov (United States)

    2017-01-01

    A detailed understanding of the water–semiconductor interface is of major importance for elucidating the molecular interactions at the photocatalyst’s surface. Here, we studied the effect of vacancy defects on the adsorption of a water molecule on the (101̅0) and (112̅0) CdS surfaces, using spin-polarized density functional theory. We observed that the local spin polarization did not persist for most of the cationic vacancies on the surfaces, unlike in bulk, owing to surface reconstructions caused by displaced S atoms. This result suggests that cationic vacancies on these surfaces may not be the leading cause of the experimentally observed magnetism in CdS nanostructures. The surface vacancies are predominantly nonmagnetic except for one case, where a magnetic cationic vacancy is relatively stable due to constraints posed by the (101̅0) surface geometry. At this particular magnetic defect site, we found a very strong interaction with the H2O molecule leading to a case of chemisorption, where the local spin polarization vanishes concurrently. At the same defect site, adsorption of an O2 molecule was also simulated, and the results were found to be consistent with experimental electron paramagnetic resonance findings for powdered CdS. The anion vacancies on these surfaces were always found to be nonmagnetic and did not affect the water adsorption at these surfaces. PMID:28539988

  8. Quantum Behavior of Water Molecules Confined to Nanocavities in Gemstones.

    Science.gov (United States)

    Gorshunov, Boris P; Zhukova, Elena S; Torgashev, Victor I; Lebedev, Vladimir V; Shakurov, Gil'man S; Kremer, Reinhard K; Pestrjakov, Efim V; Thomas, Victor G; Fursenko, Dimitry A; Dressel, Martin

    2013-06-20

    When water is confined to nanocavities, its quantum mechanical behavior can be revealed by terahertz spectroscopy. We place H2O molecules in the nanopores of a beryl crystal lattice and observe a rich and highly anisotropic set of absorption lines in the terahertz spectral range. Two bands can be identified, which originate from translational and librational motions of the water molecule isolated within the cage; they correspond to the analogous broad bands in liquid water and ice. In the present case of well-defined and highly symmetric nanocavities, the observed fine structure can be explained by macroscopic tunneling of the H2O molecules within a six-fold potential caused by the interaction of the molecule with the cavity walls.

  9. Design of magnetic system to produce intense beam of polarized molecules of H2 and D2

    Science.gov (United States)

    Yurchenko, A. V.; Nikolenko, D. M.; Rachek, I. A.; Shestakov, Yu V.; Toporkov, D. K.; Zorin, A. V.

    2017-12-01

    A magnetic-separating system is designed to produce polarized molecular high-density beams of H2/D2. The distribution of the magnetic field inside the aperture of the multipole magnet was calculated using the Mermaid software package. The calculation showed that the characteristic value of the magnetic field is 40 kGs, the field gradient is about 60 kGs/cm. A numerical calculation of the trajectories of the motion of molecules with different spin projections in this magnetic system is performed. The article discusses the possibility of using the magnetic system designed for the creation of a high-intensity source of polarized molecules. The expected intensity of this source is calculated. The expected flux of molecules focused in the receiver tube is 3.5·1016 mol/s for the hydrogen molecule and 2.0·1015 mol/s for the deuterium molecule.

  10. Depletion of water molecules during ethanol wet-bonding with etch and rinse dental adhesives

    International Nuclear Information System (INIS)

    Grégoire, Geneviève; Sharrock, Patrick; Delannée, Mathieu; Delisle, Marie-Bernadette

    2013-01-01

    The treatment of demineralized dentin with ethanol has been proposed as a way to improve hydrophobic monomer penetration into otherwise water saturated collagen fibrils. The ethanol rinse is expected to preserve the fibrils from collapsing while optimizing resin constituent infiltration for better long term adhesion. The physico-chemical investigations of demineralized dentin confirmed objectively these working hypotheses. Namely, Differential Scanning Calorimetry (DSC) measurements of the melting point of water molecules pointed to the presence of free and bound water states. Unfreezable water was the main type of water remaining following a rinsing step with absolute ethanol. Two different liquid water phases were also observed by Magic Angle Spinning (MAS) solid state Nuclear magnetic Resonance (NMR) spectroscopy. Infrared spectra of ethanol treated specimens illustrated differences with the fully hydrated specimens concerning the polar carbonyl vibrations. Optical microscopy observations as well as scanning electron microscopy showed an improved dentin-adhesive interface with ethanol wet bonding. The results indicate that water can be confined to strongly bound structural molecules when excess water is removed with ethanol prior to adhesive application. This should preserve collagen from hydrolysis upon aging of the hybrid layer. - Highlights: ► Non-freezable water exists in demineralized dentine. ► Free water can be removed by ethanol rinse of the demineralized collagen. ► Ethanol wet bonding leads to a homogeneous hybrid layer free of defects.

  11. Depletion of water molecules during ethanol wet-bonding with etch and rinse dental adhesives

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, Genevieve, E-mail: gregoire@cict.fr [Department of Biomaterials, Faculty of Odontology, University Toulouse III, 31062, Toulouse (France); Sharrock, Patrick [Medical and Spatial Imaging Laboratory, University Toulouse III, Ave. Pompidou, 81104, Castres (France); Delannee, Mathieu [Department of Biomaterials, Faculty of Odontology, University Toulouse III, 31062, Toulouse (France); Delisle, Marie-Bernadette [Faculty of Medicine, University Toulouse III, 31062, Toulouse (France)

    2013-01-01

    The treatment of demineralized dentin with ethanol has been proposed as a way to improve hydrophobic monomer penetration into otherwise water saturated collagen fibrils. The ethanol rinse is expected to preserve the fibrils from collapsing while optimizing resin constituent infiltration for better long term adhesion. The physico-chemical investigations of demineralized dentin confirmed objectively these working hypotheses. Namely, Differential Scanning Calorimetry (DSC) measurements of the melting point of water molecules pointed to the presence of free and bound water states. Unfreezable water was the main type of water remaining following a rinsing step with absolute ethanol. Two different liquid water phases were also observed by Magic Angle Spinning (MAS) solid state Nuclear magnetic Resonance (NMR) spectroscopy. Infrared spectra of ethanol treated specimens illustrated differences with the fully hydrated specimens concerning the polar carbonyl vibrations. Optical microscopy observations as well as scanning electron microscopy showed an improved dentin-adhesive interface with ethanol wet bonding. The results indicate that water can be confined to strongly bound structural molecules when excess water is removed with ethanol prior to adhesive application. This should preserve collagen from hydrolysis upon aging of the hybrid layer. - Highlights: Black-Right-Pointing-Pointer Non-freezable water exists in demineralized dentine. Black-Right-Pointing-Pointer Free water can be removed by ethanol rinse of the demineralized collagen. Black-Right-Pointing-Pointer Ethanol wet bonding leads to a homogeneous hybrid layer free of defects.

  12. Dark states in spin-polarized transport through triple quantum dot molecules

    Science.gov (United States)

    Wrześniewski, K.; Weymann, I.

    2018-02-01

    We study the spin-polarized transport through a triple-quantum-dot molecule weakly coupled to ferromagnetic leads. The analysis is performed by means of the real-time diagrammatic technique, including up to the second order of perturbation expansion with respect to the tunnel coupling. The emphasis is put on the impact of dark states on spin-resolved transport characteristics. It is shown that the interplay of coherent population trapping and cotunneling processes results in a highly nontrivial behavior of the tunnel magnetoresistance, which can take negative values. Moreover, a super-Poissonian shot noise is found in transport regimes where the current is blocked by the formation of dark states, which can be additionally enhanced by spin dependence of tunneling processes, depending on the magnetic configuration of the device. The mechanisms leading to those effects are thoroughly discussed.

  13. Precise Molecular Sieving Architectures with Janus Pathways for Both Polar and Nonpolar Molecules.

    Science.gov (United States)

    Liu, Jiangtao; Hua, Dan; Zhang, Yu; Japip, Susilo; Chung, Tai-Shung

    2018-03-01

    Precise molecular sieving architectures with Janus superhighways are constructed via a molecularly engineered interfacial reaction between cyclodextrin (CD) and trimesoyl chloride (TMC). Interestingly, the CD/TMC nanofilms constructed with both hydrophobic inner cavities and hydrophilic channels exhibit exceptionally high permeances for both polar and nonpolar solvents. The precise molecular sieving functions are determined by the type of CD building blocks and the inner cavities of intrinsic 3D hollow bowls. Positron annihilation spectroscopy (PAS) confirms that a larger inner CD cavity tends to generate a larger free volume and higher microporosity. Based on the rejection ratio of various dyes, the estimated molecular weight cutoff of CD/TMC nanofilms follows the trend of α-CD/TMC (320 Da) sieving membrane with intrinsic microporosity containing tunable pore size and sharp pore-size distribution can effectively discriminate molecules with different 3D sizes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Single-molecule fluorescence polarization study of conformational change in archaeal group II chaperonin.

    Directory of Open Access Journals (Sweden)

    Ryo Iizuka

    Full Text Available Group II chaperonins found in archaea and in eukaryotic cytosol mediate protein folding without a GroES-like cofactor. The function of the cofactor is substituted by the helical protrusion at the tip of the apical domain, which forms a built-in lid on the central cavity. Although many studies on the change in lid conformation coupled to the binding and hydrolysis of nucleotides have been conducted, the molecular mechanism of lid closure remains poorly understood. Here, we performed a single-molecule polarization modulation to probe the rotation of the helical protrusion of a chaperonin from a hyperthermophilic archaeum, Thermococcus sp. strain KS-1. We detected approximately 35° rotation of the helical protrusion immediately after photorelease of ATP. The result suggests that the conformational change from the open lid to the closed lid state is responsible for the approximately 35° rotation of the helical protrusion.

  15. Photoinduced electric currents in ring-shaped molecules by circularly polarized laser pulses

    International Nuclear Information System (INIS)

    Nobusada, Katsuyuki; Yabana, Kazuhiro

    2007-01-01

    We have theoretically demonstrated that circularly polarized laser pulses induce electric currents and magnetic moments in ring-shaped molecules Na 10 and benzene. The time-dependent adiabatic local density approximation is employed for this purpose, solving the time-dependent Kohn-Sham equation in real space and real time. It has been found that the electric currents are induced efficiently and persist continuously even after the laser pulses were switched off provided the frequency of the applied laser pulse is in tune with the excitation energy of the electronic excited state with the dipole strength for each molecular system. The electric currents are definitely revealed to be a second-order nonlinear optical response to the magnitude of the electric field. The magnetic dipole moments inevitably accompany the ring currents, so that the molecules are magnetized. The production of the electric currents and the magnetic moments in the present procedure is found to be much more efficient than that utilizing static magnetic fields

  16. Tilting and Wobble of Myosin V by High-Speed Single-Molecule Polarized Fluorescence Microscopy

    Science.gov (United States)

    Beausang, John F.; Shroder, Deborah Y.; Nelson, Philip C.; Goldman, Yale E.

    2013-01-01

    Myosin V is biomolecular motor with two actin-binding domains (heads) that take multiple steps along actin by a hand-over-hand mechanism. We used high-speed polarized total internal reflection fluorescence (polTIRF) microscopy to study the structural dynamics of single myosin V molecules that had been labeled with bifunctional rhodamine linked to one of the calmodulins along the lever arm. With the use of time-correlated single-photon counting technology, the temporal resolution of the polTIRF microscope was improved ∼50-fold relative to earlier studies, and a maximum-likelihood, multitrace change-point algorithm was used to objectively determine the times when structural changes occurred. Short-lived substeps that displayed an abrupt increase in rotational mobility were detected during stepping, likely corresponding to random thermal fluctuations of the stepping head while it searched for its next actin-binding site. Thus, myosin V harnesses its fluctuating environment to extend its reach. Additional, less frequent angle changes, probably not directly associated with steps, were detected in both leading and trailing heads. The high-speed polTIRF method and change-point analysis may be applicable to single-molecule studies of other biological systems. PMID:23528086

  17. Spin-polarized transport through single-molecule magnet Mn6 complexes

    KAUST Repository

    Cremades, Eduard

    2013-01-01

    The coherent transport properties of a device, constructed by sandwiching a Mn6 single-molecule magnet between two gold surfaces, are studied theoretically by using the non-equilibrium Green\\'s function approach combined with density functional theory. Two spin states of such Mn6 complexes are explored, namely the ferromagnetically coupled configuration of the six MnIII cations, leading to the S = 12 ground state, and the low S = 4 spin state. For voltages up to 1 volt the S = 12 ground state shows a current one order of magnitude larger than that of the S = 4 state. Furthermore this is almost completely spin-polarized, since the Mn6 frontier molecular orbitals for S = 12 belong to the same spin manifold. As such the high-anisotropy Mn6 molecule appears as a promising candidate for implementing, at the single molecular level, both spin-switches and low-temperature spin-valves. © 2013 The Royal Society of Chemistry.

  18. Calculating pure rotational transitions of water molecule with a ...

    Indian Academy of Sciences (India)

    Abstract. We have calculated pure rotational transitions of water molecule from a kinetic energy operator (KEO) with the z-axis perpendicular to the molecular plane. We have used rotational basis functions which are linear combinations of symmetric top functions so that all matrix elements are real. The calculated spectra ...

  19. Calculating pure rotational transitions of water molecule with a ...

    Indian Academy of Sciences (India)

    We have calculated pure rotational transitions of water molecule from a kinetic energy operator (KEO) with the -axis perpendicular to the molecular plane. We have used rotational basis functions which are linear combinations of symmetric top functions so that all matrix elements are real. The calculated spectra agree well ...

  20. Water Ice Albedo Variations on the Martian Northern Polar Cap

    Science.gov (United States)

    Hale, A. S.; Bass, D. S.; Tamppari, L. K.

    2003-01-01

    The Viking Orbiters determined that the surface of Mars northern residual cap is water ice. Many researchers have related observed atmospheric water vapor abundances to seasonal exchange between reservoirs such as the polar caps, but the extent to which the exchange between the surface and the atmosphere remains uncertain. Early studies of the ice coverage and albedo of the northern residual Martian polar cap using Mariner 9 and Viking images reported that there were substantial internannual differences in ice deposition on the polar cap, a result which suggested a highly variable Martian climate. However, some of the data used in these studies were obtained at differing values of heliocentric solar longitude (L(sub s)). Reevaluation of this dataset indicated that the residual cap undergoes seasonal brightening throughout the summer, and indicated that this process repeats from year to year. In this study we continue to compare Mariner 9 and Viking Orbiter imaging observations and thermal data of the north residual polar cap to data acquired with Mars Global Surveyor s Mars Orbiter Camera (MOC) instrument. In the current study, our goal is to examine all released data from MGS MOC in the northern summer season, along with applicable TES data in order to better understand the albedo variations in the northern summer and their implications on water transport. To date, work has focused primarily on the MOC dataset. In 1999, data acquisition of the northern polar regions began at L(sub s) = 107, although there was little north polar data acquired from L(sub s)= 107 to L(sub s) = 109. We examined a total of 409 images from L(sub s) = 107 to L(sub s)=148. We have also examined data from 2000 from L(sub s)= 93 to L(sub s)= 110; additional progress is ongoing. Here we present a progress report of our observations, and continue to determine their implications for the Martian water cycle.

  1. Permeation of nanopores by water the effects of channel polarization

    CERN Document Server

    Allen, R; Hansen, J P

    2003-01-01

    Molecular dynamics simulations are used to characterize the permeation by water of cylindrical nanopores, modelling ion channels, as a function of channel radius R and dielectric permittivity epsilon. Intermittent permeation is found in a narrow range around the threshold values of R and epsilon. While channel permeation is highly sensitive to channel polarization effects, no effect on structural properties of the confined water is found on varying epsilon.

  2. Stabilization of zwitterionic versus canonical proline by water molecules.

    Science.gov (United States)

    Yang, Gang; Zhou, Lijun; Chen, Yang

    2016-01-01

    At physiological conditions, a majority of biomolecules (e.g., amino acids, peptides and proteins) exist predominantly in the zwitterionic form that usually decides the biological functions. However, zwitterionic amino acids are not geometrically stable in gas phase and this seriously hampers the understanding of their structures, properties and biological functions. To this end, one of the recent research focuses is to demonstrate the stabilization effects of zwitterionic amino acids. Relative stabilities of canonical conformers are dependent on water contents, while zwitterionic stability improves monotonously and pronouncedly with increase of water contents. We find that one water molecule can render zwitterionic proline geometrically stable, and stabilities of different zwitterionic amino acids increase as glycine molecules required for zwitterionic proline to be energetically preferential and conformationally predominant, respectively as four and five. Five water molecules are enough to fill up the first shell of proline functional sites (carboxylic and amido), which is in line with the results of glycine. At any water content, zwitterionic formation will not be hindered kinetically because of rather low activation barriers, and the distribution of zwitterionic amino acids will be largely dependent on their thermodynamic stabilities.

  3. Vibrational properties of water molecules adsorbed in different zeolitic frameworks

    International Nuclear Information System (INIS)

    Crupi, V; Longo, F; Majolino, D; Venuti, V

    2006-01-01

    The perturbation of water 'sorbed' in samples of zeolites of different structural type, genesis, and cation composition (K-, Na-, Mg- and Ca-rich zeolites), namely the CHA framework of a synthetic K-chabazite, the LTA framework of synthetic Na-A and Mg50-A zeolites, and the NAT framework of a natural scolecite, has been studied by FTIR-ATR spectroscopy, in the -10 to +80 o C temperature range. The aim was to show how differences in the chemical composition and/or in the topology of the zeolite framework and, in particular, the possibility for the guest water molecules to develop guest-guest and/or host-guest interactions, lead to substantial differences in their vibrational dynamical properties. The spectra, collected in the O-H stretching and H 2 O bending mode regions, are complex, with multiple bands being observed. As far as water in the CHA and LTA frameworks is concerned, whose behaviour is governed by the balance of water-water, water-framework and water-extra-framework cations interactions, the assignment of the resolved components of the O-H stretching band has been discussed by fitting the band shapes into individual components attributed to H 2 O molecules engaged in different degrees of hydrogen bonding. A detailed quantitative picture of the connectivity pattern of water, as a function of temperature and according to the chemical and topological properties of the environment, is furnished. The H 2 O bending vibrational bands give additional information that perfectly agrees with the results obtained from the analysis of the O-H stretching spectral region. In the case of scolecite, a small-pored zeolite where water-water interactions are eliminated, the increased complexity observed in the infrared spectra in the O-H stretching and H 2 O bending regions was explained as due to the hydrogen bonding between the water molecules and the network, and also with the extra-framework cation. Furthermore, these observations have been correlated with the different

  4. Multiangular hyperspectral investigation of polarized light in case 2 waters

    Science.gov (United States)

    Tonizzo, A.; Zhou, J.; Gilerson, A.; Chowdhary, J.; Gross, B.; Moshary, F.; Ahmed, S.

    2009-09-01

    The focus of this work is on the dependence of in situ hyperspectral and multiangular polarized data on the size distribution and refractive index of the suspended particles. Underwater polarization measurements were obtained using a polarimeter developed at the Optical Remote Sensing Laboratory of the City College of New York, NY. The degree of polarization (DOP) of the underwater light field in coastal environments was measured and the water-leaving polarized radiance was derived. In-water optical properties were also measured with an ac-9 (WET Labs). Absorption and attenuation spectra are then used to derive information on the dissolved and suspend components in the water medium which are used in a vector radiative transfer code which provides the upwelling radiance. The model was run for various values of the refractive index of mineral particles until the modeled DOP matched the measured one. The relationship between the intensity of the maximum of the DOP and both the refractive index of the mineral particles and the shapes of their size distributions is analyzed in detail.

  5. Relationships between membrane water molecules and Patman equilibration kinetics at temperatures far above the phosphatidylcholine melting point.

    Science.gov (United States)

    Vaughn, Alexandra R; Bell, Thomas A; Gibbons, Elizabeth; Askew, Caitlin; Franchino, Hannabeth; Hirsche, Kelsey; Kemsley, Linea; Melchor, Stephanie; Moulton, Emma; Schwab, Morgan; Nelson, Jennifer; Bell, John D

    2015-04-01

    The naphthalene-based fluorescent probes Patman and Laurdan detect bilayer polarity at the level of the phospholipid glycerol backbone. This polarity increases with temperature in the liquid-crystalline phase of phosphatidylcholines and was observed even 90°C above the melting temperature. This study explores mechanisms associated with this phenomenon. Measurements of probe anisotropy and experiments conducted at 1M NaCl or KCl (to reduce water permittivity) revealed that this effect represents interactions of water molecules with the probes without proportional increases in probe mobility. Furthermore, comparison of emission spectra to Monte Carlo simulations indicated that the increased polarity represents elevation in probe access to water molecules rather than increased mobility of relevant bilayer waters. Equilibration of these probes with the membrane involves at least two steps which were distinguished by the membrane microenvironment reported by the probe. The difference in those microenvironments also changed with temperature in the liquid-crystalline phase in that the equilibrium state was less polar than the initial environment detected by Patman at temperatures near the melting point, more polar at higher temperatures, and again less polar as temperature was raised further. Laurdan also displayed this level of complexity during equilibration, although the relationship to temperature differed quantitatively from that experienced by Patman. This kinetic approach provides a novel way to study in molecular detail basic principles of what happens to the membrane environment around an individual amphipathic molecule as it penetrates the bilayer. Moreover, it provides evidence of unexpected and interesting membrane behaviors far from the phase transition. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Quantum Drude oscillator model of atoms and molecules: Many-body polarization and dispersion interactions for atomistic simulation

    Science.gov (United States)

    Jones, Andrew P.; Crain, Jason; Sokhan, Vlad P.; Whitfield, Troy W.; Martyna, Glenn J.

    2013-04-01

    Treating both many-body polarization and dispersion interactions is now recognized as a key element in achieving the level of atomistic modeling required to reveal novel physics in complex systems. The quantum Drude oscillator (QDO), a Gaussian-based, coarse grained electronic structure model, captures both many-body polarization and dispersion and has linear scale computational complexity with system size, hence it is a leading candidate next-generation simulation method. Here, we investigate the extent to which the QDO treatment reproduces the desired long-range atomic and molecular properties. We present closed form expressions for leading order polarizabilities and dispersion coefficients and derive invariant (parameter-free) scaling relationships among multipole polarizability and many-body dispersion coefficients that arise due to the Gaussian nature of the model. We show that these “combining rules” hold to within a few percent for noble gas atoms, alkali metals, and simple (first-row hydride) molecules such as water; this is consistent with the surprising success that models with underlying Gaussian statistics often exhibit in physics. We present a diagrammatic Jastrow-type perturbation theory tailored to the QDO model that serves to illustrate the rich types of responses that the QDO approach engenders. QDO models for neon, argon, krypton, and xenon, designed to reproduce gas phase properties, are constructed and their condensed phase properties explored via linear scale diffusion Monte Carlo (DMC) and path integral molecular dynamics (PIMD) simulations. Good agreement with experimental data for structure, cohesive energy, and bulk modulus is found, demonstrating a degree of transferability that cannot be achieved using current empirical models or fully ab initio descriptions.

  7. Field-free orientation of diatomic molecule via the linearly polarized resonant pulses

    Science.gov (United States)

    Li, Su-Yu; Guo, Fu-Ming; Wang, Jun; Yang, Yu-Jun; Jin, Ming-Xing

    2015-10-01

    We propose a scheme to coherently control the field-free orientation of NO molecule whose rotational temperature is above 0 K. It is found that the maximum molecular orientation is affected by two factors: one is the sum of the population of M = 0 rotational states and the other is their distribution, however, their distribution plays a much more significant role in molecular orientation than the sum of their population. By adopting a series of linearly polarized pulses resonant with the rotational states, the distribution of M = 0 rotational states is well rearranged. Though the number of pulses used is small, a relatively high orientation degree can be obtained. This scheme provides a promising approach to the achievement of a good orientation effect. Project supported by the National Basic Research Program of China (Grant No. 2013CB922200), the National Natural Science Foundation of China (Grant Nos. 11034003, 11474129, 11274141, and 11304116), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130061110021), and the Graduate Innovation Fund of Jilin University (Grant No. 2015091).

  8. Multiorbital effects in strong-field ionization and dissociation of aligned polar molecules CH3I and CH3Br

    Science.gov (United States)

    Luo, Sizuo; Zhou, Shushan; Hu, Wenhui; Li, Xiaokai; Ma, Pan; Yu, Jiaqi; Zhu, Ruihan; Wang, Chuncheng; Liu, Fuchun; Yan, Bing; Liu, Aihua; Yang, Yujun; Guo, Fuming; Ding, Dajun

    2017-12-01

    Controlling the molecular axis offers additional ways to study molecular ionization and dissociation in strong laser fields. We measure the ionization and dissociation yields of aligned polar CH3X (X =I , Br) molecules in a linearly polarized femtosecond laser field. The current data show that maximum ionization occurs when the laser polarization is perpendicular to the molecular C -X axis, and dissociation prefers to occur at the laser polarization parallel to the C -X axis. The observed angular distributions suggest that the parent ions are generated by ionization from the HOMO. The angular distribution of fragment ions indicates that dissociation occurs mainly from an ionic excited state produced by ionization from the HOMO-1.

  9. Quantum behaviour of water molecule in gemstone: terahertz fingerprints

    International Nuclear Information System (INIS)

    Zhukova, Elena S; Gorshunov, Boris P; Torgashev, Victor I; Lebedev, Vladimir V; Dressel, Martin; Shakurov, Gil'man S; Kremer, Reinhard K; Pestrjakov, Efim V; Thomas, Victor G; Fursenko, Dimitry A

    2014-01-01

    We have shown that a weak interaction of a lone H 2 O molecule with the ''walls'' of nano-sized crystalline cage of gemstone (beryl) results in emergence of a rich set of molecular vibrational states. By analogy with translational and librational bands in liquid water and ice corresponding absorption bands are explained as due to translational (T) and librational (L) movements of the H 2 O molecule which is hydrogen bonded to the cage walls. In beryl crystal lattice, however, the six-fold symmetry of the cage brings about additional effect of splitting of the T and L bands into fine structure due to tunnelling within the six-well potential relief. The presented results will be of use for analysis of more complicated systems with confined water molecules like H 2 O chains in carbon nano-tubes, molecular clusters in e.g. zeolites, clays, silica gels and other natural or synthetic frameworks, as well as for interfacial water in biological systems

  10. Tuning dissociation using isoelectronically doped graphene and hexagonal boron nitride: Water and other small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdani, Yasmine S. [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Alfè, Dario [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lilienfeld, O. Anatole von [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-04-21

    Novel uses for 2-dimensional materials like graphene and hexagonal boron nitride (h-BN) are being frequently discovered especially for membrane and catalysis applications. Still however, a great deal remains to be understood about the interaction of environmentally and industrially relevant molecules such as water with these materials. Taking inspiration from advances in hybridising graphene and h-BN, we explore using density functional theory, the dissociation of water, hydrogen, methane, and methanol on graphene, h-BN, and their isoelectronic doped counterparts: BN doped graphene and C doped h-BN. We find that doped surfaces are considerably more reactive than their pristine counterparts and by comparing the reactivity of several small molecules, we develop a general framework for dissociative adsorption. From this a particularly attractive consequence of isoelectronic doping emerges: substrates can be doped to enhance their reactivity specifically towards either polar or non-polar adsorbates. As such, these substrates are potentially viable candidates for selective catalysts and membranes, with the implication that a range of tuneable materials can be designed.

  11. Scattering of thermal neutron by the water molecule

    International Nuclear Information System (INIS)

    Rosa, L.P.

    The calculation of the differenctial cross section for scattering of thermal neutrons by water, taking into account the translational, rotational and vibrational motions of the water molecule, is presented according to Nelkin' model. Some modifications are presented which have been introduced in the original method to improve the results and an application has been made to reactor physics, by calculating the thermal neutron flux in a homogenous medium containing water and absorver. Thirty thermal energy groups have been used to compute the spectra. Within the limits of error, better agreement has been obtained between theory and experiments by using a modified Nelkin kernel consisting of substituting the asymptotic formulae for the rotational and vibrational motions by more exact expressions, similar to the Buttler model for heavy water

  12. Organic polar pollutants in surface waters of inland seas.

    Science.gov (United States)

    Orlikowska, Anna; Fisch, Kathrin; Schulz-Bull, Detlef E

    2015-12-30

    Available data about contamination by polar substances are mostly reported for rivers and near-shore waters and only limited studies exists about their occurrence in marine waters. We present concentrations and distribution of several polar pesticides and UV-filters in surface waters of three inland seas, the Baltic, Black and Mediterranean Sea. Many of the investigated compounds were below detection limits, however, those found in off-shore waters raise a concern about their persistence and possible adverse effect on the ecosystem. Despite a longstanding EU-wide ban we were able to detect atrazine in the Mediterranean and the Baltic Sea. Concentrations in the Black Sea were substantially higher. Runoff from agricultural and urban areas was the main transport route to marine ecosystems for investigated compounds, though irgarol in Mediterranean waters was attributed to intense maritime traffic. 2-Phenylbenzimidazole-5-sulfonic acid was the only UV-filter detected in marine waters, while benzophenone-4 was observed in the estuaries. Occurrence of UV-filters was seasonal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Organic molecules in the polar ice: from chemical analysis to environmental proxies

    Science.gov (United States)

    Barbante, Carlo; Zennaro, Piero; Giorio, Chiara; Kehrwald, Natalie; Benton, Alisa K.; Wolff, Eric W.; Kalberer, Markus; Kirchgeorg, Torben; Zangrando, Roberta; Barbaro, Elena; Gambaro, Andrea

    2015-04-01

    The molecular and isotopic compositions of organic matter buried in ice contains information that helps reconstruct past environmental conditions, evaluate histories of climate change, and assess impacts of humans on ecosystems. In recent years novel analytical techniques were developed to quantify molecular compounds in ice cores. As an example, biomass burning markers, including monosaccharide anhydrides, lightweight carboxylic acids, lignin and resin pyrolysis products, black carbon, and charcoal records help in reconstructing past fire activity across seasonal to millennial time scales. Terrestrial biomarkers, such as plant waxes (e.g. long-chain n-alkanes) are also a promising paleo vegetation proxy in ice core studies. Polycyclic aromatic hydrocarbons are ubiquitous pollutants recently detected in ice cores. These hydrocarbons primarily originate from incomplete combustion of organic matter and fossil fuels (e.g. diesel engines, domestic heating, industrial combustion) and therefore can be tracers of past combustion activities. In order to be suitable for paloeclimate purposes, organic molecular markers detected in ice cores should include the following important features. Markers have to be stable under oxidizing atmospheric conditions, and ideally should not react with hydroxyl radicals, during their transport to polar regions. Organic markers must be released in large amounts in order to be detected at remote distances from the sources. Proxies must be specific, in order to differentiate them from other markers with multiple sources. The extraction of glaciochemical information from ice cores is challenging due to the low concentrations of some impurities, thereby demanding rigorous control of external contamination sources and sensitive analytical techniques. Here, we review the analysis and use of organic molecules in ice as proxies of important environmental and climatic processes.

  14. Sensitivity of polarization fluctuations to the nature of protein-water interactions: Study of biological water in four different protein-water systems

    Science.gov (United States)

    Ghosh, Rikhia; Banerjee, Saikat; Hazra, Milan; Roy, Susmita; Bagchi, Biman

    2014-12-01

    Since the time of Kirkwood, observed deviations in magnitude of the dielectric constant of aqueous protein solution from that of neat water (˜80) and slower decay of polarization have been subjects of enormous interest, controversy, and debate. Most of the common proteins have large permanent dipole moments (often more than 100 D) that can influence structure and dynamics of even distant water molecules, thereby affecting collective polarization fluctuation of the solution, which in turn can significantly alter solution's dielectric constant. Therefore, distance dependence of polarization fluctuation can provide important insight into the nature of biological water. We explore these aspects by studying aqueous solutions of four different proteins of different characteristics and varying sizes, chicken villin headpiece subdomain (HP-36), immunoglobulin binding domain protein G (GB1), hen-egg white lysozyme (LYS), and Myoglobin (MYO). We simulate fairly large systems consisting of single protein molecule and 20000-30000 water molecules (varied according to the protein size), providing a concentration in the range of ˜2-3 mM. We find that the calculated dielectric constant of the system shows a noticeable increment in all the cases compared to that of neat water. Total dipole moment auto time correlation function of water ⟨δMW(0)δMW(t)⟩ is found to be sensitive to the nature of the protein. Surprisingly, dipole moment of the protein and total dipole moment of the water molecules are found to be only weakly coupled. Shellwise decomposition of water molecules around protein reveals higher density of first layer compared to the succeeding ones. We also calculate heuristic effective dielectric constant of successive layers and find that the layer adjacent to protein has much lower value (˜50). However, progressive layers exhibit successive increment of dielectric constant, finally reaching a value close to that of bulk 4-5 layers away. We also calculate shellwise

  15. Geometry-dependent atomic multipole models for the water molecule.

    Science.gov (United States)

    Loboda, O; Millot, C

    2017-10-28

    Models of atomic electric multipoles for the water molecule have been optimized in order to reproduce the electric potential around the molecule computed by ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set. Different models of increasing complexity, from atomic charges up to models containing atomic charges, dipoles, and quadrupoles, have been obtained. The geometry dependence of these atomic multipole models has been investigated by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For several models, the atomic multipole components have been fitted as a function of the geometry by a Taylor series of fourth order in monomer coordinate displacements.

  16. Functional fixedness and functional reduction as common sense reasonings in chemical equilibrium and in geometry and polarity of molecules

    Science.gov (United States)

    Furió, C.; Calatayud, M. L.; Bárcenas, S. L.; Padilla, O. M.

    2000-09-01

    Many of the learning difficulties in the specific domain of chemistry are found not only in the ideas already possessed by students but in the strategic and procedural knowledge that is characteristic of everyday thinking. These defects in procedural knowledge have been described as functional fixedness and functional reduction. This article assesses the procedural difficulties of students (grade 12 and first and third year of university) based on common sense reasoning in two areas of chemistry: chemical equilibrium and geometry and polarity of molecules. In the first area, the theme of external factors affecting equilibria (temperature and concentration change) was selected because the explanations given by the students could be analyzed easily. The existence of a functional fixedness where Le Chatelier's principle was almost exclusively applied by rote could be observed, with this being the cause of the incorrect responses given to the proposed items. Functional fixedness of the Lewis structure also led to an incorrect prediction of molecular geometry. When molecular geometry was correctly determined by the students, it seemed that other methodological or procedural difficulties appeared when the task was to determine molecular polarity. The students showed a tendency, in many cases, to reduce the factors affecting molecular polarity in two possible ways: (a) assuming that polarity depends only on shape (geometric functional reduction) or (b) assuming that molecular polarity depends only on the polarity of bonds (bonding functional reduction).

  17. M-CARS and EFISHG study of the influence of a static electric field on a non-polar molecule

    Science.gov (United States)

    Capitaine, E.; Louot, C.; Ould-Moussa, N.; Lefort, C.; Kaneyasu, J. F.; Kano, H.; Pagnoux, D.; Couderc, V.; Leproux, P.

    2016-03-01

    The influence of a static electric field on a non-polar molecule has been studied by means of multiplex coherent anti-Stokes Raman scattering (M-CARS). A parallel measurement of electric field induced second harmonic generation (EFISHG) has also been led. Both techniques suggest a reorientation of the molecule due to the presence of an electric field. This phenomenon can be used to increase the chemical selectivity and the signal to non-resonant background ratio, namely, the sensitivity of the M-CARS spectroscopy.

  18. Synthesis and properties of water-soluble asterisk molecules.

    Science.gov (United States)

    Menger, Fredric M; Azov, Vladimir A

    2002-09-18

    An asterisk is comprised of six semirigid arms projecting from a benzene nucleus. In the case at hand, asterisks were synthesized with one, two, or three aromatic rings (connected by sulfur atoms) in each of the six arms. A phosphomonoester at the termini of each arm solubilized the asterisks in water. The colloidal properties of these amphiphilic molecules were investigated by UV-vis and fluorescence spectroscopy, calorimetry, light scattering, surface tensiometry, and pulse-gradient spin-echo NMR. Solubility, solubilization, metal binding, and micelle "seeding" experiments were also carried out. Chain-conformation and supramolecular assembly into remarkable molecular "scrolls" were investigated by X-ray analysis and electron microscopy, respectively. One of the more interesting properties of the asterisks is that they remain monomeric in water despite having as many as 19 hydrophobic aromatic rings exposed to the water. The reasons for this behavior, and the possibility of exploiting it for constructing enzyme models free from aggregation equilibria, are discussed.

  19. Ionization of one- and three-dimensionally-oriented asymmetric-top molecules by intense circularly polarized femtosecond laser pulses

    DEFF Research Database (Denmark)

    Hansen, Jonas Lerche; Holmegaard, Lotte; Kalhøj, Line

    2011-01-01

    are quantum-state selected using a deflector and three-dimensionally (3D) aligned and oriented adiabatically using an elliptically polarized laser pulse in combination with a static electric field. A characteristic splitting in the molecular frame photoelectron momentum distribution reveals the position......We present a combined experimental and theoretical study on strong-field ionization of a three-dimensionally-oriented asymmetric top molecule, benzonitrile (C7H5N), by circularly polarized, nonresonant femtosecond laser pulses. Prior to the interaction with the strong field, the molecules...... of the nodal planes of the molecular orbitals from which ionization occurs. The experimental results are supported by a theoretical tunneling model that includes and quantifies the splitting in the momentum distribution. The focus of the present article is to understand strong-field ionization from 3D...

  20. Probing the origin of elliptical high-order harmonic generation from aligned molecules in linearly polarized laser fields

    International Nuclear Information System (INIS)

    Son, Sang-Kil; Telnov, Dmitry A.; Chu, Shih-I.

    2010-01-01

    A recent experiment [Phys. Rev. Lett. 102, 073902 (2009)] has demonstrated that elliptically polarized high-order harmonic generation can be produced from linearly polarized driving fields for aligned molecular systems. In order to reveal the underlying physical mechanisms of elliptical harmonics, we present fully ab initio and high-precision calculations and analyses of the amplitude, phase, and polarization state of the harmonic radiation from molecular hydrogen ions with arbitrary orientation. We find that high ellipticity arises from molecular orbital symmetry and two-center interference effects. Our ab initio exploration and findings lead to a general rule that the ellipticity becomes high for molecular orbitals represented by a symmetric combination of atomic orbitals, whereas it becomes low for molecular orbitals represented by an antisymmetric combination. This finding also applies to the general case of aligned linear molecules.

  1. Hydrogen bonding characterization in water and small molecules

    Science.gov (United States)

    Silvestrelli, Pier Luigi

    2017-06-01

    The prototypical hydrogen bond in water dimer and hydrogen bonds in the protonated water dimer, in other small molecules, in water cyclic clusters, and in ice, covering a wide range of bond strengths, are theoretically investigated by first-principles calculations based on density functional theory, considering not only a standard generalized gradient approximation functional but also, for the water dimer, hybrid and van der Waals corrected functionals. We compute structural, energetic, and electrostatic (induced molecular dipole moments) properties. In particular, hydrogen bonds are characterized in terms of differential electron density distributions and profiles, and of the shifts of the centres of maximally localized Wannier functions. The information from the latter quantities can be conveyed to a single geometric bonding parameter that appears to be correlated with the Mayer bond order parameter and can be taken as an estimate of the covalent contribution to the hydrogen bond. By considering the water trimer, the cyclic water hexamer, and the hexagonal phase of ice, we also elucidate the importance of cooperative/anticooperative effects in hydrogen-bonding formation.

  2. Estimates of Leaf Relative Water Content from Optical Polarization Measurements

    Science.gov (United States)

    Dahlgren, R. P.; Vanderbilt, V. C.; Daughtry, C. S. T.

    2017-12-01

    Remotely sensing the water status of plant canopies remains a long term goal of remote sensing research. Existing approaches to remotely sensing canopy water status, such as the Crop Water Stress Index (CWSI) and the Equivalent Water Thickness (EWT), have limitations. The CWSI, based upon remotely sensing canopy radiant temperature in the thermal infrared spectral region, does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWT is based upon the physics of water-light interaction in the 900-2000nm spectral region, not plant physiology. Our goal, development of a remote sensing technique for estimating plant water status based upon measurements in the VIS/NIR spectral region, would potentially provide remote sensing access to plant dehydration physiology - to the cellular photochemistry and structural changes associated with water deficits in leaves. In this research, we used optical, crossed polarization filters to measure the VIS/NIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, for 78 corn (Zea mays) and soybean (Glycine max) leaves having relative water contents (RWC) between 0.60 and 0.98. Our results show that as RWC decreases R increases while T decreases. Our results tie R and T changes in the VIS/NIR to leaf physiological changes - linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf - and perhaps of a plant canopy - might be possible in the future.

  3. Luminescent systems based on the isolation of conjugated PI systems and edge charge compensation with polar molecules on a charged nanostructured surface

    Science.gov (United States)

    Ivanov, Ilia N.; Puretzky, Alexander A.; Zhao, Bin; Geohegan, David B.; Styers-Barnett, David J.; Hu, Hui

    2014-07-15

    A photoluminescent or electroluminescent system and method of making a non-luminescent nanostructured material into such a luminescent system is presented. The method of preparing the luminescent system, generally, comprises the steps of modifying the surface of a nanostructured material to create isolated regions to act as luminescent centers and to create a charge imbalance on the surface; applying more than one polar molecule to the charged surface of the nanostructured material; and orienting the polar molecules to compensate for the charge imbalance on the surface of the nanostructured material. The compensation of the surface charge imbalance by the polar molecules allows the isolated regions to exhibit luminescence.

  4. Thermal Thresholds of Phytoplankton Growth in Polar Waters and Their Consequences for a Warming Polar Ocean

    Directory of Open Access Journals (Sweden)

    Alexandra Coello-Camba

    2017-06-01

    Full Text Available Polar areas are experiencing the steepest warming rates on Earth, a trend expected to continue in the future. In these habitats, phytoplankton communities constitute the basis of the food web and their thermal tolerance may dictate how warming affects these delicate environments. Here, we compiled available data on thermal responses of phytoplankton growth in polar waters. We assembled 53 growth-vs.-temperature curves (25 from the Arctic, 28 from the Southern oceans, indicating the limited information available for these ecosystems. Half of the data from Arctic phytoplankton came from natural communities where low ambient concentrations could limit growth rates. Phytoplankton from polar waters grew faster under small temperature increases until reaching an optimum (TOPT, and slowed when temperatures increased beyond this value. This left-skewed curves were characterized by higher activation energies (Ea for phytoplankton growth above than below the TOPT. Combining these thermal responses we obtained a community TOPT of 6.5°C (±0.2 and 5.2°C (±0.1 for Arctic and Southern Ocean phytoplankton communities, respectively. These threshold temperatures were already exceeded at 70°N during the first half of August 2013, evidenced by sea surface temperatures (SSTs, satellite data, http://www.ncdc.noaa.gov. We forecasted SSTs for the end of the twenty-first century by assuming an overall 3°C increase, equivalent to a low emission scenario. Our forecasts show that SSTs at 70°N are expected to exceed TOPT during summer by 2100, and during the first half of August at 75°N. While recent Arctic spring temperatures average 0.5°C and −0.7°C at 70°N and 75°N, respectively, they could increase to 2.8°C at 70°N and 2.2°C at 75°N as we approach 2100. Such temperature increases could lead to intense phytoplankton blooms, shortened by fast nutrient consumption. As SSTs increase, thermal thresholds for phytoplankton growth would be eventually exceeded

  5. Thermal Thresholds of Phytoplankton Growth in Polar Waters and Their Consequences for a Warming Polar Ocean

    KAUST Repository

    Coello-Camba, Alexandra

    2017-06-02

    Polar areas are experiencing the steepest warming rates on Earth, a trend expected to continue in the future. In these habitats, phytoplankton communities constitute the basis of the food web and their thermal tolerance may dictate how warming affects these delicate environments. Here, we compiled available data on thermal responses of phytoplankton growth in polar waters. We assembled 53 growth-vs.-temperature curves (25 from the Arctic, 28 from the Southern oceans), indicating the limited information available for these ecosystems. Half of the data from Arctic phytoplankton came from natural communities where low ambient concentrations could limit growth rates. Phytoplankton from polar waters grew faster under small temperature increases until reaching an optimum (TOPT), and slowed when temperatures increased beyond this value. This left-skewed curves were characterized by higher activation energies (Ea) for phytoplankton growth above than below the TOPT. Combining these thermal responses we obtained a community TOPT of 6.5°C (±0.2) and 5.2°C (±0.1) for Arctic and Southern Ocean phytoplankton communities, respectively. These threshold temperatures were already exceeded at 70°N during the first half of August 2013, evidenced by sea surface temperatures (SSTs, satellite data, http://www.ncdc.noaa.gov). We forecasted SSTs for the end of the twenty-first century by assuming an overall 3°C increase, equivalent to a low emission scenario. Our forecasts show that SSTs at 70°N are expected to exceed TOPT during summer by 2100, and during the first half of August at 75°N. While recent Arctic spring temperatures average 0.5°C and −0.7°C at 70°N and 75°N, respectively, they could increase to 2.8°C at 70°N and 2.2°C at 75°N as we approach 2100. Such temperature increases could lead to intense phytoplankton blooms, shortened by fast nutrient consumption. As SSTs increase, thermal thresholds for phytoplankton growth would be eventually exceeded during bloom

  6. Adsorption of glyoxal molecules on atmospheric water ice nanoparticles

    Science.gov (United States)

    Schrems, O.; Ignatov, S. K.; Gadzhiev, O. B.

    2012-12-01

    Ice nanoparticles play an important role in physics and chemistry of the Earth atmosphere. Knowledge about the uptake and incorporation of atmospheric trace gases in ice particles as well as their interactions with water molecules is very important for the understanding of processes at the air/ice interface. The interaction of the atmospheric trace gases with atmospheric nanoparticles is also an important issue for the development of modern physicochemical models. Usually, the interactions between trace gases and small particles considered theoretically apply small-size model complexes or the surface models representing only fragments of the ideal surface. In this study we used modern quantum chemical methods to study the interaction of glyoxal molecules (HCOCHO) with the full-size particles of crystalline water ice of nanoscale size. Glyoxal, the simplest a-dicarbonyl, is an atmospheric relevant carbonyl compound and is formed as product in the photooxidation of simple volatile organic compounds in air in the presence of NOx. The ice particles consisting of 48, 72, and 216 water molecules with a distorted structure of hexagonal water ice Ih were studied using the new SCC-DFTBA method combining well the advantages of the DFT theory and semiempirical methods of quantum chemistry. Typical sizes of the ice particles were in the range 1.5-2.6 nm. The glyoxal molecules were coordinated on different sites of the nanoparticles corresponding to different ice Ih crystal planes: (0001), (10-10), (11-20). The structure of coordination complexes, their vibrational frequencies, the corresponding adsorption energies and thermodynamic parameters (the enthalpy and the Gibbs free energy of adsorption) were evaluated using the full optimization followed by the frequency calculations. Additionally, the different modes of incorporation of the glyoxal molecules into the ice particles were considered and the corresponding structural and energetic parameters were evaluated. The

  7. Molecular dynamics study of water molecule diffusion in oil-paper insulation materials

    International Nuclear Information System (INIS)

    Liao Ruijin; Zhu Mengzhao; Yang Lijun; Zhou Xin; Gong Chunyan

    2011-01-01

    Moisture is an important factor that influences the safe operation of transformers. In this study, molecular dynamics was employed to investigate the diffusion behavior of water molecules in the oil-paper insulation materials of transformers. Two oil-cellulose models were built. In the first model, water molecules were initially distributed in oil, and in the second model, water molecules were distributed in cellulose. The non-bonding energies of interaction between water molecules and oil, and between water molecules and cellulose, were calculated by the Dreiding force field. The interaction energy was found to play a dominant role in influencing the equilibrium distribution of water molecules. The radial direction functions of water molecules toward oil and cellulose indicate that the hydrogen bonds between water molecules and cellulose are sufficiently strong to withstand the operating temperature of the transformer. Mean-square displacement analysis of water molecules diffusion suggests that water molecules initially distributed in oil showed anisotropic diffusion; they tended to diffuse toward cellulose. Water molecules initially distributed in cellulose diffused isotropically. This study provides a theoretical contribution for improvements in online monitoring of water in transformers, and for subsequent research on new insulation materials.

  8. Charge-Dipole Acceleration of Polar Gas Molecules towards Charged Nanoparticles: Involvement in Powerful Charge-Induced Catalysis of Heterophase Chemical Reactions and Ball Lightning Phenomenon

    Directory of Open Access Journals (Sweden)

    Oleg Meshcheryakov

    2010-01-01

    Full Text Available In humid air, the substantial charge-dipole attraction and electrostatic acceleration of surrounding water vapour molecules towards charged combustible nanoparticles cause intense electrostatic hydration and preferential oxidation of these nanoparticles by electrostatically accelerated polar water vapour molecules rather than nonaccelerated nonpolar oxygen gas molecules. Intense electrostatic hydration of charged combustible nanoparticles converts the nanoparticle's oxide-based shells into the hydroxide-based electrolyte shells, transforming these nanoparticles into reductant/air core-shell nanobatteries, periodically short-circuited by intraparticle field and thermionic emission. Partially synchronized electron emission breakdowns within trillions of nanoparticles-nanobatteries turn a cloud of charged nanoparticles-nanobatteries into a powerful radiofrequency aerosol generator. Electrostatic oxidative hydration and charge-catalyzed oxidation of charged combustible nanoparticles also contribute to a self-oscillating thermocycling process of evolution and periodic autoignition of inflammable gases near to the nanoparticle's surface. The described effects might be of interest for the improvement of certain nanotechnological heterophase processes and to better understand ball lightning phenomenon.

  9. Chlorophyll fluorescence extraction from water-leaving radiance of algae-containing water through polarization

    Science.gov (United States)

    Wang, Lin; Qiu, Zhongfeng; Pang, Huifang; Liu, Yongjian; Chen, Yanlong; Jiang, Lingling

    2017-12-01

    When measuring reflectance spectra, it is very important to accurately extract chlorophyll fluorescence from elastic- scattering light in water-leaving radiance. The elastic scattering of light by water particles produces partially polarized light. In contrast, chlorophyll fluorescence in planktonic algae yields completely unpolarized light. These properties can be used to separate fluorescent signals from the water-leaving radiance and thus to determine chlorophyll concentration. The algal species Aureococcus anophagefferens was used to conduct a laboratory polarization experiment. For the tests, we used a field spectroradiometer and a polarizer; measurements were collected using two different observation modes. The chlorophyll fluorescence curve extracted through polarization shows an excellent match with the results obtained using the fluorospectro photometer for both measurement modes, suggesting that polarization-based chlorophyll fluorescence extraction may be feasible. The extracted fluorescence is more reliable at incident zenith angles ranging from 30° to 60°. For algae-containing water, the results improve with increasing chlorophyll concentration. This method could help improve chlorophyll concentration measurement and the remote-sensing detection of resulting harmful algae blooms.

  10. Relationship between infrared and Raman intensities in molecules with polarized π electrons

    Science.gov (United States)

    Tommasini, M.; Castiglioni, C.; Del Zoppo, M.; Zerbi, G.

    1999-05-01

    A model is presented which allows to obtain a linear relationship between infrared and Raman intensity parameters of the strongest vibrational bands of push-pull conjugated molecules. The results obtained clarify the origin of the exceptionally large values of the vibrational first hyperpolarizability shown by these molecules.

  11. Deceleration and trapping of polar molecules using time-varying electric fields

    NARCIS (Netherlands)

    Bethlem, Hendrick Lucas

    2002-01-01

    What we experience as an agreeable temperature is in fact due to a constant bombardment of our skin by very fast molecules. At room temperature the average velocity of air molecules around us is about 500 m/s, corresponding to about 2000 km/hour. Only at very low temperatures, close to the absolute

  12. Effect of Interfacial Polarization and Water Absorption on the Dielectric Properties of Epoxy-Nanocomposites

    Directory of Open Access Journals (Sweden)

    Philipp Marx

    2017-05-01

    Full Text Available Five types of nanofillers, namely, silica, surface-silylated silica, alumina, surface-silylated alumina, and boron nitride, were tested in this study. Nanocomposites composed of an epoxy/amine resin and one of the five types of nanoparticles were tested as dielectrics with a focus on (i the surface functionalization of the nanoparticles and (ii the water absorption by the materials. The dispersability of the nanoparticles in the resin correlated with the composition (OH content of their surfaces. The interfacial polarization of the thoroughly dried samples was found to increase at lowered frequencies and increased temperatures. The β relaxation, unlike the interfacial polarization, was not significantly increased at elevated temperatures (below the glass-transition temperature. Upon the absorption of water under ambient conditions, the interfacial polarization increased significantly, and the insulating properties decreased or even deteriorated. This effect was most pronounced in the nanocomposite containing silica, and occurred as well in the nanocomposites containing silylated silica or non-functionalized alumina. The alternating current (AC breakdown strength of all specimens was in the range of 30 to 35 kV·mm−1. In direct current (DC breakdown tests, the epoxy resin exhibited the lowest strength of 110 kV·mm−1; the nanocomposite containing surface-silylated alumina had a strength of 170 kV·mm−1. In summary, water absorption had the most relevant impact on the dielectric properties of nanocomposites containing nanoparticles, the surfaces of which interacted with the water molecules. Nanocomposites containing silylated alumina particles or boron nitride showed the best dielectric properties in this study.

  13. The influence of non polar and polar molecules in mouse motile cells membranes and pure lipid bilayers.

    Directory of Open Access Journals (Sweden)

    Francisco J Sierra-Valdez

    Full Text Available We report an experimental study of mouse sperm motility that shows chief aspects characteristic of neurons: the anesthetic (produced by tetracaine and excitatory (produced by either caffeine or calcium effects and their antagonic action. While tetracaine inhibits sperm motility and caffeine has an excitatory action, the combination of these two substances balance the effects, producing a motility quite similar to that of control cells. We also study the effects of these agents (anesthetic and excitatory on the melting points of pure lipid liposomes constituted by 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC and dipalmitoyl phosphatidic acid (DPPA. Tetracaine induces a large fluidization of the membrane, shifting the liposomes melting transition temperature to much lower values. The effect of caffeine is null, but its addition to tetracaine-doped liposomes greatly screen the fluidization effect. A high calcium concentration stiffens pure lipid membranes and strongly reduces the effect of tetracaine. Molecular Dynamics Simulations are performed to further understand our experimental findings at the molecular level. We find a strong correlation between the effect of antagonic molecules that could explain how the mechanical properties suitable for normal cell functioning are affected and recovered.

  14. Controlling electron-electron correlation in frustrated double ionization of triatomic molecules with orthogonally polarized two-color laser fields

    Science.gov (United States)

    Chen, A.; Kling, M. F.; Emmanouilidou, A.

    2017-09-01

    We demonstrate the control of electron-electron correlation in frustrated double ionization (FDI) of the two-electron triatomic molecule D3 + when driven by two orthogonally polarized two-color laser fields. We employ a three-dimensional semiclassical model that fully accounts for the electron and nuclear motion in strong fields. We analyze the FDI probability and the distribution of the momentum of the escaping electron along the polarization direction of the longer wavelength and more intense laser field. These observables, when considered in conjunction, bear clear signatures of the prevalence or absence of electron-electron correlation in FDI, depending on the time delay between the two laser pulses. We find that D3 + is a better candidate than H2 for demonstrating also experimentally that electron-electron correlation indeed underlies FDI.

  15. Formation of intermediate products during the resonance stepwise polarization of dibenzyl ketone and benzil molecules

    International Nuclear Information System (INIS)

    Polevoi, A.V.; Matyuk, V.M.; Grigor'eva, G.A.; Potapov, V.K.

    1987-01-01

    The processes resulting in the intramolecular redistribution of energy in electronically excited S/sub ππ*/ states of dibenzyl ketone and benzil molecules have been investigated by laser mass spectrometry. The decisive role of dissociation under the conditions of the resonance stepwise photoionization of these molecules upon excitation by radiation with λ = 266 nm has been demonstrated. The ionization potentials of the molecules and the appearance potentials of fragment ions from dibenzyl ketone and benzil have been determined on the basis of an analysis of photoionization efficiency curves

  16. Approximative Krieger-Nelkin orientation averaging and anisotropy of water molecules vibrations

    International Nuclear Information System (INIS)

    Markovic, M.I.

    1974-01-01

    Quantum-mechanics approach of water molecules dynamics should be taken into account for precise theoretical calculation of differential scattering cross sections of neutrons. Krieger and Nelkin have proposed an approximate method for averaging orientation of molecules regarding directions of incoming and scattered neutron. This paper shows that this approach can be successfully applied for general shape of water molecule vibration anisotropy

  17. Simple Physics-Based Analytical Formulas for the Potentials of Mean Force of the Interaction of Amino Acid Side Chains in Water. VII. Charged-Hydrophobic/Polar and Polar-Hydrophobic/Polar Side Chains.

    Science.gov (United States)

    Makowski, Mariusz; Liwo, Adam; Scheraga, Harold A

    2017-01-19

    The physics-based potentials of side-chain-side-chain interactions corresponding to pairs composed of charged and polar, polar and polar, charged and hydrophobic, and hydrophobic and hydrophobic side chains have been determined. A total of 144 four-dimensional potentials of mean force (PMFs) of all possible pairs of molecules modeling these pairs were determined by umbrella-sampling molecular dynamics simulations in explicit water as functions of distance and orientation, and the analytical expressions were then fitted to the PMFs. Depending on the type of interacting sites, the analytical approximation to the PMF is a sum of terms corresponding to van der Waals interactions and cavity-creation involving the nonpolar sections of the side chains and van der Waals, cavity-creation, and electrostatic (charge-dipole or dipole-dipole) interaction energies and polarization energies involving the charged or polar sections of the side chains. The model used in this work reproduces all features of the interacting pairs. The UNited RESidue force field with the new side-chain-side-chain interaction potentials was preliminarily tested with the N-terminal part of the B-domain of staphylococcal protein A (PDBL 1BDD ; a three-α-helix bundle) and UPF0291 protein YnzC from Bacillus subtilis (PDB: 2HEP ; an α-helical hairpin).

  18. Evolution of oil/water interface in the presence of SDBS detected by dual polarization interferometry

    Science.gov (United States)

    Duan, Ming; Ding, Ziling; Wang, Hu; Xiong, Yan; Fang, Shenwen; Shi, Peng; Liu, Shuai

    2018-01-01

    In this work, the technique of dual polarization interferometry (DPI) was applied to establish a new method to monitor the real-time evolution of oil/water interface in the presence of sodium dodecyl benzene sulfonate (SDBS) at molecular level. A three-stage model of adsorption-desorption-detachment had been proposed and was systematically discussed upon the addition of different SDBS concentrations based on the variation of the interfacial mass with time. The results demonstrated two patterns of adsorption morphology at the oil/water interface, SDBS mono-molecules and SDBS hemi-micelles at SDBS concentrations below and above cmc respectively according to the relaxation time obtained by theoretical model and the reaction order calculated by integral method in the analysis of adsorbed dynamics. The capability of oil detachment with the aid of SDBS as well as the properties of the outlet fluid were investigated under two patterns of adsorption morphologies, which showed different effects of oil detachment with the aid of SDBS molecules. The speed of oil detachment and the fluorescence intensity of the outlet fluid during the detachment process indicated the fact that the oil detachment capability was significantly promoted by the morphology of the absorbed hemi-micelles. The findings in the present study are crucial for fully understanding the interfacial behavior of surfactants applied in oil/water interface, which is of great significance in enhanced oil recovery and pollution industry.

  19. Distilling two-center-interference information during tunneling of aligned molecules with orthogonally polarized two-color laser fields

    Science.gov (United States)

    Gao, F.; Chen, Y. J.; Xin, G. G.; Liu, J.; Fu, L. B.

    2017-12-01

    When electrons tunnel through a barrier formed by the strong laser field and the two-center potential of a diatomic molecule, a double-slit-like interference can occur. However, this interference effect can not be probed directly right now, as it is strongly coupled with other dynamical processes during tunneling. Here, we show numerically and analytically that orthogonally polarized two-color (OTC) laser fields are capable of resolving the interference effect in tunneling, while leaving clear footprints of this effect in photoelectron momentum distributions. Moreover, this effect can be manipulated by changing the relative field strength of OTC fields.

  20. Influence of the water molecules near surface of viral protein on virus activation process

    Energy Technology Data Exchange (ETDEWEB)

    O, Shepelenko S; S, Salnikov A; V, Rak S; P, Goncharova E; B, Ryzhikov A, E-mail: shep@vector.nsc.r, E-mail: shep@ngs.r [Federal State Research Institution State Research Center of Virology and Biotechnology VECTOR of the Federal Service for Surveillance in Consumer Rights Protection and Human Well-being (FSRI SRC VB VECTOR) Koltsovo, Novosibirsk Region (Russian Federation)

    2009-06-01

    The infection of a cell with influenza virus comprises the stages of receptor binding to the cell membrane, endocytosis of virus particle, and fusion of the virus envelope and cell endosome membrane, which is determined by the conformational changes in hemagglutinin, a virus envelope protein, caused by pH decrease within the endosome. The pH value that induces conformation rearrangements of hemagglutinin molecule considerably varies for different influenza virus strains, first and foremost, due to the differences in amino acid structure of the corresponding proteins. The main goal of this study was to construct a model making it possible to assess the critical pH value characterizing the fusogenic activity of influenza virus hemagglutinin from the data on hemagglutinin structure and experimental verification of this model. Under this model, we assume that when the electrostatic force between interacting hemagglutinin molecules in the virus envelop exceeds a certain value, the hemagglutinin HA1 subunits are arranged so that they form a cavity sufficient for penetration of water molecules. This event leads to an irreversible hydration of the inner fragments of hemagglutinin molecule in a trimer and to the completion of conformational changes. The geometry of electrostatic field in hemagglutinin trimer was calculated taking into account the polarization effects near the interface of two dielectrics, aqueous medium and protein macromolecule. The critical pH values for the conformational changes in hemagglutinin were measured by the erythrocyte hemolysis induced by influenza virus particles when decreasing pH. The critical pH value conditionally separating the pH range into the regions with and without the conformational changes was calculated for several influenza virus H1N1 and H3N2 strains based on the data on the amino acid structure of the corresponding hemagglutinin molecules. Comparison of the theoretical and experimental values of critical pH values for

  1. Influence of the water molecules near surface of viral protein on virus activation process

    International Nuclear Information System (INIS)

    O, Shepelenko S; S, Salnikov A; V, Rak S; P, Goncharova E; B, Ryzhikov A

    2009-01-01

    The infection of a cell with influenza virus comprises the stages of receptor binding to the cell membrane, endocytosis of virus particle, and fusion of the virus envelope and cell endosome membrane, which is determined by the conformational changes in hemagglutinin, a virus envelope protein, caused by pH decrease within the endosome. The pH value that induces conformation rearrangements of hemagglutinin molecule considerably varies for different influenza virus strains, first and foremost, due to the differences in amino acid structure of the corresponding proteins. The main goal of this study was to construct a model making it possible to assess the critical pH value characterizing the fusogenic activity of influenza virus hemagglutinin from the data on hemagglutinin structure and experimental verification of this model. Under this model, we assume that when the electrostatic force between interacting hemagglutinin molecules in the virus envelop exceeds a certain value, the hemagglutinin HA1 subunits are arranged so that they form a cavity sufficient for penetration of water molecules. This event leads to an irreversible hydration of the inner fragments of hemagglutinin molecule in a trimer and to the completion of conformational changes. The geometry of electrostatic field in hemagglutinin trimer was calculated taking into account the polarization effects near the interface of two dielectrics, aqueous medium and protein macromolecule. The critical pH values for the conformational changes in hemagglutinin were measured by the erythrocyte hemolysis induced by influenza virus particles when decreasing pH. The critical pH value conditionally separating the pH range into the regions with and without the conformational changes was calculated for several influenza virus H1N1 and H3N2 strains based on the data on the amino acid structure of the corresponding hemagglutinin molecules. Comparison of the theoretical and experimental values of critical pH values for

  2. Analytical model for three-dimensional Mercedes-Benz water molecules

    OpenAIRE

    Urbic, T.

    2012-01-01

    We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored...

  3. Finite-bias electronic transport of molecules in a water solution

    KAUST Repository

    Rungger, Ivan

    2010-06-04

    The effects of water wetting conditions on the transport properties of molecular nanojunctions are investigated theoretically by using a combination of empirical-potential molecular-dynamics and first-principles electronic-transport calculations. These are at the level of the nonequilibrium Green’s-function method implemented for self-interaction corrected density-functional theory. We find that water effectively produces electrostatic gating to the molecular junction with a gating potential determined by the time-averaged water dipole field. Such a field is large for the polar benzene-dithiol molecule, resulting in a transmission spectrum shifted by about 0.6 eV with respect to that of the dry junction. The situation is drastically different for carbon nanotubes (CNTs). In fact, because of their hydrophobic nature the gating is almost negligible so that the average transmission spectrum of wet Au/CNT/Au junctions is essentially the same as that in dry conditions. This suggests that CNTs can be used as molecular interconnects also in water-wet situations, for instance, as tips for scanning tunnel microscopy in solution or in biological sensors.

  4. Monitoring single-channel water permeability in polarized cells.

    Science.gov (United States)

    Erokhova, Liudmila; Horner, Andreas; Kügler, Philipp; Pohl, Peter

    2011-11-18

    So far the determination of unitary permeability (p(f)) of water channels that are expressed in polarized cells is subject to large errors because the opening of a single water channel does not noticeably increase the water permeability of a membrane patch above the background. That is, in contrast to the patch clamp technique, where the single ion channel conductance may be derived from a single experiment, two experiments separated in time and/or space are required to obtain the single-channel water permeability p(f) as a function of the incremental water permeability (P(f,c)) and the number (n) of water channels that contributed to P(f,c). Although the unitary conductance of ion channels is measured in the native environment of the channel, p(f) is so far derived from reconstituted channels or channels expressed in oocytes. To determine the p(f) of channels from live epithelial monolayers, we exploit the fact that osmotic volume flow alters the concentration of aqueous reporter dyes adjacent to the epithelia. We measure these changes by fluorescence correlation spectroscopy, which allows the calculation of both P(f,c) and osmolyte dilution within the unstirred layer. Shifting the focus of the laser from the aqueous solution to the apical and basolateral membranes allowed the FCS-based determination of n. Here we validate the new technique by determining the p(f) of aquaporin 5 in Madin-Darby canine kidney cell monolayers. Because inhibition and subsequent activity rescue are monitored on the same sample, drug effects on exocytosis or endocytosis can be dissected from those on p(f).

  5. Expanding signaling-molecule wavefront model of cell polarization in the Drosophila wing primordium.

    Science.gov (United States)

    Wortman, Juliana C; Nahmad, Marcos; Zhang, Peng Cheng; Lander, Arthur D; Yu, Clare C

    2017-07-01

    In developing tissues, cell polarization and proliferation are regulated by morphogens and signaling pathways. Cells throughout the Drosophila wing primordium typically show subcellular localization of the unconventional myosin Dachs on the distal side of cells (nearest the center of the disc). Dachs localization depends on the spatial distribution of bonds between the protocadherins Fat (Ft) and Dachsous (Ds), which form heterodimers between adjacent cells; and the Golgi kinase Four-jointed (Fj), which affects the binding affinities of Ft and Ds. The Fj concentration forms a linear gradient while the Ds concentration is roughly uniform throughout most of the wing pouch with a steep transition region that propagates from the center to the edge of the pouch during the third larval instar. Although the Fj gradient is an important cue for polarization, it is unclear how the polarization is affected by cell division and the expanding Ds transition region, both of which can alter the distribution of Ft-Ds heterodimers around the cell periphery. We have developed a computational model to address these questions. In our model, the binding affinity of Ft and Ds depends on phosphorylation by Fj. We assume that the asymmetry of the Ft-Ds bond distribution around the cell periphery defines the polarization, with greater asymmetry promoting cell proliferation. Our model predicts that this asymmetry is greatest in the radially-expanding transition region that leaves polarized cells in its wake. These cells naturally retain their bond distribution asymmetry after division by rapidly replenishing Ft-Ds bonds at new cell-cell interfaces. Thus we predict that the distal localization of Dachs in cells throughout the pouch requires the movement of the Ds transition region and the simple presence, rather than any specific spatial pattern, of Fj.

  6. Distribution of binding energies of a water molecule in the water liquid-vapor interface

    Energy Technology Data Exchange (ETDEWEB)

    Chempath, Shaji [Los Alamos National Laboratory; Pratt, Lawrence R [TULANE UNIV

    2008-01-01

    Distributions of binding energies of a water molecule in the water liquid-vapor interface are obtained on the basis of molecular simulation with the SPC/E model of water. These binding energies together with the observed interfacial density profile are used to test a minimally conditioned Gaussian quasi-chemical statistical thermodynamic theory. Binding energy distributions for water molecules in that interfacial region clearly exhibit a composite structure. A minimally conditioned Gaussian quasi-chemical model that is accurate for the free energy of bulk liquid water breaks down for water molecules in the liquid-vapor interfacial region. This breakdown is associated with the fact that this minimally conditioned Gaussian model would be inaccurate for the statistical thermodynamics of a dilute gas. Aggressive conditioning greatly improves the performance of that Gaussian quasi-chemical model. The analogy between the Gaussian quasi-chemical model and dielectric models of hydration free energies suggests that naive dielectric models without the conditioning features of quasi-chemical theory will be unreliable for these interfacial problems. Multi-Gaussian models that address the composite nature of the binding energy distributions observed in the interfacial region might provide a mechanism for correcting dielectric models for practical applications.

  7. Calibration of the Chemcatcher passive sampler for monitoring selected polar and semi-polar pesticides in surface water

    International Nuclear Information System (INIS)

    Gunold, Roman; Schaefer, Ralf Bernhard; Paschke, Albrecht; Schueuermann, Gerrit; Liess, Matthias

    2008-01-01

    Passive sampling is a powerful method for continuous pollution monitoring, but calibration experiments are still needed to generate sampling rates in order to estimate water concentrations for polar compounds. We calibrated the Chemcatcher device with an uncovered SDB-XC Empore disk as receiving phase for 12 polar and semi-polar pesticides in aquatic environments in flow-through tank experiments at two water flow velocities (0.135 m/s and 0.4 m/s). In the 14-day period of exposure the uptake of test substances in the sampler remained linear, and all derived sampling rates R s were in the range of 0.1 to 0.5 L/day. By additionally monitoring the release of two preloaded polar pesticides from the SDB-XC disks over time, very high variation in release kinetics was found, which calls into question the applicability of performance reference compounds. Our study expands the applicability of the Chemcatcher for monitoring trace concentrations of pesticides with frequent occurrence in water. - We calibrated the Chemcatcher passive sampler for current-use polar pesticides in surface waters, allowing its application in future monitoring studies

  8. A rapid and sensitive method for the simultaneous analysis of aliphatic and polar molecules containing free carboxyl groups in plant extracts by LC-MS/MS

    OpenAIRE

    Kallenbach, Mario; Baldwin, Ian T; Bonaventure, Gustavo

    2009-01-01

    Abstract Background Aliphatic molecules containing free carboxyl groups are important intermediates in many metabolic and signalling reactions, however, they accumulate to low levels in tissues and are not efficiently ionized by electrospray ionization (ESI) compared to more polar substances. Quantification of aliphatic molecules becomes therefore difficult when small amounts of tissue are available for analysis. Traditional methods for analysis of these molecules require purification or enri...

  9. Single-molecule tracking of small GTPase Rac1 uncovers spatial regulation of membrane translocation and mechanism for polarized signaling

    Science.gov (United States)

    Das, Sulagna; Yin, Taofei; Yang, Qingfen; Zhang, Jingqiao; Wu, Yi I.; Yu, Ji

    2015-01-01

    Polarized Rac1 signaling is a hallmark of many cellular functions, including cell adhesion, motility, and cell division. The two steps of Rac1 activation are its translocation to the plasma membrane and the exchange of nucleotide from GDP to GTP. It is, however, unclear whether these two processes are regulated independent of each other and what their respective roles are in polarization of Rac1 signaling. We designed a single-particle tracking (SPT) method to quantitatively analyze the kinetics of Rac1 membrane translocation in living cells. We found that the rate of Rac1 translocation was significantly elevated in protrusions during cell spreading on collagen. Furthermore, combining FRET sensor imaging with SPT measurements in the same cell, the recruitment of Rac1 was found to be polarized to an extent similar to that of the nucleotide exchange process. Statistical analysis of single-molecule trajectories and optogenetic manipulation of membrane lipids revealed that Rac1 membrane translocation precedes nucleotide exchange, and is governed primarily by interactions with phospholipids, particularly PI(3,4,5)P3, instead of protein factors. Overall, the study highlights the significance of membrane translocation in spatial Rac1 signaling, which is in addition to the traditional view focusing primarily on GEF distribution and exchange reaction. PMID:25561548

  10. Photoelectron angular distributions from polar molecules probed by intense femtosecond lasers

    DEFF Research Database (Denmark)

    Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2010-01-01

    -active-electron and frozen-nuclei approximations. Our analysis shows that for the HF and LiF molecules, anisotropies in the molecular potential and the probed orbital lead to enhanced ionization during laser half cycles with the field pointing antiparallel to the permanent dipole of the dipole term in a multipolar expansion...

  11. Students' Use of Three Different Visual Representations to Interpret Whether Molecules Are Polar or Nonpolar

    Science.gov (United States)

    Host, Gunnar E.; Schonborn, Konrad J.; Palmerius, Karljohan E. Lundin

    2012-01-01

    Visualizing molecular properties is often crucial for constructing conceptual understanding in chemistry. However, research has revealed numerous challenges surrounding students' meaningful interpretation of the relationship between the geometry and electrostatic properties of molecules. This study explored students' (n = 18) use of three visual…

  12. Elliptically polarized high-order harmonics from aligned molecules within the strong-field approximation

    DEFF Research Database (Denmark)

    Etches, Adam; Madsen, Christian Bruun; Madsen, Lars Bojer

    A correction term is introduced in the stationary-point analysis on high-order harmonic generation (HHG) from aligned molecules. Arising from a multi-centre expansion of the electron wave function, this term brings our numerical calculations of the Lewenstein model into qualitative agreement...

  13. Temporary Anion States of Ethene Interacting with Single Molecules of Methane, Ethane, and Water.

    Science.gov (United States)

    Sommerfeld, Thomas; Melugin, Joshua B; Ehara, Masahiro

    2018-03-08

    When an excess electron is added into the π* orbital of ethene, the resulting anion decays by electron autodetachment; that is, it represents an electronic state referred to as a temporary anion or resonance state. Here, the influence of a cluster environment on the energy and lifetime of this state is investigated. The clusters considered are ethene···CH 4 , ethene···C 2 H 6 , and ethene···H 2 O. Most of these clusters are systematically constructed so that the solvent interacts with the π system in a specific way, and are thus by construction not minima with respect to all intermolecular degrees of freedom. However, for water, in addition, a minimal energy structure is examined. Systematic variation of the solvent and solvation geometry allows us to identify trends regarding effects due to polarizability, excluded volume, and polarity of the solvent molecules. The resonance parameters of ethene and all temporary cluster anions are computed with the symmetry-adapted cluster-configuration interaction electronic structure method in combination with a complex absorbing potential. This method is well-established for small to intermediate sized molecules. In addition to the study of the solvation effects themselves, the question of how many basis functions are needed on the closed-shell solvating unit is examined.

  14. Vibrational states of nano-confined water molecules in beryl investigated by first-principles calculations and optical experiments.

    Science.gov (United States)

    Belyanchikov, M A; Zhukova, E S; Tretiak, S; Zhugayevych, A; Dressel, M; Uhlig, F; Smiatek, J; Fyta, M; Thomas, V G; Gorshunov, B P

    2017-11-22

    Using quantum mechanical calculations within density functional theory, we provide a comprehensive analysis of infrared-active excitation of water molecules confined in nanocages of a beryl crystal lattice. We calculate infrared-active modes including the translational, librational, and mixed-type resonances of regular and heavy water molecules. The results are compared to the experimental spectra measured for the two principal polarizations of the electric field: parallel and perpendicular to the crystallographic c-axis. Good agreement is achieved between calculated and measured isotopic shifts of the normal modes. We analyze the vibrational modes in connection with the structural characteristics and arrangements of water molecules within the beryl crystal. Specific atomic displacements are assigned to each experimentally detected vibrational mode resolving the properties of nano-confined water on scales not accessible by experiments. Our results elucidate the applicability and efficiency of a combined experimental and computational approach for describing and an in-depth understanding of nano-confined water, and pave the way for future studies of more complex systems.

  15. OPERATION OF SEAGOING CRUISE SHIPS IN POLAR WATERS OF THE ANTARCTICA

    Directory of Open Access Journals (Sweden)

    Adam WOLSKI

    2017-09-01

    Full Text Available As maritime tourism has been developing dynamically in recent years, including cruises into polar areas, the author attempts to identify factors essential for the safety of navigation in those sea areas, with a specific focus on the waters of the Antarctica. The presented methods of navigation take account of hazards that are typical in polar waters. All the considerations are based on the guidelines of the Polar Code.

  16. Diurnal Albedo Variations of the Martian North Polar Water Ice Cap

    Science.gov (United States)

    Troy, R. F.; Bass, D.

    2002-01-01

    Presentation of findings regarding diurnal variations in the north polar water ice cap of Mars as part of a larger study of the interannual and seasonal variations of the Martian north polar water ice cap. Additional information is contained in the original extended abstract.

  17. Contamination of boreholes water by 76 pesticides molecules in the ...

    African Journals Online (AJOL)

    user2

    76 residues of pesticides, especially insecticides, herbicides and fungicides, with accumulated contents which could average 0.350 or 350 μg/L per borehole. Indeed, all the prospected boreholes were contaminated. Every molecules of pesticides analyzed were present with at least 1 μg/L, some molecules concentration ...

  18. Probing non polar interstellar molecules through their protonated form: Detection of protonated cyanogen (NCCNH+).

    Science.gov (United States)

    Agúndez, M; Cernicharo, J; de Vicente, P; Marcelino, N; Roueff, E; Fuente, A; Gerin, M; Guélin, M; Albo, C; Barcia, A; Barbas, L; Bolaño, R; Colomer, F; Diez, M C; Gallego, J D; Gómez-González, J; López-Fernández, I; López-Fernández, J A; López-Pérez, J A; Malo, I; Serna, J M; Tercero, F

    2015-07-01

    Cyanogen (NCCN) is the simplest member of the series of dicyanopolyynes. It has been hypothesized that this family of molecules can be important constituents of interstellar and circumstellar media, although the lack of a permanent electric dipole moment prevents its detection through radioastronomical techniques. Here we present the first solid evidence of the presence of cyanogen in interstellar clouds through the detection of its protonated form toward the cold dark clouds TMC-1 and L483. Protonated cyanogen (NCCNH + ) has been identified through the J = 5 - 4 and J = 10 - 9 rotational transitions using the 40m radiotelescope of Yebes and the IRAM 30m telescope. We derive beam averaged column densities for NCCNH + of (8.6 ± 4.4) × 10 10 cm -2 in TMC-1 and (3.9 ± 1.8) × 10 10 cm -2 in L483, which translate to fairly low fractional abundances relative to H 2 , in the range (1-10) × 10 -12 . The chemistry of protonated molecules in dark clouds is discussed, and it is found that, in general terms, the abundance ratio between the protonated and non protonated forms of a molecule increases with increasing proton affinity. Our chemical model predicts an abundance ratio NCCNH + /NCCN of ~ 10 -4 , which implies that the abundance of cyanogen in dark clouds could be as high as (1-10) × 10 -8 relative to H 2 , i.e., comparable to that of other abundant nitriles such as HCN, HNC, and HC 3 N.

  19. Density, distribution, and orientation of water molecules inside and outside carbon nanotubes.

    Science.gov (United States)

    Thomas, J A; McGaughey, A J H

    2008-02-28

    The behavior of water molecules inside and outside 1.1, 2.8, 6.9, and 10.4 nm diameter armchair carbon nanotubes (CNTs) is predicted using molecular dynamics simulations. The effects of CNT diameter on mass density, molecular distribution, and molecular orientation are identified for both the confined and unconfined fluids. Within 1 nm of the CNT surface, unconfined water molecules assume a spatially varying density profile. The molecules distribute nonuniformly around the carbon surface and have preferred orientations. The behavior of the unconfined water molecules is invariant with CNT diameter. The behavior of the confined water, however, can be correlated to tube diameter. Inside the 10.4 nm CNT, the molecular behavior is indistinguishable from that of the unconfined fluid. Within the smaller CNTs, surface curvature effects reduce the equilibrium water density and force water molecules away from the surface. This effect changes both the molecular distribution and preferred molecular orientations.

  20. Induction of unidirectional π-electron rotations in low-symmetry aromatic ring molecules using two linearly polarized stationary lasers.

    Science.gov (United States)

    Mineo, Hirobumi; Yamaki, Masahiro; Kim, Gap-Sue; Teranishi, Yoshiaki; Lin, Sheng Hsien; Fujimura, Yuichi

    2016-09-29

    A new laser-control scenario of unidirectional π-electron rotations in a low-symmetry aromatic ring molecule having no degenerate excited states is proposed. This scenario is based on dynamic Stark shifts of two relevant excited states using two linearly polarized stationary lasers. Each laser is set to selectively interact with one of the two electronic states, the lower and higher excited states are shifted up and down with the same rate, respectively, and the two excited states become degenerate at their midpoint. One of the four control parameters of the two lasers, i.e. two frequencies and two intensities, determines the values of all the other parameters. The direction of π-electron rotations, clockwise or counter-clockwise rotation, depends on the sign of the relative phase of the two lasers at the initial time. An analytical expression for the time-dependent expectation value of the rotational angular momentum operator is derived using the rotating wave approximation (RWA). The control scenario depends on the initial condition of the electronic states. The control scenario with the ground state as the initial condition was applied to toluene molecules. The derived time-dependent angular momentum consists of a train of unidirectional angular momentum pulses. The validity of the RWA was checked by numerically solving the time-dependent Schrödinger equation. The simulation results suggest an experimental realization of the induction of unidirectional π-electron rotations in low-symmetry aromatic ring molecules without using any intricate quantum-optimal control procedure. This may open up an effective generation method of ring currents and current-induced magnetic fields in biomolecules such as amino acids having aromatic ring molecules for searching their interactions.

  1. On correlation for proton spins in molecules of crystalized water of the lanthanum-magnesium nitrate

    International Nuclear Information System (INIS)

    Taran, Yu.V.; Shapiro, F.L.

    1974-01-01

    Effect of a single transmission of cold neutrons has been measured on a polarized proton target of a lanthanum-magnesium nitrate monocrystal. Experimental results indicate the absence of thermally equilibrium concentration of paramolecules of crystallized water of lanthanum-magnesium nitrate in case of the proton polarization about 70%

  2. Building better water models using the shape of the charge distribution of a water molecule

    Science.gov (United States)

    Dharmawardhana, Chamila Chathuranga; Ichiye, Toshiko

    2017-11-01

    The unique properties of liquid water apparently arise from more than just the tetrahedral bond angle between the nuclei of a water molecule since simple three-site models of water are poor at mimicking these properties in computer simulations. Four- and five-site models add partial charges on dummy sites and are better at modeling these properties, which suggests that the shape of charge distribution is important. Since a multipole expansion of the electrostatic potential describes a charge distribution in an orthogonal basis set that is exact in the limit of infinite order, multipoles may be an even better way to model the charge distribution. In particular, molecular multipoles up to the octupole centered on the oxygen appear to describe the electrostatic potential from electronic structure calculations better than four- and five-site models, and molecular multipole models give better agreement with the temperature and pressure dependence of many liquid state properties of water while retaining the computational efficiency of three-site models. Here, the influence of the shape of the molecular charge distribution on liquid state properties is examined by correlating multipoles of non-polarizable water models with their liquid state properties in computer simulations. This will aid in the development of accurate water models for classical simulations as well as in determining the accuracy needed in quantum mechanical/molecular mechanical studies and ab initio molecular dynamics simulations of water. More fundamentally, this will lead to a greater understanding of how the charge distribution of a water molecule leads to the unique properties of liquid water. In particular, these studies indicate that p-orbital charge out of the molecular plane is important.

  3. Single-molecule detection of chaperonin dynamics through polarization rotation modulation of CdSe QD luminescence imaging

    International Nuclear Information System (INIS)

    Tani, Toshiro; Oda, Masaru; Araki, Daisuke; Miyashita, Tatsuki; Nakajima, Koudai; Arita, Mayuno; Yohda, Masafumi

    2014-01-01

    We report our recent trials examining the single-molecule three-dimensional (3D) detection of protein conformational dynamics at room temperature. Using molecular chaperones as model proteins and cadmium selenide (CdSe) semiconductor quantum dots (QDs) as nanometer-scale probes, we monitored the temporal evolution of ATP-induced conformation changes with a total internal reflection fluorescence (TIRF) microscopy imaging technique in buffer solutions. The two-dimensional (2D) degenerate nature of the emission dipoles of the QDs, due to the uniaxial wurtzite crystal structure, made it possible to capture the 3D orientation using a polarization modulation technique in real time. The temporal resolution was half the period of analyzer rotation. Although still insufficient, the obtained signals suggest possible 3D detection of specific motions, which supports the two-step conformational changes triggered by ATP attachment. - Highlights: • We report our recent trials examining the single-molecule three-dimensional (3D) detection of protein conformational dynamics at room temperature. • Using molecular chaperones as model proteins and cadmium selenide (CdSe) semiconductor quantum dots (QDs) as nanometer-scale probes, we monitored the temporal evolution of ATP-induced conformation changes with a total internal reflection fluorescence (TIRF) microscopy imaging technique in buffer solutions. • The two-dimensional (2D) degenerate nature of the emission dipoles of the QDs, due to the uniaxial wurtzite crystal structure, made it possible to capture the 3D orientation using a polarization modulation technique in real time. • The temporal resolution was half the period of analyzer rotation. • Although still insufficient, the obtained signals suggest possible 3D detection of specific motions, which supports the two-step conformational changes triggered by ATP attachment

  4. Dynamics of water molecules in the active-site cavity of human cytochromes P450

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Rod, Thomas Holm; Olsen, Lars

    2007-01-01

    We have studied the dynamics of water molecules in six crystal structures of four human cytochromes P450, 2A6, 2C8, 2C9, and 3A4, with molecular dynamics simulations. In the crystal structures, only a few water molecules are seen and the reported sizes of the active-site cavity vary a lot. In the...

  5. Characterizing Structural Stability of Amyloid Motif Fibrils Mediated by Water Molecules.

    Science.gov (United States)

    Choi, Hyunsung; Chang, Hyun Joon; Lee, Myeongsang; Na, Sungsoo

    2017-04-05

    In biological systems, structural confinements of amyloid fibrils can be mediated by the role of water molecules. However, the underlying effect of the dynamic behavior of water molecules on structural stabilities of amyloid fibrils is still unclear. By performing molecular dynamics simulations, we investigate the dynamic features and the effect of interior water molecules on conformations and mechanical characteristics of various amyloid fibrils. We find that a specific mechanism induced by the dynamic properties of interior water molecules can affect diffusion of water molecules inside amyloid fibrils, inducing their different structural stabilities. The conformation of amyloid fibrils induced by interior water molecules show the fibrils' different mechanical features. We elucidate the role of confined and movable interior water molecules in structural stabilities of various amyloid fibrils. Our results offer insights not only in further understanding of mechanical features of amyloids as mediated by water molecules, but also in the fine-tuning of the functional abilities of amyloid fibrils for applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The impact of coulombic interactions among polar molecules and metal substrates on flow and lubrication properties

    Science.gov (United States)

    Gkagkas, K.; Ponnuchamy, V.

    2017-09-01

    In the current work we present an extensive study on the impact of short- and long-range interactions between solids and liquids on the hydrodynamic and lubrication behaviour of a tribological system. We have implemented a coarse grain molecular dynamics description of two ionic liquids (ILs) as lubricants which are confined by two infinitely long flat iron solids and which are subjected to a shearing flow. The impact of surface polarizability and molecule geometry on the ion arrangement under shearing has been studied in detail. The results have revealed two regimes of lubrication, with a liquid phase being present under low normal loads, while solidification of the ILs, accompanied by a steep rise of normal forces and significant wall slip is observed at small plate-to-plate distances.

  7. Hydrogen migration within a water molecule: formation of HD+ upon irradiation of HOD with intense, ultrashort laser pulses

    Science.gov (United States)

    Mathur, Deepak; Dharmadhikari, Aditya K.; Dharmadhikari, Jayashree A.; Vasa, Parinda

    2017-08-01

    We have carried out velocity map imaging experiments on HOD molecules irradiated by 10 fs long pulses of intense (˜1 PW cm-2) laser light (800 nm). We have detected HD+ ions as a signature of unimolecular hydrogen migration within the water molecule; ion momentum maps measured at different laser polarizations yield evidence that such hydrogen migration occurs on ultrafast timescales. We have been able to utilize the momentum maps to deduce that (i) the HD+ ion that is formed is vibrationally excited, and (ii) that the electronic state of the precursor HOD2+ dication has an essentially linear geometrical structure with elongated O-H and O-D bonds. Our results are in agreement with expectations from ab initio quantum chemical computations of potential energy surfaces of the lowest-energy states of HOD, HOD+ and HOD2+.

  8. Sequential water molecule binding enthalpies for aqueous nanodrops containing a mono-, di- or trivalent ion and between 20 and 500 water molecules.

    Science.gov (United States)

    Heiles, Sven; Cooper, Richard J; DiTucci, Matthew J; Williams, Evan R

    2017-04-01

    Sequential water molecule binding enthalpies, Δ H n , n -1 , are important for a detailed understanding of competitive interactions between ions, water and solute molecules, and how these interactions affect physical properties of ion-containing nanodrops that are important in aerosol chemistry. Water molecule binding enthalpies have been measured for small clusters of many different ions, but these values for ion-containing nanodrops containing more than 20 water molecules are scarce. Here, Δ H n , n -1 values are deduced from high-precision ultraviolet photodissociation (UVPD) measurements as a function of ion identity, charge state and cluster size between 20-500 water molecules and for ions with +1, +2 and +3 charges. The Δ H n , n -1 values are obtained from the number of water molecules lost upon photoexcitation at a known wavelength, and modeling of the release of energy into the translational, rotational and vibrational motions of the products. The Δ H n , n -1 values range from 36.82 to 50.21 kJ mol -1 . For clusters containing more than ∼250 water molecules, the binding enthalpies are between the bulk heat of vaporization (44.8 kJ mol -1 ) and the sublimation enthalpy of bulk ice (51.0 kJ mol -1 ). These values depend on ion charge state for clusters with fewer than 150 water molecules, but there is a negligible dependence at larger size. There is a minimum in the Δ H n , n -1 values that depends on the cluster size and ion charge state, which can be attributed to the competing effects of ion solvation and surface energy. The experimental Δ H n , n -1 values can be fit to the Thomson liquid drop model (TLDM) using bulk ice parameters. By optimizing the surface tension and temperature change of the logarithmic partial pressure for the TLDM, the experimental sequential water molecule binding enthalpies can be fit with an accuracy of ±3.3 kJ mol -1 over the entire range of cluster sizes.

  9. Influence of orientation averaging on the anisotropy of thermal neutrons scattering on water molecules

    International Nuclear Information System (INIS)

    Markovic, M. I.; Radunovic, J. B.

    1976-01-01

    Determination of spatial distribution of neutron flux in water, most frequently used moderator in thermal reactors, demands microscopic scattering kernels dependence on cosine of thermal neutrons scattering angle when solving the Boltzmann equation. Since spatial orientation of water molecules influences this dependence it is necessary to perform orientation averaging or rotation-vibrational intermediate scattering function for water molecules. The calculations described in this paper and the obtained results showed that methods of orientation averaging do not influence the anisotropy of thermal neutrons scattering on water molecules, but do influence the inelastic scattering

  10. Molecular density functional theory of water including density–polarization coupling

    OpenAIRE

    Jeanmairet, Guillaume; Lévy, Nicolas; Levesque, Maximilien; Borgis, Daniel

    2016-01-01

    International audience; We present a three-dimensional molecular density functional theory of water derived fromfirst-principles that relies on the particle’s density and multipolar polarization density andincludes the density–polarization coupling. This brings two main benefits: (i) scalar densityand vectorial multipolar polarization density fields are much more tractable and give morephysical insight than the full position and orientation densities, and (ii) it includes the fulldensity–pola...

  11. A rapid and sensitive method for the simultaneous analysis of aliphatic and polar molecules containing free carboxyl groups in plant extracts by LC-MS/MS

    Directory of Open Access Journals (Sweden)

    Bonaventure Gustavo

    2009-11-01

    Full Text Available Abstract Background Aliphatic molecules containing free carboxyl groups are important intermediates in many metabolic and signalling reactions, however, they accumulate to low levels in tissues and are not efficiently ionized by electrospray ionization (ESI compared to more polar substances. Quantification of aliphatic molecules becomes therefore difficult when small amounts of tissue are available for analysis. Traditional methods for analysis of these molecules require purification or enrichment steps, which are onerous when multiple samples need to be analyzed. In contrast to aliphatic molecules, more polar substances containing free carboxyl groups such as some phytohormones are efficiently ionized by ESI and suitable for analysis by LC-MS/MS. Thus, the development of a method with which aliphatic and polar molecules -which their unmodified forms differ dramatically in their efficiencies of ionization by ESI- can be simultaneously detected with similar sensitivities would substantially simplify the analysis of complex biological matrices. Results A simple, rapid, specific and sensitive method for the simultaneous detection and quantification of free aliphatic molecules (e.g., free fatty acids (FFA and small polar molecules (e.g., jasmonic acid (JA, salicylic acid (SA containing free carboxyl groups by direct derivatization of leaf extracts with Picolinyl reagent followed by LC-MS/MS analysis is presented. The presence of the N atom in the esterified pyridine moiety allowed the efficient ionization of 25 compounds tested irrespective of their chemical structure. The method was validated by comparing the results obtained after analysis of Nicotiana attenuata leaf material with previously described analytical methods. Conclusion The method presented was used to detect 16 compounds in leaf extracts of N. attenuata plants. Importantly, the method can be adapted based on the specific analytes of interest with the only consideration that the

  12. A rapid and sensitive method for the simultaneous analysis of aliphatic and polar molecules containing free carboxyl groups in plant extracts by LC-MS/MS.

    Science.gov (United States)

    Kallenbach, Mario; Baldwin, Ian T; Bonaventure, Gustavo

    2009-11-25

    Aliphatic molecules containing free carboxyl groups are important intermediates in many metabolic and signalling reactions, however, they accumulate to low levels in tissues and are not efficiently ionized by electrospray ionization (ESI) compared to more polar substances. Quantification of aliphatic molecules becomes therefore difficult when small amounts of tissue are available for analysis. Traditional methods for analysis of these molecules require purification or enrichment steps, which are onerous when multiple samples need to be analyzed. In contrast to aliphatic molecules, more polar substances containing free carboxyl groups such as some phytohormones are efficiently ionized by ESI and suitable for analysis by LC-MS/MS. Thus, the development of a method with which aliphatic and polar molecules -which their unmodified forms differ dramatically in their efficiencies of ionization by ESI- can be simultaneously detected with similar sensitivities would substantially simplify the analysis of complex biological matrices. A simple, rapid, specific and sensitive method for the simultaneous detection and quantification of free aliphatic molecules (e.g., free fatty acids (FFA)) and small polar molecules (e.g., jasmonic acid (JA), salicylic acid (SA)) containing free carboxyl groups by direct derivatization of leaf extracts with Picolinyl reagent followed by LC-MS/MS analysis is presented. The presence of the N atom in the esterified pyridine moiety allowed the efficient ionization of 25 compounds tested irrespective of their chemical structure. The method was validated by comparing the results obtained after analysis of Nicotiana attenuata leaf material with previously described analytical methods. The method presented was used to detect 16 compounds in leaf extracts of N. attenuata plants. Importantly, the method can be adapted based on the specific analytes of interest with the only consideration that the molecules must contain at least one free carboxyl group.

  13. The Mars water cycle at other epochs: History of the polar caps and layered terrain

    Science.gov (United States)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1992-01-01

    The atmospheric water cycle at the present epoch involves summertime sublimation of water from the north polar cap, transport of water through the atmosphere, and condensation on one or both winter CO2 caps. Exchange with the regolith is important seasonally, but the water content of the atmosphere appears to be controlled by the polar caps. The net annual transport through the atmosphere, integrated over long timescales, must be the driving force behind the long-term evolution of the polar caps; clearly, this feeds back into the evolution of the layered terrain. We have investigated the behavior of the seasonal water cycle and the net integrated behavior at the pole for the last 10 exp 7 years. Our model of the water cycle includes the solar input, CO2 condensation and sublimation, and summertime water sublimation through the seasonal cycles, and incorporates the long-term variations in the orbital elements describing the Martian orbit.

  14. Incident energy dependence of scattering behavior of water molecules on Si (100) and graphite surfaces

    Science.gov (United States)

    Kihara, G.; Kotsubo, Y.; Yoshimoto, Y.; Kinefuchi, I.; Takagi, S.

    2016-11-01

    The interaction between water molecules and solid surfaces has a great impact on water vapor flows in nanostructures. We conduct molecular beam scattering experiments covering the incident energy range corresponding to the thermal energy at room temperature to investigate the scattering behavior of water molecules on silicon and graphite surfaces. The incident energy dependence of the scattering distributions exhibits opposite trends on these surfaces. Molecular dynamics simulations reveal that the difference is caused by the inertia effect of the incident molecules and the surface corrugations.

  15. Polarization splay as the origin of the modulation in the B1 and B7 smectic phases of bent-core molecules

    Czech Academy of Sciences Publication Activity Database

    Coleman, D.A.; Jones, C.D.; Nakata, M.; Clark, N.A.; Walba, D.M.; Weissflog, W.; Fodor-Csorba, K.; Watanabe, J.; Novotná, Vladimíra; Hamplová, Věra

    2008-01-01

    Roč. 77, č. 2 (2008), 021703/1-021703/6 ISSN 1539-3755 Grant - others:NSF MRSEC(US) DMR-0213918; NSF(US) DMR-0072989 Institutional research plan: CEZ:AV0Z10100520 Keywords : liquid crystals * bent-core molecules * polarization splay Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.508, year: 2008

  16. First Principles Study on the Interaction Mechanisms of Water Molecules on TiO2 Nanotubes

    Directory of Open Access Journals (Sweden)

    Jianhong Dai

    2016-12-01

    Full Text Available The adsorption properties of water molecules on TiO2 nanotubes (TiO2NT and the interaction mechanisms between water molecules are studied by first principles calculations. The adsorption preferences of water molecules in molecular or dissociated states on clean and H-terminated TiO2NT are evaluated. Adsorption of OH clusters on (0, 6 and (9, 0 TiO2 nanotubes are first studied. The smallest adsorption energies are −1.163 eV and −1.383 eV, respectively, by examining five different adsorption sites on each type of tube. Eight and six adsorption sites were considered for OH adsorbtion on the H terminated (0, 6 and (9, 0 nanotubes. Water molecules are reformed with the smallest adsorption energy of −4.796 eV on the former and of −5.013 eV on the latter nanotube, respectively. For the adsorption of a single water molecule on TiO2NT, the molecular state shows the strongest adsorption preference with an adsorption energy of −0.660 eV. The adsorption of multiple (two and three water molecules on TiO2NT is also studied. The calculated results show that the interactions between water molecules greatly affect their adsorption properties. Competition occurs between the molecular and dissociated states. The electronic structures are calculated to clarify the interaction mechanisms between water molecules and TiO2NT. The bonding interactions between H from water and oxygen from TiO2NT may be the reason for the dissociation of water on TiO2NT.

  17. The Mars water cycle at other epochs - Recent history of the polar caps and layered terrain

    Science.gov (United States)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1993-01-01

    A numerical model is presented of the integrated role of seasonal water cycle on the evolution of polar deposits on Mars over the last 10 million years. From the model, it is concluded that the only major difference between the polar caps which affects their long-term behavior is ultimately the difference in their elevations. Because of that difference, there is a preference for CO2 frost to stay longer on the northern polar cap. The average difference in sublimation at the caps results in a net south-to-north transport of water ice over long time scales. Superimposed on any long-term behavior is a transfer of water ice between the caps on the 10 exp 5 - 10 exp 6 yr time scales. The amount of water exchanged is small compared to the total ice content of the polar deposits.

  18. Interfacial water molecules at biological membranes: Structural features and role for lateral proton diffusion.

    Science.gov (United States)

    Nguyen, Trung Hai; Zhang, Chao; Weichselbaum, Ewald; Knyazev, Denis G; Pohl, Peter; Carloni, Paolo

    2018-01-01

    Proton transport at water/membrane interfaces plays a fundamental role for a myriad of bioenergetic processes. Here we have performed ab initio molecular dynamics simulations of proton transfer along two phosphatidylcholine bilayers. As found in previous theoretical studies, the excess proton is preferably located at the water/membrane interface. Further, our simulations indicate that it interacts not only with phosphate head groups, but also with water molecules at the interfaces. Interfacial water molecules turn out to be oriented relative to the lipid bilayers, consistently with experimental evidence. Hence, the specific water-proton interaction may help explain the proton mobility experimentally observed at the membrane interface.

  19. Theoretical investigation of the ultrafast dissociation of core-ionized water and uracil molecules immersed in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Stia, C.R.; Fojon, O.A. [Instituto de Fisica Rosario - CONICET-Universidad Nacional de Rosario, Rosario (Argentina); Gaigeot, M.P. [Laboratoire Analyse et Modelisation pour la Biologie et l' Environnement, LAMBE, UMR-CNRS 8587, Universite d' Evry-Val-d' Essonne, 91 - Evry (France); Institut Universitaire de France, 75 - Paris (France); Vuilleumier, R. [Departement de chimie, Ecole Normale Superieure, 75 - Paris (France); Herve du Penhoat, M.A.; Politis, M.F. [Institut de Mineralogie et de Physique des Milieux Condenses, IMPMC, UMR-CNRS 7590, Universite Pierre et Marie Curie, 75 - Paris (France)

    2010-10-15

    We present a series of ab initio density functional based calculations of the fragmentation dynamics of core-ionized biomolecules. The computations are performed for pure liquid water, aqueous and isolated Uracil. Core ionization is described by replacing the 1s{sup 2} pseudopotential of one atom of the target molecule (C, N or O) with a pseudopotential for a 1s{sup 1} core-hole state. Our results predict that the dissociation of core-ionized water molecules may be reached during the lifetime of inner-shell vacancy (less than 10 fs), leading to OH bond breakage as a primary outcome. We also observe a second fragmentation channel in which total Coulomb explosion of the ionized water molecule occurs. Fragmentation pathways are found similar for pure water or when the water molecule is in the primary hydration shell of the uracil molecule. In the latter case, the proton may be transferred towards the uracil oxygen atoms. When the core hole is located on the uracil molecule, ultrafast dissociation is only observed in the aqueous environment and for nitrogen-K vacancies, resulting in proton transfers towards the hydrogen-bonded water molecule. (authors)

  20. A nanoparticle catalyst for heterogeneous phase para-hydrogen-induced polarization in water.

    Science.gov (United States)

    Glöggler, Stefan; Grunfeld, Alexander M; Ertas, Yavuz N; McCormick, Jeffrey; Wagner, Shawn; Schleker, P Philipp M; Bouchard, Louis-S

    2015-02-16

    Para-hydrogen-induced polarization (PHIP) is a technique capable of producing spin polarization at a magnitude far greater than state-of-the-art magnets. A significant application of PHIP is to generate contrast agents for biomedical imaging. Clinically viable and effective contrast agents not only require high levels of polarization but heterogeneous catalysts that can be used in water to eliminate the toxicity impact. Herein, we demonstrate the use of Pt nanoparticles capped with glutathione to induce heterogeneous PHIP in water. The ligand-inhibited surface diffusion on the nanoparticles resulted in a (1) H polarization of P=0.25% for hydroxyethyl propionate, a known contrast agent for magnetic resonance angiography. Transferring the (1) H polarization to a (13) C nucleus using a para-hydrogen polarizer yielded a polarization of 0.013%. The nuclear-spin polarizations achieved in these experiments are the first reported to date involving heterogeneous reactions in water. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. [The multi-angle polarization spectral character of water and its applications in water color remote sensing].

    Science.gov (United States)

    Wu, Tai-Xia; Yan, Lei; Xiang, Yun; Zhao, Yun-Sheng; Chen, Wei

    2010-02-01

    The reflectance of pure water is very low at visible and near infrared bands. Its spectral characteristics are not obvious. Water always shows dark hue in optical remote sensing images. This dark hue causes the difficulties in water remote sensing identification. There is an interesting phenomenon when the authors research the water polarization spectroscopy. The authors measured water's polarization spectra and reflectance spectra at different view zenith angles using the ASD spectrometer. When the view zenith angle was zero (measured vertically), as the spectrum people commonly measure, there was no polarization phenomenon at the water surface, and the reflectance was low at each band. Along with the increase in view zenith angle, the DOP spectra curves increased evidently, while the reflectance curves only changed a little. When the view zenith angle was over 30 degree, the values of DOP spectrum were much larger than the reflectance spectrum values at the entire visible and near infrared bands. At some bands, the DOP value was several dozen times than its reflectance value. This phenomenon shows that the water's brightness in DOP image is much higher than its brightness in intensity image under the same condition. This rule was verified by the PARASOL multiangle polarization satellite data. Comparing the average brightness of DOP images with the average brightness of intensity images at 490, 670 and 865 nm band, the former is higher than the latter apparently. The brighter DOP images are better for water remote sensing identification It is the first time that the authors found this special multiangle polarization spectral character of water. It revealed the advantage of water detection using the multiangle polarization remote sensing data. This method solved the low reflectivity problem of water color remote sensing. It will greatly improve the capability of water remote sensing identification and the retrieval accuracy of water quality parameters.

  2. Analysis of method of polarization surveying of water surface oil pollution

    Science.gov (United States)

    Zhukov, B. S.

    1979-01-01

    A method of polarization surveying of oil films on the water surface is analyzed. Model calculations of contrasted oil and water obtained with different orientations of the analyzer are discussed. The model depends on the spectral range, water transparency and oil film, and the selection of observational direction.

  3. Contamination of boreholes water by 76 pesticides molecules in the ...

    African Journals Online (AJOL)

    Analysis campaign of underground water was done in 2010 on five boreholes water samples situated in agricultural cotton zone. The obtained results showed the presence of various active matters of at least 76 residues of pesticides, especially insecticides, herbicides and fungicides, with accumulated contents which could ...

  4. Adsorption of the water molecule on monolayer graphene surface has effect on its optical properties

    International Nuclear Information System (INIS)

    Peng, Y F; Wang, J; Lu, Z S; Han, X Y

    2015-01-01

    The adsorption of water molecules on the surface of a monolayer graphene can be studied with the Materials Studio software and be applied density function theory from first principles. By studying the interaction of graphene with water molecule, it uses DFT (density function theory) with the PBE-GGA (the generalized gradient approximation of Perdew- Burke-Ernzerhof) and Periodic plane model, on the one hand working out the adsorption energy, and on the other hand getting related optical properties. It is shown that a single water molecule on graphene has very small adsorption energy, mainly owning to the van der Waals interactions. Graphene has high hydrophobic; adsorbed water molecule has little effect on the electronic structure of the graphene. The optical properties of the graphene have changed after the adsorption. (paper)

  5. Structural Arrangement of Water Molecules around Highly Charged Nanoparticles: Molecular Dynamics Simulation

    International Nuclear Information System (INIS)

    Kim, Eunae; Yeom, Min Sun

    2014-01-01

    Molecular dynamics simulations were performed to understand the structural arrangement of water molecules around highly charged nanoparticles under aqueous conditions. The effect of two highly charged nanoparticles on the solvation charge asymmetry has been examined. We calculated the radial distribution functions of the components of water molecules around nanoparticles which have four charge types at two different salt concentrations. Even though the distributions of water molecules surrounding a sodium ion and a chloride ion are hardly affected by the charges of nanoparticles and the salt concentrations, those around highly charged nanoparticles are strongly influenced by the charges of nanoparticles, but hardly by the charges of nanoparticles and salt concentrations. We find that the distributions of hydrogen atoms in water molecules around one highly charged nanoparticle are dependent on the magnitude of the nanoparticle charge

  6. Dipole polarizability of alkali-metal (Na, K, Rb)-alkaline-earth-metal (Ca, Sr) polar molecules: Prospects for alignment

    Science.gov (United States)

    Gopakumar, Geetha; Abe, Minori; Hada, Masahiko; Kajita, Masatoshi

    2014-06-01

    Electronic open-shell ground-state properties of selected alkali-metal-alkaline-earth-metal polar molecules are investigated. We determine potential energy curves of the 2Σ+ ground state at the coupled-cluster singles and doubles with partial triples (CCSD(T)) level of electron correlation. Calculated spectroscopic constants for the isotopes (23Na, 39K, 85Rb)-(40Ca, 88Sr) are compared with available theoretical and experimental results. The variation of the permanent dipole moment (PDM), average dipole polarizability, and polarizability anisotropy with internuclear distance is determined using finite-field perturbation theory at the CCSD(T) level. Owing to moderate PDM (KCa: 1.67 D, RbCa: 1.75 D, KSr: 1.27 D, RbSr: 1.41 D) and large polarizability anisotropy (KCa: 566 a.u., RbCa: 604 a.u., KSr: 574 a.u., RbSr: 615 a.u.), KCa, RbCa, KSr, and RbSr are potential candidates for alignment and orientation in combined intense laser and external static electric fields.

  7. Incipient ferroelectricity of water molecules confined to nano-channels of beryl

    OpenAIRE

    Gorshunov, B. P.; Torgashev, V. I.; Zhukova, E. S.; Thomas, V. G.; Belyanchikov, M. A.; Kadlec, C.; Kadlec, F.; Savinov, M.; Ostapchuk, T.; Petzelt, J.; Prokle?ka, J.; Tomas, P. V.; Pestrjakov, E. V.; Fursenko, D. A.; Shakurov, G. S.

    2016-01-01

    Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole?dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they...

  8. Polarization Lidar for High Precision Water Depth Measurements of Glacial Melt Water

    Science.gov (United States)

    Barton-Grimley, R. A.; Thayer, J. P.; Koenig, L.; Moussavi, M. S.; Gisler, A.; Crowley, G.

    2016-12-01

    In the past decade, warming temperatures over the GrIS have significantly increased the surface melt flowing through the supraglacial hydrologic system - melt ponds, lakes, and rivers - all playing a crucial role in the mass loss of land ice. The smaller melt ponds, rivers and streams on the ice sheets, which evacuate more water than is contained in the larger lakes [Smith et al., 2015], are not sufficiently measured to quantify melt. Scientific requirements established by the cryospheric community call for hydrographic lidar measurements with water depth accuracy better than ±10 cm over meter-scale depths during the melt season. Lakes observed in Southwest, Greenland were on average 2-3 meters deep with maxima near 8 m. Stream depths ranged from 0.6 to 3.4 m with a mean depth of 2.0 m [Moussavi et al., 2016, Pope et al., 2016 and Smith et al., 2015]. In response, a 532nm topographic/hydrographic lidar demonstrator implementing a novel measurement scheme has been developed. The lab demonstrator isolates water surface and ice substrate returns using polarization scattering attributes, and fast timing, to range resolve the two surfaces at centimeter precision. Results of the lidar demonstrator on polarization properties of surface water roughness and varied ice substrates expected during measurement of supraglacial streams, rivers, and shallow melt ponds will be presented. Demonstrating the measurement techniques in a number of controlled scenarios, necessary for understanding the subsequent instrument response, provides a baseline for future measurements in flow regimes that include stream cross-sectional area and discharge estimates. Supporting analysis indicates benefits in system scalability, applicability, and adaptability using this lidar technique, and offers the means to accurately quantify the predominantly shallow, melt ponds, sinuous rivers, and streams that are not currently identifiable from satellite imagery.

  9. Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness

    Science.gov (United States)

    Paula, S.; Volkov, A. G.; Van Hoek, A. N.; Haines, T. H.; Deamer, D. W.

    1996-01-01

    Two mechanisms have been proposed to account for solute permeation of lipid bilayers. Partitioning into the hydrophobic phase of the bilayer, followed by diffusion, is accepted by many for the permeation of water and other small neutral solutes, but transient pores have also been proposed to account for both water and ionic solute permeation. These two mechanisms make distinctively different predictions about the permeability coefficient as a function of bilayer thickness. Whereas the solubility-diffusion mechanism predicts only a modest variation related to bilayer thickness, the pore model predicts an exponential relationship. To test these models, we measured the permeability of phospholipid bilayers to protons, potassium ions, water, urea, and glycerol. Bilayers were prepared as liposomes, and thickness was varied systematically by using unsaturated lipids with chain lengths ranging from 14 to 24 carbon atoms. The permeability coefficient of water and neutral polar solutes displayed a modest dependence on bilayer thickness, with an approximately linear fivefold decrease as the carbon number varied from 14 to 24 atoms. In contrast, the permeability to protons and potassium ions decreased sharply by two orders of magnitude between 14 and 18 carbon atoms, and leveled off, when the chain length was further extended to 24 carbon atoms. The results for water and the neutral permeating solutes are best explained by the solubility-diffusion mechanism. The results for protons and potassium ions in shorter-chain lipids are consistent with the transient pore model, but better fit the theoretical line predicted by the solubility-diffusion model at longer chain lengths.

  10. Different effects of water molecules on CO oxidation with different reaction mechanisms.

    Science.gov (United States)

    Liu, Shan Ping; Zhao, Ming; Sun, Guo En; Gao, Wang; Jiang, Qing

    2018-03-28

    The effects of water molecules (promotion/prohibition) on CO oxidation remain debated. Herein, using density functional theory calculations, we demonstrate that water molecules can facilitate the CO + O/O 2 oxidation process, but prohibit the CO + OH oxidation process, which is consistent with the experimental finding that water molecules have two distinct effects on CO oxidation. For the CO + O/O 2 oxidation mechanisms, we find that the reactants were pushed towards each other due to the steric effect of the water molecules, which decreases the reaction barriers and promotes the CO + O/O 2 oxidation process. For the CO + OH oxidation mechanisms, water molecules increase the stability of the COOH* intermeditae by H-bonds and van der Waals forces, which increase the barriers of the COOH* transformation process and the COOH*-tra dissociation process, and prohibit the CO + OH oxidation process. These results clarify the different effects of water molecules on CO oxidation and shed light on catalyst usage in the CO oxidation industry.

  11. Generation of circularly polarized XUV and soft-x-ray high-order harmonics by homonuclear and heteronuclear diatomic molecules subject to bichromatic counter-rotating circularly polarized intense laser fields

    Science.gov (United States)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2017-12-01

    Recently, studies of bright circularly polarized high-harmonic beams from atoms in the soft-x-ray region as a source for x-ray magnetic circular dichroism measurement in a tabletop-scale setup have received considerable attention. In this paper, we address the problem with molecular targets and perform a detailed quantum study of H2 +, CO, and N2 molecules in bichromatic counter-rotating circularly polarized laser fields where we adopt wavelengths (1300 and 790 nm) and intensities (2 ×1014W /cm2 ) reported in a recent experiment [Proc. Natl. Acad. Sci. USA 112, 14206 (2015), 10.1073/pnas.1519666112]. Our treatment of multiphoton processes in homonuclear and heteronuclear diatomic molecules is nonperturbative and based on the time-dependent density-functional theory for multielectron systems. The calculated radiation spectrum contains doublets of left and right circularly polarized harmonics with high-energy photons in the XUV and soft-x-ray ranges. Our results reveal intriguing and substantially different nonlinear optical responses for homonuclear and heteronuclear diatomic molecules subject to circularly polarized intense laser fields. We study in detail the below- and above-threshold harmonic regions and analyze the ellipticity and phase of the generated harmonic peaks.

  12. The Contribution of Water Ice Clouds to the Water Cycle in the North Polar Region of Mars: Preliminary Analysis

    Science.gov (United States)

    Bass, D. S.; Tamppari, L. K.

    2000-01-01

    While it has long been known that Mars' north residual polar cap and the Martian regolith are significant sources of atmospheric water vapor, the amount of water vapor observed in the northern spring season by the Viking Mars Atmospheric Water Detector instrument (MAWD) cannot be attributed to cap and regolith sources alone. Kahn suggested that ice hazes may be the mechanism by which additional water is supplied to the Martian atmosphere. Additionally, a significant decrease in atmospheric water vapor was observed in the late northern summer that could not be correlated with the return of the cold seasonal C02 ice. While the detection of water ice clouds on Mars indicate that water exists in Mars' atmosphere in several different phases, the extent to which water ice clouds play a role in moving water through the Martian atmosphere remains uncertain. Work by Bass et. al. suggested that the time dependence of water ice cap seasonal variability and the increase in atmospheric water vapor depended on the polar cap center reaching 200K, the night time saturation temperature. Additionally, they demonstrated that a decrease in atmospheric water vapor may be attributed to deposition of water ice onto the surface of the polar cap; temperatures were still too warm at this time in the summer for the deposition of carbon dioxide. However, whether water ice clouds contribute significantly to this variability is unknown. Additional information is contained in original extended abstract.

  13. In situ study by polarization modulated Fourier transform infrared spectroscopy of the structure and orientation of lipids and amphipathic peptides at the air-water interface

    OpenAIRE

    Cornut, I.; Desbat, B.; Turlet, J.M.; Dufourcq, J.

    1996-01-01

    Free amphipathic peptides and peptides bound to dimyristoylphosphatidylcholine (DMPC) were studied directly at the air/water interface using polarization modulation infrared reflection absorption spectroscopy (PMIRRAS). Such differential reflectivity measurements proved to be a sensitive and efficient technique to investigate in situ the respective conformations and orientations of lipid and peptide molecules in pure and mixed films. Data obtained for melittin, a natural hemolytic peptide, ar...

  14. Water absorption in PEEK and PEI matrices. Contribution to the understanding of water-polar group interactions

    Science.gov (United States)

    Courvoisier, E.; Bicaba, Y.; Colin, X.

    2016-05-01

    The water absorption in two aromatic linear polymers (PEEK and PEI) was studied between 10% and 90% RH at 30, 50 and 70°C. It was found that these polymers display classical Henry and Fick's behaviors. Moreover, they have very close values of equilibrium water concentration C∞ and water diffusivity D presumably because their respective polar groups establish molecular interactions of the same nature with water. This assumption was checked from a literature compilation of values of C∞ and D for a large variety of linear and tridimensional polymers containing a single type of polar group. It was then evidenced that almost all types of carbonyl group (in particular, those belonging to imides, amides and ketones) have the same molar contribution to water absorption, except those belonging to esters which are much less hydrophilic. Furthermore, hydroxyl and sulfone groups are much more hydrophilic than carbonyl groups so that their molar contribution is located on another master curve. On this basis, semi-empirical structure/water transport property relationships were proposed. It was found that C∞ increases exponentially with the concentration of polar groups (presumably because water is doubly bonded), but also with the intensity of their molecular interactions with water. In contrast, D is inversely proportional to C∞, which means that polar group-water interactions slow down the rate of water diffusion.

  15. Bonded hydrogen and hydrogen bonding in reciprocal space. Simulation of diffraction by a water molecule and dimer

    NARCIS (Netherlands)

    Poorthuis, G.H.A.; Feil, D.; Feil, D.

    1994-01-01

    There seems to be increasing interest in the electron density distribution in molecules and crystals. In particular, the effect of polarization due to internal fields in condensed matter is studied. X-ray diffraction data can contribute to the knowledge required. As the effects of polarization on

  16. Hydroxyl and water molecule orientations in trypsin: comparison to molecular dynamic structures.

    Science.gov (United States)

    McDowell, R S; Kossiakoff, A A

    1996-01-01

    A comparison is presented of experimentally observed hydroxyl and water hydrogens in trypsin determined from neutron density maps with the results of a 140ps molecular dynamics (MD) simulation. Experimental determination of hydrogen and deuterium atom positions in molecules as large as proteins is a unique capability of neutron diffraction. The comparison addresses the degree to which a standard force-field approach can adequately describe the local electrostatic and van der Waals forces that determine the orientations of these hydrogens. The molecular dynamics simulation, based on the all-atom AMBER force-field, allowed free rotation of all hydroxyl groups and movement of water molecules making up a bath surrounding the protein. The neutron densities, derived from 2.1A D2O-H2O difference Fourier maps, provide a database of 27 well-ordered hydroxyl hydrogens. Virtually all of the simulated hydroxyl orientations are within a standard deviation of the experimentally-observed positions, including several examples in which both the simulation and the neutron density indicate that a hydroxyl group is shifted from a 'standard' rotamer. For the most highly ordered water molecules, the hydrogen distributions calculated from the trajectory were in good agreement with neutron density; simulated water molecules that displayed multiple hydrogen bonding networks had correspondingly broadened neutron density profiles. This comparison was facilitated by development of a method to construct a pseudo 2A density map based on the hydrogen atom distributions from the simulation. The degree of internal water molecules is shown to result primarily from the electrostatic environment surrounding that water molecule as opposed to the cavity size available to the molecule. A method is presented for comparing the discrete observations sampled in a dynamics trajectory with the time-averaged data obtained from X-ray or neutron diffraction studies. This method is particularly useful for

  17. Roles of water molecules in bacteria and viruses

    Science.gov (United States)

    Cox, C. S.

    1993-02-01

    In addition to water, microbes mainly comprise lipids, carbohydrates, proteins and nucleic acids. Their structure and function singularly and conjointly is affected by water activity. Desiccation leads to dramatic lipid phase changes whereas carbohydrates, proteins and nucleic acids initially suffer spontaneous, reversible low activation energy Maillard reactions forming products that more slowly re-arrange, cross-link etc. to give non-native states. While initial products spontaneously may reverse to native states by raising water activity, later products only do so through energy consumption and enzymatic activity eg. repair. Yet, native states of lipid membranes and associated enzymes are required to generate energy. Consequently, good reserves of high energy compounds (e.g. ATP) and of membrane stabilisers (e.g. trehalose) may be expected to enhance survival following drying and rehydration (e.g. anhydrobiotic organisms).

  18. Metal-organic frameworks from chiral square-pyramidal copper(II) complexes: Enantiospecific inclusion and perfectly polar alignment of guest and host molecules

    Science.gov (United States)

    Muppidi, Vamsee Krishna; Zacharias, Panthapally S.; Pal, Samudranil

    2007-01-01

    The physical properties of [CuL 12(H 2O)] ( 1) and [CuL 22(H 2O)] ( 2) and preparation and crystal structures of the inclusion compounds 1·( P)-C 2H 4Br 2, 2·( M)-C 2H 4Br 2, 1·CH 3CN and 2·CH 3CN are described. HL 1 and HL 2 (H represents the dissociable phenolic proton) are the N,O-donor chiral reduced Schiff bases N-(2-hydroxy-5-nitrobenzyl)-( R)- α-methyl-benzylamine and N-(2-hydroxy-5-nitrobenzyl)-( S)- α-methylbenzylamine, respectively. All the compounds crystallize in the non-centrosymmetric space group C2. In the crystal lattice, the host [CuL n2(H 2O)] ( 1 and 2) molecules connected by O-H⋯O and C-H⋯O interactions form perfectly polar two-dimensional networks. In these chiral and polar host frameworks, enantiospecific inclusion with polar ordering of the right-handed ( P) and the left-handed ( M) gauche form of 1,2-dibromoethane as well as polar alignment of acetonitrile molecules are observed. The host and guest molecules are linked by C-H⋯O interactions. The O-atoms of the nitro substituent on the ligands of 1 and 2 act as the acceptors in all these intermolecular O-H⋯O and C-H⋯O interactions. The structures reported in this work provide rare examples of enantiospecific trapping of the chiral rotamers of 1,2-dibromoethane as well as perfectly polar alignment of both guest and host molecules.

  19. Analytical model for three-dimensional Mercedes-Benz water molecules

    Science.gov (United States)

    Urbic, T.

    2013-01-01

    We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature. PMID:23005100

  20. Analytical model for three-dimensional Mercedes-Benz water molecules.

    Science.gov (United States)

    Urbic, T

    2012-06-01

    We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature.

  1. The role of water molecules in stereoselectivity of glucose/galactose-binding protein

    Science.gov (United States)

    Kim, Minsup; Cho, Art E.

    2016-11-01

    Using molecular dynamics (MD) simulation methods, we attempted to explain the experimental results on ligand specificity of glucose/galactose-binding protein (GGBP) to β-D-glucose and β-D-galactose. For the simulation, a three-dimensional structure of GGBP was prepared, and homology modeling was performed to generate variant structures of GGBP with mutations at Asp14. Then, docking was carried out to find a reasonable β-D-glucose and β-D-galactose binding conformations with GGBP. Subsequent molecular dynamics simulations of β-D-glucose-GGBP and β-D-galactose-GGBP complexes and estimation of the orientation and stability of water molecules at the binding site revealed how water molecules influence ligand specificity. In our simulation, water molecules mediated interactions of β-D-glucose or β-D-galactose with residue 14 of GGBP. In this mechanism, the Phe16Ala mutant leaves both sugar molecules free to move, and the specific role of water molecules were eliminated, while the wild type, Asp14Asn mutant, and Asp14Glu mutant make hydrogen bond interactions with β-D-glucose more favorable. Our results demonstrate that bound water molecules at the binding site of GGBP are related to localized conformational change, contributing to ligand specificity of GGBP for β-D-glucose over β-D-galactose.

  2. Metal-organic frameworks from chiral square-pyramidal copper(II) complexes: Enantiospecific inclusion and perfectly polar alignment of guest and host molecules

    International Nuclear Information System (INIS)

    Muppidi, Vamsee Krishna; Zacharias, Panthapally S.; Pal, Samudranil

    2007-01-01

    The physical properties of [CuL 1 2 (H 2 O)] (1) and [CuL 2 2 (H 2 O)] (2) and preparation and crystal structures of the inclusion compounds 1.(P)-C 2 H 4 Br 2 , 2.(M)-C 2 H 4 Br 2 , 1.CH 3 CN and 2.CH 3 CN are described. HL 1 and HL 2 (H represents the dissociable phenolic proton) are the N,O-donor chiral reduced Schiff bases N-(2-hydroxy-5-nitrobenzyl)-(R)-α-methyl-benzylamine and N-(2-hydroxy-5-nitrobenzyl)-(S)-α-methylbenzylamine, respectively. All the compounds crystallize in the non-centrosymmetric space group C2. In the crystal lattice, the host [CuL n 2 (H 2 O)] (1 and 2) molecules connected by O-H...O and C-H...O interactions form perfectly polar two-dimensional networks. In these chiral and polar host frameworks, enantiospecific inclusion with polar ordering of the right-handed (P) and the left-handed (M) gauche form of 1,2-dibromoethane as well as polar alignment of acetonitrile molecules are observed. The host and guest molecules are linked by C-H...O interactions. The O-atoms of the nitro substituent on the ligands of 1 and 2 act as the acceptors in all these intermolecular O-H...O and C-H...O interactions. The structures reported in this work provide rare examples of enantiospecific trapping of the chiral rotamers of 1,2-dibromoethane as well as perfectly polar alignment of both guest and host molecules. - Graphical abstract: The square-pyramidal Cu(II) complexes [CuL n 2 (H 2 O)] with the bidentate HL n (HL 1 =N-(2-hydroxy-5-nitrobenzyl)-(R)-α-methyl-benzylamine and HL 2 =N-(2-hydroxy-5-nitrobenzyl)-(S)-α-methylbenzylamine) form 1:1 host-guest compounds with Br(CH 2 ) 2 Br and CH 3 CN. The X-ray structures of these species reveal the enantiospecific confinement of the chiral rotamers of Br(CH 2 ) 2 Br and perfectly polar ordering of both host and guest molecules in the crystal lattice. The figure shows the polar alignments of (a) [CuL 1 2 (H 2 O)].(P)-C 2 H 4 Br 2 and (b) [CuL 2 2 (H 2 O)].CH 3 CN

  3. Six-channel multi-wavelength polarization Raman lidar for aerosol and water vapor profiling.

    Science.gov (United States)

    Wang, Zhaofei; Mao, Jiandong; Li, Juan; Zhao, Hu; Zhou, Chunyan; Sheng, Hongjiang

    2017-07-10

    Aerosols and water vapor are important atmospheric components, and have significant effects on both atmospheric energy conversion and climate formation. They play the important roles in balancing the radiation budget between the atmosphere and Earth, while water vapor also directly affects rainfall and other weather processes. To further research atmospheric aerosol optical properties and water vapor content, an all-time six-channel multi-wavelength polarization Raman lidar has been developed at Beifang University of Nationalities. In addition to 1064, 532, and 355 nm Mie scattering channels, the lidar has a polarization channel for 532 nm return signals, a 660 nm water vapor channel, and a 607 nm nitrogen detection channel. Experiments verified the lidar's feasibility and return signals from six channels were detected. Using inversion algorithms, extinction coefficient profiles at 1064, 532 and 355 nm, Ångström exponent profiles, depolarization ratio profiles, and water vapor mixing ratio profiles were all obtained. The polarization characteristics and water vapor content of cirrus clouds, the polarization characteristics of dusty weather, and the water vapor profiles over different days were also analyzed. Results show that the lidar has the full-time detection capability for atmospheric aerosol optical properties and water vapor profiles, and real-time measurements of aerosols and water vapor over the Yinchuan area were realized, providing important information for studying the environmental quality and climate change in this area.

  4. Generation of wavelength-tunable soliton molecules in a 2-μm ultrafast all-fiber laser based on nonlinear polarization evolution.

    Science.gov (United States)

    Wang, Pan; Bao, Chengying; Fu, Bo; Xiao, Xiaosheng; Grelu, Philippe; Yang, Changxi

    2016-05-15

    We report on the experimental observation of stable single solitons and soliton molecules in a 2-μm thulium-holmium-doped fiber laser mode-locked through the nonlinear polarization evolution technique within an anomalously dispersive cavity. Single 0.65 nJ solitons feature a 7.3 nm spectral FWHM and 540 fs temporal duration, yielding a time-bandwidth product close to the Fourier-transform limitation. Under the same pumping power of 740 mW, stable out-of-phase twin-soliton molecules, featuring a temporal separation of 2.5 ps between the two ∼700  fs pulses, are generated in a deterministic way, while the central wavelength of the soliton molecules can be tuned from 1920 to 1940 nm. Finally, we present strong experimental evidence of vibrating soliton molecules.

  5. Effect of the dynamic core-electron polarization of CO molecules on high-order harmonic generation

    Science.gov (United States)

    Le, Cam-Tu; Hoang, Van-Hung; Tran, Lan-Phuong; Le, Van-Hoang

    2018-04-01

    We theoretically investigate the influence of dynamic core-electron polarization (DCeP) of CO molecules on high-order harmonic generation (HHG) by solving the time-dependent Schrödinger equation (TDSE) within the single-active-electron (SAE) approximation. The effect of DCeP is shown to depend strongly on the molecular orientation angle θ . Particularly, compared to the calculations without DCeP, the inclusion of this effect gives rise to an enhancement of harmonic intensity at θ =0° when the electric field aligns along the O-C direction and to a suppression at θ =180° when the field heads in the opposite direction. Meanwhile, when the electric field is perpendicular to the molecular axis, the effect is almost insignificant. The phenomenon is thought to be linked to the ionization process. However, this picture is not completed yet. By solving the TDSE within the SAE approximation and conducting a classical simulation, we are able to obtain the ionization probability as well as the ionization rate and prove that HHG, in fact, receives a major contribution from electrons ionized at only a certain time interval, rather than throughout the whole pulse propagation. Including DCeP, the variation of the ionization rate in this interval highly correlates to that of the HHG intensity. To better demonstrate the origin of this manifestation, we also show the alternation DCeP makes on the effective potential that corresponds to the observed change in the ionization rate and consequently the HHG intensity. Our results confirm previous studies' observations and, more importantly, provide the missing physical explanation. With the role of DCeP now better understood for the entire range of the orientation angle, this effect can be handled more conveniently for calculating the HHG of other targets.

  6. Extending the strong-field approximation of high-order harmonic generation to polar molecules: gating mechanisms and extension of the harmonic cutoff

    DEFF Research Database (Denmark)

    Etches, Adam; Madsen, Lars Bojer

    2010-01-01

    Polar molecules such as CO are interesting target systems for high-order harmonic generation (HHG) as they can be oriented with current laser techniques, thus allowing the study of systems without inversion symmetry. However, the asymmetry of the molecule also means that the molecular orbitals...... (enhanced) every other half-cycle. We show that the Stark shift weakens the strength of system-induced gating and also determines the relative contribution from opposite orientations in field-induced gating. Finally, we propose a novel scheme for extending the high-order harmonic cutoff by letting the two...

  7. Incipient ferroelectricity of water molecules confined to nano-channels of beryl

    Science.gov (United States)

    Gorshunov, B. P.; Torgashev, V. I.; Zhukova, E. S.; Thomas, V. G.; Belyanchikov, M. A.; Kadlec, C.; Kadlec, F.; Savinov, M.; Ostapchuk, T.; Petzelt, J.; Prokleška, J.; Tomas, P. V.; Pestrjakov, E. V.; Fursenko, D. A.; Shakurov, G. S.; Prokhorov, A. S.; Gorelik, V. S.; Kadyrov, L. S.; Uskov, V. V.; Kremer, R. K.; Dressel, M.

    2016-09-01

    Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole-dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole-dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie-Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices.

  8. H-bonding networks of the distal residues and water molecules in the active site of Thermobifida fusca hemoglobin.

    Science.gov (United States)

    Nicoletti, Francesco P; Droghetti, Enrica; Howes, Barry D; Bustamante, Juan P; Bonamore, Alessandra; Sciamanna, Natascia; Estrin, Darío A; Feis, Alessandro; Boffi, Alberto; Smulevich, Giulietta

    2013-09-01

    The ferric form of truncated hemoglobin II from Thermobifida fusca (Tf-trHb) and its triple mutant WG8F-YB10F-YCD1F at neutral and alkaline pH, and in the presence of CN(-) have been characterized by resonance Raman spectroscopy, electron paramagnetic resonance spectroscopy, and molecular dynamics simulations. Tf-trHb contains three polar residues in the distal site, namely TrpG8, TyrCD1 and TyrB10. Whereas TrpG8 can act as a potential hydrogen-bond donor, the tyrosines can act as donors or acceptors. Ligand binding in heme-containing proteins is determined by a number of factors, including the nature and conformation of the distal residues and their capability to stabilize the heme-bound ligand via hydrogen-bonding and electrostatic interactions. Since both the RR Fe-OH(-) and Fe-CN(-) frequencies are very sensitive to the distal environment, detailed information on structural variations has been obtained. The hydroxyl ligand binds only the WT protein giving rise to two different conformers. In form 1 the anion is stabilized by H-bonds with TrpG8, TyrCD1 and a water molecule, in turn H-bonded to TyrB10. In form 2, H-bonding with TyrCD1 is mediated by a water molecule. Unlike the OH(-) ligand, CN(-) binds both WT and the triple mutant giving rise to two forms with similar spectroscopic characteristics. The overall results clearly indicate that H-bonding interactions both with distal residues and water molecules are important structural determinants in the active site of Tf-trHb. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Hydroxyl and water molecule orientations in trypsin: Comparison to molecular dynamics structures

    International Nuclear Information System (INIS)

    McDowell, R.S.; Kossiakoff, A.A.

    1994-01-01

    A comparison is presented of experimentally observed hydroxyl and water hydrogens in trypsin determined from neutron density maps with the results of a 140ps molecular dynamics (MD) simulation. Experimental determination of hydrogen and deuterium atom positions in molecules as large as proteins is a unique capability of neutron diffraction. The comparison addresses the degree to which a standard force-field approach can adequately describe the local electrostatic and van der Waals forces that determine the orientations of these hydrogens. Neutron densities, derived from 2.1 Angstrom D 2 O-H 2 O difference Fourier maps, provide a database of 27 well-ordered hydroxyl hydrogens. Most of the simulated hydroxyl orientations are within a standard deviation of the experimentally-observed positions, including several examples in which both the simulation and the neutron density indicate that a hydroxyl group is shifted from a open-quote standard close-quote rotamer. For the most highly ordered water molecules, the hydrogen distributions calculated from the trajectory were in good agreement with neutron density; simulated water molecules that displayed multiple hydrogen bonding networks had correspondingly broadened neutron density profiles. This comparison was facilitated by development of a method to construct a pseudo 2 Angstrom density map based on the hydrogen atom distributions from the simulation. The degree of disorder of internal water molecules is shown to result primarily from the electrostatic environment surrounding that water molecule as opposed to the cavity size available to the molecule. A method is presented for comparing the discrete observations sampled in a dynamics trajectory with the time- averaged data obtained from X-ray or neutron diffraction studies. This method is particularly useful for statically-disordered water molecules, in which the average location assigned from a trajectory may represent a site of relatively low occupancy

  10. Combined quantum mechanics/molecular mechanics (QM/MM) simulations for protein-ligand complexes: free energies of binding of water molecules in influenza neuraminidase.

    Science.gov (United States)

    Woods, Christopher J; Shaw, Katherine E; Mulholland, Adrian J

    2015-01-22

    The applicability of combined quantum mechanics/molecular mechanics (QM/MM) methods for the calculation of absolute binding free energies of conserved water molecules in protein/ligand complexes is demonstrated. Here, we apply QM/MM Monte Carlo simulations to investigate binding of water molecules to influenza neuraminidase. We investigate five different complexes, including those with the drugs oseltamivir and peramivir. We investigate water molecules in two different environments, one more hydrophobic and one hydrophilic. We calculate the free-energy change for perturbation of a QM to MM representation of the bound water molecule. The calculations are performed at the BLYP/aVDZ (QM) and TIP4P (MM) levels of theory, which we have previously demonstrated to be consistent with one another for QM/MM modeling. The results show that the QM to MM perturbation is significant in both environments (greater than 1 kcal mol(-1)) and larger in the more hydrophilic site. Comparison with the same perturbation in bulk water shows that this makes a contribution to binding. The results quantify how electronic polarization differences in different environments affect binding affinity and also demonstrate that extensive, converged QM/MM free-energy simulations, with good levels of QM theory, are now practical for protein/ligand complexes.

  11. Responses of invertebrates to temperature and water stress: A polar perspective.

    Science.gov (United States)

    Everatt, Matthew J; Convey, Pete; Bale, Jeffrey S; Worland, M Roger; Hayward, Scott A L

    2015-12-01

    As small bodied poikilothermic ectotherms, invertebrates, more so than any other animal group, are susceptible to extremes of temperature and low water availability. In few places is this more apparent than in the Arctic and Antarctic, where low temperatures predominate and water is unusable during winter and unavailable for parts of summer. Polar terrestrial invertebrates express a suite of physiological, biochemical and genomic features in response to these stressors. However, the situation is not as simple as responding to each stressor in isolation, as they are often faced in combination. We consider how polar terrestrial invertebrates manage this scenario in light of their physiology and ecology. Climate change is also leading to warmer summers in parts of the polar regions, concomitantly increasing the potential for drought. The interaction between high temperature and low water availability, and the invertebrates' response to them, are therefore also explored. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Water molecule network and active site flexibility of apo protein tyrosine phosphatase 1B

    DEFF Research Database (Denmark)

    Pedersen, A.K.; Peters, Günther H.J.; Møller, K.B.

    2004-01-01

    the conformation and flexibility of active-site residues as well as the water-molecule network, is a key issue in understanding ligand binding and enzyme kinetics and in structure-based drug design. A 1.95 Angstrom apo PTP1B structure has been obtained, showing four highly coordinated water molecules in the active......Protein tyrosine phosphatase 1B (PTP1B) plays a key role as a negative regulator of insulin and leptin signalling and is therefore considered to be an important molecular target for the treatment of type 2 diabetes and obesity. Detailed structural information about the structure of PTP1B, including......-site pocket of the enzyme; hence, the active site is highly solvated in the apo state. Three of the water molecules are located at positions that approximately correspond to the positions of the phosphate O atoms of the natural substrate phosphotyrosine and form a similar network of hydrogen bonds. The active...

  13. Interaction of water molecules with hexagonal 2D systems. A DFT study

    Science.gov (United States)

    Rojas, Ángela; Rey, Rafael

    Over the years water sources have been contaminated with many chemical agents, becoming issues that affect health of the world population. The advances of the nanoscience and nanotechnology in the development new materials constitute an alternative for design molecular filters with great efficiencies and low cost for water treatment and purification. In the nanoscale, the process of filtration or separation of inorganic and organic pollutants from water requires to study interactions of these atoms or molecules with different nano-materials. Specifically, it is necessary to understand the role of these interactions in physical and chemical properties of the nano-materials. In this work, the main interest is to do a theoretical study of interaction between water molecules and 2D graphene-like systems, such as silicene (h-Si) or germanene (h-Ge). Using Density Functional Theory we calculate total energy curves as function of separation between of water molecules and 2D systems. Different spatial configurations of water molecules relative to 2D systems are considered. Structural relaxation effects and changes of electronic charge density also are reported. Universidad Nacional de Colombia.

  14. Explicit treatment of water molecules in data-driven protein-protein docking: the solvated HADDOCKing approach.

    NARCIS (Netherlands)

    Kastritis, P.L.; Dijk, van A.D.J.; Bonvin, A.M.

    2012-01-01

    Water molecules are active components in, literally, every biochemical event, forming hydrogen bonds, filling cavities, and mediating interactions with other (bio)molecules. Therefore, solvent drastically affects the kinetics and thermodynamics of numerous cellular events, including protein-protein

  15. Calamitic Smectic A-Polar Smectic APA Transition Observed in Bent Molecules with Large Bent-Angle Central Core of 4,6-Dichlorobenzene and Alkylthio Terminal Tail

    Science.gov (United States)

    Nguyen, Ha; Kang, Sungmin; Tokita, Masatoshi; Watanabe, Junji

    2011-07-01

    New homologs of bent molecules with a large bent-angle central core of 4,6-dichloro benzene and an alkylthio terminal tail have been synthesized. Although the corresponding alkoxy-tail homologs show only the calamitic phases because of its large bent angles around 160°, the new homologs with an alkylthio tail exhibit the antiferroelectric smectic APA (SmAPA) banana phase that is transformed on cooling from the calamitic smectic A (SmA) phase. The biaxial polar packing of bent molecules in the SmAPA phase is considered to arise from the hindered rotation around the molecular long axis due to the expansion of the mesophase temperatures to a lower temperature region. This study indicates that the bent molecules, even with a large bent angle, have the potential to form a switchable banana phase with a remarkable decrease in its phase temperature range to around 60 °C.

  16. Quantum control of molecular vibrational and rotational excitations in a homonuclear diatomic molecule: A full three-dimensional treatment with polarization forces

    Science.gov (United States)

    Ren, Qinghua; Balint-Kurti, Gabriel G.; Manby, Frederick R.; Artamonov, Maxim; Ho, Tak-San; Rabitz, Herschel

    2006-01-01

    The optimal control of the vibrational excitation of the hydrogen molecule [Balint-Kurti et al., J. Chem. Phys. 122, 084110 (2005)] utilizing polarization forces is extended to three dimensions. The polarizability of the molecule, to first and higher orders, is accounted for using explicit ab initio calculations of the molecular electronic energy in the presence of an electric field. Optimal control theory is then used to design infrared laser pulses that selectively excite the molecule to preselected vibrational-rotational states. The amplitude of the electric field of the optimized pulses is restricted so that there is no significant ionization during the process, and a new frequency sifting method is used to simplify the frequency spectrum of the pulse. The frequency spectra of the optimized laser pulses for processes involving rotational excitation are more complex than those relating to processes involving only vibrational excitation.

  17. [Impact of Light Polarization on the Measurement of Water Particulate Backscattering Coefficient].

    Science.gov (United States)

    Liu, Jia; Gong, Fang; He, Xian-qiang; Zhu, Qian-kun; Huang, Hai-qing

    2016-01-01

    Particulate backscattering coefficient is a main inherent optical properties (IOPs) of water, which is also a determining factor of ocean color and a basic parameter for inversion of satellite ocean color remote sensing. In-situ measurement with optical instruments is currently the main method for obtaining the particulate backscattering coefficient of water. Due to reflection and refraction by the mirrors in the instrument optical path, the emergent light source from the instrument may be partly polarized, thus to impact the measurement accuracy of water backscattering coefficient. At present, the light polarization of measuring instruments and its impact on the measurement accuracy of particulate backscattering coefficient are still poorly known. For this reason, taking a widely used backscattering coefficient measuring instrument HydroScat6 (HS-6) as an example in this paper, the polarization characteristic of the emergent light from the instrument was systematically measured, and further experimental study on the impact of the light polarization on the measurement accuracy of the particulate backscattering coefficient of water was carried out. The results show that the degree of polarization(DOP) of the central wavelength of emergent light ranges from 20% to 30% for all of the six channels of the HS-6, except the 590 nm channel from which the DOP of the emergent light is slightly low (-15%). Therefore, the emergent light from the HS-6 has significant polarization. Light polarization has non-neglectable impact on the measurement of particulate backscattering coefficient, and the impact degree varies with the wave band, linear polarization angle and suspended particulate matter (SPM) concentration. At different SPM concentrations, the mean difference caused by light polarization can reach 15.49%, 11.27%, 12.79%, 14.43%, 13.76%, and 12.46% in six bands, 420, 442, 470, 510, 590, and 670 nm, respectively. Consequently, the impact of light polarization on the

  18. Catalytic effect of a single water molecule on the OH + CH2NH reaction.

    Science.gov (United States)

    Akbar Ali, Mohamad; M, Balaganesh; Lin, K C

    2018-02-07

    In recent work, there has been considerable speculation about the atmospheric reaction of methylenimine (CH 2 NH), because this compound is highly reactive, soluble in water, and sticky, thus posing severe experimental challenges. In this work, we have revisited the kinetics of the OH + CH 2 NH reaction assisted by a single water molecule. The potential energy surfaces (PESs) for the water-assisted OH + CH 2 NH reaction were calculated using the CCSD(T)//BH&HLYP/aug-cc-pVTZ levels of theory. The rate coefficients for the bimolecular reaction pathways CH 2 NHH 2 O + OH and CH 2 NH + H 2 OHO were computed using canonical variational transition state theory (CVT) with small curvature tunneling correction. The reaction without water has four elementary reaction pathways, depending on how the hydroxyl radical approaches CH 2 NH. In all cases, the reaction begins with the formation of a single pre-reactive complex before producing abstraction and addition products. When water is added, the products of the reaction do not change, and the reaction becomes quite complex, yielding four different pre-reactive complexes and eight reaction pathways. The calculated rate coefficient for the OH + CH 2 NH (water-free) reaction at 300 K is 1.7 × 10 -11 cm 3 molecule -1 s -1 and for OH + CH 2 NH (water-assisted), it is 5.1 × 10 -14 cm 3 molecule -1 s -1 . This result is similar to the isoelectronic analogous reaction OH + CH 2 O (water-assisted). In general, the effective rate coefficients of the water-assisted reaction are 2∼3 orders of magnitude smaller than water-free. Our results show that the water-assisted OH + CH 2 NH reaction cannot accelerate the reaction because the dominated water-assisted process depends parametrically on water concentration. As a result, the overall reaction rate coefficients are smaller.

  19. Spectral and Angular Degree of Polarization of the Water Leaving Radiance from the Ocean

    Science.gov (United States)

    Gray, D. J.; Gillis, D. B.; Bowles, J. H.; Korwan, D.; Miller, D.; Lamela, G.

    2016-02-01

    The polarization of the light field reflected from the ocean is now being recognized to contain additional information that can aid in the retrieval of biogeochemical properties of the ocean. But there are currently very few remote sensing systems that can take advantage of this information. We have developed a hyperspectral polarimeter to measure the full linear polarization of the ocean reflectance. The polarimeter uses four lenses with calcite polarizers oriented at 0, 45, 90, and 135 degrees relative to horizontal and measures the linear Stokes vector parameters (I, Q, U) over the spectral range from 350 - 950 nm. The degree and angle of polarization were measured in different water types and found to strongly depend on the inherent optical properties of the water, specifically on the single-scatter albedo, but also phase function, and viewing geometry. We show results for different water types as a function of viewing angle relative to nadir and azimuthal angle relative to the sun. We also show the importance of understanding the effects of the atmosphere on the upwelling polarization signal.

  20. Ions in size-selected aqueous nanodrops: sequential water molecule binding energies and effects of water on ion fluorescence.

    Science.gov (United States)

    Donald, William A; Leib, Ryan D; Demireva, Maria; Williams, Evan R

    2011-11-23

    The effects of water on ion fluorescence were investigated, and average sequential water molecule binding energies to hydrated ions, M(z)(H(2)O)(n), at large cluster size were measured using ion nanocalorimetry. Upon 248-nm excitation, nanodrops with ~25 or more water molecules that contain either rhodamine 590(+), rhodamine 640(+), or Ce(3+) emit a photon with average energies of approximately 548, 590, and 348 nm, respectively. These values are very close to the emission maxima of the corresponding ions in solution, indicating that the photophysical properties of these ions in the nanodrops approach those of the fully hydrated ions at relatively small cluster size. As occurs in solution, these ions in nanodrops with 8 or more water molecules fluoresce with a quantum yield of ~1. Ce(3+) containing nanodrops that also contain OH(-) fluoresce, whereas those with NO(3)(-) do not. This indirect fluorescence detection method has the advantages of high sensitivity, and both the size of the nanodrops as well as their constituents can be carefully controlled. For ions that do not fluoresce in solution, such as protonated tryptophan, full internal conversion of the absorbed 248-nm photon occurs, and the average sequential water molecule binding energies to the hydrated ions can be accurately obtained at large cluster sizes. The average sequential water molecule binding energies for TrpH(+)(H(2)O)(n) and a doubly protonated tripeptide, [KYK + 2H](2+)(H(2)O)(n), approach asymptotic values of ~9.3 (n ≥ 11) and ~10.0 kcal/mol (n ≥ 25), respectively, consistent with a liquidlike structure of water in these nanodrops.

  1. Polarization and bonding of the intrinsic characteristic contours of hydrogen and fluorine atoms of forming a hydrogen fluoride molecule based on an ab initio study

    Science.gov (United States)

    Yang, Zhong-Zhi; Zhao, Dong-Xia; Wu, Yang

    2004-08-01

    The spatial changing feature of the shapes and sizes of the system consisted of one hydrogen atom and one fluorine atom of forming a hydrogen fluoride molecule is investigated. We give formalism of the potential acting on an electron in a molecule and derive its concrete expression in Hartree-Fock self-consistent molecular orbital theory including configuration interaction. The program of calculating the potential acting on an electron in a molecule is programmed and compiled in the framework of the MELD program package. We formulate briefly the approach of the molecular intrinsic characteristic contour (MICC) which is defined in terms of the classical turning points of electronic motion. The MICC for a molecular system is intrinsic and can be calculated by means of an ab initio CI method. Then, the polarization and bonding features of the intrinsic characteristic contours of hydrogen and fluorine atoms forming a hydrogen fluoride molecule are presented and discussed from ab initio calculations. Furthermore, electron density distribution as an added dimension has been demonstrated on the changing MICC and thus the vivid polarization and bonding features for a chemical process have been shown. It seems that at the early stage (internuclear distance Ind=5.0-20.0 a.u.) the fluorine atom gives more enthusiastic with the sensitive and expanded polarization to welcome coupling with the hydrogen atom while the latter has little response even "shy" with shrinking a bit its size at the beginning of putting the two atoms into a system and it is only around the critical point, the contact point (Ind=4.73 a.u.), that both of them stretch their hands and arms to meet and then fuse together.

  2. Managing the solvent water polarization to obtain improved NMR spectra of large molecular structures

    International Nuclear Information System (INIS)

    Hiller, Sebastian; Wider, Gerhard; Etezady-Esfarjani, Touraj; Horst, Reto; Wuethrich, Kurt

    2005-01-01

    In large molecular structures, the magnetization of all hydrogen atoms in the solute is strongly coupled to the water magnetization through chemical exchange between solvent water and labile protons of macromolecular components, and through dipole-dipole interactions and the associated 'spin diffusion' due to slow molecular tumbling. In NMR experiments with such systems, the extent of the water polarization is thus of utmost importance. This paper presents a formalism that describes the propagation of the water polarization during the course of different NMR experiments, and then compares the results of model calculations for optimized water polarization with experimental data. It thus demonstrates that NMR spectra of large molecular structures can be improved with the use of paramagnetic spin relaxation agents which selectively enhance the relaxation of water protons, so that a substantial gain in signal-to-noise can be achieved. The presently proposed use of a relaxation agent can also replace the water flip-back pulses when working with structures larger than about 30 kDa. This may be a valid alternative in situations where flip-back pulses are difficult to introduce into the overall experimental scheme, or where they would interfere with other requirements of the NMR experiment

  3. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    DEFF Research Database (Denmark)

    Rønnest, A. K.; Peters, Günther H.J.; Hansen, Flemming Yssing

    2016-01-01

    phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been...... compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have...... the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic...

  4. Spin density measurement of water-bridged Co-dimer using polarized neutrons

    DEFF Research Database (Denmark)

    Damgaard-Møller, Emil; Overgaard, Jacob; Chilton, Nick

    present an experimentally determined spin density using polarized neutron diffraction in a simple water-bridged cobalt dimer [Co2(H2O)(piv)4(Hpiv)2(py)2] which is known to have a small ferromagnetic coupling between the spin centers. Visualizing the SDD could get us one step further in understanding...

  5. Impact of trophic state on the distribution of intact polar lipids in surface waters of lakes

    NARCIS (Netherlands)

    Bale, N.J.; Hopmans, E.C.; Schoon, P.; de Kluijver, A.; Downing, J.A.; Middelburg, J.J.; Sinninghe Damsté, J.S.; Schouten, S.

    2016-01-01

    We characterized the intact polar lipid (IPL) composition in the surface waters of 22 lakes from Minnesota and Iowa, ranging in trophic state between eutrophic and oligo-mesotrophic, to investigate the impact of trophic state on IPL composition. A high diversity of IPL classes was detected. Most IPL

  6. Coccolithophores in Polar Waters: Papposphaera sarion HET and HOL revisited

    DEFF Research Database (Denmark)

    Thomsen, Helge Abildhauge; Heldal, Mikal; Østergaard, Jette B.

    2016-01-01

    Papposphaera sarion was first described from West Greenland waters and has not since then been reported from other sites. We present here additional material of P. sarion from the type locality, transmission electron images of P. sarion from the NEW polynya (NE Greenland) and scanning electron......NEWpolynya as was also the holococcolithophore Turrisphaera phase of this species. Papposphaera sarion has in its life-cycle previously been associated with Turrisphaera arctica.However, a careful re-examination of the micrographs accompanying the description of T. arctica and unpublished material available to us...

  7. Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen

    KAUST Repository

    Shinagawa, Tatsuya

    2015-01-01

    Insufficient hydronium ion activities at near-neutral pH and under unbuffered conditions induce diffusion-limited currents for hydrogen evolution, followed by a reaction with water molecules to generate hydrogen at elevated potentials. The observed constant current behaviors at near neutral pH reflect the intrinsic electrocatalytic reactivity of the metal electrodes for water reduction. This journal is © the Owner Societies.

  8. Water and oxygen induced degradation of small molecule organic solar cells

    DEFF Research Database (Denmark)

    Hermenau, Martin; Riede, Moritz; Leo, Karl

    2011-01-01

    Small molecule organic solar cells were studied with respect to water and oxygen induced degradation by mapping the spatial distribution of reaction products in order to elucidate the degradation patterns and failure mechanisms. The active layers consist of a 30 nm bulk heterojunction formed...

  9. H2O molecule as example. Water has 3N-6=3 frequencies. So we ...

    Indian Academy of Sciences (India)

    Administrator

    Table 1: H2O molecule as example. Water has 3N-6=3 frequencies. So we need three force constants. the f4 is automatically fixed from f1,f2 and f3. In C1 symmetry, all the off- diagonal elements are fixed by the diagonal force constants because 3N-6=number of frequencies= number of diagonal force constants.

  10. STABILIZATION OF THE NEUTRAL PROTEASE OF BACILLUS-STEAROTHERMOPHILUS BY REMOVAL OF A BURIED WATER MOLECULE

    NARCIS (Netherlands)

    VRIEND, G; BERENDSEN, HJC; VANDERZEE, [No Value; VANDENBURG, B; VENEMA, G; EIJSINK, VGH

    1991-01-01

    Using site-directed mutagenesis, Ala166 in the neutral protease of Bacillus stearothermophilus was changed into Ser. Model building and molecular dynamics simulations of the mutant enzyme indicated that the Ser hydroxyl group fits well in a cavity which contains a water molecule in the wild-type

  11. Continuum Navier-Stokes modelling of water flow past fullerene molecules

    DEFF Research Database (Denmark)

    Walther, J. H.; Popadic, A.; Koumoutsakos, P.

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest...

  12. Continuum Navier-Stokes modelling of water ow past fullerene molecules

    DEFF Research Database (Denmark)

    Walther, J. H.; Popadic, A.; Koumoutsakos, P.

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest...

  13. Effects of Water Molecule on CO Oxidation by OH: Reaction Pathways, Kinetic Barriers, and Rate Constants.

    Science.gov (United States)

    Zhang, Linyao; Yang, Li; Zhao, Yijun; Zhang, Jiaxu; Feng, Dongdong; Sun, Shaozeng

    2017-07-06

    The water dilute oxy-fuel combustion is a clean combustion technology for near-zero emission power; and the presence of water molecule could have both kinetic and dynamic effects on combustion reactions. The reaction OH + CO → CO 2 + H, one of the most important elementary reactions, has been investigated by extensive electronic structure calculations. And the effects of a single water molecule on CO oxidation have been studied by considering the preformed OH(H 2 O) complex reacts with CO. The results show little change in the reaction pathways, but the additional water molecule actually increases the vibrationally adiabatic energy barriers (V a G ). Further thermal rate constant calculations in the temperature range of 200 to 2000 K demonstrate that the total low-pressure limit rate constant for the water assisted OH(H 2 O) + CO → CO 2 + H 2 O + H reaction is 1-2 orders lower than that of the water unassisted one, which is consistent with the change of V a G . Therefore, the hydrated radical OH(H 2 O) would actually slow down the oxidation of CO. Meanwhile, comparisons show that the M06-2X/aug-cc-pVDZ method gives a much better estimation in energy and thus is recommended to be employed for direct dynamics simulations.

  14. Integration or segregation: how do molecules behave at oil/water interfaces?

    Science.gov (United States)

    Moore, F G; Richmond, G L

    2008-06-01

    It has been over 250 years since Benjamin Franklin, fascinated with the wave-stilling effect of oil on water, performed his famous oil-drop experiments; nevertheless, the behavior of water molecules adjacent to hydrophobic surfaces continues to fascinate today. In the 18th century, the calming of the seas seemed the most pertinent application of such knowledge; today, we understand that oil-on-water phenomena underlie a range of important chemical, physical, and biological processes, including micelle and membrane formation, protein folding, chemical separation, oil extraction, nanoparticle formation, and interfacial polymerization. Beyond classical experiments of the oil-water interface, recent interest has focused on deriving a molecular-level picture of this interface or, more generally, of water molecules positioned next to any hydrophobic surface. This Account summarizes more than a decade's work from our laboratories aimed at understanding the nature of the hydrogen bonding occurring between water and a series of organic liquids in contact. Although the common perception is that water molecules and oil molecules positioned at the interface between the immiscible liquids want nothing to do with one another, we have found that weak interactions between these hydrophilic and hydrophobic molecules lead to interesting interfacial behavior, including highly oriented water molecules and layering of the organic medium that extends several molecular layers deep into the bulk organic liquid. For some organic liquids, penetration of oriented water into the organic layer is also apparent, facilitated by molecular interactions established at the molecularly thin region of first contact between the two liquids. The studies involve a combined experimental and computational approach. The primary experimental tool that we have used is vibrational sum frequency spectroscopy (VSFS), a powerful surface-specific vibrational spectroscopic method for measuring the molecular

  15. Transport properties of water molecules confined between hydroxyapaptite surfaces: A Molecular dynamics simulation approach

    Science.gov (United States)

    Prakash, Muthuramalingam; Lemaire, Thibault; Di Tommaso, Devis; de Leeuw, Nora; Lewerenz, Marius; Caruel, Matthieu; Naili, Salah

    2017-10-01

    Water diffusion in the vicinity of hydroxyapatite (HAP) crystals is a key issue to describe biomineralization process. In this study, a configuration of parallel HAP platelets mimicking bone nanopores is proposed to characterize the nanoscopic transport properties of water molecules at HAP-water surface and interfaces using various potential models such as combination of the Core-Shell (CS) model, Lennard-Jones (LJ) potentials with SPC or SPC/E water models. When comparing all these potentials models, it appears that the core-shell potential for HAP together with the SPC/E water model more accurately predicts the diffusion properties of water near HAP surface. Moreover, we have been able to put into relief the possibility of observing hydroxyl (OH-) ion dissociation that modifies the water structure near the HAP surface.

  16. Stratospheric water vapour in the vicinity of the Arctic polar vortex

    Energy Technology Data Exchange (ETDEWEB)

    Maturilli, M. [Alfred Wegener Institute for Polar and Marine Research, Potsdam (Germany); Fierli, F. [CNR (Italy). Inst. for Atmospheric Sciences and Climate; Yushkov, V.; Lukyanov, A.; Khaykin, S. [Central Aerological Observatory, Moscow (Russian Federation); Hauchecorne, A. [CNRS, Verrieres-le-Buisson (France). Service d' Aeronomie

    2006-07-01

    The stratospheric water vapour mixing ratio inside, outside, and at the edge of the polar vortex has been accurately measured by the FLASH-B Lyman-Alpha hygrometer during the LAUTLOS campaign in Sodankylae, Finland, in January and February 2004. The retrieved H{sub 2}O profiles reveal a detailed view on the Arctic lower stratospheric water vapour distribution, and provide a valuable dataset for the validation of model and satellite data. Analysing the measurements with the semi-lagrangian advection model MIMOSA, water vapour profiles typical for the polar vortex' interior and exterior have been identified, and laminae in the observed profiles have been correlated to filamentary structures in the potential vorticity field. Applying the validated MIMOSA transport scheme to specific humidity fields from operational ECMWF analyses, large discrepancies from the observed profiles arise. Although MIMOSA is able to reproduce weak water vapour filaments and improves the shape of the profiles compared to operational ECMWF analyses, both models reveal a dry bias of about 1 ppmv in the lower stratosphere above 400 K, accounting for a relative difference from the measurements in the order of 20%. The large dry bias in the analysis representation of stratospheric water vapour in the Arctic implies the need for future regular measurements of water vapour in the polar stratosphere to allow the validation and improvement of climate models. (orig.)

  17. Local order, energy, and mobility of water molecules in the hydration shell of small peptides.

    Science.gov (United States)

    Agarwal, Manish; Kushwaha, Hemant R; Chakravarty, Charusita

    2010-01-14

    The extent to which the presence of a biomolecular solute modifies the local energetics of water molecules, as measured by the tagged molecule potential energy (TPE), is examined using molecular dynamics simulations of the beta-hairpin of 2GB1 and the alpha-helix of deca-alanine in water. The CHARMM22 force field, in conjunction with the TIP3P solvent water model, is used for the peptides, with simulations of TIP3P and SPC/E water used as benchmarks for the behavior of bulk solvent. TIP3P water is shown to have significantly lower local tetrahedral order and higher binding energy than SPC/E at the same state point. The TIP3P and SPC/E water models show very similar dynamical correlations in the TPE fluctuations on frequency scales greater than 0.1 cm(-1). In addition, the two models show the same linear correlation between mean tetrahedral order and binding energy, suggesting that the relationship between choice of water models and simulated hydration behavior may involve a complex interplay of static and dynamic factors. The introduction of a peptide in water modifies the local TPE of water molecules as a function of distance from the biomolecular interface. There is an oscillatory variation in the TPE with distance from the peptide for water molecules lying outside a 3 A radius and extending to at least 10 A. These variations are of the order of 2-5% of the bulk TPE value and are anticorrelated with variations in local tetrahedral order in terms of locations of maxima and minima, which may be understood in terms of the relative contribution of van der Waals and Coulombic contributions to the TPE. The distance-dependent variations in local order and energetics are essentially the same for the beta-hairpin of 2GB1 as well as deca-alanine. Within a radius of 3 A, the perturbation of the solvent structure is very significant with local TPEs that are 10-15% lower than the bulk value. The chemical identity of side-chain residues and the secondary structure play an

  18. Disintegration of water molecules in a steam-plasma torch powered by microwaves

    Science.gov (United States)

    Uhm, Han S.; Kim, Jong H.; Hong, Yong C.

    2007-07-01

    A pure steam torch is generated by making use of 2.45GHz microwave. Steam from a steam generator enters the discharge tube as a swirl gas at a temperature higher than 150°C. This steam becomes a working gas and produces a stable steam torch. The torch volume is almost linearly proportional to the microwave power. The temperature of the torch flame is measured by making use of optical spectroscopy and a thermocouple device. Two distinctive regions are exhibited, a bright, whitish region of a high-temperature zone and a reddish, dimmer region of a relatively low-temperature zone. The bright, whitish region is a typical torch based on plasma species and the reddish, dimmer region is hydrogen burning in oxygen. Study of water molecule disintegration and gas temperature effects on the molecular fraction characteristics in steam-plasma of a microwave plasma torch at the atmospheric pressure is carried out. An analytical investigation of water disintegration indicates that a substantial fraction of water molecules disintegrate and form other compounds at high temperatures in the steam-plasma torch. Emission profiles of the hydroxide radical and water molecules confirm the theoretical predictions of water disintegration in the torch.

  19. Atomic charge transfer-counter polarization effects determine infrared CH intensities of hydrocarbons: a quantum theory of atoms in molecules model.

    Science.gov (United States)

    Silva, Arnaldo F; Richter, Wagner E; Meneses, Helen G C; Bruns, Roy E

    2014-11-14

    Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.

  20. Polarization of 'water-skies' above arctic open waters: how polynyas in the ice-cover can be visually detected from a distance.

    Science.gov (United States)

    Hegedüs, Ramón; Akesson, Susanne; Horváth, Gábor

    2007-01-01

    The foggy sky above a white ice-cover and a dark water surface (permanent polynya or temporary lead) is white and dark gray, phenomena called the 'ice-sky' and the 'water-sky,' respectively. Captains of icebreaker ships used to search for not-directly-visible open waters remotely on the basis of the water sky. Animals depending on open waters in the Arctic region may also detect not-directly-visible waters from a distance by means of the water sky. Since the polarization of ice-skies and water-skies has not, to our knowledge, been studied before, we measured the polarization patterns of water-skies above polynyas in the arctic ice-cover during the Beringia 2005 Swedish polar research expedition to the North Pole region. We show that there are statistically significant differences in the angle of polarization between the water-sky and the ice-sky. This polarization phenomenon could help biological and man-made sensors to detect open waters not directly visible from a distance. However, the threshold of polarization-based detection would be rather low, because the degree of linear polarization of light radiated by water-skies and ice-skies is not higher than 10%.

  1. Perennial water ice identified in the south polar cap of Mars.

    Science.gov (United States)

    Bibring, Jean-Pierre; Langevin, Yves; Poulet, François; Gendrin, Aline; Gondet, Brigitte; Berthé, Michel; Soufflot, Alain; Drossart, Pierre; Combes, Michel; Bellucci, Giancarlo; Moroz, Vassili; Mangold, Nicolas; Schmitt, Bernard

    2004-04-08

    The inventory of water and carbon dioxide reservoirs on Mars are important clues for understanding the geological, climatic and potentially exobiological evolution of the planet. From the early mapping observation of the permanent ice caps on the martian poles, the northern cap was believed to be mainly composed of water ice, whereas the southern cap was thought to be constituted of carbon dioxide ice. However, recent missions (NASA missions Mars Global Surveyor and Odyssey) have revealed surface structures, altimetry profiles, underlying buried hydrogen, and temperatures of the south polar regions that are thermodynamically consistent with a mixture of surface water ice and carbon dioxide. Here we present the first direct identification and mapping of both carbon dioxide and water ice in the martian high southern latitudes, at a resolution of 2 km, during the local summer, when the extent of the polar ice is at its minimum. We observe that this south polar cap contains perennial water ice in extended areas: as a small admixture to carbon dioxide in the bright regions; associated with dust, without carbon dioxide, at the edges of this bright cap; and, unexpectedly, in large areas tens of kilometres away from the bright cap.

  2. Molecules, Water, and Radiant Energy: New Clues for the Origin of Life

    Science.gov (United States)

    Pollack, Gerald H.; Figueroa, Xavier; Zhao, Qing

    2009-01-01

    We here examine the putative first step in the origin of life: the coalescence of dispersed molecules into a more condensed, organized state. Fresh evidence implies that the driving energy for this coalescence may come in a manner more direct than previously thought. The sun’s radiant energy separates charge in water, and this free charge demonstrably induces condensation. This condensation mechanism puts water as a central protagonist in life rather than as an incidental participant, and thereby helps explain why life requires water. PMID:19468316

  3. A fluorescence polarization based screening assay for identification of small molecule inhibitors of the PICK1 PDZ domain

    DEFF Research Database (Denmark)

    Thorsen, Thor S; Madsen, Kenneth L; Dyhring, Tino

    2011-01-01

    PDZ (PSD-95/Discs-large/ZO-1 homology) domains represent putative targets in several diseases including cancer, stroke, addiction and neuropathic pain. Here we describe the application of a simple and fast screening assay based on fluorescence polarization (FP) to identify inhibitors of the PDZ...

  4. Molecular Dynamics Study of Water Molecules in Interlayer of 14 ^|^Aring; Tobermorite

    KAUST Repository

    Yoon, Seyoon

    2013-01-01

    The molecular structure and dynamics of interlayer water of 14 Å tobermorite are investigated based on molecular dynamics (MD) simulations. Calculated structural parameters of the interlayer water configuration are in good agreement with current knowledge of the refined structure. The MD simulations provide detailed information on the position and mobility of the hydrogen and oxygen of interlayer water, as well as its self-diffusion coefficient, through the interlayer of 14 Å tobermorite. Comparison of the MD simulation results at 100 and 300 K demonstrates that water molecules in the interlayer maintain their structure but change their mobility. The dominant configuration and self-diffusion coefficient of interlayer water are obtained in this study. Copyright © 2013 Japan Concrete Institute.

  5. Water vapor retrieval from near-IR measurements of polarized scanning atmospheric corrector

    Science.gov (United States)

    Qie, Lili; Ning, Yuanming; Zhang, Yang; Chen, Xingfeng; Ma, Yan; Li, Zhengqiang; Cui, Wenyu

    2018-02-01

    Water vapor and aerosol are two key atmospheric factors effecting the remote sensing image quality. As water vapor is responsible for most of the solar radiation absorption occurring in the cloudless atmosphere, accurate measurement of water content is important to not only atmospheric correction of remote sensing images, but also many other applications such as the study of energy balance and global climate change, land surface temperature retrieval in thermal remote sensing. A multi-spectral, single-angular, polarized radiometer called Polarized Scanning Atmospheric Corrector (PSAC) were developed in China, which are designed to mount on the same satellite platform with the principle payload and provide essential parameters for principle payload image atmospheric correction. PSAC detect water vapor content via measuring atmosphere reflectance at water vapor absorbing channels (i.e. 0.91 μm) and nearby atmospheric window channel (i.e. 0.865μm). A near-IR channel ratio method was implemented to retrieve column water vapor (CWV) amount from PSAC measurements. Field experiments were performed at Yantai, in Shandong province of China, PSAC aircraft observations were acquired. The comparison between PSAC retrievals and ground-based Sun-sky radiometer measurements of CWV during the experimental flights illustrates that this method retrieves CWV with relative deviations ranging from 4% 13%. This method retrieve CWV more accurate over land than over ocean, as the water reflectance is low.

  6. Impact of water dilution and cation tail length on ionic liquid characteristics: Interplay between polar and non-polar interactions

    Science.gov (United States)

    Hegde, Govind A.; Bharadwaj, Vivek S.; Kinsinger, Corey L.; Schutt, Timothy C.; Pisierra, Nichole R.; Maupin, C. Mark

    2016-08-01

    The recalcitrance of lignocellulosic biomass poses a major challenge that hinders the economical utilization of biomass for the production of biofuel, plastics, and chemicals. Ionic liquids have become a promising solvent that addresses many issues in both the pretreatment process and the hydrolysis of the glycosidic bond for the deconstruction of cellulosic materials. However, to make the use of ionic liquids economically viable, either the cost of ionic liquids must be reduced, or a less expensive solvent (e.g., water) may be added to reduce the overall amount of ionic liquid used in addition to reducing the viscosity of the binary liquid mixture. In this work, we employ atomistic molecular dynamics simulations to investigate the impact of water dilution on the overall liquid structure and properties of three imidazolium based ionic liquids. It is found that ionic liquid-water mixtures exhibit characteristics that can be grouped into two distinct regions, which are a function of the ionic liquid concentration. The trends observed in each region are found to correlate with the ordering in the local structure of the ionic liquid that arises from the dynamic interactions between the ion pairs. Simulation results suggest that there is a high level of local ordering in the molecular structure at high concentrations of ionic liquids that is driven by the aggregation of the cationic tails and the anion-water interactions. It is found that as the concentration of ionic liquids in the binary mixture is decreased, there is a point at which the competing self and cross interaction energies between the ionic liquid and water shifts away from a cation-anion dominated regime, which results in a significant change in the mixture properties. This break point, which occurs around 75% w/w ionic liquids, corresponds to the point at which water molecules percolate into the ionic liquid network disrupting the ionic liquids' nanostructure. It is observed that as the cationic alkyl

  7. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    International Nuclear Information System (INIS)

    Rønnest, A. K.; Peters, G. H.; Hansen, F. Y.; Taub, H.; Miskowiec, A.

    2016-01-01

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 10 8 –10 9 V m −1 , which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ∼1 V (∼2 ⋅ 10 8 V m −1 ) when in the fluid phase with a monovalent counter-ion and ∼1.4 V (∼2.8 ⋅ 10 8 V m −1 ) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1,2-dimyristoyl-sn-glycero-3

  8. Enhancing the Activity of Pd on Carbon Nanofibers for Deoxygenation of Amphiphilic Fatty Acid Molecules through Support Polarity

    NARCIS (Netherlands)

    Gosselink, R.W.; Xia, W.; Muhler, M.; Jong, de K.P.; Bitter, J.H.

    2013-01-01

    The influence of support polarity on Pd/CNF for the deoxygenation of fatty acids was studied. Catalysts with a low (O/C = 3.5 × 10–2 at/at from X-ray photoelectron spectroscopy (XPS)) and a high (O/C = 5.9 × 10–2 at/at from XPS) amount of oxygen containing groups on the support were prepared. The

  9. Water on Mars: Inventory, distribution, and possible sources of polar ice

    Science.gov (United States)

    Clifford, S. M.

    1992-01-01

    Theoretical considerations and various lines of morphologic evidence suggest that, in addition to the normal seasonal and climatic exchange of H2O that occurs between the Martian polar caps, atmosphere, and mid to high latitude regolith, large volumes of water have been introduced into the planet's long term hydrologic cycle by the sublimation of equatorial ground ice, impacts, catastrophic flooding, and volcanism. Under the climatic conditions that are thought to have prevailed on Mars throughout the past 3 to 4 b.y., much of this water is expected to have been cold trapped at the poles. The amount of polar ice contributed by each of the planet's potential crustal sources is discussed and estimated. The final analysis suggests that only 5 to 15 pct. of this potential inventory is now in residence at the poles.

  10. Investigation of the Hydantoin Monomer and its Interaction with Water Molecules

    Science.gov (United States)

    Gruet, Sébastien; Perez, Cristobal; Schnell, Melanie

    2017-06-01

    Hydantoin (Imidazolidine-2,4-dione, C_3H_4N_2O_2) is a five-membered heterocyclic compound of astrobiological interest. This molecule has been detected in carbonaceous chondrites [1], and its formation can rise from the presence of glycolic acid and urea, two prebiotic molecules [2]. The hydrolysis of hydantoin under acidic conditions can also produce glycine [3], an amino acid actively searched for in the interstellar medium. Spectroscopic data of hydantoin is very limited and mostly dedicated to the solid phase. The high resolution study in gas phase is restricted to the work recently published by Ozeki et al. reporting the pure rotational spectra of the ground state and two vibrational states of the molecule in the millimeter-wave region (90-370 GHz)[4]. Using chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy, we recorded the jet-cooled rotational spectra of hydantoin with water between 2 to 8 GHz. We observed the ground state of hydantoin monomer and several water complexes with one or two water molecules. All the observed species exhibit a hyperfine structure due to the two nitrogen atoms present in the molecule, which were fully resolved and analyzed. Additional experiments with a ^{18}O enriched water sample were realized to determine the oxygen-atom positions of the water monomers. These experiments yielded accurate structural information on the preferred water binding sites. The observed complexes and the interactions that hold them together, mainly strong directional hydrogen bonds, will be presented and discussed. [1] Shimoyama, A. and Ogasawara, R., Orig. Life Evol. Biosph., 32, 165-179, 2002. DOI:10.1023/A:1016015319112. [2] Menor-Salván, C. and Marín-Yaseli, M.R., Chem. Soc. Rev., 41(16), 5404-5415, 2012. DOI:10.1039/c2cs35060b. [3] De Marcellus P., Bertrand M., Nuevo M., Westall F. and Le Sergeant d'Hendecourt L., Astrobiology. 11(9), 847-854, 2011. DOI:10.1089/ast.2011.0677. [4] Ozeki, H., Miyahara R., Ihara H., Todaka S., Kobayashi

  11. EU-wide survey of polar organic persistent pollutants in European river waters

    Energy Technology Data Exchange (ETDEWEB)

    Loos, Robert [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Via Enrico Fermi, 21020 Ispra (Italy)], E-mail: robert.loos@jrc.it; Gawlik, Bernd Manfred; Locoro, Giovanni; Rimaviciute, Erika; Contini, Serafino; Bidoglio, Giovanni [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Via Enrico Fermi, 21020 Ispra (Italy)

    2009-02-15

    This study provides the first EU-wide reconnaissance of the occurrence of polar organic persistent pollutants in European river waters. More than 100 individual water samples from over 100 European rivers from 27 European Countries were analysed for 35 selected compounds, comprising pharmaceuticals, pesticides, PFOS, PFOA, benzotriazoles, hormones, and endocrine disrupters. Around 40 laboratories participated in this sampling exercise. The most frequently and at the highest concentration levels detected compounds were benzotriazole, caffeine, carbamazepine, tolyltriazole, and nonylphenoxy acetic acid (NPE{sub 1}C). Only about 10% of the river water samples analysed could be classified as 'very clean' in terms of chemical pollution. The rivers responsible for the major aqueous emissions of PFOS and PFOA from the European Continent could be identified. For the target compounds chosen, we are proposing 'indicative warning levels' in surface waters, which are (for most compounds) close to the 90th percentile of all water samples analysed. - More than 100 river water samples from 27 European Countries were analysed for 35 selected polar organic contaminants.

  12. Estimating the Relative Water Content of Single Leaves from Optical Polarization Measurements.

    Science.gov (United States)

    Vanderbilt, V. C.; Daughtry, C. S. T.; Dahlgren, R. P.

    2016-12-01

    Remotely sensing the water status of plants and the water content of canopies remain long term goals of remote sensing research. For monitoring canopy water status, existing approaches such as the Crop Water Stress Index and the Equivalent Water Thickness have limitations. The CWSI does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWI is based upon the physics of water-light interaction, not plant physiology. In this research, we applied optical polarization techniques to monitor the VIS/NIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both changed nonlinearly as each leaf dried, R increasing and T decreasing. Our results tie changes in the VIS/NIR R and T to leaf physiological changes - linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf - and perhaps of a plant canopy - might be possible in the future. However, using our approach to estimate the water status of a leaf does not appear possible at present, because our results display too much variability that we do not yet understand.

  13. Estimating the Relative Water Content of Single Leaves from Optical Polarization Measurements

    Science.gov (United States)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2016-01-01

    Remotely sensing the water status of plants and the water content of canopies remain long-term goals of remote sensing research. For monitoring canopy water status, existing approaches such as the Crop Water Stress Index and the Equivalent Water Thickness have limitations. The CWSI does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWI is based upon the physics of water-light interaction, not plant physiology. In this research, we applied optical polarization techniques to monitor the VISNIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both changed nonlinearly as each leaf dried, R increasing and T decreasing. Our results tie changes in the VISNIR R and T to leaf physiological changes linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf and perhaps of a plant canopy might be possible in the future. However, using our approach to estimate the water status of a leaf does not appear possible at present, because our results display too much variability that we do not yet understand.

  14. Effects of an electric field on the adsorption of water molecules on the Cd(0001) surface

    Science.gov (United States)

    Tu, Yu-Bing; Tao, Min-Long; Sun, Kai; Wang, Jun-Zhong

    2018-02-01

    The adsorption of water molecules on the Cd(0001) surface has been systematically investigated in the absence or presence of the electric field using first principles calculations based on density functional theory. It has been determined that the adsorption is enhanced by the electric field. From the geometries and energetics, we find that the water-cadmium interaction become stronger (weaker) under a negative (positive) field in the adsorbed monomer. Otherwise, the formation of the hydrogen bonds makes it difficult for molecules in the water clusters to response the electric field. Most importantly, the stability of the water bilayers depends on the strength of the negative electric field. Instead of the H-up bilayer, the H-down bilayer is more stable when the negative field is sufficiently strong. In this case, the dipole-field interaction is the dominant interaction in the change of stability. These results are helpful in the understanding of the fundamental processes at the water-electrode interfaces.

  15. A Raman spectroscopy study on the effects of intermolecular hydrogen bonding on water molecules absorbed by borosilicate glass surface

    Science.gov (United States)

    Li, Fabing; Li, Zhanlong; Wang, Ying; Wang, Shenghan; Wang, Xiaojun; Sun, Chenglin; Men, Zhiwei

    2018-05-01

    The structural forms of water/deuterated water molecules located on the surface of borosilicate capillaries have been first investigated in this study on the basis of the Raman spectral data obtained at different temperatures and under atmospheric pressure for molecules in bulk and also for molecules absorbed by borosilicate glass surface. The strongest two fundamental bands locating at 3063 cm-1 (2438 cm-1) in the recorded Raman spectra are assigned here to the Osbnd H (Osbnd D) bond stretching vibrations and they are compared with the corresponding bands observed at 3124 cm-1 (2325 cm-1) in the Raman spectrum of ice Ih. Our spectroscopic observations have indicated that the structure of water and deuterated water molecules on borosilicate surface is similar to that of ice Ih (hexagonal phase of ice). These observations have also indicated that water molecules locate on the borosilicate surface so as to construct a bilayer structure and that strong and weak intermolecular hydrogen bonds are formed between water/deuterated molecules and silanol groups on borosilicate surface. In accordance with these findings, water and deuterated water molecules at the interface of capillary have a higher melting temperature.

  16. A Raman spectroscopy study on the effects of intermolecular hydrogen bonding on water molecules absorbed by borosilicate glass surface.

    Science.gov (United States)

    Li, Fabing; Li, Zhanlong; Wang, Ying; Wang, Shenghan; Wang, Xiaojun; Sun, Chenglin; Men, Zhiwei

    2018-05-05

    The structural forms of water/deuterated water molecules located on the surface of borosilicate capillaries have been first investigated in this study on the basis of the Raman spectral data obtained at different temperatures and under atmospheric pressure for molecules in bulk and also for molecules absorbed by borosilicate glass surface. The strongest two fundamental bands locating at 3063cm -1 (2438cm -1 ) in the recorded Raman spectra are assigned here to the OH (OD) bond stretching vibrations and they are compared with the corresponding bands observed at 3124cm -1 (2325cm -1 ) in the Raman spectrum of ice Ih. Our spectroscopic observations have indicated that the structure of water and deuterated water molecules on borosilicate surface is similar to that of ice Ih (hexagonal phase of ice). These observations have also indicated that water molecules locate on the borosilicate surface so as to construct a bilayer structure and that strong and weak intermolecular hydrogen bonds are formed between water/deuterated molecules and silanol groups on borosilicate surface. In accordance with these findings, water and deuterated water molecules at the interface of capillary have a higher melting temperature. Copyright © 2018. Published by Elsevier B.V.

  17. Effect of Adsorbed Alcohol Layers on the Behavior of Water Molecules Confined in a Graphene Nanoslit: A Molecular Dynamics Study.

    Science.gov (United States)

    Gao, Qingwei; Zhu, Yudan; Ruan, Yang; Zhang, Yumeng; Zhu, Wei; Lu, Xiaohua; Lu, Linghong

    2017-10-24

    With the rapid development of a two-dimensional (2D) nanomaterial, the confined liquid binary mixture has attracted increasing attention, which has significant potential in membrane separation. Alcohol/water is one of the most common systems in liquid-liquid separation. As one of the most focused systems, recent studies have found that ethanol molecules were preferentially adsorbed on the inner surface of the pore wall and formed an adsorbed ethanol layer under 2D nanoconfinement. To evaluate the effect of the alcohol adsorption layer on the mobility of water molecules, molecular simulations were performed to investigate four types of alcohol/water binary mixtures confined under a 20 Å graphene slit. Residence times of the water molecules covering the alcohol layer were in the order of methanol/water molecules and the surrounding water molecules could induce a small degree of damage to the H-bond network of the water molecules covering the alcohol layer, resulting in the long residence time of the water molecules.

  18. Detecting Canopy Water Status Using Shortwave Infrared Reflectance Data From Polar Orbiting and Geostationary Platforms

    DEFF Research Database (Denmark)

    Fensholt, Rasmus; Huber Gharib, Silvia; Proud, Simon Richard

    2010-01-01

    analyses performed on SEVIRI SIWSI during a dry period within the growing season support these findings. These results suggest that the combined advantage of an improved temporal resolution and a fixed viewing angle potentially makes the SEVIRI sensor an interesting complementary data source to POES data......-based canopy water status detection from geostationary Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) data as compared to polar orbiting environmental satellite (POES)-based moderate resolution imaging spectroradiometer (MODIS) data. The EO-based SWIR water stress index...

  19. Boltzmann equation analysis of electron-molecule collision cross sections in water vapor and ammonia

    International Nuclear Information System (INIS)

    Yousfi, M.; Benabdessadok, M.D.

    1996-01-01

    Sets of electron-molecule collision cross sections for H 2 O and NH 3 have been determined from a classical technique of electron swarm parameter unfolding. This deconvolution method is based on a simplex algorithm using a powerful multiterm Boltzmann equation analysis established in the framework of the classical hydrodynamic approximation. It is well adapted for the simulation of the different classes of swarm experiments (i.e., time resolved, time of flight, and steady state experiments). The sets of collision cross sections that exist in the literature are reviewed and analyzed. Fitted sets of cross sections are determined for H 2 O and NH 3 which exhibit features characteristic of polar molecules such as high rotational excitation collision cross sections. The hydrodynamic swarm parameters (i.e., drift velocity, longitudinal and transverse diffusion coefficients, ionization and attachment coefficients) calculated from the fitted sets are in excellent agreement with the measured ones. These sets are finally used to calculate the transport and reaction coefficients needed for discharge modeling in two cases of typical gas mixtures for which experimental swarm data are very sparse or nonexistent (i.e., flue gas mixtures and gas mixtures for rf plasma surface treatment). copyright 1996 American Institute of Physics

  20. Single-Molecule Imaging of DNAs with Sticky Ends at Water/Fused Silica Interface

    Energy Technology Data Exchange (ETDEWEB)

    Isailovic, Slavica [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    Total internal reflection fluorescence microscopy (TIRFM) was used to study intermolecular interactions of DNAs with unpaired (sticky) ends of different lengths at water/fused silica interface at the single-molecule level. Evanescent field residence time, linear velocity and adsorption/desorption frequency were measured in a microchannel for individual DNA molecules from T7, Lambda, and PSP3 phages at various pH values. The longest residence times and the highest adsorption/desorption frequencies at the constant flow at pH 5.5 were found for PSP3 DNA, followed by lower values for Lambda DNA, and the lowest values for T7 DNA. Since T7, Lambda, and PSP3 DNA molecules contain none, twelve and nineteen unpaired bases, respectively, it was concluded that the affinity of DNAs for the surface increases with the length of the sticky ends. This confirms that hydrophobic and hydrogen-bonding interactions between sticky ends and fused-silica surface are driving forces for DNA adsorption at the fused-silica surface. Described single-molecule methodology and results therein can be valuable for investigation of interactions in liquid chromatography, as well as for design of DNA hybridization sensors and drug delivery systems.

  1. Living Cells and Dynamic Molecules Observed with the Polarized Light Microscope: the Legacy of Shinya Inoué.

    Science.gov (United States)

    Tani, Tomomi; Shribak, Michael; Oldenbourg, Rudolf

    2016-08-01

    In 1948, Shinya Inoué arrived in the United States for graduate studies at Princeton. A year later he came to Woods Hole, starting a long tradition of summer research at the Marine Biological Laboratory (MBL), which quickly became Inoué's scientific home. Primed by his Japanese mentor, Katsuma Dan, Inoué followed Dan's mantra to work with healthy, living cells, on a fundamental problem (mitosis), with a unique tool set that he refined for precise and quantitative observations (polarized light microscopy), and a fresh and brilliant mind that was unafraid of challenging current dogma. Building on this potent combination, Inoué contributed landmark observations and concepts in cell biology, including the notion that there are dynamic, fine structures inside living cells, in which molecular assemblies such as mitotic spindle fibers exist in delicate equilibrium with their molecular building blocks suspended in the cytoplasm. In the late 1970s and 1980s, Inoué and others at the MBL were instrumental in conceiving video microscopy, a groundbreaking technique which married light microscopy and electronic imaging, ushering in a revolution in how we know and what we know about living cells and the molecular mechanisms of life. Here, we recount some of Inoué's accomplishments and describe how his legacy has shaped current activities in polarized light imaging at the MBL. © 2016 Marine Biological Laboratory.

  2. Calculations for ion-impact induced ionization and fragmentation of water molecules

    Science.gov (United States)

    Kirchner, Tom; Murakami, Mitsuko; Horbatsch, Marko; Jürgen Lüdde, Hans

    2012-10-01

    Charge-state correlated cross sections for single- and multiple-electron removal processes in proton-water-molecule collisions are calculated by using the non-perturbative basis generator method adapted for ion-molecule collisions [1,2]. A fragmentation model is then applied to calculate the yields of H2O^+, OH^+, H^+, and O^+ ions emerging after H2O^q+ formation [3]. A detailed comparison is made with experimental data from three groups covering the energy range from 20--5000 keV. It is found that multiple electron processes with qMurakami et al, Phys. Rev. A 85, 052704 (2012)[0pt] [3] M. Murakami et al, Phys. Rev. A 85, 052713 (2012)

  3. NEXAFS: a unique tool to follow the photochemistry of small organic molecules in condensed water

    Energy Technology Data Exchange (ETDEWEB)

    Parent, Ph; Laffon, C; Bournel, F; Lasne, J [Laboratoire de Chimie-Physique, Matiere et Rayonnement, Universite Pierre et Marie Curie (UPMC-Univ Paris 06) and CNRS (UMR 7614), 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Lacombe, S, E-mail: philippe.parent@upmc.fr [Institut des Sciences Moleculaires d' Orsay, ISMO (FRE 3363), 91405 Orsay Cedex (France) and Universite Paris Sud 11, CNRS-Bat 351, 91405 Orsay Cedex (France)

    2011-01-01

    Soft X-ray induced chemistry of simple organic molecules as carbon monoxide (CO), methanol (CH{sub 3}OH) and glycine (NH{sub 3}CH{sub 2}COOH) in water and nitric acid hydrate has been investigated with NEXAFS spectroscopy. In the pure species, extremely high survival rates are observed, a consequence of the back reactions allowed in the condensed phase. When mixed with water, the survival rates are considerably reduced by reaction with the hydroxyl radical (OH). The formation of CO{sub 2} is also enhanced at the expense of CO, the main byproduct in the photolysis of the pure species. Finally, it is shown that water plays no role in the destruction of the amino acid.

  4. Physical capture and release of drug molecules, water and cations by a smectite clay

    DEFF Research Database (Denmark)

    Carvalho dos Santos, Éverton

    adsorption ability, charged nano-layered structure. It is in this context that this thesis was developed. Here further understanding on the physico-chemical properties that influence capture and release of Ciprofloxacin (CIPRO, C17H18FN3O3), an antibiotic agent, water molecules, and cations by Li......Clay minerals have been widely applied through human history. For instance research in archaeological sites shows their use to build tools or applied as medicine from prehistoric times. This wide range of applications results from the unique clay minerals properties, such as porosity, water...... conditions, i.e. 60 minutes of data collection. A similar behavior was observed during the XRD studies of capture and release of CIPRO. These results were interpreted based on the selectivity rule among cations. Secondly regarding the dependence of the water absorption behavior on the interlayer cation, from...

  5. The adsorption and dissociation of water molecule on goethite (010) surface: A DFT approach

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Long, E-mail: shuweixia@ouc.edu.cn [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, College of Chemistry and Chemical Engineering (China); Xiu, Fangyuan [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, College of Chemistry and Chemical Engineering (China); Qiu, Meng [Qingdao Institute of Bioenergy and Bioprocess Technology (China); Xia, Shuwei; Yu, Liangmin [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, College of Chemistry and Chemical Engineering (China)

    2017-01-15

    Graphical abstract: The optimized structure of hydrated goethite (010) surface with medium water coverage (water density about 6.7 H{sub 2}O/nm{sup 2}). - Highlights: • Stable adsorption and dissociation structure of H{sub 2}O on goethite (010) surface was investigated by DFT. • Reasonable path for water dissociation was proposed by transitional state analysis. • The mechanism of water adsorption on goethite and binding nature were revealed by PDOS. - Abstract: Using density functional theory (DFT) calculation, we investigate the configuration, stability and electronic properties of fresh cleaved (010) goethite surface (Pnma) and this surface exposed to water monolayer at low, medium and high coverage. Water is predicted to be chemisorbed to the surface, together with the surface reconstruction. The interaction energy of the most stable configuration of both low and medium coverage per water molecule is almost the same (−1.17 eV), while that of high coverage is much lower (less than 1.03 eV). It indicates that highly hydrated surface is less stable. PDOS analysis reveals the adsorption of H{sub 2}O is due to the formation of Fe−O bond, caused by overlapping of Fe's 3d and O's 2p orbitals. Dissociation processes at low and medium water coverage are non-spontaneous; while at high coverage, it can undertake spontaneously both thermodynamically and dynamically. The dissociation paths of all three water coverage are the similar. The proton from one adsorbed water is likely to dissociate to bind to the vicinal surface μ{sub 3}−O as an intermediate product; the proton belonged to μ{sub 3}−O transferred to the neighbor surface μ{sub 2}−O as the dissociative configuration.

  6. Ion—polar-molecule reactions: A CRESU study of He +, C +, N + + H 2O, NH 3 at 27, 68 and 163 K

    Science.gov (United States)

    Marquette, J. B.; Rowe, B. R.; Dupeyrat, G.; Poissant, G.; Rebrion, C.

    1985-12-01

    The first measurements of ion—polar-molecule reaction rate constants at very low temperatures are presented. They have been obtained using the CRESU (cine_.tique de reactions en ecoulement supersonique uniforme) technique for H +.C + and N + ions reacting with H 2O and NH 3 at 27 and 68 K in helium buffer. Additional data have been obtained for N + reactions at 163 K in nitrogen buffer. In the 27-300 K (27-163 K for N + + NH 3) temperature range, all the results yield a power law, k = k0T- n (0 < n < 1), for the rate coefficient of each reaction, which should be applied in interstellar cloud model in place of the room-temperature values. The results are compared with various theoretical calculations. Rather good agreement is found although no general behavior can be simply drawn from these experiments.

  7. Intramolecular cyclization of aspartic acid residues assisted by three water molecules: a density functional theory study

    Science.gov (United States)

    Takahashi, Ohgi; Kirikoshi, Ryota

    2014-01-01

    Aspartic acid (Asp) residues in peptides and proteins (l-Asp) are known to undergo spontaneous nonenzymatic reactions to form l-β-Asp, d-Asp, and d-β-Asp residues. The formation of these abnormal Asp residues in proteins may affect their three-dimensional structures and hence their properties and functions. Indeed, the reactions have been thought to contribute to aging and pathologies. Most of the above reactions of the l-Asp residues proceed via a cyclic succinimide intermediate. In this paper, a novel three-water-assisted mechanism is proposed for cyclization of an Asp residue (forming a gem-diol precursor of the succinimide) by the B3LYP/6-31 + G(d,p) density functional theory calculations carried out for an Asp-containing model compound (Ace-Asp-Nme, where Ace = acetyl and Nme = NHCH3). The three water molecules act as catalysts by mediating ‘long-range’ proton transfers. In the proposed mechanism, the amide group on the C-terminal side of the Asp residue is first converted to the tautomeric iminol form (iminolization). Then, reorientation of a water molecule and a conformational change occur successively, followed by the nucleophilic attack of the iminol nitrogen on the carboxyl carbon of the Asp side chain to form the gem-diol species. A satisfactory agreement was obtained between the calculated and experimental energetics.

  8. Multipole moments of water molecules in clusters and ice Ih from first principles calculations

    International Nuclear Information System (INIS)

    Batista, E.R.; Xantheas, S.S.; Jonsson, H.

    1999-01-01

    We have calculated molecular multipole moments for water molecules in clusters and in ice Ih by partitioning the charge density obtained from first principles calculations. Various schemes for dividing the electronic charge density among the water molecules were used. They include Bader close-quote s zero flux surfaces and Voronoi partitioning schemes. A comparison was also made with an induction model including dipole, dipole-quadrupole, quadrupole-quadrupole polarizability and first hyperpolarizability as well as fixed octopole and hexadecapole moments. We have found that the different density partitioning schemes lead to widely different values for the molecular multipoles, illustrating how poorly defined molecular multipoles are in clusters and condensed environments. For instance, the magnitude of the molecular dipole moment in ice Ih ranges between 2.3 D and 3.1 D depending on the partitioning scheme used. Within each scheme, though, the value for the molecular dipole moment in ice is larger than in the hexamer. The magnitude of the molecular dipole moment in the clusters shows a monotonic increase from the gas phase value to the one in ice Ih, with the molecular dipole moment in the water ring hexamer being smaller than the one in ice Ih for all the partitioning schemes used. copyright 1999 American Institute of Physics

  9. FRET structure with non-radiative acceptor provided by dye-linker-glass surface complex and single-molecule photodynamics by TIRFM-polarized imaging

    International Nuclear Information System (INIS)

    Tani, Toshiro; Mashimo, Kei; Suzuki, Tetsu; Horiuchi, Hiromi; Oda, Masaru

    2008-01-01

    We present our recent study of microscopic single-molecule imaging on the artificial complex of tetramethylrhodamine linked with a propyl chain onto silica glass surface, i.e. an asymmetric fluorescence resonance energy transfer (FRET) structure with non-radiative acceptor. In the synthesis of the complex, we used a mixture of two kinds of isomers to introduce rather small photodynamic difference among them. This isomeric structure change will provide more or less a distinctive photophysical change in e.g. non-radiative relaxation rate. Our recent observation at room temperatures, so far, shows that such contributions can be discriminated in the histograms of the fluorescent spot intensities; broad but distinctive multi-components appear. To identify the isomeric difference as a cause of structures, some configurational assumptions are necessary. One such basic prerequisite is that the transition dipoles of the chromophores should be oriented almost parallel to the glass surface. In order to make clear the modeling, we also provide preliminary experiments on the polarization dependence of the imaging under rotating polarization in epi-illumination

  10. Boiling of simulated tap water: effect on polar brominated disinfection byproducts, halogen speciation, and cytotoxicity.

    Science.gov (United States)

    Pan, Yang; Zhang, Xiangru; Wagner, Elizabeth D; Osiol, Jennifer; Plewa, Michael J

    2014-01-01

    Tap water typically contains numerous halogenated disinfection byproducts (DBPs) as a result of disinfection, especially of chlorination. Among halogenated DBPs, brominated ones are generally significantly more toxic than their chlorinated analogues. In this study, with the aid of ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry by setting precursor ion scans of m/z 79/81, whole spectra of polar brominated DBPs in simulated tap water samples without and with boiling were revealed. Most polar brominated DBPs were thermally unstable and their levels were substantially reduced after boiling via decarboxylation or hydrolysis; the levels of a few aromatic brominated DBPs increased after boiling through decarboxylation of their precursors. A novel adsorption unit for volatile total organic halogen was designed, which enabled the evaluation of halogen speciation and mass balances in the simulated tap water samples during boiling. After boiling for 5 min, the overall level of brominated DBPs was reduced by 62.8%, of which 39.8% was volatilized and 23.0% was converted to bromide; the overall level of chlorinated DBPs was reduced by 61.1%, of which 44.4% was volatilized and 16.7% was converted to chloride; the overall level of halogenated DBPs was reduced by 62.3%. The simulated tap water sample without boiling was cytotoxic in a chronic (72 h) exposure to mammalian cells; this cytotoxicity was reduced by 76.9% after boiling for 5 min. The reduction in cytotoxicity corresponded with the reduction in overall halogenated DBPs. Thus, boiling of tap water can be regarded as a "detoxification" process and may reduce human exposure to halogenated DBPs through tap water ingestion.

  11. Enhancing the intestinal absorption of molecules containing the polar guanidino functionality: a double-targeted prodrug approach.

    Science.gov (United States)

    Sun, Jing; Dahan, Arik; Amidon, Gordon L

    2010-01-28

    A prodrug strategy was applied to guanidino-containing analogues to increase oral absorption via hPEPT1 and hVACVase. l-Valine, l-isoleucine, and l-phenylalanine esters of [3-(hydroxymethyl)phenyl]guanidine (3-HPG) were synthesized and evaluated for transport and activation. In HeLa/hPEPT1 cells, Val-3-HPG and Ile-3-HPG exhibited high affinity to hPEPT1 (IC(50): 0.65 and 0.63 mM, respectively), and all three l-amino acid esters showed higher uptake (2.6- to 9-fold) than the parent compound 3-HPG. Val-3-HPG and Ile-3-HPG demonstrated remarkable Caco-2 permeability enhancement, and Val-3-HPG exhibited comparable permeability to valacyclovir. In rat perfusion studies, Val-3-HPG and Ile-3-HPG permeabilities were significantly higher than 3-HPG and exceeded/matched the high-permeability standard metoprolol, respectively. All the l-amino acid 3-HPG esters were effectively activated in HeLa and Caco-2 cell homogenates and were found to be good substrates of hVACVase (k(cat)/K(m) in mM(-1) x s(-1): Val-3-HPG, 3370; Ile-3-HPG, 1580; Phe-3-HPG, 1660). In conclusion, a prodrug strategy is effective at increasing the intestinal permeability of polar guanidino analogues via targeting hPEPT1 for transport and hVACVase for activation.

  12. Explicit Consideration of Water Molecules to Study Vibrational Circular DICHROÎSM of Monosaccharide's

    Science.gov (United States)

    Moussi, Sofiane; Ouamerali, Ourida

    2014-06-01

    Carbohydrates have multiples roles in biological systems. It has been found that the glycoside bond is fundamentally important in many aspects of chemistry and biology and forms the basis of carbohydrate chemistry. That means the stereochemical information, namely, glycosidic linkages α or β, gives an significant features of the carbohydrate glycosidation position of the glycosylic acceptor. For these reasons, much effort was made for the synthesis and analysis of the glycoside bond. Vibrational circular dichroism VCD has some advantages over conventional electronic circular dichroism (ECD) due to the applicability to all organic molecules and the reliability of ab initio quantum calculation. However, for a molecule with many chiral centers such as carbohydrates, determination of the absolute configuration tends to be difficult because the information from each stereochemical center is mixed and averaged over the spectrum. In the CH stretching region, only two VCD studies on carbohydrates have been reported and spectra--structure correlation, as determined for the glycoside band, remains to be investigated. T. Taniguchi and collaborators report that methyl glycosides exhibit a characteristic VCD peak, the sign of which solely reflects the C-1 absolute configuration. This work is a theoretical contribution to study the behaviour of VCD spectrum's of the monosaccharides when the water molecules are taken explicitly. This study is focused on six different monosaccharides in theirs absolute configuration R and S. We used the method of density functional theory DFT by means of the B3LYP hybrid functional and 6-31G * basis set.

  13. Identification of Small-Molecule Inhibitors of the HuR/RNA Interaction Using a Fluorescence Polarization Screening Assay Followed by NMR Validation.

    Directory of Open Access Journals (Sweden)

    Zhonghua Wang

    Full Text Available The human antigen R (HuR stabilizes many mRNAs of proto-oncogene, transcription factors, cytokines and growth factors by recognizing AU-rich elements (AREs presented in their 3' or 5' untranslated region (UTR. Multiple lines of experimental evidence suggest that this process plays a key role in cancer development. Thus, destabilizing HuR/RNA interaction by small molecules presents an opportunity for cancer treatment/prevention. Here we present an integrated approach to identify inhibitors of HuR/RNA interaction using a combination of fluorescence-based and NMR-based high throughput screening (HTS. The HTS assay with fluorescence polarization readout and Z'-score of 0.8 was used to perform a screen of the NCI diversity set V library in a 384 well plate format. An NMR-based assay with saturation transfer difference (STD detection was used for hits validation. Protein NMR spectroscopy was used to demonstrate that some hit compounds disrupt formation of HuR oligomer, whereas others block RNA binding. Thus, our integrated high throughput approach provides a new avenue for identification of small molecules targeting HuR/RNA interaction.

  14. Preparation and evaluation of poly(alkyl methacrylate-co-methacrylic acid-co-ethylene dimethacrylate) monolithic columns for separating polar small molecules by capillary liquid chromatography.

    Science.gov (United States)

    Lin, Shu-Ling; Wu, Yu-Ru; Lin, Tzuen-Yeuan; Fuh, Ming-Ren

    2015-04-29

    In this study, methacrylic acid (MAA) was incorporated with alkyl methacrylates to increase the hydrophilicity of the synthesized ethylene dimethacrylate-based (EDMA-based) monoliths for separating polar small molecules by capillary LC analysis. Different alkyl methacrylate-MAA ratios were investigated to prepare a series of 30% alkyl methacrylate-MAA-EDMA monoliths in fused-silica capillaries (250-μm i.d.). The porosity, permeability, and column efficiency of the synthesized MAA-incorporated monolithic columns were characterized. A mixture of phenol derivatives is employed to evaluate the applicability of using the prepared monolithic columns for separating small molecules. Fast separation of six phenol derivatives was achieved in 5 min with gradient elution using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. In addition, the effect of acetonitrile content in mobile phase on retention factor and plate height as well as the plate height-flow velocity curves were also investigated to further examine the performance of the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. Moreover, the applicability of prepared polymer-based monolithic column for potential food safety applications was also demonstrated by analyzing five aflatoxins and three phenicol antibiotics using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    International Nuclear Information System (INIS)

    Gou, Dezhi; Kuang, Xiaoyu; Gao, Yufeng; Huo, Dongming

    2015-01-01

    In this paper, we systematically investigate the electronic structure for the 2 Σ + ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained

  16. Energy deposition model based on electron scattering cross section data from water molecules

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A; Oiler, J C [Centra de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avenida Complutense 22, 28040 Madrid (Spain); Blanco, F [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Avenida Complutense s.n., 28040 Madrid (Spain); Gorfinkiel, J D [Department of Physiscs and Astronomy, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Limao-Vieira, P [Departamento de Fisica, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Maira-Vidal, A; Borge, M J G; Tengblad, O [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis, 28006 Madrid, Spam (Spain); Huerga, C; Tellez, M [Hospital Universitario La Paz, paseo de la Castellana 261, 28046 Madrid (Spain); Garcia, G [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones CientifIcas (CSIC), Serrano 113-bis, 28006 Madrid (Spain)], E-mail: g.garcia@imaff.cfmac.csic.es

    2008-10-01

    A complete set of electrons scattering cross sections by water molecules over a broad energy range, from the me V to the Me V ranges, is presented in this study. These data have been obtained by combining experiments and calculations and cover most relevant processes, both elastic and inelastic, which can take place in the considered energy range. A new Monte Carlo simulation programme has been developed using as input parameter these cross sectional data as well as experimental energy loss spectra. The simulation procedure has been applied to obtain electron tracks and energy deposition plots in water when irradiated by a Ru-106 plaque as those used for brachytherapy of ocular tumours. Finally, the low energy electron tracks provided by the present model have been compared with those obtained with other codes available in the literature.

  17. Conserved hydrogen bonds and water molecules in MDR HIV-1 protease substrate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhigang [Wayne State Univ., Detroit, MI (United States); Case Western Reserve Univ., Cleveland, OH (United States); Harbor Hospital Baltimore, MD (United States); Wang, Yong [Wayne State Univ., Detroit, MI (United States); Yedidi, Ravikiran S. [Wayne State Univ., Detroit, MI (United States); National Institutes of Health, Bethesda, MD (United States); Dewdney, Tamaria G. [Wayne State Univ., Detroit, MI (United States); Reiter, Samuel J. [Wayne State Univ., Detroit, MI (United States); Brunzelle, Joseph S. [Northwestern Univ. Feinberg School of Medicine, Chicago, IL (United States); Kovari, Iulia A. [Wayne State Univ., Detroit, MI (United States); Kovari, Ladislau C. [Wayne State Univ., Detroit, MI (United States)

    2012-12-19

    Success of highly active antiretroviral therapy (HAART) in anti-HIV therapy is severely compromised by the rapidly developing drug resistance. HIV-1 protease inhibitors, part of HAART, are losing their potency and efficacy in inhibiting the target. Multi-drug resistant (MDR) 769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, 90) was selected for the present study to understand the binding to its natural substrates. The nine crystal structures of MDR769 HIV-1 protease substrate hepta-peptide complexes were analyzed in order to reveal the conserved structural elements for the purpose of drug design against MDR HIV-1 protease. Our structural studies demonstrated that highly conserved hydrogen bonds between the protease and substrate peptides, together with the conserved crystallographic water molecules, played a crucial role in the substrate recognition, substrate stabilization and protease stabilization. Additionally, the absence of the key flap-ligand bridging water molecule might imply a different catalytic mechanism of MDR769 HIV-1 protease compared to that of wild type (WT) HIV-1 protease.

  18. Dynamics and mass accommodation of HCl molecules on sulfuric acid-water surfaces.

    Science.gov (United States)

    Behr, P; Scharfenort, U; Ataya, K; Zellner, R

    2009-09-28

    A molecular beam technique has been used to study the dynamics and mass accommodation of HCl molecules in collision with sulfuric acid-water surfaces. The experiments were performed by directing a nearly mono-energetic beam of HCl molecules onto a continuously renewed liquid film of 54-76 wt% sulfuric acid at temperatures between 213 K and 243 K. Deuterated sulfuric acid was used to separate sticking but non-reactive collisions from those that involved penetration through the phase boundary followed by dissociation and recombination with D+. The results indicate that the mass accommodation of HCl on sulfuric acid-water surfaces decreases sharply with increasing acidity over the concentration range 54-76 wt%. Using the capillary wave theory of mass accommodation this effect is explained by a change of the surface dynamics. Regarding the temperature dependence it is found that the mass accommodation of HCl increases with increasing temperature and is limited by the bulk phase viscosity and driven by the restoring forces of the surface tension. These findings imply that under atmospheric conditions the uptake of HCl from the gas phase depends crucially on the bulk phase parameters of the sulfuric acid aerosol.

  19. Identification of Carboxylate, Phosphate, and Phenoxide Functionalities in Deprotonated Molecules Related to Drug Metabolites via Ion-Molecule Reactions with water and Diethylhydroxyborane

    Science.gov (United States)

    Zhu, Hanyu; Ma, Xin; Kong, John Y.; Zhang, Minli; Kenttämaa, Hilkka I.

    2017-10-01

    Tandem mass spectrometry based on ion-molecule reactions has emerged as a powerful tool for structural elucidation of ionized analytes. However, most currently used reagents were designed to react with protonated analytes, making them suboptimal for acidic analytes that are preferentially detected in negative ion mode. In this work we demonstrate that the phenoxide, carboxylate, and phosphate functionalities can be identified in deprotonated molecules by use of a combination of two reagents, diethylmethoxyborane (DEMB) and water. A novel reagent introduction setup that allowed DEMB and water to be separately introduced into the ion trap region of the mass spectrometer was developed to facilitate fundamental studies of this reaction. A new reagent, diethylhydroxyborane (DEHB), was generated inside the ion trap by hydrolysis of DEMB on introduction of water. Most carboxylates and phenoxides formed a DEHB adduct, followed by addition of one water molecule and subsequent ethane elimination (DEHB adduct +H2O - CH3CH3) as the major product ion. Phenoxides with a hydroxy group adjacent to the deprotonation site and phosphates formed a DEHB adduct, followed by ethane elimination (DEHB adduct - CH3CH3). Deprotonated molecules with strong intramolecular hydrogen bonds or without the aforementioned functionalities, including sulfates, were unreactive toward DEHB/H2O. Reaction mechanisms were explored via isotope labeling experiments and quantum chemical calculations. The mass spectrometry method allowed the differentiation of phenoxide-, carboxylate-, phosphate-, and sulfate-containing analytes. Finally, it was successfully coupled with high-performance liquid chromatography for the analysis of a mixture containing hymecromone, a biliary spasm drug, and its three possible metabolites. [Figure not available: see fulltext.

  20. Electrocoagulation with polarity switch for fast oil removal from oil in water emulsions.

    Science.gov (United States)

    Gobbi, Lorena C A; Nascimento, Izabela L; Muniz, Eduardo P; Rocha, Sandra M S; Porto, Paulo S S

    2018-05-01

    An electrocoagulation technique using a 3.5 L reactor, with aluminum electrodes in a monopolar arrangement with polarity switch at each 10 s was used to separate oil from synthetic oily water similar in oil concentration to produced water from offshore platforms. Up to 98% of oil removal was achieved after 20 min of processing. Processing time dependence of the oil removal and pH was measured and successfully adjusted to exponential models, indicating a pseudo first order behavior. Statistical analysis was used to prove that electrical conductivity and total solids depend significantly on the concentration of electrolyte (NaCl) in the medium. Oil removal depends mostly on the distance between the electrodes but is proportional to electrolyte concentration when initial pH is 8. Electrocoagulation with polarity switch maximizes the lifetime of the electrodes. The process reduced oil concentration to a value below that stipulated by law, proving it can be an efficient technology to minimize the offshore drilling impact in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. The Mars water cycle at other epochs: Recent history of the polar caps and layered terrain

    Science.gov (United States)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1992-01-01

    The Martian polar caps and layered terrain presumably evolves by the deposition and removal of small amounts of water and dust each year, the current cap attributes therefore represent the incremental transport during a single year as integrated over long periods of time. The role was studied of condensation and sublimation of water ice in this process by examining the seasonal water cycle during the last 10(exp 7) yr. In the model, axial obliquity, eccentricity, and L sub s of perihelion vary according to dynamical models. At each epoch, the seasonal variations in temperature are calculated at the two poles, keeping track of the seasonal CO2 cap and the summertime sublimation of water vapor into the atmosphere; net exchange of water between the two caps is calculated based on the difference in the summertime sublimation between the two caps (or on the sublimation from one cap if the other is covered with CO2 frost all year). Results from the model can help to explain (1) the apparent inconsistency between the timescales inferred for layer formation and the much older crater retention age of the cap and (2) the difference in sizes of the two residual caps, with the south being smaller than the north.

  2. Effects of water molecules on rearrangements of formamide on the kaolinite basal (001) surface.

    Science.gov (United States)

    Nguyen, Huyen Thi; Nguyen, Minh Tho

    2014-08-28

    The effects of kaolinite mineral surfaces on the unimolecular rearrangements of formamide (FM) were investigated using periodic density functional theory in conjunction with pseudopotential plane-wave approach. Surface hydroxyl groups covering the octahedral surface of kaolinite were found to play the role of catalysts in the transformations of FM. They induce a reduction of 31 kcal/mol on the energy barrier for formation of its isomer aminohydroxymethylene (AHM), which is close to the reduction amount calculated for water-catalyzed reactions. This suggests that the kaolinite octahedral surface exerts a catalytic effect similar to that of the water molecule. As the tetrahedral surface does not contain catalytic surface hydroxyl groups, only water-assisted FM transformation was therefore studied on this surface whose energy barrier amounts to ∼17 kcal/mol. The combined effect of both water and kaolinite on FM rearrangements via triple hydrogen transfer reactions does not significantly lower the energy barriers, as compared to those of double hydrogen transfer reactions. The triple hydrogen transfer energy barriers amount to ∼20 and ∼36 kcal/mol, and the double ones are ∼21 and ∼40 kcal/mol for formation of formimic acid and AHM isomers, respectively. However, the energies of the systems in water-catalyzed channels lie below the available energies of the original reactants, and thus these channels are more favored than the water-free ones. With its multiple functions as both a supporting plate-form and a catalyst for FM reactions, kaolinite can thus be regarded as an important natural catalyst for prebiotic synthesis.

  3. Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR.

    Science.gov (United States)

    White, Paul B; Wang, Tuo; Park, Yong Bum; Cosgrove, Daniel J; Hong, Mei

    2014-07-23

    Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water (1)H polarization to polysaccharides through distance- and mobility-dependent (1)H-(1)H dipolar couplings and detecting it through polysaccharide (13)C signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that water-pectin polarization transfer is much faster than water-cellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the water-polysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Water-pectin spin diffusion precedes water-cellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins.

  4. Anisotropic conductivity tensor imaging in MREIT using directional diffusion rate of water molecules

    International Nuclear Information System (INIS)

    Kwon, Oh In; Jeong, Woo Chul; Sajib, Saurav Z K; Kim, Hyung Joong; Woo, Eung Je

    2014-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is an emerging method to visualize electrical conductivity and/or current density images at low frequencies (below 1 KHz). Injecting currents into an imaging object, one component of the induced magnetic flux density is acquired using an MRI scanner for isotropic conductivity image reconstructions. Diffusion tensor MRI (DT-MRI) measures the intrinsic three-dimensional diffusion property of water molecules within a tissue. It characterizes the anisotropic water transport by the effective diffusion tensor. Combining the DT-MRI and MREIT techniques, we propose a novel direct method for absolute conductivity tensor image reconstructions based on a linear relationship between the water diffusion tensor and the electrical conductivity tensor. We first recover the projected current density, which is the best approximation of the internal current density one can obtain from the measured single component of the induced magnetic flux density. This enables us to estimate a scale factor between the diffusion tensor and the conductivity tensor. Combining these values at all pixels with the acquired diffusion tensor map, we can quantitatively recover the anisotropic conductivity tensor map. From numerical simulations and experimental verifications using a biological tissue phantom, we found that the new method overcomes the limitations of each method and successfully reconstructs both the direction and magnitude of the conductivity tensor for both the anisotropic and isotropic regions. (paper)

  5. IMPROVED PARAMETERIZATION OF WATER CLOUD MODEL FOR HYBRID-POLARIZED BACKSCATTER SIMULATION USING INTERACTION FACTOR

    Directory of Open Access Journals (Sweden)

    S. Chauhan

    2017-07-01

    Full Text Available The prime aim of this study was to assess the potential of semi-empirical water cloud model (WCM in simulating hybrid-polarized SAR backscatter signatures (RH and RV retrieved from RISAT-1 data and integrate the results into a graphical user interface (GUI to facilitate easy comprehension and interpretation. A predominant agricultural wheat growing area was selected in Mathura and Bharatpur districts located in the Indian states of Uttar Pradesh and Rajasthan respectively to carry out the study. The three-date datasets were acquired covering the crucial growth stages of the wheat crop. In synchrony, the fieldwork was organized to measure crop/soil parameters. The RH and RV backscattering coefficient images were extracted from the SAR data for all the three dates. The effect of four combinations of vegetation descriptors (V1 and V2 viz., LAI-LAI, LAI-Plant water content (PWC, Leaf water area index (LWAI-LWAI, and LAI-Interaction factor (IF on the total RH and RV backscatter was analyzed. The results revealed that WCM calibrated with LAI and IF as the two vegetation descriptors simulated the total RH and RV backscatter values with highest R2 of 0.90 and 0.85 while the RMSE was lowest among the other tested models (1.18 and 1.25 dB, respectively. The theoretical considerations and interpretations have been discussed and examined in the paper. The novelty of this work emanates from the fact that it is a first step towards the modeling of hybrid-polarized backscatter data using an accurately parameterized semi-empirical approach.

  6. Pore Polarity and Charge Determine Differential Block of Kir1.1 and Kir7.1 Potassium Channels by Small-Molecule Inhibitor VU590.

    Science.gov (United States)

    Kharade, Sujay V; Sheehan, Jonathan H; Figueroa, Eric E; Meiler, Jens; Denton, Jerod S

    2017-09-01

    VU590 was the first publicly disclosed, submicromolar-affinity (IC 50 = 0.2 μ M), small-molecule inhibitor of the inward rectifier potassium (Kir) channel and diuretic target, Kir1.1. VU590 also inhibits Kir7.1 (IC 50 ∼ 8 μ M), and has been used to reveal new roles for Kir7.1 in regulation of myometrial contractility and melanocortin signaling. Here, we employed molecular modeling, mutagenesis, and patch clamp electrophysiology to elucidate the molecular mechanisms underlying VU590 inhibition of Kir1.1 and Kir7.1. Block of both channels is voltage- and K + -dependent, suggesting the VU590 binding site is located within the pore. Mutagenesis analysis in Kir1.1 revealed that asparagine 171 (N171) is the only pore-lining residue required for high-affinity block, and that substituting negatively charged residues (N171D, N171E) at this position dramatically weakens block. In contrast, substituting a negatively charged residue at the equivalent position in Kir7.1 enhances block by VU590, suggesting the VU590 binding mode is different. Interestingly, mutations of threonine 153 (T153) in Kir7.1 that reduce constrained polarity at this site (T153C, T153V, T153S) make wild-type and binding-site mutants (E149Q, A150S) more sensitive to block by VU590. The Kir7.1-T153C mutation enhances block by the structurally unrelated inhibitor VU714 but not by a higher-affinity analog ML418, suggesting that the polar side chain of T153 creates a barrier to low-affinity ligands that interact with E149 and A150. Reverse mutations in Kir1.1 suggest that this mechanism is conserved in other Kir channels. This study reveals a previously unappreciated role of membrane pore polarity in determination of Kir channel inhibitor pharmacology. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Preparation and evaluation of poly(alkyl methacrylate-co-methacrylic acid-co-ethylene dimethacrylate) monolithic columns for separating polar small molecules by capillary liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shu-Ling; Wu, Yu-Ru; Lin, Tzuen-Yeuan; Fuh, Ming-Ren, E-mail: msfuh@scu.edu.tw

    2015-04-29

    Highlights: • Methacrylic acid (MAA) was used to increase hydrophilicity of polymeric monoliths. • Fast separation of phenol derivatives was achieved in 5 min using MAA-incorporated column. • Separations of aflatoxins and phenicol antibiotics were achieved using MAA-incorporated column. - Abstract: In this study, methacrylic acid (MAA) was incorporated with alkyl methacrylates to increase the hydrophilicity of the synthesized ethylene dimethacrylate-based (EDMA-based) monoliths for separating polar small molecules by capillary LC analysis. Different alkyl methacrylate–MAA ratios were investigated to prepare a series of 30% alkyl methacrylate–MAA–EDMA monoliths in fused-silica capillaries (250-μm i.d.). The porosity, permeability, and column efficiency of the synthesized MAA-incorporated monolithic columns were characterized. A mixture of phenol derivatives is employed to evaluate the applicability of using the prepared monolithic columns for separating small molecules. Fast separation of six phenol derivatives was achieved in 5 min with gradient elution using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. In addition, the effect of acetonitrile content in mobile phase on retention factor and plate height as well as the plate height-flow velocity curves were also investigated to further examine the performance of the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. Moreover, the applicability of prepared polymer-based monolithic column for potential food safety applications was also demonstrated by analyzing five aflatoxins and three phenicol antibiotics using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column.

  8. Body water distribution in severe obesity and its assessment from eight-polar bioelectrical impedance analysis.

    Science.gov (United States)

    Sartorio, A; Malavolti, M; Agosti, F; Marinone, P G; Caiti, O; Battistini, N; Bedogni, G

    2005-02-01

    To measure body water distribution and to evaluate the accuracy of eight-polar bioelectrical impedance analysis (BIA) for the assessment of total body water (TBW) and extracellular water (ECW) in severe obesity. Cross-sectional study. Obesity clinic. In all, 75 women aged 18-66 y, 25 with body mass index (BMI) between 19.1 and 29.9 kg/m(2) (ie not obese), 25 with BMI between 30.0 and 39.9 kg/m(2) (ie class I and II obese), and 25 with BMI between 40.0 and 48.2 kg/m(2) (ie class III obese). TBW and ECW were measured by (2)H(2)O and Br dilution. Body resistance (R) was obtained by summing the resistances of arms, trunk and legs as measured by eight-polar BIA (InBody 3.0, Biospace, Seoul, Korea). The resistance index at a frequency of x kHz (RI(x)) was calculated as height (2)/R(x). ECW : TBW was similar in women with class III (46+/-3%, mean+/-s.d.) and class I-II obesity (45+/-3%) but higher than in nonobese women (39+/-3%, P<0.05). In a random subsample of 37 subjects, RI(500) explained 82% of TBW variance (P<0.0001) and cross-validation of the obtained algorithm in the remaining 38 subjects gave a percent root mean square error (RMSE%) of 5% and a pure error (PE) of 2.1 l. In the same subjects, RI(5) explained 87% of ECW variance (P<0.0001) and cross-validation of the obtained algorithm gave a RMSE% of 8% and a PE of 1.4 l. The contribution of weight and BMI to the prediction of TBW and ECW was nil or negligible on practical grounds. ECW : TBW is similar in women with class I-II and class III obesity up to BMI values of 48.2 kg/m(2). Eight-polar BIA offers accurate estimates of TBW and ECW in women with a wide range of BMI (19.1-48.2 kg/m(2)) without the need of population-specific formulae.

  9. Dipole polarizability of alkali-metal (Na, K, Rb)–alkaline-earth-metal (Ca, Sr) polar molecules: Prospects for alignment

    Energy Technology Data Exchange (ETDEWEB)

    Gopakumar, Geetha, E-mail: geetha@tmu.ac.jp; Abe, Minori; Hada, Masahiko [Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); JST, CREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Kajita, Masatoshi [National Institute of Information and Communications Technology, Koganei, Tokyo 184-8795 (Japan)

    2014-06-14

    Electronic open-shell ground-state properties of selected alkali-metal–alkaline-earth-metal polar molecules are investigated. We determine potential energy curves of the {sup 2}Σ{sup +} ground state at the coupled-cluster singles and doubles with partial triples (CCSD(T)) level of electron correlation. Calculated spectroscopic constants for the isotopes ({sup 23}Na, {sup 39}K, {sup 85}Rb)–({sup 40}Ca, {sup 88}Sr) are compared with available theoretical and experimental results. The variation of the permanent dipole moment (PDM), average dipole polarizability, and polarizability anisotropy with internuclear distance is determined using finite-field perturbation theory at the CCSD(T) level. Owing to moderate PDM (KCa: 1.67 D, RbCa: 1.75 D, KSr: 1.27 D, RbSr: 1.41 D) and large polarizability anisotropy (KCa: 566 a.u., RbCa: 604 a.u., KSr: 574 a.u., RbSr: 615 a.u.), KCa, RbCa, KSr, and RbSr are potential candidates for alignment and orientation in combined intense laser and external static electric fields.

  10. Effect of nanotube-length on the transport properties of single-file water molecules: transition from bidirectional to unidirectional.

    Science.gov (United States)

    Su, Jiaye; Guo, Hongxia

    2011-06-28

    We use molecular dynamics (MD) simulations to study the transport of single-file water molecules through carbon nanotubes (CNTs) with various lengths in an electric field. Most importantly, we find that even the water dipoles inside the CNT are maintained along the field direction, a large amount of water molecules can still transport against the field direction for short CNTs, leading to a low unidirectional transport efficiency (η). As the CNT length increases, the efficiency η will increase remarkably, and achieves the maximum value of 1.0 at or exceeding a critical CNT length. Consequently, the transition from bidirectional to unidirectional transport is observed and is found to be relevant to thermal fluctuations of the two reservoirs, which is explored by the interaction between water molecules inside and outside the CNT. We also find that the water flow vs CNT length follows an exponential decay of f  ∼  exp (- L/L(0)), and the average translocation time of individual water molecules yields to a power law of τ(trans)  ∼  L(υ), where L(0) and ν are constant and slightly depend on the field strength. We further compare our results with the continuous-time random-walk (CTRW) model and find that the water flow can also be described by a power law of f  ∼  L(-μ) modified from CTRW. Our results provide some new physical insights into the biased transport of single-file water molecules, which show the feasibility of using CNTs with any length to pump water in an electric field. The mechanism is important for designing efficient nanofluidic apparatuses.

  11. Polarization Impacts on the Water-Leaving Radiance Retrieval from Above-Water Radiometric Measurements

    Science.gov (United States)

    2012-12-10

    Society of America OCIS codes: 010.0010, 280.0280, 010.4450, 010.1320. 1. Introduction coastal water-quality monitoring as well as in var ...reflection from waves and wavelets at the sea surface. Follow- ing Cox and Munk [28-30], the ocean surface can be modeled based on a distribution of...performed for a fixed relative azimuth angle of 90° whereas HyperSAS data are acquired for var - ious relative azimuth angles, here comprising those

  12. Multimission empirical ocean tide modeling for shallow waters and polar seas

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Andersen, Ole Baltazar

    2011-01-01

    A new global ocean tide model named DTU10 (developed at Technical University of Denmark) representing all major diurnal and semidiurnal tidal constituents is proposed based on an empirical correction to the global tide model FES2004 (Finite Element Solutions), with residual tides determined using...... to recover twice the spatial variations of the tidal signal which is particularly important in shallow waters where the spatial scale of the tidal signal is scaled down. Outside the +/- 66 degrees parallel combined Envisat, GEOSAT Follow-On, and ERS-2, data sets have been included to solve for the tides up...... to the +/- 82 degrees parallel. A new approach to removing the annual sea level variations prior to estimating the residual tides significantly improved tidal determination of diurnal constituents from the Sun-synchronous satellites (e. g., ERS-2 and Envisat) in the polar seas. Extensive evaluations with six...

  13. Hydration processes of electrolyte anions and cations on pt(111), Ir(111), Ru(001) and Au(111) surfaces: coadsorption of water molecules with electrolyte ions.

    Science.gov (United States)

    Ito, M; Nakamura, M

    2002-01-01

    Water adsorption on Pt( 111) and Ru(001) treated with oxygen, hydrogen chloride and sodium atom at 20 K has been studied by Fourier transform infrared spectroscopy, scanning tunneling microscopy and surface X-ray diffraction. Water molecules chemisorb predominantly on the sites of the electronegative additives, forming hydrogen bonds. Three types of hydration water molecules coordinate to an adsorbed Na atom through an oxygen lone pair. In contrast, water molecules adsorb on electrode surfaces in a simple way in solution. In 1 mM CuSO4 + 0.5 M H2SO4 solution on an Au(111) electrode surface, water molecules coadsorb not only with sulfuric acid anions through hydrogen bonding but also with copper, over wide potential ranges. In the first stage of underpotential deposition (UPD), each anion is accommodated by six copper hexagon (honeycomb) atoms on which water molecules dominate. At any UPD stage water molecules interact with both the copper atom and sulfuric acid anions on the Au(111) surface. Water molecules also coadsorb with CO molecules on the surface of 2 x 2-2CO-Ru(001). All of the hydration water molecules chemisorb weakly on the surfaces. There appears to be a correlation between the orientation of hydrogen bonding water molecules and the electrode potential.

  14. Transfer of lipid molecules and polycyclic aromatic hydrocarbons to open marine waters by dense water cascading events

    Science.gov (United States)

    Salvadó, Joan A.; Grimalt, Joan O.; López, Jordi F.; Palanques, Albert; Heussner, Serge; Pasqual, Catalina; Sanchez-Vidal, Anna; Canals, Miquel

    2017-12-01

    Settling particles were collected by a set of moored sediment traps deployed during one year in the western Gulf of Lion along Cap de Creus and Lacaze-Duthiers submarine canyons and on the adjacent southern open slope. These traps collected particles during periods of pelagic settling and also during events of deep water flushing by dense shelf water cascading (DSWC). Analyses of lipid biomarkers (n-alkanes, n-alkan-1-ols, sterols and C37-C38 alkenones) and polycyclic aromatic hydrocarbons (PAHs) showed much higher transfer of terrestrial lipids and PAHs to open deep waters during DSWC than in the absence of cascading. The area of highest lateral fluxes was mostly located at 1000 m depth but also at 1500 m depth and extended along the canyons and to the adjacent slope. Higher fluxes were observed near the bottom (30 m above bottom; mab) than at intermediate waters (500 mab) which is consistent with the formation and sinking of dense water over the continental shelf, and its transport through the canyons towards the continental slope and deep basin. DSWC involved the highest settling fluxes of terrestrial lipids and PAHs ever described in marine continental slopes and the pelagic domain, as illustrated by peak values of C23-C33 odd carbon numbered alkanes (405 ng m-2 d-1), C22-C32 even carbon numbered alkan-1-ols (850 ng m-2 d-1), β-sitosterol+sitostanol (4800 ng m-2 d-1) and PAHs (55 μg m-2 d-1). The algal lipids also showed higher transfer to deep waters during DSWC but to a lower extent than the terrigenous compounds. However, the C37-C38 alkenones constituted an exception and their settling fluxes were not influenced by DSWC. The lack of influence of the DSWC on the C37-C38 alkenone settling is consistent with absence of haptophyte algal inputs from the continental shelf and reinforces the reliability of these molecules for palaeothermometry and palaeoproductivity measurements in pelagic systems.

  15. (e,3e) and (e,3-1e) differential cross sections for the double ionization of water molecule

    International Nuclear Information System (INIS)

    Mansouri, A.; Dal Cappello, C.; Kada, I.; Champion, C.; Roy, A.C.

    2009-01-01

    We report new results for differential cross sections for the double ionization of water molecule by 1 keV electron impact. The present calculation is based on the first Born approximation. We describe the water molecule by a single centre wave function of Moccia. For the final state, an approximation of the well-known 3C wave function is used. An extensive study has been made by varying the angles of detection and the energies of each ejected electron. We have investigated the double ionization of each molecular state (1b 1 , 3a 1 , 1b 2 and 2a 1 ) and identified the mechanisms of this process.

  16. Monitoring of 45 pesticides in Lebanese surface water using Polar Organic Chemical Integrative Sampler (POCIS)

    Science.gov (United States)

    Aisha, Al Ashi; Hneine, Wael; Mokh, Samia; Devier, Marie-Hélène; Budzinski, Hélèn; Jaber, Farouk

    2017-09-01

    The aim of this study is to assess the dissolved concentration of 45 pesticides in the surface waters of the Lebanese Republic using Polar Organic Chemical Integrative Sampler "POCIS". All of the sampling sites are located in the major agricultural land areas in Lebanon. POCIS (n = 3) were deployed at Ibrahim River, Qaraoun Lake and Hasbani River for a duration of 14 days. The total concentration of pesticides ranged from not detected (nd) to 137.66 ng.L-1. Chlorpyrifos, DDE-pp, diazinon and Fenpropathrin were the most abundant compounds. Qaraoun Lake and Hasbani River were found to be more polluted than Ibrahim River, since they receive large amounts of waste water derived from nearby agricultural lands and they had the lowest dilution factor. The aqueous average concentration of the target compounds were estimated using sampling rates obtained from the literature. Comparison between Time Weighed Average concentrations "TWA" using POCIS and spot sampling is presented. Results showed that POCIS TWA concentrations are in agreement with spot sampling concentrations for Ibrahim and Hasbani Rivers. The toxicity of the major detected pesticides on three representative aquatic species ( Daphnia magna, Scenedesmus quadricauda and Oncorhynchus mykiss) is also reported.

  17. Determination of commonly used polar herbicides in agricultural drainage waters in Australia by HPLC.

    Science.gov (United States)

    Tran, Anh T K; Hyne, Ross V; Doble, Philip

    2007-03-01

    The present study describes the application of different extraction techniques for the preconcentration of ten commonly found acidic and non-acidic polar herbicides (2,4-D, atrazine, bensulfuron-methyl, clomazone, dicamba, diuron, MCPA, metolachlor, simazine and triclopyr) in the aqueous environment. Liquid-liquid extraction (LLE) with dichloromethane, solid-phase extraction (SPE) using Oasis HLB cartridges or SBD-XC Empore disks were compared for extraction efficiency of these herbicides in different matrices, especially water samples from contaminated agricultural drainage water containing high concentrations of particulate matter. Herbicides were separated and quantified by high performance liquid chromatography (HPLC) with an ultraviolet detector. SPE using SDB-XC Empore disks was applied to determine target herbicides in the Murrumbidgee Irrigation Area (NSW, Australia) during a two-week survey from October 2005 to November 2005. The daily aqueous concentrations of herbicides from 24-h composite samples detected at two sites increased after run-off from a storm event and were in the range of: 0.1-17.8 microg l(-1), diuron, respectively.

  18. Cavity mutants of Savinase. Crystal structures and differential scanning calorimetry experiments give hints of the function of the buried water molecules in subtilisins.

    Science.gov (United States)

    Pedersen, J T; Olsen, O H; Betzel, C; Eschenburg, S; Branner, S; Hastrup, S

    1994-09-23

    The subtilisin molecule possesses several internal water molecules, which may be characterised as an integral part of the protein structure. We have introduced specific mutations (T71I, T71S, T71V, T71A and T71G) at position 71 in the subtilisin variant Savinase from Bacillus lentus. This position is involved in a hydrogen bonded network with several internal water molecules, forming a water channel. The water channel and most of the other internal water molecules are positioned in the interface between two half-domains of the subtilisin molecule. The data presented here indicate that the internal water molecules are structural, and may be the result of trapping during the folding process.

  19. Mars Water Ice and Carbon Dioxide Seasonal Polar Caps: GCM Modeling and Comparison with Mars Express Omega Observations

    Science.gov (United States)

    Forget, F.; Levrard, B.; Montmessin, F.; Schmitt, B.; Doute, S.; Langevin, Y.; Bibring, J. P.

    2005-01-01

    To better understand the behavior of the Mars CO2 ice seasonal polar caps, and in particular interpret the the Mars Express Omega observations of the recession of the northern seasonal cap, we present some simulations of the Martian Climate/CO2 cycle/ water cycle as modeled by the Laboratoire de Meteorologie Dynamique (LMD) global climate model.

  20. Low temporal variation in the intact polar lipid composition of North Sea coastal marine water reveals limited chemotaxonomic value

    NARCIS (Netherlands)

    Brandsma, J.; Hopmans, E.C.; Philippart, C.J.M.; Veldhuis, M.J.W.; Schouten, S.; Sinninghe Damsté, J.S.S.

    2012-01-01

    Temporal variations in the abundance and composition of intact polar lipids (IPLs) in North Sea coastal marine water were assessed over a one-year seasonal cycle, and compared with environmental parameters and the microbial community composition. Sulfoquinovosyldiacylglycerol (SQDG) was the most

  1. Determination of octanol-water partition coefficients of polar polycyclic aromatic compounds (N-PAC) by high performance liquid chromatography

    DEFF Research Database (Denmark)

    Helweg, C.; Nielsen, T.; Hansen, P.E.

    1997-01-01

    using a Diol column with an eluent of 35 % MeOH and 65 % water. The results indicate that the Diol column, in reversed phase mode, is able to form hydrogen bonds with a solute. Different LFERs between retention and log K-ow was found for polar and nonpolar compounds. In general log K-ow increased...

  2. Sorption Characteristics of Mixed Molecules of Glutaraldehyde from Water on Mesoporous Acid-Amine Modified Low-Cost Activated Carbon: Mechanism, Isotherm, and Kinetics

    Directory of Open Access Journals (Sweden)

    Mukosha Lloyd

    2015-01-01

    Full Text Available The environmental discharge of inefficiently treated waste solutions of the strong biocide glutaraldehyde (GA from hospitals has potential toxic impact on aquatic organisms. The adsorption characteristics of mixed polarized monomeric and polymeric molecules of GA from water on mesoporous acid-amine modified low-cost activated carbon (AC were investigated. It was found that the adsorption strongly depended on pH and surface chemistry. In acidic pH, the adsorption mechanism was elaborated to involve chemical sorption of mainly hydroxyl GA monomeric molecules on acidic surface groups, while in alkaline pH, the adsorption was elaborated to involve both chemical and physical sorption of GA polymeric forms having mixed functional groups (aldehyde, carboxyl, and hydroxyl on acidic and amine surface groups. The optimum pH of adsorption was about 12 with significant contribution by cooperative adsorption, elucidated in terms of hydrogen bonding and aldol condensation. Freundlich and Dubinin-Radushkevich models were fitted to isotherm data. The adsorption kinetics was dependent on initial concentration and temperature and described by the Elovich model. The adsorption was endothermic, while the intraparticle diffusion model suggested significant contribution by film diffusion. The developed low-cost AC could be used to supplement the GA alkaline deactivation process for efficient removal of residual GA aquatic toxicity.

  3. Determination of the number of water molecules in the proton pathway of bacteriorhodopsin using neutron diffraction data.

    Science.gov (United States)

    Papadopoulos, Georgios; Hauss, Thomas

    2003-07-01

    It has been shown that water molecules participate in the proton pathway of bacteriorhodopsin. Large efforts have been made to determine with various biophysical methods the number of water molecules involved. Neutron diffraction H2O/D2O exchange experiments have been often used to reveal the position of water even with low-resolution diffraction data. With this technique, care must be taken with the limitations of the difference Fourier method which are commonly applied to analyze the data. In this paper we compare the results of the difference Fourier method applied to measured diffraction data (not presented here) and models with those from alternative methods introduced here: (1) a computer model calculation procedure to determine a label's scattering length density based on a comparison of intensity differences derived from models and intensity differences from our measurements; (2) a method based on the Parseval formula. Both alternative methods have been evaluated and tested using results of neutron diffraction experiments on purple membranes (Hauss et al. 1994). Our findings indicate that the difference Fourier method applied to low-resolution diffraction data can successfully determine the position of localized water molecules but underestimates their integrated scattering length density in the presence of labels in other positions. Furthermore, we present the results of neutron diffraction experiments on purple membranes performed to determine the number of water molecules in the projected area of the Schiff base at 86%, 75% and 57% relative humidity (r.h.). We found 19 +/- 2 exchangeable protons at 75% r.h., which means at least 8-9 water molecules are indispensable for normal pump function.

  4. The preparation of a poly (pentaerythritol tetraglycidyl ether-co-poly ethylene imine) organic monolithic capillary column and its application in hydrophilic interaction chromatography for polar molecules.

    Science.gov (United States)

    Chen, Ye; Shu, Yan; Yang, Zihui; Lv, Xumei; Tan, Wangming; Chen, Yingzhuang; Ma, Ming; Chen, Bo

    2017-10-02

    An easy single-step thermal treatment "one-pot" approach for the preparation of poly (pentaerythritol tetraglycidyl ether-co-poly ethylene imine) organic monolithic capillary columns was developed successfully. The column was prepared by the epoxy-amine ring-opening polymerization of pentaerythritol tetraglycidyl ether (PTE) with poly (ethylene imine) (PEI) using acetonitrile (ACN) and polyethylene glycol 600 (PEG 600) as the porogenic system at 60 °C for 12 h. The obtained monolith was homogeneous and permeable. It achieved the high-efficiency separation of polar molecules including amides, nucleosides, bases, phenols, and benzoic acids in capillary liquid chromatography (cLC). The highest column efficiency reached ca. 101,000 plates/m (for guanine) on monolith poly(PTE-co-PEI) at 0.64 mm/s, and satisfactory chromatographic performance with column efficiencies ranged from 45,500 to 97,000 plates/m was achieved for the four amides. A typical hydrophilic interaction liquid chromatography (HILIC) retention mechanism was observed with high organic solvent contents (>60% ACN). Also, the polymer-based monolithic column was successfully applied to separate the tumor markers. Furthermore, the poly(PTE-co-PEI) monolith could be easily modified with 1, 2-epoxydodecane, which reacted with the amino groups presented on the surface of the poly(PTE-co-PEI) monolith. Hydrophobic interactions were observed during the separation of alkylbenzenes and anilines on the post-modified poly(PTE-co-PEI) monolith. Together, these results confirm the feasibility of the epoxy-amine ring-opening polymerization reaction during the fabrication of a monolithic column with high efficiency for cLC applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. About Some Of The Properties Of A Guest Molecule Confined In A Water Network, In Order To Form A Clathrate

    Science.gov (United States)

    Pérez, G. Bravo; Cruz-Torres, A.; Romero-Martínez, A.

    2008-03-01

    At conditions of high pressure and or low temperature, like a sea bottom from even 1 Km deep, hydrates formation may take place. Its presence is facilitated at the water/oil interface inside conducting oil pipelines. Once formed, the hydrates nucleate further to agglomerations, sticking to the inner surface of the tube. This represents a big problem to flow assurance. We present results contributing to a better understanding of the interaction of a guest molecule with a water cage confining it, that give rise to a hydrate formation. The hydrate structure, its formation energy, and the role that the H bond and its cooperative effect in the water network play in the electrostatic dipole moment of the hydrate, are presented. Molecular calculations using the HF/6-311g(d, p), B3LYP/6-311g(d, p), and B3LYP/6-311++g(d,p) methods, have been applied to compare three different hydrates, each one confining one, two CH4 molecules, and a CO2 molecule, requiring respectively n = 14, 35, and 15 water molecules for the confinement.

  6. A microwave satellite water vapour column retrieval for polar winter conditions

    Energy Technology Data Exchange (ETDEWEB)

    Perro, Christopher; Lesins, Glen; Duck, Thomas J.; Cadeddu, Maria

    2016-01-01

    A new microwave satellite water vapour retrieval for the polar winter atmosphere is presented. The retrieval builds on the work of Miao et al. (2001) and Melsheimer and Heygster (2008), employing auxiliary information for atmospheric conditions and numerical optimization. It was tested using simulated and actual measurements from the Microwave Humidity Sounder (MHS) satellite instruments. Ground truth was provided by the G-band vapour radiometer (GVR) at Barrow, Alaska. For water vapour columns less than 6 kg m-2, comparisons between the retrieval and GVR result in a root mean square (RMS) deviation of 0.39 kg m-2 and a systematic bias of 0.08 kg m-2. These results are compared with RMS deviations and biases at Barrow for the retrieval of Melsheimer and Heygster (2008), the AIRS and MIRS satellite data products, and the ERA-Interim, NCEP, JRA-55, and ASR reanalyses. When applied to MHS measurements, the new retrieval produces a smaller RMS deviation and bias than for the earlier retrieval and satellite data products. The RMS deviations for the new retrieval were comparable to those for the ERA-Interim, JRA-55, and ASR reanalyses; however, the MHS retrievals have much finer horizontal resolution (15 km at nadir) and reveal more structure. The new retrieval can be used to obtain pan-Arctic maps of water vapour columns of unprecedented quality. It may also be applied to measurements from the Special Sensor Microwave/Temperature 2 (SSM/T2), Advanced Microwave Sounding Unit B (AMSU-B), Special Sensor Microwave Imager/Sounder (SSMIS), Advanced Technology Microwave Sounder (ATMS), and Chinese MicroWave Humidity Sounder (MWHS) instruments.

  7. Evaluation of polar organic micropollutants as indicators for wastewater-related coastal water quality impairment

    International Nuclear Information System (INIS)

    Nödler, Karsten; Tsakiri, Maria; Aloupi, Maria; Gatidou, Georgia; Stasinakis, Athanasios S.; Licha, Tobias

    2016-01-01

    Results from coastal water pollution monitoring (Lesvos Island, Greece) are presented. In total, 53 samples were analyzed for 58 polar organic micropollutants such as selected herbicides, biocides, corrosion inhibitors, stimulants, artificial sweeteners, and pharmaceuticals. Main focus is the application of a proposed wastewater indicator quartet (acesulfame, caffeine, valsartan, and valsartan acid) to detect point sources and contamination hot-spots with untreated and treated wastewater. The derived conclusions are compared with the state of knowledge regarding local land use and infrastructure. The artificial sweetener acesulfame and the stimulant caffeine were used as indicators for treated and untreated wastewater, respectively. In case of a contamination with untreated wastewater the concentration ratio of the antihypertensive valsartan and its transformation product valsartan acid was used to further refine the estimation of the residence time of the contamination. The median/maximum concentrations of acesulfame and caffeine were 5.3/178 ng L −1 and 6.1/522 ng L −1 , respectively. Their detection frequency was 100%. Highest concentrations were detected within the urban area of the capital of the island (Mytilene). The indicator quartet in the gulfs of Gera and Kalloni (two semi-enclosed embayments on the island) demonstrated different concentration patterns. A comparatively higher proportion of untreated wastewater was detected in the gulf of Gera, which is in agreement with data on the wastewater infrastructure. The indicator quality of the micropollutants to detect wastewater was compared with electrical conductivity (EC) data. Due to their anthropogenic nature and low detection limits, the micropollutants are superior to EC regarding both sensitivity and selectivity. The concentrations of atrazine, diuron, and isoproturon did not exceed the annual average of their environmental quality standards (EQS) defined by the European Commission. At two

  8. Passive sampling for target and nontarget analyses of moderately polar and nonpolar substances in water.

    Science.gov (United States)

    Allan, Ian J; Harman, Christopher; Ranneklev, Sissel B; Thomas, Kevin V; Grung, Merete

    2013-08-01

    The applicability of silicone rubber and low-density polyethylene (LDPE) as passive sampling materials for target and nontarget analyses of moderately polar and nonpolar substances was assessed through a field deployment of samplers along a small, polluted stream in Oslo, Norway. Silicone and LDPE samplers of identical surface area (but different volumes) were deployed at 6 sites in the River Alna for 49 d. Quantitative target analysis by gas chromatography-mass spectrometry (quadrupole, single-ion monitoring mode) demonstrated that masses of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine compounds absorbed in the 2 polymeric materials were consistent with the current understanding of the control and mode of accumulation in these sampler materials. Some deviation was observed for decabromodiphenyl ether (BDE-209) and may be linked to the large molecular size of this substance, resulting in lower diffusivity in the LDPE. Target and nontarget analyses with gas chromatography coupled to high resolution time-of-flight mass spectrometry allowed the identification of a wide range of chemicals, including organophosphate compounds (OPCs) and musk compounds (galaxolide and tonalid). Semiquantitative analysis revealed enhanced quantities of the OPCs in silicone material, indicating some limitation in the absorption and diffusion of these substances in LDPE. Overall, silicone allows nontarget screening analysis for compounds with a wider range of log octanol-water partition coefficient values than what can be achieved with LDPE. Copyright © 2013 SETAC.

  9. The polar warhead of a TRIM24 bromodomain inhibitor rearranges a water-mediated interaction network.

    Science.gov (United States)

    Liu, Jiuyang; Li, Fudong; Bao, Hongyu; Jiang, Yiyang; Zhang, Shuya; Ma, Rongsheng; Gao, Jia; Wu, Jihui; Ruan, Ke

    2017-04-01

    Tripartite motif-containing protein 24 (TRIM24) is closely correlated with multiple cancers, and a recent study demonstrated that the bromodomain of TRIM24 is essential for the proliferation of lethal castration-resistant prostate cancer. Here, we identify three new inhibitors of the TRIM24 bromodomain using NMR fragment-based screening. The crystal structures of two new inhibitors in complex with the TRIM24 bromodomain reveal that the water-bridged interaction network is conserved in the same fashion as those for known benzoimidazolone inhibitors. Interestingly, the polar substitution on the warhead of one new inhibitor pulls the whole ligand approximately 2 Å into the inner side pocket of the TRIM24 bromodomain, and thus exhibits a binding mode significantly different from other known bromodomain ligands. This mode provides a useful handle for further hit-to-lead evolution toward novel inhibitors of the TRIM24 bromodomain. Structural data are available in the PDB under the accession numbers 5H1T, 5H1U, and 5H1V. © 2017 Federation of European Biochemical Societies.

  10. High-resolution neutron-scattering study of slow dynamics of surface water molecules in zirconium oxide.

    Science.gov (United States)

    Mamontov, E

    2005-07-08

    We have performed a quasielastic neutron-scattering experiment on backscattering spectrometer with sub-mueV resolution to investigate the slow dynamics of surface water in zirconium oxide using the sample studied previously with a time-of-flight neutron spectrometer [E. Mamontov, J. Chem. Phys. 121, 9087 (2004)]. The backscattering measurements in the temperature range of 240-300 K have revealed a translational dynamics slower by another order of magnitude compared to the translational dynamics of the outer hydration layer observed in the time-of-flight experiment. The relaxation function of this slow motion is described by a stretched exponential with the stretch factors between 0.8 and 0.9, indicating a distribution of the relaxation times. The temperature dependence of the average residence time is non-Arrhenius, suggesting that the translational motion studied in this work is more complex than surface jump diffusion previously observed for the molecules of the outer hydration layer. The observed slow dynamics is ascribed to the molecules of the inner hydration layer that form more hydrogen bonds compared to the molecules of the outer hydration layer. Despite being slower by two orders of magnitude, the translational motion of the molecules of the inner hydration layer may have more in common with bulk water compared to the outer hydration layer, the dynamics of which is slower than that of bulk water by just one order of magnitude.

  11. Deuterium-hydrogen isotopic exchange in water molecules adsorbed on Teflon under atomic-molecular hydrogen beams

    International Nuclear Information System (INIS)

    Grankin, V.P.; Savinkov, N.A.; Styrov, V.V.; Tyurin, Yu.I.

    1994-01-01

    Processes of deuterium-hydrogen exchange in the course of interaction between hydrogen molecular beam and H+H 2 atomic-molecular beam with adsorbed water molecules from D 2 O, HDO, H 2 O on Teflon have been studied. Desorption of the above molecules into vacuum, as well as their desorption under conditions of molecular and atomic-molecular hydrogen beam effect on Teflon surface have been investigated experimentally. Relative probabilities of hydrogen isotopes desorption from Teflon surface have been defined, relative probabilities and cross sections of diverse reactions of isotopic exchange have been found. 2 refs.; 3 figs

  12. Produced Water Treatment Using the Switchable Polarity Solvent Forward Osmosis (SPS FO) Desalination Process: Preliminary Engineering Design Basis

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel; Adhikari, Birendra; Orme, Christopher; Wilson, Aaron

    2016-05-01

    Switchable Polarity Solvent Forward Osmosis (SPS FO) is a semi-permeable membrane-based water treatment technology. INL is currently advancing SPS FO technology such that a prototype unit can be designed and demonstrated for the purification of produced water from oil and gas production operations. The SPS FO prototype unit will used the thermal energy in the produced water as a source of process heat, thereby reducing the external process energy demands. Treatment of the produced water stream will reduce the volume of saline wastewater requiring disposal via injection, an activity that is correlated with undesirable seismic events, as well as generate a purified product water stream with potential beneficial uses. This paper summarizes experimental data that has been collected in support of the SPS FO scale-up effort, and describes how this data will be used in the sizing of SPS FO process equipment. An estimate of produced water treatment costs using the SPS FO process is also provided.

  13. Effect of water molecule distribution on the quantitative XRD analysis in the case of Na-montmorillonite exchanged Cu2+

    International Nuclear Information System (INIS)

    Oueslati, W.; Meftah, M.; Ben Rhaiem, H.; Ben Haj Amara, A.

    2010-01-01

    Document available in extended abstract form only. Several theoretical models are proposed to describe hydration process for Wyoming-montmorillonite clay exchanged Na + or Cu 2+ . They propose some theoretical distribution and disposition for water molecule in the inter-lamellar space in the case of homogeneous and inter-stratified hydration states. For example, Ben Brahim et al. (1983a) studied the interlayer structure (atomic positions of interlayer cations) and associated H 2 O molecules of Na-saturated montmorillonite and beidellite samples. Moore and Hower (1986) studied ordered structures composed of mono-hydrated and collapsed interlayers in montmorillonite, and Cuadros (1996) estimated the H 2 O content of smectite as a function of the interlayer cation. Using similar approach, Ferrage et al (2005b) proposed a discreet distribution of water molecule layer in the same z coordinate of the exchangeable cation with inhomogeneous distribution. This heterogeneity was attributed to the surface charge. The main objective of this study is to characterize the structural changes in the theoretical XRD profile, induced by different water molecule distribution, used to simulate experimental XRD patterns in the case of Na-montmorillonite exchanged Cu 2+ . This problem was achieved by quantitative XRD analysis using an indirect method based on the comparison of the experimental 001 reflections obtained from oriented films patterns with those calculated from structural models. The starting materials were Ca-montmorillonite originated from bentonites of Wyoming (USA). The XRD patterns were obtained by reflection setting with a D8 ADVANCE Bruker installation using Cu-Kα radiation and equipped with solid state detector. Intensities were measured at an interval of 2Θ 0.04 deg. and 40-50 s counting time per step. The diffracted intensity was calculated according to the matrix formalism detailed by Drits and Tchoubar, (1990). The fitting strategies was detailed by Ferrage et

  14. The impacts of surface polarity on the solubility of nanoparticle

    International Nuclear Information System (INIS)

    Zhu, Jianzhuo; Su, Jiguo; Ou, Xinwen; Li, Jingyuan

    2016-01-01

    In order to study the dependence of water solubility and hydration behavior of nanoparticles on their surface polarity, we designed polar nanoparticles with varying surface polarity by assigning atomic partial charge to the surface of C60. The water solubility of the nanoparticle is enhanced by several orders of magnitude after the introduction of surface polarity. Nevertheless, when the atomic partial charge grows beyond a certain value (q M ), the solubility continuously decreases to the level of nonpolar nanoparticle. It should be noted that such q M is comparable with atomic partial charge of a variety of functional groups. The hydration behaviors of nanoparticles were then studied to investigate the non-monotonic dependence of solubility on the surface polarity. The interaction between the polar nanoparticle and the hydration water is stronger than the nonpolar counterpart, which should facilitate the dissolution of the nanoparticles. On the other hand, the surface polarity also reduces the interaction of hydration water with the other water molecules and enhances the interaction between the nanoparticles which may hinder their dispersion. Besides, the introduction of surface polarity disturbs and even rearranges the hydration structure of nonpolar nanoparticle. Interestingly, the polar nanoparticle with less ordered hydration structure tends to have higher water solubility.

  15. Origins of Protons in C-H Bond Insertion Products of Phenols: Proton-Self-Sufficient Function via Water Molecules.

    Science.gov (United States)

    Luo, Zhoujie; Gao, Ya; Zhu, Tong; Zhang, John Zenghui; Xia, Fei

    2017-08-31

    Water molecules can serve as proton shuttles for proton transfer in the C-H bond insertion reactions catalyzed by transition metal complexes. Recently, the control experiments performed for C-H bond insertion of phenol and anisol by gold carbenes show that large discrepancy exists in the yields of hydrogenated and deuterated products. Thus, we conducted a detailed theoretical analysis on the function of water molecules in the C-H bond insertion reactions. The comparison of calculated results and control experiments indicates that the solution water molecules play a crucial role of proton shuttle in C-H bond insertion. In particular, it was found that the hydroxyl groups in phenols were capable of donating protons via water shuttles for the production of C-H products, which had a substantial influence on the yields of inserted products. The hydroxyl groups instead of C-H bonds in phenols function like "proton reservoirs" in the C-H bond insertion, which we call the "proton self-sufficient" (PSS) function of phenol. The PSS function of phenol indicates that the substrates with and without proton reservoirs will lead to different C-H bond insertion products.

  16. Optimization of extraction of phenolic compounds from flax shives by pressurized low-polarity water.

    Science.gov (United States)

    Kim, Jin-Woo; Mazza, G

    2006-10-04

    Pressurized low-polarity water (PLPW) extraction of phenolic compounds from flax shive was investigated using statistically based optimization and the "one-factor-at-a-time" method. Extraction variables examined using central composite design (CCD) included temperature, flow rate, and NaOH concentration of the extracting water. Extraction of phenolic compounds including p-hydroxybenzaldehyde, vanillic acid, syringic acid, vanillin, acetovanillone, and feruric acid was affected by temperature and NaOH concentration; and extraction of all phenolic compounds, except ferulic acid, increased with temperature and NaOH concentration of the extracting water. Flow rate had little effect on concentration of phenolic compounds at equilibrium, but the extraction rate at the early phase was higher for higher flow rates. The mechanism of PLPW extraction of flax shive phenolics was also investigated using a two-site kinetic model and a thermodynamic model. To determine the extraction mechanism, flow rate was varied from 0.3 to 4.0 mL/min while temperature and NaOH concentration were fixed at 180 degrees C and 0.47 M, respectively. The flow rate tests showed the extraction rates of total phenolic (TP) compounds increased with flow rate and can be described by a thermodynamic model. The results from the thermodynamic model demonstrated that a K(D) value of 30 agreed with the experimental data in the flow rate range of 0.3-4.0 mL/min. When the effect of the three independent variables was evaluated simultaneously using CCD, a maximum TP concentration of 5.8 g/kg of dry flax shive (DFS) was predicted from the combination of a high temperature (230.5 degrees C), a high initial concentration of NaOH (0.63 M), and a low flow rate (0.7 mL/min). Maximum TP concentration of 5.7 g/kg of DFS was obtained from extraction conditions of 180 degrees C, 0.3 or 0.5 mL/min, and 0.47 M NaOH at equilibrium. A second-order regression model generated by CCD predicted a maximum TP concentration of 5.8 g

  17. Self-Assembly of Escin Molecules at the Air-Water Interface as Studied by Molecular Dynamics.

    Science.gov (United States)

    Tsibranska, Sonya; Ivanova, Anela; Tcholakova, Slavka; Denkov, Nikolai

    2017-08-22

    Escin belongs to a large class of natural biosurfactants, called saponins, that are present in more than 500 plant species. Saponins are applied in the pharmaceutical, cosmetics, and food and beverage industries due to their variously expressed bioactivity and surface activity. In particular, escin adsorption layers at the air-water interface exhibit an unusually high surface elastic modulus (>1100 mN/m) and a high surface viscosity (ca. 130 N·s/m). The molecular origin of these unusual surface rheological properties is still unclear. We performed classical atomistic dynamics simulations of adsorbed neutral and ionized escin molecules to clarify their orientation and interactions on the water surface. The orientation and position of the escin molecules with respect to the interface, the intermolecular interactions, and the kinetics of molecular aggregation into surface clusters are characterized in detail. Significant differences in the behavior of the neutral and the charged escin molecules are observed. The neutral escin rapidly assembles in a compact and stable surface cluster. This process is explained by the action of long-range attraction between the hydrophobic aglycones, combined with intermediate dipole-dipole attraction and short-range hydrogen bonds between the sugar residues in escin molecules. The same interactions are expected to control the viscoelastic properties of escin adsorption layers.

  18. Molecular diffusion of stable water isotopes in polar firn as a proxy for past temperatures

    Science.gov (United States)

    Holme, Christian; Gkinis, Vasileios; Vinther, Bo M.

    2018-03-01

    Polar precipitation archived in ice caps contains information on past temperature conditions. Such information can be retrieved by measuring the water isotopic signals of δ18O and δD in ice cores. These signals have been attenuated during densification due to molecular diffusion in the firn column, where the magnitude of the diffusion is isotopologue specific and temperature dependent. By utilizing the differential diffusion signal, dual isotope measurements of δ18O and δD enable multiple temperature reconstruction techniques. This study assesses how well six different methods can be used to reconstruct past surface temperatures from the diffusion-based temperature proxies. Two of the methods are based on the single diffusion lengths of δ18O and δD , three of the methods employ the differential diffusion signal, while the last uses the ratio between the single diffusion lengths. All techniques are tested on synthetic data in order to evaluate their accuracy and precision. We perform a benchmark test to thirteen high resolution Holocene data sets from Greenland and Antarctica, which represent a broad range of mean annual surface temperatures and accumulation rates. Based on the benchmark test, we comment on the accuracy and precision of the methods. Both the benchmark test and the synthetic data test demonstrate that the most precise reconstructions are obtained when using the single isotope diffusion lengths, with precisions of approximately 1.0 °C . In the benchmark test, the single isotope diffusion lengths are also found to reconstruct consistent temperatures with a root-mean-square-deviation of 0.7 °C . The techniques employing the differential diffusion signals are more uncertain, where the most precise method has a precision of 1.9 °C . The diffusion length ratio method is the least precise with a precision of 13.7 °C . The absolute temperature estimates from this method are also shown to be highly sensitive to the choice of fractionation factor

  19. Mass spectral characterisation of a polar, esterified fraction of an organic extract of an oil sands process water.

    Science.gov (United States)

    Rowland, S J; Pereira, A S; Martin, J W; Scarlett, A G; West, C E; Lengger, S K; Wilde, M J; Pureveen, J; Tegelaar, E W; Frank, R A; Hewitt, L M

    2014-11-15

    Characterising complex mixtures of organic compounds in polar fractions of heavy petroleum is challenging, but is important for pollution studies and for exploration and production geochemistry. Oil sands process-affected water (OSPW) stored in large tailings ponds by Canadian oil sands industries contains such mixtures. A polar OSPW fraction was obtained by silver ion solid-phase extraction with methanol elution. This was examined by numerous methods, including electrospray ionisation (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) and ultra-high-pressure liquid chromatography (uHPLC)/Orbitrap MS, in multiple ionisation and MS/MS modes. Compounds were also synthesised for comparison. The major ESI ionisable compounds detected (+ion mode) were C15-28 SO3 species with 3-7 double bond equivalents (DBE) and C27-28 SO5 species with 5 DBE. ESI-MS/MS collision-induced losses were due to water, methanol, water plus methanol and water plus methyl formate, typical of methyl esters of hydroxy acids. Once the fraction was re-saponified, species originally detected by positive ion MS, could be detected only by negative ion MS, consistent with their assignment as sulphur-containing hydroxy carboxylic acids. The free acid of a keto dibenzothiophene alkanoic acid was added to an unesterified acid extract of OSPW in known concentrations as a putative internal standard, but attempted quantification in this way proved unreliable. The results suggest the more polar acidic organic SO3 constituents of OSPW include C15-28  S-containing, alicyclic and aromatic hydroxy carboxylic acids. SO5 species are possibly sulphone analogues of these. The origin of such compounds is probably via further biotransformation (hydroxylation) of the related S-containing carboxylic acids identified previously in a less polar OSPW fraction. The environmental risks, corrosivity and oil flow assurance effects should be easier to assess, given that partial structures are now known

  20. Polar Organic Compounds in Surface Waters Collected Near Lead-Zinc Mine and Milling Operations in Missouri

    Science.gov (United States)

    Rostad, C. E.; Schmitt, C. J.; Schumacher, J. G.; Leiker, T. J.

    2007-12-01

    Surface-water samples were collected near a lead mine and mill tailings about 70 miles southwest of St. Louis, Missouri, during the summer of 2006. The purpose of this sampling was to determine if polar organic compounds were present that could be a cause of documented negative impacts to biota downstream. Water samples contained relatively high concentrations of dissolved organic carbon for surface waters (greater than 20 mg/L), but were colorless, which precluded naturally occurring aquatic humic or fulvic acids. Previous analysis indicated that samples were devoid of pesticides and acid/base/neutral extractable semi-volatile organic compounds, such as polycyclic aromatic hydrocarbons. After isolation by three different types of solid phase extraction, samples were analyzed by electrospray ionization/mass spectrometry. Polar organic compounds commonly used in the milling process, such as alkyl xanthates, were not found; however, xanthate degradation products were detected. Most of the polar organic compounds identified contained sulfonate groups, which are characteristic of some of the reagents used in the milling process. Sulfonate compounds may have low sorption onto soil or sediments and be mobile in the aqueous environment.

  1. Epitaxial growth of ZnO Nanodisks with large exposed polar facets on nanowire arrays for promoting photoelectrochemical water splitting.

    Science.gov (United States)

    Chen, Haining; Wei, Zhanhua; Yan, Keyou; Bai, Yang; Zhu, Zonglong; Zhang, Teng; Yang, Shihe

    2014-11-01

    Single-crystalline and branched 1D arrays, ZnO nanowires/nanodisks (NWs/NDs) arrays, are fabricated to significantly enhance the performance of photoelectrochemical (PEC) water splitting. The epitaxial growth of the ZnO NDs with large exposed polar facets on ZnO NWs exhibits a laminated structure, which dramatically increases the light scattering capacity of the NWs arrays, especially in the wavelength region around 400 nm. The ND branching of the 1D arrays in the epitaxial fashion not only increase surface area and light utilization, but also support fast charge transport, leading to the considerable increase of photocurrent. Moreover, the tiny size NDs can facilitate charge separation and reduce charge recombination, while the large exposed polar facets of NDs reduce the external potential bias needed for water splitting. These advantages land the ZnO NWs/NDs arrays a four times higher power conversion efficiency than the ZnO NWs arrays. By sensitizing the ZnO NWs/NDs with CdS and CdSe quantum dots, the PEC performance can be further improved. This work advocates a trunk/leaf in forest concept for the single-crystalline NWs/NDs in array with enlarged exposure of polar facets, which opens the way for optimizing light harvesting and charge separation and transport, and thus the PEC water splitting. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Evidence for Water Ie on the Moon: Results for Anomalous Polar Craters from the LRO Mini-RF Imaging Radar

    Science.gov (United States)

    Spudis, P.D.; Bussey, D. B. J.; Baloga, S. M.; Cahill, J. T. S.; Glaze, L. S.; Patterson, G. W.; Raney, R. K.; Thompson, T. W.; Thomson, B. J.; Ustinov, E. A.

    2013-01-01

    The Mini-RF radar instrument on the Lunar Reconnaissance Orbiter spacecraft mapped both lunar poles in two different RF wavelengths (complete mapping at 12.6 cm S-band and partial mapping at 4.2 cm X-band) in two look directions, removing much of the ambiguity of previous Earth- and spacecraft-based radar mapping of the Moon's polar regions. The poles are typical highland terrain, showing expected values of radar cross section (albedo) and circular polarization ratio (CPR). Most fresh craters display high values of CPR in and outside the crater rim; the pattern of these CPR distributions is consistent with high levels of wavelength-scale surface roughness associated with the presence of block fields, impact melt flows, and fallback breccia. A different class of polar crater exhibits high CPR only in their interiors, interiors that are both permanently dark and very cold (less than 100 K). Application of scattering models developed previously suggests that these anomalously high-CPR deposits exhibit behavior consistent with the presence of water ice. If this interpretation is correct, then both poles may contain several hundred million tons of water in the form of relatively "clean" ice, all within the upper couple of meters of the lunar surface. The existence of significant water ice deposits enables both long-term human habitation of the Moon and the creation of a permanent cislunar space transportation system based upon the harvest and use of lunar propellant.

  3. Evidence for Water Ice on the Moon: Results for Anomalous Polar Craters from the LRO Mini-RF Imaging Radar

    Science.gov (United States)

    Spudis, P. D.; Bussey, D. B. J.; Baloga, S. M.; Cahill, J. T. S.; Glaze, L. S.; Patterson, G. W.; Raney, R. K.; Thompson, T. W.; Thomson, B. J.; Ustinov, E. A.

    2013-01-01

    The Mini-RF radar instrument on the Lunar Reconnaissance Orbiter spacecraft mapped both lunar poles in two different RF wavelengths (complete mapping at 12.6 cm S-band and partial mapping at 4.2 cm X-band) in two look directions, removing much of the ambiguity of previous Earth- and spacecraft-based radar mapping of the Moon's polar regions. The poles are typical highland terrain, showing expected values of radar cross section (albedo) and circular polarization ratio (CPR). Most fresh craters display high values of CPR in and outside the crater rim; the pattern of these CPR distributions is consistent with high levels of wavelength-scale surface roughness associated with the presence of block fields, impact melt flows, and fallback breccia. A different class of polar crater exhibits high CPR only in their interiors, interiors that are both permanently dark and very cold (less than 100 K). Application of scattering models developed previously suggests that these anomalously high-CPR deposits exhibit behavior consistent with the presence of water ice. If this interpretation is correct, then both poles may contain several hundred million tons of water in the form of relatively "clean" ice, all within the upper couple of meters of the lunar surface. The existence of significant water ice deposits enables both long-term human habitation of the Moon and the creation of a permanent cislunar space transportation system based upon the harvest and use of lunar propellant.

  4. Multimission empirical ocean tide modeling for shallow waters and polar seas

    Science.gov (United States)

    Cheng, Yongcun; Andersen, Ole Baltazar

    2011-11-01

    A new global ocean tide model named DTU10 (developed at Technical University of Denmark) representing all major diurnal and semidiurnal tidal constituents is proposed based on an empirical correction to the global tide model FES2004 (Finite Element Solutions), with residual tides determined using the response method. The improvements are achieved by introducing 4 years of TOPEX-Jason 1 interleaved mission into existing 18 years (1993-2010) of primary joint TOPEX, Jason 1, and Jason 2 mission time series. Hereby the spatial distribution of observations are doubled and satellite altimetry should be able to recover twice the spatial variations of the tidal signal which is particularly important in shallow waters where the spatial scale of the tidal signal is scaled down. Outside the ±66° parallel combined Envisat, GEOSAT Follow-On, and ERS-2, data sets have been included to solve for the tides up to the ±82° parallel. A new approach to removing the annual sea level variations prior to estimating the residual tides significantly improved tidal determination of diurnal constituents from the Sun-synchronous satellites (e.g., ERS-2 and Envisat) in the polar seas. Extensive evaluations with six tide gauge sets show that the new tide model fits the tide gauge measurements favorably to other state of the art global ocean tide models in both the deep and shallow waters, especially in the Arctic Ocean and the Southern Ocean. One example is a comparison with 207 tide gauge data in the East Asian marginal seas where the root-mean-square agreement improved by 35.12%, 22.61%, 27.07%, and 22.65% (M2, S2, K1, and O1) for the DTU10 tide model compared with the FES2004 tide model. A similar comparison in the Arctic Ocean with 151 gauge data improved by 9.93%, 0.34%, 7.46%, and 9.52% for the M2, S2, K1, and O1 constituents, respectively.

  5. Importance of the alignment of polar π conjugated molecules inside carbon nanotubes in determining second-order non-linear optical properties.

    Science.gov (United States)

    Yumura, Takashi; Yamamoto, Wataru

    2017-09-20

    We employed density functional theory (DFT) calculations with dispersion corrections to investigate energetically preferred alignments of certain p,p'-dimethylaminonitrostilbene (DANS) molecules inside an armchair (m,m) carbon nanotube (n × DANS@(m,m)), where the number of inner molecules (n) is no greater than 3. Here, three types of alignments of DANS are considered: a linear alignment in a parallel fashion and stacking alignments in parallel and antiparallel fashions. According to DFT calculations, a threshold tube diameter for containing DANS molecules in linear or stacking alignments was found to be approximately 1.0 nm. Nanotubes with diameters smaller than 1.0 nm result in the selective formation of linearly aligned DANS molecules due to strong confinement effects within the nanotubes. By contrast, larger diameter nanotubes allow DANS molecules to align in a stacking and linear fashion. The type of alignment adopted by the DANS molecules inside a nanotube is responsible for their second-order non-linear optical properties represented by their static hyperpolarizability (β 0 values). In fact, we computed β 0 values of DANS assemblies taken from optimized n × DANS@(m,m) structures, and their values were compared with those of a single DANS molecule. DFT calculations showed that β 0 values of DANS molecules depend on their alignment, which decrease in the following order: linear alignment > parallel stacking alignment > antiparallel stacking alignment. In particular, a linear alignment has a β 0 value more significant than that of the same number of isolated molecules. Therefore, the linear alignment of DANS molecules, which is only allowed inside smaller diameter nanotubes, can strongly enhance their second-order non-linear optical properties. Since the nanotube confinement determines the alignment of DANS molecules, a restricted nanospace can be utilized to control their second-order non-linear optical properties. These DFT findings can assist in the

  6. High bacterial diversity of biological soil crusts in water tracks over permafrost in the high arctic polar desert.

    Science.gov (United States)

    Steven, Blaire; Lionard, Marie; Kuske, Cheryl R; Vincent, Warwick F

    2013-01-01

    In this study we report the bacterial diversity of biological soil crusts (biocrusts) inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N). Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relative abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost.

  7. High bacterial diversity of biological soil crusts in water tracks over permafrost in the high arctic polar desert.

    Directory of Open Access Journals (Sweden)

    Blaire Steven

    Full Text Available In this study we report the bacterial diversity of biological soil crusts (biocrusts inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N. Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relative abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost.

  8. Long-distance swimming by polar bears (Ursus maritimus) of the southern Beaufort Sea during years of extensive open water

    Science.gov (United States)

    2014-01-01

    Polar bears (Ursus maritimus Phipps, 1774) depend on sea ice for catching marine mammal prey. Recent sea-ice declines have been linked to reductions in body condition, survival, and population size. Reduced foraging opportunity is hypothesized to be the primary cause of sea-ice-linked declines, but the costs of travel through a deteriorated sea-ice environment also may be a factor. We used movement data from 52 adult female polar bears wearing Global Positioning System (GPS) collars, including some with dependent young, to document long-distance swimming (>50 km) by polar bears in the southern Beaufort and Chukchi seas. During 6 years (2004-2009), we identified 50 long-distance swims by 20 bears. Swim duration and distance ranged from 0.7 to 9.7 days (mean = 3.4 days) and 53.7 to 687.1 km (mean = 154.2 km), respectively. Frequency of swimming appeared to increase over the course of the study. We show that adult female polar bears and their cubs are capable of swimming long distances during periods when extensive areas of open water are present. However, long-distance swimming appears to have higher energetic demands than moving over sea ice. Our observations suggest long-distance swimming is a behavioral response to declining summer sea-ice conditions.

  9. Applying the polarity rapid assessment method to characterize nitrosamine precursors and to understand their removal by drinking water treatment processes.

    Science.gov (United States)

    Liao, Xiaobin; Bei, Er; Li, Shixiang; Ouyang, Yueying; Wang, Jun; Chen, Chao; Zhang, Xiaojian; Krasner, Stuart W; Suffet, I H Mel

    2015-12-15

    Some N-nitrosamines (NAs) have been identified as emerging disinfection by-products during water treatment. Thus, it is essential to understand the characteristics of the NA precursors. In this study, the polarity rapid assessment method (PRAM) and the classical resin fractionation method were studied as methods to fractionate the NA precursors during drinking water treatment. The results showed that PRAM has much higher selectivity for NA precursors than the resin approach. The normalized N-nitrosodimethylamine formation potential (NDMA FP) and N-nitrosodiethylamine (NDEA) FP of four resin fractions was at the same level as the average yield of the bulk organic matter whereas that of the cationic fraction by PRAM showed 50 times the average. Thus, the cationic fraction was shown to be the most important NDMA precursor contributor. The PRAM method also helped understand which portions of the NA precursor were removed by different water treatment processes. Activated carbon (AC) adsorption removed over 90% of the non-polar PRAM fraction (that sorbs onto the C18 solid phase extraction [SPE] cartridge) of NDMA and NDEA precursors. Bio-treatment removed 80-90% of the cationic fraction of PRAM (that is retained on the cation exchange SPE cartridge) and 40-60% of the non-cationic fractions. Ozonation removed 50-60% of the non-polar PRAM fraction of NA precursors and transformed part of them into the polar fraction. Coagulation and sedimentation had very limited removal of various PRAM fractions of NA precursors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Control of water molecule aggregations in copper 1,4-cyclohexanedicarboxylate coordination polymers containing pyridyl-piperazine type ligands

    Science.gov (United States)

    Qiblawi, Sultan H.; LaDuca, Robert L.

    2014-01-01

    A series of layered divalent copper coordination polymers containing 1,4-cyclohexanedicarboxylate and long-spanning pyridyl-piperazine type ligands exhibits greatly different co-crystallized water molecule aggregations depending on the specific ligands used. Both [Cu(t-14cdc)(4-bpmp)]n (1, t-14cdc = trans-1,4-cyclohexanedicarboxylate, 4-bpmp = bis(4-pyridylmethyl)piperazine) and {[Cu(t-14cdc)(4-bpfp)(H2O)2]·6H2O}n (2, 4-bpfp = bis(4-pyridylformyl)piperazine) possess 2D (4,4) coordination polymer grids. However 1 lacks any co-crystallized water and has pinched grid apertures, while 2 manifests infinite water tapes with T6(2)4(2) classification and rectangular grid apertures. {[Cu2(c-14cdc)2(4-bpmp)]·2H2O}n (3, c-14cdc = cis-1,4-cyclohexanedicarboxylate) has [Cu2(c-14cdc)]2 ribbons with paddlewheel dimeric units linked into 2D slabs by 4-bpmp tethers, along with isolated water molecule pairs. In contrast, {[Cu2(c-14cdc)2(4-bpfp)]·10H2O}n (4) shows a very similar underlying coordination polymer topology but entrains unique decameric water molecule clusters. The minor product {[Cu2(c-14cdcH)2(t-1,4-cdc)(4-bpfp)2(H2O)2]·2H2O}n (5) was isolated along with 4; this compound underwent some in situ cis to trans cyclohexane-dicarboxylate ligand isomerization and exhibits a ladder polymer motif.

  11. Performance Characterization of the Free Molecule Micro-Resistojet Utilizing Water Propellant (Preprint)

    National Research Council Canada - National Science Library

    Lee, R. H; Bauer, A. M; Killingsworth, M. D; Lilly, T. C; Duncan, J. A; Ketsdever, Andrew D

    2007-01-01

    .... The Free Molecule Micro-Resistojet (FMMR), a low cost, low power, high propellant storage density, and green propulsion system, has been analyzed in this study to determine its ability to provide a slew maneuver for a typical 10 kg nanosatellite...

  12. Partition Coefficients of Organic Molecules in Squalane and Water/Ethanol Mixtures by Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Lundsgaard, Rasmus; Kontogeorgis, Georgios; Economou, Ioannis G.

    2011-01-01

    the GROMACS software, by slowly decoupling of firstly the electrostatic and then the Lennard–Jones interactions between molecules in the simulation box. These calculations depend very much on the choice of force field. Two force fields have been tested in this work, the TraPPE-UA (united-atom) and the OPLS...

  13. Effect of Molar Mass and Water Solubility of Incorporated Molecules on the Degradation Profile of the Triblock Copolymer Delivery System

    Directory of Open Access Journals (Sweden)

    Mayura Oak

    2015-08-01

    Full Text Available The purpose of this study was to investigate the effects of size and type of incorporated model molecules on the polymer degradation and release profile from thermosensitive triblock copolymer based controlled delivery systems. In vitro release of the incorporated molecules demonstrated slow release for risperidone (molecular weight (Mw = 410.48 Da; partition coefficient (Ko/w = 3.49, while bovine serum albumin (BSA (Mw = ~66,400 Da; Ko/w = 0.007 and insulin (Mw = 5808 Da; Ko/w = 0.02 showed initial burst release followed by controlled release. The proton NMR, Gel Permeation Chromatography, and Cryo-SEM studies suggest that the size and partition coefficient of incorporated molecules influence the pore size, polymer degradation, and their release. In spite of using a similar polymer delivery system the polymer degradation rate and drug release notably differ for these model molecules. Therefore, size and oil-water partition coefficient are important factors for designing the controlled release formulation of therapeutics from triblock copolymer based delivery systems.

  14. All-electron scalar relativistic calculation of water molecule adsorption onto small gold clusters.

    Science.gov (United States)

    Kuang, Xiang-Jun; Wang, Xin-Qiang; Liu, Gao-Bin

    2011-08-01

    An all-electron scalar relativistic calculation was performed on Au( n )H(2)O (n = 1-13) clusters using density functional theory (DFT) with the generalized gradient approximation at PW91 level. The calculation results reveal that, after adsorption, the small gold cluster would like to bond with oxygen and the H(2)O molecule prefers to occupy the single fold coordination site. Reflecting the strong scalar relativistic effect, Au( n ) geometries are distorted slightly but still maintain a planar structure. The Au-Au bond is strengthened and the H-O bond is weakened, as manifested by the shortening of the Au-Au bond-length and the lengthening of the H-O bond-length. The H-O-H bond angle becomes slightly larger. The enhancement of reactivity of the H(2)O molecule is obvious. The Au-O bond-lengths, adsorption energies, VIPs, HLGs, HOMO (LUMO) energy levels, charge transfers and the highest vibrational frequencies of the Au-O mode for Au( n )H(2)O clusters exhibit an obvious odd-even oscillation. The most favorable adsorption between small gold clusters and the H(2)O molecule takes place when the H(2)O molecule is adsorbed onto an even-numbered Au( n ) cluster and becomes an Au( n )H(2)O cluster with an even number of valence electrons. The odd-even alteration of magnetic moments is observed in Au( n )H(2)O clusters and may serve as material with a tunable code capacity of "0" and "1" by adsorbing a H(2)O molecule onto an odd or even-numbered small gold cluster.

  15. Water-COOH Composite Structure with Enhanced Hydrophobicity Formed by Water Molecules Embedded into Carboxyl-Terminated Self-Assembled Monolayers.

    Science.gov (United States)

    Guo, Pan; Tu, Yusong; Yang, Jinrong; Wang, Chunlei; Sheng, Nan; Fang, Haiping

    2015-10-30

    By combining molecular dynamics simulations and quantum mechanics calculations, we show the formation of a composite structure composed of embedded water molecules and the COOH matrix on carboxyl-terminated self-assembled monolayers (COOH SAMs) with appropriate packing densities. This composite structure with an integrated hydrogen bond network inside reduces the hydrogen bonds with the water above. This explains the seeming contradiction on the stability of the surface water on COOH SAMs observed in experiments. The existence of the composite structure at appropriate packing densities results in the two-step distribution of contact angles of water droplets on COOH SAMs, around 0° and 35°, which compares favorably to the experimental measurements of contact angles collected from forty research articles over the past 25 years. These findings provide a molecular-level understanding of water on surfaces (including surfaces on biomolecules) with hydrophilic functional groups.

  16. WATER TEMPERATURE and other data from USCGC POLAR STAR from 1989-11-02 to 1990-04-11 (NODC Accession 9000089)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data was collected from ship Polar Star. The data was collected from November 2, 1989 to April 11, 1990 as part of project Deep...

  17. WATER TEMPERATURE and other data from USCGC POLAR STAR in the South Pacific Ocean from 1992-11-08 to 1993-04-12 (NODC Accession 9300068)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data was collected in South Pacific Ocean as part of project Deep Freeze from ship POLAR STAR. The data was collected from November...

  18. Studying of Influence of the Low-Frequency Electromagnetic Field on DNA Molecules in Water Solutions

    Science.gov (United States)

    Tekutskaya, E. E.; Baryshev, M. G.

    Influence of a low-frequency magnetic field on the DNA water solutions was investigated. It became clear that the variation magnetic field with a frequency of 9 Hz has the greatest impact on the DNA water solutions. Methods pulse a nuclear magnetic resonance of spectroscopy change of time of backs - a spin relaxation of the conditioned water in comparison with control is revealed. In IK - a range of water were observed change of strips of absorption of the conditioned water in the field of deformation and valent fluctuations OH - communications.

  19. Differential and total cross sections for the ionization of water molecule by electron impact

    International Nuclear Information System (INIS)

    Houamer, S.; Dal Cappello, C.; Mansouri, A.

    2007-01-01

    A theoretical approach is presented to calculate multiply differential and total cross sections of the ionization of H 2 O molecule in the vapour phase. The wave function of the target is described by molecular orbitals consisting of a linear combination of slater type atomic orbitals centered on the heaviest atom which is the oxygen atom in this case. The calculations are carried out in the first Born approximation where the projectile is described by a plane wave while the ejected electron is described by a coulomb wave taking into account its interaction with the residual ion. The spherical average over the Euler solid angle due to the randomly oriented gaseous target molecule is carried out analytically using the rotation matrix properties. The differential and total cross sections are thus evaluated without any special difficulty and compared with experiments and distorted wave calculations. Fair agreements are observed

  20. Site-specific hydration dynamics in the nonpolar core of a molten globule by dynamic nuclear polarization of water.

    Science.gov (United States)

    Armstrong, Brandon D; Choi, Jennifer; López, Carlos; Wesener, Darryl A; Hubbell, Wayne; Cavagnero, Silvia; Han, Songi

    2011-04-20

    Water-protein interactions play a direct role in protein folding. The chain collapse that accompanies protein folding involves extrusion of water from the nonpolar core. For many proteins, including apomyoglobin (apoMb), hydrophobic interactions drive an initial collapse to an intermediate state before folding to the final structure. However, the debate continues as to whether the core of the collapsed intermediate state is hydrated and, if so, what the dynamic nature of this water is. A key challenge is that protein hydration dynamics is significantly heterogeneous, yet suitable experimental techniques for measuring hydration dynamics with site-specificity are lacking. Here, we introduce Overhauser dynamic nuclear polarization at 0.35 T via site-specific nitroxide spin labels as a unique tool to probe internal and surface protein hydration dynamics with site-specific resolution in the molten globular, native, and unfolded protein states. The (1)H NMR signal enhancement of water carries information about the local dynamics of the solvent within ∼10 Å of a spin label. EPR is used synergistically to gain insights on local polarity and mobility of the spin-labeled protein. Several buried and solvent-exposed sites of apoMb are examined, each bearing a covalently bound nitroxide spin label. We find that the nonpoloar core of the apoMb molten globule is hydrated with water bearing significant translational dynamics, only 4-6-fold slower than that of bulk water. The hydration dynamics of the native state is heterogeneous, while the acid-unfolded state bears fast-diffusing hydration water. This study provides a high-resolution glimpse at the folding-dependent nature of protein hydration dynamics.

  1. sup 2 D NMR study of the dynamics of bound water molecules in dipalmitoyl-phosphatidylcholine-D sub 2 O system at a low water content

    CERN Document Server

    Takahashi, A; Takizawa, T

    2003-01-01

    We found two doublet signals A and B in sup 2 D-NMR of dipalmitoyl-phosphatidylcholine-D sub 2 O system at a low water content below the temperature of the onset of the main phase transition, i.e. in the beta'-crystalline (L subbeta sub ') phase. The splitting of each doublet becomes minimum at the onset of the transition. The signal A decreases in intensity with a slight increase of its splitting as the temperature increases further, accompanying the marked growth of the signal B in its intensity and splitting. These features of two doublets in the L subbeta sub ' phase and at higher temperatures have never been noticed. The signals A and B were ascribed to the tightly bound water and the loosely bound water, respectively. These assignments were confirmed by the theoretical calculations of the splitting of the doublet A for all possible number of the tightly bound water molecules. (author)

  2. Low-temperature FTIR spectroscopy provides evidence for protein-bound water molecules in eubacterial light-driven ion pumps.

    Science.gov (United States)

    Nomura, Yurika; Ito, Shota; Teranishi, Miwako; Ono, Hikaru; Inoue, Keiichi; Kandori, Hideki

    2018-01-31

    Light-driven H + , Na + and Cl - pumps have been found in eubacteria, which convert light energy into a transmembrane electrochemical potential. A recent mutation study revealed asymmetric functional conversion between the two pumps, where successful functional conversions are achieved exclusively when mutagenesis reverses the evolutionary amino acid sequence changes. Although this fact suggests that the essential structural mechanism of an ancestral function is retained even after gaining a new function, questions regarding the essential structural mechanism remain unanswered. Light-induced difference FTIR spectroscopy was used to monitor the presence of strongly hydrogen-bonded water molecules for all eubacterial H + , Na + and Cl - pumps, including a functionally converted mutant. This fact suggests that the strongly hydrogen-bonded water molecules are maintained for these new functions during evolution, which could be the reason for successful functional conversion from Na + to H + , and from Cl - to H + pumps. This also explains the successful conversion of the Cl - to the H + pump only for eubacteria, but not for archaea. It is concluded that water-containing hydrogen-bonding networks constitute one of the essential structural mechanisms in eubacterial light-driven ion pumps.

  3. Multiple reaction pathways operating in the mechanism of vinylogous Mannich-type reaction activated by a water molecule.

    Science.gov (United States)

    Uematsu, Ryohei; Maeda, Satoshi; Taketsugu, Tetsuya

    2014-01-01

    A systematic search for reaction pathways for the vinylogous Mannich-type reaction was performed by the artificial force induced reaction method. This reaction affords δ-amino-γ-butenolide in one pot by mixing 2-trimethylsiloxyfuran, imine, and water under solvent-free conditions. Surprisingly, the search identified as many as five working pathways. Among them, two concertedly produce anti and syn isomers of the product. Another two give an intermediate, which is a regioisomer of the main product. This intermediate can undergo a retro-Mannich reaction to give a pair of intermediates: an imine and 2-furanol. The remaining pathway directly generates this intermediate pair. The imine and 2-furanol easily react with each other to afford the product. Thus, all of these stepwise pathways finally converge to give the main product. The rate-determining step of all five (two concerted and three stepwise) pathways have a common mechanism: concerted Si-O bond formation through the nucleophilic attack of a water molecule on the silicon atom followed by proton transfer from the water molecule to the imine. Therefore, these five pathways have comparable barriers and compete with each other. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. An aspartate and a water molecule mediate efficient acid-base catalysis in a tailored antibody pocket

    Science.gov (United States)

    Debler, Erik W.; Müller, Roger; Hilvert, Donald; Wilson, Ian A.

    2009-01-01

    Design of catalysts featuring multiple functional groups is a desirable, yet formidable goal. Antibody 13G5, which accelerates the cleavage of unactivated benzisoxazoles, is one of few artificial enzymes that harness an acid and a base to achieve efficient proton transfer. X-ray structures of the Fab-hapten complexes of wild-type 13G5 and active-site variants now afford detailed insights into its mechanism. The parent antibody preorganizes AspH35 and GluL34 to abstract a proton from substrate and to orient a water molecule for leaving group stabilization, respectively. Remodeling the environment of the hydrogen bond donor with a compensatory network of ordered waters, as seen in the GluL34 to alanine mutant, leads to an impressive 109-fold rate acceleration over the nonenzymatic reaction with acetate, illustrating the utility of buried water molecules in bifunctional catalysis. Generalization of these design principles may aid in creation of catalysts for other important chemical transformations. PMID:19846764

  5. Methane excess production in oxygen-rich polar water and a model of cellular conditions for this paradox

    Science.gov (United States)

    Damm, E.; Thoms, S.; Beszczynska-Möller, A.; Nöthig, E. M.; Kattner, G.

    2015-09-01

    Summer sea ice cover in the Arctic Ocean has undergone a reduction in the last decade exposing the sea surface to unforeseen environmental changes. Melting sea ice increases water stratification and induces nutrient limitation, which is also known to play a crucial role in methane formation in oxygenated surface water. We report on an excess of methane in the marginal ice zone in the western Fram Strait. Our study is based on measurements of oxygen, methane, DMSP, nitrate and phosphate concentrations as well as on phytoplankton composition and light transmission, conducted along the 79°N oceanographic transect, in the western part of the Fram Strait and in Northeast Water Polynya region off Greenland. Between the eastern Fram Strait, where Atlantic water enters from the south and the western Fram Strait, where Polar water enters from the north, different nutrient limitations occurred and consequently different bloom conditions were established. Ongoing sea ice melting enhances the environmental differences between both water masses and initiates regenerated production in the western Fram Strait. We show that in this region methane is in situ produced while DMSP (dimethylsulfoniopropionate) released from sea ice may serve as a precursor for the methane formation. The methane production occured despite high oxygen concentrations in this water masses. As the metabolic activity (respiration) of unicellular organisms explains the presence of anaerobic conditions in the cellular environment we present a theoretical model which explains the maintenance of anaerobic conditions for methane formation inside bacterial cells, despite enhanced oxygen concentrations in the environment.

  6. Possible interstellar formation of glycine from the reaction of CH2=NH, CO and H2O: catalysis by extra water molecules through the hydrogen relay transport.

    Science.gov (United States)

    Nhlabatsi, Zanele P; Bhasi, Priya; Sitha, Sanyasi

    2016-01-07

    "How the fundamental life elements are created in the interstellar medium (ISM)?" is one of the intriguing questions related to the genesis of life. Using computational calculations, we have discussed the reaction of CH2=NH, CO and H2O for the formation of glycine, the simplest life element. This reaction proceeds through a concerted mechanism with reasonably large barriers for the cases with one and two water molecules as reactants. For the two water case we found that the extra water molecule exhibits some catalytic role through the hydrogen transport relay effect and the barrier height is reduced substantially compared to the case with one water molecule. These two cases can be treated as ideal cases for the hot-core formation of the interstellar glycine. With an increasing number of water molecules as the reactants, we found that when the numbers of water molecules are three or more than three, the barrier height reduced so drastically that the transition states were more stable than the reactants. Such a situation gives a clear indication that with excess water molecules as the reactants, this reaction will be feasible even under the low temperature conditions existing in the cold interstellar clouds and the exothermic nature of the reaction will be the driving force.

  7. Reactivity of ionic oxides through water molecules adsorption process; MgO-V sub 2 O sub 5 behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Goni-Elizalde, S. (Consejo Superior de Investigaciones Cientificas, Madrid (Spain). Instituto de Ciencias de la Construccion Eduardo Torroja); Garcia-Clavel, M.E. (Consejo Superior de Investigaciones Cientificas, Madrid (Spain). Instituto de Edafologia)

    1991-03-01

    Crystalline V{sub 2}O{sub 5} reactivity is strongly dependent on both particle size and relative humidity surrounding the sample. To study the increase of reactivity of crystalline V{sub 2}O{sub 5} (grain size<0.05 mm), a mixture of MgO-V{sub 2}O{sub 5} (1:1) has been kept in a watervapour saturated atmosphere for different periods of time. X-ray diffraction is employed to follow the structural evolution of the mixture, the adsorption process of water molecules has been studied by infrared spectroscopy as well as by thermogravimetry. (author). 11 refs.; 5 figs.; 1 tab.

  8. Bibliography of electron and photon cross sections with atoms and molecules published in the 20th century. Water vapour

    International Nuclear Information System (INIS)

    Hayashi, Makoto

    2003-12-01

    Bibliographies of original and review reports of experiments or theories of electron and photon cross sections and also electron swarm data are presented for atomic or molecular species with specified targets. These works covered 17 atoms and 51 molecules. The present bibliography is only for water vapour (H 2 O, D 2 O and HDO). About 1200 papers were compiled. A comprehensive author index is included. The bibliography covers the period 1915 through 2000 for H 2 O. Finally, author's comments for electron collision cross sections and photodissociation processes of H 2 O are given. (author)

  9. Prototropic tautomerism of 4-Methyl 1,2,4-Triazole-3-Thione molecule in solvent water medium: DFT and Car–Parrinello molecular dynamics study

    International Nuclear Information System (INIS)

    Dutta, Bipan; De, Rina; Chowdhury, Joydeep

    2015-01-01

    Highlights: • The tautomerism of 4-MTTN molecule in solvent water medium has been investigated. • CPMD presage the possibility of PT reactions through the solvent water medium. • Concerted PT processes in 4-MTTN have been estimated from the DFT and NBO analyses. • Percentage evolution and breaking of the concerned bonds are estimated. - Abstract: The ground state prototropic tautomerism of 4-Methyl 1,2,4-Triazole-3-Thione molecule in solvent water medium has been investigated with the aid of DFT and Car–Parrinello molecular dynamics (CPMD) simulation studies. The CPMD simulations envisage the possibility of proton transfer reactions of the molecule through the solvent water medium. Probable proton transfer pathways have been predicted from the DFT calculations which are substantiated by the natural bond orbital analyses. The evolution and breaking of the concerned bonds of the molecule for different proton transfer reaction pathways are also estimated.

  10. Prototropic tautomerism of 4-Methyl 1,2,4-Triazole-3-Thione molecule in solvent water medium: DFT and Car–Parrinello molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Bipan [Department of Physics, Sammilani Mahavidyalaya, E.M. Bypass, Baghajatin Station, Kolkata 700 094 (India); De, Rina [Department of Physics, Raja Rammohun Roy Mahavidyalaya, Nangulpara, Hooghly 712406 (India); Chowdhury, Joydeep, E-mail: joydeep72_c@rediffmail.com [Department of Physics, Sammilani Mahavidyalaya, E.M. Bypass, Baghajatin Station, Kolkata 700 094 (India)

    2015-12-16

    Highlights: • The tautomerism of 4-MTTN molecule in solvent water medium has been investigated. • CPMD presage the possibility of PT reactions through the solvent water medium. • Concerted PT processes in 4-MTTN have been estimated from the DFT and NBO analyses. • Percentage evolution and breaking of the concerned bonds are estimated. - Abstract: The ground state prototropic tautomerism of 4-Methyl 1,2,4-Triazole-3-Thione molecule in solvent water medium has been investigated with the aid of DFT and Car–Parrinello molecular dynamics (CPMD) simulation studies. The CPMD simulations envisage the possibility of proton transfer reactions of the molecule through the solvent water medium. Probable proton transfer pathways have been predicted from the DFT calculations which are substantiated by the natural bond orbital analyses. The evolution and breaking of the concerned bonds of the molecule for different proton transfer reaction pathways are also estimated.

  11. Subsurface imaging of water electrical conductivity, hydraulic permeability and lithology at contaminated sites by induced polarization

    Science.gov (United States)

    Maurya, PK; Balbarini, N.; Møller, I.; Rønde, V.; Christiansen, AV; Bjerg, PL; Auken, E.; Fiandaca, G.

    2018-01-01

    At contaminated sites, knowledge about geology and hydraulic properties of the subsurface and extent of the contamination is needed for assessing the risk and for designing potential site remediation. In the present study, we have developed a new approach for characterizing contaminated sites through time-domain spectral induced polarization. The new approach is based on: 1) spectral inversion of the induced polarization data through a re-parameterization of the Cole-Cole model, which disentangles the electrolytic bulk conductivity from the surface conductivity for delineating the contamination plume; 2) estimation of hydraulic permeability directly from the inverted parameters using a laboratory-derived empirical equation without any calibration; 3) the use of the geophysical imaging results for supporting the geological modeling and planning of drilling campaigns.

  12. Solvation in supercritical water

    International Nuclear Information System (INIS)

    Cochran, H.D.; Cummings, P.T.; Karaborni, S.

    1991-01-01

    The aim of this work is to determine the solvation structure in supercritical water composed with that in ambient water and in simple supercritical solvents. Molecular dynamics studies have been undertaken of systems that model ionic sodium and chloride, atomic argon, and molecular methanol in supercritical aqueous solutions using the simple point charge model of Berendsen for water. Because of the strong interactions between water and ions, ionic solutes are strongly attractive in supercritical water, forming large clusters of water molecules around each ion. Methanol is found to be a weakly-attractive solute in supercritical water. The cluster of excess water molecules surrounding a dissolved ion or polar molecule in supercritical aqueous solutions is comparable to the solvent clusters surrounding attractive solutes in simple supercritical fluids. Likewise, the deficit of water molecules surrounding a dissolved argon atom in supercritical aqueous solutions is comparable to that surrounding repulsive solutes in simple supercritical fluids. The number of hydrogen bonds per water molecule in supercritical water was found to be about one third the number in ambient water. The number of hydrogen bonds per water molecule surrounding a central particle in supercritical water was only mildly affected by the identify of the central particle--atom, molecule, or ion. These results should be helpful in developing a qualitative understanding of important processes that occur in supercritical water. 29 refs., 6 figs

  13. Transport-limited water splitting at ion-selective interfaces during concentration polarization

    DEFF Research Database (Denmark)

    Nielsen, Christoffer Peder; Bruus, Henrik

    2014-01-01

    We present an analytical model of salt- and water-ion transport across an ion-selective interface based on an assumption of local equilibrium of the water-dissociation reaction. The model yields current-voltage characteristics and curves of water-ion current versus salt-ion current, which are in ...

  14. Unexpected attraction of polarotactic water-leaving insects to matt black car surfaces: mattness of paintwork cannot eliminate the polarized light pollution of black cars.

    Directory of Open Access Journals (Sweden)

    Miklos Blaho

    Full Text Available The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt the concerned surface. Consequently, matt black/grey cars may not induce polarized light pollution, which would be an advantageous feature for environmental protection. To test this idea, we performed field experiments with horizontal shiny and matt black car-body surfaces laid on the ground. Using imaging polarimetry, in multiple-choice field experiments we investigated the attractiveness of these test surfaces to various water-leaving polarotactic insects and obtained the following results: (i The attractiveness of black car-bodies to polarotactic insects depends in complex manner on the surface roughness (shiny, matt and species (mayflies, dolichopodids, tabanids. (ii Non-expectedly, the matt dark grey car finish is much more attractive to mayflies (being endangered and protected in many countries than matt black finish. (iii The polarized light pollution of shiny black cars usually cannot be reduced with the use of matt painting. On the basis of these, our two novel findings are that (a matt car-paints are highly polarization reflecting, and (b these matt paints are not suitable to repel polarotactic insects. Hence, the recent technology used to make matt the car-bodies cannot eliminate or even can enhance the attractiveness of black/grey cars to water-leaving insects. Thus, changing shiny black car painting to matt one is a disadvantageous fashion fad concerning the reduction of polarized light pollution of black vehicles.

  15. Unexpected attraction of polarotactic water-leaving insects to matt black car surfaces: mattness of paintwork cannot eliminate the polarized light pollution of black cars.

    Science.gov (United States)

    Blaho, Miklos; Herczeg, Tamas; Kriska, Gyorgy; Egri, Adam; Szaz, Denes; Farkas, Alexandra; Tarjanyi, Nikolett; Czinke, Laszlo; Barta, Andras; Horvath, Gabor

    2014-01-01

    The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces) attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt) surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt the concerned surface. Consequently, matt black/grey cars may not induce polarized light pollution, which would be an advantageous feature for environmental protection. To test this idea, we performed field experiments with horizontal shiny and matt black car-body surfaces laid on the ground. Using imaging polarimetry, in multiple-choice field experiments we investigated the attractiveness of these test surfaces to various water-leaving polarotactic insects and obtained the following results: (i) The attractiveness of black car-bodies to polarotactic insects depends in complex manner on the surface roughness (shiny, matt) and species (mayflies, dolichopodids, tabanids). (ii) Non-expectedly, the matt dark grey car finish is much more attractive to mayflies (being endangered and protected in many countries) than matt black finish. (iii) The polarized light pollution of shiny black cars usually cannot be reduced with the use of matt painting. On the basis of these, our two novel findings are that (a) matt car-paints are highly polarization reflecting, and (b) these matt paints are not suitable to repel polarotactic insects. Hence, the recent technology used to make matt the car-bodies cannot eliminate or even can enhance the attractiveness of black/grey cars to water-leaving insects. Thus, changing shiny black car painting to matt one is a disadvantageous fashion fad concerning the reduction of polarized light pollution of black vehicles.

  16. Removal of Chromophore-proximal Polar Atoms Decreases Water Content and Increases Fluorescence in a Near Infrared Phytofluor

    Directory of Open Access Journals (Sweden)

    Heli eLehtivuori

    2015-11-01

    Full Text Available Genetically encoded fluorescent markers have revolutionized cell and molecular biology due to their biological compatibility, controllable spatiotemporal expression, and photostability. To achieve in vivo imaging in whole animals, longer excitation wavelength probes are needed due to the superior ability of near infrared light to penetrate tissues unimpeded by absorbance from biomolecules or autofluorescence of water. Derived from near infrared-absorbing bacteriophytochromes, phytofluors are engineered to fluoresce in this region of the electromagnetic spectrum, although high quantum yield remains an elusive goal. An invariant aspartate residue is of utmost importance for photoconversion in native phytochromes, presumably due to the proximity of its backbone carbonyl to the pyrrole ring nitrogens of the biliverdin (BV chromophore as well as the size and charge of the side chain. We hypothesized that the polar interaction network formed by the charged side chain may contribute to the decay of the excited state via proton transfer. Thus, we chose to further probe the role of this amino acid by removing all possibility for polar interactions with its carboxylate side chain by incorporating leucine instead. The resultant fluorescent protein, WiPhy2, maintains BV binding, monomeric status, and long maximum excitation wavelength while minimizing undesirable protoporphyrin IXα binding in cells. A crystal structure and time-resolved fluorescence spectroscopy reveal that water near the BV chromophore is excluded and thus validate our hypothesis that removal of polar interactions leads to enhanced fluorescence by increasing the lifetime of the excited state. This new phytofluor maintains its fluorescent properties over a broad pH range and does not suffer from photobleaching. WiPhy2 achieves the best compromise to date between high fluorescence quantum yield and long illumination wavelength in this class of fluorescent proteins.

  17. Actinobacterial community structure in the Polar Frontal waters of the Southern Ocean of the Antarctica using Geographic Information System (GIS: A novel approach to study Ocean Microbiome

    Directory of Open Access Journals (Sweden)

    P. Sivasankar

    2018-04-01

    Full Text Available Integration of microbiological data and geographical locations is necessary to understand the spatiotemporal patterns of the microbial diversity of an ecosystem. The Geographic Information System (GIS to map and catalogue the data on the actinobacterial diversity of the Southern Ocean waters was completed through sampling and analysis. Water samples collected at two sampling stations viz. Polar Front 1 (Station 1 and Polar Front 2 (Station 2 during 7th Indian Scientific Expedition to the Indian Ocean Sector of the Southern Ocean (SOE-2012-13 were used for analysis. At the outset, two different genera of Actinobacteria were recorded at both sampling stations. Streptomyces was the dominanted with the high score (> 60%, followed by Nocardiopsis (< 30% at both the sampling stations-Polar Front 1 and Polar Front 2-along with other invasive genera such as Agrococcus, Arthrobacter, Cryobacterium, Curtobacterium, Microbacterium, Marisediminicola, Rhodococcus and Kocuria. This data will help to discriminate the diversity and distribution pattern of the Actinobacteria in the Polar Frontal Region of the Southern Ocean waters. It is a novel approach useful for geospatial cataloguing of microbial diversity from extreme niches and in various environmental gradations. Furthermore, this research work will act as the milestone for bioprospecting of microbial communities and their products having potential applications in healthcare, agriculture and beneficial to mankind. Hence, this research work would have significance in creating a database on microbial communities of the Antarctic ecosystem. Keywords: Antarctica, Marine actinobacteria, Southern ocean, GIS, Polar Frontal waters, Microbiome

  18. Manganese compounds as catalysts for water oxidation and as CO releasing molecules

    OpenAIRE

    Berends, Hans-Martin

    2011-01-01

    This PhD thesis deals with several aspects of manganese chemistry and is divided into three parts. The first two concern the synthesis and characterization of manganese-based water oxidation catalysts. The four-electron oxidation of water to dioxygen is a key process of oxygenic photosynthesis in which solar energy is captured and stored in the form of carbohydrates. In nature, this reaction is catalyzed by a µ-oxido-Mn4Ca cluster, the oxygen evolving complex (OEC). Mimicking this reacti...

  19. Recycling acetic acid from polarizing film of waste liquid crystal display panels by sub/supercritical water treatments.

    Science.gov (United States)

    Wang, Ruixue; Chen, Ya; Xu, Zhenming

    2015-05-19

    Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate) and organic materials (polarizing film and liquid crystal). The organic materials should be removed first since containing polarizing film and liquid crystal is to the disadvantage of the indium recycling process. In the present study, an efficient and environmentally friendly process to obtain acetic acid from waste LCD panels by sub/supercritical water treatments is investigated. Furthermore, a well-founded reaction mechanism is proposed. Several highlights of this study are summarized as follows: (i) 99.77% of organic matters are removed, which means the present technology is quite efficient to recycle the organic matters; (ii) a yield of 78.23% acetic acid, a quite important fossil energy based chemical product is obtained, which can reduce the consumption of fossil energy for producing acetic acid; (iii) supercritical water acts as an ideal solvent, a requisite reactant as well as an efficient acid-base catalyst, and this is quite significant in accordance with the "Principles of Green Chemistry". In a word, the organic matters of waste LCD panels are recycled without environmental pollution. Meanwhile, this study provides new opportunities for alternating fossil-based chemical products for sustainable development, converting "waste" into "fossil-based chemicals".

  20. Slowing and cooling of heavy or light (even with a tiny electric dipole moment) polar molecules using a novel, versatile electrostatic Stark decelerator.

    Science.gov (United States)

    Wang, Qin; Hou, Shunyong; Xu, Liang; Yin, Jianping

    2016-02-21

    To meet some demands for realizing precise measurements of an electric dipole moment of electron (eEDM) and examining cold collisions or cold chemical physics, we have proposed a novel, versatile electrostatic Stark decelerator with an array of true 3D electric potential wells, which are created by a series of horizontally-oriented, U-shaped electrodes with time-sequence controlling high voltages (± HV) and two guiding electrodes with a constant voltage. We have calculated the 2D electric field distribution, the Stark shifts of the four lowest rotational sub-levels of PbF molecules in the X1(2)Π1/2(v = 0) electronic and vibrational ground states as well as the population in the different rotational levels. We have discussed the 2D longitudinal and transverse phase-space acceptances of PbF molecules in our decelerator. Subsequently, we have simulated the dynamic processes of the decelerated PbF molecules using the 3D Monte-Carlo method, and have found that a supersonic PbF beam with a velocity of 300 m s(-1) can be efficiently slowed to about 5 m s(-1), which will greatly enhance the sensitivities to research a parity violation and measure an eEDM. In addition, we have investigated the dependences of the longitudinal velocity spread, longitudinal temperature and bunching efficiency on both the number of guiding stages and high voltages, and found that after bunching, a cold packet of PbF molecules in the J = 7/2, MΩ = -7/4 state with a longitudinal velocity spread of 0.69 m s(-1) (corresponding to a longitudinal temperature of 2.35 mK) will be produced by our high-efficient decelerator, which will generate a high energy-resolution molecular beam for studying cold collision physics. Finally, our novel decelerator can also be used to efficiently slow NO molecules with a tiny electric dipole moment (EDM) of 0.16 D from 315 m s(-1) to 28 m s(-1). It is clear that our proposed new decelerator has a good slowing performance and experimental feasibility as well as wide

  1. Circulation and seasonal evolution of polar waters south of Australia: implications for iron fertilization of the Southern Ocean

    Science.gov (United States)

    Trull, Tom; Rintoul, Stephen R.; Hadfield, Mark; Abraham, Edward R.

    The Southern Ocean Iron Release Experiment (SOIREE) was carried out in late summer (February 1999) south of Australia (61°S, 140°E). This region of the southern Antarctic Zone (AZ-S), between the southern branch of the Polar Front (PF) and the southern front of the Antarctic Circumpolar Current (SAACF), is characterized by weak currents and is remote from the influence of sea-ice or coastal waters. The SOIREE site exhibits high nutrient concentrations year-round (phosphate, nitrate and silicate remain above 10 μM), low chlorophyll accumulations (production is complete. No increase in carbon export occurred during the SOIREE 13-day observation period. The seasonal cycles of mixed-layer development and low biomass accumulation at the SOIREE site are representative of most of the region between the PF and the SACCF, i.e. between ˜54 and ˜62°S, and to a lesser extent the Polar Frontal Zone. However, north of ˜59°S surface waters are depleted in silica by mid-summer (as occurs year-round north of the Subantarctic Front). A different response to iron fertilization is likely under these conditions, possibly the promotion of lightly silicified diatoms and non-siliceous organisms, whose ability to export carbon is uncertain. The SOIREE fertilized waters are likely to have remained at the surface in the AZ-S throughout the winter. In general, carbon sequestration by subduction of iron-enhanced biomass accumulations is unlikely south of the SAF, except in very limited regions. Moreover, intermediate water masses formed in the Southern Ocean sink with little pre-formed silicate, so that the "silica pump" is already working at close to maximal capacity. Therefore, in the absence of significant changes in community structure or algal physiology, which increase the ratio of carbon export to silicate export, increased iron supply is unlikely to increase the magnitude of carbon sequestration.

  2. Recombination time of an RF discharge plasma in the presence of water molecules

    Energy Technology Data Exchange (ETDEWEB)

    Protasevich, E.T.

    1986-05-01

    The authors show that the introduction of water vapor into an electrodeless rf discharge noticeably reduces the excitation temperature and substantially increases the recombination time of the plasma. An attempt is made to explain the physical processes associated with these phenomena.

  3. Incipient ferroelectricity of water molecules confined to nano-channels of beryl

    Czech Academy of Sciences Publication Activity Database

    Gorshunov, B. P.; Torgashev, V. I.; Zhukova, E.S.; Thomas, V.G.; Belyanchikov, M. A.; Kadlec, Christelle; Kadlec, Filip; Savinov, Maxim; Ostapchuk, Tetyana; Petzelt, Jan; Prokleška, J.; Tomas, P. V.; Pestrjakov, E.V.; Fursenko, D.A.; Shakurov, G.S.; Prokhorov, A. S.; Gorelik, V. S.; Kadyrov, L.S.; Uskov, V.V.; Kremer, R. K.; Dressel, M.

    2016-01-01

    Roč. 7, Sep (2016), 1-10, č. článku 12842. ISSN 2041-1723 R&D Projects: GA ČR(CZ) GA14-25639S Institutional support: RVO:68378271 Keywords : water * beryl * ferroelectricity * quantum fluctuations * Curie–Weiss behaviour Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 12.124, year: 2016

  4. Determination of polar pharmaceuticals in sewage water of Greece by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Koutsouba, V; Heberer, Th; Fuhrmann, B; Schmidt-Baumler, K; Tsipi, D; Hiskia, A

    2003-04-01

    Sewage influents and effluents of different urban areas of Greece, were analyzed for polar pharmaceutical residues, used in human medicine. Drugs investigated were the anti-inflammatory drugs diclofenac and ibuprofen, the metabolite of the drugs clofibrates used as blood lipid regulators, clofibric acid and the analgesics phenazone and propyphenazone. Analysis was carried out using capillary gas chromatography-mass spectrometry with selected ion monitoring. The method used was involved solid phase extraction (C(18)) and derivatization with pentafluorobenzyl bromide. Diclofenac was detected in every sewage effluent sample.

  5. Charge-transfer complexes of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone with amino molecules in polar solvents.

    Science.gov (United States)

    Berto, Silvia; Chiavazza, Enrico; Ribotta, Valentina; Daniele, Pier Giuseppe; Barolo, Claudia; Giacomino, Agnese; Vione, Davide; Malandrino, Mery

    2015-01-01

    The charge-transfer complexes have scientific relevance because this type of molecular interaction is at the basis of the activity of pharmacological compounds and because the absorption bands of the complexes can be used for the quantification of electron donor molecules. This work aims to assess the stability of the charge-transfer complexes between the electron acceptor 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and two drugs, procaine and atenolol, in acetonitrile and ethanol. The stability of DDQ in solution and the time required to obtain the maximum complex formation were evaluated. The stoichiometry and the stability of the complexes were determined, respectively, by Job's plot method and by the elaboration of UV-vis titrations data. The latter task was carried out by using the non-linear global analysis approach to determine the equilibrium constants. This approach to data elaboration allowed us to overcome the disadvantages of the classical linear-regression method, to obtain reliable values of the association constants and to calculate the entire spectra of the complexes. NMR spectra were recorded to identify the portion of the donor molecule that was involved in the interaction. The data support the participation of the aliphatic amino groups in complex formation and exclude the involvement of the aromatic amine present in the procaine molecule. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Reverse self-assemblies based on amphiphilic polyphosphazenes for encapsulation of water-soluble molecules

    Science.gov (United States)

    Qiu, Liyan; Zhang, Jianxiang; Yan, Meiqiu; Jin, Yi; Zhu, Kangjie

    2007-11-01

    A novel series of amphiphilic polyphosphazenes (PNIPAm/AA-PPP) containing hydrophilic oligo-(N-isopropylacrylamide) (oligo-NIPAm) and various hydrophobic aliphatic amines as co-substitutes was synthesized via a two-step substitution reaction. The extraction and solubilization of water-soluble substances such as fluorescein sodium and trypan blue from an aqueous phase into the chloroform phase were supposed to result from the formation of polyphosphazene reverse self-assemblies in the organic phase. A field emission scanning electronic microscope was adopted to characterize the morphology of reverse assemblies in chloroform. Additionally, a significant improvement of encapsulation and release profiles of water-soluble substances was found for poly(lactic-co-glycolic acid) (PLGA) microparticles in the presence of amphiphilic copolymers, which was associated with the chemical structure of copolymers as well as the content of copolymer in the microparticles.

  7. Ordering of protein and water molecules at their interfaces with chitin nano-crystals.

    Science.gov (United States)

    Valverde Serrano, Clara; Leemreize, Hanna; Bar-On, Benny; Barth, Friedrich G; Fratzl, Peter; Zolotoyabko, Emil; Politi, Yael

    2016-02-01

    Synchrotron X-ray diffraction was applied to study the structure of biogenic α-chitin crystals composing the tendon of the spider Cupiennius salei. Measurements were carried out on pristine chitin crystals stabilized by proteins and water, as well as after their deproteinization and dehydration. We found substantial shifts (up to Δq/q=9% in the wave vector in q-space) in the (020) diffraction peak position between intact and purified chitin samples. However, chitin lattice parameters extracted from the set of reflections (hkl), which did not contain the (020)-reflection, showed no systematic variation between the pristine and the processed samples. The observed shifts in the (020) peak position are discussed in terms of the ordering-induced modulation of the protein and water electron density near the surface of the ultra-thin chitin fibrils due to strong protein/chitin and water/chitin interactions. The extracted modulation periods can be used as a quantitative parameter characterizing the interaction length. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Self-assembly of polar food lipids.

    Science.gov (United States)

    Leser, Martin E; Sagalowicz, Laurent; Michel, Martin; Watzke, Heribert J

    2006-11-16

    Polar lipids, such as monoglycerides and phospholipids, are amphiphilic molecules commonly used as processing and stabilization aids in the manufacturing of food products. As all amphiphilic molecules (surfactants, emulsifiers) they show self-assembly phenomena when added into water above a certain concentration (the critical aggregation concentration). The variety of self-assembly structures that can be formed by polar food lipids is as rich as it is for synthetic surfactants: micelles (normal and reverse micelles), microemulsions, and liquid crystalline phases can be formulated using food-grade ingredients. In the present work we will first discuss microemulsion and liquid crystalline phase formation from ingredients commonly used in food industry. In the last section we will focus on three different potential application fields, namely (i) solubilization of poorly water soluble ingredients, (ii) controlled release, and (iii) chemical reactivity. We will show how the interfacial area present in self-assembly structures can be used for (i) the delivery of functional molecules, (ii) controlling the release of functional molecules, and (iii) modulating the chemical reactivity between reactive molecules, such as aromas.

  9. An energy balance model exploration of the impacts of interactions between surface albedo, cloud cover and water vapor on polar amplification

    Science.gov (United States)

    Södergren, A. Helena; McDonald, Adrian J.; Bodeker, Gregory E.

    2017-11-01

    We examine the effects of non-linear interactions between surface albedo, water vapor and cloud cover (referred to as climate variables) on amplified warming of the polar regions, using a new energy balance model. Our simulations show that the sum of the contributions to surface temperature changes due to any variable considered in isolation is smaller than the temperature changes from coupled feedback simulations. This non-linearity is strongest when all three climate variables are allowed to interact. Surface albedo appears to be the strongest driver of this non-linear behavior, followed by water vapor and clouds. This is because increases in longwave radiation absorbed by the surface, related to increases in water vapor and clouds, and increases in surface absorbed shortwave radiation caused by a decrease in surface albedo, amplify each other. Furthermore, our results corroborate previous findings that while increases in cloud cover and water vapor, along with the greenhouse effect itself, warm the polar regions, water vapor also significantly warms equatorial regions, which reduces polar amplification. Changes in surface albedo drive large changes in absorption of incoming shortwave radiation, thereby enhancing surface warming. Unlike high latitudes, surface albedo change at low latitudes are more constrained. Interactions between surface albedo, water vapor and clouds drive larger increases in temperatures in the polar regions compared to low latitudes. This is in spite of the fact that, due to a forcing, cloud cover increases at high latitudes and decreases in low latitudes, and that water vapor significantly enhances warming at low latitudes.

  10. Characterisation by triple-quantum filtered 17O-NMR of water molecules buried in lysozyme and trapped in a lysozyme-inhibitor complex

    International Nuclear Information System (INIS)

    Baguet, E.; Hennebert, N.

    1999-01-01

    Triple-quantum filtering NMR sequences were used to study the multiexponential relaxation behaviour of H 2 17 O in the presence of hen egg white lysozyme. By this means, the fraction and the correlation time of water were determined in slow motion, as well as the relaxation time of water in the extreme narrowing limit. The small number of water molecules in slow motion, which is between four and five per lysozyme, seems to correspond to the 'integral' water, buried or in the cleft inside the protein, whereas water in fast motion corresponds to all other water molecules, interacting or not with the macromolecules. The same experiment was performed after addition of the inhibitor tri-N-acetylglucosamine (NAG) 3 . For solutions of sufficient viscosity, there were approximately three supplementary water molecules in slow motion per lysozyme, probably trapped between the protein and the inhibitor. The correlation time of these water molecules was estimated at 2 ns, which should correspond to their residence time in the complex. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Ultrasensitive determination of highly polar trimethyl phosphate in environmental water by molecularly imprinted polymeric fiber headspace solid-phase microextraction.

    Science.gov (United States)

    Cai, Cuicui; Zhang, Pengcheng; Deng, Jiali; Zhou, Hongbin; Cheng, Jing

    2018-03-01

    A sensitive, accurate, and cost effective method for the quantification of trimethyl phosphate, which is highly polar and volatile, in environmental water is presented. Trimethyl phosphate was headspace solid-phase microextracted on a molecularly imprinted polymeric fiber, and then the fiber was thermally desorbed in the gas chromatograph injector, and the compound was determined. The trimethyl phosphate imprinted polymeric fiber was prepared by copolymerization in a fused silica capillary tube and obtained by removal of the wall of fused silica capillary tube. The monolithic fiber displayed good selectivity toward trimethyl phosphate among its structural analogues. It was thermally stable up to 320°C so that it can withstand the high temperature of the gas chromatograph injector for desorption. The factors influencing the performance of its headspace solid-phase microextraction were studied. Under the optimal conditions, the method for quantification of trimethyl phosphate in environmental water was well developed. It exhibited significant linearity, the lowest limit of quantification to date, and good recoveries. Using this method, trimethyl phosphate was detected in five out of seven environmental water samples at concentration levels from 0.28 to 1.22 μg/L, illustrating the heavy pollution of trimethyl phosphate in environmental water. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Resonant inelastic X-ray spectroscopy of atoms and simple molecules: Satellite features and dependence on energy detuning and photon polarization

    Energy Technology Data Exchange (ETDEWEB)

    Žitnik, M., E-mail: matjaz.zitnik@ijs.si [Jožef Stefan Institute, P.O. Box 3000, SI-1001 Ljubljana (Slovenia); University of Ljubljana, Faculty of Mathematics and Physics, Jadranska 21, SI-1000 Ljubljana (Slovenia); Kavčič, M.; Bohinc, R.; Bučar, K.; Mihelič, A. [Jožef Stefan Institute, P.O. Box 3000, SI-1001 Ljubljana (Slovenia); Cao, W. [Research Centre for Molecular Materials, University of Oulu, P.O. Box 3000, FIN-90014 Oulu (Finland); Guillemin, R.; Journel, L.; Marchenko, T.; Carniato, S.; Kawerk, E. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); Piancastelli, M.N. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); Department of Physics and Astronomy, Uppsala University, P.O. Box 516, 75120 Uppsala (Sweden); Simon, M. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France)

    2015-10-15

    We summarize recent results dealing with high resolution (resonant) X-ray spectroscopy of atomic and molecular targets in the tender X-ray energy region. We comment on advantages, new possibilities and problems related to RIXS spectroscopy with respect to the standard photoabsorption technique, where scanning the probe energy is the only option. In particular, three research areas are covered: X-ray emission mediated by energy dependent photoabsorption to multi-electron excited states, the Cl K core-hole clock studies exemplified by systematic study of chloro(fluoro)-hydrocarbon targets and the polarization dependent X-ray emission studies. Due to its spectral selectivity and simultaneous detection capability, high resolution wavelength dispersive X-ray spectroscopy has the capability to resolve structural and dynamical properties of matter within new instrumentation frontiers.

  13. Polarization memory of blue and red luminescence from nanocrystalline porous silicon treated by high-pressure water vapor annealing

    International Nuclear Information System (INIS)

    Gelloz, B.; Koyama, H.; Koshida, N.

    2008-01-01

    The polarization memory (PM) effect in the blue and red photoluminescence (PL) of p-type porous Si (PS) treated by high-pressure water vapor annealing (HWA) has been investigated. HWA induces a significant blue PL emission at about 450 nm, together with a drastic enhancement of the red PL intensity. The polarization memory of the red emission band is anisotropic and is in agreement with emission from quantum sized Si nanocrystals, whereas that of the blue band is high and isotropic, indicating an emission mechanism related to localized states in the amorphous Si oxide surrounding the Si skeleton of the PS layer after HWA. HWA does not induce any blue emission in PS that was electrochemically oxidized (ECO) beforehand because the electrochemically grown oxide tends to prevent the formation of blue-emitting amorphous oxide upon HWA. The PM of ECO-PS at low emission energies is anisotropic, but in a direction 45 deg. rotated compared to that of PS treated by HWA. This unique behavior may be related to the electrical nature of electrochemical oxidation. HWA increases the PM of ECO-PS. This could be attributed to the enhanced passivation induced by HWA

  14. Electric Power Generation through the Direct Interaction of Pristine Graphene-Oxide with Water Molecules.

    Science.gov (United States)

    Xu, Tong; Ding, Xiaoteng; Shao, Changxiang; Song, Long; Lin, Tengyu; Gao, Xue; Xue, Jiangli; Zhang, Zhipan; Qu, Liangti

    2018-02-26

    Converting ubiquitous environmental energy into electric power holds tremendous social and financial interests. Traditional energy harvesters and converters are limited by the specific materials and complex configuration of devices. Herein, it is presented that electric power can be directly produced from pristine graphene oxide (GO) without any pretreatment or additives once encountering the water vapor, which will generate an open-circuit-voltage of up to 0.4-0.7 V and a short-circuit-current-density of 2-25 µA cm -2 on a single piece of GO film. This phenomenon results from the directional movement of charged hydrogen ions through the GO film. The present work demonstrates and provides an extremely simple method for electric energy generation, which offers more applications of graphene-based materials in green energy converting field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Water remediation based on oil adsorption using polar and non polar nanoparticles; Tratamiento de agua basado en la adsorción de crudo en nanopartículas polares y no polares

    Directory of Open Access Journals (Sweden)

    Maricelly Martinez Aguilar

    2013-06-01

    Full Text Available An important oil production impact is the increase of environmental pollution due to discharge of water formation. This paper presents a study of oil adsorption onto hydrophobic silica, i.e., silica nanoparticles impregnated with Colombian vacuum residue (VR at 2 and 4 wt% and onto zeolite and impregnated zeolite nanoparticles (2 and 4wt% of VR to reduce the amount of O/W emulsion. The Langmuir and Freundlich adsorption models were used to fit the experimental information of the adsorption isotherms. Initial crude oil concentration ranges from 200 to 2000 mg/l. Oil concentration, after adsorption, was determined by using an UV-vis spectrophotometer. The highest oil removal was obtained with impregnated silica nanoparticles, yielding values of 200 mg/g, with 100% oil removal, 9 mg/g more than the value obtained by modified zeolite of 191 mg/g at the same initial concentration. Pseudo-first-order and pseudo-second-order models were used to fit the experimental data of the adsorption kinetics, with better results for the pseudo-second order model.

  16. Dynamics of water around the complex structures formed between the KH domains of far upstream element binding protein and single-stranded DNA molecules

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Kaushik; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in [Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India)

    2015-07-28

    Single-stranded DNA (ss-DNA) binding proteins specifically bind to the single-stranded regions of the DNA and protect it from premature annealing, thereby stabilizing the DNA structure. We have carried out atomistic molecular dynamics simulations of the aqueous solutions of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein complexed with two short ss-DNA segments. Attempts have been made to explore the influence of the formation of such complex structures on the microscopic dynamics and hydrogen bond properties of the interfacial water molecules. It is found that the water molecules involved in bridging the ss-DNA segments and the protein domains form a highly constrained thin layer with extremely retarded mobility. These water molecules play important roles in freezing the conformational oscillations of the ss-DNA oligomers and thereby forming rigid complex structures. Further, it is demonstrated that the effect of complexation on the slow long-time relaxations of hydrogen bonds at the interface is correlated with hindered motions of the surrounding water molecules. Importantly, it is observed that the highly restricted motions of the water molecules bridging the protein and the DNA components in the complexed forms originate from more frequent hydrogen bond reformations.

  17. Crystal Structure of Fatty Acid Amide Hydrolase Bound to the Carbamate Inhibitor URB597: Discovery of a Deacylating Water Molecule and Insight into Enzyme Inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Mileni, Mauro; Kamtekar, Satwik; Wood, David C.; Benson, Timothy E.; Cravatt, Benjamin F.; Stevens, Raymond C. (Scripps); (Pfizer)

    2010-08-12

    The endocannabinoid system regulates a wide range of physiological processes including pain, inflammation, and cognitive/emotional states. URB597 is one of the best characterized covalent inhibitors of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH). Here, we report the structure of the FAAH-URB597 complex at 2.3 {angstrom} resolution. The structure provides insights into mechanistic details of enzyme inactivation and experimental evidence of a previously uncharacterized active site water molecule that likely is involved in substrate deacylation. This water molecule is part of an extensive hydrogen-bonding network and is coordinated indirectly to residues lining the cytosolic port of the enzyme. In order to corroborate our hypothesis concerning the role of this water molecule in FAAH's catalytic mechanism, we determined the structure of FAAH conjugated to a urea-based inhibitor, PF-3845, to a higher resolution (2.4 {angstrom}) than previously reported. The higher-resolution structure confirms the presence of the water molecule in a virtually identical location in the active site. Examination of the structures of serine hydrolases that are non-homologous to FAAH, such as elastase, trypsin, or chymotrypsin, shows a similarly positioned hydrolytic water molecule and suggests a functional convergence between the amidase signature enzymes and serine proteases.

  18. On the photocatalytic cycle of water splitting with small manganese oxides and the roles of water clusters as direct sources of oxygen molecules.

    Science.gov (United States)

    Yamamoto, Kentaro; Takatsuka, Kazuo

    2018-02-28

    We theoretically studied the chemical principles behind the photodynamics of water splitting: 2H 2 O + 4hν + M → 4H + + 4e - + O 2 + M. To comprehend this simple looking but very complicated reaction, the mechanisms of at least three crucial phenomena, among others, need to be clarified, each of which is supposed to constitute the foundation of chemistry: (i) charge separation (4H + + 4e - ), (ii) the catalytic cycle for essentially the same reactions to be repeated by each of four photon absorptions with a catalyst M, and (iii) the generation of oxygen molecules of spin triplet. We have previously clarified the photodynamical mechanism of charge separation, which we refer to as coupled proton electron-wavepacket transfer (CPEWT), based on the theory of nonadiabatic electron wavepacket dynamics [K. Yamamoto and K. Takatsuka, ChemPhysChem, 2017, 18, 537]. CPEWT gives an idea of how charge separation can be materialized at each single photon absorption. Yet, this mechanism alone cannot address the above crucial items such as (ii) the catalytic cycle and (iii) O 2 formation. In the studies of these fundamental processes, we constructed a possible minimal chemical system and perform semi-quantitative quantum chemical analyses, with which to attain insights about the possible mechanisms of photochemical water splitting. The present study has been inspired by the idea underlying the so-called Kok cycle, although we do not aim to simulate photosystem II in biological systems in nature. For instance, we assume here that a catalyst M (actually simple manganese oxides in this particular study) is pumped up to its excited states leading to charge separation by four-time photon absorption, each excitation of which triggers individual series of chemical reactions including the reorganization of the hydrogen-bonding network (cluster) of water molecules surrounding the photocatalytic center. It is shown that in the successive processes of restructuring of the relevant water

  19. Polarization Optics

    OpenAIRE

    Fressengeas, Nicolas

    2010-01-01

    The physics of polarization optics *Polarized light propagation *Partially polarized light; DEA; After a brief introduction to polarization optics, this lecture reviews the basic formalisms for dealing with it: Jones Calculus for totally polarized light and Stokes parameters associated to Mueller Calculus for partially polarized light.

  20. Understanding dynamics of Martian winter polar vortex with “improved” moist-convective shallow water model

    Science.gov (United States)

    Rostami, M.; Zeitlin, V.

    2017-12-01

    We show how the properties of the Mars polar vortex can be understood in the framework of a simple shallow-water type model obtained by vertical averaging of the adiabatic “primitive” equations, and “improved” by inclusion of thermal relaxation and convective fluxes due to the phase transitions of CO 2, the major constituent of the Martian atmosphere. We perform stability analysis of the vortex, show that corresponding mean zonal flow is unstable, and simulate numerically non-linear saturation of the instability. We show in this way that, while non-linear adiabatic saturation of the instability tends to reorganize the vortex, the diabatic effects prevent this, and thus provide an explanation of the vortex form and longevity.

  1. Guests of Differing Polarities Provide Insight into Structural Requirements for Templates of Water-Soluble Nano-Capsules

    Science.gov (United States)

    Gibb, Corinne L. D.; Gibb, Bruce C.

    2009-01-01

    Guests covering a range of polarities were examined for their ability to bind to a water-soluble cavitand and trigger its assembly into a supramolecular capsule. Specifically the guests examined were: tridecane 2, 1-dodecanol 3, 2-nonyloxy ethanol (ethylene glycol monononyl ether) 4, 2-(2-hexyloxyethoxy) ethanol (Di(ethylene glycol) hexyl ether) 5, 2-[2-(2 propoxyethoxy)ethoxy] ethanol (Tri(ethylene glycol) propyl ether 6, and bis [2-(2-hydroxyethoxy)ethyl] ether (tetra(ethylene glycol)) 7. In this series, guest 6 proved to signify the boundary between assembly and the formation of 2:1 complexes, and simple 1:1 complexation. Thus, guests 2–5 formed relatively kinetically stable capsules, guest 6 formed a capsule that was unstable relative to the NMR timescale, and guest 7 formed a simple 1:1 complex. PMID:20606762

  2. Relaxed electric dipole moments of polar molecules interacting with a slow positron: H{sub 2}O and CH{sub 3}X (X=F, Cl, Br)

    Energy Technology Data Exchange (ETDEWEB)

    Assafrao, Denise; Mohallem, Jose R, E-mail: rachid@fisica.ufmg.b [Laboratorio de Atomos e Moleculas Especiais, Departamento de FIsica, ICEx, Universidade Federal de Minas Gerais, PO Box 702, 30123-970, Belo Horizonte, MG (Brazil)

    2010-08-14

    The variation in the electric dipole moments of H{sub 2}O, CH{sub 3}F, CH{sub 3}Cl and CH{sub 3}Br as their geometries relax due to interaction with a positron is evaluated. The results are in good agreement with a recently observed empirical dependence of the positron binding energy on molecular properties (Danielson et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235203). For binding energies larger than 100 meV relaxation could alter significantly the analysis of the binding, but it is in the prospect of generating effective potentials for positron scattering by molecules that the effect can be more important.

  3. The Case for Tetrahedral Oxy-subhydride (TOSH Structures in the Exclusion Zones of Anchored Polar Solvents Including Water

    Directory of Open Access Journals (Sweden)

    Klaus Oehr

    2014-11-01

    Full Text Available We hypothesize a mechanistic model of how negatively-charged exclusion zones (EZs are created. While the growth of EZs is known to be associated with the absorption of ambient photonic energy, the molecular dynamics giving rise to this process need greater elucidation. We believe they arise due to the formation of oxy-subhydride structures (OH−(H2O4 with a tetrahedral (sp3 (OH−(H2O3 core. Five experimental data sets derived by previous researchers were assessed in this regard: (1 water-derived EZ light absorbance at specific infrared wavelengths, (2 EZ negative potential in water and ethanol, (3 maximum EZ light absorbance at 270 nm ultraviolet wavelength, (4 ability of dimethyl sulphoxide but not ether to form an EZ, and (5 transitory nature of melting ice derived EZs. The proposed tetrahedral oxy-subhydride structures (TOSH appear to adequately account for all of the experimental evidence derived from water or other polar solvents.

  4. Measurement and Modelling of Phase Equilibrium of Oil - Water - Polar Chemicals

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup

    with the measurement of newexperimental data, but through the development of new experimental equipment for the study ofmulti-phase equilibrium. In addition to measurement of well-defined systems, LLE have beenmeasured for North Sea oils with MEG and water. The work can be split up into two parts: Experimental: VLE......-waterflooding process act primarily as thickeners. The main purpose of this work, focusing on the phase equilibrium of complex systems containingthermodynamic gas hydrate inhibitors, is to give a solid contribution in bridging the existing gaps inwhat experimental data is concerned. This was achieved not just...... systems presented, confirming the quality of theequipment. The equipment is used for measurement of VLE for several systems of interest; methane+ water, methane + methanol, methane + methanol + water and methane + MEG. Details dealing with the design, assembling and testing of new experimental equipment...

  5. Enhanced adsorption of phenol from water by a novel polar post-crosslinked polymeric adsorbent

    International Nuclear Information System (INIS)

    Zeng Xiaowei; Fan Yunge; Wu Guolin; Wang Chunhong; Shi Rongfu

    2009-01-01

    A novel post-crosslinked polymeric adsorbent PDM-2 was prepared by Friedel-Crafts reaction of pendant vinyl groups without external crosslinking agent. Both the specific surface area and the pore volume of starting copolymer PDM-1 increased significantly after post-crosslinking. Batch adsorption runs of phenol from aqueous solution onto PDM-1 and PDM-2 were investigated. Commercial macroporous resins XAD-4 and AB-8 were chosen as the comparison. Experimental results showed that isotherms of phenol adsorption onto these four polymeric adsorbents could be represented by Freundlich model reasonably. PDM-2 exhibited higher adsorption capacity of phenol than other three adsorbents, which resulted from synergistic effect of larger specific surface area and polar groups on the network. The adsorption process for phenol was proved to be exothermic and spontaneous in nature. Thermodynamic parameters such as Gibb's free energy (ΔG), change in enthalpy (ΔH) and change in entropy (ΔS) were calculated. Kinetics studies indicated that phenol uptake onto PDM-1 and PDM-2 followed the pseudo-second order model and the intraparticle diffusion process was a rate-controlling step. Column adsorption runs demonstrated that nearly 100% regeneration efficiency for PDM-2 by 3 BV industrial alcohol and the adsorbate phenol can be easily recovered by further distilling. Continuous column adsorption-regeneration cycles indicated negligible capacity loss of PDM-2 during operation.

  6. Detecting Darwinism from Molecules in the Enceladus Plumes, Jupiter's Moons, and Other Planetary Water Lagoons.

    Science.gov (United States)

    Benner, Steven A

    2017-09-01

    To the astrobiologist, Enceladus offers easy access to a potential subsurface biosphere via the intermediacy of a plume of water emerging directly into space. A direct question follows: If we were to collect a sample of this plume, what in that sample, through its presence or its absence, would suggest the presence and/or absence of life in this exotic locale? This question is, of course, relevant for life detection in any aqueous lagoon that we might be able to sample. This manuscript reviews physical chemical constraints that must be met by a genetic polymer for it to support Darwinism, a process believed to be required for a chemical system to generate properties that we value in biology. We propose that the most important of these is a repeating backbone charge; a Darwinian genetic biopolymer must be a "polyelectrolyte." Relevant to mission design, such biopolymers are especially easy to recover and concentrate from aqueous mixtures for detection, simply by washing the aqueous mixtures across a polycharged support. Several device architectures are described to ensure that, once captured, the biopolymer meets two other requirements for Darwinism, homochirality and a small building block "alphabet." This approach is compared and contrasted with alternative biomolecule detection approaches that seek homochirality and constrained alphabets in non-encoded biopolymers. This discussion is set within a model for the history of the terran biosphere, identifying points in that natural history where these alternative approaches would have failed to detect terran life. Key Words: Enceladus-Life detection-Europa-Icy moon-Biosignatures-Polyelectrolyte theory of the gene. Astrobiology 17, 840-851.

  7. Double differential distribution of electron emission in the ionization of water molecules by fast bare oxygen ions

    Science.gov (United States)

    Bhattacharjee, Shamik; Biswas, Shubhadeep; Bagdia, Chandan; Roychowdhury, Madhusree; Nandi, Saikat; Misra, Deepankar; Monti, J. M.; Tachino, C. A.; Rivarola, R. D.; Champion, C.; Tribedi, Lokesh C.

    2016-03-01

    The doubly differential distributions of low-energy electron emission in the ionization of water molecules under the impact of fast bare oxygen ions with energy of 48 MeV are measured. The measured data are compared with two quantum-mechanical models, i.e. the post and prior versions of the continuum distorted wave-eikonal initial state (CDW-EIS) approximation, and the first-order Born approximation with initial and final wavefunctions verifying correct boundary conditions (CB1). An overall excellent qualitative agreement is found between the data and the CDW-EIS models whereas the CB1 model showed substantial deviation. However, the detailed angular distributions display some discrepancies with both CDW-EIS models. The single differential and total cross-sections exhibit good agreement with the CDW-EIS models. The present detailed data set could also be used as an input for modeling highly charged ion induced radiation damage in living tissues, whose most abundant component is water. Similar measurements are also carried out for a projectile energy of 60 MeV. However, since the double differential cross-section data show similar results the details are not provided here, except for the total ionization cross-sections results.

  8. Experimental and analytical analysis of polarization and water transport behaviors of hydrogen alkaline membrane fuel cell

    Science.gov (United States)

    Huo, Sen; Zhou, Jiaxun; Wang, Tianyou; Chen, Rui; Jiao, Kui

    2018-04-01

    Experimental test and analytical modeling are conducted to investigate the operating behavior of an alkaline electrolyte membrane (AEM) fuel cell fed by H2/air (or O2) and explore the effect of various operating pressures on the water transfer mechanism. According to the experimental test, the cell performance is greatly improved through increasing the operating pressure gradient from anode to cathode which leads to significant liquid water permeation through the membrane. The high frequency resistance of the A901 alkaline membrane is observed to be relatively stable as the operating pressure varies based on the electrochemical impedance spectroscopy (EIS) method. Correspondingly, based on the modeling prediction, the averaged water content in the membrane electrode assembly (MEA) does not change too much which leads to the weak variation of membrane ohmic resistance. This reveals that the performance enhancement should give the credit to better electro-chemical reaction kinetics for both the anode and cathode, also prone by the EIS results. The reversion of water back diffusion direction across the membrane is also observed through analytical solution.

  9. Ice Water Classification Using Statistical Distribution Based Conditional Random Fields in RADARSAT-2 Dual Polarization Imagery

    Science.gov (United States)

    Zhang, Y.; Li, F.; Zhang, S.; Hao, W.; Zhu, T.; Yuan, L.; Xiao, F.

    2017-09-01

    In this paper, Statistical Distribution based Conditional Random Fields (STA-CRF) algorithm is exploited for improving marginal ice-water classification. Pixel level ice concentration is presented as the comparison of methods based on CRF. Furthermore, in order to explore the effective statistical distribution model to be integrated into STA-CRF, five statistical distribution models are investigated. The STA-CRF methods are tested on 2 scenes around Prydz Bay and Adélie Depression, where contain a variety of ice types during melt season. Experimental results indicate that the proposed method can resolve sea ice edge well in Marginal Ice Zone (MIZ) and show a robust distinction of ice and water.

  10. ICE WATER CLASSIFICATION USING STATISTICAL DISTRIBUTION BASED CONDITIONAL RANDOM FIELDS IN RADARSAT-2 DUAL POLARIZATION IMAGERY

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2017-09-01

    Full Text Available In this paper, Statistical Distribution based Conditional Random Fields (STA-CRF algorithm is exploited for improving marginal ice-water classification. Pixel level ice concentration is presented as the comparison of methods based on CRF. Furthermore, in order to explore the effective statistical distribution model to be integrated into STA-CRF, five statistical distribution models are investigated. The STA-CRF methods are tested on 2 scenes around Prydz Bay and Adélie Depression, where contain a variety of ice types during melt season. Experimental results indicate that the proposed method can resolve sea ice edge well in Marginal Ice Zone (MIZ and show a robust distinction of ice and water.

  11. Subsurface imaging of water electrical conductivity, hydraulic permeability and lithology at contaminated sites by induced polarization

    DEFF Research Database (Denmark)

    Maurya, P. K.; Balbarini, Nicola; Møller, I.

    2018-01-01

    -permeability clay layer from a shallow aquifer. No contamination was expected in this part of the confined aquifer, and confirmation wells were drilled in the zone of increased water electrical conductivity derived from the geophysical results. Water samples from the new wells showed elevated concentrations......At contaminated sites, knowledge about geology and hydraulic properties of the subsurface and extent of the contamination is needed for assessing the risk and for designing potential site remediation. In this study, we have developed a new approach for characterizing contaminated sites through time......) estimation of hydraulic permeability directly from the inverted parameters using a laboratory-derived empirical equation without any calibration; (3) the use of the geophysical imaging results for supporting the geological modelling and planning of drilling campaigns. The new approach was tested on a data...

  12. Use of water stable isotopes in climatology and paleoclimatology illustrated from polar ice cores studies

    International Nuclear Information System (INIS)

    Jouzel, J.; Lorius, C.

    1994-01-01

    The isotopic content of ancient waters (deuterium and oxygen 18) gives a key access to past climatic changes. An essentially linear relationship exists between the isotopic content of a precipitation and the temperature of the site (at least for medium and high latitudes). This link between water isotope atmospheric cycle and climate is presented through various isotopic models and illustrated from the deuterium profile obtained along the Vostok ice core in East Antarctica. This 2 km record which covers a full glacial-interglacial cycle (160000 years) confirms the existence of a link between insolation changes and climate (Milankovitch theory). It shows also that the greenhouse effect has played a role in glacial-interglacial changes in amplifying this orbital forcing. (authors). 10 figs., 23 refs

  13. From urban municipalities to polar bioremediation: the characterisation and contribution of biogenic minerals for water treatment.

    Science.gov (United States)

    Freidman, Benjamin L; Northcott, Kathy A; Thiel, Peta; Gras, Sally L; Snape, Ian; Stevens, Geoff W; Mumford, Kathryn A

    2017-06-01

    Minerals of biological origin have shown significant potential for the separation of contaminants from water worldwide. This study details the contribution of biologically derived minerals to water treatment operations, with a focus on filtration media from urban municipalities and remote cold regions. The results support biofilm-embedded iron and manganese to be the building blocks of biogenic mineral development on activated carbon and nutrient-amended zeolites. The presence of similar iron and manganese oxidising bacterial species across all filter media supports the analogous morphologies of biogenic minerals between sites and suggests that biological water treatment processes may be feasible across a range of climates. This is the first time the stages of biogenic mineral formation have been aligned with comprehensive imaging of the biofilm community and bacterial identification; especially with respect to cold regions. Where biogenic mineral formation occurs on filter media, the potential exists for enhanced adsorption for a range of organic and inorganic contaminants and improved longevity of filter media beyond the adsorption or exchange capacities of the raw material.

  14. SI-traceable and dynamic reference gas mixtures for water vapour at polar and high troposphere atmospheric levels

    Science.gov (United States)

    Guillevic, Myriam; Pascale, Céline; Mutter, Daniel; Wettstein, Sascha; Niederhauser, Bernhard

    2017-04-01

    In the framework of METAS' AtmoChem-ECV project, new facilities are currently being developed to generate reference gas mixtures for water vapour at concentrations measured in the high troposphere and polar regions, in the range 1-20 µmol/mol (ppm). The generation method is dynamic (the mixture is produced continuously over time) and SI-traceable (i.e. the amount of substance fraction in mole per mole is traceable to the definition of SI-units). The generation process is composed of three successive steps. The first step is to purify the matrix gas, nitrogen or synthetic air. Second, this matrix gas is spiked with the pure substance using a permeation technique: a permeation device contains a few grams of pure water in liquid form and loses it linearly over time by permeation through a membrane. In a third step, to reach the desired concentration, the first, high concentration mixture exiting the permeation chamber is then diluted with a chosen flow of matrix gas with one or two subsequent dilution steps. All flows are piloted by mass flow controllers. All parts in contact with the gas mixture are passivated using coated surfaces, to reduce adsorption/desorption processes as much as possible. The mixture can eventually be directly used to calibrate an analyser. The standard mixture produced by METAS' dynamic setup was injected into a chilled mirror from MBW Calibration AG, the designated institute for absolute humidity calibration in Switzerland. The used chilled mirror, model 373LX, is able to measure frost point and sample pressure and therefore calculate the water vapour concentration. This intercomparison of the two systems was performed in the range 4-18 ppm water vapour in synthetic air, at two different pressure levels, 1013.25 hPa and 2000 hPa. We present here METAS' dynamic setup, its uncertainty budget and the first results of the intercomparison with MBW's chilled mirror.

  15. Molecule of the Month

    Indian Academy of Sciences (India)

    The electronic absorption spectrum of a molecule often depends on the solvent used. The change in position (and, sometimes, intensity) of the UV/Vis band accompanying a change in the polarity of the medium is called solvatochromism. The phenomenon has its origins in intermolecular solute–solvent interactions, such as ...

  16. Assessing the Impact of Climate Change on Land-Water-Ecosystem Quality in Polar and Mountainous Regions: A New Interregional Project (INT5153)

    International Nuclear Information System (INIS)

    Dercon, Gerd; Gerardo-Abaya, Jane; Mavlyudov, Bulat

    2014-01-01

    The INT5153 project aims to improve the understanding of the impact of climate change on fragile polar and mountainous ecosystems on both a local and global scale for their better management and conservation. Seven core and five related benchmark sites have been selected from different global regions for specific assessments of the impact of climate change with the following expected outcomes and outputs: Outcomes: • Improved understanding of the impact of climate change on the cryosphere in polar and mountainous ecosystems and its effects on landwater- ecosystem quality at both local and global scales. • Recommendations for improvement of regional policies for soil and agricultural water management, conservation, and environmental protection in polar and mountainous regions. Outputs: • Specific strategies to minimize the adverse effects of, and adapt to, reduced seasonal snow and glacier covered areas on land-water-ecosystem quality in polar and mountain regions across the world. • Enhanced interregional network of laboratories and institutions competent in the assessment of climate change impacts on the cryosphere and land-water-ecosystem quality, using isotopic and nuclear techniques. • Increased number of young scientists trained in the use of isotope and nuclear techniques to assess the impact of climate change on the cryosphere and land-water-ecosystem quality in polar and mountainous ecosystems. • Platform/database with global access for continuing work and monitoring of impact of climate change on fragile polar and mountainous ecosystems at local and global scales, as well as for communicating findings to policy makers and communities. • Improved understanding of the effects of climate change disseminated through appropriate publications, policy briefs, and through a dedicated internet platform. • Methodologies and protocols for investigations in specific ecosystems and conservation/adaptation measures for agriculture areas

  17. A salt water battery with high stability and charging rates made from solution processed conjugated polymers with polar side chains

    KAUST Repository

    Moia, Davide

    2017-11-28

    We report a neutral salt water based battery which uses p-type and n-type solution processed polymer films as the cathode and the anode of the cell. The specific capacity of the electrodes (approximately 30 mAh cm-3) is achieved via formation of bipolarons in both the p-type and n-type polymers. By engineering ethylene glycol and zwitterion based side chains attached to the polymer backbone we facilitate rapid ion transport through the non-porous polymer films. This, combined with efficient transport of electronic charge via the conjugated polymer backbones, allowed the films to maintain constant capacity at high charge and discharge rates (>1000 C-rate). The electrodes also show good stability during electrochemical cycling (less than 30% decrease in capacity over >1000 cycles) and an output voltage up to 1.4 V. The performance of these semiconducting polymers with polar side-chains demonstrates the potential of this material class for fast-charging, water based electrochemical energy storage devices.

  18. Hexagonal SiC with spatially separated active sites on polar and nonpolar facets achieving enhanced hydrogen production from photocatalytic water reduction.

    Science.gov (United States)

    Wang, Da; Liu, Ning; Guo, Zhongnan; Wang, Wenjun; Guo, Liwei; Yuan, Wenxia; Chen, Xiaolong

    2018-02-14

    Sufficient spatial separation of photo-generated electrons and holes plays a significant role in affecting the efficiency for solar energy conversion. Non-equivalent facets of a catalyst are known to possess different charge distribution properties. Here, we report that hexagonal 6H-SiC, a metal-free, environmentally friendly, polar semiconductor, exhibits different charge distribution and photocatalytic properties on naturally occurring Si-{0001} and {10-10} facets. Very strong selectivity of metals in situ photodeposition occurs in these two facets, demonstrating that the photo-excited electrons are assembled only on polar Si-{0001} facets while the holes are assembled on non-polar {10-10} facets. Consequently, reduction reactions occur only on the Si-{0001} facets with noble metals, and meantime oxidation occurs only in {10-10} with metal oxide. We show that the activity of photocatalytic water splitting is significantly enhanced by this kind of selective depositions resulting from the charge spatial separation. The underlying mechanism is investigated in terms of experimental evidence and first principles calculations. Our results demonstrate that the utilization of facets with opposite catalytic characteristics could be a feasible means to enhance the photocatalytic performance in diverse semiconducting materials. This is, in particular, of interest for polar semiconductors, as their particles always naturally occur in both polar facets and non-polar ones without needing facet engineering.

  19. Consequences of long-distance swimming and travel over deep-water pack ice for a female polar bear during a year of extreme sea ice retreat

    Science.gov (United States)

    Durner, G.M.; Whiteman, J.P.; Harlow, H.J.; Amstrup, Steven C.; Regehr, E.V.; Ben-David, M.

    2011-01-01

    Polar bears (Ursus maritimus) prefer to live on Arctic sea ice but may swim between ice floes or between sea ice and land. Although anecdotal observations suggest that polar bears are capable of swimming long distances, no data have been available to describe in detail long distance swimming events or the physiological and reproductive consequences of such behavior. Between an initial capture in late August and a recapture in late October 2008, a radio-collared adult female polar bear in the Beaufort Sea made a continuous swim of 687 km over 9 days and then intermittently swam and walked on the sea ice surface an additional 1,800 km. Measures of movement rate, hourly activity, and subcutaneous and external temperature revealed distinct profiles of swimming and walking. Between captures, this polar bear lost 22% of her body mass and her yearling cub. The extraordinary long distance swimming ability of polar bears, which we confirm here, may help them cope with reduced Arctic sea ice. Our observation, however, indicates that long distance swimming in Arctic waters, and travel over deep water pack ice, may result in high energetic costs and compromise reproductive fitness. ?? 2011 US Government.

  20. Benchmark reaction rates, the stability of biological molecules in water, and the evolution of catalytic power in enzymes.

    Science.gov (United States)

    Wolfenden, Richard

    2011-01-01

    The rates of enzyme reactions fall within a relatively narrow range. To estimate the rate enhancements produced by enzymes, and their expected affinities for transition state analog inhibitors, it is necessary to measure the rates of the corresponding reactions in water in the absence of a catalyst. This review describes the spontaneous cleavages of C-C, C-H, C-N, C-O, P-O, and S-O bonds in biological molecules, as well as the uncatalyzed reactions that correspond to phosphoryl transfer reactions catalyzed by kinases and to peptidyl transfer in the ribosome. The rates of these reactions, some with half-lives in excess of one million years, span an overall range of 10¹⁹-fold. Moreover, the slowest reactions tend to be most sensitive to temperature, with rates that increase as much as 10⁷-fold when the temperature is raised from 25° to 100°C. That tendency collapses, by many orders of magnitude, the time that would have been required for chemical evolution on a warm earth. If the catalytic effect of primitive enzymes, like that of modern enzymes and many nonenzymatic catalysts, were mainly to reduce a reaction's enthalpy of activation, then the resulting rate enhancement would have increased automatically as the surroundings cooled. By reducing the time required for early chemical evolution in a warm environment, these findings counter the view that not enough time has passed for terrestrial life to have evolved to its present level of complexity.

  1. Investigation into slow motions of water molecules in BeSO4x4H2O from NHR line form

    International Nuclear Information System (INIS)

    Sergeev, N.A.; Kiperman, E.M.; Vakhrameev, A.M.; Afanas'ev, M.L.

    1981-01-01

    Temperature dependences (-80 - +60 deg) of 1 H NMR line form in BeSO 4 x4H 2 O monocrystal are investigated experimentally. The observed changes in the NMR line form are explained by diffusion motion of water molecules by regular positions. Temperature dependence of correlation frequency describing diffusion process is determined by comparing theoretically calculated spectra with the experimental ones

  2. Near infrared light-driven water oxidation in a molecule-based artificial photosynthetic device using an upconversion nano-photosensitizer

    NARCIS (Netherlands)

    Liu, X.; Chen, H.C.; Kong, X.; Zhang, Y.; Tu, L.; Chang, Y.; Wu, F.; Wang, T.; Reek, J.N.H.; Brouwer, A.M.; Zhang, H.

    2015-01-01

    We provide the first demonstration of a near infrared light driven water oxidation reaction in a molecule-based artificial photosynthetic device using an upconversion nano-photosensitizer. One very attractive advantage of this system is that using NIR light irradiation does not cause significant

  3. VESPA-22: a ground-based microwave spectrometer for long-term measurements of polar stratospheric water vapor

    Science.gov (United States)

    Mevi, Gabriele; Muscari, Giovanni; Bertagnolio, Pietro Paolo; Fiorucci, Irene; Pace, Giandomenico

    2018-02-01

    The new ground-based 22 GHz spectrometer, VESPA-22 (water Vapor Emission Spectrometer for Polar Atmosphere at 22 GHz) measures the 22.23 GHz water vapor emission line with a bandwidth of 500 MHz and a frequency resolution of 31 kHz. The integration time for a measurement ranges from 6 to 24 h, depending on season and weather conditions. Water vapor spectra are collected using the beam-switching technique. VESPA-22 is designed to operate automatically with little maintenance; it employs an uncooled front-end characterized by a receiver temperature of about 180 K and its quasi-optical system presents a full width at half maximum of 3.5°. Every 30 min VESPA-22 measures also the sky opacity using the tipping curve technique. The instrument calibration is performed automatically by a noise diode; the emission temperature of this element is estimated twice an hour by observing alternatively a black body at ambient temperature and the sky at an elevation of 60°. The retrieved profiles obtained inverting 24 h integration spectra present a sensitivity larger than 0.8 from about 25 to 75 km of altitude during winter and from about 30 to 65 km during summer, a vertical resolution from about 12 to 23 km (depending on altitude), and an overall 1σ uncertainty lower than 7 % up to 60 km altitude and rapidly increasing to 20 % at 75 km. In July 2016, VESPA-22 was installed at the Thule High Arctic Atmospheric Observatory located at Thule Air Base (76.5° N, 68.8° W), Greenland, and it has been operating almost continuously since then. The VESPA-22 water vapor mixing ratio vertical profiles discussed in this work are obtained from 24 h averaged spectra and are compared with version 4.2 of concurrent Aura/Microwave Limb Sounder (MLS) water vapor vertical profiles. In the sensitivity range of VESPA-22 retrievals, the intercomparison from July 2016 to July 2017 between VESPA-22 dataset and Aura/MLS dataset convolved with VESPA-22 averaging kernels shows an average difference

  4. A new water-based topical carrier with polar skin-lipids

    Directory of Open Access Journals (Sweden)

    Ringstad Lovisa

    2006-05-01

    Full Text Available Abstract A new water-based topical formulation is presented that aims at providing good penetration properties for both lipophilic and hydrophilic drugs with as small a disturbance of the skin barrier function as possible. The formulation contains dispersed lipids in a ratio resembling that of human skin. The capacity to deliver is addressed in this first study while the mild effect on skin will be presented later. Three variations of the lipid formulation were investigated by use of pigskin in vitro diffusion cell. The hydrophilic 5(6-carboxyfluorescein (CF and the lipophilic acridine orange 10-nonyl bromide (AO were used as model drug substances. The results showed that the delivery properties of the new formulation exceeded that of the references (vaseline and xanthan gum gel. The effect was largest for lipophilic AO where all lipid matrix formulations were superior in amount detected in the skin. The results for the hydrophilic CF were also promising. Especially efficient was the lipid formulation containing the non-ionic adjuvants tetra ethylene glycol monododecyl ether and polyoxyethylene 23 dodecyl ether. The additional in vivo study suggests that the used in vitro model has qualitative bearing on relevant in vivo situations.

  5. Enhancing Electrochemical Water-Splitting Kinetics by Polarization-Driven Formation of Near-Surface Iron(0): An In Situ XPS Study on Perovskite-Type Electrodes**

    Science.gov (United States)

    Opitz, Alexander K; Nenning, Andreas; Rameshan, Christoph; Rameshan, Raffael; Blume, Raoul; Hävecker, Michael; Knop-Gericke, Axel; Rupprechter, Günther; Fleig, Jürgen; Klötzer, Bernhard

    2015-01-01

    In the search for optimized cathode materials for high-temperature electrolysis, mixed conducting oxides are highly promising candidates. This study deals with fundamentally novel insights into the relation between surface chemistry and electrocatalytic activity of lanthanum ferrite based electrolysis cathodes. For this means, near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and impedance spectroscopy experiments were performed simultaneously on electrochemically polarized La0.6Sr0.4FeO3−δ (LSF) thin film electrodes. Under cathodic polarization the formation of Fe0 on the LSF surface could be observed, which was accompanied by a strong improvement of the electrochemical water splitting activity of the electrodes. This correlation suggests a fundamentally different water splitting mechanism in presence of the metallic iron species and may open novel paths in the search for electrodes with increased water splitting activity. PMID:25557533

  6. The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: the neXT generation

    Science.gov (United States)

    Engelmann, Ronny; Kanitz, Thomas; Baars, Holger; Heese, Birgit; Althausen, Dietrich; Skupin, Annett; Wandinger, Ulla; Komppula, Mika; Stachlewska, Iwona S.; Amiridis, Vassilis; Marinou, Eleni; Mattis, Ina; Linné, Holger; Ansmann, Albert

    2016-04-01

    The atmospheric science community demands autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. For this purpose, a portable lidar called Polly was developed at TROPOS in 2003. The lidar system was continuously improved with gained experience from the EARLINET community, involvement in worldwide field campaigns, and international institute collaborations within the last 10 years. Here we present recent changes of the setup of the portable multiwavelength Raman and polarization lidar PollyXT and discuss the improved capabilities of the system by means of a case study. The latest system developments include an additional near-range receiver unit for Raman measurements of the backscatter and extinction coefficient down to 120 m above ground, a water-vapor channel, and channels for simultaneous measurements of the particle linear depolarization ratio at 355 and 532 nm. Quality improvements were achieved by systematically following the EARLINET guidelines and the international PollyNET quality assurance developments. A modified ship radar ensures measurements in agreement with air-traffic safety regulations and allows for 24/7 monitoring of the atmospheric state with PollyXT.

  7. Cationic-surfactant transfer facilitated by DNA adsorbed on a polarized 1,2-dichloroethane/water interface

    Energy Technology Data Exchange (ETDEWEB)

    Osakai, T [Department of Chemistry, Faculty of Science, Kobe University, Nada, Kobe 657-8501 (Japan); Komatsu, H [Department of Chemistry, Faculty of Science, Kobe University, Nada, Kobe 657-8501 (Japan); Goto, M [Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395 (Japan)

    2007-09-19

    The voltammetric behaviour of high-molecular-weight DNA at a polarized 1,2-dichloroethane/water (DCE/W) interface was investigated in the presence of a cationic surfactant, dimethyldistearylammonium in DCE. A well-developed adsorption wave was obtained for salmon sperm DNA (purified) and herring sperm DNA (commercial and purified). The peak current showed a Langmuir-type dependence on the DNA concentration. The half-peak width was relatively small ({approx}30 mV). To explain the voltammetric behaviour, a reaction model was proposed, in which the transfer of surfactant ions from DCE to W is facilitated by DNA adsorbed on the DCE/W interface. Theoretical simulation of the voltammetric wave was performed by assuming a Frumkin isotherm for the DNA-surfactant binding. When the interaction parameter g{sup '} was set to be 2, the theoretical value (38 mV) for the half-peak width was closest to the experimental value of {approx}30 mV. The g{sup '} value of 2 suggested that there were strongly attractive interactions among the surfactant ions on DNA.

  8. Molecule Matters

    Indian Academy of Sciences (India)

    is a very stable and inert molecule due to the formation of a triple bond between the two atoms. Surpris- ingly isoelectronic molecules are quite reactive making dinitrogen very useful and unique. Dinitrogen (N. 2. ) is such an innocuous molecule that you might not think it worthy of special attention. We take this molecule for.

  9. Displacement of disordered water molecules from hydrophobic pocket creates enthalpic signature: binding of phosphonamidate to the S₁'-pocket of thermolysin.

    Science.gov (United States)

    Englert, L; Biela, A; Zayed, M; Heine, A; Hangauer, D; Klebe, G

    2010-11-01

    Prerequisite for the design of tight binding protein inhibitors and prediction of their properties is an in-depth understanding of the structural and thermodynamic details of the binding process. A series of closely related phosphonamidates was studied to elucidate the forces underlying their binding affinity to thermolysin. The investigated inhibitors are identical except for the parts penetrating into the hydrophobic S₁'-pocket. A correlation of structural, kinetic and thermodynamic data was carried out by X-ray crystallography, kinetic inhibition assay and isothermal titration calorimetry. Binding affinity increases with larger ligand hydrophobic P₁'-moieties accommodating the S₁'-pocket. Surprisingly, larger P₁'-side chain modifications are accompanied by an increase in the enthalpic contribution to binding. In agreement with other studies, it is suggested that the release of largely disordered waters from an imperfectly hydrated pocket results in an enthalpically favourable integration of these water molecules into bulk water upon inhibitor binding. This enthalpically favourable process contributes more strongly to the binding energetics than the entropy increase resulting from the release of water molecules from the S₁'-pocket or the formation of apolar interactions between protein and inhibitor. Displacement of highly disordered water molecules from a rather imperfectly hydrated and hydrophobic specificity pocket can reveal an enthalpic signature of inhibitor binding. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Thermodynamic properties of water molecules in the presence of cosolute depend on DNA structure: a study using grid inhomogeneous solvation theory

    Science.gov (United States)

    Nakano, Miki; Tateishi-Karimata, Hisae; Tanaka, Shigenori; Tama, Florence; Miyashita, Osamu; Nakano, Shu-ichi; Sugimoto, Naoki

    2015-01-01

    In conditions that mimic those of the living cell, where various biomolecules and other components are present, DNA strands can adopt many structures in addition to the canonical B-form duplex. Previous studies in the presence of cosolutes that induce molecular crowding showed that thermal stabilities of DNA structures are associated with the properties of the water molecules around the DNAs. To understand how cosolutes, such as ethylene glycol, affect the thermal stability of DNA structures, we investigated the thermodynamic properties of water molecules around a hairpin duplex and a G-quadruplex using grid inhomogeneous solvation theory (GIST) with or without cosolutes. Our analysis indicated that (i) cosolutes increased the free energy of water molecules around DNA by disrupting water–water interactions, (ii) ethylene glycol more effectively disrupted water–water interactions around Watson–Crick base pairs than those around G-quartets or non-paired bases, (iii) due to the negative electrostatic potential there was a thicker hydration shell around G-quartets than around Watson–Crick-paired bases. Our findings suggest that the thermal stability of the hydration shell around DNAs is one factor that affects the thermal stabilities of DNA structures under the crowding conditions. PMID:26538600

  11. The accommodation coefficient of water molecules on ice – cirrus cloud studies at the AIDA simulation chamber

    Directory of Open Access Journals (Sweden)

    J. Skrotzki

    2013-04-01

    Full Text Available Cirrus clouds and their impact on the Earth's radiative budget are subjects of current research. The processes governing the growth of cirrus ice particles are central to the radiative properties of cirrus clouds. At temperatures relevant to cirrus clouds, the growth of ice crystals smaller than a few microns in size is strongly influenced by the accommodation coefficient of water molecules on ice, αice, making this parameter relevant for cirrus cloud modeling. However, the experimentally determined magnitude of αice for cirrus temperatures is afflicted with uncertainties of almost three orders of magnitude, and values for αice derived from cirrus cloud data lack significance so far. This has motivated dedicated experiments at the cloud chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere to determine αice in the cirrus-relevant temperature interval between 190 K and 235 K under realistic cirrus ice particle growth conditions. The experimental data sets have been evaluated independently with two model approaches: the first relying on the newly developed model SIGMA (Simple Ice Growth Model for determining Alpha, the second one on an established model, ACPIM (Aerosol-Cloud-Precipitation Interaction Model. Within both approaches a careful uncertainty analysis of the obtained αice values has been carried out for each AIDA experiment. The results show no significant dependence of αice on temperature between 190 K and 235 K. In addition, we find no evidence for a dependence of αice on ice particle size or on water vapor supersaturation for ice particles smaller than 20 μm and supersaturations of up to 70%. The temperature-averaged and combined result from both models is αice = 0.7−0.5+0.3, which implies that αice may only exert a minor impact on cirrus clouds and their characteristics when compared to the assumption of αice =1. Impact on prior calculations of cirrus cloud properties, e.g., in climate models, with

  12. Separation of three polar compounds from Rheum tanguticum by high-speed countercurrent chromatography with an ethyl acetate/glacial acetic acid/water system.

    Science.gov (United States)

    Chen, Tao; Wang, Ping; Wang, Nana; Sun, Chongyang; Yang, Xue; Li, Hongmei; Zhou, Guoying; Li, Yulin

    2018-01-13

    The separation of polar compounds by high-speed countercurrent chromatography is still regarded as a challenge. In this study, an efficient strategy for the separation of three polar compounds from Rheum tanguticum has been successfully conducted by using high-speed countercurrent chromatography. X-5 macroporous resin chromatography was used for the fast enrichment of the target compounds. Then, the target fraction was directly introduced into high-speed countercurrent chromatography for separation using ethyl acetate/glacial acetic acid/water (100:1:100, v/v/v) as the solvent system. Consequently, three polar compounds including gallic acid, catechin, and gallic acid 4-O-β-d-(6'-O-galloyl) glucoside were obtained with purities higher than 98%. The results showed glacial acetic acid could be such an appropriate regulator for the ethyl acetate/water system. This study provides a reference for the separation of polar compounds from natural products by high-speed countercurrent chromatography. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A hot water extract of Curcuma longa inhibits adhesion molecule protein expression and monocyte adhesion to TNF-α-stimulated human endothelial cells.

    Science.gov (United States)

    Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji

    2015-01-01

    The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.

  14. Changes in the hydrogen-bonding strength of internal water molecules and cysteine residues in the conductive state of channelrhodopsin-1

    Science.gov (United States)

    Lórenz-Fonfría, Víctor A.; Muders, Vera; Schlesinger, Ramona; Heberle, Joachim

    2014-12-01

    Water plays an essential role in the structure and function of proteins, particularly in the less understood class of membrane proteins. As the first of its kind, channelrhodopsin is a light-gated cation channel and paved the way for the new and vibrant field of optogenetics, where nerve cells are activated by light. Still, the molecular mechanism of channelrhodopsin is not understood. Here, we applied time-resolved FT-IR difference spectroscopy to channelrhodopsin-1 from Chlamydomonas augustae. It is shown that the (conductive) P2380 intermediate decays with τ ≈ 40 ms and 200 ms after pulsed excitation. The vibrational changes between the closed and the conductive states were analyzed in the X-H stretching region (X = O, S, N), comprising vibrational changes of water molecules, sulfhydryl groups of cysteine side chains and changes of the amide A of the protein backbone. The O-H stretching vibrations of "dangling" water molecules were detected in two different states of the protein using H218O exchange. Uncoupling experiments with a 1:1 mixture of H2O:D2O provided the natural uncoupled frequencies of the four O-H (and O-D) stretches of these water molecules, each with a very weakly hydrogen-bonded O-H group (3639 and 3628 cm-1) and with the other O-H group medium (3440 cm-1) to moderately strongly (3300 cm-1) hydrogen-bonded. Changes in amide A and thiol vibrations report on global and local changes, respectively, associated with the formation of the conductive state. Future studies will aim at assigning the respective cysteine group(s) and at localizing the "dangling" water molecules within the protein, providing a better understanding of their functional relevance in CaChR1.

  15. Marine phytoplankton temperature versus growth responses from polar to tropical waters--outcome of a scientific community-wide study.

    Directory of Open Access Journals (Sweden)

    Philip W Boyd

    Full Text Available "It takes a village to finish (marine science these days" Paraphrased from Curtis Huttenhower (the Human Microbiome project The rapidity and complexity of climate change and its potential effects on ocean biota are challenging how ocean scientists conduct research. One way in which we can begin to better tackle these challenges is to conduct community-wide scientific studies. This study provides physiological datasets fundamental to understanding functional responses of phytoplankton growth rates to temperature. While physiological experiments are not new, our experiments were conducted in many laboratories using agreed upon protocols and 25 strains of eukaryotic and prokaryotic phytoplankton isolated across a wide range of marine environments from polar to tropical, and from nearshore waters to the open ocean. This community-wide approach provides both comprehensive and internally consistent datasets produced over considerably shorter time scales than conventional individual and often uncoordinated lab efforts. Such datasets can be used to parameterise global ocean model projections of environmental change and to provide initial insights into the magnitude of regional biogeographic change in ocean biota in the coming decades. Here, we compare our datasets with a compilation of literature data on phytoplankton growth responses to temperature. A comparison with prior published data suggests that the optimal temperatures of individual species and, to a lesser degree, thermal niches were similar across studies. However, a comparison of the maximum growth rate across studies revealed significant departures between this and previously collected datasets, which may be due to differences in the cultured isolates, temporal changes in the clonal isolates in cultures, and/or differences in culture conditions. Such methodological differences mean that using particular trait measurements from the prior literature might introduce unknown errors and bias into

  16. Polarization optics of the Brewster's dark patch visible on water surfaces versus solar height and sky conditions: theory, computer modeling, photography, and painting.

    Science.gov (United States)

    Takács, Péter; Barta, András; Pye, David; Horváth, Gábor

    2017-10-20

    When the sun is near the horizon, a circular band with approximately vertically polarized skylight is formed at 90° from the sun, and this skylight is only weakly reflected from the region of the water surface around the Brewster's angle (53° from the nadir). Thus, at low solar heights under a clear sky, an extended dark patch is visible on the water surface when one looks toward the north or south quarter perpendicular to the solar vertical. In this work, we study the radiance distribution of this so-called Brewster's dark patch (BDP) in still water as functions of the solar height and sky conditions. We calculate the pattern of reflectivity R of a water surface for a clear sky and obtain from this idealized situation the shape of the BDP. From three full-sky polarimetric pictures taken about a clear, a partly cloudy, and an overcast sky, we determine the R pattern and compose from that synthetic color pictures showing how the radiance distribution of skylight reflected at the water surface and the BDPs would look under these sky conditions. We also present photographs taken without a linearly polarizing filter about the BDP. Finally, we show a 19th century painting on which a river is seen with a dark region of the water surface, which can be interpreted as an artistic illustration of the BDP.

  17. Dusty plasma processes in Earth's polar summer mesosphere

    Science.gov (United States)

    Popel, S. I.; Dubinsky, A. Yu.; Dubinsky

    2013-08-01

    A self-consistent model for the description of dusty plasma structures, such as noctilucent clouds (NLC) and polar mesosphere summer echoes (PMSE), which are frequently grouped together under the common term polar mesospheric clouds, is presented. The model takes into account the processes of condensation of water vapor, ionization, recombination, action of solar radiation, sedimentation, dust particle growth, dust particle charging, electric fields, etc. Using the model, we explain the basic data of observations on the behavior of charged component in polar summer mesosphere. Furthermore, we show the influence of initial distributions of fine particles as well as that of the processes of condensation and water molecule absorption by fine particles on the formation of NLC and PMSE. We also illustrate the possibility of the formation of layered structure and sharp boundaries of NLC.

  18. Evidence for surface water ice in the lunar polar regions using reflectance measurements from the Lunar Orbiter Laser Altimeter and temperature measurements from the Diviner Lunar Radiometer Experiment

    Science.gov (United States)

    Fisher, Elizabeth A.; Lucey, Paul G.; Lemelin, Myriam; Greenhagen, Benjamin T.; Siegler, Matthew A.; Mazarico, Erwan; Aharonson, Oded; Williams, Jean-Pierre; Hayne, Paul O.; Neumann, Gregory A.; Paige, David A.; Smith, David E.; Zuber, Maria T.

    2017-08-01

    We find that the reflectance of the lunar surface within 5° of latitude of the South Pole increases rapidly with decreasing temperature, near ∼110 K, behavior consistent with the presence of surface water ice. The North polar region does not show this behavior, nor do South polar surfaces at latitudes more than 5° from the pole. This South pole reflectance anomaly persists when analysis is limited to surfaces with slopes less than 10° to eliminate false detection due to the brightening effect of mass wasting, and also when the very bright south polar crater Shackleton is excluded from the analysis. We also find that south polar regions of permanent shadow that have been reported to be generally brighter at 1064 nm do not show anomalous reflectance when their annual maximum surface temperatures are too high to preserve water ice. This distinction is not observed at the North Pole. The reflectance excursion on surfaces with maximum temperatures below 110 K is superimposed on a general trend of increasing reflectance with decreasing maximum temperature that is present throughout the polar regions in the north and south; we attribute this trend to a temperature or illumination-dependent space weathering effect (e.g. Hemingway et al., 2015). We also find a sudden increase in reflectance with decreasing temperature superimposed on the general trend at 200 K and possibly at 300 K. This may indicate the presence of other volatiles such as sulfur or organics. We identified and mapped surfaces with reflectances so high as to be unlikely to be part of an ice-free population. In this south we find a similar distribution found by Hayne et al. (2015) based on UV properties. In the north a cluster of pixels near that pole may represent a limited frost exposure.

  19. Molecule nanoweaver

    Science.gov (United States)

    Gerald, II; Rex, E [Brookfield, IL; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL; Diaz, Rocio [Chicago, IL; Vukovic, Lela [Westchester, IL

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  20. Site-specific binding of a water molecule to the sulfa drugs sulfamethoxazole and sulfisoxazole: a laser-desorption isomer-specific UV and IR study.

    Science.gov (United States)

    Uhlemann, Thomas; Seidel, Sebastian; Müller, Christian W

    2018-02-20

    To determine the preferred water molecule binding sites of the polybasic sulfa drugs sulfamethoxazole (SMX) and sulfisoxazole (SIX), we have studied their monomers and monohydrated complexes through laser-desorption conformer-specific UV and IR spectroscopy. Both the SMX and SIX monomer adopt a single conformer in the molecular beam. On the basis of their conformer-specific IR spectra in the NH stretch region, these conformers were assigned to the SMX and SIX global minimum structures, both exhibiting a staggered sulfonamide group and an intramolecular C-HO[double bond, length as m-dash]S hydrogen bond. The SMX-H 2 O and SIX-H 2 O complexes each adopt a single isomer in the molecular beam. Their isomeric structures were determined based on their isomer-specific IR spectra in the NH/OH stretch region. Quantum Theory of Atoms in Molecules analysis of the calculated electron densities revealed that in the SMX-H 2 O complex the water molecule donates an O-HN hydrogen bond to the heterocycle nitrogen atom and accepts an N-HO hydrogen bond from the sulfonamide NH group. In the SIX-H 2 O complex, however, the water molecule does not bind to the heterocycle but instead donates an O-HO[double bond, length as m-dash]S hydrogen bond to the sulfonamide group and accepts an N-HO hydrogen bond from the sulfonamide NH group. Both water complexes are additionally stabilized by a C ph -HOH 2 hydrogen bond. Interacting Quantum Atoms analysis suggests that all intermolecular hydrogen bonds are dominated by the short-range exchange-correlation contribution.

  1. The polarization of light in coastal and open oceans: Reflection and transmission by the air-sea interface and application for the retrieval of water optical properties

    Science.gov (United States)

    Foster, Robert

    For decades, traditional remote sensing retrieval methods that rely solely on the spectral intensity of the water-leaving light have provided indicators of aquatic ecosystem health. With the increasing demand for new water quality indicators and improved accuracy of existing ones, the limits of traditional remote sensing approaches are becoming apparent. Use of the additional information intrinsic to the polarization state of light is therefore receiving more attention. One of the major challenges inherent in any above-surface determination of the water-leaving radiance, scalar or vector, is the removal of extraneous light which has not interacted with the water body and is therefore not useful for remote sensing of the water itself. Due in-part to the lack of a proven alternative, existing polarimeter installations have thus far assumed that such light was reflected by a flat sea surface, which can lead to large inaccuracies in the water-leaving polarization signal. This dissertation rigorously determines the full Mueller matrices for both surface-reflected skylight and upwardly transmitted light by a wind-driven ocean surface. A Monte Carlo code models the surface in 3D and performs polarized ray-tracing, while a vector radiative transfer (VRT) simulation generates polarized light distributions from which the initial Stokes vector for each ray is inferred. Matrices are computed for the observable range of surface wind speeds, viewing and solar geometries, and atmospheric aerosol loads. Radiometer field-of-view effects are also assessed. Validation of the results is achieved using comprehensive VRT simulations of the atmosphere-ocean system based on several oceanographic research cruises and specially designed polarimeters developed by the City College of New York: one submerged beneath the surface and one mounted on a research vessel. When available, additional comparisons are made at 9 km altitude with the NASA Research Scanning Polarimeter (RSP). Excellent

  2. Simultaneous quantification of polar and non-polar volatile organic compounds in water samples by direct aqueous injection-gas chromatography/mass spectrometry.

    Science.gov (United States)

    Aeppli, Christoph; Berg, Michael; Hofstetter, Thomas B; Kipfer, Rolf; Schwarzenbach, René P

    2008-02-15

    A direct aqueous injection-gas chromatography/mass spectrometry (DAI-GC/MS) method for trace analysis of 24 volatile organic compounds (VOCs) in water samples is presented. The method allows for the simultaneous quantification of benzene, toluene, ethyl benzene, and xylenes (BTEX), methyl tert-butyl ether (MTBE), tert-butyl alcohol (TBA), as well as a variety of chlorinated methanes, ethanes, propane, enthenes and benzenes. Applying a liquid film polyethylene glycol or a porous layer open tubular (PLOT) divinylbenzene GC capillary column to separate the water from the VOCs, volumes of 1-10 microL aqueous sample are directly injected into the GC. No enrichment or pretreatment steps are required and sample volumes as low as 100 microL are sufficient for accurate quantification. Method detection limits determined in natural groundwater samples were between 0.07 and 2.8 microg/L and instrument detection limits of VOCs. DAI-GC/MS offers both good accuracy and precision (relative standard deviations VOC concentration measurements in a polluted aquifer. The wide range of detectable compounds and the lack of labor-intensive sample preparation illustrate that the DAI method is robust and easily applicable for the quantification of important organic groundwater contaminants.

  3. Fit of fluxes of sunscreens and other compounds from propylene glycol:water (30:70) through human skin and silicone membrane to the Roberts-Sloan equation: the effect of polar vehicle (or water) solubility.

    Science.gov (United States)

    Sloan, Kenneth B; Devarajan-Ketha, Hemamalini; Synovec, Jennifer; Majumdar, Susruta

    2013-01-01

    It would be useful to develop a surrogate for animal skin, which could be use to predict flux through human skin. The fluxes (and physicochemical properties) of sunscreens and other compounds from propylene glycol (PG):water (AQ), 30:70, through human skin have previously been reported. We measured the fluxes of several of those sunscreens and other compounds from PG:AQ, 30:70, through silicone membrane and fit both sets of data to the Roberts-Sloan (RS) equation to determine any similarities. For both sets of data, the fluxes were directly dependent on their solubilities in a lipid solvent [octanol (OCT), in this case] and in a polar solvent (PG:AQ, 30:70, or AQ in this case) and inversely on their molecular weights. The fit of the experimental (EXP) fluxes through human skin in vivo to RS was excellent: r² = 0.92 if the vehicle (VEH) PG:AQ, 30:70 was the polar solvent (RS¹) or r² = 0.97 if water was the polar solvent (RS²). The fit of the EXP fluxes through silicone membrane to RS was good: r² = 0.80 if the VEH PG:AQ, 30:70, was the polar solvent (RS¹) or r² = 0.81 if water was the polar solvent (RS²). The correlations between their EXP fluxes through human skin in vivo and their EXP fluxes through silicone membrane were good (r² = 0.85). In addition, the correlation between EXP fluxes from PG:AQ, 30:70, through human skin in vivo and their fluxes calculated from the coefficients of the fit of solubilities, molecular weights and fluxes from water through silicone membranes from a previous n = 22 database to RS was even better (r² = 0.94). These results suggest that flux through human skin can be calculated from flux through a silicone membrane.

  4. Temperature profile and water depth data from BT and XBT casts in the Atlantic Ocean from USCGC POLAR SEA from 14 December 1983 to 06 May 1984 (NODC Accession 8600108)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USCGC POLAR SEA in the Atlantic Ocean. Data were collected from 14 December...

  5. APPLICATION OF DNPH DERIVATIZATION WITH LC/MS TO THE IDENTIFICATION OF POLAR CARBONYL DRINKING WATER DISINFECTION BY-PRODUCTS IN DRINKING WATER

    Science.gov (United States)

    A qualitative method using 2,4-dinitrophenylhydrazine (DNPH) derivatization followed by analysis with liquid chromatography (LC)/negative ion-electrospray mass spectrometry (MS) was developed for analyzing and identifying highly polar aldehydes and ketones in ozonated drinking wa...

  6. Gibbs Free Energy of Hydrolytic Water Molecule in Acyl-Enzyme Intermediates of a Serine Protease: A Potential Application for Computer-Aided Discovery of Mechanism-Based Reversible Covalent Inhibitors.

    Science.gov (United States)

    Masuda, Yosuke; Yamaotsu, Noriyuki; Hirono, Shuichi

    2017-01-01

    In order to predict the potencies of mechanism-based reversible covalent inhibitors, the relationships between calculated Gibbs free energy of hydrolytic water molecule in acyl-trypsin intermediates and experimentally measured catalytic rate constants (k cat ) were investigated. After obtaining representative solution structures by molecular dynamics (MD) simulations, hydration thermodynamics analyses using WaterMap™ were conducted. Consequently, we found for the first time that when Gibbs free energy of the hydrolytic water molecule was lower, logarithms of k cat were also lower. The hydrolytic water molecule with favorable Gibbs free energy may hydrolyze acylated serine slowly. Gibbs free energy of hydrolytic water molecule might be a useful descriptor for computer-aided discovery of mechanism-based reversible covalent inhibitors of hydrolytic enzymes.

  7. H-bonding networks of the distal residues and water molecules in the active site of Thermobifida fusca hemoglobin.

    OpenAIRE

    Nicoletti , Francesco P; Droghetti , Enrica; Howes , Barry D; Bustamante , Juan P; Bonamore , Alessandra; Sciamanna , Natascia; Estrin , Darío A; Feis , Alessandro; Boffi , Alberto; Smulevich , Giulietta

    2013-01-01

    International audience; The ferric form of truncated hemoglobin II from Thermobifida fusca (Tf-trHb) and its triple mutant WG8F-YB10F-YCD1F at neutral and alkaline pH, and in the presence of CN(-) have been characterized by resonance Raman spectroscopy, electron paramagnetic resonance spectroscopy, and molecular dynamics simulations. Tf-trHb contains three polar residues in the distal site, namely TrpG8, TyrCD1 and TyrB10. Whereas TrpG8 can act as a potential hydrogen-bond donor, the tyrosine...

  8. Xalpha-DVM investigation of double water molecule interactions with active sites of alpha- and beta-subunits of hemoglobin

    Science.gov (United States)

    Yuryeva, Elmira I.

    In this work, the results of Xalpha-discrete variation method calculations of the electronic structure and interatomic parameters of chemical bonding between iron (II) and oxygen molecule with and without extra electrons and protons in active site (AS) of alpha- and beta-subunits of oxyhemoglobin are presented. The Skulachev model of O2 molecule existing in respiration medium in the 2H2O form was used. The introduction of extra electrons does not change considerably the interaction of the iron atom with the O2 oxygen molecule, but strengthens the repulsion in the Fe bond N bonds. In this case, the estimated effective charge of the iron atom is +1.8/1.5e for AS of alpha-/beta-subunits of oxyhemoglobin, and the magnetic moment of iron atoms becomes zero. The deoxygenation effect of the AS of the alpha- and beta-subunits of oxyhemoglobin is due to the ability of extra protons to break down covalent attraction between the iron atom and the nearest oxygen atom and also to weakening of the repulsive component of the covalent Fe bond N interactions.

  9. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 4. Molecule Matters – van der Waals Molecules - History and Some Perspectives on Intermolecular Forces ... Author Affiliations. E Arunan1. Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.

  10. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 4. Molecule Matters – van der Waals Molecules - History and Some Perspectives on Intermolecular Forces. E Arunan. Feature Article Volume 14 Issue 4 April 2009 pp 346-356 ...

  11. A study of a dual polarization laser backscatter system for remote identification and measurement of water pollution

    Science.gov (United States)

    Sheives, T. C.

    1974-01-01

    Remote identification and measurement of subsurface water turbidity and oil on water was accomplished with analytical models which describe the backscatter from smooth surface turbid water, including single scatter and multiple scatter effects. Lidar measurements from natural waterways are also presented and compared with ground observations of several physical water quality parameters.

  12. The effect of micro-environment on luminescence of aequorin: the role of amino acids and explicit water molecules on spectroscopic properties of coelenteramide.

    Science.gov (United States)

    Li, Zuo-Sheng; Zou, Lu-Yi; Min, Chun-Gang; Ren, Ai-Min

    2013-10-05

    Despite the fact that the luminescence reaction mechanism of aequorin has been intensively investigated, details in luminescence such as the effect of important amino acids residues and explicit water molecules on spectroscopic properties of coelenteramide remain unclear. In this work, the effect of amino acids residues His16, Tyr82, Trp86, Phe113, Trp129, Tyr132, explicit water molecules Wat505 and Wat405 on the spectral properties of CLM(-) has been studied by CAM-B3LYP, TD M06L and TD CAM-B3LYP methods in hydrophobic environment and aqueous solution. In hydrophobic environment, the amino acids or water molecules have no significant effect on the absorption. Tyr82 and Trp86 move close to CLM(-) changes the hydrogen bond network, and thus, the spectral properties is significantly affected by the hydrogen bonds between His16H(+)+Tyr82+Trp86 and CLM(-). Tyr82, Trp86 hydrogen bonding to CLM(-) upshifts the excited energy and helps emission spectra shift to blue region. Therefore, it is concluded that His16H(+)+Tyr82+Trp86 modify the emission spectra. The molecular electrostatic potential indicated that the greater electron density is located at the oxygen atom of 6-p-hydroxyphenyl group of CLM(-), and it facilitates the formation of hydrogen bond with His16H(+)+Tyr82+Trp86. It is a critical condition for the modification of emission spectra. It is expected to help to understand the interactions between emitter and amino acids in the micro environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Carbonic anhydrase inhibitors. Comparison of chlorthalidone, indapamide, trichloromethiazide, and furosemide X-ray crystal structures in adducts with isozyme II, when several water molecules make the difference.

    Science.gov (United States)

    Temperini, Claudia; Cecchi, Alessandro; Scozzafava, Andrea; Supuran, Claudiu T

    2009-02-01

    Thiazide and high ceiling diuretics were recently shown to inhibit all mammalian isoforms of carbonic anhydrase (CA, EC 4.2.1.1) with a very different profile as compared to classical inhibitors, such as acetazolamide, methazolamide, and ethoxzolamide. Some of these structurally related compounds have a very different behavior against the widespread isozyme CA II, with chlorthalidone, trichloromethiazide, and furosemide being efficient inhibitors against CA II (K(I)s of 65-138 nM), whereas indapamide is a much weaker one (K(I) of 2520 nM). Furthermore, some of these diuretics are quite efficient (low nanomolar) inhibitors of other isoforms, for example, chlorthalidone against hCA VB, VII, IX, and XIII; indapamide against CA VII, IX, XII, and XIII, trichloromethiazide against CA VII and IX, and furosemide against CA I and XIV. Examining the four X-ray crystal structures of their CA II adducts, we observed several (2-3) active site water molecules interacting with the chlorthalidone, trichloromethiazide, and furosemide scaffolds which may be responsible for this important difference of activity. Indeed, indapamide bound to CA II has no interactions with active site water molecules. Chlorthalidone bound within the CA II active site is in an enolic (lactimic) tautomeric form, with the enolic OH also participating in two strong hydrogen bonds with Asn67 and a water molecule. The newly evidenced binding modes of these diuretics may be exploited for designing better CA II inhibitors as well as compounds with selectivity/affinity for various isoforms with medicinal chemistry applications.

  14. "Take me to the water"--community and renewal among aging women: a case study of social interaction and exercise among the "Polar Bears" of Martha's Vineyard.

    Science.gov (United States)

    Peters, Donna-Marie

    2012-01-01

    This article describes the values and practices of a water exercise group of middle-class, middle-aged and senior female predominantly African American vacationing members of the Polar Bears of Martha's Vineyard, Massachusetts. It focuses on their holistic approach to health-physical, emotional, and spiritual-and their implementation of this approach through mentoring, play, and the use of certain African American cultural retention practices. It is based on 11 years of summer ethnographic fieldwork (participant observation) and in-depth interviews. It suggests the importance of a cultural approach to exercise in the promotion of health-enhancing behavior for African American women.

  15. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  16. A Model of Ball Lightning as a Formation of Water Molecules Confining an Electric Charge and the Classical Theory of the Electron

    Science.gov (United States)

    Tennakone, K.

    2012-04-01

    Ball lightning or faintly luminous floating spheres with radii of the order of ten centimeters appearing transiently in air notably during stormy weather continue to remain an unresolved phenomenon. It is suggested that these objects are organized structures constituted of an electrically charged spherical thin shell of electro-frozen dipole oriented water molecules carrying an electric charge, balanced by the internal negative pressure and outward electrostatic stress. A model presented, resembling the classical theory of the electron with Poincare stresses explain almost all observed attributes of this phenomenon. The possibility of realizing macroscopic spherical surface charge distributions in the vacuum and their implication on the problem of electron are commented.

  17. Dielectric constant of water as a function of separation in a slab geometry: A molecular dynamics study.

    Science.gov (United States)

    Itoh, Hidenosuke; Sakuma, Hiroshi

    2015-05-14

    Water in confining geometries shows various anomalous properties related to its structure and dynamics compared with bulk water. Here, the dielectric constant of water as a function of separation in a graphite slab geometry was studied using molecular dynamics simulations. The dielectric constants of water were calculated from the orientational polarization of water molecules when an external electric field was applied parallel and normal to the slabs. The reduction of the dielectric constant of water compared with bulk water can be explained by investigating the structure and dynamics of water in slab geometries. We found a preferred orientation of water molecules in the layer closest to the graphite surface. The self-diffusion coefficient distribution of water molecules along the direction normal to the slabs was also computed. Highly mobile water molecules in the intermediate region were generated by the weak hydrogen bonding produced by the preferred orientation of water molecules in the layer. We concluded that the dielectric constant of water in the slab geometry is lower than that of bulk water because of the reduction of the polarization of water and the highly mobile water molecules in the intermediate region arising from the preferred orientation of water molecules.

  18. [Dynamics of Irreversible Evaporation of a Water-Protein Droplet and a Problem of Structural and Dynamical Experiments with Single Molecules].

    Science.gov (United States)

    Shaitan, K V; Armeev, G A; Shaytan, A K

    2016-01-01

    We discuss the effect of isothermal and adiabatic evaporation of water on the state of a water-protein droplet. The discussed problem is of current importance due to development of techniques to perform single molecule experiments using free electron lasers. In such structure-dynamic experiments the delivery of a sample into the X-ray beam is performed using the microdroplet injector. The time between the injection and delivery is in the order of microseconds. In this paper we developed a specialized variant of all-atom molecular dynamics simulations for the study of irreversible isothermal evaporation of the droplet. Using in silico experiments we determined the parameters of isothermal evaporation of the water-protein droplet with the sodium and chloride ions in the concentration range of 0.3 M at different temperatures. The energy of irreversible evaporation determined from in silico experiments at the initial stages of evaporation virtually coincides with the specific heat of evaporation for water. For the kinetics of irreversible adiabatic evaporation an exact analytical solution was obtained in the limit of high thermal conductivity of the droplet (or up to the droplet size of -100 Å). This analytical solution incorporates parameters that are determined using in silico. experiments on isothermal droplet evaporation. We show that the kinetics of adiabatic evaporation and cooling of the droplet scales with the droplet size. Our estimates of the water-protemi droplet. freezing rate in the adiabatic regime in a vacuum chamber show that additional techniques for stabilizing the temperature inside the droplet should be used in order to study the conformational transitions of the protein in single molecules. Isothermal and quasi-isothermal conditions are most suitable for studying the conformational transitions upon object functioning. However, in this case it is necessary to take into account the effects of dehydration and rapid increase of ionic strength in an

  19. Polar organic compounds in pore waters of the Chesapeake Bay impact structure, Eyreville core hole: Character of the dissolved organic carbon and comparison with drilling fluids

    Science.gov (United States)

    Rostad, C.E.; Sanford, W.E.

    2009-01-01

    Pore waters from the Chesapeake Bay impact structure cores recovered at Eyreville Farm, Northampton County, Virginia, were analyzed to characterize the dissolved organic carbon. After squeezing or centrifuging, a small volume of pore water, 100 ??L, was taken for analysis by electrospray ionization-mass spectrometry. Porewater samples were analyzed directly without filtration or fractionation, in positive and negative mode, for polar organic compounds. Spectra in both modes were dominated by low-molecular-weight ions. Negative mode had clusters of ions differing by -60 daltons, possibly due to increasing concentrations of inorganic salts. The numberaverage molecular weight and weight-average molecular weight values for the pore waters from the Chesapeake Bay impact structure are higher than those reported for other aquatic sources of natural dissolved organic carbon as determined by electrospray ionization-mass spectrometry. In order to address the question of whether drilling mud fluids may have contaminated the pore waters during sample collection, spectra from the pore waters were compared to spectra from drilling mud fluids. Ions indicative of drilling mud fluids were not found in spectra from the pore waters, indicating there was no detectable contamination, and highlighting the usefulness of this analytical technique for detecting potential contamination during sample collection. ?? 2009 The Geological Society of America.

  20. Atkins' molecules

    CERN Document Server

    Atkins, Peters

    2003-01-01

    Originally published in 2003, this is the second edition of a title that was called 'the most beautiful chemistry book ever written'. In it, we see the molecules responsible for the experiences of our everyday life - including fabrics, drugs, plastics, explosives, detergents, fragrances, tastes, and sex. With engaging prose Peter Atkins gives a non-technical account of an incredible range of aspects of the world around us, showing unexpected connections, and giving an insight into how this amazing world can be understood in terms of the atoms and molecules from which it is built. The second edition includes dozens of extra molecules, graphical presentation, and an even more accessible and enthralling account of the molecules themselves.

  1. Interstellar Molecules

    Science.gov (United States)

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  2. In-situ X-ray diffraction reveals the degradation of crystalline CH3NH3PbI3 by water-molecule collisions at room temperature

    Science.gov (United States)

    Hada, Masaki; Hasegawa, Yoichi; Nagaoka, Ryota; Miyake, Tomoya; Abdullaev, Ulugbek; Ota, Hiromi; Nishikawa, Takeshi; Yamashita, Yoshifumi; Hayashi, Yasuhiko

    2018-02-01

    We have developed a vacuum-compatible chamber for in-situ X-ray diffraction (XRD) studies and have used it to characterize the changing crystal structure of an inorganic-organic hybrid perovskite material, CH3NH3PbI3 (MAPbI3), during interactions with water vapor at room temperature. In the XRD spectra, we have observed the degradation of MAPbI3 and the creation of MAPbI3 hydrates, which follow simple rate equations. The time constant for the degradation of MAPbI3 during accelerated aging suggests that multiple collisions of water molecules with the MAPbI3 crystal trigger the degradation of the crystal.

  3. Polarization, political

    NARCIS (Netherlands)

    Wojcieszak, M.; Mazzoleni, G.; Barnhurst, K.G.; Ikeda, K.; Maia, R.C.M.; Wessler, H.

    2015-01-01

    Polarization has been studied in three different forms: on a social, group, and individual level. This entry first focuses on the undisputed phenomenon of elite polarization (i.e., increasing adherence of policy positions among the elites) and also outlines different approaches to assessing mass

  4. Polarity governed selective amplification of through plane proton shuttling in proton exchange membrane fuel cells.

    Science.gov (United States)

    Gautam, Manu; Chattanahalli Devendrachari, Mruthyunjayachari; Thimmappa, Ravikumar; Raja Kottaichamy, Alagar; Pottachola Shafi, Shahid; Gaikwad, Pramod; Makri Nimbegondi Kotresh, Harish; Ottakam Thotiyl, Musthafa

    2017-03-15

    Graphene oxide (GO) anisotropically conducts protons with directional dominance of in plane ionic transport (σ IP) over the through plane (σ TP). In a typical H 2 -O 2 fuel cell, since the proton conduction occurs through the plane during its generation at the fuel electrode, it is indeed inevitable to selectively accelerate GO's σ TP for advancement towards a potential fuel cell membrane. We successfully achieved ∼7 times selective amplification of GO's σ TP by tuning the polarity of the dopant molecule in its nanoporous matrix. The coexistence of strongly non-polar and polar domains in the dopant demonstrated a synergistic effect towards σ TP with the former decreasing the number of water molecules coordinated to protons by ∼3 times, diminishing the effects of electroosmotic drag exerted on ionic movements, and the latter selectively accelerating σ TP across the catalytic layers by bridging the individual GO planes via extensive host guest H-bonding interactions. When they are decoupled, the dopant with mainly non-polar or polar features only marginally enhances the σ TP, revealing that polarity factors contribute to fuel cell relevant transport properties of GO membranes only when they coexist. Fuel cell polarization and kinetic analyses revealed that these multitask dopants increased the fuel cell performance metrics of the power and current densities by ∼3 times compared to the pure GO membranes, suggesting that the functional group factors of the dopants are of utmost importance in GO-based proton exchange membrane fuel cells.

  5. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  6. Fine structure and optical properties of biological polarizers in crustaceans and cephalopods

    Science.gov (United States)

    Chiou, Tsyr-Huei; Caldwell, Roy L.; Hanlon, Roger T.; Cronin, Thomas W.

    2008-04-01

    The lighting of the underwater environment is constantly changing due to attenuation by water, scattering by suspended particles, as well as the refraction and reflection caused by the surface waves. These factors pose a great challenge for marine animals which communicate through visual signals, especially those based on color. To escape this problem, certain cephalopod mollusks and stomatopod crustaceans utilize the polarization properties of light. While the mechanisms behind the polarization vision of these two animal groups are similar, several distinctive types of polarizers (i.e. the structure producing the signal) have been found in these animals. To gain a better knowledge of how these polarizers function, we studied the relationships between fine structures and optical properties of four types of polarizers found in cephalopods and stomatopods. Although all the polarizers share a somewhat similar spectral range, around 450- 550 nm, the reflectance properties of the signals and the mechanisms used to produce them have dramatic differences. In cephalopods, stack-plates polarizers produce the polarization patterns found on the arms and around their eyes. In stomatopods, we have found one type of beam-splitting polarizer based on photonic structures and two absorptive polarizer types based on dichroic molecules. These stomatopod polarizers may be found on various appendages, and on the cuticle covering dorsal or lateral sides of the animal. Since the efficiencies of all these polarizer types are somewhat sensitive to the change of illumination and viewing angle, how these animals compensate with different behaviors or fine structural features of the polarizer also varies.

  7. Effect of H-bonding interactions of water molecules in the self assembly of supramolecular architecture-joint experimental and computational studies

    Science.gov (United States)

    Jassal, Amanpreet Kaur; Kaur, Rajwinder; Islam, Nasarul; Anu; Mudsainiyan, Rahul Kumar

    2017-08-01

    A new {[Cu(4,4‧-BP)2.(H2O)4].2,6-NDC.3(H2O)} complex has been synthesized by refluxing Cu(NO3)2, 2,6-NDC and 4,4‧-BP (1:1:1 ratio) (2,6-NDC = 2,6-Naphthalene Dicarboxylic acid, 4,4‧-BP = 4,4'-bipyridine) in methanol/ammonia mixture and characterized by various spectroscopic techniques. The geometry around Cu2+ ion is typical octahedral in cationic complex, while the deprotonated 2,6-NDC act as a charge balancing counter anionic part. Water molecules (lattice and coordinated) also play important role in the self-assembly by forming Hsbnd bonded supramolecular architecture involving strong inter/intramolecular secondary interactions. The luminescence property and thermogravimetric analyses were also investigated. Both the intermolecular interactions of molecular and crystal structures of this complex were compared and discussed using Hirshfeld surface analysis and 2D-fingerprint plots. Hirshfeld surface analysis indicates that H⋯H, O⋯H and π···π contacts can account for 40.4, 19.3 and 7.7% respectively of the total Hirshfeld surface area. The DFT calculation at the CAM-B3LYP level of theory revealed the existence of three hydrogens binds in the complex. These hydrogen bonds exist between the oxygen atom of ligand and the hydrogen of coordinated water molecules.

  8. Molecular dynamics simulation to assess the effect of temperature on diffusion coefficients of different ions and water molecules in C-S-H

    Science.gov (United States)

    Zehtab, B.; Tarighat, A.

    2017-10-01

    Diffusion is a particle transportation process beginning from one point of a system to another through random molecular motion. This process depends on various parameters like temperature, concentration gradient, and particle size. The objective of this article is to assess the variation of diffusion coefficients of water molecules, chloride and sodium ions against different temperatures in calcium silicate hydrates (C-S-H) through molecular dynamics simulation. A uniform sodium chloride solution is modeled between cement hydrate layers with no concentration gradient. In such a solution, temperature could affect diffusion process in a significant manner. The two most important crystalline mineral analogues of C-S-H, tobermorite and jennite, are applied in this simulation. Diffusion coefficients of different ions and water molecules are found in different temperatures. It is revealed that diffusion coefficient is higher at high temperatures. Activation energies of chloride and sodium ions transport in cement hydrates are calculated through Arrhenius law. Output values of diffusion coefficients and activation energies are compared to previous experimental and simulation results in the related literature. A multi-scale analysis is run to estimate the penetration depth of Cl- ions in cement paste through Fick's second law.

  9. On the photoabsorption by permanganate ions in vacuo and the role of a single water molecule. New experimental benchmarks for electronic structure theory.

    Science.gov (United States)

    Houmøller, Jørgen; Kaufman, Sydney H; Støchkel, Kristian; Tribedi, Lokesh C; Brøndsted Nielsen, Steen; Weber, J Mathias

    2013-04-15

    We report electronic spectra of mass-selected MnO4(-) and MnO4(-)⋅H2O using electronic photodissociation spectroscopy. Bare MnO4(-) fragments by formation of MnO3(-) and MnO2(-), while the hydrated complex predominantly decays by loss of the water molecule. The band in the visible spectral region shows a well-resolved vibrational progression consistent with the excitation of a Mn-O stretching mode. The presence of a single water molecule does not significantly perturb the spectrum of MnO4(-). Comparison with the UV/Vis absorption spectrum of permanganate in aqueous solution shows that complete hydration causes a small blueshift, while theoretical models including a dielectric medium have predicted a redshift. The experimental data can be used as benchmarks for electronic structure theory methods, which usually predict electronic spectra in the absence of a chemical environment. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A novel strategy to produce highly stable and transparent aqueous 'nanosolutions' of water-insoluble drug molecules

    International Nuclear Information System (INIS)

    Wang Jiexin; Zhang Zhibing; Le Yuan; Chen Jianfeng; Zhao Hong

    2011-01-01

    A surprisingly large proportion of new drug candidates emerging from drug discovery programmes are water-insoluble and, as a result, have poor oral bioavailability. To overcome insolubility, the drug particles are usually dispersed in a medium during product formation, but large particles that are formed may affect product performance and safety. Many techniques have been used to produce nanodispersions-dispersions with nanometre-scale dimensions-that have properties similar to solutions. However, making nanodispersions requires complex processing, and it is difficult to achieve stability over long periods. In this paper, we report a generic method for preparing drug nanoparticles with a combination of antisolvent precipitation in the presence of water-soluble matrices and spray-drying. The spray-dried powder composites (solid dispersion) are microspherical, highly stable and thus form transparent nanodispersions or so-called 'nanosolutions' of water-insoluble drug when simply added to water. Aqueous nanodispersions of silybin (a kind of water-insoluble drug for liver protection) with an average size of 25 nm produced with this approach display a 10 times faster dissolution rate than that of raw drug. This has great potential to offer a novel solution for innovative drugs of the future.

  11. Polar Bears

    Science.gov (United States)

    Amstrup, Steven C.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Polar bears (Ursus maritimus) are hunted throughout most of their range. In addition to hunting polar bears of the Beaufort Sea region are exposed to mineral and petroleum extraction and related human activities such as shipping road-building, and seismic testing (Stirling 1990).Little was known at the start of this project about how polar bears move about in their environment, and although it was understood that many bears travel across political borders, the boundaries of populations had not been delineated (Amstrup 1986, Amstrup et al. 1986, Amstrup and DeMaster 1988, Garner et al. 1994, Amstrup 1995, Amstrup et al. 1995, Amstrup 2000).As human populations increase and demands for polar bears and other arctic resources escalate, managers must know the sizes and distributions of the polar bear populations. Resource managers also need reliable estimates of breeding rates, reproductive intervals, litter sizes, and survival of young and adults.Our objectives for this research were 1) to determine the seasonal and annual movements of polar bears in the Beaufort Sea, 2) to define the boundaries of the population(s) using this region, 3) to determine the size and status of the Beaufort Sea polar bear population, and 4) to establish reproduction and survival rates (Amstrup 2000).

  12. Fundamental studies for the proton polarization technique in neutron protein crystallography

    International Nuclear Information System (INIS)

    Tanaka, Ichiro; Kusaka, Katsuhiro; Chatake, Toshiyuki; Niimura, Nobuo

    2013-01-01

    Fundamental trials to realise the proton polarization technique for detecting hydrogen with higher sensitivity in neutron protein crystallography are described. The isotope effect in conventional neutron protein crystallography (NPC) can be eliminated by the proton polarization technique (ppt). Furthermore, the ppt can improve detection sensitivity of hydrogen (relative neutron scattering length of hydrogen) by approximately eight times in comparison with conventional NPC. Several technical difficulties, however, should be overcome in order to perform the ppt. In this paper, two fundamental studies to realise ppt are presented: preliminary trials using high-pressure flash freezing has shown the advantage of making bulk water amorphous without destroying the single crystal; and X-ray diffraction and liquid-chromatography/mass-spectrometry analyses of standard proteins after introducing radical molecules into protein crystals have shown that radical molecules could be distributed non-specifically around proteins, which is essential for better proton polarization

  13. Polar-solvation classical density-functional theory for electrolyte aqueous solutions near a wall

    Science.gov (United States)

    Warshavsky, Vadim; Marucho, Marcelo

    2016-01-01

    A precise description of the structural and dielectric properties of liquid water is critical to understanding the physicochemical properties of solutes in electrolyte solutions. In this article, a mixture of ionic and dipolar hard spheres is considered to account for water crowding and polarization effects on ionic electrical double layers near a uniformly charged hard wall. As a unique feature, solvent hard spheres carrying a dipole at their centers were used to model water molecules at experimentally known concentration, molecule size, and dipolar moment. The equilibrium ionic and dipole density profiles of this electrolyte aqueous model were calculated using a polar-solvation classical density-functional theory (PSCDFT). These profiles were used to calculate the charge density distribution, water polarization, dielectric permittivity function, and mean electric potential profiles as well as differential capacitance, excess adsorptions, and wall-fluid surface tension. These results were compared with those corresponding to the pure dipolar model and unpolar primitive solvent model of electrolyte aqueous solutions to understand the role that water crowding and polarization effects play on the structural and thermodynamic properties of these systems. Overall, PSCDFT predictions are in agreement with available experimental data. PMID:27176352

  14. Extended X-ray absorption fine structure of copper(II) complexes at the air-water interface by a polarized total-reflection X-ray absorption technique.

    Science.gov (United States)

    Nagatani, Hirohisa; Tanida, Hajime; Watanabe, Iwao; Sagara, Takamasa

    2009-04-01

    Copper(II) complexes spread on an aqueous solution surface were studied by a polarized total-reflection X-ray absorption fine structure (TR-XAFS) technique. The polarized TR-XAFS spectra at the Cu-K edge for copper(II) porphyrins and copper(II) chlorophyllin in a monolayer were measured in situ at the air-water interface. The polarization dependences of X-ray absorption near-edge structure (XANES) involving a 1s-->4p(z) transition allowed us to estimate the molecular orientation and the local coordination structure around the copper(II) atom in the polarization plane selectively. The extended X-ray absorption fine structure (EXAFS) region of the polarized TR-XAFS spectra for the metal complexes present at the air-water interface was successfully analyzed for the first time. The relative coordination number for the copper center evaluated from the EXAFS analysis indicated larger values in the vertical polarization than in the horizontal one, in agreement with the standing-up molecular orientation at the air-water interface estimated from the XANES region.

  15. Production and characterization of protonated molecular clusters containing a given number of water molecules with the DIAM set-up

    International Nuclear Information System (INIS)

    Bruny, G.

    2010-01-01

    nano-scale characterization of irradiation in bio-molecular systems requires observation of novel features which are now achievable with the recent technical progress. This work is a central part in the development of DIAM which is a new experimental set-up devoted to irradiation of bio-molecular clusters at the Institut de Physique Nucleaire de Lyon. The development of the cluster source and of a double focusing mass spectrometer leads to the production of intense beams of mass selected protonated molecular clusters. Combined with this mass selected cluster beams an innovative detection technique is demonstrated in collision induced dissociation experiments. The results contribute to the knowledge of the stability and the structure of the small protonated water clusters and mixed clusters of water and pyridine. (author)

  16. Ab initio calculations of dissociative excitation of water and methane molecules upon electron impact at low energies

    International Nuclear Information System (INIS)

    Gil, T.J.; McCurdy, C.W.; Rescigno, T.N.; Lengsfield, B.H. III

    1994-01-01

    The authors are reporting results of ab-initio calculations of electron-impact excitation of water and methane occurring at scattering energies up to 60 eV. The authors consider dissociative excited states of both systems since the understanding of their chemistry has considerable importance in plasma technology and atmospheric research. In the case of methane the authors are dealing with the promotion of a valence electron into Rydberg orbitals, while in water the excited states have one electron in an antibonding unoccupied valence orbital and support Feshbach resonances. The authors discuss issues related to convergence of the close-coupling expansion in the case of Rydberg excitation, where the authors have coupled up to 16 channels. The practical realization of the calculation within the framework of the complex Kohn variational principle represents merging of quantum chemistry and quantum scattering theory and is also discussed

  17. Adhesion molecules

    CERN Document Server

    Preedy, Victor R

    2016-01-01

    This book covers the structure and classification of adhesion molecules in relation to signaling pathways and gene expression. It discusses immunohistochemical localization, neutrophil migration, and junctional, functional, and inflammatory adhesion molecules in pathologies such as leukocyte decompression sickness and ischemia reperfusion injury. Highlighting the medical applications of current research, chapters cover diabetes, obesity, and metabolic syndrome; hypoxia; kidney disease; smoking, atrial fibrillation, and heart disease, the brain and dementia; and tumor proliferation. Finally, it looks at molecular imaging and bioinformatics, high-throughput technologies, and chemotherapy.

  18. In-situ methylation of strongly polar organic acids in natural waters supported by ion-pairing agents for headspace GC-MSD analysis

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, P.L.; Walther, W. [Dresden University of Technology, Institute for Groundwater Managemant, Dresden (Germany); Nestler, W. [Institute for Technology and Economics, Department of Civil Engineering and Architecture, Dresden (Germany)

    1998-06-01

    Strongly polar organic substances like halogenated acetic acids have been analyzed in surface water and groundwater in the catchment area of the upper Elbe river in Saxony since 1992. Coming directly from anthropogenic sources like industry, agriculture and indirectly by rainfall, their concentrations can increase up to 100 {mu}g/L in the aquatic environment of this catchment area. A new static headspace GC-MSD method without a manual pre-concentration step is presented to analyze the chlorinated acetic acids relevant to the Elbe river as their volatile methyl esters. Using an ion-pairing agent as modifier for the in-situ methylation of the analytes by dimethylsulfate, a minimal detection limit of 1 {mu}g/L can be achieved. Problems like the thermal degradation of chlorinated acetic acids to halogenated hydrocarbons and changing reaction yields during the headspace methylation, could be effectively reduced. The method has been successfully applied to monitoring bank infiltrate, surface water, groundwater and water works pumped raw water according to health provision principles. (orig.) With 3 figs., 2 tabs., 29 refs.

  19. Water

    Science.gov (United States)

    Leopold, Luna Bergere; Baldwin, Helene L.

    1962-01-01

    What do you use water for?If someone asked you this question you would probably think right away of water for drinking. Then you would think of water for bathing, brushing teeth, flushing the toilet. Your list would get longer as you thought of water for cooking, washing the dishes, running the garbage grinder. Water for lawn watering, for play pools, for swimming pools, for washing the car and the dog. Water for washing machines and for air conditioning. You can hardly do without water for fun and pleasure—water for swimming, boating, fishing, water-skiing, and skin diving. In school or the public library, you need water to wash your hands, or to have a drink. If your home or school bursts into flames, quantities of water are needed to put it out.In fact, life to Americans is unthinkable without large supplies of fresh, clean water. If you give the matter a little thought, you will realize that people in many countries, even in our own, may suffer from disease and dirt simply because their homes are not equipped with running water. Imagine your own town if for some reason - an explosion, perhaps - water service were cut off for a week or several weeks. You would have to drive or walk to a neighboring town and bring water back in pails. Certainly if people had to carry water themselves they might not be inclined to bathe very often; washing clothes would be a real chore.Nothing can live without water. The earth is covered by water over three-fourths of its surface - water as a liquid in rivers, lakes and oceans, and water as ice and snow on the tops of high mountains and in the polar regions. Only one-quarter of our bodies is bone and muscle; the other three-fourths is made of water. We need water to live, and so do plants and animals. People and animals can live a long time without food, but without water they die in a few days. Without water, everything would die, and the world would turn into a huge desert.

  20. Tourism in Cold Water Islands: A Matter of Contract? Experiences from Destination Management in the Polar North

    Directory of Open Access Journals (Sweden)

    Per Åke Nilsson

    2008-05-01

    Full Text Available Lack of local understanding and low preparedness for tourism characterise many remote communities of the Polar North, thus undermining positive attitudes towards tourism even if tourism is seen as a development force. The relatively new interest in Arctic regions as a tourist destination combined with different exogenous forces like globalization and climate change make the situation even more complex. The peripheral and insular location often renders cruise tourism as the only option. Under these circumstances, the readiness to accept tourism as a development tool varies from destination to destination, ranging from being seen as a passport to development to a threat to local culture and traditional life. In order to bridge these perception gaps, the idea of a mental or written contract between tourists and local residents is discussed.

  1. Atoms, Molecules, and Compounds

    CERN Document Server

    Manning, Phillip

    2007-01-01

    Explores the atoms that govern chemical processes. This book shows how the interactions between simple substances such as salt and water are crucial to life on Earth and how those interactions are predestined by the atoms that make up the molecules.

  2. Enhancement of molecular NMR signal induced by polarization transfer from laser-polarized 129Xe

    International Nuclear Information System (INIS)

    Sun Xianping

    2001-01-01

    There is a large non-equilibrium nuclear polarization and a longer relaxation time in the laser-polarized 129 Xe produced by means of optical pumping and spin exchange. The characteristics of the laser-polarized 129 Xe permit the transfer of the polarization to enhance the atomic nuclear spin in liquid, solid and surface of solid molecules. Therefore, the sensitivity in nuclear magnetic resonance measurements for the molecules is enhanced and applications in the investigations of materials and surface sciences are expanded. The progress in the investigations of materials and surface sciences are expanded. The progress in the investigations of the polarization transfer between laser-polarized 129 Xe and the atomic nuclei in the molecules, the relative physics and the measurement of some parameters are introduced

  3. Polar low monitoring

    Science.gov (United States)

    Bobylev, Leonid; Zabolotskikh, Elizaveta; Mitnik, Leonid

    2010-05-01

    Polar lows are intense mesoscale atmospheric low pressure weather systems, developing poleward of the main baroclinic zone and associated with high surface wind speeds. Small size and short lifetime, sparse in-situ observations in the regions of their development complicate polar low study. Our knowledge of polar lows and mesocyclones has come almost entirely during the period of satellite remote sensing since, by virtue of their small horizontal scale, it was rarely possible to analyse these lows on conventional weather charts using only the data from the synoptic observing network. However, the effects of intense polar lows have been felt by coastal communities and seafarers since the earliest times. These weather systems are thought to be responsible for the loss of many small vessels over the centuries, although the nature of the storms was not understood and their arrival could not be predicted. The actuality of the polar low research is stipulated by their high destructive power: they are a threat to such businesses as oil and gas exploration, fisheries and shipping. They could worsen because of global warming: a shrinking of sea ice around the North Pole, which thawed to its record minimum in the summer of 2007, is likely to give rise to more powerful storms that form only over open water and can cause hurricane-strength winds. Therefore, study of polar lows, their timely detection, tracking and forecasting represents a challenge for today meteorology. Satellite passive microwave data, starting from Special Sensor Microwave Imager (SSM/I) onboard Defense Meteorological Satellite Program (DMSP) satellite, remain invaluable source of regularly available remotely sensed data to study polar lows. The sounding in this spectral range has several advantages in comparison with observations in visible and infrared ranges and Synthetic Aperture Radar (SAR) data: independence on day time and clouds, regularity and high temporal resolution in Polar Regions. Satellite

  4. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Molecule Matters - Dinitrogen. A G Samuelson J Jabadurai. Volume 16 Issue 12 ... Author Affiliations. A G Samuelson1 J Jabadurai1. Department of Inroganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.

  5. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 5. Molecule Matters - N-Heterocyclic Carbenes - The Stable Form of R2 C: Anil J Elias. Feature Article Volume 13 Issue 5 May 2008 pp 456-467. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 9. Molecule Matters - A Chromium Compound with a Quintuple Bond. K C Kumara Swamy. Feature Article Volume 11 Issue 9 September 2006 pp 72-75. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. Multiresidue analysis of acidic and polar organic contaminants in water samples by stir-bar sorptive extraction-liquid desorption-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Quintana, José Benito; Rodil, Rosario; Muniategui-Lorenzo, Soledad; López-Mahía, Purificación; Prada-Rodríguez, Darío

    2007-12-07

    The feasibility of stir-bar sorptive extraction (SBSE) followed by liquid desorption in combination with large volume injection (LVI)-in port silylation and gas chromatography-mass spectrometry (GC-MS) for the simultaneous determination of a broad range of 46 acidic and polar organic pollutants in water samples has been evaluated. The target analytes included phenols (nitrophenols, chlorophenols, bromophenols and alkylphenols), acidic herbicides (phenoxy acids and dicamba) and several pharmaceuticals. Experimental variables affecting derivatisation yield and peak shape as a function of different experimental PTV parameters [initial injection time, pressure and temperature and the ratio solvent volume/N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA) volume] were first optimised by an experimental design approach. Subsequently, SBSE conditions, such as pH, ionic strength, agitation speed and extraction time were investigated. After optimisation, the method failed only for the extraction of most polar phenols and some pharmaceuticals, being suitable for the determination of 37 (out of 46) pollutants, with detection limits for these analytes ranging between 1 and 800 ng/L and being lower than 25 ng/L in most cases. Finally, the developed method was validated and applied to the determination of target analytes in various aqueous environmental matrices, including ground, river and wastewater. Acceptable accuracy (70-130%) and precision values (effects. Among the drawbacks of the method, carryover was identified as the main problem even though the Twisters were cleaned repeatedly.

  8. Fabrication of PLA/CaCO3 hybrid micro-particles as carriers for water-soluble bioactive molecules.

    Science.gov (United States)

    Kudryavtseva, Valeriya L; Zhao, Li; Tverdokhlebov, Sergei I; Sukhorukov, Gleb B

    2017-09-01

    We propose the use of polylactic acid/calcium carbonate (PLA/CaCO 3 ) hybrid micro-particles for achieving improved encapsulation of water-soluble substances. Biodegradable porous CaCO 3 microparticles can be loaded with wide range of bioactive substance. Thus, the formation of hydrophobic polymeric shell on surface of these loaded microparticles results on encapsulation and, hence, sealing internal cargo and preventing their release in aqueous media. In this study, to encapsulate proteins, we explore the solid-in-oil-in-water emulsion method for fabricating core/shell PLA/CaCO 3 systems. We used CaCO 3 particles as a protective core for encapsulated bovine serum albumin, which served as a model protein system. We prepared a PLA coating using dichloromethane as an organic solvent and polyvinyl alcohol as a surfactant for emulsification; in addition, we varied experimental parameters such as surfactant concentration and polymer-to-CaCO 3 ratio to determine their effect on particle-size distribution, encapsulation efficiency and capsule permeability. The results show that the particle size decreased and the size distribution narrowed as the surfactant concentration increased in the external aqueous phase. In addition, when the CaCO 3 /PLA mass ratio dropped below 0.8, the hybrid micro-particles were more likely to resist treatment by ethylenediaminetetraacetic acid and thus retained their bioactive cargos within the polymer-coated micro-particles. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Calculation and fitting of potential energy and dipole moment surfaces for the water molecule: Fully ab initio determination of vibrational transition energies and band intensities

    International Nuclear Information System (INIS)

    Kedziora, G.S.; Shavitt, I.

    1997-01-01

    Potential energy and dipole moment surfaces for the water molecule have been generated by multireference singles-and-doubles configuration interaction calculations using a large basis set of the averaged-atomic-natural-orbital type and a six-orbital-six-electron complete-active-space reference space. The surfaces are suitable for modeling vibrational transitions up to about 11000cm -1 above the ground state. A truncated singular-value decomposition method has been used to fit the surfaces. This fitting method is numerically stable and is a useful tool for examining the effectiveness of various fitting function forms in reproducing the calculated surface points and in extrapolating beyond these points. The fitted surfaces have been used for variational calculations of the 30 lowest band origins and the corresponding band intensities for transitions from the ground vibrational state. With a few exceptions, the results compare well with other calculations and with experimental data. copyright 1997 American Institute of Physics

  10. Solvent-Free Biodiesel Production Catalyzed by Crude Lipase Powder from Seeds: Effects of Alcohol Polarity, Glycerol, and Thermodynamic Water Activity.

    Science.gov (United States)

    Kouteu, Paul Alain Nanssou; Blin, Joël; Baréa, Bruno; Barouh, Nathalie; Villeneuve, Pierre

    2017-10-04

    The aim of this work was to evaluate the potential of crude lipase powders made from Adansonia grandidieri and Jatropha mahafalensis seeds for the synthesis of fatty acid alkyl esters in a solvent-free system. The influence of the nature of the alcohol, the amount of glycerol, and hydration of the powder was investigated. Results showed that the activity of these crude lipase powders was inversely proportional to the alcohol polarity and the amount of the glycerol in the reaction medium. To ensure optimum activity, A. grandidieri and J. mahafalensis powders must be conditioned to a water activity of 0.33 and 0.66. To obtain a fatty acid ethyl ester yield greater than 95% with A. grandidieri, ethanol should be introduced at an amount corresponding to a triacylglycerol to ethanol molar ratio of 2:1 every 15 h for 96 h and use 25% of preconditioned crude lipase powders (2 additions of 12.5%).

  11. Polarization Effects in Attosecond Photoelectron Spectroscopy

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Madsen, Lars Bojer

    2010-01-01

    following the field instead. We show that polarization effects may lead to an apparent temporal shift that needs to be properly accounted for in the analysis. The effect may be isolated and studied by angle-resolved photoelectron spectroscopy from oriented polar molecules. We also show that polarization...... effects will lead to an apparent temporal shift of 50 as between photoelectrons from a 2p and 1s state in atomic hydrogen....

  12. Application of vertical electrical sounding combined with induced polarization method in ground water exploration; IP koka wo koryoshita hiteikoho suichoku tansa no chikasui chosa eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, M.; Sakurada, H. [Sumiko Consultants Co. Ltd., Tokyo (Japan); Suzuki, T. [Hokkaido Development Bureau, Hokkaido Development Agency, Sapporo (Japan)

    1996-10-01

    For ground water exploration using vertical Schlumberger exploration method, measurement and analysis combined with induced polarization (IP) effect were conducted as trial. For the Schlumberger method, potential is measured at the center between potential electrodes during flow of dc current between current electrodes. In the case of vertical exploration, measurements are repeated with fixed potential electrodes by extending the distance between current electrodes. Ground water exploration was conducted using this method at Otaki village, Hokkaido. Geology of surveyed plateau consists of a basement of Pliocene tuffs and Quaternary Pleistocene sediments covering on the surface. For the results of analysis, four to seven beds were detected from the resistivity. The depth up to the lowest bed was between 25 and 85 m, the resistivity of each bed was between 9 and 8,000 ohm{times}m, and the polarizability was between 1 and 15 mV/V. Among these resistivity zones, it was judged that zones satisfying following three conditions correspond to coarse grain sediments saturated with ground water, and can be expected as aquifers; having resistivity ranging between 100 and 1,000 ohm{times}m, polarizability higher than 10 mV/V, and relatively large thickness. 11 refs., 6 figs.

  13. Seasonal variability in physicochemical characteristics of small water bodies across a High Arctic wetland, Polar Bear Pass, Bathurst Island, Nunavut, Canada

    Science.gov (United States)

    Abnizova, A.; Miller, E.; Shakil, S.; Young, K. L.

    2012-12-01

    Small water bodies (lakes, ponds) in permafrost environments make up roughly half of the total area of surface water, but their relevance to nutrient and carbon fluxes on a landscape scale still remains largely unknown. Small variations in pond water balance as a result of seasonal changes in precipitation, evaporation, or drainage processes have the potential to produce considerable changes in the carbon and nutrient budgets as small changes in the water level can have a major effect on volumes and surface areas of ponds. The aims of this study were (1) to identify the main characteristics in pond hydrology both seasonally and between years; (2) to identify factors controlling variation in measured physicochemical variables; and (3) to detect seasonal trends in the hydrological and chemical characteristics of ponds located in an extensive low-gradient High Arctic wetland. We conducted detailed limnological surveys of 50 wetland ponds located at Polar Bear Pass (PBP), Bathurst Island, Nunavut, Canada during 2007-2010. The results indicate large seasonal variability in physicochemical parameters that is associated with pond water budget changes, especially for ponds with steady water levels vs. dynamic ponds (fluctuating water levels). Principal component analysis (PCA) of the datasets indicated that major ion content, specifically calcium (Ca2+), was responsible for much of the variability among the ponds in both 2008 and 2009. Additionally in 2009 most of the variability was also due to specific conductivity in the summer and magnesium (Mg2+) in the fall. These trends are typically identified as a result of dilution or evapo-concentration processes in small water bodies. In 2007, a warm and dry year, pH and potassium (K+) were responsible for much of variation between ponds. This is attributed to high vegetation growth in ponds and a longer growing season. While no trend was identified in 2010 (PCA analysis), calculations of greenhouse gas (GHG) emissions from 50

  14. Polarization in free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Papadichev, V.A. [Lebedev Physical Institute, Moscow (Russian Federation)

    1995-12-31

    Polarization of electromagnetic radiation is required very often in numerous scientific and industrial applications: studying of crystals, molecules and intermolecular interaction high-temperature superconductivity, semiconductors and their transitions, polymers and liquid crystals. Using polarized radiation allows to obtain important data (otherwise inaccessible) in astrophysics, meteorology and oceanology. It is promising in chemistry and biology for selective influence on definite parts of molecules in chain synthesis reactions, precise control of various processes at cell and subcell levels, genetic engineering etc. Though polarization methods are well elaborated in optics, they can fail in far-infrared, vacuum-ultraviolet and X-ray regions because of lack of suitable non-absorbing materials and damaging of optical elements at high specific power levels. Therefore, it is of some interest to analyse polarization of untreated FEL radiation obtained with various types of undulators, with and without axial magnetic field. The polarization is studied using solutions for electron orbits in various cases: plane or helical undulator with or without axial magnetic field, two plane undulators, a combination of right- and left-handed helical undulators with equal periods, but different field amplitudes. Some examples of how a desired polarization (elliptical circular or linear) can be obtained or changed quickly, which is necessary in many experiments, are given.

  15. Hydration of ammonia, methylamine, and methanol in amorphous solid water

    Science.gov (United States)

    Souda, Ryutaro

    2016-02-01

    Interactions of polar protic molecules with amorphous solid water (ASW) have been investigated using temperature-programmed desorption and time-of-flight secondary ion mass spectrometry. The ammonia and methylamine are incorporated into the interior of porous ASW films. They are caged by water molecules and are released during water crystallization. In contrast, the methanol-water interaction is not influenced by pores of ASW. The methanol additives tend to survive water crystallization and are released during ASW film evaporation. The hydration of n-hexane in ASW is influenced significantly by methanol additives because n-hexane is accommodated in a methanol-induced hydration shell.

  16. Diffusion-weighted magnetic resonance imaging reveals the effects of different cooling temperatures on the diffusion of water molecules and perfusion within human skeletal muscle

    International Nuclear Information System (INIS)

    Yanagisawa, O.; Fukubayashi, T.

    2010-01-01

    Aim: To evaluate the effect of local cooling on the diffusion of water molecules and perfusion within muscle at different cooling temperatures. Materials and methods: Magnetic resonance diffusion-weighted (DW) images of the leg (seven males) were obtained before and after 30 min cooling (0, 10, and 20 o C), and after a 30 min recovery period. Two types of apparent diffusion coefficient (ADC; ADC1, reflecting both water diffusion and perfusion within muscle, and ADC2, approximating the true water diffusion coefficient) of the ankle dorsiflexors were calculated from DW images. T2-weighted images were also obtained to calculate T2 values of the ankle dorsiflexors. The skin temperature was measured before, during, and after cooling. Results: Both ADC values significantly decreased after cooling under all cooling conditions; the rate of decrease depended on the cooling temperature used (ADC1: -36% at 0 o C, -27.8% at 10 o C, and -22.6% at 20 o C; ADC2: -26% at 0 o C, -21.1% at 10 o C, and -14.6% at 20 o C). These significant decreases were maintained during the recovery period. Conversely, the T2 value showed no significant changes. Under all cooling conditions, skin temperature significantly decreased during cooling; the rate of decrease depended on the cooling temperature used (-74.8% at 0 o C, -51.1% at 10 o C, and -26.8% at 20 o C). Decreased skin temperatures were not restored to pre-cooling values during the recovery period under any cooling conditions. Conclusion: Local cooling decreased the water diffusion and perfusion within muscle with decreased skin temperature; the rates of decrease depended on the cooling temperature used. These decreases were maintained for 30 min after cooling.

  17. Expressional Changes of Water Transport-related Molecules in the Efferent Ductules and Initial Segment of Mouse Treated with Bisphenol A-Containing Drinking Water for Two Generations

    OpenAIRE

    Han, Su-Yong; Lee, Ki-Ho

    2013-01-01

    Bisphenol A (BPA) is an estrogenic endocrine disrupter. However, depending on a way of treatment, the harmful effects of BPA have not been confirmed. Also, trans-generational effects of BPA on male reproduction are still controversial. Because the reabsorption of testicular fluid in the efferent ductules (ED) and initial segment (IS) is important for sperm maturation, the present study was designed to determine trans-generational effect of BPA administrated orally on expression of water trans...

  18. Air-water exchange of anthropogenic and natural organohalogens on International Polar Year (IPY) expeditions in the Canadian Arctic.

    Science.gov (United States)

    Wong, Fiona; Jantunen, Liisa M; Pućko, Monika; Papakyriakou, Tim; Staebler, Ralf M; Stern, Gary A; Bidleman, Terry F

    2011-02-01

    Shipboard measurements of organohalogen compounds in air and surface seawater were conducted in the Canadian Arctic in 2007-2008. Study areas included the Labrador Sea, Hudson Bay, and the southern Beaufort Sea. High volume air samples were collected at deck level (6 m), while low volume samples were taken at 1 and 15 m above the water or ice surface. Water samples were taken within 7 m. Water concentration ranges (pg L(-1)) were as follows: α-hexachlorocyclohexane (α-HCH) 465-1013, γ-HCH 150-254, hexachlorobenzene (HCB) 4.0-6.4, 2,4-dibromoanisole (DBA) 8.5-38, and 2,4,6-tribromoanisole (TBA) 4.7-163. Air concentration ranges (pg m(-3)) were as follows: α-HCH 7.5-48, γ-HCH 2.1-7.7, HCB 48-71, DBA 4.8-25, and TBA 6.4 - 39. Fugacity gradients predicted net deposition of HCB in all areas, while exchange directions varied for the other chemicals by season and locations. Net evasion of α-HCH from Hudson Bay and the Beaufort Sea during open water conditions was shown by air concentrations that averaged 14% higher at 1 m than 15 m. No significant difference between the two heights was found over ice cover. The α-HCH in air over the Beaufort Sea was racemic in winter (mean enantiomer fraction, EF = 0.504 ± 0.008) and nonracemic in late spring-early summer (mean EF = 0.476 ± 0.010). This decrease in EF was accompanied by a rise in air concentrations due to volatilization of nonracemic α-HCH from surface water (EF = 0.457 ± 0.019). Fluxes of chemicals during the southern Beaufort Sea open water season (i.e., Leg 9) were estimated using the Whitman two-film model, where volatilization fluxes are positive and deposition fluxes are negative. The means ± SD (and ranges) of net fluxes (ng m(-2) d(-1)) were as follows: α-HCH 6.8 ± 3.2 (2.7-13), γ-HCH 0.76 ± 0.40 (0.26-1.4), HCB -9.6 ± 2.7 (-6.1 to -15), DBA 1.2 ± 0.69 (0.04-2.0), and TBA 0.46 ± 1.1 ng m(-2) d(-1) (-1.6 to 2.0).

  19. Visualization of the interfacial turbulence associated with remarkable faradaic current amplification at a polarized water/1,2-dichloroethane interface

    Czech Academy of Sciences Publication Activity Database

    Trojánek, Antonín; Mareček, Vladimír; Samec, Zdeněk

    2017-01-01

    Roč. 80, JUL 2017 (2017), s. 1-4 ISSN 1388-2481 R&D Projects: GA ČR GA17-09980S Institutional support: RVO:61388955 Keywords : Water/1,2-dichloroethane interface * Ion transfer * Current amplification Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 4.396, year: 2016

  20. Visualization of the interfacial turbulence associated with remarkable faradaic current amplification at a polarized water/1,2-dichloroethane interface

    Czech Academy of Sciences Publication Activity Database

    Trojánek, Antonín; Mareček, Vladimír; Samec, Zdeněk

    Roč. 80, JUL 2017 (2017), s. 1-4 ISSN 1388-2481 R&D Projects: GA ČR GA17-09980S Institutional support: RVO:61388955 Keywords : Water/1,2-dichloroethane interface * Ion transfer * Current amplification Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 4.396, year: 2016

  1. Impacts of the January 2005 solar particle event on noctilucent clouds and water at the polar summer mesopause

    Directory of Open Access Journals (Sweden)

    H. Winkler

    2012-06-01

    Full Text Available The response of noctilucent clouds to the solar particle event in January 2005 is investigated by means of icy particle and ion chemistry simulations. It is shown that the decreasing occurrence rate of noctilucent clouds derived from measurements of the SCIAMACHY/Envisat instrument can be reproduced by one-dimensional model simulations if temperature data from the MLS/Aura instrument are used. The model calculations indicate that the sublimation of noctilucent clouds leads to significant changes of the water distribution in the mesopause region. These model results are compared with H2O measurements from the MLS and the MIPAS/Envisat satellite instruments. The pronounced modelled water enhancement below the icy particle layer and its decrease during the SPE are not observed by the satellite instruments. At altitudes >85 km the satellite measurements show an increase of H2O during the SPE in qualitative agreement with the model predictions. The discrepancies between model H2O and observations at lower altitudes might be attributed to the one-dimensional model approach which in particular neglects inhomogeneities and horizontal transport processes. Additionally, it is revealed that the water depletion due to reactions of proton hydrates during the considered solar particle event has only a minor impact on the icy particles.

  2. Application of acetone acetals as water scavengers and derivatization agents prior to the gas chromatographic analysis of polar residual solvents in aqueous samples.

    Science.gov (United States)

    van Boxtel, Niels; Wolfs, Kris; Van Schepdael, Ann; Adams, Erwin

    2015-12-18

    The sensitivity of gas chromatography (GC) combined with the full evaporation technique (FET) for the analysis of aqueous samples is limited due to the maximum tolerable sample volume in a headspace vial. Using an acetone acetal as water scavenger prior to FET-GC analysis proved to be a useful and versatile tool for the analysis of high boiling analytes in aqueous samples. 2,2-Dimethoxypropane (DMP) was used in this case resulting in methanol and acetone as reaction products with water. These solvents are relatively volatile and were easily removed by evaporation enabling sample enrichment leading to 10-fold improvement in sensitivity compared to the standard 10μL FET sample volumes for a selection of typical high boiling polar residual solvents in water. This could be improved even further if more sample is used. The method was applied for the determination of residual NMP in an aqueous solution of a cefotaxime analogue and proved to be considerably better than conventional static headspace (sHS) and the standard FET approach. The methodology was also applied to determine trace amounts of ethylene glycol (EG) in aqueous samples like contact lens fluids, where scavenging of the water would avoid laborious extraction prior to derivatization. During this experiment it was revealed that DMP reacts quantitatively with EG to form 2,2-dimethyl-1,3-dioxolane (2,2-DD) under the proposed reaction conditions. The relatively high volatility (bp 93°C) of 2,2-DD makes it possible to perform analysis of EG using the sHS methodology making additional derivatization reactions superfluous. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Political polarization

    OpenAIRE

    Dixit, Avinash K.; Weibull, Jörgen W.

    2007-01-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  4. Political polarization.

    Science.gov (United States)

    Dixit, Avinash K; Weibull, Jörgen W

    2007-05-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  5. Enthalpies of solvation of ethylene oxide oligomers CH3O(CH2CH2O)nCH3 (n = 1 to 4) in different H-bonding solvents: Methanol, chloroform, and water. Group contribution method as applied to the polar oligomers

    International Nuclear Information System (INIS)

    Barannikov, Vladimir P.; Guseynov, Sabir S.; Vyugin, Anatoliy I.

    2011-01-01

    Highlights: → Solvation enthalpy is found for ethylene oxide oligomers in chloroform and methanol. → Coefficients of solute-solute interaction are determined for oligomers in methanol. → Enthalpies of hydrogen bonding of oligomers with chloroform and water are estimated. → Additivity scheme is developed for describing enthalpies of solvation of oligomers. - Abstract: The enthalpies of solution and solvation of ethylene oxide oligomers CH 3 O(CH 2 CH 2 O) n CH 3 (n = 1 to 4) in methanol and chloroform have been determined from calorimetric measurements at T = 298.15 K. The enthalpic coefficients of pairwise solute-solute interaction for methanol solutions have been calculated. The enthalpic characteristics of the oligomers in methanol, chloroform, water and tetrachloromethane have been compared. The hydrogen bonding of the oligomers with chloroform and water molecules is exhibited in the values of solvation enthalpy and coefficient of solute-solute interaction. This effect is not observed for methanol solvent. The thermochemical data evidence an existence of multi-centred hydrogen bonds in associates of polyethers with the solvent molecules. Enthalpies of hydrogen bonding of the oligomers with chloroform and water have been estimated. The additivity scheme has been developed to describe the enthalpies of solvation of ethylene oxide oligomers, unbranched monoethers and n-alkanes in chloroform, methanol, water, and tetrachloromethane. The correction parameters for contribution of repeated polar groups and correction term for methoxy-compounds have been introduced. The obtained group contributions permit to describe the enthalpies of solvation of unbranched monoethers and ethylene oxide oligomers in the solvents with standard deviation up to 0.6 kJ . mol -1 . The values of group contributions and corrections are strongly influenced by solvent properties.

  6. Enthalpies of solvation of ethylene oxide oligomers CH{sub 3}O(CH{sub 2}CH{sub 2}O){sub n}CH{sub 3} (n = 1 to 4) in different H-bonding solvents: Methanol, chloroform, and water. Group contribution method as applied to the polar oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Barannikov, Vladimir P., E-mail: vpb@isc-ras.ru [Institute of Solution Chemistry, Russian Academy of Sciences, Academicheskaya Str. 1, Ivanovo 153045 (Russian Federation); Guseynov, Sabir S.; Vyugin, Anatoliy I. [Institute of Solution Chemistry, Russian Academy of Sciences, Academicheskaya Str. 1, Ivanovo 153045 (Russian Federation)

    2011-12-15

    Highlights: > Solvation enthalpy is found for ethylene oxide oligomers in chloroform and methanol. > Coefficients of solute-solute interaction are determined for oligomers in methanol. > Enthalpies of hydrogen bonding of oligomers with chloroform and water are estimated. > Additivity scheme is developed for describing enthalpies of solvation of oligomers. - Abstract: The enthalpies of solution and solvation of ethylene oxide oligomers CH{sub 3}O(CH{sub 2}CH{sub 2}O){sub n}CH{sub 3} (n = 1 to 4) in methanol and chloroform have been determined from calorimetric measurements at T = 298.15 K. The enthalpic coefficients of pairwise solute-solute interaction for methanol solutions have been calculated. The enthalpic characteristics of the oligomers in methanol, chloroform, water and tetrachloromethane have been compared. The hydrogen bonding of the oligomers with chloroform and water molecules is exhibited in the values of solvation enthalpy and coefficient of solute-solute interaction. This effect is not observed for methanol solvent. The thermochemical data evidence an existence of multi-centred hydrogen bonds in associates of polyethers with the solvent molecules. Enthalpies of hydrogen bonding of the oligomers with chloroform and water have been estimated. The additivity scheme has been developed to describe the enthalpies of solvation of ethylene oxide oligomers, unbranched monoethers and n-alkanes in chloroform, methanol, water, and tetrachloromethane. The correction parameters for contribution of repeated polar groups and correction term for methoxy-compounds have been introduced. The obtained group contributions permit to describe the enthalpies of solvation of unbranched monoethers and ethylene oxide oligomers in the solvents with standard deviation up to 0.6 kJ . mol{sup -1}. The values of group contributions and corrections are strongly influenced by solvent properties.

  7. On the relationship of polar mesospheric cloud ice water content, particle radius and mesospheric temperature and its use in multi-dimensional models

    Directory of Open Access Journals (Sweden)

    E. J. Jensen

    2009-11-01

    Full Text Available The distribution of ice layers in the polar summer mesosphere (called polar mesospheric clouds or PMCs is sensitive to background atmospheric conditions and therefore affected by global-scale dynamics. To investigate this coupling it is necessary to simulate the global distribution of PMCs within a 3-dimensional (3-D model that couples large-scale dynamics with cloud microphysics. However, modeling PMC microphysics within 3-D global chemistry climate models (GCCM is a challenge due to the high computational cost associated with particle following (Lagrangian or sectional microphysical calculations. By characterizing the relationship between the PMC effective radius, ice water content (iwc, and local temperature (T from an ensemble of simulations from the sectional microphysical model, the Community Aerosol and Radiation Model for Atmospheres (CARMA, we determined that these variables can be described by a robust empirical formula. The characterized relationship allows an estimate of an altitude distribution of PMC effective radius in terms of local temperature and iwc. For our purposes we use this formula to predict an effective radius as part of a bulk parameterization of PMC microphysics in a 3-D GCCM to simulate growth, sublimation and sedimentation of ice particles without keeping track of the time history of each ice particle size or particle size bin. This allows cost effective decadal scale PMC simulations in a 3-D GCCM to be performed. This approach produces realistic PMC simulations including estimates of the optical properties of PMCs. We validate the relationship with PMC data from the Solar Occultation for Ice Experiment (SOFIE.

  8. Solid-phase extraction of polar pesticides from environmental water samples on graphitized carbon and Empore-activated carbon disks and on-line coupling to octadecyl-bonded silica analytical columns.

    NARCIS (Netherlands)

    Slobodník, J.; Oztekizan, O.; Lingeman, H.; Brinkman, U.A.T.

    1996-01-01

    The suitability of Empore-activated carbon disks (EACD), Envi-Carb graphitized carbon black (GCB) and CPP-50 graphitized carbon for the trace enrichment of polar pesticides from water samples was studied by means of off-line and on-line solid-phase extraction (SPE). In the off-line procedure, 0.5-2

  9. A salt water battery with high stability and charging rates made from solution processed conjugated polymers with polar side chains

    OpenAIRE

    Moia, Davide; Giovannitti, Alexander; Szumska, Anna A.; Schnurr, Martin; Rezasoltani, Elham; Maria, Iuliana P.; Barnes, Piers R. F.; McCulloch, Iain; Nelson, Jenny

    2017-01-01

    We report a neutral salt water based battery which uses p-type and n-type solution processed polymer films as the cathode and the anode of the cell. The specific capacity of the electrodes (approximately 30 mAh cm-3) is achieved via formation of bipolarons in both the p-type and n-type polymers. By engineering ethylene glycol and zwitterion based side chains attached to the polymer backbone we facilitate rapid ion transport through the non-porous polymer films. This, combined with efficient t...

  10. Exotic helium molecules; Molecules exotiques d'helium

    Energy Technology Data Exchange (ETDEWEB)

    Portier, M

    2007-12-15

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}P{sub 0}) molecule, or a {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 {+-} 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime {tau} = (1.4 {+-} 0.3) {mu}s is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  11. Water vapour sorption and humidity - a survey on measuring methods and standards

    OpenAIRE

    Robens, Erich; Rübner, Katrin; Klobes, Peter; Balköse, Devrim

    2011-01-01

    Under environmental conditions water exists in all three classical states of matter: solid, liquid and gas. The water molecule is non-linear and therefore polar. In comparison with other liq-uids water has anomalous features; about 63 exceptional properties are recorded. This article starts with reviewing properties of water, typical occurrences and definitions such as relative and absolute humidity and moisture content. Water is present everywhere in nature and engineering; it may be hel...

  12. [Lead compound optimization strategy (3)--Structure modification strategies for improving water solubility].

    Science.gov (United States)

    Li, Zeng; Wang, Jiang; Zhou, Yu; Liu, Hong

    2014-09-01

    Water solubility is an essential physical chemistry property of organic small molecule drug and is also a very important issue in drug discovery. Good water solubility often leads to a good drug potency and pleasant pharmacokinetic profiles. To improve water solubility, structure modification is a straight and effective way based on the theory of water solubility. This review summarized valid structure modification strategies for improving water solubility including salt formation, polar group introduction, liposolubility reduction, conformation optimization and prodrug.

  13. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples

    Science.gov (United States)

    Lusher, Amy L.; Tirelli, Valentina; O'Connor, Ian; Officer, Rick

    2015-10-01

    Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment.

  14. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples

    Science.gov (United States)

    Lusher, Amy L.; Tirelli, Valentina; O’Connor, Ian; Officer, Rick

    2015-01-01

    Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment. PMID:26446348

  15. The impact of aerosols on polarized sky radiance: model development, validation, and applications

    Directory o