WorldWideScience

Sample records for polar uvi auroral

  1. Cassini UVIS Auroral Observations in 2016 and 2017

    Science.gov (United States)

    Pryor, Wayne R.; Esposito, Larry W.; Jouchoux, Alain; Radioti, Aikaterini; Grodent, Denis; Gustin, Jacques; Gerard, Jean-Claude; Lamy, Laurent; Badman, Sarah; Dyudina, Ulyana A.; Cassini UVIS Team, Cassini VIMS Team, Cassini ISS Team, HST Saturn Auroral Team

    2017-10-01

    In 2016 and 2017, the Cassini Saturn orbiter executed a final series of high-inclination, low-periapsis orbits ideal for studies of Saturn's polar regions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) obtained an extensive set of auroral images, some at the highest spatial resolution obtained during Cassini's long orbital mission (2004-2017). In some cases, two or three spacecraft slews at right angles to the long slit of the spectrograph were required to cover the entire auroral region to form auroral images. We will present selected images from this set showing narrow arcs of emission, more diffuse auroral emissions, multiple auroral arcs in a single image, discrete spots of emission, small scale vortices, large-scale spiral forms, and parallel linear features that appear to cross in places like twisted wires. Some shorter features are transverse to the main auroral arcs, like barbs on a wire. UVIS observations were in some cases simultaneous with auroral observations from the Cassini Imaging Science Subsystem (ISS) the Cassini Visual and Infrared Mapping Spectrometer (VIMS), and the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) that will also be presented.

  2. Statistical study of Saturn's auroral electron properties with Cassini/UVIS FUV spectral images

    Science.gov (United States)

    Gustin, J.; Grodent, D.; Radioti, A.; Pryor, W.; Lamy, L.; Ajello, J.

    2017-03-01

    About 2000 FUV spectra of different regions of Saturn's aurora, obtained with Cassini/UVIS from December 2007 to October 2014 have been examined. Two methods have been employed to determine the mean energy of the precipitating electrons. The first is based on the absorption of the auroral emission by hydrocarbons and the second uses the ratio between the brightness of the Lyman-α line and the H2 total UV emission (Lyα/H2), which is directly related to via a radiative transfer formalism. In addition, two atmospheric models obtained recently from UVIS polar occultations have been employed for the first time. It is found that the atmospheric model related to North observations near 70° latitude provides the results most consistent with constraints previously published. On a global point of view, the two methods provide comparable results, with mostly in the 7-17 keV range with the hydrocarbon method and in the 1-11 keV range with the Lyα/H2 method. Since hydrocarbons have been detected on ∼20% of the auroral spectra, the Lyα/H2 technique is more effective to describe the primary auroral electrons, as it is applicable to all spectra and allows an access to the lowest range of energies (≤5 keV), unreachable by the hydrocarbon method. The distribution of is found fully compatible with independent HST/ACS constraints (emission peak in the 840-1450 km range) and FUSE findings (emission peaking at pressure level ≤0.2 μbar). In addition, exhibits enhancements in the 3 LT-10 LT sector, consistent with SKR intensity measurements. An energy flux-electron energy diagram built from all the data points strongly suggests that acceleration by field-aligned potentials as described by Knight's theory is a main mechanism responsible for electron precipitation creating the aurora. Assuming a fixed electron temperature of 0.1 keV, a best-fit equatorial electron source population density of 3 × 103 m-3 is derived, which matches very well to the plasma properties observed with

  3. Cassini UVIS Observations of Saturn during the Grand Finale Orbits

    Science.gov (United States)

    Pryor, W. R.; Esposito, L. W.; West, R. A.; Jouchoux, A.; Radioti, A.; Grodent, D. C.; Gerard, J. C. M. C.; Gustin, J.; Lamy, L.; Badman, S. V.

    2017-12-01

    In 2016 and 2017, the Cassini Saturn orbiter executed a final series of high inclination, low-periapsis orbits ideal for studies of Saturn's polar regions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) obtained an extensive set of auroral images, some at the highest spatial resolution obtained during Cassini's long orbital mission (2004-2017). In some cases, two or three spacecraft slews at right angles to the long slit of the spectrograph were required to cover the entire auroral region to form auroral images. We will present selected images from this set showing narrow arcs of emission, more diffuse auroral emissions, multiple auroral arcs in a single image, discrete spots of emission, small scale vortices, large-scale spiral forms, and parallel linear features that appear to cross in places like twisted wires. Some shorter features are transverse to the main auroral arcs, like barbs on a wire. UVIS observations were in some cases simultaneous with auroral observations from the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) that will also be presented. UVIS polar images also contain spectral information suitable for studies of the auroral electron energy distribution. The long wavelength part of the UVIS polar images contains a signal from reflected sunlight containing absorption signatures of acetylene and other Saturn hydrocarbons. The hydrocarbon spatial distribution will also be examined.

  4. Investigating the auroral electrojets with low altitude polar orbiting satellites

    DEFF Research Database (Denmark)

    Moretto, T.; Olsen, Nils; Ritter, P.

    2002-01-01

    Three geomagnetic satellite missions currently provide high precision magnetic field measurements from low altitude polar orbiting spacecraft. We demonstrate how these data can be used to determine the intensity and location of the horizontal currents that flow in the ionosphere, predominantly...... in the auroral electrojets. First, we examine the results during a recent geomagnetic storm. The currents derived from two satellites at different altitudes are in very good agreement, which verifies good stability of the method. Further, a very high degree of correlation (correlation coefficients of 0.......8-0.9) is observed between the amplitudes of the derived currents and the commonly used auroral electro-jet indices based on magnetic measurements at ground. This points to the potential of defining an auroral activity index based on the satellite observations, which could be useful for space weather monitoring...

  5. Statistical characterization of the Sub-Auroral Polarization Stream (SAPS)

    Science.gov (United States)

    Kunduri, B.; Baker, J. B.; Ruohoniemi, J. M.; Erickson, P. J.; Coster, A. J.; Oksavik, K.

    2017-12-01

    The Sub-Auroral Polarization Stream (SAPS) is a narrow region of westward directed plasma convection typically observed in the dusk-midnight sector equatorward of the main auroral oval. SAPS plays an important role in mid-latitude space weather dynamics and has a controlling influence on the evolution of large-scale plasma features, such as Storm Enhanced Density (SED) plumes. In this study, data from North American mid-latitude SuperDARN radars collected between January 2011 and December 2014 have been used to compile a database of SAPS events for statistical analysis. We examine the dependence of SAPS velocity magnitude and direction on geomagnetic activity and magnetic local time. The lowest speed limit and electric fields observed during SAPS are discussed and histograms of SAPS velocities for different Dst bins and MLAT-MLT locations are presented. We find significant differences in SAPS characteristics between periods of low and high geomagnetic activity, suggesting that SAPS are driven by different mechanisms during storm and non-storm conditions. To further explore this possibility, we have characterized the SAPS location and peak speed relative to the ionospheric trough specified by GPS Total Electron Content (TEC) data from the MIT Haystack Madrigal database. A particular emphasis is placed on identifying the extent to which the location, structure, and depth of the trough may play a controlling influence on SAPS speeds during storm and non-storm periods. The results are interpreted in terms of the current paradigm for active thermosphere-ionosphere feedback being an important component of SAPS physics.

  6. Auroral precipitating energy during long magnetic storms

    Science.gov (United States)

    Cardoso, F. R.; Alves, M. V.; Parks, G. K.; Fillingim, M. O.; Simões Junior, F. J. R.; Costa Junior, E.; Koga, D.

    2017-06-01

    The power energy input carried by precipitating electrons into the auroral zone is an important parameter for understanding the solar wind-magnetosphere energy transfer processes and magnetic storms triggering. Some magnetic storms present a peculiar long recovery phase, lasting for many days or even weeks, which can be associated with the intense and long-duration auroral activity named HILDCAA (High Intensity Long Duration Continuous AE Activity). The auroral energy input during HILDCAAs has been pointed out as an essential key issue, although there have been very few quantitative studies on this topic. In the present work, we have estimated the auroral electron precipitating energy during the events of long (LRP) and short (SRP) storm recovery phase. The energy has been calculated from the images produced by the Ultraviolet Imager (UVI) on board the Polar satellite. In order to obtain accurate energy values, we developed a dayglow estimate method to remove solar contamination from the UVI images, before calculating the energy. We compared the UVI estimate to the Hemispheric Power (HP), to the empirical power obtained from the AE index, and to the solar wind input power. Our results showed that the UVI electron precipitating power for the LRP events presented a quasiperiodic fluctuation, which has been confirmed by the other estimates. We found that the LRP events are a consequence of a directly driven system, where there is no long-term energy storage in the magnetosphere, and the auroral electrojets during these events are directly affected by the electron precipitating power.

  7. Investigating the auroral electrojets with low altitude polar orbiting satellites

    DEFF Research Database (Denmark)

    Moretto, T.; Olsen, Nils; Ritter, P.

    2002-01-01

    .8-0.9) is observed between the amplitudes of the derived currents and the commonly used auroral electro-jet indices based on magnetic measurements at ground. This points to the potential of defining an auroral activity index based on the satellite observations, which could be useful for space weather monitoring...

  8. GPS scintillation effects associated with polar cap patches and substorm auroral activity: direct comparison

    Directory of Open Access Journals (Sweden)

    Jin Yaqi

    2014-01-01

    Full Text Available We directly compare the relative GPS scintillation levels associated with regions of enhanced plasma irregularities called auroral arcs, polar cap patches, and auroral blobs that frequently occur in the polar ionosphere. On January 13, 2013 from Ny-Ålesund, several polar cap patches were observed to exit the polar cap into the auroral oval, and were then termed auroral blobs. This gave us an unprecedented opportunity to compare the relative scintillation levels associated with these three phenomena. The blobs were associated with the strongest phase scintillation (σϕ, followed by patches and arcs, with σϕ up to 0.6, 0.5, and 0.1 rad, respectively. Our observations indicate that most patches in the nightside polar cap have produced significant scintillations, but not all of them. Since the blobs are formed after patches merged into auroral regions, in space weather predictions of GPS scintillations, it will be important to enable predictions of patches exiting the polar cap.

  9. Stormtime Simulations of Sub-Auroral Polarization Streams (SAPS)

    Science.gov (United States)

    Huba, J.; Sazykin, S. Y.; Coster, A. J.

    2017-12-01

    We present simulation results from the self-consistently coupled SAMI3/RCM code on the impact of geomagnetic storms on the ionosphere/plasmasphere system with an emphasis on the development of sub-auroral plasma streams (SAPS). We consider the following storm events: March 31, 2001, March 17, 2013, March 17, 2015, September 3, 2012, and June 23, 2015. We compare and contrast the development of SAPS for these storms. The main results are the development of sub-auroral (< 60 degrees) low-density, high-speed flows (1 - 2 km/s). Additionally, we discuss the impact on plasmaspheric dynamics. We compare our model results to data (e.g., Millstone Hill radar, GPS TEC).

  10. Mid-latitude Plasma Irregularities During Sub-Auroral Polarization Streams

    Science.gov (United States)

    Smith, N.; Loper, R. D.

    2017-12-01

    Geomagnetic storming impacts the ionosphere in different ways at different latitudes. In the mid latitudes, Sub-Auroral Polarization Streams (SAPS) may trigger a redistribution of plasma leading to the creation of ionospheric troughs, storm enhanced density plumes, and acceleration of sub-auroral ion drifts. Solar cycle data, real time space weather satellite data, and radar data will be analyzed to study mid-latitude plasma densities and characterize the plasma anomalies SAPS create in order to increase short-term mid-latitude space weather forecasting.

  11. Sub-Auroral Polarization Stream (SAPS) Events Under Non-storm Conditions

    Science.gov (United States)

    Sazykin, S. Y.; Coster, A. J.; Huba, J.; Spiro, R. W.; Baker, J. B.; Kunduri, B.; Ruohoniemi, J. M.; Erickson, P. J.; Wolf, R.

    2017-12-01

    The occurrence of Sub-Auroral Polarization Stream, or SAPS, structures, defined here as latitudinally narrow channels of enhanced westward plasma convection in the evening ionosphere equatorward of the auroral electron precipitation boundary, is most dramatic during geomagnetic storms. However, SAPS-like structures known as Polarization Jets or SAIDs (Sub-Auroral Ion Drift events) are also frequently observed during non-storm conditions, typically during periods of isolated substorm activity or during bursts of enhanced convection associated with southward IMF Bz component. This paper presents results from data analysis and numerical simulations of several SAPS/SAID events observed during non-storm conditions. We use convection velocity measurements from the mid-latitude chain of SuperDARN radars and cross-track drift meter data from DMSP spacecraft to identify SAPS/SAID and to characterize their structure and temporal evolution. DMSP topside ion density data and high-resolution ground-based GPS total electron content (TEC) maps are used to determine the ionospheric and plasmaspheric morphology of SAPS regions. DMSP electron precipitation data are used to determine auroral boundaries. We also present simulation results of the chosen event intervals obtained with the SAMI3-RCM ionosphere-magnetosphere coupled model. Observational results are analyzed to identify systematic differences between non-storm SAPS/SAID and the picture that has emerged based on previous storm time studies. Simulation results are used to provide physical interpretation of these differences.

  12. Case-study of the evolution of polar-cap currents and auroral electrojets during polar geomagnetic disturbances with IMS magnetometer data

    Energy Technology Data Exchange (ETDEWEB)

    Iijima, T.; Kim, J.S. (State Univ. of New York, Albany (USA). Atmospheric Sciences Research Center); Sugiura, M. (National Aeronautics and Space Administration, Greenbelt, MD (USA). Goddard Space Flight Center)

    1984-06-01

    By using 1 min average data from the US-Canada IMS network stations (Alaska, east-west and Fort Churchill chains) and also standard magnetograms from stations in the polar-cap region and in the auroral zone, we have examined the development of polar-cap currents and the relationship of their development to the evolution of auroral electrojets during individual polar geomagnetic disturbances. Characteristics that have been determined are reported and discussed.

  13. General method for calculating polarization electric fields produced by auroral Cowling mechanism and application examples

    Science.gov (United States)

    Vanhamäki, Heikki; Amm, Olaf; Fujii, Ryo; Yoshikawa, Aki; Ieda, Aki

    2013-04-01

    The Cowling mechanism is characterized by the generation of polarization space charges in the ionosphere in consequence of a partial or total blockage of FAC flowing between the ionosphere and the magnetosphere. Thus a secondary polarization electric field builds up in the ionosphere, which guarantees that the whole (primary + secondary) ionospheric current system is again in balance with the FAC. In the Earth's ionosphere the Cowling mechanism is long known to operate in the equatorial electrojet, and several studies indicate that it is important also in auroral current systems. We present a general method for calculate the secondary polarization electric field, when the ionospheric conductances, the primary (modeled) or the total (measured) electric field, and the Cowling efficiency are given. Here the Cowling efficiency is defined as the fraction of the divergent Hall current canceled by secondary Pedersen current. In contrast to previous studies, our approach is a general solution which is not limited to specific geometrical setups (like an auroral arc), and all parameters may have any kind of spatial dependence. The solution technique is based on spherical elementary current (vector) systems (SECS). This way, we avoid the need to specify explicit boundary conditions for the searched polarization electric field or its potential, which would be required if the problem was solved in a differential equation approach. Instead, we solve an algebraic matrix equation, for which the implicit boundary condition that the divergence of the polarization electric field vanishes outside our analysis area is sufficient. In order to illustrate the effect of Cowling mechanism on ionospheric current systems, we apply our method to two simple models of auroral electrodynamic situations: 1) a mesoscale strong conductance enhancement in the early morning sector within a relatively weak southward primary electric field, 2) a morning sector auroral arc with only a weak conductance

  14. General solution for calculating polarization electric fields in the auroral ionosphere and application examples

    Science.gov (United States)

    Amm, O.; Fujii, R.; VanhamäKi, H.; Yoshikawa, A.; Ieda, A.

    2013-05-01

    We devise an approach to calculate the polarization electric field in the ionosphere, when the ionospheric conductances, the primary (modeled) or the total (measured) electric field, and the Cowling efficiency are given. In contrast to previous studies, our approach is a general solution which is not limited to specific geometrical setups, and all parameters may have any kind of spatial dependence. The solution technique is based on spherical elementary current (vector) systems (SECS). This way, we avoid the need to specify explicit boundary conditions for the searched polarization electric field of its potential which would be required if the problem was solved in a differential equation approach. Instead, we solve an algebraic matrix equation, and the implicit boundary condition that the divergence of the polarization electric field vanishes outside our analysis area is sufficient. In order to illustrate our theory, we then apply it to two simple models of auroral electrodynamic situations, the first being a mesoscale strong conductance enhancement in the early morning sector within a relatively weak southward primary electric field, and a morning sector auroral arc with only a weak conductance enhancement, but a large southward primary electric field at the poleward flank of the arc. While the significance of the polarization electric field for maximum Cowling efficiency is large for the first case, it is rather minor for the second one. Both models show that the polarization electric field effect may not only change the magnitude of the current systems but also their overall geometry. Furthermore, the polarization electric field may extend into regions where the primary electric field is small, thus even dominating the total electric field in these regions. For the first model case, the total Joule heating integrated over the analysis area decreases by a factor of about 4 for maximum Cowling efficiency as compared to the case of vanishing Cowling efficiency

  15. Auroral and magnetic variations in the polar cusp and cleft. Signatures of magnetopause boundary layer dynamics

    International Nuclear Information System (INIS)

    Sandholt, P.E.; Egeland, A.

    1987-10-01

    By combining continous ground-based observations of polar cleft/cusp auroras and local magnetic variations with electromagnetic parameters obtained from satellites in polar orbit (low-altitude cleft/cusp) and in the magnetosheath/interplanetary space, different electrodynamic processes in the polar cleft/cusp have been investigated. One of the more controversial questions in this field is related to the observed shifts in latitude of cleft/cusp auroras and the relationships with the interplanetary magnetic field (IMF) orientation, local magnetic disturbances (DP2 and DPY modes) and magnetospheric substorms. A new approach which may contribute to clarifying these complicated relationships, simultaneous groundbased observations of the midday and evening-midnight sectors of the auroral oval, is illustrated. A related topic is the spatial relationship between the cleft/cusp auroras and the ionospheric convection currents. A characteristic feature of the polar cusp and cleft regions during negative IMF B z is repeated occurrence of certain short-lived auroral structures moving in accordance with the local convection pattern. Satellite measurements of particle precipitation, magnetic field and ion drift components permit detailed investigations of the electrodynamics of these cusp/cleft structures. Information on electric field components, Birkeland currents, Poynting flux, height-integrated Pedersen conductivity and Joule heat dissipation rate has been derived. These observations are discussed in relation to existing models of temporal plasma injections from the magnetosheath

  16. Representation of the Auroral and Polar Ionosphere in the International Reference Ionosphere (IRI)

    Science.gov (United States)

    Bilitza, Dieter; Reinisch, Bodo

    2013-01-01

    This issue of Advances in Space Research presents a selection of papers that document the progress in developing and improving the International Reference Ionosphere (IRI), a widely used standard for the parameters that describe the Earths ionosphere. The core set of papers was presented during the 2010 General Assembly of the Committee on Space Research in Bremen, Germany in a session that focused on the representation of the auroral and polar ionosphere in the IRI model. In addition, papers were solicited and submitted from the scientific community in a general call for appropriate papers.

  17. The thermospheric auroral red line polarization: confirmation of detection and first quantitative analysis

    Directory of Open Access Journals (Sweden)

    Moen Joran

    2013-01-01

    Full Text Available The thermospheric atomic oxygen red line is among the brightest in the auroral spectrum. Previous observations in Longyearbyen, Svalbard, indicated that it may be intrinsically polarized, but a possible contamination by light pollution could not be ruled out. During the winter 2010/2011, the polarization of the red line was measured for the first time at the Polish Hornsund polar base without contamination. Two methods of data analysis are presented to compute the degree of linear polarization (DoLP and angle of linear polarization (AoLP: one is based on averaging and the other one on filtering. Results are compared and are in qualitative agreement. For solar zenith angles (SZA larger than 108° (with no contribution from Rayleigh scattering, the DoLP ranges between 2 and 7%. The AoLP is more or less aligned with the direction of the magnetic field line, in agreement with the theoretical predictions of Bommier et al. (2010. However, the AoLP values range between ±20° around this direction, depending on the auroral conditions. Correlations between the polarization parameters and the red line intensity I were considered. The DoLP decreases when I increases, confirming a trend observed during the observations in Longyearbyen. However, for small values of I, DoLP varies within a large range of values, while for large values of I, DoLP is always small. The AoLP also varies with the red line intensity, slightly rotating around the magnetic field line.

  18. 24/7 Solar Minimum Polar Cap and Auroral Ion Temperature Observations

    Science.gov (United States)

    Sojka, Jan J.; Nicolls, Michael; van Eyken, Anthony; Heinselman, Craig; Bilitza, Dieter

    2011-01-01

    During the International Polar Year (IPY) two Incoherent Scatter Radars (ISRs) achieved close to 24/7 continuous observations. This presentation describes their data sets and specifically how they can provide the International Reference Ionosphere (IRI) a fiduciary E- and F-region ionosphere description for solar minimum conditions in both the auroral and polar cap regions. The ionospheric description being electron density, ion temperature and electron temperature profiles from as low as 90 km extending to several scale heights above the F-layer peak. The auroral location is Poker Flat in Alaska at 65.1 N latitude, 212.5 E longitude where the NSF s new Poker Flat Incoherent Scatter Radar (PFISR) is located. This location during solar minimum conditions is in the auroral region for most of the day but is at midlatitudes, equator ward of the cusp, for about 4-8 h per day dependent upon geomagnetic activity. In contrast the polar location is Svalbard, at 78.2 N latitude, 16.0 E longitude where the EISCAT Svalbard Radar (ESR) is located. For most of the day the ESR is in the Northern Polar Cap with a noon sector passage often through the dayside cusp. Of unique relevance to IRI is that these extended observations have enabled the ionospheric morphology to be distinguished between quiet and disturbed geomagnetic conditions. During the IPY year, 1 March 2007 - 29 February 2008, about 50 solar wind Corotating Interaction Regions (CIRs) impacted geospace. Each CIR has a two to five day geomagnetic disturbance that is observed in the ESR and PFISR observations. Hence, this data set also enables the quiet-background ionospheric climatology to be established as a function of season and local time. These two separate climatologies for the ion temperature at an altitude of 300 km are presented and compared with IRI ion temperatures. The IRI ion temperatures are about 200-300 K hotter than the observed values. However, the MSIS neutral temperature at 300 km compares favorably

  19. Large-Scale Structure and Dynamics of the Sub-Auroral Polarization Stream (SAPS)

    Science.gov (United States)

    Baker, J. B. H.; Nishitani, N.; Kunduri, B.; Ruohoniemi, J. M.; Sazykin, S. Y.

    2017-12-01

    The Sub-Auroral Polarization Stream (SAPS) is a narrow channel of high-speed westward ionospheric convection which appears equatorward of the duskside auroral oval during geomagnetically active periods. SAPS is generally thought to occur when the partial ring current intensifies and enhanced region-2 field-aligned currents (FACs) are forced to close across the low conductance region of the mid-latitude ionospheric trough. However, recent studies have suggested SAPS can also occur during non-storm periods, perhaps associated with substorm activity. In this study, we used measurements from mid-latitude SuperDARN radars to examine the large-scale structure and dynamics of SAPS during several geomagnetically active days. Linear correlation analysis applied across all events suggests intensifications of the partial ring current (ASYM-H index) and auroral activity (AL index) are both important driving influences for controlling the SAPS speed. Specifically, SAPS flows increase, on average, by 20-40 m/s per 10 nT of ASYM-H and 10-30 m/s per 100 nT of AL. These dependencies tend to be stronger during the storm recovery phase. There is also a strong local time dependence such that the strength of SAPS flows decrease by 70-80 m/s for each hour of local time moving from dusk to midnight. By contrast, the evidence for direct solar wind control of SAPS speed is much less consistent, with some storms showing strong correlations with the interplanetary electric field components and/or solar wind dynamic pressure, while others do not. These results are discussed in the context of recent simulation results from the Rice Convection Model (RCM).

  20. Local Geomagnetic Indices and the Prediction of Auroral Power

    Science.gov (United States)

    Newell, P. T.; Gjerloev, J. W.

    2014-12-01

    As the number of magnetometer stations and data processing power increases, just how auroral power relates to geomagnetic observations becomes a quantitatively more tractable question. This paper compares Polar UVI auroral power observations during 1997 with a variety of geomagnetic indices. Local time (LT) versions of the SuperMAG auroral electojet (SME) are introduced and examined, along with the corresponding upper and lower envelopes (SMU and SML). Also, the East-West component, BE, is investigated. We also consider whether using any of the local indices is actually better at predicting local auroral power than a single global index. Each index is separated into 24 LT indices based on a sliding 3-h MLT window. The ability to predict - or better reconstruct - auroral power varies greatly with LT, peaking at 1900 MLT, where about 75% of the variance (r2) can be predicted at 1-min cadence. The aurora is fairly predictable from 1700 MLT - 0400 MLT, roughly the region in which substorms occur. Auroral power is poorly predicted from auroral electrojet indices from 0500 MLT - 1500 MLT, with the minima at 1000-1300 MLT. In the region of high predictability, the local variable which works best is BE, in contrast to long-standing expectations. However using global SME is better than any local variable. Auroral power is best predicted by combining global SME with a local index: BE from 1500-0200 MLT, and either SMU or SML from 0300-1400 MLT. In the region of the diffuse aurora, it is better to use a 30 min average than the cotemporaneous 1-min SME value, while from 1500-0200 MLT the cotemporaneous 1-min SME works best, suggesting a more direct physical relationship with the auroral circuit. These results suggest a significant role for discrete auroral currents closing locally with Pedersen currents.

  1. Saturn's polar ionospheric flows and their relation to the main auroral oval

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2004-04-01

    Full Text Available We consider the flows and currents in Saturn's polar ionosphere which are implied by a three-component picture of large-scale magnetospheric flow driven both by planetary rotation and the solar wind interaction. With increasing radial distance in the equatorial plane, these components consist of a region dominated by planetary rotation where planetary plasma sub-corotates on closed field lines, a surrounding region where planetary plasma is lost down the dusk tail by the stretching out of closed field lines followed by plasmoid formation and pinch-off, as first described for Jupiter by Vasyliunas, and an outer region driven by the interaction with the solar wind, specifically by reconnection at the dayside magnetopause and in the dawn tail, first discussed for Earth by Dungey. The sub-corotating flow on closed field lines in the dayside magnetosphere is constrained by Voyager plasma observations, showing that the plasma angular velocity falls to around half of rigid corotation in the outer magnetosphere, possibly increasing somewhat near the dayside magnetopause, while here we provide theoretical arguments which indicate that the flow should drop to considerably smaller values on open field lines in the polar cap. The implied ionospheric current system requires a four-ring pattern of field-aligned currents, with distributed downward currents on open field lines in the polar cap, a narrow ring of upward current near the boundary of open and closed field lines, and regions of distributed downward and upward current on closed field lines at lower latitudes associated with the transfer of angular momentum from the planetary atmosphere to the sub-corotating planetary magnetospheric plasma. Recent work has shown that the upward current associated with sub-corotation is not sufficiently intense to produce significant auroral acceleration and emission. Here we suggest that the observed auroral oval at Saturn instead corresponds to the ring of upward

  2. Saturn's polar ionospheric flows and their relation to the main auroral oval

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2004-04-01

    Full Text Available We consider the flows and currents in Saturn's polar ionosphere which are implied by a three-component picture of large-scale magnetospheric flow driven both by planetary rotation and the solar wind interaction. With increasing radial distance in the equatorial plane, these components consist of a region dominated by planetary rotation where planetary plasma sub-corotates on closed field lines, a surrounding region where planetary plasma is lost down the dusk tail by the stretching out of closed field lines followed by plasmoid formation and pinch-off, as first described for Jupiter by Vasyliunas, and an outer region driven by the interaction with the solar wind, specifically by reconnection at the dayside magnetopause and in the dawn tail, first discussed for Earth by Dungey. The sub-corotating flow on closed field lines in the dayside magnetosphere is constrained by Voyager plasma observations, showing that the plasma angular velocity falls to around half of rigid corotation in the outer magnetosphere, possibly increasing somewhat near the dayside magnetopause, while here we provide theoretical arguments which indicate that the flow should drop to considerably smaller values on open field lines in the polar cap. The implied ionospheric current system requires a four-ring pattern of field-aligned currents, with distributed downward currents on open field lines in the polar cap, a narrow ring of upward current near the boundary of open and closed field lines, and regions of distributed downward and upward current on closed field lines at lower latitudes associated with the transfer of angular momentum from the planetary atmosphere to the sub-corotating planetary magnetospheric plasma. Recent work has shown that the upward current associated with sub-corotation is not sufficiently intense to produce significant auroral acceleration and emission. Here we suggest that the observed auroral oval at Saturn instead corresponds to the ring of

  3. Auroral Morphologies of Jupiter and Saturn

    OpenAIRE

    Grodent, Denis

    2015-01-01

    We review the principal differences and similarities of the morphologies of Jupiter and Saturn's auroral emissions. We then show some examples of UV images that are expected to be acquired with Cassini UVIS at Saturn and Juno UVS at Jupiter.

  4. Forecast of auroral activity

    International Nuclear Information System (INIS)

    Lui, A.T.Y.

    2004-01-01

    A new technique is developed to predict auroral activity based on a sample of over 9000 auroral sites identified in global auroral images obtained by an ultraviolet imager on the NASA Polar satellite during a 6-month period. Four attributes of auroral activity sites are utilized in forecasting, namely, the area, the power, and the rates of change in area and power. This new technique is quite accurate, as indicated by the high true skill scores for forecasting three different levels of auroral dissipation during the activity lifetime. The corresponding advanced warning time ranges from 22 to 79 min from low to high dissipation levels

  5. High Frequency Backscatter from the Polar and Auroral E-Region Ionosphere

    Science.gov (United States)

    Forsythe, Victoriya V.

    The Earth's ionosphere contains collisional and partially-ionized plasma. The electric field, produced by the interaction between the Earth's magnetosphere and the solar wind, drives the plasma bulk motion, also known as convection, in the F-region of the ionosphere. It can also destabilize the plasma in the E-region, producing irregularities or waves. Intermediate-scale waves with wavelengths of hundreds of meters can cause scintillation and fading of the Global Navigation Satellite System (GNSS) signals, whereas the small-scale waves (lambda processes that generate small-scale plasma waves, and experimentally, by analyzing data collected with the newly-deployed high-southern-latitude radars within the Super Dual Auroral Radar Network (SuperDARN). The theoretical part of this work focuses on symmetry properties of the general dispersion relation that describes wave propagation in the collisional plasma in the two-stream and gradient-drift instability regimes. The instability growth rate and phase velocity are examined under the presence of a background parallel electric field, whose influence is demonstrated to break the spatial symmetry of the wave propagation patterns. In the observational part of this thesis, a novel dual radar setup is used to examine E-region irregularities in the magnetic polar cap by probing the E-region along the same line from opposite directions. The phase velocity analysis together with raytracing simulations demonstrated that, in the polar cap, the radar backscatter is primarily controlled by the plasma density conditions. In particular, when the E-region layer is strong and stratified, the radar backscatter properties are controlled by the convection velocity, whereas for a tilted E-layer, the height and aspect angle conditions are more important. Finally, the fundamental dependence of the E-region irregularity phase velocity on the component of the plasma convection is investigated using two new SuperDARN radars at high southern

  6. Astrid-2 and ground-based observations of the auroral bulge in the middle of the nightside convection throat

    Directory of Open Access Journals (Sweden)

    G. T. Marklund

    2001-06-01

    Full Text Available Results concerning the electrodynamics of the nightside auroral bulge are presented based on simultaneous satellite and ground-based observations. The satellite data include Astrid-2 measurements of electric fields, currents and particles from a midnight auroral oval crossing and Polar UVI images of the large-scale auroral distribution. The ground-based observations include STARE and SuperDARN electric fields and magnetic records from the Greenland and MIRACLE magnetometer network, the latter including stations from northern Scandinavia north to Svalbard. At the time of the Astrid-2 crossing the ground-based data reveal intense electrojet activity, both to the east and west of the Astrid-2 trajectory, related to the Polar observations of the auroral bulge but not necessarily to a typical substorm. The energetic electron fluxes measured by Astrid-2 across the auroral oval were generally weak being consistent with a gap observed in the auroral luminosity distribution. The electric field across the oval was directed westward, intensifying close to the poleward boundary followed by a decrease in the polar cap. The combined observations suggests that Astrid-2 was moving close to the separatrix between the dusk and dawn convection cells in a region of low conductivity. The constant westward direction of the electric field across the oval indicates that current continuity was maintained, not by polarisation electric fields (as in a Cowling channel, but solely by localized up- and downward field-aligned currents in good agreement with the Astrid-2 magnetometer data. The absence of a polarisation electric field and thus of an intense westward closure current between the dawn and dusk convection cells is consistent with the relatively weak precipitation and low conductivity in the convection throat. Thus, the Cowling current model is not adequate for describing the electrodynamics of the nightside auroral bulge treated here.Key words. Ionosphere (auroral

  7. Identifications of the polar cap boundary and the auroral belt in the high-altitude magnetosphere: a model for field-aligned currents

    International Nuclear Information System (INIS)

    Sugiura, M.

    1975-01-01

    By means of the Ogo 5 Goddard Space Flight Center fluxgate magnetometer data the polar cap boundary is identified in the high-altitude magnetosphere by a sudden transition from a dipolar field to a more taillike configuration. It is inferred that there exists a field-aligned-current layer at the polar cap boundary. In the night side magnetosphere the polar cap boundary is identified as the high-latitude boundary of the plasma sheet. The field-aligned current flows downward to the ionosphere on the morning side of the magnetosphere and upward from the ionosphere on the afternoon side. The basic pattern of the magnetic field variations observed during the satellite's traversal of the auroral belt is presented. Currents flow in opposite directions in the two field-aligned-current layers. The current directions in these layers as observed by Ogo 5 in the high-altitude magnetosphere are the same as those observed at low altitudes by the polar-orbiting Triad satellite (Armstrong and Zmuda, 1973). The magnetic field in the region where the lower-latitude field-aligned-current layer is situated is essentially meridional. A model is presented in which two field-aligned-current systems, one at the polar cap boundary and the other on the low-latitude part of the auroral belt, are main []y connected by ionospheric currents flowing across the auroral belt. The existence of field-aligned currents deduced from the Ogo 5 observations is a permanent feature of the magnetosphere. Intensifications of the field-aligned currents and occurrences of multiple pairs of field-aligned-current layers characterize the disturbed conditions of these regions

  8. Global Pattern of The Evolutions of the Sub-Auroral Polarization Streams

    Science.gov (United States)

    He, F.; Zhang, X.; Wang, W.; Wan, W.

    2017-12-01

    Due to the spatial and temporal limitations of the in-situ measurements from the low altitude polar orbiting satellites or the ionospheric scan by incoherent scatter radars, the global configuration and evolution of SAPS are still not very clear. Here, we present multi-satellite observations of the evolution of subauroral polarization streams (SAPS) during the main phase of a server geomagnetic storm occurred on 31 March 2001. DMSP F12 to F15 observations indicate that the SAPS were first generated in the dusk sector at the beginning of the main phase. Then the SAPS channel expanded towards the midnight and moved to lower latitudes as the main phase went on. The peak velocity, latitudinal width, latitudinal alignment, and longitudinal span of the SAPS channels were highly dynamic during the storm main phase. The global evolution of the SAPS corresponds well with that of the region-2 field-aligned currents, which are mainly determined by the azimuthal pressure gradient of the ring current. Further studies on 37 storms and 30 isolated substorms indicate that the lifetime of the SAPS channel was proportional to the period of time for southward interplanetary magnetic field (IMF). The SAPS channel disappeared after northward turning of the IMF. During the recovery phase, if the IMF kept northward, no SAPS channel was generated, if the IMF turned to southward again, however, SAPS channel will be generated again with lifetime proportional to the duration of the southward IMF. During isolated substorms, the SAPS channel was also controlled by IMF. The SAPS channel was generated after substorm onset and the peak drift velocity of the SAPS channel achieved its maximum during the recovery phase of the substorm. It is suggested that, SAPS channel were mainly controlled by IMF, more works should be done with observations or simulations of investigate the global patterns of the SAPS and the magnetosphere-ionosphere couplings.

  9. VISIONS: Remote Observations of a Spatially-Structured Filamentary Source of Energetic Neutral Atoms near the Polar Cap Boundary During an Auroral Substorm

    Science.gov (United States)

    Collier, Michael R.; Chornay, D.; Clemmons, J.; Keller, J. W.; Klenzing, J.; Kujawski, J.; McLain, J.; Pfaff, R.; Rowland, D.; Zettergren, M.

    2015-01-01

    We report initial results from the VISualizing Ion Outflow via Neutral atom imaging during a Substorm (VISIONS) rocket that flew through and near several regions of enhanced auroral activity and also sensed regions of ion outflow both remotely and directly. The observed neutral atom fluxes were largest at the lower energies and generally higher in the auroral zone than in the polar cap. In this paper, we focus on data from the latter half of the VISIONS trajectory when the rocket traversed the polar cap region. During this period, many of the energetic neutral atom spectra show a peak at 100 electronvolts. Spectra with peaks around 100 electronvolts are also observed in the Electrostatic Ion Analyzer (EIA) data consistent with these ions comprising the source population for the energetic neutral atoms. The EIA observations of this low energy population extend only over a few tens of kilometers. Furthermore, the directionality of the arriving energetic neutral atoms is consistent with either this spatially localized source of energetic ions extending from as low as about 300 kilometers up to above 600 kilometers or a larger source of energetic ions to the southwest.

  10. The Effect of Sub-Auroral Polarization Streams (SAPS) on Ionosphere and Thermosphere during 2015 St. Patrick's Day storm: Global Ionosphere-Thermosphere Model (GITM) Simulations

    Science.gov (United States)

    Guo, J.; Deng, Y.; Zhang, D.; Lu, Y.; Sheng, C.

    2017-12-01

    Sub-Auroral Polarization Streams (SAPS) are incorporated into the non-hydrostatic Global Ionosphere-Thermosphere Model (GITM), revealing the complex effects on neutral dynamics and ion-neutral coupling processes. The intense westward ion stream could enhance the neutral zonal wind within the SAPS channel. Through neutral dynamics the neutrals then divide into two streams, one turns poleward and the other turns equatorward, forming a two-cell pattern in the SAPS-changed wind. The significant Joule heating induced by SAPS also leads to traveling atmospheric disturbances (TAD) accompanied by traveling ionospheric disturbances (TID), increasing the total electron content (TEC) by 2-8 TECu in the mid-latitude ionosphere. We investigate the potential causes of the reported poleward wind surge during the St. Patrick's Day storm in 2015. It is confirmed that Coriolis force on the westward zonal wind can contribute the poleward wind during post-SAPS interval. In addition, the simulations imply that the sudden decrease of heating rate within auroral oval could result in a TAD propagating equatorward, which could also be responsible for the sudden poleward wind surge. This study highlights the complicated effects of SAPS on ion-neutral coupling and neutral dynamics.

  11. Auroral particles

    Science.gov (United States)

    Evans, David S.

    1987-01-01

    The problems concerning the aurora posed prior to the war are now either solved in principle or were restated in a more fundamental form. The pre-war hypothesis concerning the nature of the auroral particles and their energies was fully confirmed, with the exception that helium and oxygen ions were identified as participating in the auroral particle precipitation in addition to the protons. The nature of the near-Earth energization processes affecting auroral particles was clarified. Charged particle trajectories in various electric field geometries were modeled. The physical problems have now moved from determining the nature and geometry of the electric fields, which accelerate charged particles near the Earth, to accounting for the existence of these electric fields as a natural consequence of the solar wind's interaction with Earth. Ultimately the reward in continuing the work in auroral and magnetospheric particle dynamics will be a deeper understanding of the subtleties of classical electricity and magnetism as applied to situations not blessed with well-defined and invariant geometries.

  12. The relationship between auroral hiss at high altitudes over the polar caps and the substorm dynamics of aurora

    Czech Academy of Sciences Publication Activity Database

    Titova, E. E.; Yahnin, A. G.; Santolík, Ondřej; Gurnett, D. A.; Jiříček, František; Rauch, J. L.; Lefeuvre, F.; Frank, L. A.; Sigwarth, J. B.; Mogilevsky, M. M.

    2005-01-01

    Roč. 23, - (2005), s. 2117-2128 ISSN 0992-7689 R&D Projects: GA AV ČR IAA3042201; GA ČR GA205/03/0953; GA MŠk ME 650; GA ČR GA202/03/0832; GA MŠk 1P05ME811 Grant - others:ESA PECS(XE) 98025; INTAS(RU) 03-51-4132; NATO(XE) PST.GLG980041; NASA (US) NAG5-7943 Institutional research plan: CEZ:AV0Z30420517 Keywords : Magnetospheric physics (Auroral phenomena, Plasma waves and instabilities, Storms and substorms) Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.450, year: 2005

  13. Viking investigations of auroral electrodynamical processes

    International Nuclear Information System (INIS)

    Marklund, G.

    1993-01-01

    Recent results from the Viking electric field experiment and their contribution to a better understanding of the aurora and of associated ionosphere-magnetosphere processes are briefly reviewed. The high-resolution electric field data have provided new and important results in a number of different areas, including auroral electrodynamics both on the arc scale size and on the global scale, the auroral acceleration process, the current-voltage relationship, substorms, and the dynamics of the polar cusp. After a short introduction presenting some of the characteristic features of the high-altitude electric field data the remainder of this paper focuses on the role of the electric field in auroral electrodynamics and in the auroral acceleration process. The relationships between the auroral emissions and the associated electric field, current, particle, and conductivity distributions are discussed for both small-scale and large-scale auroral distributions on the basis of results from Viking event studies and from numerical model studies. Particular attention is paid to ionospheric convection and field- aligned current signatures associated with northward interplanetary magnetic field (IMF) auroral distributions, such as the theta aurora or those characterized by extended auroral activity poleward of the classical auroral oval. The role of dc electric fields for the auroral acceleration process has been further investigated and clarified. Intense low-frequency electric field fluctuations (< l Hz) have been shown to play an important role in the auroral acceleration process. In this frequency range the electric field appears static for the electrons but not for the ions, giving rise to a selective acceleration. Estimates of the acceleration potential based on a number of different methods generally show good agreement, providing convincing evidence of the role of dc electric fields in the auroral acceleration process

  14. Statistics of Joule heating in the auroral zone and polar cap using Astrid-2 satellite Poynting flux

    Directory of Open Access Journals (Sweden)

    A. Olsson

    2004-12-01

    Full Text Available We make a statistical study of ionospheric Joule heating with the Poynting flux method using six months of Astrid-2/EMMA electric and magnetic field data during 1999 (solar maximum year. For the background magnetic field we use the IGRF model. Our results are in agreement with earlier statistical satellite studies using both the ΣPE2 method and the Poynting flux method. We present a rather comprehensive set of fitted Joule heating formulas expressing the Joule heating in given magnetic local time (MLT and invariant latitude (ILAT range under given solar illumination conditions as a function of the Kp index, the AE index, the Akasofu epsilon parameter and the solar wind kinetic energy flux. The study thus provides improved and more detailed estimates of the statistical Joule heating. Such estimates are necessary building blocks for future quantitative studies of the power budget in the magnetosphere and in the nightside auroral region. Key words. Ionosphere (electric fields and currents; ionosphere-magnetosphere interactions – Magnetospheric physics (magnetospheric configuration and dynamics

  15. 29__154 -158_ _Galadanci_ANALYSIS OF AURORAL

    African Journals Online (AJOL)

    User

    in the behavior of the system than seasonal. Keywords: Magnetic indices, World Data Center, Auroral, Level, Trend, Season, Expert modeler. INTRODUCTION. The AuroralElectrojet is an enhanced electric current in the polar ionosphere associated with charged particle precipitation and field aligned currents during.

  16. UVIS Flat Field Uniformity

    Science.gov (United States)

    Quijano, Jessica Kim

    2009-07-01

    The stability and uniformity of the low-frequency flat fields {L-flat} of the UVIS detector will be assessed by using multiple-pointing observations of the globular clusters 47 Tucanae {NGC104} and Omega Centauri {NGC5139}, thus imaging moderately dense stellar fields. By placing the same star over different portions of the detector and measuring relative changes in its brightness, it will be possible to determine local variations in the response of the UVIS detector. Based on previous experience with STIS and ACS, it is deemed that a total of 9 different pointings will suffice to provide adequate characterization of the flat field stability in any given band. For each filter to be tested, the baseline consists of 9 pointings in a 3X3 box pattern with dither steps of about 25% of the FOV, or 40.5", in either the x or y direction {useful also for CTE measurements, if needed in the future}. During SMOV, the complement of filters to be tested is limited to the following 6 filters: F225W, F275W, F336W, for Omega Cen, and F438W, F606W, and F814W for 47 Tuc. Three long exposures for each target are arranged such that the initial dither position is observed with the appropriate filters for that target within one orbit at a single pointing, so that filter-to-filter differences in the observed star positions can be checked. In addition to the 9 baseline exposures, two sets of short exposures will be taken:a} one short exposure will be taken of OmegaCen with each of the visible filters {F438W, F606W and F814W} in order to check the geometric distortion solution to be obtained with the data from proposal 11444;b} for each target, a single short exposure will be taken with each filter to facilitate the study of the PSF as a function of position on the detector by providing unsaturated images of sparsely-spaced bright stars.This proposal corresponds to Activity Description ID WF39. It should execute only after the following proposal has executed:WF21 - 11434

  17. Modulation of Jupiter's plasma flow, polar currents, and auroral precipitation by solar wind-induced compressions and expansions of the magnetosphere: a simple theoretical model

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2007-06-01

    Full Text Available We construct a simple model of the plasma flow, magnetosphere-ionosphere coupling currents, and auroral precipitation in Jupiter's magnetosphere, and examine how they respond to compressions and expansions of the system induced by changes in solar wind dynamic pressure. The main simplifying assumption is axi-symmetry, the system being modelled principally to reflect dayside conditions. The model thus describes three magnetospheric regions, namely the middle and outer magnetosphere on closed magnetic field lines bounded by the magnetopause, together with a region of open field lines mapping to the tail. The calculations assume that the system is initially in a state of steady diffusive outflow of iogenic plasma with a particular equatorial magnetopause radius, and that the magnetopause then moves rapidly in or out due to a change in the solar wind dynamic pressure. If the change is sufficiently rapid (~2–3 h or less the plasma angular momentum is conserved during the excursion, allowing the modified plasma angular velocity to be calculated from the radial displacement of the field lines, together with the modified magnetosphere-ionosphere coupling currents and auroral precipitation. The properties of these transient states are compared with those of the steady states to which they revert over intervals of ~1–2 days. Results are shown for rapid compressions of the system from an initially expanded state typical of a solar wind rarefaction region, illustrating the reduction in total precipitating electron power that occurs for modest compressions, followed by partial recovery in the emergent steady state. For major compressions, however, typical of the onset of a solar wind compression region, a brightened transient state occurs in which super-rotation is induced on closed field lines, resulting in a reversal in sense of the usual magnetosphere-ionosphere coupling current system. Current system reversal results in accelerated auroral electron

  18. Data-derived optimization of sensitivity requirements for upcoming auroral imaging missions

    Science.gov (United States)

    Donovan, Eric; Uritsky, Vadim M.; Unick, Craig; Troyan, Vladimir

    2017-09-01

    Using an extensive database of ultraviolet images of the nighttime sector of the northern auroral oval obtained from the POLAR spacecraft and data analysis tools adopted from statistical mechanics of turbulent flows, we identify scaling relations describing substorm time variability of the auroral intensity as a function of spatial scale and auroral intensity level. By extrapolating these relations to scales smaller than those resolved by previously flown auroral missions, we derive contrast and sensitivity constraints for a next-generation global auroral imager. The outcomes of this analysis, combined with the results reported by Uritsky et al. (2010), make it possible to optimize sensitivity and resolution requirements for future auroral imaging missions intended to observe auroral structure and dynamics across wide ranges of spatial and temporal scales.

  19. Investigating the auroral electrojets using Swarm

    Science.gov (United States)

    Smith, Ashley; Macmillan, Susan; Beggan, Ciaran; Whaler, Kathy

    2016-04-01

    The auroral electrojets are large horizontal currents that flow within the ionosphere in ovals around the polar regions. They are an important aspect of space weather and their position and intensity vary with solar wind conditions and geomagnetic activity. The electrojet positions are also governed by the Earth's main magnetic field. During more active periods, the auroral electrojets typically move equatorward and become more intense. This causes a range of effects on Earth and in space, including geomagnetically induced currents in power transmission networks, disturbance to radio communications and increased drag on satellites due to expansion of the atmosphere. They are also indicative of where the aurora are visible. Monitoring of the auroral electrojets in the pre-satellite era was limited to the network of ground-based magnetic observatories, from which the traditional AE activity indices are produced. These suffer in particular from the stations' poor distribution in position and so this motivates the use of satellite-based measurements. With polar low-Earth orbit satellites carrying magnetometers, all latitudes can be sampled with excellent resolution. This poster presents an investigation using Swarm's magnetometer data to detect the electrojets as the spacecraft move above them. We compare and contrast two approaches, one which uses vector data and the other which uses scalar data (Hamilton and Macmillan 2013, Vennerstrom and Moretto, 2013). Using ideas from both approaches we determine the oval positions and intensities from Swarm and earlier satellites. The variation in latitude and intensity with solar wind conditions, geomagnetic activity and secular variation of the main field is investigated. We aim to elucidate the relative importance of these factors. Hamilton, B. and Macmillan, S., 2013. Investigation of decadal scale changes in the auroral oval positions using Magsat and CHAMP data. Poster at IAGA 12th Scientific Assembly, 2013. http

  20. Precipitation and total power consumption in the ionosphere: Global MHD simulation results compared with Polar and SNOE observations

    Directory of Open Access Journals (Sweden)

    M. Palmroth

    2006-05-01

    Full Text Available We compare the ionospheric electron precipitation morphology and power from a global MHD simulation (GUMICS-4 with direct measurements of auroral energy flux during a pair of substorms on 28-29 March 1998. The electron precipitation power is computed directly from global images of auroral light observed by the Polar satellite ultraviolet imager (UVI. Independent of the Polar UVI measurements, the electron precipitation energy is determined from SNOE satellite observations on the thermospheric nitric oxide (NO density. We find that the GUMICS-4 simulation reproduces the spatial variation of the global aurora rather reliably in the sense that the onset of the substorm is shown in GUMICS-4 simulation as enhanced precipitation in the right location at the right time. The total integrated precipitation power in the GUMICS-4 simulation is in quantitative agreement with the observations during quiet times, i.e., before the two substorm intensifications. We find that during active times the GUMICS-4 integrated precipitation is a factor of 5 lower than the observations indicate. However, we also find factor of 2-3 differences in the precipitation power among the three different UVI processing methods tested here. The findings of this paper are used to complete an earlier objective, in which the total ionospheric power deposition in the simulation is forecasted from a mathematical expression, which is a function of solar wind density, velocity and magnetic field. We find that during this event, the correlation coefficient between the outcome of the forecasting expression and the simulation results is 0.83. During the event, the simulation result on the total ionospheric power deposition agrees with observations (correlation coefficient 0.8 and the AE index (0.85.

  1. WFC3/UVIS image skew

    Science.gov (United States)

    Petro, Larry

    2009-07-01

    This proposal will provide an independent check of the skew in the ACS astrometric catalog of Omega Cen stars, using exposures taken in a 45-deg range of telescope roll. The roll sequence will also provide a test for orbital variation of skew and field angle dependent PSF variations. The astrometric catalog of Omega Cen, improved for a skew, will be used to derive the geometric distorion to all UVIS filters, which has preliminarily been determined from F606W images and an astrometric catalog of 47 Tuc.

  2. Midday auroral breakup

    International Nuclear Information System (INIS)

    Sandholt, P.E.; Lybekk, B.; Egeland, A.

    1988-08-01

    Groundbased observations of the midday aurora by all-sky TV and meridian scanning photometers reveal the intermittent occurence of discrete auroral displays within the cusp/cleft. A typical sequence includes the following features: Auroral brightening, near the equatorward boundary of the persistent cusp/cleft arc and subsequent poleward motion of discrete forms through the cusp/cleft region. A strong westward component of auroral motion, both of the individual forms and internal ray structures within these forms, if often observed. At maximum brightness green line intensities of ∼ 10 kR are observed, even within the interval characterized as the midday gap. The duration of the whole sequence is normally less than 10 minutes. During this period the auroral activity moves poleward, in some cases by 3-5 degrees, say from 71 o up to 75 o MLAT. Characteristic ground magnetic signatures are observed, including a ∼ 50 - 100 nT positive deflection in the H-component and a negative Z-component at stations located poleward of the initial brightening. A poleward propagating filamentary Hall current belt associated with the discrete aurora is inferred from the optical and magnetic data. A quantitative estimate shows that the conductivity enhancement, due to electron precipitation in conjunction with northward electric field, roughly accounts for the magnetic deflection on the ground. Series of such events are often observed when the cusp is located at rather low latitudes, say south of 75 o MLAT, presumably associated with negative IMF B z

  3. The voltammetric determination of trace U(VI) in seawater

    International Nuclear Information System (INIS)

    Elwerfalli, J.; Page, J.A.; VanLoon, G.W.

    1987-01-01

    Trace U(VI) in seawater has been determined by voltammeetry after preconcentration by adsorption of the U(VI)/BR-PADAP complex (Br-PADAP = 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol). The reagent and the metal complex are adsorbed at a Hg drop electrode polarized at -0.40 V vs. a Ag/AgCl reference from a seawater electrolyte containing 3 x 10 -7 M added Br-PADAP and buffered at pH 7.8 by the addition of triethanolamine/HC10 4 . The adsorption is at a mass transfer controlled rate. Voltammetry of the adsorbed electroactive material gave two peaks, one at -0.56 V for reduction and adsorbed Br-PADAP and one at -0.65 V for reduction of adsorbed U(VI)-PADAP complex. The height of the second peak was a sensitive measure of the concentration of U(VI) in the electrolyte. Analysis is carried out with preconcentration restricted to a low fractional electrode coverage with calibration by the method of standard additions. The method is subject to intereference from organic surfactants but not from common metal ions. Interferences were minimized by the use of short adsorption times in the preconcentration step. For a 60 s adsorption time, a scan rate of 0.050 V s -1 and peak current measurement, the sensitivity was 8.2 nA/(μg L -1 U(VI)). Values of 3.44 and 3.21 μg L -1 U(VI) were determined for NASS-1 and CASS seawater reference standards

  4. Auroral and sub-auroral phenomena: an electrostatic picture

    Directory of Open Access Journals (Sweden)

    J. De Keyser

    2010-02-01

    Full Text Available Many auroral and sub-auroral phenomena are manifestations of an underlying magnetosphere-ionosphere coupling. In the electrostatic perspective the associated auroral current circuit describes how the generator (often in the magnetosphere is connected to the load (often in the ionosphere through field-aligned currents. The present paper examines the generic properties of the current continuity equation that characterizes the auroral circuit. The physical role of the various elements of the current circuit is illustrated by considering a number of magnetospheric configurations, various auroral current-voltage relations, and different types of behaviour of the ionospheric conductivity. Based on realistic assumptions concerning the current-voltage relation and the ionospheric conductivity, a comprehensive picture of auroral and sub-auroral phenomena is presented, including diffuse aurora, discrete auroral arcs, black aurora, and subauroral ion drift. The electrostatic picture of field-aligned potential differences, field-aligned currents, ionospheric electric fields and plasma drift, and spatial scales for all these phenomena is in qualitative agreement with observations.

  5. Auroral electron acceleration

    International Nuclear Information System (INIS)

    Bryant, D.A.

    1989-10-01

    Two theories of auroral electron acceleration are discussed. Part 1 examines the currently widely held view that the acceleration is an ordered process in a quasi-static electric field. It is suggested that, although there are many factors seeming to support this theory, the major qualifications and uncertainties that have been identified combine to cast serious doubt over its validity. Part 2 is devoted to a relatively new interpretation in terms of stochastic acceleration in turbulent electric fields. This second theory, which appears to account readily for most known features of the electron distribution function, is considered to provide a more promising approach to this central question in magnetospheric plasma physics. (author)

  6. The auroral electron accelerator

    International Nuclear Information System (INIS)

    Bryant, D.A.; Hall, D.S.

    1989-01-01

    A model of the auroral electron acceleration process is presented in which the electrons are accelerated resonantly by lower-hybrid waves. The essentially stochastic acceleration process is approximated for the purposes of computation by a deterministic model involving an empirically derived energy transfer function. The empirical function, which is consistent with all that is known of electron energization by lower-hybrid waves, allows many, possibly all, observed features of the electron distribution to be reproduced. It is suggested that the process occurs widely in both space and laboratory plasmas. (author)

  7. An Overlooked Source of Auroral Arc Field-Aligned Current

    Science.gov (United States)

    Knudsen, D. J.

    2017-12-01

    The search for the elusive generator of quiet auroral arcs often focuses on magnetospheric pressure gradients, based on the static terms in the so-called Vaslyiunas equation [Vasyliunas, in "Magneospheric Currents", Geophysical Monograph 28, 1984]. However, magnetospheric pressure gradient scale sizes are much larger than the width of individual auroral arcs. This discrepancy was noted by Atkinson [JGR, 27, p4746, 1970], who proposed that the auroral arcs are fed instead by steady-state polarization currents, in which large-scale convection across quasi-static electric field structures leads to an apparent time dependence in the frame co-moving with the plasma, and therefore to the generation of ion polarization currents. This mechanism has been adopted by a series of authors over several decades, relating to studies of the ionospheric feedback instability, or IFI. However, the steady-state polarization current mechanism does not require the IFI, nor even the ionsophere. Specifically, any quasi-static electric field structure that is stationary relative to large-scale plasma convection is subject to the generation this current. This talk demonstrates that assumed convection speeds of the order of a 100 m/s across typical arc fields structures can lead to the generation FAC magintudes of several μA/m2, typical of values observed at the ionospheric footpoint of auoral arcs. This current can be viewed as originating within the M-I coupling medium, along the entire field line connecting an auroral arc to its root in the magnetosphere.

  8. Enzymatic reduction of U(VI) in groundwaters

    International Nuclear Information System (INIS)

    Addelouas, A.; Gong, W.; Lutze, W.; Nuttall, E.; Fritz, B.; Crovisier, J.L.

    1999-01-01

    The use of enzymatic reduction of U(VI) in remediation of groundwater contaminated with U(VI) is receiving considerable attention. Certain strains of bacteria can combine the oxidation of an organic compound to the reduction of U(VI) to U(IV), which precipitates as uraninite. In the present study, we tested the reduction of U(VI) in groundwaters with various origins and compositions. In all groundwaters u(VI) was reduced by sulfate reducing bacteria that had been activated by ethanol and tri-metaphosphate. The reduction rate of U(VI) depends on sulfate concentration in water and the abundance of bacteria in the system. This work shows that bacteria capable of U(VI) reduction are ubiquitous in nature, and suggests the possibility of a large application of the enzymatic reduction of U(VI) for in situ clean up of groundwaters contaminated with uranium. (authors)

  9. Enzymatic reduction of U(VI) in groundwaters; Reduction enzymatique de U(VI) dans des eaux souterraines

    Energy Technology Data Exchange (ETDEWEB)

    Addelouas, A.; Gong, W. [Center for Radioactive Waste Management, Advanced Materials Laboratory, 1001 University, Albuquerque (United States); Lutze, W.; Nuttall, E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Fritz, B.; Crovisier, J.L. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Centre de Sedimentologie et Geochimie de la Surface

    1999-03-01

    The use of enzymatic reduction of U(VI) in remediation of groundwater contaminated with U(VI) is receiving considerable attention. Certain strains of bacteria can combine the oxidation of an organic compound to the reduction of U(VI) to U(IV), which precipitates as uraninite. In the present study, we tested the reduction of U(VI) in groundwaters with various origins and compositions. In all groundwaters u(VI) was reduced by sulfate reducing bacteria that had been activated by ethanol and tri-metaphosphate. The reduction rate of U(VI) depends on sulfate concentration in water and the abundance of bacteria in the system. This work shows that bacteria capable of U(VI) reduction are ubiquitous in nature, and suggests the possibility of a large application of the enzymatic reduction of U(VI) for in situ clean up of groundwaters contaminated with uranium. (authors) 12 refs.

  10. Auroral Spatial Structures Probe Project

    Data.gov (United States)

    National Aeronautics and Space Administration —    Methodology Fly a high altitude sounding rocket with multiple sub-payloads to measure electric and magnetic fields during an auroral event. Use...

  11. Electrodynamics properties of auroral surges

    International Nuclear Information System (INIS)

    Robinson, R.M.; Vondrak, R.R.

    1990-01-01

    The incoherent scatter radar technique provides an excellent means to study the ionization and electric fields associated with auroral precipitation events. One of the most intense and dynamic auroral events is the so-called surge or breakup aurora that accompanies auroral substorms. For their purposes they define a surge as a transient intensification of auroral precipitation that occurs simultaneously with a pronounced negative bay in the ground magnetometer data. They present data obtained during five such events in 1980 and 1981. Prior to the surge, auroral forms move equatorward, develop ray structure, and intensify. The surge is identified by an apparent poleward motion of the aurora producing aurorally associated ionization that extends over several hundred kilometers in latitude. The presurge auroral forms are embedded in a region of northward electric field. The auroral forms that comprise the surge span a region within which the meridional electric field is small and at times southward. A westward electric field is often but not always present within the surge. The behavior of the westward electric field is significantly different from the north-south field, in that sharp spatial gradients are absent even in very disturbed conditions. Although the westward Hall currents are mostly responsible for the negative bays that accompany the surge, at times the westward Pedersen current sustained by the westward electric field can be important. Sudden variations in the H component of the ground magnetogram can be caused by motions of the aurora or by temporal variations in the fields or conductivities. They present a model that simulates the observed changes in electric field and precipitation that accompany surges. The perturbation in the electric field produced by the surge is simulated by adding negative potential in regions of intense precipitation

  12. Carl Størmer Auroral Pioneer

    CERN Document Server

    Egeland, Alv

    2013-01-01

    This biography summarizes the seminal contributions to auroral and space science of Carl Størmer (1874 - 1957). He was the first to develop precise photographic methods to calculate heights and morphologies of diverse auroral forms during four solar cycles. Størmer independently devised numerical techniques to determine the trajectories of high-energy charged particles allowed and forbidden in the Earth’s magnetic field. His theoretical analyses explained cosmic ray access to the upper atmosphere, 20 years before they were identified by other scientists. Størmer’s crowning achievement, “The Polar Aurora,” published when he was 81 years old, stands to this day as a regularly cited guide in graduate-level courses on space physics.   The authors present the life of this prodigious scientist in relation to the cultural life of early 20th century in Norway and to the development of the space sciences in the post-Sputnik era.

  13. Spatial monitoring of auroral emissions

    International Nuclear Information System (INIS)

    Steen, Aa.

    1983-12-01

    A ground based technique to monitor the three-dimensional distribution of auroral emissions is presented. The system is composed of two subsystems. A monochromatic imaging system with digitizing capability monitors the two-dimensional variation of auroral intensity with 50 degree field of view. A second height measuring system obtains in real time the height distribution of the auroral luminosity within the field of view of the imaging system. This paper is a report of the stepwise development of the complete system. The measurements will be carried out in the magnetic meridian plane through the EISCAT-site in Norway and the Kiruna Geophysical Institute. The operation of the optical system will as much as possible be combined with incoherent scatter radar measurements. (author)

  14. Monitoring auroral electrojets with satellite data

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Moretto, T.

    2013-01-01

    The strong horizontal ionospheric currents in the auroral oval constitute an important space weather parameter. Here we present a method to estimate the latitude location and intensity of these currents from measurements of variations in the magnetic field magnitude made by low Earth polar orbiting...... satellites. The method is simple enough to be implemented for real-time monitoring, especially since it does not require the full vector field measurement. We demonstrate the method on 5 years of Challenging Minisatellite Payload (CHAMP) data and show how the monitoring depends on the local time...... of the satellite orbit and how it varies with local time and season in both hemispheres. Statistically, the strongest currents are observed in the predawn and predusk local time quadrants at latitudes that depend on the general magnetic activity level. We also show how the satellite-derived parameters relate...

  15. Ground-based measurements of UV Index (UVI at Helwan

    Directory of Open Access Journals (Sweden)

    H. Farouk

    2012-12-01

    Full Text Available On October 2010 UV Index (UVI ground-based measurements were carried out by weather station at solar laboratory in NRIAG. The daily variation has maximum values in spring and summer days, while minimum values in autumn and winter days. The low level of UVI between 2.55 and 2.825 was found in December, January and February. The moderate level of UVI between 3.075 and 5.6 was found in March, October and November. The high level of UVI between 6.7 and 7.65 was found in April, May and September. The very high level of UVI between 8 and 8.6 was found in June, July and August. High level of radiation over 6 months per year including 3 months with a very high level UVI. According to the equation {UVI=a[SZA]b} the UVI increases with decreasing SZA by 82% on a daily scale and 88% on a monthly scale. Helwan exposure to a high level of radiation over 6 months per year including 3 months with a very high level UVI, so it is advisable not to direct exposure to the sun from 11 am to 2:00 pm.

  16. Correlation between Auroral kilometric radiation and field-aligned currents

    International Nuclear Information System (INIS)

    Green, J.L.; Saflekos, N.A.; Gurnett, D.A.; Potemra, T.A.

    1982-01-01

    Simultaneous observations of field-aligned currents (FAC) and auroral kilometric radiation (AKR) are compared from the polar-orbiting satellites Triad and Hawkeye. The Triad observations were restricted to the evening-to-midnight local time sector (1900 to 0100 hours magnetic local time) in the northern hemisphere. This is the region in which the most intense storms of AKR are believed to originate. The Hawkeye observations were restricted to when the satellite was in the AKR emission cone in the northern hemisphere and at radial distances > or =7R/sub E/ (earth radii) to avoid local propagation cutoff effects. A(R/7R/sub E/) 2 normalization to the power flux measurements of the kilometric radiation from Hawkeye is used to take into account the radial dependence of this radiation and to scale all intensity measurements so that they are independent of Hawkeye's position in the emission cone. Integrated field-aligned current intensities from Triad are determined from the observed transverse magnetic field disturbances. There appears to be a weak correlation between AKR intensity and the integrated current sheet intensity of field-aligned currents. In general, as the intensity of auroral kilometric radiation increases so does the integrated auroral zone current sheet intensity increase. Statistically, the linear correlation coefficient between the log of the AKR power flux and the log of the current sheet intensity is 0.57. During weak AKR bursts ( - 18 W m - 2 Hz - 1 ), Triad always observed weak FAC'S ( - 1 ), and when Triad observed large FAC's (> or =0.6 A m - 1 ), the AKR intensity from Hawkeye was moderately intense (10 - 5 to 10 - 14 W m - 2 Hz - 1 ) to intense (>10 - 14 W m - 2 Hz - 1 ). It is not clear from these preliminary results what the exact role is that auroral zone field-aligned currents play in the generation or amplification of auroral kilometric radiation

  17. Auroral-zone plasma dynamics

    International Nuclear Information System (INIS)

    Gorney, D.J.

    1982-01-01

    Analysis of the USAF S3-3 charged particle data and electric field observations has provided extensive quantitative understanding of the auroral particle acceleration process. The results of an effort to use energetic charged particle observations to probe the altitude profile of auroral electric potential structures by applying adiabatic mapping theory are presented here. In situ energetic charged particle measurements differ from local electric field observations in that charged particles execute dynamic trajectories along the magnetic field lines and retain information on the spatial electric potential distribution in their velocity space distribution function. Although a unique determination of the potential distribution is not possible, basic differences between local or non-local acceleration are readily apparent in the particle observations. Together, the charged particle and electric field measurements have enabled us to form a reasonable picture of the auroral ''inverted-V'' structure which can then be applied to study the nonadiabatic processes that occur in these strong acceleration regions, such as energy scattering of ion and electron beams. Specifically, this study shows that a large scale auroral electric field exists at all times in the evening sector with an altitude distribution that is fairly unstructured at altitudes near and above one earth radius. Significant parallel potential drop is not observed below about 4000 kilometers altitude. At times, however, a substantial portion of the potential drop appears to lie in the low altitude region (4000-10,000 km)

  18. Electromagnetic plasma wave emissions from the auroral field lines

    Science.gov (United States)

    Gurnett, D. A.

    1978-01-01

    The most important types of auroral radio emissions are reviewed. Particular attention is given to the following four types of electromagnetic emissions: auroral hiss, saucers, ELF noise bands, and auroral kilometric radiation. It is shown that the auroral hiss and auroral kilometric radiation are generated along the auroral field lines relatively close to the earth, at radial distances in the range of 2.5-5 earth radii, probably in direct association with auroral-particle acceleration by parallel electric fields. The auroral hiss appears to be generated by amplified Cerenkov radiation. Several mechanisms are proposed for the auroral kilometric radiation, usually involving the intermediate generation of electrostatic waves by the precipitating electrons.

  19. Reduction U(VI) using jones reductor

    International Nuclear Information System (INIS)

    Simbolon, S.

    1996-01-01

    Reduction of dissolved oxide uranium in sulfuric acid use of reductor Jones Zn (Hg) was carried out. The reduced uranium sulfate solution was analyzed its U(IV) by measuring its absorbance on 652 nm and compared to oxidation U(IV) solution with KMnO 4 solution. It was found that the comparison was in a good agreement. However, measuring of absorbance of U(VI) solution on 429 nm result of oxidation U(IV) with KMnO 4 solution was not change. (author)

  20. Enzymatic U(VI) reduction by Desulfosporosinus species

    International Nuclear Information System (INIS)

    Suzuki, Y.; Kelly, S.D.; Kemner, K.M.; Banfield, J.F.

    2004-01-01

    Here we tested U(VI) reduction by a Desulfosporosinus species (sp.) isolate and type strain (DSM 765) in cell suspensions (pH 7) containing 1 mM U(VI) and lactate, under an atmosphere containing N 2 -CO 2 -H 2 (90: 5: 5). Although neither Desulfosporosinus species (spp.) reduced U(VI) in cell suspensions with 0.25% Na-bicarbonate or 0.85% NaCl, U(VI) was reduced in these solutions by a control strain, desulfovibrio desulfuricans (ATCC 642). However, both Desulfosporosinus strains reduced U(VI) in cell suspensions depleted in bicarbonate and NaCl. No U(VI) reduction was observed without lactate and H 2 electron donors or with heat-killed cells, indicating enzymatic U(VI) reduction. Uranium(VI) reduction by both strains was inhibited when 1 mM CuCl 2 was added to the cell suspensions. Because the Desulfosporosinus DSM 765 does not contain cytochrome c 3 used by Desulfovibrio spp. to reduce U(VI), Desulfosporosinus species reduce uranium via a different enzymatic pathway. (orig.)

  1. Auroral Electrojet Index Designed to Provide a Global Measure, Hourly Intervals, of Auroral Zone Magnetic Activity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Auroral Electrojet (AE) index is designed to provide a global quantitative measure of auroral zone magnetic activity produced by enhanced ionospheric currents...

  2. Derivation of a Self-Consistent Auroral Oval Model Using the Auroral Boundary Index

    National Research Council Canada - National Science Library

    Anderson, Keith

    2004-01-01

    ... current HF communications capabilities. The auroral morphology is a good indicator of the level at which space weather and its near-Earth consequences are occurring, and thus it is important to develop an auroral prediction model...

  3. Mapping auroral activity with Twitter

    Science.gov (United States)

    Case, N. A.; MacDonald, E. A.; Heavner, M.; Tapia, A. H.; Lalone, N.

    2015-05-01

    Twitter is a popular, publicly accessible, social media service that has proven useful in mapping large-scale events in real time. In this study, for the first time, the use of Twitter as a measure of auroral activity is investigated. Peaks in the number of aurora-related tweets are found to frequently coincide with geomagnetic disturbances (detection rate of 91%). Additionally, the number of daily aurora-related tweets is found to strongly correlate with several auroral strength proxies (ravg≈0.7). An examination is made of the bias for location and time of day within Twitter data, and a first-order correction of these effects is presented. Overall, the results suggest that Twitter can provide both specific details about an individual aurora and accurate real-time indication of when, and even from where, an aurora is visible.

  4. An interplanetary shock traced by planetary auroral storms from the Sun to Saturn.

    Science.gov (United States)

    Prangé, Renée; Pallier, Laurent; Hansen, Kenneth C; Howard, Russ; Vourlidas, Angelos; Courtin, Régis; Parkinson, Chris

    2004-11-04

    A relationship between solar activity and aurorae on Earth was postulated long before space probes directly detected plasma propagating outwards from the Sun. Violent solar eruption events trigger interplanetary shocks that compress Earth's magnetosphere, leading to increased energetic particle precipitation into the ionosphere and subsequent auroral storms. Monitoring shocks is now part of the 'Space Weather' forecast programme aimed at predicting solar-activity-related environmental hazards. The outer planets also experience aurorae, and here we report the discovery of a strong transient polar emission on Saturn, tentatively attributed to the passage of an interplanetary shock--and ultimately to a series of solar coronal mass ejection (CME) events. We could trace the shock-triggered events from Earth, where auroral storms were recorded, to Jupiter, where the auroral activity was strongly enhanced, and to Saturn, where it activated the unusual polar source. This establishes that shocks retain their properties and their ability to trigger planetary auroral activity throughout the Solar System. Our results also reveal differences in the planetary auroral responses on the passing shock, especially in their latitudinal and local time dependences.

  5. The auroral and ionospheric flow signatures of dual lobe reconnection

    Directory of Open Access Journals (Sweden)

    S. M. Imber

    2006-11-01

    Full Text Available We present the first substantial evidence for the occurrence of dual lobe reconnection from ionospheric flows and auroral signatures. The process of dual lobe reconnection refers to an interplanetary magnetic field line reconnecting with lobe field lines in both the northern and southern hemispheres. Two bursts of sunward plasma flow across the noon portion of the open/closed field line boundary (OCB, indicating magnetic flux closure at the dayside, were observed in SuperDARN radar data during a period of strongly northward IMF. The OCB is identified from spacecraft, radar backscatter, and auroral observations. In order for dual lobe reconnection to take place, we estimate that the interplanetary magnetic field clock angle must be within ±10° of zero (North. The total flux crossing the OCB during each burst is small (1.8% and 0.6% of the flux contained within the polar cap for the two flows. A brightening of the noon portion of the northern auroral oval was observed as the clock angle passed through zero, and is thought to be due to enhanced precipitating particle fluxes due to the occurrence of reconnection at two locations along the field line. The number of solar wind protons captured by the flux closure process was estimated to be ~2.5×1030 (4 tonnes by mass, sufficient to populate the cold, dense plasma sheet observed following this interval.

  6. Astrometric Correction for WFC3/UVIS Lithographic-Mask Pattern

    Science.gov (United States)

    Kozhurina-Platais, V.; Hammer, D.; Dencheva, N.; Hack, W.

    2013-07-01

    Observations of the central field in Cen taken with large dither patterns and over a large range of HST roll-angles exposed through F606W UVIS filter hav e been used to examine the lithographic-mask pattern imprinted on the WFC3/UVIS detec tor during the manufacturing process. This detector defect introduces fine-scale astrome tric errors at the level of about 0.2 pixel with a complicated spatial structure across the WFC3/ UVIS CCD chips. The fine-scale solution was utilized to construct a 2-D look-up table for co rrection of the WFC3/UVIS lithographic-mask pattern. The astrometric errors due to th is detector defect have been cor- rected down to the ~ 0.05 pixel level. The derived 2-D look-up table can be interpol ated at any point in the WFC3/UVIS image by ST software DrizzlePac / AstroDrizzle. The main results of these calibrations are: 1) new polynomial coefficien ts of geometric distortion for 14 calibrated UVIS filters in the form of Instrument Distortion Co rrection Table (IDCTAB file) were improved to account for the lithographic-mask pattern i n the WFC3/UVIS detector; 2) new derived look-up table in the form of a D2IMFILE, which sig nificantly improves (30-60%) the fine-scale structure in the WFC3/UVIS geometric distorti on; 3) geometric distortion cou- pled with the D2IMFILE and new improved IDCTAB can now be succ essfully corrected to the precision level of ~ 0.05 pixel (2 mas) for the UVIS detector.

  7. Nonlinear radiation generation processes in the auroral acceleration region

    Directory of Open Access Journals (Sweden)

    R. Pottelette

    2017-11-01

    Full Text Available It is known from laboratory plasma experiments that double layers (DLs radiate in the electromagnetic spectrum; but this is only known qualitatively. In these experiments, it was shown that the electron beam created on the high-potential side of a DL generates nonlinear structures which couple to electromagnetic waves and act as a sender antenna. In the Earth auroral region, observations performed by auroral spacecraft have shown that DLs occur naturally in the source region of intense radio emissions called auroral kilometric radiation (AKR. Very high time-, spatial-, and temporal-resolution measurements are needed in order to characterize waves and particle distributions in the vicinity of DLs, which are moving transient structures. We report observations from the FAST satellite of a localized large-amplitude parallel electric field (∼ 300 mV m−1 recorded at the edges of the auroral density cavity. In agreement with laboratory experiments, on the high-potential side of the DL, elementary radiation events are detected. They occur substantially above the local electron gyrofrequency and are associated with the presence of electron holes. The velocity of these nonlinear structures can be derived from the measurement of the Doppler-shifted AKR frequency spectrum above the electron gyrofrequency. The generated electron holes appear as the nonlinear evolution of electrostatic waves generated by the electron–electron two-stream instability because they propagate at about half the beam velocity. It is pointed out that, in the vicinity of a DL, the shape of the electron distribution gives rise to a significant power recorded in the left-hand polarized ordinary (LO mode.

  8. Nonlinear radiation generation processes in the auroral acceleration region

    Science.gov (United States)

    Pottelette, Raymond; Berthomier, Matthieu

    2017-11-01

    It is known from laboratory plasma experiments that double layers (DLs) radiate in the electromagnetic spectrum; but this is only known qualitatively. In these experiments, it was shown that the electron beam created on the high-potential side of a DL generates nonlinear structures which couple to electromagnetic waves and act as a sender antenna. In the Earth auroral region, observations performed by auroral spacecraft have shown that DLs occur naturally in the source region of intense radio emissions called auroral kilometric radiation (AKR). Very high time-, spatial-, and temporal-resolution measurements are needed in order to characterize waves and particle distributions in the vicinity of DLs, which are moving transient structures. We report observations from the FAST satellite of a localized large-amplitude parallel electric field (˜ 300 mV m-1) recorded at the edges of the auroral density cavity. In agreement with laboratory experiments, on the high-potential side of the DL, elementary radiation events are detected. They occur substantially above the local electron gyrofrequency and are associated with the presence of electron holes. The velocity of these nonlinear structures can be derived from the measurement of the Doppler-shifted AKR frequency spectrum above the electron gyrofrequency. The generated electron holes appear as the nonlinear evolution of electrostatic waves generated by the electron-electron two-stream instability because they propagate at about half the beam velocity. It is pointed out that, in the vicinity of a DL, the shape of the electron distribution gives rise to a significant power recorded in the left-hand polarized ordinary (LO) mode.

  9. Cassini UVIS Observations Show Active Saturn's Rings

    Science.gov (United States)

    Esposito, L.; Colwell, J. E.; UVIS Team

    2004-12-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) is part of the remote sensing payload of the NASA/ESA Cassini spacecraft. This spectrograph includes channels for extreme UV and far UV spectroscopic imaging, high speed photometry of stellar occultations, solar EUV occultation, and a hydrogen/deuterium absorption cell. We report our initial results from UVIS observations of Saturn's rings. Dynamic interactions between neutrals, ions, rings, moons and meteoroids produce a highly structured and time variable Saturn system Oxygen in the Saturn system dominates the magnetosphere. Observed fluctuations indicate close interactions with plasma sources. Stochastic events in the E ring may be the ultimate source. The spectral signature of water ice is seen on Phoebe and in Saturn's rings. Water ice is mixed non-uniformly with darker constituents. The high structure of the UV ring reflectance argues that collisional transport dominates ballistic transport in darkening the rings. Our preliminary results support the idea that rings are recycled fragments of moons: the current processes are more important than history and initial conditions. The spectra along the UVIS SOI radial scan indicate varying amounts of water ice. In the A ring, the ice fraction increases outward to a maximum at the outer edge. This large-scale variation is consistent with initially pure ice that has suffered meteoritic bombardment over the age of the Solar system (Cuzzi and Estrada 1998). We also see variations over scales of 1000 - 3000 km, which cannot be explained by this mechanism. Ballistic transport of spectrally neutral extrinsic pollutants from meteoroids striking the rings has a typical throw distance of 6000 km (Durisen et al 1989), too long to explain this finer structure. We propose a class of smaller renewal events, in which a small moon residing within the rings is shattered by an external impactor (Colwell and Esposito 1993, Barbara and Esposito 2002, Esposito and Colwell 2003). The

  10. Auroral effects in the D region of the ionosphere. [interactions between auroral particles and electromagnetic fields

    Science.gov (United States)

    Akasofu, S. I.

    1974-01-01

    Physical phenomena associated with the interaction between auroral particles and electromagnetic fields, auroral energy flow, and the propagation of auroral effects to low altitudes are discussed in detail. It is concluded that energy deposition of soft auroral X-rays would be negligible at stratospheric altitudes. New data from incoherent backscatter measurements of neutral winds in the auroral region indicate a lack of correlation between stratospheric winds and winds in the auroral ionosphere. Magnetograms are used to show that sector boundary crossings with a time scale of approximately one hour (as opposed to the sector structure itself with a time scale of several days) do not couple effectively with the magnetosphere and are not significant energy inputs to it.

  11. Electron currents associated with an auroral band

    Science.gov (United States)

    Spiger, R. J.; Anderson, H. R.

    1975-01-01

    Measurements of electron pitch angle distributions and energy spectra over a broad auroral band were used to calculate net electric current carried by auroral electrons in the vicinity of the band. The particle energy spectrometers were carried by a Nike-Tomahawk rocket launched from Poker Flat, Alaska, at 0722 UT on February 25, 1972. Data are presented which indicate the existence of upward field-aligned currents of electrons in the energy range 0.5-20 keV. The spatial relationship of these currents to visual structure of the auroral arc and the characteristics of the electrons carrying the currents are discussed.

  12. An unusual giant spiral arc in the polar cap region during the northward phase of a Coronal Mass Ejection

    Directory of Open Access Journals (Sweden)

    L. Rosenqvist

    2007-03-01

    Full Text Available The shock arrival of an Interplanetary Coronal Mass Ejection (ICME at ~09:50 UT on 22 November 1997 resulted in the development of an intense (Dst<−100 nT geomagnetic storm at Earth. In the early, quiet phase of the storm, in the sheath region of the ICME, an unusual large spiral structure (diameter of ~1000 km was observed at very high latitudes by the Polar UVI instrument. The evolution of this structure started as a polewardly displaced auroral bulge which further developed into the spiral structure spreading across a large part of the polar cap. This study attempts to examine the cause of the chain of events that resulted in the giant auroral spiral. During this period the interplanetary magnetic field (IMF was dominantly northward (Bz>25 nT with a strong duskward component (By>15 nT resulting in a highly twisted tail plasma sheet. Geotail was located at the equatorial dawnside magnetotail flank and observed accelerated plasma flows exceeding the solar wind bulk velocity by almost 60%. These flows are observed on the magnetosheath side of the magnetopause and the acceleration mechanism is proposed to be typical for strongly northward IMF. Identified candidates to the cause of the spiral structure include a By induced twisted magnetotail configuration, the development of magnetopause surface waves due to the enhanced pressure related to the accelerated magnetosheath flows aswell as the formation of additional magnetopause deformations due to external solar wind pressure changes. The uniqeness of the event indicate that most probably a combination of the above effects resulted in a very extreme tail topology. However, the data coverage is insufficient to fully investigate the physical mechanism behind the observations.

  13. Contribution of extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms to U(VI) immobilization.

    Science.gov (United States)

    Cao, Bin; Ahmed, Bulbul; Kennedy, David W; Wang, Zheming; Shi, Liang; Marshall, Matthew J; Fredrickson, Jim K; Isern, Nancy G; Majors, Paul D; Beyenal, Haluk

    2011-07-01

    The goal of this study was to quantify the contribution of extracellular polymeric substances (EPS) to U(VI) immobilization by Shewanella sp. HRCR-1. Through comparison of U(VI) immobilization using cells with bound EPS (bEPS) and cells with minimal EPS, we show that (i) bEPS from Shewanella sp. HRCR-1 biofilms contribute significantly to U(VI) immobilization, especially at low initial U(VI) concentrations, through both sorption and reduction; (ii) bEPS can be considered a functional extension of the cells for U(VI) immobilization and they likely play more important roles at lower initial U(VI) concentrations; and (iii) the U(VI) reduction efficiency is dependent upon the initial U(VI) concentration and decreases at lower concentrations. To quantify the relative contributions of sorption and reduction to U(VI) immobilization by EPS fractions, we isolated loosely associated EPS (laEPS) and bEPS from Shewanella sp. HRCR-1 biofilms grown in a hollow fiber membrane biofilm reactor and tested their reactivity with U(VI). We found that, when reduced, the isolated cell-free EPS fractions could reduce U(VI). Polysaccharides in the EPS likely contributed to U(VI) sorption and dominated the reactivity of laEPS, while redox active components (e.g., outer membrane c-type cytochromes), especially in bEPS, possibly facilitated U(VI) reduction.

  14. Investigations of auroral dynamics: techniques and results

    International Nuclear Information System (INIS)

    Steen, Aa.

    1988-10-01

    This study is an experimental investigation of the dynamics of the aurora, describing both the systems developed for the optical measurements and the results obtained. It is found that during a auroral arc deformation, a fold travelling eastward along the arc is associated with an enhanced F-region ion temperature of 2700 K, measured by EISCAT, indicative of enhanced ionspheric electric fields. It is shown that for an auroral break-up, the large-scale westward travelling surge (WTS) is the last developed spiral in a sequence of spiral formations. It is proposed that the Kelvin-Helmholtz instability is the responsible process. In another event it is shown that large-amplitude long-lasting pulsations, observed both in ground-based magnetic field and photometer recordings, correspond to strong modulations of the particle intensity at the equatorial orbit (6.6 Re). In this event a gradual transition occurs between pulses classified as Ps6/auroral torches toward pulses with characteristics of substorms. The observations are explained by the Kelvin-Helmholtz instability in a magnetospheric boundary layer. The meridional neutral wind, at about 240 km altitude, is found to be reduced prior to or at the onset of auroral activity. These findings are suggestive of large-scale reconfigurations of the ionspheric electric fields prior to auroral onsets. A new real time triangulation technique developed to determine the altitude of auroral arcs is presented, and an alternative method to analyze incoherent scatter data is discussed. (With 46 refs.) (author)

  15. Method to locate the polar cap boundary in the nightside ionosphere and application to a substorm event

    Directory of Open Access Journals (Sweden)

    A. T. Aikio

    2006-08-01

    Full Text Available In this paper we describe a new method to be used for the polar cap boundary (PCB determination in the nightside ionosphere by using the EISCAT Svalbard radar (ESR field-aligned measurements by the 42-m antenna and southward directed low-elevation measurements by the ESR 32 m antenna or northward directed low-elevation measurements by the EISCAT VHF radar at Tromsø. The method is based on increased electron temperature (Te caused by precipitating particles on closed field lines. Since the Svalbard field-aligned measurement provides the reference polar cap Te height profile, the method can be utilised only when the PCB is located between Svalbard and the mainland. Comparison with the Polar UVI images shows that the radar-based method is generally in agreement with the PAE (poleward auroral emission boundary from Polar UVI. The new technique to map the polar cap boundary was applied to a substorm event on 6 November 2002. Simultaneous measurements by the MIRACLE magnetometers enabled us to put the PCB location in the framework of ionospheric electrojets. During the substorm growth phase, the polar cap expands and the region of the westward electrojet shifts gradually more apart from the PCB. The substorm onset takes place deep within the region of closed magnetic field region, separated by about 6–7° in latitude from the PCB in the ionosphere. We interpret the observations in the framework of the near-Earth neutral line (NENL model of substorms. After the substorm onset, the reconnection at the NENL reaches within 3 min the open-closed field line boundary and then the PCB moves poleward together with the poleward boundary of the substorm current wedge. The poleward expansion occurs in the form of individual bursts, which are separated by 2–10 min, indicating that the reconnection in the magnetotail neutral line is impulsive. The poleward expansions of the PCB are followed by latitude dispersed intensifications in the westward electrojet

  16. Equatorial ionospheric response to isolated auroral substorms over a solar cycle (1980−85: evidence of longitudinal anomaly

    Directory of Open Access Journals (Sweden)

    L. A. Hajkowicz

    1996-09-01

    Full Text Available The equatorial ionospheric response to 228 isolated, rapid-onset auroral substorms (as defined from the auroral electrojet index AE was found from enhancements of the virtual (minimum height of the F-region (∆h$^\\prime$F in the declining phase of a solar cycle (1980–85. The responses, found for three longitudinal sectors at the equator: Africa (Ouagadougou and Dakar, Asia (Manila and America (Huancayo, were compared with the response close to the auroral source region at Yakutsk (northern Siberia. The auroral substorm onsets were centered at 17 and 15 UT at sunspot maximum (1980–82 and minimum (1983–85, preceding by 3–5 h the period of post-sunset height rise in the African sector whereas other sectors were in the early afternoon (Huancayo and morning (Manila. The African response, particularly at Ouagadougou, was distinctly different from other sectors. In the sunspot maximum years (1980–81 the auroral surges were followed after about 3 h by a sharp depression (∆h$^\\prime$F<0 in the post-sunset height rise, with a period of little or no response (∆h$^\\prime$F=0 in 1982. A response polarity reversal (∆h$^\\prime$F>0 was noted in this sector for sunspot minimum (1983–85 when large h$^\\prime$F enhancements were observed at the sunset region. The responses in the Asian and American sector were positive except for a case in Huancayo when response was negative, following an auroral surge before the sunset at this station. It appears that the aurorally generated large-scale travelling ionospheric disturbances (LSTIDs, which first cause positive height enhancements in a sub-auroral location (Yakutsk, subsequently affect the unstable post-sunset ionosphere in the equatorial Africa.

  17. Plasma sheet fast flows and auroral dynamics during substorm: a case study

    Directory of Open Access Journals (Sweden)

    N. L. Borodkova

    2002-03-01

    Full Text Available Interball-1 observations of a substorm development in the mid-tail on 16 December 1998 are compared with the auroral dynamics obtained from the Polar UV imager. Using these data, the relationship between plasma flow directions in the tail and the location of the auroral activation is examined. Main attention is given to tailward and earth-ward plasma flows, interpreted as signatures of a Near Earth Neutral Line (NENL. It is unambiguously shown that in the mid-plasma sheet the flows were directed tailward when the auroral bulge developed equatorward of the spacecraft ionospheric footprint. On the contrary, when active auroras moved poleward of the Interball-1 projection, earthward fast flow bursts were observed. This confirms the concept that the NENL (or flow reversal region is the source of auroras forming the poleward edge of the auroral bulge. The observed earthward flow bursts have all typical signatures of Bursty Bulk Flows (BBFs, described by Angelopolous et al. (1992. These BBFs are related to substorm activations starting at the poleward edge of the expanded auroral bulge. We interpret the BBFs as a result of reconnection pulses occurring tail-ward of Interball-1. In addition, some non-typically observed phenomena were detected in the plasma sheet during this substorm: (i tailward/earthward flows were superimposed on a very strong duskward flow, and (ii wavy structures of both magnetic field and plasma density were registered. The latter observation is probably linked to the filamentary structure of the current sheet.Key words. Magnetospheric physics (auroral phenomena; plasma sheet; storms and substorms

  18. Role of U(VI) adsorption in U(VI) Reduction by Geobacter species

    International Nuclear Information System (INIS)

    Lovely, Derrick

    2008-01-01

    Previous work had suggested that Acholeplasma palmae has a higher capacity for uranium sorption than other bacteria studied. Sorption studies were performed with cells in suspension in various solutions containing uranium, and results were used to generate uranium-biosorption isotherms. Results from this study showed that the U(VI) sorption capacity of G. uraniireducens was relatively similar in simple solutions, such as sodium chloride or bicarbonate. However, this ability to sorb uranium significantly decreased in groundwater. This suggested that certain chemicals present in the groundwater were inhibiting the ability of cell components of Geobacter to adsorb uranium. It was hypothesized that uranium removal would also be diminished in the bicarbonate solution. However, this did not seem to be the case, as uranium was as easily removed in the bicarbonate solution as in the sodium chloride solution.

  19. Statistical study of auroral fragmentation into patches

    Science.gov (United States)

    Hashimoto, Ayumi; Shiokawa, Kazuo; Otsuka, Yuichi; Oyama, Shin-ichiro; Nozawa, Satonori; Hori, Tomoaki; Lester, Mark; Johnsen, Magnar Gullikstad

    2015-08-01

    The study of auroral dynamics is important when considering disturbances of the magnetosphere. Shiokawa et al. (2010, 2014) reported observations of finger-like auroral structures that cause auroral fragmentation. Those structures are probably produced by macroscopic instabilities in the magnetosphere, mainly of the Rayleigh-Taylor type. However, the statistical characteristics of these structures have not yet been investigated. Here based on observations by an all-sky imager at Tromsø (magnetic latitude = 67.1°N), Norway, over three winter seasons, we statistically analyzed the occurrence conditions of 14 large-scale finger-like structures that developed from large-scale auroral regions including arcs and 6 small-scale finger-like structures that developed in auroral patches. The large-scale structures were seen from midnight to dawn local time and usually appeared at the beginning of the substorm recovery phase, near the low-latitude boundary of the auroral region. The small-scale structures were primarily seen at dawn and mainly occurred in the late recovery phase of substorms. The sizes of these large- and small-scale structures mapped in the magnetospheric equatorial plane are usually larger than the gyroradius of 10 keV protons, indicating that the finger-like structures could be caused by magnetohydrodynamic instabilities. However, the scale of small structures is only twice the gyroradius of 10 keV protons, suggesting that finite Larmor radius effects may contribute to the formation of small-scale structures. The eastward propagation velocities of the structures are -40 to +200 m/s and are comparable with those of plasma drift velocities measured by the colocating Super Dual Auroral Radar Network radar.

  20. A substorm in midnight auroral precipitation

    Directory of Open Access Journals (Sweden)

    V. G. Vorobjev

    2003-12-01

    Full Text Available DMSP F7 spacecraft observations for the whole of 1986 were used to construct the empirical model of the midnight auroral precipitation during a substorm. The model includes the dynamics of different auroral precipitation boundaries and simultaneous changes in average electron precipitation energy and energy flux in different precipitation regions during all substorm phases, as well as the IMF and solar wind plasma signatures during a substorm. The analysis of the model shows a few important features of precipitation. (1 During the magnetic quietness and just before the beginning of the substorm expansive phase the latitudinal width of the auroral precipitation in the nightside sector is about 5 – 6° CGL, while that of the auroral oval is about 2 – 3° CGL during such periods. (2 For about 5 min before the substorm onset a decrease in the average precipitating electron energy in the equatorward part of auroral zone was observed simultaneously, with an increase in both the average electron energy and energy flux of electron precipitation in the poleward part of the auroral zone. (3 The isotropy boundary position in the beginning of the substorm expansive phase coincides well with the inner edge of the central plasma sheet. The analysis of interplanetary medium parameters shows that, on average, during the substorm development, the solar wind dynamic pressure was about 1.5 times that of the magnetic quietness period. Substorms occurred predominantly during the southward IMF orientation, suggesting that substorm onset often was not associated with the northern turn or decrease in the southward interplanetary Bz . The Northern Hemisphere’s substorms occurred generally during the positive interplanetary By in winter, and they were observed when the interplanetary By was negative in summer.Key words. Ionosphere (auroral ionosphere; particle precipitation – Magnetospheric physics (storm and substorm; magnetosphere-ionosphere interaction

  1. Contribution of Extracellular Polymeric Substances from Shewanella sp. HRCR-1 Biofilms to U(VI) Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Bin; Ahmed, B.; Kennedy, David W.; Wang, Zheming; Shi, Liang; Marshall, Matthew J.; Fredrickson, Jim K.; Isern, Nancy G.; Majors, Paul D.; Beyenal, Haluk

    2011-06-05

    The goal of this study was to quantify the contribution of extracellular polymeric substances (EPS) in U(VI) immobilization by Shewanella sp. HRCR-1. Through comparison of U(VI) immobilization using cells with bound EPS (bEPS) and cells without EPS, we showed that i) bEPS from Shewanella sp. HRCR-1 biofilms contributed significantly to U(VI) immobilization, especially at low initial U(VI) concentrations, through both sorption and reduction; ii) bEPS could be considered as a functional extension of the cells for U(VI) immobilization and they likely play more important roles at initial U(VI) concentrations; and iii) U(VI) reduction efficiency was found to be dependent upon initial U(VI) concentration and the efficiency decreased at lower concentrations. To quantify relative contribution of sorption and reduction in U(VI) immobilization by EPS fractions, we isolated loosely associated EPS (laEPS) and bEPS from Shewanella sp. HRCR-1 biofilms grown in a hollow fiber membrane biofilm reactor and tested their reactivity with U(V). We found that, when in reduced form, the isolated cell-free EPS fractions could reduce U(VI). Polysaccharides in the EPS likely contributed to U(VI) sorption and dominated reactivity of laEPS while redox active components (e.g., outer membrane c-type cytochromes), especially in bEPS, might facilitate U(VI) reduction.

  2. Multiple current sheets in a double auroral oval observed from the MAGION-2 and MAGION-3 satellites

    Directory of Open Access Journals (Sweden)

    M. Echim

    1997-04-01

    Full Text Available A case is described of multiple current sheets crossed by the MAGION-2 satellite in the near-midnight quieting auroral oval. The data were obtained by the magnetometer experiment onboard. Results show during a quieting period after a preceding substorm, or during an early growth phase of the next substorm, two double-sheet current bands, POLB and EQUB, located at respectively the polar and equatorial borders of the auroral oval separated by about 500 km in latitude. This is consistent with the double-oval structure during recovery introduced by Elphinstone et al. (1995. Within the POLB, the magnetic field data show simultaneous existence of several narrow parallel bipolar current sheets within the upward current branch (at 69.5–70.3° invariant latitude with an adjacent downward current branch at its polar side at (70.5–71.3°. The EQUB was similarly stratified and located at 61.2–63.5° invariant latitude. The narrow current sheets were separated on average by about 35 km and 15 km, respectively, within the POLB and EQUB. A similar case of double-oval current bands with small-scale structuring of their upward current branches during a quieting period is found in the data from the MAGION-3 satellite. These observations contribute to the double-oval structure of the late recovery phase, and add a small-scale structuring of the upward currents producing the auroral arcs in the double- oval pattern, at least for the cases presented here. Other observations of multiple auroral current sheets and theories of auroral arc multiplicity are briefly discussed. It is suggested that multiple X-lines in the distant tail, and/or leakage of energetic particles and FA currents from a series of plasmoids formed during preceding magnetic activity, could be one cause of highly stratified upward FA currents at the polar edge of the quieting double auroral oval.

  3. Auroral Electrojet Indices Designed to Provide a Global Measure, 2.5-Minute Intervals, of Auroral Zone Magnetic Activity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Auroral Electrojet index (AE) is designed to provide a global quantitative measure of auroral zone magnetic activity produced by enhanced ionospheric currents...

  4. Auroral Electrojet Index Designed to Provide a Global Measure, l-minute Intervals, of Auroral Zone Magnetic Activity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Auroral Electrojet index (AE) is designed to provide a global quantitative measure of auroral zone magnetic activity produced by enhanced ionospheric currents...

  5. Experimental studies of auroral arc generators

    Energy Technology Data Exchange (ETDEWEB)

    Suszcynsky, D.M.; Borovsky, J.E.; Thomsen, M.F. [and others

    1997-08-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). An all-sky video camera system was deployed in Eagle, Alaska at the foot of the magnetic field line that threads geosynchronous satellite 1989-046 as part of a campaign to study correlations of ground-based auroral activity with satellite-based plasma and energetic particle measurements. The overall intent of the project was to study magnetosphere-ionosphere coupling as it relates to the aurora, and, in particular, to look for signatures that may help to identify various auroral generator mechanism(s). During this study, our efforts were primarily directed towards identifying the generator mechanism(s) for pulsating aurora. Our data, though not conclusive, are found to support theories that propose a cyclotron resonance mechanism for the generation of auroral pulsations.

  6. Auroral Electrojet (AE, AL, AO, AU) - A Global Measure of Auroral Zone Magnetic Activity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The AE index is derived from geomagnetic variations in the horizontal component observed at selected (10-13) observatories along the auroral zone in the northern...

  7. New look at radar auroral motions

    International Nuclear Information System (INIS)

    Greenwald, R.A.; Ecklund, W.L.

    1975-01-01

    During October 1974, three modifications were temporarily added to the NOAA radar auroral backscatter facility located at Anchorage, Alaska. These modifications included (1) a multiple azimuth antenna system. (2) an on-line computer for processing amplitude and mean Doppler profiles of the radar backscatter, and (3) a 13-baud Barker coder. In combination with the radar these modifications provided data relevant to understanding both the microscopic and the macroscopic nature of the radar aurora. Appreciable structure was often found in the Doppler velocity profiles of radar auroral irregularities. Doppler velocities of nearly 2000 m/s were observed. By combining scatter amplitude profiles and mean Doppler profiles from the five azimuths we have produced contour maps of the scatter intensity and the Doppler velocity. The scatter intensity maps often indicate appreciable temporal and spatial structure in the radar auroral irregularities, corroborating the results of Tsunoda et al. (1974). The mean Doppler contour maps indicate that there is also appreciable temporal and spatial structure in the flow velocities of radar auroral irregularities. At those times when there appears to be large-scale uniformity in the irregularity flow, the Doppler velocity varies with azimuth in a manner that is consistent with a cosine-dependent azimuthal variation

  8. Anomalous width variation of rarefactive ion acoustic solitary waves in the context of auroral plasmas

    Directory of Open Access Journals (Sweden)

    S. S. Ghosh

    2004-01-01

    Full Text Available The presence of dynamic, large amplitude solitary waves in the auroral regions of space is well known. Since their velocities are of the order of the ion acoustic speed, they may well be considered as being generated from the nonlinear evolution of ion acoustic waves. However, they do not show the expected width-amplitude correlation for K-dV solitons. Recent POLAR observations have actually revealed that the low altitude rarefactive ion acoustic solitary waves are associated with an increase in the width with increasing amplitude. This indicates that a weakly nonlinear theory is not appropriate to describe the solitary structures in the auroral regions. In the present work, a fully nonlinear analysis based on Sagdeev pseudopotential technique has been adopted for both parallel and oblique propagation of rarefactive solitary waves in a two electron temperature multi-ion plasma. The large amplitude solutions have consistently shown an increase in the width with increasing amplitude. The width-amplitude variation profile of obliquely propagating rarefactive solitary waves in a magnetized plasma have been compared with the recent POLAR observations. The width-amplitude variation pattern is found to fit well with the analytical results. It indicates that a fully nonlinear theory of ion acoustic solitary waves may well explain the observed anomalous width variations of large amplitude structures in the auroral region.

  9. Probing the magnetosphere of the M8.5 dwarf TVLM 513-46546 by modelling its auroral radio emission. Hint of star exoplanet interaction?

    Science.gov (United States)

    Leto, P.; Trigilio, C.; Buemi, C. S.; Umana, G.; Ingallinera, A.; Cerrigone, L.

    2017-08-01

    In this paper, we simulate the cyclic circularly polarized pulses of the ultracool dwarf TVLM 513-46546, observed with the Very Large Array at 4.88 and 8.44 GHz on 2006 May, by using a three-dimensional model of the auroral radio emission from the stellar magnetosphere. During this epoch, the radio light curves are characterized by two pulses left-hand polarized at 4.88 GHz, and one doubly peaked (of opposite polarizations) pulse at 8.44 GHz. To take into account the possible deviation from the dipolar symmetry of the stellar magnetic-field topology, the model described in this paper is also able to simulate the auroral radio emission from a magnetosphere shaped like an offset dipole. To reproduce the timing and pattern of the observed pulses, we explored the space of parameters controlling the auroral beaming pattern and the geometry of the magnetosphere. Through the analysis of the TVLM 513-46546 auroral radio emission, we derive some indications on the magnetospheric field topology that is able to simultaneously reproduce the timing and patterns of the auroral pulses measured at 4.88 and 8.44 GHz. Each set of model solutions simulates two auroral pulses (singly or doubly peaked) per period. To explain the presence of only one 8.44 GHz pulse per period, we analyse the case of auroral radio emission limited only to a magnetospheric sector activated by an external body, like the case of the interaction of Jupiter with its moons.

  10. Cluster observations and theoretical identification of broadband waves in the auroral region

    Directory of Open Access Journals (Sweden)

    M. Backrud-Ivgren

    2005-12-01

    Full Text Available Broadband waves are common on auroral field lines. We use two different methods to study the polarization of the waves at 10 to 180 Hz observed by the Cluster spacecraft at altitudes of about 4 Earth radii in the nightside auroral region. Observations of electric and magnetic wave fields, together with electron and ion data, are used as input to the methods. We find that much of the wave emissions are consistent with linear waves in homogeneous plasma. Observed waves with a large electric field perpendicular to the geomagnetic field are more common (electrostatic ion cyclotron waves, while ion acoustic waves with a large parallel electric field appear in smaller regions without suprathermal (tens of eV plasma. The regions void of suprathermal plasma are interpreted as parallel potential drops of a few hundred volts.

  11. Non-enzymatic U(VI) interactions with biogenic mackinawite

    Science.gov (United States)

    Veeramani, H.; Qafoku, N. P.; Kukkadapu, R. K.; Murayama, M.; Hochella, M. F.

    2011-12-01

    Reductive immobilization of hexavalent uranium [U(VI)] by stimulation of dissimilatory metal and/or sulfate reducing bacteria (DMRB or DSRB) has been extensively researched as a remediation strategy for subsurface U(VI) contamination. These bacteria derive energy by reducing oxidized metals as terminal electron acceptors, often utilizing organic substrates as electron donors. Thus, when evaluating the potential for in-situ uranium remediation in heterogeneous subsurface media, it is important to understand how the presence of alternative electron acceptors such as Fe(III) and sulfate affect U(VI) remediation and the long term behavior and reactivity of reduced uranium. Iron, an abundant subsurface element, represents a substantial sink for electrons from DMRB, and the reduction of Fe(III) leads to the formation of dissolved Fe(II) or to reactive biogenic Fe(II)- and mixed Fe(II)/Fe(III)- mineral phases. Consequently, abiotic U(VI) reduction by reactive forms of biogenic Fe(II) minerals could be a potentially important process for uranium immobilization. In our study, the DMRB Shewanella putrefaciens CN32 was used to synthesize a biogenic Fe(II)-bearing sulfide mineral: mackinawite, that has been characterized by XRD, SEM, HRTEM and Mössbauer spectroscopy. Batch experiments involving treated biogenic mackinawite and uranium (50:1 molar ratio) were carried out at room temperature under strict anoxic conditions. Following complete removal of uranium from solution, the biogenic mackinawite was analyzed by a suite of analytical techniques including XAS, HRTEM and Mössbauer spectroscopy to determine the speciation of uranium and investigate concomitant Fe(II)-phase transformation. Determining the speciation of uranium is critical to success of a remediation strategy. The present work elucidates non-enzymatic/abiotic molecular scale redox interactions between biogenic mackinawite and uranium.

  12. Importance of c-Type cytochromes for U(VI reduction by Geobacter sulfurreducens

    Directory of Open Access Journals (Sweden)

    Leang Ching

    2007-03-01

    Full Text Available Abstract Background In order to study the mechanism of U(VI reduction, the effect of deleting c-type cytochrome genes on the capacity of Geobacter sulfurreducens to reduce U(VI with acetate serving as the electron donor was investigated. Results The ability of several c-type cytochrome deficient mutants to reduce U(VI was lower than that of the wild type strain. Elimination of two confirmed outer membrane cytochromes and two putative outer membrane cytochromes significantly decreased (ca. 50–60% the ability of G. sulfurreducens to reduce U(VI. Involvement in U(VI reduction did not appear to be a general property of outer membrane cytochromes, as elimination of two other confirmed outer membrane cytochromes, OmcB and OmcC, had very little impact on U(VI reduction. Among the periplasmic cytochromes, only MacA, proposed to transfer electrons from the inner membrane to the periplasm, appeared to play a significant role in U(VI reduction. A subpopulation of both wild type and U(VI reduction-impaired cells, 24–30%, accumulated amorphous uranium in the periplasm. Comparison of uranium-accumulating cells demonstrated a similar amount of periplasmic uranium accumulation in U(VI reduction-impaired and wild type G. sulfurreducens. Assessment of the ability of the various suspensions to reduce Fe(III revealed no correlation between the impact of cytochrome deletion on U(VI reduction and reduction of Fe(III hydroxide and chelated Fe(III. Conclusion This study indicates that c-type cytochromes are involved in U(VI reduction by Geobacter sulfurreducens. The data provide new evidence for extracellular uranium reduction by G. sulfurreducens but do not rule out the possibility of periplasmic uranium reduction. Occurrence of U(VI reduction at the cell surface is supported by the significant impact of elimination of outer membrane cytochromes on U(VI reduction and the lack of correlation between periplasmic uranium accumulation and the capacity for uranium

  13. WFC3 TV2 Testing: UVIS Channel Glint

    Science.gov (United States)

    Brown, Thomas M.

    2007-10-01

    The UVIS spare detector (UVIS build 2) was housed in WFC3 during the most recent epoch of thermal vaccum ground testing. We scanned the chip gap with a HeNe laser, to look for scattering from any material in the CCD chip gap or the edges of the CCD chips themselves. Although we found no such scattering issues, we did find a significant glint problem involving reflection from the surface of the CCD to the CCD housing and back down to the CCD. The glint appears as a large streak, ~10,000 pixels in area, containing anywhere from 1% to 30% of the energy within the source itself, depending upon the wavelength and position of the source. Approximately 10% of the detector area leads to glint when a source is placed in that area. Although any one glint comprises a tiny fraction of the detector area, the glint sweeps over a large area as the source is moved, implying that approximately 15% of the detector could be significantly illuminated by glint when observing a crowded field. As a result, the UVIS detectors currently not installed in the instrument have been modified to mask the surfaces responsible for the glint, to avoid this issue on orbit.

  14. Influence of U(VI) on the metabolism of plant cells studied by microcalorimetry and TRLFS

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, Susanne; Geipel, Gerhard [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry; Fahmy, Karim; Oertel, Jana [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biophysics; Bok, Frank [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes

    2017-06-01

    Uranium(VI) shows a concentration-dependent influence on the metabolic activity of plant cells. With increasing U(VI) concentration, the predominant U(VI) species in medium R{sub red} changes from UO{sub 2}HPO{sub 4}(s) to (UO{sub 2}){sub 3}(OH){sub 5}{sup +}, which may affect the bioavailability of U(VI).

  15. Fate of Adsorbed U(VI) during Sulfidization of Lepidocrocite and Hematite

    NARCIS (Netherlands)

    Alexandratos, Vasso G.; Behrends, Thilo; Van Cappellen, Philippe

    2017-01-01

    The impact on U(VI) adsorbed to lepidocrocite (γ-FeOOH) and hematite (α-Fe2O3) was assessed when exposed to aqueous sulfide (S(-II)aq) at pH 8.0. With both minerals, competition between S(-II) and U(VI) for surface sites caused instantaneous release of adsorbed U(VI). Compared to lepidocrocite,

  16. Fractal approach to description of the auroral structure

    Directory of Open Access Journals (Sweden)

    B. V. Kozelov

    2003-09-01

    Full Text Available During the last two decades the fractal geometry has become a powerful approach to different physical problems. It is also found to be useful in image processing applications. A numerical quantity that characterizes the auroral structure would be important for auroral investigations. We try to obtain the quantity on the basis of the box-counting dimension of the line of equal intensity. In this paper we present results of some tests of our procedure by simulated images. The possibilities that the approach gives us for analysis of the auroral dynamics are discussed. The auroral dynamics during several typical auroral events are considered.Key words. Ionosphere (auroral ionosphere – Magnetospheric physics (magnetosphere-ionosphere interactions – Space plasma physics (nonlinear phenomena

  17. Auroral bright spot sequence near 14 MLT

    International Nuclear Information System (INIS)

    Sandholt, P.E.; Lybekk, B.

    1990-08-01

    Optical observations of a dayside auroral brightening sequence, by means of all-sky TV cameras and meridian scanning photometers, have been combined with EISCAT ion drift observations within the same invariant latitude - MLT sector. The reported events, covering a 35 min interval around 14 MLT, are embedded within a longer period of similar auroral activity between 0830 (1200 MLT) and 1300 UT (1600 MLT). These observations are discussed in relation to recent models of boundary layer plasma dynamics and the associated magnetosphere-ionosphere coupling. The ionospheric events may correspond to large-scale wavelike motions of the low-latitude boundary layer. Based on this interpretation the observed spot size, speed and repetition period (∼ 10 min) give a wavelenght ∼ 900 km in the present case. The events can also be explained as ionospheric signatures of newly opened flux tubes associated with reconnection bursts at the magnetopause near 1400 MLT. 46 refs., 11 figs

  18. Experimental study of diffuse auroral precipitations

    International Nuclear Information System (INIS)

    Mouaia, K.

    1983-01-01

    First chapter is devoted to low energy electron precipitation in the evening sector of the auroral magnetosphere, during quiet and disturbed magnetic periods. Four subjects are studied in detail: the latitude distribution of the varied auroral forms and their relations to external magnetosphere; the time coefficients related to precipitations, the form and the dynamic of the diffuse precipitation equatorial frontier; the precipitation effect on the ionosphere concentration. The last part of the chapter shows that the plasma convection in the magnetosphere, associated to wave-particle interactions near the equatorial accounts for the principal characteristics of the evening sector diffuse electronic precipitations. The second chapter deals with subauroral precipitations of low energy ions, after the magnetospheric substorms, in the high latitude regions of the morning sector [fr

  19. Auroral ionospheric quiet summer time conductances

    International Nuclear Information System (INIS)

    Brekke, A.; Hall, C.

    1988-01-01

    The auroral zone E-region conductivities and conductances have been studied for 7 quiet time summer days. The Hall- and Pedersen conductances are found to follow the solar zenith variations in a rather regular fashion, and empirical formulas for these conductances are obtained. The choice of proper collision frequency models is found to be of great importance when deriving the conductances, and it is argued that some of the different results presented by other authors may be due to different models of the collision frequencies. The Hall- to Pedersen conductance ratios can only be used as an indicator of the energy of the precipitating auroral particles when the contribution from the background solar ionization is subtracted. When this is done this ratio takes much higher values than previously reported

  20. Morphology of auroral zone radio wave scintillation

    International Nuclear Information System (INIS)

    Rino, C.L.; Matthews, S.J.

    1980-01-01

    This paper describes the morphology of midnight sector and morning sector auroral zone scintillation observations made over a two-year period using the Wideband satelite, which is in a sun-synchronous, low-altitude orbit. No definitive seasonal variation was found. The nighttime data showed the highest scintillation ocurrence levels, but significant amounts of morning scintillation were observed. For the most part the scintillation activity followed the general pattern of local magnetic activity. The most prominent feature in the nightime data is a localized amplitude and phase scintillation enhancement at the point where the propagation vector lies within an L shell. A geometrical effect due to a dynamic slab of sheetlike structures in the F region is hypothesized as the source of his enhancement. The data have been sorted by magnetic activity, proximity to local midnight, and season. The general features of the data are in agreement with the accepted morphology of auroral zone scintillation

  1. The convection electric field in auroral substorms

    DEFF Research Database (Denmark)

    Gjerløv, Jesper Wittendorff; Hoffman, R.A.

    2001-01-01

    Dynamics Explorer 2 (DE 2) electric field and ion drift data are used in a statistical study of the ionospheric convection electric field in bulge-type auroral substorms. Thirty-one individual DE 2 substorm crossings were carefully selected and organized by the use of global auroral images obtained...... this database enabled us to compile a model of the ionospheric convection electric field. The characteristics of the premidnight convection reversal show a pronounced local time dependency. Far west of the surge it is a fairly well defined point reversal or convection shear. Approaching the surge and within...... the surge it is a region of weak electric fields increasing in width toward midnight that separates regions of equatorward and poleward electric fields. Therefore we adopt the term Harang region rather than the Harang discontinuity for the premidnight convection reversal. A relatively narrow convection...

  2. Propagation of auroral hiss at high altitudes

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej; Gurnett, D. A.

    2002-01-01

    Roč. 29, č. 10 (2002), s. 119-1-119-4, doi: 10.1029/2001GL013666 ISSN 0094-8276 R&D Projects: GA ČR GA205/01/1064 Grant - others:NASA(US) NAG5-7943 Institutional research plan: CEZ:AV0Z3042911; CEZ:MSM 113200004 Keywords : auroral hiss * electron beams * wave measurement Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.150, year: 2002

  3. Statistical study of auroral omega bands

    Directory of Open Access Journals (Sweden)

    N. Partamies

    2017-09-01

    Full Text Available The presence of very few statistical studies on auroral omega bands motivated us to test-use a semi-automatic method for identifying large-scale undulations of the diffuse aurora boundary and to investigate their occurrence. Five identical all-sky cameras with overlapping fields of view provided data for 438 auroral omega-like structures over Fennoscandian Lapland from 1996 to 2007. The results from this set of omega band events agree remarkably well with previous observations of omega band occurrence in magnetic local time (MLT, lifetime, location between the region 1 and 2 field-aligned currents, as well as current density estimates. The average peak emission height of omega forms corresponds to the estimated precipitation energies of a few keV, which experienced no significant change during the events. Analysis of both local and global magnetic indices demonstrates that omega bands are observed during substorm expansion and recovery phases that are more intense than average substorm expansion and recovery phases in the same region. The omega occurrence with respect to the substorm expansion and recovery phases is in a very good agreement with an earlier observed distribution of fast earthward flows in the plasma sheet during expansion and recovery phases. These findings support the theory that omegas are produced by fast earthward flows and auroral streamers, despite the rarity of good conjugate observations.

  4. New imaging spectrometer for auroral research

    International Nuclear Information System (INIS)

    Rairden, R.; Swenson, G.

    1994-01-01

    A Loral 1024 x 1024 CCD array with 15-micron pixels has been incorporated as the focal plane detector in a new imaging spectrometer for auroral research. The large format low-noise CCD provides excellent dynamic range and signal to noise characteristics with image integration times on the order of 60 seconds using f/1.4 camera optics. Further signal enhancement is achieved through on-CCD pixel binning. In the nominal binned mode the instrument wavelength resolution varies from 15 to 30 angstrom across the 5000 to 8600 angstrom spectral range. Images are acquired and stored digitally on a Macintosh computer. This instrument was operated at a field site in Godhavn, Greenland during the past two winters (1993, 1994) to measure the altitude distribution of the various spectral emissions within auroral arcs. The height resolution on an auroral feature 300 km distant is ∼1 km. Examples of these measurements are presented here in snapshot and summary image formats illustrating the wealth of quantitative information provided by this new imaging spectrometer

  5. A GNSS auroral space weather product-Quantifying auroral effects on GNSS

    Science.gov (United States)

    Mushini, S. C.; Spanswick, E.; Skone, S.; Donovan, E.

    2016-12-01

    Aurora occurs in different well-known morphologies, or types, including the best-known arcs and patchy pulsating aurora (PPA). Previous observational studies have demonstrated that the ionospheric effects of auroral precipitation affect the accuracy of global navigation satellite systems. Hence, there is a need to predict the level of GNSS disruption using auroral information. In an initial attempt to explore this idea, we have used data from a THEMIS (Time History of Events and Macroscale Interactions during Substorms) All-Sky Imagers (ASIs) located at Gillam ( 65.650 geo.mag.lat.) and Fort Smith ( 67.230 geo.mag.lat.). GPS data was also obtained from a Canadian High Arctic Ionospheric Network (CHAIN) GPS receivers collocated with the THEMIS ASIs. This GPS receiver is a commercial GPS scintillation receiver. ASI data and corresponding GPS data for the years 2013-2016 was catalogued in a database. Using this database, relations between scintillation indices and different types of aurora were analyzed. The magnitude of the phase scintillation index (σφ) observed for auroral arcs was much higher than for PPA and correspondingly more cycle slips were observed during auroral arcs compared to PPA. We have also analyzed spectral slopes for all events during auroral arcs and patchy aurora. Although the histograms for these spectral indices seem to reveal that average spectral index for both of these phenomena was 1.75, spectral indices for auroral arcs seem to tend towards higher values compared to spectral indices of PPA. Distribution of average brightness around the satellite's IPP, during PPA and arcs were also considered in this study. "Nowcast" GNSS user disruption statistical model is under development.

  6. Polar heating in Saturn's thermosphere

    Directory of Open Access Journals (Sweden)

    C. G. A. Smith

    2005-10-01

    Full Text Available A 3-D numerical global circulation model of the Kronian thermosphere has been used to investigate the influence of polar heating. The distributions of temperature and winds resulting from a general heat source in the polar regions are described. We show that both the total energy input and its vertical distribution are important to the resulting thermal structure. We find that the form of the topside heating profile is particularly important in determining exospheric temperatures. We compare our results to exospheric temperatures from Voyager occultation measurements (Smith et al., 1983; Festou and Atreya, 1982 and auroral H3+ temperatures from ground-based spectroscopic observations (e.g. Miller et al., 2000. We find that a polar heat source is consistent with both the Smith et al. determination of T∞~400 K at ~30° N and auroral temperatures. The required heat source is also consistent with recent estimates of the Joule heating rate at Saturn (Cowley et al., 2004. However, our results show that a polar heat source can probably not explain the Festou and Atreya determination of T∞~800 K at ~4° N and the auroral temperatures simultaneously. Keywords. Ionosphere (Planetary ionosphere – Magnetospherica physics (Planetary magnetospheres – Meterology and atmospheric dynamics (Thermospheric dynamics

  7. Discovery Of B Ring Propellers In Cassini UVIS, And ISS

    Science.gov (United States)

    Sremcevic, Miodrag; Stewart, G. R.; Albers, N.; Esposito, L. W.

    2012-10-01

    We present evidence for the existence of propellers in Saturn's B ring by combining data from Cassini Ultraviolet Imaging Spectrograph (UVIS) and Imaging Science Subsystem (ISS) experiments. We identify two propeller populations: (1) tens of degrees wide propellers in the dense B ring core, and (2) smaller, more A ring like, propellers populating the inner B ring. The prototype of the first population is an object observed at 18 different epochs between 2005 and 2010. The ubiquitous propeller "S" shape is seen both in UVIS occultations as an optical depth depletion and in ISS as a 40 degrees wide bright stripe in unlit geometries and dark in lit geometries. Combining the available Cassini data we infer that the object is a partial gap embedded in the high optical depth region of the B ring. The gap moves at orbital speed consistent with its radial location. From the radial separation of the propeller wings we estimate that the embedded body, which causes the propeller structure, is about 1.5km in size located at a=112,921km. The UVIS occultations indicate an asymmetric propeller "S" shape. Since the object is located at an edge between high and relatively low optical depth, this asymmetry is most likely a consequence of the strong surface mass density gradient. We estimate that there are possibly dozen up to 100 other propeller objects in Saturn's B ring. The location of the discovered body, at an edge of a dense ringlet within the B ring, suggests a novel mechanism for the up to now illusive B ring irregular large-scale structure of alternating high and low optical depth ringlets. We propose that this B ring irregular structure may have its cause in the presence of many embedded bodies that shepherd the individual B ring ringlets.

  8. uVis: A Formula-Based Visualization Tool

    DEFF Research Database (Denmark)

    Pantazos, Kostas; Xu, Shangjin; Kuhail, Mohammad Amin

    Several tools use programming approaches for developing advanced visualizations. Others can with a few steps create simple visualizations with built-in patterns, and users with limited IT experience can use them. However, it is programming and time demanding to create and customize...... these visualizations. We introduce uVis, a tool that allows users with advanced spreadsheet-like IT knowledge and basic database understanding to create simple as well as advanced visualizations. These users construct visualizations by combining building blocks (i.e. controls, shapes). They specify spreadsheet...

  9. Axi-symmetric models of auroral current systems in Jupiter's magnetosphere with predictions for the Juno mission

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2008-12-01

    Full Text Available We develop two related models of magnetosphere-ionosphere coupling in the jovian system by combining previous models defined at ionospheric heights with magnetospheric magnetic models that allow system parameters to be extended appropriately into the magnetosphere. The key feature of the combined models is thus that they allow direct connection to be made between observations in the magnetosphere, particularly of the azimuthal field produced by the magnetosphere-ionosphere coupling currents and the plasma angular velocity, and the auroral response in the ionosphere. The two models are intended to reflect typical steady-state sub-corotation conditions in the jovian magnetosphere, and transient super-corotation produced by sudden major solar wind-induced compressions, respectively. The key simplification of the models is that of axi-symmetry of the field, flow, and currents about the magnetic axis, limiting their validity to radial distances within ~30 RJ of the planet, though the magnetic axis is appropriately tilted relative to the planetary spin axis and rotates with the planet. The first exploration of the jovian polar magnetosphere is planned to be undertaken in 2016–2017 during the NASA New Frontiers Juno mission, with observations of the polar field, plasma, and UV emissions as a major goal. Evaluation of the models along Juno planning orbits thus produces predictive results that may aid in science mission planning. It is shown in particular that the low-altitude near-periapsis polar passes will generally occur underneath the corresponding auroral acceleration regions, thus allowing brief examination of the auroral primaries over intervals of ~1–3 min for the main oval and ~10 s for narrower polar arc structures, while the "lagging" field deflections produced by the auroral current systems on these passes will be ~0.1°, associated with azimuthal fields above the ionosphere of a few hundred nT.

  10. Axi-symmetric models of auroral current systems in Jupiter's magnetosphere with predictions for the Juno mission

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2008-12-01

    Full Text Available We develop two related models of magnetosphere-ionosphere coupling in the jovian system by combining previous models defined at ionospheric heights with magnetospheric magnetic models that allow system parameters to be extended appropriately into the magnetosphere. The key feature of the combined models is thus that they allow direct connection to be made between observations in the magnetosphere, particularly of the azimuthal field produced by the magnetosphere-ionosphere coupling currents and the plasma angular velocity, and the auroral response in the ionosphere. The two models are intended to reflect typical steady-state sub-corotation conditions in the jovian magnetosphere, and transient super-corotation produced by sudden major solar wind-induced compressions, respectively. The key simplification of the models is that of axi-symmetry of the field, flow, and currents about the magnetic axis, limiting their validity to radial distances within ~30 RJ of the planet, though the magnetic axis is appropriately tilted relative to the planetary spin axis and rotates with the planet. The first exploration of the jovian polar magnetosphere is planned to be undertaken in 2016–2017 during the NASA New Frontiers Juno mission, with observations of the polar field, plasma, and UV emissions as a major goal. Evaluation of the models along Juno planning orbits thus produces predictive results that may aid in science mission planning. It is shown in particular that the low-altitude near-periapsis polar passes will generally occur underneath the corresponding auroral acceleration regions, thus allowing brief examination of the auroral primaries over intervals of ~1–3 min for the main oval and ~10 s for narrower polar arc structures, while the "lagging" field deflections produced by the auroral current systems on these passes will be ~0.1°, associated with azimuthal fields above the ionosphere of a few hundred nT.

  11. Electrostatic mode coupling at 2ω/sub UH/: a generation mechanism for auroral kilometric radiation

    International Nuclear Information System (INIS)

    Barbosa, D.D.

    1976-01-01

    The instability of a low density, electron beam drifting along a magnetic field to nearly perpendicular propagating electrostatic waves near the upper hybrid frequency is investigated for application to an auroral environment. It was found that 4 to 10 KeV beams can interact significantly with the background plasma through anomalous cyclotron resonances which extend the range of unstable parallel wave numbers over a large region of wave number space. This region can include a nonconvective hot spot where the group velocity of the unstable waves approaches zero. Positive slope in the total distribution function is not a necessary requirement for instability; the broken symmetry along the field can allow the transfer of beam drift energy to electrostatic wave turbulence. Using Gurnett's (1974) polar ionospheric model for a representative auroral field line modeled as dipolar (L = 8), one infers that certain heights favor generation of enhanced, beamdriven electrostatic turbulence. Those regions are in the vicinity of where ω/sub UH//Ω/sub c/ approx. 3/2 with an excursion from this value depending on beam parameters. We speculate that electrostatic turbulence will heat the background electrons to a limiting temperature such that the instability becomes marginally effective. This limiting temperature is estimated for auroral beam-plasma conditions as 1 to 6 eV. Quasi-linear beam moment equations are developed to compute an upper bound to electrostatic wave amplitudes that can be maintained by the beam. We find that energy densities approaching E 2 /8πnT approx. 1 over auroral scale lengths can result in effective energy transfer from the beam to the plasma

  12. Energetic electron precipitation and auroral morphology at the substorm recovery phase

    Science.gov (United States)

    Oyama, S.; Kero, A.; Rodger, C. J.; Clilverd, M. A.; Miyoshi, Y.; Partamies, N.; Turunen, E.; Raita, T.; Verronen, P. T.; Saito, S.

    2017-06-01

    It is well known that auroral patterns at the substorm recovery phase are characterized by diffuse or patch structures with intensity pulsation. According to satellite measurements and simulation studies, the precipitating electrons associated with these aurorae can reach or exceed energies of a few hundreds of keV through resonant wave-particle interactions in the magnetosphere. However, because of difficulty of simultaneous measurements, the dependency of energetic electron precipitation (EEP) on auroral morphological changes in the mesoscale has not been investigated to date. In order to study this dependency, we have analyzed data from the European Incoherent Scatter (EISCAT) radar, the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) riometer, collocated cameras, ground-based magnetometers, the Van Allen Probe satellites, Polar Operational Environmental Satellites (POES), and the Antarctic-Arctic Radiation-belt (Dynamic) Deposition-VLF Atmospheric Research Konsortium (AARDDVARK). Here we undertake a detailed examination of two case studies. The selected two events suggest that the highest energy of EEP on those days occurred with auroral patch formation from postmidnight to dawn, coinciding with the substorm onset at local midnight. Measurements of the EISCAT radar showed ionization as low as 65 km altitude, corresponding to EEP with energies of about 500 keV.Plain Language SummaryAurora is emission of the atmospheric particles excited by electrons coming from the magnetosphere. The electrons have energies of 1-10 keV or higher. In particular, it is known that the energy can increase more than 100 keV in association with the pulsating aurora and that morphology of the pulsating aurora changes with time. However, relationships between the energy increase and the morphological change have not been studied well. This study analyzed the ionospheric density and auroral images and found that significant increases of the energy coincides with evolution of the

  13. Polyaniline (PANI) modified bentonite by plasma technique for U(VI) removal from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinghao [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Intelligent Manufacturing Technology Research Institute, Hefei University of Technology, Hefei 230088 (China); Cheng, Cheng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Xiao, Chengjian, E-mail: xiaocj@caep.cn [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Shao, Dadong, E-mail: shaodadong@126.com [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Xu, Zimu, E-mail: xzm@mail.ustc.edu.cn [Intelligent Manufacturing Technology Research Institute, Hefei University of Technology, Hefei 230088 (China); Wang, Jiaquan; Hu, Shuheng [Intelligent Manufacturing Technology Research Institute, Hefei University of Technology, Hefei 230088 (China); Li, Xiaolong; Wang, Weijuan [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2017-07-31

    Highlights: • PANI/bentonie can be synthesized by simple plasma technique. • PANI/bentonie has an excellent adsorption capacity for trace uranium in solution. • U(VI) adsorption on PANI/bentonite is a spontaneous and endothermic process. - Abstract: Polyaniline (PANI) modified bentonite (PANI/bentonie) was synthesized by plasma induced polymerization of aniline on bentonite surface, and applied to uptake of uranium(VI) ions from aqueous solution. The as-synthesized PANI/bentonie was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). Batch adsorption technique was utilized to investigate the adsorption of U(VI) on bentonite and PANI/bentonite. The adsorption of U(VI) (10 mg/L) on PANI/bentonite surface is fairly depend on solution pH, ionic strength, and temperature in solution. The modified PANI on PANI/bentonite surface significantly enhances its adsorption capability for U(VI). The presence of humic acid (HA) can sound enhance U(VI) adsorption on PANI/bentonite at pH < 6.5 because of the strong complexation, and inhibits U(VI) adsorption at pH > 6.5. According to the thermodynamic parameters, the adsorption of U(VI) on PANI/bentonite surface is a spontaneous and endothermic process. The results highlight the application of PANI/bentonite composites as candidate material for the uptake of trace U(VI) from aqueous solution.

  14. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    Science.gov (United States)

    Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.

    2011-01-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.

  15. One-Year Observations of Jupiter by the Jovian Infrared Auroral Mapper on Juno

    Science.gov (United States)

    Adriani, A.; Mura, A.; Bolton, S. J.; Connerney, J. E. P.; Levin, S.; Becker, H. N.; Bagenal, F.; Hansen, C. J.; Orton, G.; Gladstone, R.; Kurth, W. S.; Mauk, B.; Valek, P. W.

    2017-12-01

    The Jovian InfraRed Auroral Mapper (JIRAM) [1] on board the Juno [2,3] spacecraft, is equipped with an infrared camera and a spectrometer working in the spectral range 2-5 μm. JIRAM was built to study the infrared aurora of Jupiter as well as to map the planet's atmosphere in the 5 µm spectral region. The spectroscopic observations are used for studying clouds and measuring the abundance of some chemical species that have importance in the atmosphere's chemistry, microphysics and dynamics like water, ammonia and phosphine. During 2017 the instrument will operate during all 7 of Juno's Jupiter flybys. JIRAM has performed several observations of the polar regions of the planet addressing the aurora and the atmosphere. Unprecedented views of the aurora and the polar atmospheric structures have been obtained. We present a survey of the most significant observations that the instrument has performed during the current year. [1] Adriani A. et al., JIRAM, the Jovian Infrared Auroral Mapper. Space Sci. Rew., DOI 10.1007/s11214-014-0094-y, 2014. [2] Bolton S.J. et al., Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft. Science DOI: 10.1126/science.aal2108, 2017. [3] Connerney J. E.P. et al., Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science, DOI: 10.1126/science.aam5928, 2017.

  16. Solvent impregnated resin for isolation of U(VI) from industrial wastes

    International Nuclear Information System (INIS)

    Karve, M.; Rajgor, R.V.

    2008-01-01

    A solid-phase extraction method based upon impregnation of Cyanex 302 (bis(2,4,4- trimethylpentyl)mono-thio-phosphinic acid) on Amberlite XAD-2 resin is proposed for isolation of U(VI) from uranmicrolite ore tailing samples and industrial effluent samples. U(VI) was sorbed from nitric acid media on the solvent-impregnated resin (SIR) and was recovered completely with 1.0 M HCl. Based upon sorption behavior of U(VI) with Cyanex 302, it was quantitatively sorbed on the SIR in a dynamic method, while the other metal ions were not sorbed by the modified resin. The preparation of impregnated resin is simple, based upon physical interaction of the extractant and solid support, has good sorption capacity for U(VI), and is also reliable for detection of traces of U(VI). (authors)

  17. Effect of Salicylic and Picolinic Acids on the Adsorption of U(VI) onto Oxides

    International Nuclear Information System (INIS)

    Park, Kyoung Kyun; Jung, Euo Chang; Cho, Hye Ryun; Song, Kyu Seok

    2009-01-01

    The effect of organic acids on the adsorption of U(VI) onto oxide surfaces (TiO 2 (anatase), SiO 2 (amorphous) and Al 2 O-3(amorphous)) has been investigated. Two different organic acids, salicylic and picolinic acids, were used. Changes of adsorption ratio of U(VI), which depend on the existence of organic acids in a sample, were measured as a function of pH. Quantities of adsorbed organic acids, which depend on the existence of U(VI) in a sample, were also measured as a function of pH. It is confirmed that the soluble complex formation of U(VI) with organic acids can deteriorate the adsorption of U(VI) onto TiO 2 surface. It is noteworthy that salicylic acid does not affect the adsorption of U(VI) onto SiO 2 surface, however, picolinic acid enhances the adsorption of U(VI) onto SiO 2 surface. The latter effect can be understood by considering the formation of a ternary surface complex on SiO 2 surface, which was confirmed by the co-adsorption of picolinic acid with U(VI) and the change in a fluorescence spectra of U(VI) on surface, In the case of Al 2 O-3, organic acids themselves were largely adsorbed onto a surface without deteriorating the adsorption of U(VI). This would support the possibility of a ternary surface complex formation on the Al 2 O-3 surface, and an additional spectroscopic study is required.

  18. Investigation of U(VI) adsorption in quartz-chlorite mineral mixtures.

    Science.gov (United States)

    Wang, Zheming; Zachara, John M; Shang, Jianying; Jeon, Choong; Liu, Juan; Liu, Chongxuan

    2014-07-15

    A batch and cryogenic laser-induced time-resolved luminescence spectroscopy investigation of U(VI) adsorbed on quartz-chlorite mixtures with variable mass ratios have been performed under field-relevant uranium concentrations (5×10(-7) M and 5×10(-6) M) in pH 8.1 synthetic groundwater. The U(VI) adsorption Kd values steadily increased as the mass fraction of chlorite increased, indicating preferential sorption to chlorite. For all mineral mixtures, U(VI) adsorption Kd values were lower than that calculated from the assumption of component additivity possibly caused by surface modifications stemming from chlorite dissolution; The largest deviation occurred when the mass fractions of the two minerals were equal. U(VI) adsorbed on quartz and chlorite displayed characteristic individual luminescence spectra that were not affected by mineral mixing. The spectra of U(VI) adsorbed within the mixtures could be simulated by one surface U(VI) species on quartz and two on chlorite. The luminescence intensity decreased in a nonlinear manner as the adsorbed U(VI) concentration increased with increasing chlorite mass fraction-likely due to ill-defined luminescence quenching by both structural Fe/Cr in chlorite, and trace amounts of solubilized and reprecipitated Fe/Cr in the aqueous phase. However, the fractional spectral intensities of U(VI) adsorbed on quartz and chlorite followed the same trend of fractional adsorbed U(VI) concentration in each mineral phase with approximate linear correlations, offering a method to estimate of U(VI) concentration distribution between the mineral components with luminescence spectroscopy.

  19. Two theories of auroral electron acceleration

    International Nuclear Information System (INIS)

    Bryant, D.A.

    1990-03-01

    Two theories of auroral electron acceleration are discussed. The first is the currently widely held view that the acceleration is an ordered process in a quasi-static electric field. It is suggested that, although there are many factors seeming to support this theory, the major qualifications and uncertainties that have been identified combine to cast serious doubt over its validity. The second is a relatively new interpretation in terms of stochastic acceleration in turbulent electric fields. This second theory, which appears to account readily for most known features of the electron distribution function, is considered to provide a more promising approach to this central question in magnetospheric plasma physics. (author)

  20. DAPPA grafted polymer: an efficient solid phase extractant for U(VI), Th(IV) and La(III) from acidic waste streams and environmental samples.

    Science.gov (United States)

    Raju, Ch Siva Kesava; Subramanian, M S

    2005-07-15

    A new class of polymeric resin has been synthesized by grafting Merrifield chloromethylated resin with (dimethyl amino-phosphono-methyl)-phosphonic acid (MCM-DAPPA), for the preconcentration of U(VI), Th(IV) and La(III) from both acidic wastes and environmental samples. The various chemical modification steps involved during grafting process are characterized by FT-IR spectroscopy, (31)P and (13)C-CPMAS (cross-polarized magic angle spin) NMR spectroscopy and CHNS/O elemental analysis. The water regain capacity data for the grafted polymer are obtained from thermo-gravimetric (TG) analysis. The influence of various physico-chemical parameters during the quantitative extraction of metal ions by the resin phase are studied and optimized by both static and dynamic methods. The significant feature of this grafted polymer is its ability to extract both actinides and lanthanides from high-level acidities as well as from near neutral conditions. The resin shows very high sorption capacity values of 2.02, 0.89 and 0.54mmolg(-1) for U(VI), 1.98, 0.63 and 0.42mmolg(-1) for Th(IV) and 1.22, 0.39 and 0.39mmolg(-1) for La(III) under optimum pH, HNO(3) and HCl concentration, respectively. The grafted polymer shows faster phase exchange kinetics (99.5% recovery using 1M (NH(4))(2)CO(3), as eluent. The developed grafted resin has been successfully applied in extracting Th(IV) from high matrix monazite sand, U(VI) from sea water and also U(VI) and Th(IV) from simulated nuclear spent fuel mixtures. The analytical data obtained from triplicate measurements are within 3.9% R.S.D. reflecting the reproducibility and reliability of the developed method.

  1. Cluster in the Auroral Acceleration Region

    Science.gov (United States)

    Pickett, Jolene S.; Fazakerley, Andrew N.; Marklund, Gorun; Dandouras, Iannis; Christopher, Ivar W.; Kistler, Lynn; Lucek, Elizabeth; Masson, Arnaud; Taylor, Matthew G.; Mutel, Robert L.; hide

    2010-01-01

    Due to a fortuitous evolution of the Cluster orbit, the Cluster spacecraft penetrated for the first time in its mission the heart of Earth's auroral acceleration region (AAR) in December 2009 and January 2010. During this time a special AAR campaign was carried out by the various Cluster instrument teams with special support from ESA and NASA facilities. We present some of the first multi-spacecraft observations of the waves, particles and fields made during that campaign. The Cluster spacecraft configuration during these AAR passages was such that it allowed us to explore the differences in the signatures of waves, particles, and fields on the various spacecraft in ways not possible with single spacecraft. For example, one spacecraft was more poleward than the other three (C2), one was at higher altitude (C1), and one of them (0) followed another (C4) through the AAR on approximately the same track but delayed by three minutes. Their separations were generally on the order of a few thousand km or less and occasionally two of them were lying along the same magnetic field line. We will show some of the first analyses of the data obtained during the AAR campaign, where upward and downward current regions, and the waves specifically associated with those regions, as well as the auroral cavities, were observed similarly and differently on the various spacecraft, helping us to explore the spatial, as well as the temporal, aspects of processes occurring in the AAR.

  2. Electric field mapping and auroral Birkeland currents

    International Nuclear Information System (INIS)

    Kaufmann, R.L.; Larson, D.J.

    1989-01-01

    Magnetic field lines, electric fields and equipotentials have been mapped throughout the magnetosphere in the vicinity of strong Birkeland currents. It was found that a uniform electric field at either the ionospheric or the equatorial end of a field line can map to a highly structured field at the other end if strong Birkeland currents are located nearby. The initiation of sheet currents of the region 1 - region 2 scale size and intensity resulted in magnetic field line displacements of about 1/2 hour in local time between equatorial and ionospheric end points. As a result, a uniform dawn to dusk electric field at the equator mapped to an ionospheric electric field with strong inward pointing components in the dusk hemisphere. Similar distortions were produced by Birkeland currents associated with narrow east-west-aligned auroral arcs. A specific model for the auroral current system, based on ionospheric measurements during a large substorm, was used to study effects seen during disturbed periods. An iterative procedure was developed to generate a self-consistent current system even in the presence of highly twisted field lines. The measured ionospheric electric field was projected tot he equatorial plane in the presence of the model Birkeland current system. Several physical processes were seen to influence ionospheric and equatorial electric fields, and the associated plasma convection, during a substorm

  3. The auroral footprint of Enceladus on Saturn.

    Science.gov (United States)

    Pryor, Wayne R; Rymer, Abigail M; Mitchell, Donald G; Hill, Thomas W; Young, David T; Saur, Joachim; Jones, Geraint H; Jacobsen, Sven; Cowley, Stan W H; Mauk, Barry H; Coates, Andrew J; Gustin, Jacques; Grodent, Denis; Gérard, Jean-Claude; Lamy, Laurent; Nichols, Jonathan D; Krimigis, Stamatios M; Esposito, Larry W; Dougherty, Michele K; Jouchoux, Alain J; Stewart, A Ian F; McClintock, William E; Holsclaw, Gregory M; Ajello, Joseph M; Colwell, Joshua E; Hendrix, Amanda R; Crary, Frank J; Clarke, John T; Zhou, Xiaoyan

    2011-04-21

    Although there are substantial differences between the magnetospheres of Jupiter and Saturn, it has been suggested that cryovolcanic activity at Enceladus could lead to electrodynamic coupling between Enceladus and Saturn like that which links Jupiter with Io, Europa and Ganymede. Powerful field-aligned electron beams associated with the Io-Jupiter coupling, for example, create an auroral footprint in Jupiter's ionosphere. Auroral ultraviolet emission associated with Enceladus-Saturn coupling is anticipated to be just a few tenths of a kilorayleigh (ref. 12), about an order of magnitude dimmer than Io's footprint and below the observable threshold, consistent with its non-detection. Here we report the detection of magnetic-field-aligned ion and electron beams (offset several moon radii downstream from Enceladus) with sufficient power to stimulate detectable aurora, and the subsequent discovery of Enceladus-associated aurora in a few per cent of the scans of the moon's footprint. The footprint varies in emission magnitude more than can plausibly be explained by changes in magnetospheric parameters--and as such is probably indicative of variable plume activity.

  4. Enceladus Plume Morphology and Variability from UVIS Measurements

    Science.gov (United States)

    Hansen, Candice; Esposito, Larry; Colwell, Josh; Hendrix, Amanda; Portyankina, Ganna

    2017-10-01

    The Ultraviolet Imaging Spectrograph (UVIS) on the Cassini spacecraft has been observing Enceladus’ plume and its effect on the Saturnian environment since 2004. One solar and 7 stellar occultations have been observed between 2005 and 2017. On 27 March 2017 epsilon Canis Majoris (CMa) passed behind the plume of water vapor spewing from Enceladus’ tiger stripe fissures. With this occultation we have 6 cuts through the plume at a variety of orientations over 12 years. Following our standard procedure the column density along the line of sight from Enceladus to the star was determined and the water flux calculated [1]. The mean anomaly was 131, well away from the dust flux peak associated with Enceladus at an orbital longitude near apoapsis [2]. We find that the water vapor flux was ~160 kg/sec (this number will be refined when the final reconstructed trajectory is available). That puts it “in family” with the other occultations, with values that cluster around 200 kg/sec. It is at the low end, which may be consistent with the drop in particle output observed over the last decade [3]. UVIS results show that the supersonic collimated gas jets imbedded in the plume are the likely source of the variability in dust output [4], rather than overall flux from the tiger stripes. An occultation of epsilon Orionis was observed on 11 March 2016 when Enceladus was at a mean anomaly of 208. Although the bulk flux changed little the amount of water vapor coming from the Baghdad I supersonic jet increased by 25% relative to 2011. The Baghdad I jet was observed again in the 2017 epsilon CMa occultation, and the column density is half that of 2016, further bolstering the conclusion that the gas jets change output as a function of orbital longitude. UVIS results describing gas flux, jets, and general structure of the plume, the observables above the surface, are key to testing hypotheses for what is driving Enceladus’ eruptive activity below the surface. [1] Hansen, C. J. et

  5. Ex-situ bioremediation of U(VI from contaminated mine water using Acidithiobacillus ferrooxidans strains

    Directory of Open Access Journals (Sweden)

    Maria eRomero-Gonzalez

    2016-05-01

    Full Text Available The ex-situ bioremoval of U(VI from contaminated water using Acidithiobacillus ferrooxidans strain 8455 and 13538 was studied under a range of pH and uranium concentrations. The effect of pH on the growth of bacteria was evaluated across the range 1.5 – 4.5 pH units. The respiration rate of At. ferrooxidans at different U(VI concentrations was quantified as a measure of the rate of metabolic activity over time using an oxygen electrode. The biosorption process was quantified using a uranyl nitrate solution, U-spiked growth media and U-contaminated mine water. The results showed that both strains of At. ferrooxidans are able to remove U(VI from solution at pH 2.5 – 4.5, exhibiting a buffering capacity at pH 3.5. The respiration rate of the micro-organism was affected at U(VI concentration of 30 mg L-1. The kinetics of the sorption fitted a pseudo-first order equation, and depended on the concentration of U(VI. The KD obtained from the biosorption experiments indicated that strain 8455 is more efficient for the removal of U(VI. A bioreactor designed to treat a solution of 100 mg U(VI L-1 removed at least 50% of the U(VI in water. The study demonstrated that At. ferrooxidans can be used for the ex-situ bioremediation of U(VI contaminated mine water.

  6. PFISR nightside observations of naturally enhanced ion acoustic lines, and their relation to boundary auroral features

    Directory of Open Access Journals (Sweden)

    R. G. Michell

    2008-11-01

    Full Text Available We present results from a coordinated camera and radar study of the auroral ionosphere conducted during March of 2006 from Poker Flat, Alaska. The campaign was conducted to coincide with engineering tests of the first quarter installation of the Poker Flat Incoherent Scatter Radar (PFISR. On 31 March 2006, a moderately intense auroral arc, (~10 kR at 557.7 nm, was located in the local magnetic zenith at Poker Flat. During this event the radar observed 7 distinct periods of abnormally large backscattered power from the F-region. These were only observed in the field-aligned radar beam, and radar spectra from these seven times show naturally enhanced ion-acoustic lines (NEIALs, the first observed with PFISR. These times corresponded to (a when the polar cap boundary of the auroral oval passed through the magnetic zenith, and (b when small-scale filamentary dark structures were visible in the magnetic zenith. The presence of both (a and (b was necessary for their occurrence. Soft electron precipitation occurs near the magnetic zenith during these same times. The electron density in the vicinity where NEIALs have been observed by previous studies is roughly between 5 and 30×1010 m−3. Broad-band extremely low frequency (BBELF wave activity is observed in situ by satellites and sounding rockets to occur with similar morphology, during active auroral conditions, associated with the poleward edge of the aurora and soft electron precipitation. The observations presented here suggest further investigation of the idea that NEIALs and BBELF wave activity are differently-observed aspects of the same wave phenomenon. If a connection between NEIALs and BBELF can be established with more data, this could provide a link between in situ measurements of downward current regions (DCRs and dynamic aurora, and ground-based observations of dark auroral structures and NEIALs. Identification of in situ processes, namely wave activity, in ground-based signatures could

  7. PFISR nightside observations of naturally enhanced ion acoustic lines, and their relation to boundary auroral features

    Directory of Open Access Journals (Sweden)

    R. G. Michell

    2008-11-01

    Full Text Available We present results from a coordinated camera and radar study of the auroral ionosphere conducted during March of 2006 from Poker Flat, Alaska. The campaign was conducted to coincide with engineering tests of the first quarter installation of the Poker Flat Incoherent Scatter Radar (PFISR. On 31 March 2006, a moderately intense auroral arc, (~10 kR at 557.7 nm, was located in the local magnetic zenith at Poker Flat. During this event the radar observed 7 distinct periods of abnormally large backscattered power from the F-region. These were only observed in the field-aligned radar beam, and radar spectra from these seven times show naturally enhanced ion-acoustic lines (NEIALs, the first observed with PFISR. These times corresponded to (a when the polar cap boundary of the auroral oval passed through the magnetic zenith, and (b when small-scale filamentary dark structures were visible in the magnetic zenith. The presence of both (a and (b was necessary for their occurrence. Soft electron precipitation occurs near the magnetic zenith during these same times. The electron density in the vicinity where NEIALs have been observed by previous studies is roughly between 5 and 30×1010 m−3. Broad-band extremely low frequency (BBELF wave activity is observed in situ by satellites and sounding rockets to occur with similar morphology, during active auroral conditions, associated with the poleward edge of the aurora and soft electron precipitation. The observations presented here suggest further investigation of the idea that NEIALs and BBELF wave activity are differently-observed aspects of the same wave phenomenon. If a connection between NEIALs and BBELF can be established with more data, this could provide a link between in situ measurements of downward current regions (DCRs and dynamic aurora, and ground-based observations of dark auroral structures and NEIALs. Identification of in situ processes, namely wave activity, in ground

  8. Sophus Peter Tromholt: an outstanding pioneer in auroral research

    Directory of Open Access Journals (Sweden)

    K. Moss

    2012-03-01

    Full Text Available The Danish school teacher Sophus Peter Tromholt (1851–1896 was self-taught in physics, astronomy, and auroral sciences. Still, he was one of the brightest auroral researchers of the 19th century. He was the first scientist ever to organize and analyse correlated auroral observations over a wide area (entire Scandinavia moving away from incomplete localized observations. Tromholt documented the relation between auroras and sunspots and demonstrated the daily, seasonal and solar cycle-related variations in high-latitude auroral occurrence frequencies. Thus, Tromholt was the first ever to deduce from auroral observations the variations associated with what is now known as the auroral oval termed so by Khorosheva (1962 and Feldstein (1963 more than 80 yr later. He made reliable and accurate estimates of the heights of auroras several decades before this important issue was finally settled through Størmer's brilliant photographic technique. In addition to his three major scientific works (Tromholt, 1880a, 1882a, and 1885a, he wrote numerous short science notes and made huge efforts to collect historical auroral observations (Tromholt, 1898. Furthermore, Tromholt wrote a large number of popular science articles in newspapers and journals and made lecture tours all over Scandinavia and Germany, contributing to enhance the public educational level and awareness. He devoted most of his life to auroral research but as a self-taught scientist, he received little acclaim within the contemporary academic scientific society. With his non-academic background, trained at a college of education – not a university – he was never offered a position at a university or a research institution. However, Sophus Tromholt was an outstanding pioneer in auroral research.

  9. Sophus Peter Tromholt: an outstanding pioneer in auroral research

    Science.gov (United States)

    Moss, K.; Stauning, P.

    2012-03-01

    The Danish school teacher Sophus Peter Tromholt (1851-1896) was self-taught in physics, astronomy, and auroral sciences. Still, he was one of the brightest auroral researchers of the 19th century. He was the first scientist ever to organize and analyse correlated auroral observations over a wide area (entire Scandinavia) moving away from incomplete localized observations. Tromholt documented the relation between auroras and sunspots and demonstrated the daily, seasonal and solar cycle-related variations in high-latitude auroral occurrence frequencies. Thus, Tromholt was the first ever to deduce from auroral observations the variations associated with what is now known as the auroral oval termed so by Khorosheva (1962) and Feldstein (1963) more than 80 yr later. He made reliable and accurate estimates of the heights of auroras several decades before this important issue was finally settled through Størmer's brilliant photographic technique. In addition to his three major scientific works (Tromholt, 1880a, 1882a, and 1885a), he wrote numerous short science notes and made huge efforts to collect historical auroral observations (Tromholt, 1898). Furthermore, Tromholt wrote a large number of popular science articles in newspapers and journals and made lecture tours all over Scandinavia and Germany, contributing to enhance the public educational level and awareness. He devoted most of his life to auroral research but as a self-taught scientist, he received little acclaim within the contemporary academic scientific society. With his non-academic background, trained at a college of education - not a university - he was never offered a position at a university or a research institution. However, Sophus Tromholt was an outstanding pioneer in auroral research.

  10. U(VI) sorption on granite: prediction and experiments

    International Nuclear Information System (INIS)

    Nebelung, C.; Brendler, V.

    2010-01-01

    One widely accepted approach - component additivity (CA) - to describe the sorption of contaminants onto complex materials such as rocks or soils is based on the assumption that the surface of a complex mineral assemblage is composed of a mixture of mineral constituents whose surface properties are known from independent studies. An internally consistent SCM (surface complexation model) database can be developed that describes the adsorption reactions of solutes to each phase. Here, the capability of such a methodology was tested, using the code MINTEQA2 including thermodynamic data of the NEA-TDB, and literature data for SCM, namely the DDL model. The sorption characteristics of U(VI) on granite (from Eibenstock, Saxony, Germany, with the main components quartz, albite, orthoclase, and muscovite) was predicted and then compared to batch experiments. Granite plays an important role in the remediation of former uranium ore mining and milling sites, but is also one of the host rocks considered for final disposal of nuclear materials. Safety assessment requires a detailed understanding of this system and its retention potential with regard to hazardous components. Namely the sorption of uranium in this complex rock is not fully understood yet. The experiments thus also provided a better understanding of the far-field behaviour in granitic geological nuclear repositories. The robustness of the prediction was tested by variation of the granite composition and the variation of the specific surface area (SSA) - first all components were predicted with a uniform granite SSA, second with a distinct SSA for each granite component (determined on pure minerals for the same grain size fractions). Changes in compositions yielded only marginal differences in the prediction. Different approaches to SSA showed somewhat larger deviations. In conclusion, the CA methodology is a valid and robust approach to U(VI) sorption onto complex substrates such as granite, provided sufficient

  11. GPS scintillations associated with cusp dynamics and polar cap patches

    Directory of Open Access Journals (Sweden)

    Jin Yaqi

    2017-01-01

    Full Text Available This paper investigates the relative scintillation level associated with cusp dynamics (including precipitation, flow shears, etc. with and without the formation of polar cap patches around the cusp inflow region by the EISCAT Svalbard radar (ESR and two GPS scintillation receivers. A series of polar cap patches were observed by the ESR between 8:40 and 10:20 UT on December 3, 2011. The polar cap patches combined with the auroral dynamics were associated with a significantly higher GPS phase scintillation level (up to 0.6 rad than those observed for the other two alternatives, i.e., cusp dynamics without polar cap patches, and polar cap patches without cusp aurora. The cusp auroral dynamics without plasma patches were indeed related to GPS phase scintillations at a moderate level (up to 0.3 rad. The polar cap patches away from the active cusp were associated with sporadic and moderate GPS phase scintillations (up to 0.2 rad. The main conclusion is that the worst global navigation satellite system space weather events on the dayside occur when polar cap patches enter the polar cap and are subject to particle precipitation and flow shears, which is analogous to the nightside when polar cap patches exit the polar cap and enter the auroral oval.

  12. GPS scintillations associated with cusp dynamics and polar cap patches

    Science.gov (United States)

    Jin, Yaqi; Moen, Jøran I.; Oksavik, Kjellmar; Spicher, Andres; Clausen, Lasse B. N.; Miloch, Wojciech J.

    2017-10-01

    This paper investigates the relative scintillation level associated with cusp dynamics (including precipitation, flow shears, etc.) with and without the formation of polar cap patches around the cusp inflow region by the EISCAT Svalbard radar (ESR) and two GPS scintillation receivers. A series of polar cap patches were observed by the ESR between 8:40 and 10:20 UT on December 3, 2011. The polar cap patches combined with the auroral dynamics were associated with a significantly higher GPS phase scintillation level (up to 0.6 rad) than those observed for the other two alternatives, i.e., cusp dynamics without polar cap patches, and polar cap patches without cusp aurora. The cusp auroral dynamics without plasma patches were indeed related to GPS phase scintillations at a moderate level (up to 0.3 rad). The polar cap patches away from the active cusp were associated with sporadic and moderate GPS phase scintillations (up to 0.2 rad). The main conclusion is that the worst global navigation satellite system space weather events on the dayside occur when polar cap patches enter the polar cap and are subject to particle precipitation and flow shears, which is analogous to the nightside when polar cap patches exit the polar cap and enter the auroral oval.

  13. Auroral omens of the American Civil War

    Science.gov (United States)

    Love, Jeffrey J.

    2014-01-01

    Aurorae are a splendid night-time sight: coruscations of green, purple, and red fluorescent light in the form of gently wafting ribbons, billowing curtains, and flashing rays. Mostly seen at high latitudes, in the north aurorae are often called the northern lights or aurora borealis, and, in the south, the southern lights or aurora australis. The mystery of their cause has historically been the subject of wonder. The folklore and mythology of some far-northern civilizations attributed auroral light to celestial deities. And, in ironic contrast with their heavenly beauty, unusual auroral displays, such as those seen on rare occasions at lower southern latitudes, have sometimes been interpreted as portending unfavorable future events. Today we understand aurorae to be a visual manifestation of the dynamic conditions in the space environment surrounding the earth. Important direct evidence in support of this theory came on September 1, 1859. On that day, an English astronomer named Richard Carrington was situated at his telescope, which was pointed at the sun. While observing and sketching a large group of sunspots, he saw a solar flare—intense patches of white light that were superimposed upon the darker sunspot group and which were illuminated for about a minute. One day later, a magnetic storm was recorded at specially designed observatories in Europe, across Russia, and in India. By many measures, the amplitude of magnetic disturbance was the greatest ever recorded. In the United States, the effects of the Carrington storm could be seen as irregular backand-forth deflections of a few degrees in the magnetized needle of a compass. Rapid magnetic variation also induced electric fields in the earth’s conducting lithosphere, and interfered with the operation of telegraph systems. The Carrington magnetic storm, and an earlier storm that had occurred on August 28, 1859, caused spectacular displays of aurora borealis in the night-time sky over the entire United

  14. Electromagnetic wave interaction with the auroral plasma

    Science.gov (United States)

    Pau, Jacqueline Tze-Ho

    High power radio electromagnetic waves interaction with the auroral plasma has been investigated. Plasma in this auroral region can be illuminated by EM waves for a prolonged period of time and thus, experiences accumulative perturbations and resonances because of its long plasma lifetime, slow transport rates, and weak convection, especially near the peak of the ionospheric electron density profile. A plasma resonance at a specific height in the ionosphere has a corresponding EM wave frequency. These plasma resonances can enhance the local electromagnetic fields, and therefore their interactions with plasma particles leading to turbulences, local heating, density perturbations, and field aligned striations. The non-linear process at the resonance layer also stimulates the emission of electromagnetic waves which appear as the sidebands of the reflected EM wave. These effects are more pronounced when the EM wave frequency is near foF2, the frequency for the resonance near the peak of the ionospheric electron density profile. Optical emissions are also enhanced under such conditions. This thesis describes two major experiments performed at the HIPAS and HAARP facilities, namely the preconditioning and the second harmonic matching experiments. The experimental data confirms the region where the most efficient interaction between the EM waves and the auroral plasma are near the peak of the ionospheric density profile and where the EM wave frequency matches both the local plasma frequency and the second harmonic of the ionospheric electron cyclotron frequency. In the preconditioning experiments, the ionosphere is first pre-conditioned with high power EM wave. This generates field-aligned striations, which in turn reduces the threshold level of the non-linear process at the resonance layer. The spectral features of the sidebands are excited with an effective radiation power (ERP) level of 24 dB less than that normally required. We observed that using the preconditioning

  15. Nonlinear evolution of the auroral electron beam

    Science.gov (United States)

    Maggs, James E.

    1989-01-01

    The nonlinear spatial evolution, from the source to the atmosphere, of the auroral electron beam and the beam-generated electrostatic whistler noise was studied, calculating changes in beam parameters from equations for the conservation of total particle and wave energy and momentum flux density. Wave power fluxes were calculated by numerically integrating the wave kinetic equations, and the levels of beam-generated noise were determined by using thermal levels of Cerenkov radiation as a source. It was found that beam parameters evolve on ionospheric scale lengths, and their positive slope feature in velocity space is maintained over altitudes measured in thousands of kilometers of altitude, even though they can generate wave energy density fluxes sufficient to modify the ionospheric density profile.

  16. JUNO SW JOVIAN AURORAL DISTRIBUTION UNCALIBRATED V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of all of the uncalibrated data collected by the JADE (Jovian Auroral Plasma Distributions Experiment) on-board the Juno spacecraft. For more...

  17. UVI31+ is a DNA endonuclease that dynamically localizes to chloroplast pyrenoids in C. reinhardtii.

    Directory of Open Access Journals (Sweden)

    Manish Shukla

    Full Text Available UVI31+ is an evolutionarily conserved BolA family protein. In this study we examine the presence, localization and possible functions of this protein in the context of a unicellular alga, Chlamydomonas reinhardtii. UVI31+ in C. reinhardtii exhibits DNA endonuclease activity and is induced upon UV stress. Further, UVI31+ that normally localizes to the cell wall and pyrenoid regions gets redistributed into punctate foci within the whole chloroplast, away from the pyrenoid, upon UV stress. The observed induction upon UV-stress as well as the endonuclease activity suggests plausible role of this protein in DNA repair. We have also observed that UV31+ is induced in C. reinhardtii grown in dark conditions, whereby the protein localization is enhanced in the pyrenoid. Biomolecular interaction between the purified pyrenoids and UVI31+ studied by NMR demonstrates the involvement of the disordered loop domain of the protein in its interaction.

  18. Removal U(VI) from artificial seawater using facilely and covalently grafted polyacrylonitrile fibers with lysine

    Science.gov (United States)

    Li, Wenting; Liu, Qi; Liu, Jingyuan; Zhang, Hongsen; Li, Rumin; Li, Zhanshuang; Jing, Xiaoyan; Wang, Jun

    2017-05-01

    Polyacrylonitrile fibers (PANF) covalently modified with lysine (PAN-Lys) was facilely synthesized and carefully characterized. The critical factors affecting U(VI) adsorption from aqueous solution were exploited, such as initial pH, contact time, concentration and temperature. The adsorption process is strongly dependent on solution pH. With excellent adsorption capacity and high affinity toward U(VI), the process for U(VI) is extremely rapid and the equilibrium can be reached within 20 min. The thermodynamics and kinetics were strictly evaluated. In addition, the hypothetical adsorption mechanisms were proposed. Moreover, the adsorption behavior at low concentrations (3-30 μg L-1) in simulated seawater was also investigated. Therefore, PAN-Lys can be potentially utilized for the efficient removal of U(VI) from seawater.

  19. Kinetics of U(VI) reduction by a dissimilatory Fe(III)-reducing bacterium under non-growth conditions

    International Nuclear Information System (INIS)

    Truex, M.J.; Peyton, B.M.; Valentine, N.B.; Gorby, Y.A.

    1997-01-01

    Dissimilatory metal-reducing microorganisms may be useful in processes designed for selective removal of uranium from aqueous streams. These bacteria can use U(VI) as an electron acceptor and thereby reduce soluble U(VI) to insoluble U(IV). While significant research has been devoted to demonstrating and describing the mechanism of dissimilatory metal reduction, the reaction kinetics necessary to apply this for remediation processes have not been adequately defined. In this study, pure culture Shewanella alga strain BrY reduced U(VI) under non-growth conditions in the presence of excess lactate as the electron donor. Initial U(VI) concentrations ranged from 13 to 1,680microM. A maximum specific U(VI) reduction rate of 2.37 micromole-U(VI)/(mg-biomass h) and Monod half-saturation coefficient of 132 microM-U(VI) were calculated from measured U(VI) reduction rates. U(VI) reduction activity was sustained at 60% of this rate for at least 80 h. The initial presence of oxygen at a concentration equal to atmospheric saturation at 22 C delays but does not prevent U(VI) reduction. The rate of U(VI) reduction by BrY is comparable or better than rates reported for other metal reducing species. BrY reduces U(VI) at a rate that is 30% of its Fe(III) reduction rate

  20. Solar wind control of stratospheric temperatures in Jupiter's auroral regions?

    Science.gov (United States)

    Sinclair, James Andrew; Orton, Glenn; Kasaba, Yasumasa; Sato, Takao M.; Tao, Chihiro; Waite, J. Hunter; Cravens, Thomas; Houston, Stephen; Fletcher, Leigh; Irwin, Patrick; Greathouse, Thomas K.

    2017-10-01

    Auroral emissions are the process through which the interaction of a planet’s atmosphere and its external magnetosphere can be studied. Jupiter exhibits auroral emission at a multitude of wavelengths including the X-ray, ultraviolet and near-infrared. Enhanced emission of CH4 and other stratospheric hydrocarbons is also observed coincident with Jupiter’s shorter-wavelength auroral emission (e.g. Caldwell et al., 1980, Icarus 44, 667-675, Kostiuk et al., 1993, JGR 98, 18823). This indicates that auroral processes modify the thermal structure and composition of the auroral stratosphere. The exact mechanism responsible for this auroral-related heating of the stratosphere has however remained elusive (Sinclair et al., 2017a, Icarus 292, 182-207, Sinclair et al., 2017b, GRL, 44, 5345-5354). We will present an analysis of 7.8-μm images of Jupiter measured by COMICS (Cooled Mid-Infrared Camera and Spectrograph, Kataza et al., 2000, Proc. SPIE(4008), 1144-1152) on the Subaru telescope. These images were acquired on January 11th, 12th, 13th, 14th, February 4, 5th and May 17th, 18th, 19th and 20th in 2017, allowing the daily variability of Jupiter’s auroral-related stratospheric heating to be tracked. Preliminary results suggest lower stratospheric temperatures are directly forced by the solar wind dynamical pressure. The southern auroral hotspot exhibited a significant increase in brightness temperature over a 24-hour period. Over the same time period, a solar wind propagation model (Tao et al. 2005, JGR 110, A11208) predicts a strong increase in the solar wind dynamical pressure at Jupiter.

  1. Upscaling of U(VI) Desorption and Transport Using Decimeter-Scale Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Derrick [Colorado School of Mines, Golden, CO (United States)

    2014-12-22

    Experimental work was used to validate modeling studies and develop multicontinuum models of U(VI) transport in a contaminated aquifer. At the bench scale, it has been shown that U(VI) desorption is rate-limited and that rates are dependent on the bicarbonate concentration. Two decimeter-scale experiments were conducted in order to help establish rigorous upscaling approaches that could be tested at the tracer test and plume scales.

  2. Effect of blended materials on U(VI) retention characteristics for portland cement solidification product

    International Nuclear Information System (INIS)

    Tan Hongbin; Ma Xiaoling; Li Yuxiang

    2006-01-01

    Using the simulated groundwater as leaching liquid, the retention capability of U(VI) in solidification products with Portland cement, the Portland cement containing silica fume, the Portland cement containing metakaolin and the Portland cement containing fly ash was researched by leaching experiments at 25 degree C for 42 d. The results indicate silica fume and metakaolin as blended materials can improve the U(VI) retention capability of Portland cement solidification product, but fly ash can not. (authors)

  3. DISCOVERY OF A DARK AURORAL OVAL ON SATURN

    Science.gov (United States)

    2002-01-01

    The ultraviolet image was obtained by the NASA/ESA Hubble Space Telescope with the European Faint Object Camera (FOC) on June 1992. It represents the sunlight reflected by the planet in the near UV (220 nm). * The image reveals a dark oval encircling the north magnetic pole of Saturn. This auroral oval is the first ever observed for Saturn, and its darkness is unique in the solar system (L. Ben-Jaffel, V. Leers, B. Sandel, Science, Vol. 269, p. 951, August 18, 1995). The structure represents an excess of absorption of the sunlight at 220 nm by atmospheric particles that are the product of the auroral activity itself. The large tilt of the northern pole of Saturn at the time of observation, and the almost perfect symmetry of the planet's magnetic field, made this observation unique as even the far side of the dark oval across the pole is visible! * Auroral activity is usually characterized by light emitted around the poles. The dark oval observed for Saturn is a STUNNING VISUAL PROOF that transport of energy and charged particles from the magnetosphere to the atmosphere of the planet at high latitudes induces an auroral activity that not only produces auroral LIGHT but also UV-DARK material near the poles: auroral electrons are probably initiating hydrocarbon polymer formation in these regions. Credits: L. Ben Jaffel, Institut d'Astrophysique de Paris-CNRS, France, B. Sandel (Univ. of Arizona), NASA/ESA, and Science (magazine).

  4. Dissimilatory Reduction of Cr(VI), Fe(III), and U(VI) by Cellulomonas Isolates

    Energy Technology Data Exchange (ETDEWEB)

    Smith, William Aaron; Apel, William Arnold; Peyton, B. M.; Petersen, J. N.; Sani, R.

    2002-10-01

    The reduction of Cr(VI), Fe(III), and U(VI) was studied using three recently isolated environmental Cellulomonas sp. (WS01, WS18, and ES5) and a known Cellulomonas strain (Cellulomonas flavigena ATCC 482) under anaerobic, non-growth conditions. In all cases, these cultures were observed to reduce Cr(VI), Fe(III), and U(VI). In 100 h, with lactate as electron donor, the Cellulomonas isolates (500 mg/l total cell protein) reduced nitrilotriacetic acid chelated Fe(III) [Fe(III)-NTA] from 5 mM to less than 2.2 mM, Cr(VI) from 0.2 mM to less than 0.001 mM, and U(VI) from 0.2 mM to less than 0.12 mM. All Cellulomonas isolates also reduced Cr(VI), Fe(III), and U(VI) in the absence of lactate, while no metal reduction was observed in either the cell-free or heat-killed cell controls. This is the first report of Cellulomonas sp. reducing Fe(III) and U(VI). Further, this is the first report of Cellulomonas spp. coupling the oxidation of lactate, or other unknown electron donors in the absence of lactate, to the reduction of Cr(VI), Fe(III), and U(VI).

  5. Dissimilatory reduction of Cr(VI), Fe(III), and U(VI) by Cellulomonas isolates.

    Science.gov (United States)

    Sani, R K; Peyton, B M; Smith, W A; Apel, W A; Petersen, J N

    2002-10-01

    The reduction of Cr(VI), Fe(III), and U(VI) was studied using three recently isolated environmental Cellulomonas sp. (WS01, WS18, and ES5) and a known Cellulomonas strain ( Cellulomonas flavigena ATCC 482) under anaerobic, non-growth conditions. In all cases, these cultures were observed to reduce Cr(VI), Fe(III), and U(VI). In 100 h, with lactate as electron donor, the Cellulomonas isolates (500 mg/l total cell protein) reduced nitrilotriacetic acid chelated Fe(III) [Fe(III)-NTA] from 5 mM to less than 2.2 mM, Cr(VI) from 0.2 mM to less than 0.001 mM, and U(VI) from 0.2 mM to less than 0.12 mM. All Cellulomonas isolates also reduced Cr(VI), Fe(III), and U(VI) in the absence of lactate, while no metal reduction was observed in either the cell-free or heat-killed cell controls. This is the first report of Cellulomonas sp. reducing Fe(III) and U(VI). Further, this is the first report of Cellulomonas spp. coupling the oxidation of lactate, or other unknown electron donors in the absence of lactate, to the reduction of Cr(VI), Fe(III), and U(VI).

  6. Bacillus lichenformis γ-glutamyl exopolymer: Physicochemical characterization and U(VI) interaction

    International Nuclear Information System (INIS)

    He, L.M.; Neu, M.P.; Vanderberg, L.A.

    2000-01-01

    Complexation by microbially produced exopolymers may significantly impact the environmental mobility and toxicity of metals. This study focused on the conformational structure of the bacterial exopolymer, γ-D-poly(glutamic acid) and its interactions with U(VI) examined using ATR-FTIR spectroscopy. Solution pH, polymer concentration, and ionic strength affected the conformation of the exopolymer, and U(VI) binding was monitored. At low pH, low concentration, or low ionic strength, this exopolymer exists in an α-helical conformation, while at high pH, concentration, or ionic strength the exopolymer exhibits a β-sheet structure. The change in exopolymer conformation is likely to influence the number and nature of exposed surface functional groups, sites most responsible for metal complexation. The authors found the polyglutamate capsule binds U(VI) in a binuclear, bidentate fashion; in contrast the glutamate monomer forms a mononuclear, bidentate complex with U(VI). The apparent polynuclear binding of U(VI) may induce β-sheet structure formation provided the U(VI) Concentration is sufficiently high

  7. Effect of selected ligands on the U(VI) immobilization by zerovalent iron

    International Nuclear Information System (INIS)

    Noubactep, C.

    2006-01-01

    The effect of Cl - , CO 3 2- , EDTA, NO 2 - , NO 3 - , PO 4 3- , SO 4 2- , and humic substances (HS) on the U(VI) co-precipitation from aqueous solutions by zerovalent iron (ZVI) was investigated in the neutral pH range.Batch experiments without shaking were conducted for 14 days mostly with five different ZVI materials (15 g/l), selected ligands (10mM) and an U(VI) solution (20 mg/l, 0.084mM). Apart from Cl - , all tested ligands induced a decrease of U(VI) coprecipitation. This decrease is attributed to the surface adsorption and complexation of the ligands at the reactive sites on the surface of ZVI and their corrosion products. The decrease of U(VI) removal was not uniform with the five ZVI materials. Generally, groundwater with elevated EDTA concentration could not be remediated with the ZVI barrier technology. The response of the system on the pre-treating by two ZVI materials in 250mM HCl indicated that in situ generated corrosion products favor an irreversible U(VI) uptake. Thus for the long term performance of ZVI barrier, the iron dissolution should continue in such a way that fresh iron oxide be always available for U(VI) coprecipitation. (author)

  8. Research to Operations Transition of an Auroral Specification and Forecast Model

    Science.gov (United States)

    Jones, J.; Sanders, S.; Davis, B.; Hedrick, C.; Mitchell, E. J.; Cox, J. M.

    Aurorae are generally caused by collisions of high-energy precipitating electrons and neutral molecules in Earth’s polar atmosphere. The electrons, originating in Earth’s magnetosphere, collide with oxygen and nitrogen molecules driving them to an excited state. As the molecules return to their normal state, a photon is released resulting in the aurora. Aurora can become troublesome for operations of UHF and L-Band radars since these radio frequencies can be scattered by these abundant free electrons and excited molecules. The presence of aurorae under some conditions can lead to radar clutter or false targets. It is important to know the state of the aurora and when radar clutter is likely. For this reason, models of the aurora have been developed and used in an operational center for many decades. Recently, a data-driven auroral precipitation model was integrated into the DoD operational center for space weather. The auroral precipitation model is data-driven in a sense that solar wind observations from the Lagrangian point L1 are used to drive a statistical model of Earth’s aurorae to provide nowcasts and short-duration forecasts of auroral activity. The project began with a laboratory-grade prototype and an algorithm theoretical basis document, then through a tailored Agile development process, deployed operational-grade code to a DoD operational center. The Agile development process promotes adaptive planning, evolutionary development, early delivery, continuous improvement, regular collaboration with the customer, and encourages rapid and flexible response to customer-driven changes. The result was an operational capability that met customer expectations for reliability, security, and scientific accuracy. Details of the model and the process of operational integration are discussed as well as lessons learned to improve performance on future projects.

  9. Observations of intense velocity shear and associated electrostatic waves near an auroral arc

    International Nuclear Information System (INIS)

    Kelley, M.C.; Carlson, C.W.

    1977-01-01

    An intense shear in plasma flow velocity of magnitude 20 (m/s)m -1 has been detected at the edge of an auroral arc. The region of shear appears to display structure with two characteristic scale sizes. The larger structures were of the order of a few kilometers in size and were identified by a deviation of the direction of the charge sheets crossed by the rocket from a direction parallel to the visible arc. As is shown in the companion paper (Carlson and Kelley, 1977), the average (undisturbed) charge sheet was parallel to the arc. These observations are consistent with television studies which often display such structures propagating along the edges of auroral forms. Additional intense irregularities were detected with characteristic wavelengths smaller than the scale size of the shear. The irregularities are discussed in light of the branches of a velocity shear driven instability suggested by several workers: the Kelvin-Helmholtz instability operating at the longest wavelengths and the drift shear instability at the shorter. Neither mode has wavelengths as short as those observed however. A velocity shear mechanism operating at wavelengths short in comparison with the shear scale length, such as those observed here, would be of significant geophysical importance. For example, it could be responsible for production of high-latitude irregularities which exist throughout the polar cap and for the short-wavelength waves responsible for intense 3-m backscatter during equatorial spread F conditions. Since the wavelengths produced by the short-wavelength mode are in the range of typical auroral E region radars, such data must be carefully checked for F region contamination

  10. Birkeland currents and energetic particles associated with optical auroral signatures of a westward traveling surge

    International Nuclear Information System (INIS)

    Bythrow, P.F.; Potemra, T.A.

    1987-01-01

    The surflike auroral shape commonly associated with the westward traveling surge (WTS) is a remarkably repeatable feature of the polar auroral display. In this paper, we examine the details of one such form that is located on the poleward edge of the diffuse aurora. For this study, we have used the simultaneous imagery, high-resolution magnetic field, and charged particle measurements from the DMSP F7 spacecraft, acquired in the northern hemisphere on December 31, 1983. F7 is the latest of the DMSP series and the first to include a magnetic field experiment. A large-scale upward directed Birkeland current dominates across the entire form, colocated with precipitating electrons having spectra peaked from 3 to 12 keV. A pair of narrow (20 km) parallel arcs extend along the poleward edge of the auroral oval for a few hours in local times west of the surge. They appear to divege to higher and lower latitudes because of an intrusion of aurora from lower latitudes and later local times. In the center of the intrusion, the Birkeland current is directed upward and electrons exhibit accelerated spectra with a monoenergetic peak at 12 keV similar to spectra observed at much lower latitudes. Each of the two narrow arcs poleward and equatorward of the diffuse region is characterized by intense upward directed Birkeland currents, ''inverted V'' electrons with spectra peaked from 1 to 3 keV, and enhanced ion fluxes. Electron spectra in both arcs suggest that these particles are streaming earthward from the plasma-sheet boundary layer. Thus, the WTS appears to result from an expansion of the plasma sheet and and intrusion of the plasma-sheet boundary layer into the high-latitude tail lobe. These observations support the view that the WTS is related to a Kelvin-Helmholtz instability in the distant magnetotail. Copyright American Geophysical Union 1987

  11. A Wide Field Auroral Imager (WFAI for low Earth orbit missions

    Directory of Open Access Journals (Sweden)

    N. P. Bannister

    2007-03-01

    Full Text Available A comprehensive understanding of the solar wind interaction with Earth's coupled magnetosphere-ionosphere system requires an ability to observe the charged particle environment and auroral activity from the same platform, generating particle and photon image data which are matched in time and location. While unambiguous identification of the particles giving rise to the aurora requires a Low Earth Orbit satellite, obtaining adequate spatial coverage of aurorae with the relatively limited field of view of current space bourne auroral imaging systems requires much higher orbits. A goal for future satellite missions, therefore, is the development of compact, wide field-of-view optics permitting high spatial and temporal resolution ultraviolet imaging of the aurora from small spacecraft in low polar orbit. Microchannel plate optics offer a method of achieving the required performance. We describe a new, compact instrument design which can observe a wide field-of-view with the required spatial resolution. We report the focusing of 121.6 nm radiation using a spherically-slumped, square-pore microchannel plate with a focal length of 32 mm and an F number of 0.7. Measurements are compared with detailed ray-trace simulations of imaging performance. The angular resolution is 2.7±0.2° for the prototype, corresponding to a footprint ~33 km in diameter for an aurora altitude of 110 km and a spacecraft altitude of 800 km. In preliminary analysis, a more recent optic has demonstrated a full width at half maximum of 5.0±0.3 arcminutes, corresponding to a footprint of ~1 km from the same spacecraft altitude. We further report the imaging properties of a convex microchannel plate detector with planar resistive anode readout; this detector, whose active surface has a radius of curvature of only 100 mm, is shown to meet the spatial resolution and sensitivity requirements of the new wide field auroral imager (WFAI.

  12. Characterization of the holographic imaging grating of GOMOS UVIS spectrometer

    Science.gov (United States)

    Graeffe, Jussi; Saari, Heikki K.; Astola, Heikki; Rainio, Kari; Mazuray, Lorand; Pierot, Dominique; Craen, Pierre; Gruslin, Michel; Lecat, Jean-Herve; Bonnemason, Francis; Flamand, Jean; Thevenon, Alain

    1996-11-01

    A Finnish-French group has proposed an imaging spectrometer- based instrument for the ENVISAT Earth observation satellite of ESA, which yields a global mapping of the vertical profile of ozone and other related atmospheric gases. The GOMOS instrument works by measuring the UV-visible spectrum of a star that is occulting behind the Earth's atmosphere. The prime contractor of GOMOS is Matra Marconi Space France. The focal plane optics are designed and manufactured by Spacebel Instrumentation S.A. and the holographic grating by Jobin-Yvon. VTT Automation, Measurement Technology has participated in the GOMOS studies since 1989 and is presently responsible for the verification tests of the imaging quality and opto-mechanical interfaces of the holographic imaging grating of GOMOS. The UVIS spectrometer of GOMOS consists of a holographic, aberration corrected grating and of a CCD detector. The alignment of the holographic grating needs as an input very accurate knowledge of the mechanical interfaces. VTT Automation has designed, built and tested a characterization system for the holographic grating. This system combines the accurate optical imaging measurements with the absolute knowledge of the geometrical parameters at the accuracy of plus or minus 10 micrometers which makes the system unique. The developed system has been used for two breadboard gratings and the qualification model grating. The imaging quality results and their analysis together with alignment procedure utilizing of the knowledge of mechanical interfaces is described.

  13. Recovery of U(Vi) with unexpanded perlite

    International Nuclear Information System (INIS)

    Cuevas J, A.K.; Davila R, J. I.; Lopez del R, H.; Mireles G, F.

    2015-09-01

    Perlite is a glass volcanic rock that is hydrated by the addition of water during its formation. Is a natural material widely used in the chemical and construction industries, but recently beginning to be studied their adsorptive properties. In this paper the adsorption capacity of unexpanded perlite to remove U(Vi) in aqueous solution depending on the grain size of the material was investigated, as well as the contact time between the liquid and solid phases, ph of solution and initial concentration of uranium. The adsorption was dependent on the surface area of the material, recovering higher uranium percentage to smaller particle size. Meanwhile kinetics showed that the uranium adsorption is rapid, reaching equilibrium in 1 h. Adsorption to slightly acidic conditions was favored but dropped dramatically to ph highly acidic and basic; at a concentration of 1 x 10 -3 M UO 2 +2 the maximum uranium recovery was 46% at ph 6. In dilute solutions (1 x 10 -5 to 1 x 10 -3 M) the adsorption percentage reached values between 34 and 42%, but was reduced to 1% at a concentration of 1 x 10 -2 M. (Author)

  14. Ionization and electric field properties of auroral arcs during magnetic quiescence

    International Nuclear Information System (INIS)

    Robinson, R.M.; Mende, S.B.

    1990-01-01

    Studies of the morphology of auroral precipitation during times of magnetic quiescence indicate that the polar cap shrinks and becomes distorted into a teardrop or pear-shaped region. On November 16, 1987, incoherent scatter radar and all-sky imaging photometer measurements were made of auroral arcs over Sondre Stromfjord, Greenland. The arcs were generally oriented in a geographic east-west direction which is approximately Sun aligned at a local time just after dusk. Kp was 1, and the interlplanetary magnetic field was northward during the time of observation, so tha the arcs occurred under magnetically quiet conditions. The Sondrestrom radar measurements were used to determine the electron density and plasma drifts associated with the arcs; the all-sky imaging photometer data were used to relate the radar measurements to the arc morphology. Assuming the arcs were produced by precipitating electrons, the height profiles of electron density indicate average energies less than about 2 keV and energy fluxes of 1 erg/(cm 2 s). F region electron densities were high in the polar cap north of the arcs and low within the region of the arcs. The poleward boundary of the arc system was a convection reversal boundary across which plasma exited the polar cap region moving antisunward and then turned sunward (westward). The observed arc-associated convection is consistent with that expected under these geomagnetic conditions. Comparison of these results with the electrodynamic properties of other arcs observed in the afternoon and early evening suggests that there is a system of arcs that delineates the afternoon convection cell. The observed gradient in F region electron density across the arc can be explained in terms of the recombination of ionization drifting in response to the arc-associated convection pattern

  15. Enabling Future Large Searches for Exoplanet Auroral Emission with the EPIC Correlator Architecture

    Science.gov (United States)

    Thyagarajan, Nithyanandan; Beardsley, Adam P.; Bowman, Judd D.; Morales, Miguel F.

    2017-05-01

    Extrasolar planets are expected to emit strong ``auroral'' emission at radio frequencies generated by the interaction of the host star's stellar winds with the planet's magnetosphere through electron-cyclotron maser emission. This transient emission lasts a few seconds to days and is almost fully circularly polarized. Detecting this emission in exoplanets is a critical probe of their magnetospheres and thus their interior compositions and habitability. The intensity and detectability of the emission depends on the suitability of many factors to the observing parameters such as the strength of the stellar wind power, the planetary magnetosphere cross-section, the highly beamed and coherent nature of electron-cyclotron emission, and narrow ranges of the planet's orbital phase. Large areas of sky must be surveyed continuously to high sensitivity to detect auroral emission. Next-generation radio telescopes with wide fields of view, large collecting areas and high efficiency are needed for these searches. This poses challenges to traditional correlator architectures whose computational cost scales as the square of the number of antennas. I will present a novel radio aperture synthesis imaging architecture - E-field Parallel Imaging Correlator (EPIC) - whose all-sky and full Stokes imaging capabilities will not only address the aforementioned factors preventing detection but also solve the computational challenges posed by large arrays. Compared to traditional imaging, EPIC is inherently fast and thus presents the unique advantage of probing transient timescales ranging orders of magnitude from tens of microseconds to days at no additional cost.

  16. Resupply Mechanism to a Contaminated Aquifer: A Laboratory Study of U(VI) Desorption from Capillary Fringe Sediments

    International Nuclear Information System (INIS)

    Um, Wooyong; Zachara, John M.; Liu, Chongxuan; Moore, Dean A.; Rod, Kenton A.

    2010-01-01

    Contaminated capillary fringe sediments are believed to function as long term source of U(VI) to Hanford's 300 Area groundwater uranium plume that discharges to the Columbia River. The deep vadose zone at this site experiences seasonal water table elevation and water compositional changes in response to Columbia River stage. Batch and column desorption experiments of U(VI) were performed on two mildly contaminated sediments from this system that vary in hydrologic position to ascertain their U(VI) release behavior and factors controlling it. Solid phase characterization of the sediments was performed to identify mineralogic and chemical factors controlling U(VI) desorption. The desorption behavior of U(VI) was different from the two sediments in spite of similar chemical and textural characteristics, and non-carbonate mineralogy. Adsorption strength and sorbed U(VI) lability was higher in the near-river sediment 11D. Inland sediment 39B displayed low sorbed U(VI) lability (∼ 10%) and measurable solid-phase carbonate content. Kinetic desorption was observed that was attributed to regeneration of labile U(VI) in 11D, and carbonate mineral dissolution in 39B. The desorption reaction was best described as an equilibrium surface complexation reaction. The noted differences in desorption behavior appear to result from U(VI) contamination and hydrologic history, as well as sediment carbonate content. Insights are provided on the dynamic adsorption/desorption behavior of contaminants in linked groundwater-river systems.

  17. Magnetopause Erosion During the 17 March 2015 Magnetic Storm: Combined Field-Aligned Currents, Auroral Oval, and Magnetopause Observations

    Science.gov (United States)

    Le, G.; Luehr, H.; Anderson, B. J.; Strangeway, R. J.; Russell, C. T.; Singer, H.; Slavin, J. A.; Zhang, Y.; Huang, T.; Bromund, K.; hide

    2016-01-01

    We present multimission observations of field-aligned currents, auroral oval, and magnetopause crossings during the 17 March 2015 magnetic storm. Dayside reconnection is expected to transport magnetic flux, strengthen field-aligned currents, lead to polar cap expansion and magnetopause erosion. Our multimission observations assemble evidence for all these manifestations. After a prolonged period of strongly southward interplanetary magnetic field, Swarm and AMPERE observe significant intensification of field-aligned currents .The dayside auroral oval, as seen by DMSP, appears as a thin arc associated with ongoing dayside reconnection. Both the field-aligned currents and the auroral arc move equatorward reaching as low as approx. 60 deg. magnetic latitude. Strong magnetopause erosion is evident in the in situ measurements of the magnetopause crossings by GOES 13/15 and MMS. The coordinated Swarm, AMPERE, DMSP, MMS and GOES observations, with both global and in situ coverage of the key regions, provide a clear demonstration of the effects of dayside reconnection on the entire magnetosphere.

  18. Comparing the ACS/WFC and WFC3/UVIS Calibration and Photometry

    Science.gov (United States)

    Deustua, S. E.; Mack, J.

    2018-03-01

    A study was undertaken using synthetic photometry of CALSPEC stars to compare the ACS Wide Field Channel (WFC) photometry to the WFC3 UVIS imaging channel in eight similarly named passbands corresponding to the broadband filters F435W (ACS/WFC) F438W (WFC3/UVIS) and F475W, F555W, F606W, F625W, F775W, F814W and F850LP (both ACS/WFC and WFC3/UVIS). The uncertainty of the photometric calibration of ACS/WFC and WFC3/UVIS with respect to the white dwarf standard stars is within ± 0.5% for F814W, F775W, F606W and F475W, and within ±1% for F625W and F850LP. For F555W the apparent difference in the calibration is 2% for F555W and 6% for UVIS/F438W and ACS/F435W due to inherent differences in the filter passbands. Comparing the ACS/WFC to WFC3/UVIS mean flux for stars having a range of spectral types shows a color dependence. The WFC to UVIS F814W color dependence is ± 0.02 mags for F814W, F775W, F475W and F606W. For the other filters the range is -0.06 to +0.02 mags. Aperture photometry of the 47 Tucanae cluster confirm the results from using synthetic photometry of CALSPEC stars.

  19. Bicarbonate Impact on U(VI) Bioreduction in a Shallow Alluvial Aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Long, Philip E.; Williams, Kenneth H.; Davis, James A.; Fox, Patricia M.; Wilkins, Michael J.; Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.; Berman, Elena S.; Gupta, Manish; Chandler, Darrell P.; Murray, Christopher J.; Peacock, Aaron D.; Giloteaux, L.; Handley, Kim M.; Lovley, Derek R.; Banfield, Jillian F.

    2015-02-01

    Field-scale biostimulation and desorption tracer experiments conducted in a uranium (U) contaminated, shallow alluvial aquifer have provided insight into the coupling of microbiology, biogeochemistry, and hydrogeology that control U mobility in the subsurface. Initial experiments successfully tested the concept that Fe-reducing bacteria such as Geobacter sp. could enzymatically reduce soluble U(VI) to insoluble U(IV) during in situ electron donor amendment (Anderson et al. 2003, Williams et al. 2011). In parallel, in situ desorption tracer tests using bicarbonate amendment demonstrated rate-limited U(VI) desorption (Fox et al. 2012). These results and prior laboratory studies underscored the importance of enzymatic U(VI)-reduction and suggested the ability to combine desorption and bioreduction of U(VI). Here we report the results of a new field experiment in which bicarbonate-promoted uranium desorption and acetate amendment were combined and compared to an acetate amendment-only experiment in the same experimental plot. Results confirm that bicarbonate amendment to alluvial aquifer desorbs U(VI) and increases the abundance of Ca-uranyl-carbonato complexes. At the same time, that the rate of acetate-promoted enzymatic U(VI) reduction was greater in the presence of added bicarbonate in spite of the increased dominance of Ca-uranyl-carbonato aqueous complexes. A model-simulated peak rate of U(VI) reduction was ~3.8 times higher during acetate-bicarbonate treatment than under acetate-only conditions. Lack of consistent differences in microbial community structure between acetate-bicarbonate and acetate-only treatments suggest that a significantly higher rate of U(VI) reduction the bicarbonate-impacted sediment may be due to a higher intrinsic rate of microbial reduction induced by elevated concentrations of the bicarbonate oxyanion. The findings indicate that bicarbonate amendment may be useful in improving the engineered bioremediation of uranium in aquifers.

  20. Bicarbonate impact on U(VI) bioreduction in a shallow alluvial aquifer

    Science.gov (United States)

    Long, Philip E.; Williams, Kenneth H.; Davis, James A.; Fox, Patricia M.; Wilkins, Michael J.; Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.; Berman, Elena S. F.; Gupta, Manish; Chandler, Darrell P.; Murray, Chris; Peacock, Aaron D.; Giloteaux, Ludovic; Handley, Kim M.; Lovley, Derek R.; Banfield, Jillian F.

    2015-02-01

    Field-scale biostimulation and desorption tracer experiments conducted in a uranium (U) contaminated, shallow alluvial aquifer have provided insight into the coupling of microbiology, biogeochemistry, and hydrogeology that control U mobility in the subsurface. Initial experiments successfully tested the concept that Fe-reducing bacteria such as Geobacter sp. could enzymatically reduce soluble U(VI) to insoluble U(IV) during in situ electron donor amendment (Anderson et al., 2003; Williams et al., 2011). In parallel, in situ desorption tracer tests using bicarbonate amendment demonstrated rate-limited U(VI) desorption (Fox et al., 2012). These results and prior laboratory studies underscored the importance of enzymatic U(VI)-reduction and suggested the ability to combine desorption and bioreduction of U(VI). Here we report the results of a new field experiment in which bicarbonate-promoted uranium desorption and acetate amendment were combined and compared to an acetate amendment-only experiment in the same experimental plot. Results confirm that bicarbonate amendment to alluvial aquifer sediments desorbs U(VI) and increases the abundance of Ca-uranyl-carbonato complexes. At the same time, the rate of acetate-promoted enzymatic U(VI) reduction was greater in the presence of added bicarbonate in spite of the increased dominance of Ca-uranyl-carbonato aqueous complexes. A model-simulated peak rate of U(VI) reduction was ∼3.8 times higher during acetate-bicarbonate treatment than under acetate-only conditions. Lack of consistent differences in microbial community structure between acetate-bicarbonate and acetate-only treatments suggest that a significantly higher rate of U(VI) reduction in the bicarbonate-impacted sediment may be due to a higher intrinsic rate of microbial reduction induced by elevated concentrations of the bicarbonate oxyanion. The findings indicate that bicarbonate amendment may be useful in improving the engineered bioremediation of uranium in

  1. Models of auroral-zone conductances

    Science.gov (United States)

    Reiff, P. H.

    1984-01-01

    The magnetosphere-ionosphere system is strongly coupled, with magnetospheric Birkeland currents feeding ionospheric Pedersen and Hall currents. Central to any computer simulation of this system is a detailed, valid conductivity model. An accurate conductivity model is also vital in order to infer Birkeland currents and electric field patterns from inversions of magnetometer chain data. Several recent attempts at constructing conductivity models are presented and their strengths and weaknesses discussed. Incoherent scatter radar measurements can determine height profiles of electron content, from which Pedersen and Hall conductances may be calculated. These yield excellent spatial and good temporal resolution; however, they are limited in field of view. A global pattern requires either 24 hours of data or a chain of stations. Synoptic empirical models (quantized by indices such as Kp or AE) typically are limited by their large bin size (1 deg invariant latitude x 1 hour MLT), and cannot reproduce arcs. Estimating conductivity globally from Dynamics Explorer auroral images is promising, and can yield reasonable time scales (of about 10 minutes); however, this procedure is still only now being tested.

  2. Measurements of low energy auroral ions

    International Nuclear Information System (INIS)

    Urban, A.

    1981-01-01

    This paper summarizes ion measurements in the energy range 0.1 to 30 keV observed during the campaigns 'Substorm Phenomena' and 'Porcupine'. For a clear survey of the physical processes during extraordinary events, sometimes ion measurements of higher energies are also taken into account. Generally, the pitch angle distributions were isotropic during all flights except some remarkable events. In general the ion and electron flux intensities correlated, but sometimes revealed a spectral anti-correlation. Acceleration of the ions by an electrostatic field aligned parallel to the magnetic field could be identified accompanied by intense electron precipitation. On the other hand deceleration of the ions was observed in other field-aligned current sheets which are indicated by the electron and magnetic field measurements. Temporal successive monoenergetic ion variations pointed to energy dispersion and to the location of the source region at 9 Rsub(E). Furthermore, ion fluxes higher than those of the electrons were measured at pitch angles parallel to the magnetic field. The integral down-going number and energy flux of the ions contributed to the total particle or energy influx between 65% and less than 7% and did not clearly characterize the geophysical launch conditions or auroral activities. (author)

  3. The first year of observations of Jupiter's magnetosphere from Juno's Jovian Auroral Distributions Experiment (JADE)

    Science.gov (United States)

    Valek, P. W.; Allegrini, F.; Angold, N. G.; Bagenal, F.; Bolton, S. J.; Chae, K.; Connerney, J. E. P.; Ebert, R. W.; Gladstone, R.; Kim, T. K. H.; Kurth, W. S.; Levin, S.; Louarn, P.; Loeffler, C. E.; Mauk, B.; McComas, D. J.; Pollock, C. J.; Reno, M. L.; Szalay, J. R.; Thomsen, M. F.; Weidner, S.; Wilson, R. J.

    2017-12-01

    Juno observations of the Jovian plasma environment are made by the Jovian Auroral Distributions Experiment (JADE) which consists of two nearly identical electron sensors - JADE-E - and an ion sensor - JADE-I. JADE-E measures the electron distribution in the range of 100 eV to 100 keV and uses electrostatic deflection to measure the full pitch angle distribution. JADE-I measures the composition separated energy per charge in the range of 10 eV / q to 46 keV / q. The large orbit - apojove 110 Rj, perijove 1.05 Rj - allows JADE to periodically cross through the magnetopause into the magnetosheath, transverse the outer, middle, and inner magnetosphere, and measures the plasma population down to the ionosphere. We present here in situ plasma observations of the Jovian magnetosphere and topside ionosphere made by the JADE instrument during the first year in orbit. Dawn-side crossings of the plasmapause have shown a general dearth of heavy ions except during some intervals at lower magnetic latitudes. Plasma disk crossings in the middle and inner magnetosphere show a mixture of heavy and light ions. During perijove crossings at high latitudes when Juno was connected to the Io torus, JADE-I observed heavy ions with energies consistent with a corotating pickup population. In the auroral regions the core of the electron energy distribution is generally from about 100 eV when on field lines that are connected to the inner plasmasheet, several keVs when connected to the outer plasmasheet, and tens of keVs when Juno is over the polar regions. JADE has observed upward electron beams and upward loss cones, both in the north and south auroral regions, and downward electron beams in the south. Some of the beams are of short duration ( 1 s) implying that the magnetosphere has a very fine spatial and/or temporal structure within the auroral regions. Joint observations with the Waves instrument have demonstrated that the observed loss cone distributions provide sufficient growth rates

  4. Recovery of U(Vi) with unexpanded perlite; Recuperacion de U(VI) con perlita no expandida

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas J, A.K.; Davila R, J. I.; Lopez del R, H.; Mireles G, F., E-mail: cuja2105@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2015-09-15

    Perlite is a glass volcanic rock that is hydrated by the addition of water during its formation. Is a natural material widely used in the chemical and construction industries, but recently beginning to be studied their adsorptive properties. In this paper the adsorption capacity of unexpanded perlite to remove U(Vi) in aqueous solution depending on the grain size of the material was investigated, as well as the contact time between the liquid and solid phases, ph of solution and initial concentration of uranium. The adsorption was dependent on the surface area of the material, recovering higher uranium percentage to smaller particle size. Meanwhile kinetics showed that the uranium adsorption is rapid, reaching equilibrium in 1 h. Adsorption to slightly acidic conditions was favored but dropped dramatically to ph highly acidic and basic; at a concentration of 1 x 10{sup -3} M UO{sub 2}{sup +2} the maximum uranium recovery was 46% at ph 6. In dilute solutions (1 x 10{sup -5} to 1 x 10{sup -3} M) the adsorption percentage reached values between 34 and 42%, but was reduced to 1% at a concentration of 1 x 10{sup -2} M. (Author)

  5. Diurnal auroral occurrence statistics obtained via machine vision

    Directory of Open Access Journals (Sweden)

    M. T. Syrjäsuo

    2004-04-01

    Full Text Available Modern ground-based digital auroral All-Sky Imager (ASI networks capture millions of images annually. Machine vision techniques are widely utilised in the retrieval of images from large data bases. Clearly, they can play an important scientific role in dealing with data from auroral ASI networks, facilitating both efficient searches and statistical studies. Furthermore, the development of automated techniques for identifying specific types of aurora opens up the potential of ASI control software that would change instrument operation in response to evolving geophysical conditions. In this paper, we describe machine vision techniques that we have developed for use on large auroral image data sets. We present the results of application of these techniques to a 350000 image subset of the CANOPUS Gillam ASI in the years 1993–1998. In particular, we obtain occurrence statistics for auroral arcs, patches, and Omega-bands. These results agree with those of previous manual auroral surveys.Key words. Ionosphere (Instruments and techniques General (new fields

  6. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    Science.gov (United States)

    Minow, Joseph; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    Today s presentation describes how real time space weather data is used by the International Space Station (ISS) space environments team to obtain data on auroral charging of the ISS vehicle and support ISS crew efforts to obtain auroral images from orbit. Topics covered include: Floating Potential Measurement Unit (FPMU), . Auroral charging of ISS, . Real ]time space weather monitoring resources, . Examples of ISS auroral charging captured from space weather events, . ISS crew observations of aurora.

  7. Removal U(VI) from artificial seawater using facilely and covalently grafted polyacrylonitrile fibers with lysine

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenting; Liu, Qi; Liu, Jingyuan; Zhang, Hongsen; Li, Rumin; Li, Zhanshuang; Jing, Xiaoyan [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001 (China); Wang, Jun, E-mail: zhqw1888@sohu.com [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001 (China); Institute of Advanced Marine Materials, Harbin Engineering University, 150001 (China)

    2017-05-01

    Highlights: • Novel lysine modified fibrous adsorbents were prepared using a facile and green method. • PAN-Lys exhibited high adsorption activity and fast adsorption rate. • PAN-Lys significantly remove U(VI) from simulated seawater. - Abstract: Polyacrylonitrile fibers (PANF) covalently modified with lysine (PAN-Lys) was facilely synthesized and carefully characterized. The critical factors affecting U(VI) adsorption from aqueous solution were exploited, such as initial pH, contact time, concentration and temperature. The adsorption process is strongly dependent on solution pH. With excellent adsorption capacity and high affinity toward U(VI), the process for U(VI) is extremely rapid and the equilibrium can be reached within 20 min. The thermodynamics and kinetics were strictly evaluated. In addition, the hypothetical adsorption mechanisms were proposed. Moreover, the adsorption behavior at low concentrations (3–30 μg L{sup −1}) in simulated seawater was also investigated. Therefore, PAN-Lys can be potentially utilized for the efficient removal of U(VI) from seawater.

  8. Removal U(VI) from artificial seawater using facilely and covalently grafted polyacrylonitrile fibers with lysine

    International Nuclear Information System (INIS)

    Li, Wenting; Liu, Qi; Liu, Jingyuan; Zhang, Hongsen; Li, Rumin; Li, Zhanshuang; Jing, Xiaoyan; Wang, Jun

    2017-01-01

    Highlights: • Novel lysine modified fibrous adsorbents were prepared using a facile and green method. • PAN-Lys exhibited high adsorption activity and fast adsorption rate. • PAN-Lys significantly remove U(VI) from simulated seawater. - Abstract: Polyacrylonitrile fibers (PANF) covalently modified with lysine (PAN-Lys) was facilely synthesized and carefully characterized. The critical factors affecting U(VI) adsorption from aqueous solution were exploited, such as initial pH, contact time, concentration and temperature. The adsorption process is strongly dependent on solution pH. With excellent adsorption capacity and high affinity toward U(VI), the process for U(VI) is extremely rapid and the equilibrium can be reached within 20 min. The thermodynamics and kinetics were strictly evaluated. In addition, the hypothetical adsorption mechanisms were proposed. Moreover, the adsorption behavior at low concentrations (3–30 μg L −1 ) in simulated seawater was also investigated. Therefore, PAN-Lys can be potentially utilized for the efficient removal of U(VI) from seawater.

  9. Study on the interaction of U(VI) species with natural organic matters in KURT groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Euo Chang; Baik, Min Hoon; Cho, Hye Ryun; Kim, Hee Kyung; Cha, Wansik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-06-15

    The interaction of U(VI) (hexavalent uranium) species with natural organic matter (NOM) in KURT (KAERI Underground Research Tunnel) groundwater is investigated using a laser spectroscopic technique. The luminescence spectra of the NOM are observed in the ultraviolet and blue wavelength regions by irradiating a laser beam at 266 nm in groundwater. The luminescence spectra of U(VI) species in groundwater containing uranium concentrations of 0.034-0.788 mg·L-1 are measured in the green-colored wavelength region. The luminescence characteristics (peak wavelengths and lifetime) of U(VI) in the groundwater agree well with those of Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) in a standard solution prepared in a laboratory. The luminescence intensities of U(VI) in the groundwater are weaker than those of Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) in the standard solution at the same uranium concentrations. The luminescence intensities of Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) in the standard solution mixed with the groundwater are also weaker than those of Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) in the standard solution at the same uranium concentrations. These results can be ascribed to calcium-U(VI)-carbonate species interacting with NOM and forming non-radiative U(VI) complexes in groundwater.

  10. Study on the interaction of U(VI) species with natural organic matters in KURT groundwater

    International Nuclear Information System (INIS)

    Jung, Euo Chang; Baik, Min Hoon; Cho, Hye Ryun; Kim, Hee Kyung; Cha, Wansik

    2017-01-01

    The interaction of U(VI) (hexavalent uranium) species with natural organic matter (NOM) in KURT (KAERI Underground Research Tunnel) groundwater is investigated using a laser spectroscopic technique. The luminescence spectra of the NOM are observed in the ultraviolet and blue wavelength regions by irradiating a laser beam at 266 nm in groundwater. The luminescence spectra of U(VI) species in groundwater containing uranium concentrations of 0.034-0.788 mg·L-1 are measured in the green-colored wavelength region. The luminescence characteristics (peak wavelengths and lifetime) of U(VI) in the groundwater agree well with those of Ca 2 UO 2 (CO 3 ) 3 (aq) in a standard solution prepared in a laboratory. The luminescence intensities of U(VI) in the groundwater are weaker than those of Ca 2 UO 2 (CO 3 ) 3 (aq) in the standard solution at the same uranium concentrations. The luminescence intensities of Ca 2 UO 2 (CO 3 ) 3 (aq) in the standard solution mixed with the groundwater are also weaker than those of Ca 2 UO 2 (CO 3 ) 3 (aq) in the standard solution at the same uranium concentrations. These results can be ascribed to calcium-U(VI)-carbonate species interacting with NOM and forming non-radiative U(VI) complexes in groundwater

  11. Juno/JEDI observations of energetic particles near closest approach to Jupiter - Evidence for heavy ion precipitation in the Jovian auroral region

    Science.gov (United States)

    Haggerty, Dennis; Mauk, Barry; Paranicas, Chris; Clark, George; Kollmann, Peter; Rymer, Abigail; Bolton, Scott; Connerney, Jack; Levin, Steve

    2017-04-01

    The Juno spacecraft's polar orbit provides an exceptional opportunity to study auroral processes in the largest and most dynamic auroral region in the solar system. The Jupiter Energetic particle Detector Instruments (JEDI) have SSD telescopes with multiple look directions and additional time-of-flight capabilities to measure ions and electrons from 6 keV to 20 MeV. These instruments resolve major ion species beginning at 30 keV/n, with coarser mass resolution for lower energy ions. JEDI instruments observed energetic heavy ions up to 20 MeV precipitating into the auroral regions during the first few Juno perijoves that have occurred to date. The observed heavy ion intensity was lower than expected, but composition of the precipitating ions included the predicted species oxygen and sulfur. During the first perijove pass, an unexpected element was observed with an atomic mass between oxygen and sulfur with intensity comparable to the other heavy ions. Preliminary analysis of the JEDI composition data indicates magnesium, with an unexpected energy spectrum beginning around 500 keV and extending up through 20 MeV. During the third perijove pass no significant intensity of energetic magnesium was observed, which suggests that the source of this element is intermittent. We report on the new findings of energetic heavy ions from the first few Juno orbits including the auroral regions, observations through closest approach, and discuss possible source mechanisms for the unexpected and transient observation of heavy ions.

  12. Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets

    Science.gov (United States)

    Schultz, Colin

    2013-07-01

    The dancing glow of the aurorae, the long tendrils of light that seem to reach up into space, has mesmerized scientists for centuries. More than a beautiful display, the aurorae tell us about the Earth—about its atmosphere, its magnetic field, and its relationship with the Sun. As technology developed, researchers looking beyond Earth's borders discovered an array of auroral processes on planets throughout the solar system. In the AGU monograph Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, editors Andreas Keiling, Eric Donovan, Fran Bagenal, and Tomas Karlsson explore the many open questions that permeate the science of auroral physics and the relatively recent field of extraterrestrial aurorae. In this interview, Eos talks to Karlsson about extraterrestrial aurorae, Alfvén waves, and the sounds of the northern lights.

  13. Altitude Distribution of the Auroral Acceleration Potential Determined from Cluster Satellite Data at Different Heights

    International Nuclear Information System (INIS)

    Marklund, Goeran T.; Sadeghi, Soheil; Karlsson, Tomas; Lindqvist, Per-Arne; Nilsson, Hans; Forsyth, Colin; Fazakerley, Andrew; Lucek, Elizabeth A.; Pickett, Jolene

    2011-01-01

    Aurora, commonly seen in the polar sky, is a ubiquitous phenomenon occurring on Earth and other solar system planets. The colorful emissions are caused by electron beams hitting the upper atmosphere, after being accelerated by quasistatic electric fields at 1-2 R E altitudes, or by wave electric fields. Although aurora was studied by many past satellite missions, Cluster is the first to explore the auroral acceleration region with multiprobes. Here, Cluster data are used to determine the acceleration potential above the aurora and to address its stability in space and time. The derived potential comprises two upper, broad U-shaped potentials and a narrower S-shaped potential below, and is stable on a 5 min time scale. The scale size of the electric field relative to that of the current is shown to depend strongly on altitude within the acceleration region. To reveal these features was possible only by combining data from the two satellites.

  14. An explanation of auroral intensification during the substorm expansion phase

    Science.gov (United States)

    Yao, Zhonghua; Rae, I. J.; Lui, A. T. Y.; Murphy, K. R.; Owen, C. J.; Pu, Z. Y.; Forsyth, C.; Grodent, D.; Zong, Q.-G.; Du, A. M.; Kalmoni, N. M. E.

    2017-08-01

    A multiple auroral onset substorm on 28 March 2010 provides an opportunity to understand the physical mechanism in generating auroral intensifications during a substorm expansion phase. Conjugate observations of magnetic fields and plasma from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft, of field-aligned currents (FACs) from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) satellites, and from ground-based magnetometers and aurora are all available. The comprehensive measurements allow us to further our understanding of the complicated causalities among dipolarization, FAC generation, particle acceleration, and auroral intensification. During the substorm expansion phase, the plasma sheet expanded and was perturbed leading to the generation of a slow mode wave, which modulated electron flux in the outer plasma sheet. During this current sheet expansion, field-aligned currents formed, and geomagnetic perturbations were simultaneously detected by ground-based instruments. However, a magnetic dipolarization did not occur until about 3 min later in the outer plasma sheet observed by THEMIS-A spacecraft (THA). We believe that this dipolarization led to an efficient Fermi acceleration to electrons and consequently the cause of a significant auroral intensification during the expansion phase as observed by the All-Sky Imagers (ASIs). This Fermi acceleration mechanism operating efficiently in the outer plasma sheet during the expansion phase could be a common explanation of the poleward auroral development after substorm onset. These results also show a good agreement between the upward FAC derived from AMPERE measurements and the auroral brightening observed by the ASIs.

  15. Rocket measurement of auroral partial parallel distribution functions

    Science.gov (United States)

    Lin, C.-A.

    1980-01-01

    The auroral partial parallel distribution functions are obtained by using the observed energy spectra of electrons. The experiment package was launched by a Nike-Tomahawk rocket from Poker Flat, Alaska over a bright auroral band and covered an altitude range of up to 180 km. Calculated partial distribution functions are presented with emphasis on their slopes. The implications of the slopes are discussed. It should be pointed out that the slope of the partial parallel distribution function obtained from one energy spectra will be changed by superposing another energy spectra on it.

  16. Auroral electron acceleration by lower-hybrid waves

    International Nuclear Information System (INIS)

    Bingham, R.; Bryant, D.A.; Hall, D.S.

    1986-01-01

    Because the particles and electric fields association with inverted-V electron streams do not have the characteristics expected for acceleration by a quasistatic potential difference, the possiblity that the electrons are stochastically accelerated by waves is investigated. It is demonstrated that the lower hybrid waves seen on auroral field lines have the righ properties to account for the electron acceleration. It is further shown that the lower hybrid wave power measured on auroral field lines can be generated by the streaming ions observed at the boundary of the plasma sheet, and that this wave power is sufficient to account for the electron power observed close to the atmosphere. (author)

  17. Analysis of auroral infrared emissions observed during the ELIAS experiment

    Directory of Open Access Journals (Sweden)

    G. E. Caledonia

    Full Text Available The ELIAS (Earth Limb Infrared Atmospheric Structure experiment was flown from the Poker Flat Research Range, Alaska in 1983 and successfully monitored visible and infrared emissions from an IBC III+ aurora. Measurements were performed in both staring and scanning modes over several hundred seconds. The data for short- and mid-wave infrared regions have been analyzed in terms of auroral excitation of the NO and NO+ vibrational bands. Auroral excitation efficiencies and kinetic implications are presented.

  18. Double layers do accelerate particles in the auroral zone

    International Nuclear Information System (INIS)

    Borovsky, J.E.

    1992-01-01

    In response to a recent report [D. A. Bryant, R. Bingham, and U. de Angelis, Phys. Rev. Lett. 68, 37 (1991)] that makes the claim that electrostatic fields are weak in the auroral zone and that electrostatic fields cannot accelerate particles, it is pointed out that the evidence for electrostatic fields in the auroral zone is overwhelming and that these electrostatic fields often are accelerating electrons to produce aurora. The literature cited in the article above as evidence against double layers (strong electric fields) is reexamined and is found not to be evidence against double layers

  19. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction

    International Nuclear Information System (INIS)

    Phillips, E.J.P.; Landa, E.R.; Lovley, D.R.

    1995-01-01

    A process for concentrating uranium from contaminated soils in which the uranium is first extracted with bicarbonate and then the extracted uranium is precipitated with U(VI)-reducing microorganisms was evaluated for a variety of uranium-contaminated soils. Bicarbonate (100 mM) extracted 20-94% of the uranium that was extracted with nitric acid. The U(VI)-reducing microorganism, Desulfovibrio desulfuricans reduced the U(VI) to U(IV) in the bicarbonate extracts. In some instances unidentified dissolved extracted components, presumably organics, gave the extract a yellow color and inhibited U(VI) reduction and/or the precipitation of U(IV). Removal of the dissolved yellow material with the addition of hydrogen peroxide alleviated this inhibition. These results demonstrate that bicarbonate extraction of uranium from soil followed by microbial U(VI) reduction might be an effective mechanism for concentrating uranium from some contaminated soils. (author)

  20. Retention of U(VI) onto silica in presence of model organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Pham, T.T.H.; Mercier-Bion, F.; Drot, R.; Lagarde, G.; Simoni, E. [Groupe de Radiochimie, IPNO, Universite Paris 11, Orsay, 91406 (France); Lambert, J. [LCPME, 405 rue de Vandoeuvre, Villers-les-Nancy, 54600 (France)

    2008-07-01

    It is well-known that the organic matter influences the retention of ions onto mineral surfaces. However, the major part of concerned studies implies humic substances and complex solids. Another approach for identifying the sorption mechanisms is possible by studying simpler solids than those present in natural medium. So, silica is chosen as mineral surface because of its abundance in soils and of the presence of Si-O groups in clayey minerals. Uranium (VI) is selected as cation. Simple organic molecules like acetic (one carboxylic group) and oxalic (two carboxylic functions) acids are considered as models of the natural organic matter for understanding their role in the retention of U(VI) onto powders and slides of silica. Binary (organics/silica, U(VI)/silica) and ternary systems (organics/silica/U(VI)) are studied by complementary approaches. Sorption edges as function of pH are obtained by liquid scintillation methods and capillary electrophoresis. Different spectroscopic techniques are used to deduce the interactions between the organic matter and U(VI) sorbed onto the silica whose: Time-Resolved Laser induced Fluorescence Spectroscopy (TRLFS), X-ray Photoelectron Spectroscopy (XPS), Nuclear Microprobe Analysis (NMA). The results of the effect of these model organic molecules onto the U(VI) retention showed a good agreement between the different techniques. Concerning the acetic acid, there are not differences in the sorption percentages of uranyl (see the figure). All these results indicate that the uranyl-acetate complexes stay in the aqueous solution rather than sorbing onto the silica. On the contrary, oxalic acid influences the sorption of U(VI) onto the silica surface. The sorption percentage of U(VI) in the ternary system (oxalic acid/silica/U(VI)) is lower than the binary system (U(VI)/silica) (see the figure). So, the presence of oxalic acid decreases the sorption of U(VI) onto the silica surface. (authors)

  1. Extraction of U(VI) with N,N'-dimethyl-N,N'-dioctylsuccinylamide in toluene

    International Nuclear Information System (INIS)

    Cui Yu; Shandong University, Jinan; Sun Guoxin; Zhang Zhenwei; Hu Yufen; Sun Sixiu

    2007-01-01

    The extraction of uranyl nitrate by the novel extractant N,N'-dimethyl-N,N'-dioctylsuccinylamide (DMDOSA) from aqueous nitric/nitrate solutions was investigated. The effects of concentration of HNO 3 and DMDOSA on the U(VI) extraction distribution was studied. The extraction mechanism was established and the stoichiometry of the main extracted species was confirmed to be UO 2 (NO 3 ) 2 x 2DMDOSA. The value of ΔH of the extraction is -23.9±1.7 kJ x mol -1 . A IR spectral study of the U(VI) extracted species was also made. (author)

  2. The importance of auroral westward flow channels in substorm evolution

    Science.gov (United States)

    Parkinson, M. L.; Dyson, P. L.; Pinnock, M.

    Auroral westward flow channels (AWFC) are intense, narrow channels of westward drift overlapping the equatorward edge of the auroral oval in the pre-magnetic midnight sector. They are a close relative of the sub-auroral polarisation stream which encompasses polarisation jets, a phenomenon also known as sub-auroral ion drift events. Recent observations made with the Tasman Geospace Environment Radar (TIGER) (147.2E, 43.4S Geodetic; 55.0 Geomagnetic) have revealed close associations between the appearance of AWFCs and substorm onset, and their subsequent decay toward the end of recovery phase. In fact, in terms of electric field strength (>50 mV m-1), they are the strongest signatures of substorms in the ionospheric convection. In terms of electric potential difference (>10 kV), they also represent a substantial fraction of the total potential difference generated during substorms. The AWFCs exhibit a diverse range of behaviour, there being no typical event. The radar observations show that radial polarisation fields sometimes oscillate towards and away from the Earth, and bifurcate, within the inner magnetosphere throughout substorm evolution. We have identified every AWFC observed by TIGER during the first year of operation, 2000. Simple statistical arguments imply that one, if not more, AWFC probably occurs during every substorm. AWFCs are a fundamental aspect of substorm evolution.

  3. Velocity of small-scale auroral ionospheric current systems over ...

    Indian Academy of Sciences (India)

    At the latter times, triangulation with 3 uxgate magnetometers located at the vertices of a suitable triangle provides a means of monitoring mobile auroral ionospheric current systems over Maitri. The spacing between the magnetometers is typically kept at 75-200 km, keeping in mind the scale-sizes of ∼100 km for these ...

  4. Analysis of auroral electrojet magnetic indices | Tijjani | Bayero ...

    African Journals Online (AJOL)

    Using the values of R2, it can be seen that the models for AE and AL can be used to predict or make forecast of the behavior of the indices. It was also discovered that level (alpha) has more significant contributions in the behavior of the system than seasonal. Keywords: Magnetic indices, World Data Center, Auroral, Level, ...

  5. Velocity of small-scale auroral ionospheric current systems over ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    While several magnetometer arrays exist in the northern auroral regions (e.g., the Alberta array in Canada, the Alaskan array in the U.S. and the IMS Scandinavian array), there is no report in literature of triangulation through arrays in Antarctica, except for a one-day study by Neudegg et al 1995 for ULF pulsations of the Pc1 ...

  6. Excitation of low-frequency electrostatic instability on the auroral ...

    African Journals Online (AJOL)

    Low-Frequency Electrostatic Instability That Is Observed By Both Ground Facilities And Satellites Have Been Studied In The Auroral Acceleration Region Consisting Of Hot Precipitating Electron Beam From The Magnetosphere, Cold Background Electron And Ion Beam Moving Upward Away From The Earth Along The ...

  7. Improving level set method for fast auroral oval segmentation.

    Science.gov (United States)

    Yang, Xi; Gao, Xinbo; Tao, Dacheng; Li, Xuelong

    2014-07-01

    Auroral oval segmentation from ultraviolet imager images is of significance in the field of spatial physics. Compared with various existing image segmentation methods, level set is a promising auroral oval segmentation method with satisfactory precision. However, the traditional level set methods are time consuming, which is not suitable for the processing of large aurora image database. For this purpose, an improving level set method is proposed for fast auroral oval segmentation. The proposed algorithm combines four strategies to solve the four problems leading to the high-time complexity. The first two strategies, including our shape knowledge-based initial evolving curve and neighbor embedded level set formulation, can not only accelerate the segmentation process but also improve the segmentation accuracy. And then, the latter two strategies, including the universal lattice Boltzmann method and sparse field method, can further reduce the time cost with an unlimited time step and narrow band computation. Experimental results illustrate that the proposed algorithm achieves satisfactory performance for auroral oval segmentation within a very short processing time.

  8. Velocity of small-scale auroral ionospheric current systems over ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    irregular pulsations over Antarctica in the present study tally well with those obtained for northern auroral locations. 1. Introduction. The Indian Antarctic station Maitri (MAI) is located at geog. 70◦45 S, 11◦45 E (geom. 66◦.03S, 53◦21E), in the Schirmacher oasis region of Queen Maud land, and lies north of the. Wohlthat ...

  9. Eyewitness Reports of the Great Auroral Storm of 1859

    Science.gov (United States)

    Green, James L.; Boardsen, Scott; Odenwald, Sten; Humble, John; Pazamickas, Katherine A.

    2005-01-01

    The great geomagnetic storm of 1859 is really composed of two closely spaced massive worldwide auroral events. The first event began on August 28th and the second began on September 2nd. It is the storm on September 2nd that results from the Carrington-Hodgson white light flare that occurred on the sun September l&. In addition to published scientific measurements; newspapers, ship logs and other records of that era provide an untapped wealth of first hand observations giving time and location along with reports of the auroral forms and colors. At its height, the aurora was described as a blood or deep crimson red that was so bright that one "could read a newspaper by." Several important aspects of this great geomagnetic storm are simply phenomenal. Auroral forms of all types and colors were observed to latitudes of 25deg and lower. A significant portion of the world's 125,000 miles of telegraph lines were also adversely affected. Many of - which were unusable for 8 hours or more and had a small but notable economic impact. T h s paper presents only a select few available first hand accounts of the Great Auroral Event of 1859 in an attempt to give the modern reader a sense of how this spectacular display was received by the public from many places around the globe and present some other important historical aspects of the storm.

  10. First results of the Auroral Turbulance II rocket experiment

    DEFF Research Database (Denmark)

    Danielides, M.A.; Ranta, A.; Ivchenco, N.

    1999-01-01

    The Auroral Turbulance II sounding rocket was launched on February 11, 1997 into moderately active nightside aurora from the Poker Flat Research Range, Alaska, US. The experiment consisted of three independent, completely instrumented payloads launched by a single vehicle. The aim of the experiment...

  11. Variations of auroral hydrogen emission near substorm onset

    Directory of Open Access Journals (Sweden)

    L. P. Borovkov

    2005-07-01

    Full Text Available The results of coordinated optical ground-based observations of the auroral substorm on 26 March 2004 in the Kola Peninsula are described. Imaging spectrograph data with high spectral and temporal resolution recorded the Doppler profile of the Hα hydrogen emission; this allows us to estimate the average energy of precipitating protons and the emission intensity of the hydrogen Balmer line. Two different populations of precipitating protons were observed during an auroral substorm. The first of these is associated with a diffuse hydrogen emission that is usually observed in the evening sector of the auroral oval and located equatorward of the discrete electron arcs associated with substorm onset. The average energy of the protons during this precipitation was ~20–35 keV, and the energy flux was ~3x10–4Joule/m2s. The second proton population was observed 1–2min after the breakup during 4–5min of the expansion phase of substorm into the zone of bright, discrete auroral structures (N-S arcs. The average energy of the protons in this population was ~60 keV, and the energy flux was ~2.2x10–3Joule/m2s. The observed spatial structure of hydrogen emission is additional evidence of the higher energy of precipitated protons in the second population, relative to the protons in the diffuse aurora. We believe that the most probable mechanism of precipitation of the second population protons was pitch-angle scattering of particles due to non-adiabatic motion in the region of local dipolarization near the equatorial plane.Keywords. Auroral ionosphere; Particle precipitation; Storms and substorms

  12. INTERBALL-Auroral observations of 0.1-12 keV ion gaps in the diffuse auroral zone

    Science.gov (United States)

    Kovrazhkin, R. A.; Sauvaud, J.-A.; Delcourt, D. C.

    1999-06-01

    We examine ion flux dropouts detected by INTERBALL-Auroral upon traversal of the auroral zone at altitudes of sim13 000 up to 20 000 km. These dropouts which we refer to as gaps , are frequently observed irrespectively of longitudinal sector and appear characteristic of INTERBALL-Auroral ion spectrograms. Whereas some of these gaps display a nearly monoenergetic character ( 12 keV), others occur at energies of a few hundreds of eV up to several keV. INTERBALL-Auroral data exhibit the former monoenergetic gap variety essentially in the evening sector. As examined in previous studies, these gaps appear related to transition from particle orbits that are connected with the magnetotail plasma source to closed orbits encircling the Earth. The latter gap variety, which spreads over several hundreds of eV to a few keV is often observed in the dayside magnetosphere. It is argued that such gaps are due to magnetospheric residence times well above the ion lifetime. This interpretation is supported by numerical orbit calculations which reveal extremely large (up to several tens of hours) times of flight in a limited energy range as a result of conflicting E × B and gradient-curvature drifts. The characteristic energies obtained numerically depend upon both longitude and latitude and are quite consistent with those measured in-situ.

  13. The adsorption of U(VI) and Hg(II) on Paecilomyces catenlannulatus proteases

    International Nuclear Information System (INIS)

    Fengbo Li; Xiaoyu Li; Lejin Fang; Zhimou Gao

    2013-01-01

    The adsorption of U(VI) on Paecilomyces catenlannulatus as a function of agitation time, pH and solution concentration was investigated by batch techniques. Hg(II) cation was also employed to compare the adsorption capacity of P. catenlannulatus in this study. The adsorption kinetics indicate that the adsorption of U(VI) and Hg(II) on P. catenlannulatus can be fitted by pseudo-second kinetic model very well. The optimum pH for U(VI) removal was 7.0, whereas the high level of adsorption of Hg(II) was observed at pH >7.0 due to the occurrence of precipitate (i.e., Hg(OH) 2 (s)). The maximum adsorption capacity of P. catenlannulatus calculated from Langmuir model was 163.93 and 140.85 mg g -1 for U(VI) and Hg(II), respectively. This paper highlights the application of P. catenlannulatus as suitable bio-materials for the preconcentration and removal of radionuclides from aqueous solutions in environmental pollution management. (author)

  14. Size of Self-Gravity Wakes from Cassini UVIS Tracking Occultations and Ring Transparency Statistics

    Science.gov (United States)

    Esposito, L. W.; Rehnberg, M.; Colwell, J. E.; Sremcevic, M.

    2017-12-01

    We compare two methods for determining the size of self-gravity wakes in Saturn's rings. Analysis of gaps seen in UVIS occultations gives a power law distribution from 10-100m (Rehnberg etal 2017). Excess variance from UVIS occultations can be related to characteristic clump widths, a method which extends the work of Showalter and Nicholson (1990) to more arbitrary shadow distributions. In the middle A ring, we use results from Colwell etal (2017) for the variance and results from Jerousek etal (2016) for the relative size of gaps and wakes to estimate the wake width consistent with the excess variance observed there. Our method gives: W= sqrt (A) * E/T2 * (1+ S/W)Where A is the area observed by UVIS in an integration period, E is the measured excess variance above Poisson statistics, T is the mean transparency, and S and W are the separation and width of self-gravity wakes in the granola bar model of Colwell etal (2006). We find: W 10m and infer the wavelength of the fastest growing instability lamdaT = S + W 30m. This is consistent with the calculation of the Toomre wavelength from the surface mass density of the A ring, and with the highest resolution UVIS star occultations.

  15. Characterization of U(VI) Sorption-Desorption Processes and Model Upscaling

    International Nuclear Information System (INIS)

    Bai, Jing; Dong, Wenming; Ball, William P.

    2006-01-01

    The objectives of the overall collaborative EMSP effort (with which this project is associated) were to characterize sorption and desorption processes of U(VI) on pristine and contaminated Hanford sediments over a range of sediment facies and materials properties and to relate such characterization both to fundamental molecular-scale understanding and field-scale models of geochemistry and mass transfer. The research was intended to provide new insights on the mechanisms of U(VI) retardation at Hanford, and to allow the development of approaches by which laboratory-developed geochemical models could be upscaled for defensible field-scale predictions of uranium transport in the environment. Within this broader context, objectives of the JHU-based project were to test hypotheses regarding the coupled roles of adsorption and impermeable-zone diffusion in controlling the fate and transport of U(VI) species under conditions of comparatively short-term exposure. In particular, this work tested the following hypotheses: (1) the primary adsorption processes in the Hanford sediment over the pH range of 7 to 10 are surface complexation reactions of aqueous U(VI) hydroxycarbonate and carbonate complexes with amphoteric edge sites on detrital phyllosilicates in the silt/clay size fraction; (2) macroscopic adsorption intensity (at given aqueous conditions) is a function of mineral composition and aquatic chemistry; and (3) equilibrium sorption and desorption to apply in short-term, laboratory-spiked pristine sediments; and (4) interparticle diffusion can be fully understood in terms of a model that couples molecular diffusion of uranium species in the porewater with equilibrium sorption under the relevant aqueous conditions. The primary focus of the work was on developing and applying both models and experiments to test the applicability of ''local equilibrium'' assumptions in the modeling interpretation of sorption retarded interparticle diffusion, as relevant to processes of

  16. Characterization of U(VI) Sorption-Desorption Processes and Model Upscaling

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Jing; Dong, Wenming; Ball, William P.

    2006-10-12

    The objectives of the overall collaborative EMSP effort (with which this project is associated) were to characterize sorption and desorption processes of U(VI) on pristine and contaminated Hanford sediments over a range of sediment facies and materials properties and to relate such characterization both to fundamental molecular-scale understanding and field-scale models of geochemistry and mass transfer. The research was intended to provide new insights on the mechanisms of U(VI) retardation at Hanford, and to allow the development of approaches by which laboratory-developed geochemical models could be upscaled for defensible field-scale predictions of uranium transport in the environment. Within this broader context, objectives of the JHU-based project were to test hypotheses regarding the coupled roles of adsorption and impermeable-zone diffusion in controlling the fate and transport of U(VI) species under conditions of comparatively short-term exposure. In particular, this work tested the following hypotheses: (1) the primary adsorption processes in the Hanford sediment over the pH range of 7 to 10 are surface complexation reactions of aqueous U(VI) hydroxycarbonate and carbonate complexes with amphoteric edge sites on detrital phyllosilicates in the silt/clay size fraction; (2) macroscopic adsorption intensity (at given aqueous conditions) is a function of mineral composition and aquatic chemistry; and (3) equilibrium sorption and desorption to apply in short-term, laboratory-spiked pristine sediments; and (4) interparticle diffusion can be fully understood in terms of a model that couples molecular diffusion of uranium species in the porewater with equilibrium sorption under the relevant aqueous conditions. The primary focus of the work was on developing and applying both models and experiments to test the applicability of "local equilibrium" assumptions in the modeling interpretation of sorption retarded interparticle diffusion, as relevant to processes of U(VI

  17. High performance of phosphate-functionalized graphene oxide for the selective adsorption of U(VI) from acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xia [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); University of Science and Technology of China, Hefei, 230026 (China); Li, Jiaxing, E-mail: lijx@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions (China); School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 215123, Suzhou (China); Wang, Xiangxue; Chen, Changlun [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); Wang, Xiangke [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions (China); School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 215123, Suzhou (China); Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2015-11-15

    In this study, phosphate-functionalized graphene oxide (PGO) was prepared by grafting triethyl phosphite onto the surface of GO using Arbuzov reaction. The as-prepared PGO was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transformed infrared spectroscopy and Zeta potential. The application of the PGO to remove U(VI) from aqueous solution was investigated with a maximum adsorption capacity of 251.7 mg/g at pH = 4.0 ± 0.1 and T = 303 K. The adsorption mechanism was also investigated by X-ray photoelectron spectroscopy analysis, indicating a chemical adsorption of U(VI) on PGO surface. Moreover, experimental results gave a better removal efficiency toward U(VI) on PGO surface than other heavy metal ions at acidic solution, indicating the selective extraction of U(VI) from environmental pollutants. - Highlights: • The successful grafting phosphonate to graphene oxide by the Arbuzov reaction. • Selective adsorption of U(VI) on PGO surface over other heavy metal ions from acidic solution. • Electrostatic interactions of U(VI) with phosphonate and oxygen-containing functional groups on PGO surface. • Higher sorption capacity on PGO surface than GO surface for the U(VI) removal.

  18. Electrostatic potential in the auroral ionosphere derived from Chatanika radar observations

    International Nuclear Information System (INIS)

    Foster, J.C.; Banks, P.M.; Doupnik, J.R.

    1982-01-01

    A technique is described for determining the latitudinal variation of the electrostatic potential associated with the ionospheric convection electric fields. Using the north-south electric field component derived from radar convection velocity experiments, the integral of Exd1 is taken northward along the magnetic meridian, starting at low latitudes. The radar data consiste of up to 40 independent measurements of plasma convection spanning 15 0 of invariant latitude centered on Chatanika, Alaska (65 0 ν), with half-hour temporal resolution. It has been found that (1) the electric field contributions to the potential at and below 60 0 ν are small under most circumstances and (2) the latitudinal variation of the potential is smooth and regular, permitting the potentials to be contoured across local time. It is found from the experiments that the potential often varies uniformly over 10 0 latitude at dawn and dusk. Electric fields of 50 mV/m are common. It is also noted that the latitude of the greatest negative potential in the premidnight sector coincides with the Harang discontinuity in ionspheric currents. The potentials calculated from the measured plasma drifts exhibit a regular local time variation. Equipotential contours derived from the latitude-local time potential field obtained with the long-duration radar experiments, while not providing a snapshot of the instantaneous pattern, elucidate the large-scale diurnal variation of the electrostatic potential at auroral latitudes. From such contours it is found that a two-cell convection pattern with varying degrees of asymmetry is consistently present at auroral latitudes, that a cross-polar cap potential drop of 70--120 kV is present in moderately disturbed conditions, and that substorms perturb the potential pattern at all local times

  19. Experimental investigation of auroral generator regions with conjugate Cluster and FAST data

    Directory of Open Access Journals (Sweden)

    O. Marghitu

    2006-03-01

    Full Text Available Here and in the companion paper, Hamrin et al. (2006, we present experimental evidence for the crossing of auroral generator regions, based on conjugate Cluster and FAST data. To our knowledge, this is the first investigation that concentrates on the evaluation of the power density, E·J, in auroral generator regions, by using in-situ measurements. The Cluster data we discuss were collected within the Plasma Sheet Boundary Layer (PSBL, during a quiet magnetospheric interval, as judged from the geophysical indices, and several minutes before the onset of a small substorm, as indicated by the FAST data. Even at quiet times, the PSBL is an active location: electric fields are associated with plasma motion, caused by the dynamics of the plasma-sheet/lobe interface, while electrical currents are induced by pressure gradients. In the example we show, these ingredients do indeed sustain the conversion of mechanical energy into electromagnetic energy, as proved by the negative power density, E·J<0. The plasma characteristics in the vicinity of the generator regions indicate a complicated 3-D wavy structure of the plasma sheet boundary. Consistent with this structure, we suggest that at least part of the generated electromagnetic energy is carried away by Alfvén waves, to be dissipated in the ionosphere, near the polar cap boundary. Such a scenario is supported by the FAST data, which show energetic electron precipitation conjugated with the generator regions crossed by Cluster. A careful examination of the conjunction timing contributes to the validation of the generator signatures.

  20. Radar observations in the vicinity of pre-noon auroral arcs

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    2005-07-01

    Full Text Available A combination of EISCAT incoherent scatter radar measurements, optical and magnetometer data is used to study the plasma in and around pre-noon structured precipitation and auroral arcs. Particular attention is paid to regions of comparatively low E-region density observed adjacent to arcs or structured precipitation in the EISCAT Svalbard radar field-aligned measurements. Comparison between luminosity and incoherent scatter electron density measurements shows that the low-density regions occur primarily due to the absence of diffuse precipitation rather than to a cavity formation process. Two cases of arcs and low density/luminosity regions are identified. The first is related to a strong Pc5 pulsation event, and the absence of diffuse precipitation is due to a large-scale modulation of the diffuse precipitation. In the second case the equatormost arc is on a shielding boundary and the low-density region coincides with a strong flow region just poleward of this arc. Regions of high electric field and low luminosity and conductance are observed prior to intensification of the structured precipitation in both cases. The ionospheric current is enhanced in the low conductance region, indicating that the strong electric fields do not result solely from ionospheric polarization electric fields, and thus are mainly driven by magnetospheric processes. The average energy of the precipitating electrons in the arcs and structured precipitation is, according to EISCAT measurements, 500eV and the energy spectra are similar for the pulsation and shielding cases. The average energy is thus significantly less than in the diffuse precipitation region which shows central CPS-like energy spectra. We suggest that the low ionospheric conductance of 0.7S in the low density regions is favorable for the arc formation process. This is in quantitative agreement with recent simulations of the ionospheric feedback instability. Keywords. Magnetospheric physics (Auroral

  1. Kinetic modeling of auroral ion outflows observed by the VISIONS sounding rocket

    Science.gov (United States)

    Albarran, R. M.; Zettergren, M. D.

    2017-12-01

    The VISIONS (VISualizing Ion Outflow via Neutral atom imaging during a Substorm) sounding rocket was launched on Feb. 7, 2013 at 8:21 UTC from Poker Flat, Alaska, into an auroral substorm with the objective of identifying the drivers and dynamics of the ion outflow below 1000km. Energetic ion data from the VISIONS polar cap boundary crossing show evidence of an ion "pressure cooker" effect whereby ions energized via transverse heating in the topside ionosphere travel upward and are impeded by a parallel potential structure at higher altitudes. VISIONS was also instrumented with an energetic neutral atom (ENA) detector which measured neutral particles ( 50-100 eV energy) presumably produced by charge-exchange with the energized outflowing ions. Hence, inferences about ion outflow may be made via remotely-sensing measurements of ENAs. This investigation focuses on modeling energetic outflowing ion distributions observed by VISIONS using a kinetic model. This kinetic model traces large numbers of individual particles, using a guiding-center approximation, in order to allow calculation of ion distribution functions and moments. For the present study we include mirror and parallel electric field forces, and a source of ion cyclotron resonance (ICR) wave heating, thought to be central to the transverse energization of ions. The model is initiated with a steady-state ion density altitude profile and Maxwellian velocity distribution characterizing the initial phase-space conditions for multiple particle trajectories. This project serves to advance our understanding of the drivers and particle dynamics in the auroral ionosphere and to improve data analysis methods for future sounding rocket and satellite missions.

  2. Enhanced accumulation of U(VI) by Aspergillus oryzae mutant generated by dielectric barrier discharge air plasma

    International Nuclear Information System (INIS)

    Wencheng Song; North China Electric Power University, Beijing; Xiangxue Wang; Soochow University, Suzhou; Wen Tao; Hongqing Wang; Tasawar Hayat; Quaid-I-Azam University, Islamabad; Xiangke Wang; Soochow University, Suzhou; King Abdulaziz University, Jeddah

    2016-01-01

    Aspergillus oryzae was isolated from radionuclides' contaminated soils, and dielectric barrier discharge plasma was used to mutate A. oryzae to improve bioremediation capability of U(VI) pollution. The maximum accumulation capacities of U(VI) on mutated A.oryzae was 627.4 mg/g at T = 298 K and pH = 5.5, which was approximately twice than that of raw A.oryzae. XPS analysis indicated that U(VI) accumulation on mutated A. oryzae was largely attributable to nitrogen- and oxygen-containing functional groups on fungal mycelia. The mutated A. oryzae can be harnessed as bioremediation agents for radionuclides pollution. (author)

  3. The Planeterrella: A planetary auroral simulator

    Science.gov (United States)

    Lilensten, J.; Lamy, L.; Briand, C.; Barthélémy, M.; Cecconi, B.

    2014-12-01

    This article presents a plasma physics experiment which makes it possible to produce polar lights. The experiment, named Planeterrella, involves shooting electrons onto a magnetised sphere placed in a vacuum chamber. Inspired by Kristian Birkeland's Terrella, but with several different configurations and technical improvements, the experiment allows the user to simulate and visualise simple geophysical and astrophysical situations. Several Planeterrellas are now used across Europe and the USA. The design of the original experiment and the expertise of its first authors are shared freely with any public institute and are outlined in this article.

  4. TIGER HF radar study of sub-auroral plasma convection response to substorm onset

    Science.gov (United States)

    Makarevich, Roman

    The dual HF radars comprising the Tasman International Geophysical Environment Radar (TIGER) system often observe localized high-velocity F-region plasma flows (≥ 1500 m/s) in the midnight sector (20-02 MLT) at magnetic latitudes as low as 60 deg. The flow channels exhibit large variability in the latitudinal extent and electric field strength, and are similar to the subauroral polarization stream or SAPS, a plasma convection feature thought to be related to the polarization electric field due to the charge separation during substorm and storm development. In this study, the 2-D plasma drift velocity within the channel is derived for each of the two TIGER radars from the maximum velocities measured in all 16 radar beams within the latitudinally narrow channel, and the time variation of the subauroral electric field is examined near substorm onset. It is demonstrated that the flow channel often does not have a clear onset, rather it manifests differently in different phases of its evolution and can persist for at least two substorm cycles. During the growth phase the electric fields within the flow channel are difficult to distinguish from those of the background auroral convection but they start to increase near substorm onset and peak during the recovery phase, in contrast to what has been reported previously for auroral convection which peaks just before the substorm onset and falls sharply at the substorm onset. The response times to substorm onset range from -5 to +40 min and show some dependence on the substorm location with longer delays observed for substorms eastward of the radars' viewing area. The propagation velocity of the high-velocity region is also investigated by comparing the observations from the two closely-spaced TIGER radars. The observations are consistent with the notion that the polarization electric field is established with the energetic ions drifting westward and equatorward from the initial substorm injection. The ion injection front

  5. Unusual rainbows as auroral candidates: Another point of view

    Science.gov (United States)

    Carrasco, Víctor M. S.; Trigo, Ricardo M.; Vaquero, José M.

    2017-04-01

    Several auroral events that occurred in the past have not been cataloged as such due to the fact that they were described in the historical sources with different terminologies. Hayakawa et al. (2016, PASJ, 68, 33) have reviewed historical Oriental chronicles and proposed the terms “unusual rainbow” and “white rainbow” as candidates for auroras. In this work, we present three events that took place in the 18th century in two different settings (the Iberian Peninsula and Brazil) that were originally described with similar definitions or wording to that used by the Oriental chronicles, despite the inherent differences in terms associated with Oriental and Latin languages. We show that these terms are indeed applicable to the three case studies from Europe and South America. Thus, the auroral catalogs available can be extended to Occidental sources using this new terminology.

  6. Polarization Optics

    OpenAIRE

    Fressengeas, Nicolas

    2010-01-01

    The physics of polarization optics *Polarized light propagation *Partially polarized light; DEA; After a brief introduction to polarization optics, this lecture reviews the basic formalisms for dealing with it: Jones Calculus for totally polarized light and Stokes parameters associated to Mueller Calculus for partially polarized light.

  7. JIRAM, the Jovian Infrared Auroral Mapper

    Science.gov (United States)

    Adriani, Alberto; Filacchione, Gianrico; Di Iorio, Tatiana; Turrini, Diego; Noschese, Raffaella; Cicchetti, Andrea; Grassi, Davide; Mura, Alessandro; Sindoni, Giuseppe; Zambelli, Massimo; Piccioni, Giuseppe; Capria, Maria T.; Tosi, Federico; Orosei, Roberto; Dinelli, Bianca M.; Moriconi, Maria L.; Roncon, Elio; Lunine, Jonathan I.; Becker, Heidi N.; Bini, Alessadro; Barbis, Alessandra; Calamai, Luciano; Pasqui, Claudio; Nencioni, Stefano; Rossi, Maurizio; Lastri, Marco; Formaro, Roberto; Olivieri, Angelo

    2017-11-01

    JIRAM is an imager/spectrometer on board the Juno spacecraft bound for a polar orbit around Jupiter. JIRAM is composed of IR imager and spectrometer channels. Its scientific goals are to explore the Jovian aurorae and the planet's atmospheric structure, dynamics and composition. This paper explains the characteristics and functionalities of the instrument and reports on the results of ground calibrations. It discusses the main subsystems to the extent needed to understand how the instrument is sequenced and used, the purpose of the calibrations necessary to determine instrument performance, the process for generating the commanding sequences, the main elements of the observational strategy, and the format of the scientific data that JIRAM will produce.

  8. Upscaling of U(VI) Desorption and Transport from Decimeter-Scale Heterogeneity to Plume-Scale Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Gary P. [U.S. Geological Survey, Menlo Park, CA (United States); Kohler, Matthias [U.S. Geological Survey, Menlo Park, CA (United States); Kannappan, Ramakrishnan [U.S. Geological Survey, Menlo Park, CA (United States); Briggs, Martin [U.S. Geological Survey, Menlo Park, CA (United States); Day-Lewis, Fred [U.S. Geological Survey, Menlo Park, CA (United States)

    2015-02-24

    Scientifically defensible predictions of field scale U(VI) transport in groundwater requires an understanding of key processes at multiple scales. These scales range from smaller than the sediment grain scale (less than 10 μm) to as large as the field scale which can extend over several kilometers. The key processes that need to be considered include both geochemical reactions in solution and at sediment surfaces as well as physical transport processes including advection, dispersion, and pore-scale diffusion. The research summarized in this report includes both experimental and modeling results in batch, column and tracer tests. The objectives of this research were to: (1) quantify the rates of U(VI) desorption from sediments acquired from a uranium contaminated aquifer in batch experiments;(2) quantify rates of U(VI) desorption in column experiments with variable chemical conditions, and(3) quantify nonreactive tracer and U(VI) transport in field tests.

  9. Latitudinal and longitudinal dispersion of energetic auroral protons

    Directory of Open Access Journals (Sweden)

    D. A. Lorentzen

    Full Text Available Using a collision by collision model from Lorentzen et al., the latitudinal and longitudinal dispersion of single auroral protons are calculated. The proton energies varies from 1 to 50 keV, and are released into the atmosphere at 700 km altitude. The dipole magnetic field has a dip-angle of 8 degrees. Results show that the main dispersion region is at high altitudes (300-350 km and occurs during the first few charge exchange collisions. As the proton travels further down the atmosphere the mean free path becomes smaller, and as a result the spreading effect will not be as pronounced. This means that the first few charge exchange collisions fully determines the width of both the latitudinal and longitudinal dispersion. The volume emission rate was calculated for energies between 1 and 50 keV, and it was found that dayside auroral hydrogen emissions rates were approximately 10 times weaker than nightside emission rates. Simulations were also performed to obtain the dependence of the particle dispersion as a function of initial pitch-angle. It was found that the dispersion varies greatly with initial pitch-angle, and the results are summarized in two tables; a main and an extreme dispersion region.

    Key words. Ionosphere (auroral ionosphere; · particle precipitation · Space plasma physics · (transport processes

  10. A hybrid simulation model for a stable auroral arc

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    Full Text Available We present a new type of hybrid simulation model, intended to simulate a single stable auroral arc in the latitude/altitude plane. The ionospheric ions are treated as particles, the electrons are assumed to follow a Boltzmann response and the magnetospheric ions are assumed to be so hot that they form a background population unaffected by the electric fields that arise. The system is driven by assumed parallel electron energisation causing a primary negative charge cloud and an associated potential structure to build up. The results show how a closed potential structure and density depletion of an auroral arc build up and how they decay after the driver is turned off. The model also produces upgoing energetic ion beams and predicts strong static perpendicular electric fields to be found in a relatively narrow altitude range (~ 5000–11 000 km.

    Key words. Magnetospheric physics (magnetosphere-ionosphere interactions; auroral phenomena – Space plasma physics (numerical simulation studies

  11. E-region echo characteristics governed by auroral arc electrodynamics

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    Full Text Available Observations of a pair of auroral arc features by two imagers, one ground- and one space-based, allows the associated field-aligned current (FAC and electric field structure to be inferred. Simultaneous observations of HF radar echoes provide an insight into the irregularity-generating mechanisms. This is especially interesting for the E-region echoes observed, which form the focus of our analysis, and from which several conclusions can be drawn, summarized as follows. Latitudinal variations in echo characteristics are governed by the FAC and electric field background. Particularly sharp boundaries are found at the edges of auroral arcs. Within regions of auroral luminosity, echoes have Doppler shifts below the ion-acoustic speed and are proportional to the electric field, suggesting scatter from gradient drift waves. Regions of downward FAC are associated with mixed high and low Doppler shift echoes. The high Doppler shift component is greatly in excess of the ion-acoustic speed, but seems to be commensurate with the driving electric field. The low Doppler shift component appears to be much depressed below expectations.

    Key words. Ionosphere (ionospheric irregularities; electric fields and currents

  12. On the role of magnetic mirroring in the auroral phenomena

    International Nuclear Information System (INIS)

    Lennartsson, W.

    1976-12-01

    On the basis of field and particle observations, it is suggested that a bright auroral display is a part of a magnetosphere-ionosphere current system which is fed by a charge-separation process in the outer magnetosphere (or the solar wind). The upward magnetic-field-aligned current is flowing out of the display, carried mainly by downflowing electrons from the hot-particle populations in the outer magnetosphere (the ambient cold electrons being depleted at high altitudes). As a result of the magnetic mirroring of these downflowing current carriers, a large potential drop is set up along the magnetic field, increasing both the number flux and the kinetic energy of precipitating electrons. It is found that this simple basic model, when combined with wave-particle interactions, may be able to explain a highly diversified selection of auroral particle observations. It may thus be possible to explain both 'inverted-V' events and auroral rays in terms of a static parallel electric field, and the electric field may be compatible with a strongly variable pitch-angle distribution of the precipitating electrons, including distributions peaked at 90 0 as well as 0 0 . This model may also provide a simple explanation of the simultaneous precipitation of electrons and collimated positive ions. (Auth.)

  13. Correlated observations of several auroral substorms on February 17, 1971

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.; Akasofu, S.; Wolcott, J.H.; Bame, S.J.; Fairfield, D.H.; Meng, C.

    1976-01-01

    The purpose of this study is to correlate in detail auroral activity with the corresponding disturbances in the magnetotail. The auroral data were recorded by optical instruments aboard an airplane flying over the Arctic Ocean along the Alaska meridian and by the Alaska meridian chain of all-sky cameras. The corresponding magnetotail observations were made by various instruments on Vela 6A and Imp 5; the interplanetary magnetic field was monitored concurrently by Explorer 35 (Imp E). Three successive substorms were observed on February 17, 1971. Each substorm was readily identified by the classical auroral and magnetic signatures which accompanied its onset. The observed variations of plasma and magnetic field in the magnetotail were consistent with the idea that a neutral line formed in the range approx.-12 R/subE/>X/subS//subM/>-18 R/subE/ at the onset of each substorm expansive phase and then moved tailward past X/subS//subM/=-18 R/subE/ some tens of minutes afterward. The Z component of the tail magnetic field decreased rather steadily for a period of 1--21/2 hours after each substorm and until the onset of the next expansive phase, reaching a minimum value just before each onset. This taillike development of the field is more appropriately regarded as the normal evolutionary pattern of variation between substorms than as a 'growth phase' preceding each substorm

  14. Imaging and EISCAT radar measurements of an auroral prebreakup event

    Directory of Open Access Journals (Sweden)

    V. Safargaleev

    Full Text Available The results of coordinated EISCAT and TV-camera observations of a prebreakup event on 15 November 1993 have been considered. The variations of the luminosity of two parallel auroral arcs, plasma depletion on the poleward edge of one of these arcs as well as electron and ion temperatures in front of a westward travelling surge were studied. It was found that a short-lived brightening of a weak zenith arc before an auroral breakup was accompanied by fading of an equatorial arc and, vice versa. A plasma depletion in the E region was detected by the EISCAT radar on the poleward edge of the zenith arc just before the auroral breakup. The plasma depletion was associated with an enhancement of ion (at the altitudes of 150–200 km and electron (in E region temperatures. During its occurrence, the electric field in the E-region was extremely large (~150 mV/m. A significant increase in ion temperature was also observed 1 min before the arrival of a westward travelling surge (WTS at the radar zenith. This was interpreted as the existence of an extended area of enhanced electric field ahead of the WTS.

  15. The Auroral Field-aligned Acceleration - Cluster Results

    Science.gov (United States)

    Vaivads, A.; Cluster Auroral Team

    The four Cluster satellites cross the auroral field lines at altitudes well above most of acceleration region. Thus, the orbit is appropriate for studies of the generator side of this region. We consider the energy transport towards the acceleration region and different mechanisms for generating the potential drop. Using data from Cluster we can also for the first time study the dynamics of the generator on a minute scale. We present data from a few auroral field crossings where Cluster are in conjunction with DMSP satellites. We use electric and magnetic field data to estimate electrostatic po- tential along the satellite orbit, Poynting flux as well as the presence of plasma waves. These we can compare with data from particle and wave instruments on Cluster and on low latitude satellites to try to make a consistent picture of the acceleration region formation in these cases. Preliminary results show close agreement both between in- tegrated potential values at Cluster and electron peak energies at DMSP as well as close agreement between the integrated Poynting flux values at Cluster and the elec- tron energy flux at DMSP. At the end we draw a parallels between auroral electron acceleration and electron acceleration at the magnetopause.

  16. E-region echo characteristics governed by auroral arc electrodynamics

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    2003-07-01

    Full Text Available Observations of a pair of auroral arc features by two imagers, one ground- and one space-based, allows the associated field-aligned current (FAC and electric field structure to be inferred. Simultaneous observations of HF radar echoes provide an insight into the irregularity-generating mechanisms. This is especially interesting for the E-region echoes observed, which form the focus of our analysis, and from which several conclusions can be drawn, summarized as follows. Latitudinal variations in echo characteristics are governed by the FAC and electric field background. Particularly sharp boundaries are found at the edges of auroral arcs. Within regions of auroral luminosity, echoes have Doppler shifts below the ion-acoustic speed and are proportional to the electric field, suggesting scatter from gradient drift waves. Regions of downward FAC are associated with mixed high and low Doppler shift echoes. The high Doppler shift component is greatly in excess of the ion-acoustic speed, but seems to be commensurate with the driving electric field. The low Doppler shift component appears to be much depressed below expectations.Key words. Ionosphere (ionospheric irregularities; electric fields and currents

  17. Particle energization by inertial Alfven wave in auroral ionosphere

    Science.gov (United States)

    Kumar, S.

    2017-12-01

    The role of inertial Alfven wave in auroral acceleration region and in the inertial regime to energize the plasma particles is an interesting field and widely discussed observationally as well as theoretically in recent years. In this work, we present the density perturbations by inertial Alfvén wave (AW) in the auroral ionosphere. We obtain dynamical equations for inertial AW and fast mode of AW using two-fluid model and then solve them numerically in order to analyze the localized structures and cavity formation. The ponderomotive force due to the high frequency inertial AW changes the background density and is believed to be responsible for the wave localization or for the formation of density cavities in auroral ionosphere. These density cavities are believed to be the sites for particle energization. This perturbed density channel grow with time until the modulation instability acquires steady state. We find that the density cavities are accompanied by the high amplitude magnetic fields. The amplitude of the strongest density cavity is estimated as ˜ 0.26n0 (n0 is unperturbed plasma number density). The results presented here are found consistent with the observational studies using FAST spacecraft.

  18. Generation of auroral hectometer radio emission at the laser cyclotron resonance (ωp≥ωH)

    International Nuclear Information System (INIS)

    Vlasov, V.G.

    1992-01-01

    Generation of auroral hectometer (AHR) and kilometer (AKR) radio emission at a maser cyclotron resonance (MCR) in a relatively dense plasma (ω p ≥ω H ) is theoretically studied. The conclusion is made that availability of two-dimensional small-scale inhomogeneity of plasma density is the basic condition for the AHR generation at the MCR by auroral electron beams. The small-scale inhomogeneity of the auroral plasma, measured on satelites, meets by its parameters the conditions for the generation of auroral radio emission

  19. Stripping study of U(VI) from loaded TBP/n-paraffin using ammonium nitrate bearing waste as strippant

    International Nuclear Information System (INIS)

    Shrishma Paik; Biswas, S.; Bhattacharya, S.; Roy, S.B.

    2013-01-01

    Stripping studies of U(VI) from loaded solvent TBP/n-paraffin was carried out using ammonium nitrate solution as strippant. Effects of various stripping parameters such as concentration of ammonium nitrate solution, U(VI) concentration in organic phase, initial pH of strippant, temperature etc. have been investigated in detail. Kinetics of the stripping process by ammonium nitrate was found to be slower than that of stripping with water. It was observed that with the increase in ammonium nitrate concentration in aqueous solution, stripping of U(VI) decreased. With the increase in U(VI) loading in the organic phase, there was an increase in uranium stripping for ammonium nitrate whereas for distilled water it becomes reverse. With the increase in pH of the aqueous ammonium nitrate solution, stripping increased up to a certain pH of 8.5 and after that precipitation of uranium started. Increase in temperature of the biphasic system shows an enhancing effect of U(VI) stripping. Evaluation of thermodynamic data such as ΔH indicated that the process is endothermic. Based on the optimized conditions, McCabe-Thiele diagram was constructed for U(VI) stripping using ammonium nitrate solution at room temperature. (author)

  20. Improving the Ionospheric Auroral Conductance in a Global Ring Current Model and the Effects on the Ionospheric Electrodynamics

    Science.gov (United States)

    Yu, Y.; Jordanova, V. K.; McGranaghan, R. M.; Solomon, S. C.

    2017-12-01

    The ionospheric conductance, height-integrated electric conductivity, can regulate both the ionospheric electrodynamics and the magnetospheric dynamics because of its key role in determining the electric field within the coupled magnetosphere-ionosphere system. State-of-the-art global magnetosphere models commonly adopt empirical conductance calculators to obtain the auroral conductance. Such specification can bypass the complexity of the ionosphere-thermosphere chemistry but on the other hand breaks the self-consistent link within the coupled system. In this study, we couple a kinetic ring current model RAM-SCB-E that solves for anisotropic particle distributions with a two-stream electron transport code (GLOW) to more self-consistently compute the height-dependent electric conductivity, provided the auroral electron precipitation from the ring current model. Comparisons with the traditional empirical formula are carried out. It is found that the newly coupled modeling framework reveals smaller Hall and Pedersen conductance, resulting in a larger electric field. As a consequence, the subauroral polarization streams demonstrate a better agreement with observations from DMSP satellites. It is further found that the commonly assumed Maxwellian spectrum of the particle precipitation is not globally appropriate. Instead, a full precipitation spectrum resulted from wave particle interactions in the ring current accounts for a more comprehensive precipitation spectrum.

  1. Alfvénic Dynamics and Fine Structuring of Discrete Auroral Arcs: Swarm and e-POP Observations

    Science.gov (United States)

    Miles, D.; Mann, I. R.; Pakhotin, I.; Burchill, J. K.; Howarth, A. D.; Knudsen, D. J.; Wallis, D. D.; Yau, A. W.; Lysak, R. L.

    2017-12-01

    The electrodynamics associated with dual discrete arc aurora with anti-parallel flow along the arcs were observed nearly simultaneously by the enhanced Polar Outflow Probe (e-POP) and the Swarm A and C spacecraft. Auroral imaging from e-POP reveal 1-10 km structuring of the arcs, which move and evolve on second timescales and confound the traditional single-spacecraft field-aligned current algorithms. High-cadence magnetic data from e-POP shows 1-10 Hz, presumably Alfvénic perturbations co-incident with and at the same scale size as the observed dynamic auroral fine structures. High-cadence electric and magnetic field data from Swarm A reveals non-stationary electrodynamics involving reflected and interfering Alfvén waves and signatures of modulation consistent with trapping in the Ionospheric Alfvén Resonator (IAR). Together, these observations suggest a role for Alfven waves, perhaps also the IAR, in discrete arc dynamics on 0.2 - 10s timescales and 1-10 km spatial scales.

  2. The reduction of U(VI) on corroded iron under anoxic conditions

    International Nuclear Information System (INIS)

    Cui, D.; Spahiu, K.

    2002-01-01

    The corrosion of iron and the interaction between corroded iron and U(VI) in anoxic conditions were investigated. The anoxic conditions were obtained by flushing an 99.97% Ar-0.03% CO 2 gas mixture through the test vessel, in which an oxygen trap and six reaction bottles containing synthetic groundwater (10 mM NaCl and 2 mM HCO 3 - .) were placed. The dark-green coloured corrosion product, formed on iron surface after three months corrosion in synthetic groundwater solutions, was identified by powder X-ray diffraction to be carbonate green rust, Fe 4 II Fe 2 III (OH) 12 CO 3 . The iron foil that reacted in a solution (10 ppm U(VI), 10 mM NaCl and 2 mM HCO 3 - ) for three months was analysed by SEM-EDS. The result shows that: (i) an uneven layer of carbonate green rust (1-5 μm thick) formed on the metallic iron; (ii) a thin (0.3 μm) uranium-rich layer deposited on top of the carbonate green rust layer; and (iii) some UO 2 crystals (3-5 μm sized) on the thin uranium layer. The experimental results proved that the U(VI) removal capacity of metal iron is not hindered by formation of a layer of carbonate green rust on the iron. Tests with cast iron and pure iron indicate that they have similar U(VI) removal capacities. At the end of experiment, U concentrations in solution approached the solubility of UO 2 (s), 10 -8 M. The stability of the carbonate green rust at the experimental conditions, pH, E h , [Fe 2+ ] and [HCO 3 - ], is discussed. (orig.)

  3. Extraction chromatography of U(VI) and Pu(IV) adsorbed on amberlite XAD-7/dibutyloctanamide

    International Nuclear Information System (INIS)

    Prabhu, D.R.; Mahajan, G.R.; Nair, G.M.; Subramanian, M.S.

    1992-01-01

    The adsorption of U(VI) and Pu(IV) into the neutral poly acrylic resin Amberlite XAD-7, impregnated with dibutyloctanamide was found to be maximum at around 6M HNO 3 . Both these ions were found to be adsorbed as their monosolvates. The thermodynamic parameters obtained from the data at different temperatures indicated that the adsorption reaction was enthalpy favoured and entropy disfavored. (author). 5 refs., 1 tab

  4. U(VI) extraction by 8-hydroxyquinoline. A comparison study in ionic liquid and in dichloromethane

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Li-Yong; Shi, Wei-Qun [Chinese Academy of Sciences, Beijing (China). Lab. of Nuclear Energy Chemistry; Liao, Xiang-Hong [Chinese Academy of Sciences, Beijing (China). Lab. of Nuclear Energy Chemistry; East China Institute of Technology, Nanchang (China). School of Nuclear Engineering and Geophysics; Liu, Zhi-Rong [East China Institute of Technology, Nanchang (China). School of Nuclear Engineering and Geophysics; Chai, Zhi-Fang [Chinese Academy of Sciences, Beijing (China). Lab. of Nuclear Energy Chemistry; Soochow Univ., Suzhou (China). School of Radiological and Interdisciplinary Sciences and Collaborative Innovation Center of Radiation Medicine

    2017-08-01

    Room temperature ionic liquids (RTILs) represent a recent new class of solvents with potential application in liquid/liquid extraction based nuclear fuel reprocessing due to their unique physical and chemical properties. The work herein provides a comparison of U(VI) extraction by 8-hydroxyquinoline (HOX) in a commonly used RTIL, i.e. 1-butyl-3-methylimidazolium hexafluorophosphate ([C{sub 4}mim][PF{sub 6}]) and in conventional solvent, i.e. dichloromethane (CH{sub 2}Cl{sub 2}). The effect of HOX concentration, solution acidity and nitrate ions on the extraction were discussed in detail, and the speciation analyses of the extracted U(VI) were performed. One of the main emphasis of this work is the extraction mechanism of U(VI) extracted from aqueous phase into RTILs and conventional solvent. In CH{sub 2}Cl{sub 2}, the extraction occurs through a combination of ion change and neutral complexation, and the extracted complex is proposed as UO{sub 2}(OX){sub 2}HOX. In [C{sub 4}mim][PF{sub 6}], although a cation-change mechanism as previously reported for RTILs-based system was involved, the extracted complex of UO{sub 2}(OX){sub 1.5}(HOX){sub 1.5}(PF6){sub 0.5} gave a clear indication that the usage of HOX as an acidic extractant markedly inhibited the solubility loss of [C{sub 4}mim][PF{sub 6}] during the extraction by leaching H{sup +} to aqueous phase. Moreover, the extracted U(VI) in [C{sub 4}mim][PF{sub 6}] can be easily stripped by using 0.01 M nitric acid, which provides a simple way of the ionic liquid recycling.

  5. Extraction of U(VI) with unsymmetrical N-methyl-N-octyl alkylamides in toluene

    International Nuclear Information System (INIS)

    Sun Guoxin; Li Yexin; Zhang Zhenwei; Cui Yu; Shandong University, Jinan; Sun Sixiu

    2005-01-01

    Extraction of U(VI) with three new unsymmetrical monoamides, N-methyl-N-octyloctylamide (MOOA), N-methyl-N-octyldecanamide (MODA), and N-methyl-N-octyldodecanamide (MODOA), from nitric acid solution employing toluene as diluent is discussed. The effects of nitric acid, sodium nitrate and extractant concentrations and also the temperature on the distribution ratio have been investigated. The extracted species were studied by IR spectrometry. (author)

  6. Constraining Fully Convective Magnetic Dynamos using Brown Dwarf Auroral Radio Emission

    Science.gov (United States)

    Kao, Melodie; Hallinan, Gregg; Pineda, J. Sebastian; Escala, Ivanna; Burgasser, Adam; Bourke, Stephen; Stevenson, David

    2017-05-01

    An important outstanding problem in dynamo theory is understanding how magnetic fields are generated and sustained in fully convective objects, spanning stars through planets. For fully convective dynamo models to accurately predict exoplanet magnetic fields, pushing measurements to include the coolest T and Y dwarfs at the substellar-planetary boundary is critical. A number of models for possible dynamo mechanisms in this regime have been proposed but constraining data on magnetic field strengths and topologies across a wide range of mass, age, rotation rate, and temperature are sorely lacking, particularly in the brown dwarf regime.Detections of highly circularly polarized pulsed radio emission provide our only window into magnetic field measurements for objects in the ultracool brown dwarf regime. However, these detections are very rare; previous radio surveys encompassing ∼60 L6 or later targets have yielded only one detection. We have developed a selection strategy for biasing survey targets by leveraging the emergence of magnetic activity that is driven by planet-like auroral processes in the coolest brown dwarfs. Using our selection strategy, we previously observed six late L and T dwarfs with the Jansky Very Large Array (VLA) at 4-8 GHz and detected the presence of highly circularly polarized radio emission for five targets. Our initial detections provided the most robust constraints on dynamo theory in this regime, confirming magnetic fields >2.5 kG. To further probe the mechanisms driving fully convective dynamos at the substellar-planetary boundary, we present magnetic field constraints for two Y-dwarfs and 8-12 GHz radio observations of late L and T dwarfs corresponding to >3.6 kG surface fields. We additionally present initial results for a comprehensive L and T dwarf survey spanning a wide range of rotation periods to test rotation-dominated dynamo models. Finally, we present a method for comparing magnetic field measurements derived from

  7. Microbial reductive transformation of phyllosilicate Fe(III) and U(VI) in fluvial subsurface sediments.

    Science.gov (United States)

    Lee, Ji-Hoon; Fredrickson, James K; Kukkadapu, Ravi K; Boyanov, Maxim I; Kemner, Kenneth M; Lin, Xueju; Kennedy, David W; Bjornstad, Bruce N; Konopka, Allan E; Moore, Dean A; Resch, Charles T; Phillips, Jerry L

    2012-04-03

    The microbial reduction of Fe(III) and U(VI) was investigated in shallow aquifer sediments collected from subsurface flood deposits near the Hanford Reach of the Columbia River in Washington State. Increases in 0.5 N HCl-extractable Fe(II) were observed in incubated sediments and (57)Fe Mössbauer spectroscopy revealed that Fe(III) associated with phyllosilicates and pyroxene was reduced to Fe(II). Aqueous uranium(VI) concentrations decreased in subsurface sediments incubated in sulfate-containing synthetic groundwater with the rate and extent being greater in sediment amended with organic carbon. X-ray absorption spectroscopy of bioreduced sediments indicated that 67-77% of the U signal was U(VI), probably as an adsorbed species associated with a new or modified reactive mineral phase. Phylotypes within the Deltaproteobacteria were more common in Hanford sediments incubated with U(VI) than without, and in U(VI)-free incubations, members of the Clostridiales were dominant with sulfate-reducing phylotypes more common in the sulfate-amended sediments. These results demonstrate the potential for anaerobic reduction of phyllosilicate Fe(III) and sulfate in Hanford unconfined aquifer sediments and biotransformations involving reduction and adsorption leading to decreased aqueous U concentrations.

  8. Functionalized Sugarcane Bagasse for U(VI) Adsorption from Acid and Alkaline Conditions.

    Science.gov (United States)

    Su, Shouzheng; Liu, Qi; Liu, Jingyuan; Zhang, Hongsen; Li, Rumin; Jing, Xiaoyan; Wang, Jun

    2018-01-15

    The highly efficient removal of uranium from mine tailings effluent, radioactive wastewater and enrichment from seawater is of great significance for the development of nuclear industry. In this work, we prepared an efficient U(VI) adsorbent by EDTA modified sugarcane bagasse (MESB) with a simple process. The prepared adsorbent preserves high adsorptive capacity for UO 2 2+ (pH 3.0) and uranyl complexes, such as UO 2 (OH) + , (UO 2 ) 2 (OH) 2 2+ and (UO 2 ) 3 (OH) 5 + (pH 4.0 and pH 5.0) and good repeatability in acidic environment. The maximum adsorption capacity for U(VI) at pH 3.0, 4.0 and 5.0 is 578.0, 925.9 and 1394.1 mg/g and the adsorption capacity loss is only 7% after five cycles. With the pH from 3.0 to 5.0, the inhibitive effects of Na + and K + decreased but increased of Mg 2+ and Ca 2+ . MESB also exhibits good adsorption for [UO 2 (CO 3 ) 3 ] 4- at pH 8.3 from 10 mg/L to 3.3 μg/L. Moreover, MESB could effectively extract U(VI) from simulated seawater in the presence of other metals ions. This work provided a general and efficient uranyl enriched material for nuclear industry.

  9. Complexation of UVI with 1-hydroxyethane-1,1-diphosphonic acid in acidic to basic solutions.

    Science.gov (United States)

    Reed, Wendy A; Rao, Linfeng; Zanonato, PierLuigi; Garnov, Alexander Yu; Powell, Brian A; Nash, Kenneth L

    2007-04-02

    Complexation of UVI with 1-hydroxyethane-1,1-diphosphonic acid (HEDPA) in acidic to basic solutions has been studied with multiple techniques. A number of 1:1 (UO2H3L), 1:2 (UO2HjL2 where j = +4, +3, +2, +1, 0, and -1), and 2:2 [(UO2)2HjL2 where j = +1, 0, and -1] complexes form, but the 1:2 complexes are the major species in a wide pH range. Thermodynamic parameters (formation constants and enthalpy and entropy of complexation) were determined by potentiometry and calorimetry. Data indicate that the complexation of UVI with HEDPA is exothermic, favored by the enthalpy of complexation. This is in contrast to the complexation of UVI with dicarboxylic acids in which the enthalpy term usually is unfavorable. Results from electrospray ionization mass spectrometry and 31P NMR have confirmed the presence of 1:1, 1:2, and 2:2 UVIHEDPA complexes.

  10. Interactions of U(VI), Nd, and Th(IV) at the Calcite-solution interface

    International Nuclear Information System (INIS)

    Carroll, S.A.; Dran, J.C.

    1992-01-01

    The interactions of U(VI), Nd, and Th(IV) at the calcite-solution interface at controlled pCO 2 (g) have been investigated by Rutherford backscattering (RBS), scanning electron microscopy (SEM) and energy dispersive (EDS) analyses of reacted calcite. Uranium precipitation at the calcite-solution interface was observed only for those experiments in which the initial [U(VI)] was greater than the solubility of rutherfordine, UO 2 CO 3 (s). At pH 8.0, flat radial uranium and calcium zoned precipitates form at the mineral-solution interface. At pH 4.3, uranium forms an anastomosing precipitate throughout the calcite surface. RBS analyses confirmed the SEM analyses showing that uranium forms a solid phase within the calcite surface, but formation of an uranium-calcium solid solution at depth is limited. In sharp contrast to U(VI), Nd is concentrated in the solid phase as individual neodymium-calcium carbonate crystals. Calcite and pure orthorhombic neodymium carbonate crystals dissolve at the expense of the formation of a more stable neodymium-calcium solid solution. In the presence of calcite, a thorium-calcium solid solution forms by exchanging Th for Ca in the calcite structure. Thorium precipitates in two linear trends which intersect each other at approximately 105deg C and 75deg C, parallel to calcite rhombohedral cleavage faces. (orig.)

  11. Plasma structure within poleward-moving cusp/cleft auroral transients: EISCAT Svalbard radar observations and an explanation in terms of large local time extent of events

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    Full Text Available We report high-resolution observations of the southward-IMF cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter Svalbard radar (ESR, and compare them with observations of dayside auroral luminosity, as seen at a wavelength of 630 nm by a meridian scanning photometer at Ny Ålesund, and of plasma flows, as seen by the CUTLASS (co-operative UK twin location auroral sounding system Finland HF radar. The optical data reveal a series of poleward-moving transient red-line (630 nm enhancements, events that have been associated with bursts in the rate of magnetopause reconnection generating new open flux. The combined observations at this time have strong similarities to predictions of the effects of soft electron precipitation modulated by pulsed reconnection, as made by Davis and Lockwood (1996; however, the effects of rapid zonal flow in the ionosphere, caused by the magnetic curvature force on the newly opened field lines, are found to be a significant additional factor. In particular, it is shown how enhanced plasma loss rates induced by the rapid convection can explain two outstanding anomalies of the 630 nm transients, namely how minima in luminosity form between the poleward-moving events and how events can re-brighten as they move poleward. The observations show how cusp/cleft aurora and transient poleward-moving auroral forms appear in the ESR data and the conditions which cause enhanced 630 nm emission in the transients: they are an important first step in enabling the ESR to identify these features away from the winter solstice when supporting auroral observations are not available.

    Key words: Ionosphere (polar ionosphere - Magnetospheric physics (magnetopause; cusp and boundary layers; solar wind-magnetosphere interactions

  12. Plasma structure within poleward-moving cusp/cleft auroral transients: EISCAT Svalbard radar observations and an explanation in terms of large local time extent of events

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2000-09-01

    Full Text Available We report high-resolution observations of the southward-IMF cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter Svalbard radar (ESR, and compare them with observations of dayside auroral luminosity, as seen at a wavelength of 630 nm by a meridian scanning photometer at Ny Ålesund, and of plasma flows, as seen by the CUTLASS (co-operative UK twin location auroral sounding system Finland HF radar. The optical data reveal a series of poleward-moving transient red-line (630 nm enhancements, events that have been associated with bursts in the rate of magnetopause reconnection generating new open flux. The combined observations at this time have strong similarities to predictions of the effects of soft electron precipitation modulated by pulsed reconnection, as made by Davis and Lockwood (1996; however, the effects of rapid zonal flow in the ionosphere, caused by the magnetic curvature force on the newly opened field lines, are found to be a significant additional factor. In particular, it is shown how enhanced plasma loss rates induced by the rapid convection can explain two outstanding anomalies of the 630 nm transients, namely how minima in luminosity form between the poleward-moving events and how events can re-brighten as they move poleward. The observations show how cusp/cleft aurora and transient poleward-moving auroral forms appear in the ESR data and the conditions which cause enhanced 630 nm emission in the transients: they are an important first step in enabling the ESR to identify these features away from the winter solstice when supporting auroral observations are not available.Key words: Ionosphere (polar ionosphere - Magnetospheric physics (magnetopause; cusp and boundary layers; solar wind-magnetosphere interactions

  13. Electrochemical investigations on cation-cation interaction between Np(V) and U(VI) in nitric acid medium

    International Nuclear Information System (INIS)

    Verma, P.K.; Murali, M.S.; Pathak, P.N.; Mohapatra, P.K.

    2014-01-01

    Ever since the first report on cation-cation interactions (CCIs) in 1961 by Sullivan et al., many researchers have worked on this using different techniques like optical spectroscopy and potentiometry. However, there is almost no report, in recent times, on this interesting subject using an electrochemical technique. In the present work, we set out to use simple cyclic voltammetry (CV) as a probe to study this phenomenon in the case of Np(V)-U(VI) in nitric acid medium. Accordingly, cyclic voltammograms were recorded individually for Np(V) , U(VI) in 4M HNO 3 and for solutions resulting from a titration of Np(V) with incremental additions of U(VI) in the same medium. These experiments were carried out using AutoLab 30 with three solid electrode system. Ag/AgCl was the reference electrode while Pt wires were used as working and counter electrode. The paper gives the part of CVs for successive additions of only U(VI) (1.4M) at fixed scan rate and room temperature. It can be seen that that the reduction peak shifts only slightly towards left with increased aliquots of U(VI). In contrast, the paper also gives the part of CVs for only U(VI) and for a titration mixture of fixed concentration of Np(V) and successive volume aliquot-additions of U(VI). It can be seen that there was no appreciable shift in the cathodic peak (∼ -0.15V) for additions of 1225μL of only U(VI) and 3225 μL of U(VI) in presence of Np. This showed that no change occurred till this composition. But with the addition of next aliquot of 4225μL of U(VI), there was an appreciable shift in the peak. This signified the formation of a new complex which can be attributed to the cation-cation interaction envisaged for Np(V)-U(VI). With further addition of an aliquot of 4725 μL of U(VI), it can be seen that again there was no appreciable shift in the cathodic peak position which probably underlined that the formation of the complex was complete

  14. Temperature effect on the retention of U(VI) by SrTiO3

    International Nuclear Information System (INIS)

    Garcia Rosales, G.

    2007-11-01

    The purpose of this research was the study of the interaction mechanisms between U(VI) ions and SrTiO 3 surfaces versus pH and temperature: 25, 50, 75 and 90 C. Firstly, a physicochemical characterization was realized (DRX, MEB, FTIR) and the surface site density was determined. The potentiometric titration data were simulated, for each temperature, using the constant capacitance model and taking into account bath protonation of the ≡Sr-OH surface sites and deprotonation of the ≡Ti-OH ones (one pK a model). Both enthalpy and entropy changes, corresponding to the surface acid-base reactions, were evaluated using the van't Hoff relation. U(VI) was sorbed onto SrTiO 3 powder in the pH range 0.5-5.0 with an U(VI) initial concentration 1.10 -4 M. By TRLIFS two U(VI) complexes were detected associated with two lifetime values (60 ± 5 and 12 ± 2 μs at 25 C). The sorption edges were simulated using FITEQL 4.0 software. The surface complexation constants of the system SrTiO 3 /U(VI) between 25 and 90 C temperature range were thus obtained with the constant capacitance model considering two reactive surface sites. It reveals that two types of surface complex, namely [(≡SrOH)(≡TiOH)UO 2 ] 2+ and [(≡TiOH)(≡TiO)UO 2+ ] 2+ , are needed to properly describe the experimental observations. By application of the van't Hoff equation, Delta R S 0 and Delta R H 0 were obtained, which indicated an endothermic sorption process. Finally, an energy transfer study was realised by TRLIFS. The energy transfer between Tb 3+ and Eu 3+ ions sorbed onto SrTiO 3 powders were investigated. The results showed that the energy transfer between Tb 3+ and Eu 3+ is a non-radiative process and follows a dipole-dipole type interaction. A formalism based on the Dexter and the Inokuti-Hirayama theories was used to calculate the distances (2,7-3,4 Angstroms between Tb 3+ and Eu 3+ onto SrTiO 3 surface. (author)

  15. Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope.

    Science.gov (United States)

    Nichols, J D; Badman, S V; Baines, K H; Brown, R H; Bunce, E J; Clarke, J T; Cowley, S W H; Crary, F J; Dougherty, M K; Gérard, J-C; Grocott, A; Grodent, D; Kurth, W S; Melin, H; Mitchell, D G; Pryor, W R; Stallard, T S

    2014-05-28

    We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ∼330% rigid corotation from near ∼01 h LT toward ∼08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturn's auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current.

  16. Altitude variations of ionospheric currents at auroral latitudes

    International Nuclear Information System (INIS)

    Kamide, Y.; Brekke, A.

    1993-01-01

    On the basis of updated EISCAT experiments, the first full derivation of the ionospheric current density of the auroral electrojets at six different altitudes are presented. It is found that current vectors at different altitudes are quite different, although the eastward and westward currents prevail in the evening and morning sectors, respectively, once the currents are integrated over altitude. The eastward electrojet becomes almost northward whilst the westward electrojet becomes almost southward, at the highest altitude, 125 km, in this study. The physical implications of these characteristics are discussed

  17. Energy of auroral electrons and Z mode generation

    Science.gov (United States)

    Krauss-Varban, D.; Wong, H. K.

    1990-01-01

    The present consideration of Z-mode radiation generation, in light of observational results indicating that the O mode and second-harmonic X-mode emissions can prevail over the X-mode fundamental radiation when suprathermal electron energy is low, gives attention to whether the thermal effect on the Z-mode dispersion can be equally important, and whether the Z-mode can compete for the available free-energy source. It is found that, under suitable circumstances, the growth rate of the Z-mode can be substantial even for low suprathermal auroral electron energies. Growth is generally maximized for propagation perpendicular to the magnetic field.

  18. Auroral phenomenology and magnetospheric processes earth and other planets

    CERN Document Server

    Keiling, Andreas; Bagenal, Fran; Karlsson, Tomas

    2013-01-01

    Published by the American Geophysical Union as part of the Geophysical Monograph Series. Many of the most basic aspects of the aurora remain unexplained. While in the past terrestrial and planetary auroras have been largely treated in separate books, Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets takes a holistic approach, treating the aurora as a fundamental process and discussing the phenomenology, physics, and relationship with the respective planetary magnetospheres in one volume. While there are some behaviors common in auroras of the diffe

  19. Net ionospheric currents closing field-aligned currents in the auroral region: CHAMP results

    Science.gov (United States)

    Zhou, Yun-Liang; Lühr, Hermann

    2017-04-01

    By utilizing the high-resolution and precise vector magnetic field measurements from CHAMP during 2001-2005, the characteristics of the net auroral currents calculated by Ampère's integral law are comprehensively investigated. It is found that the net currents deduced from noon-midnight (dawn-dusk) orbits are directed duskward (antisunward). The intensities of the net currents increase linearly when the merging electric field (Em) is growing, exhibiting maximum values of about 2 (1) MA for the net duskward (antisunward) currents when Em exceeds 4 mV/m. For the first time the seasonal variations of the different net currents are shown. The net currents deduced from full orbits show only little seasonal dependence due to a compensation of the effects between the hemispheres. Conversely, the net currents deduced separately for the two hemispheres exhibit prominent seasonal dependences. For the net duskward currents the amplitudes and slopes of Em dependence are both larger by a factor of about 2 in summer than in winter. The related cross-polar cap Pedersen currents are higher in the sunlit hemisphere due to enhanced conductivity. The summer-time duskward currents are larger in the Northern Hemisphere than in the Southern Hemisphere by a factor of 1.5. Conversely, the net antisunward currents show an opposite seasonal dependence. The ratio of summer to winter intensity amounts to about 0.7. In this case the currents are stronger in the Southern Hemisphere.

  20. Factors influencing U(VI adsorption onto soil from a candidate very low level radioactive waste disposal site in China

    Directory of Open Access Journals (Sweden)

    Zuo Rui

    2016-01-01

    Full Text Available The properties of soil at disposal sites are very important for geological disposal of very low level radioactive waste in terms of U(VI. In this study, soil from a candidate very low level radioactive waste disposal site in China was evaluated for its capacity on uranium sorption. Specifically, the equilibrium time, initial concentration, soil particle, pH, temperature, and carbonate were evaluated. The results indicated that after 15-20 days of sorption, the Kd value fluctuated and stabilized at 355-360 mL/g. The adsorptive capacity of uranium was increased as the initial uranium concentration increased, while it decreased as the soil particle size increased. The pH value played an important role in the U(VI sorption onto soil, especially under alkaline conditions, and had a great effect on the sorption capacity of soil for uranium. Moreover, the presence of carbonate decreased the sorption of U(VI onto soil because of the role of the strong complexation of carbonate with U(VI in the groundwater. Overall, this study assessed the behavior of U(VI sorption onto natural soil, which would be an important factor in the geological barrier of the repository, has contribution on mastering the characteristic of the adsorption of uranium in the particular soil media for the process of very low level radioactive waste disposal.

  1. The Detectability of Radio Auroral Emission from Proxima b

    Energy Technology Data Exchange (ETDEWEB)

    Burkhart, Blakesley; Loeb, Abraham [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States)

    2017-11-01

    Magnetically active stars possess stellar winds whose interactions with planetary magnetic fields produce radio auroral emission. We examine the detectability of radio auroral emission from Proxima b, the closest known exosolar planet orbiting our nearest neighboring star, Proxima Centauri. Using the radiometric Bode’s law, we estimate the radio flux produced by the interaction of Proxima Centauri’s stellar wind and Proxima b’s magnetosphere for different planetary magnetic field strengths. For plausible planetary masses, Proxima b could produce radio fluxes of 100 mJy or more in a frequency range of 0.02–3 MHz for planetary magnetic field strengths of 0.007–1 G. According to recent MHD models that vary the orbital parameters of the system, this emission is expected to be highly variable. This variability is due to large fluctuations in the size of Proxima b’s magnetosphere as it crosses the equatorial streamer regions of dense stellar wind and high dynamic pressure. Using the MHD model of Garraffo et al. for the variation of the magnetosphere radius during the orbit, we estimate that the observed radio flux can vary nearly by an order of magnitude over the 11.2-day period of Proxima b. The detailed amplitude variation depends on the stellar wind, orbital, and planetary magnetic field parameters. We discuss observing strategies for proposed future space-based observatories to reach frequencies below the ionospheric cutoff (∼10 MHz), which would be required to detect the signal we investigate.

  2. Retrieval of Composition and Shadowing Properties of Saturn's Rings from Cassini UVIS Spectra

    Science.gov (United States)

    Bradley, E. T.; Colwell, J. E.; Esposito, L. W.

    2017-12-01

    The rings of Saturn consist of centimeter-to-meter sized particles that are covered by a layer of regolith whose grains consist of water ice and some small amount of contaminant that is delivered to the rings through micrometeorite impacts. The mixing of the water ice and meteoritic material is affected by inter-particle collisions and from the meteoritic impacts. Two types of mixtures considered in this investigation are 1) discrete grains of water ice and contaminant and 2) grains of water ice with inclusions of contaminant embedded within the grain. The rough regolith-covered surfaces may result in shadowing between grains that darkens the observed rings reflectance spectra. We compared reflectance spectra of the rings at far ultraviolet wavelengths taken by the Cassini UVIS to models of the rings that include a shadowing function with both types of mixtures and with different contaminant materials. One contaminant that we used was the dark material of Comet 67P, where we retrieved the single scattering albedo at UVIS wavelengths from reflectance spectra measured by the ALICE spectrograph on the Rosetta spacecraft. We compared the reflectance over a range of phase angles with a Hapke model that included macroscopic roughness in order to account for shadowing in the Comet 67P material. We retrieved the ring particle albedo at discrete radial regions in the rings using reflectance spectra over a wide range of phase angles. We corrected the retrieved ring particle albedo for roughness using the shadowing function and then compared the "smooth" ring particle albedo to compositional models. We found that a two-component discrete grain model consisting of greater than ninety percent water ice and contaminant from either Triton tholin or material spectrally similar to Comet 67P were indistinguishable when compared to the UVIS spectra. This suggests a common darkening material and/or processing between the rings and Comet 67P.

  3. Organic layer formation and sorption of U(vi) on acetamide diethylphosphonate-functionalized mesoporous silica.

    Science.gov (United States)

    Uribe, Eva C; Mason, Harris E; Shusterman, Jennifer A; Lukens, Wayne W

    2017-04-19

    Acetamide diethylphosphonate (AcPhos)-functionalized silica has been shown to have a high affinity for U(vi) in pH 2-3 nitric acid. Previous work with AcPhos-functionalized silica has focused on actinide and lanthanide extraction under various conditions, but has shown poor reproducibility in the functionalization process. For this work, four AcPhos-functionalized SBA-15 materials were synthesized and evaluated based on their U(vi) sorption capacity and their stability in nitric acid. Materials synthesized using pyridine as a basic catalyst were shown to form a greater fraction of polymeric structures at the silica surface, which correlated with higher structural integrity upon contact with acidic solutions. Single-pulse 31 P and 1 H NMR spectra of these materials show evidence of phosphonic acid groups, as well as hydrogen-bonding interactions either between ligands or with the silica surface. Additionally, these materials were found to have significantly higher U(vi) sorption capacities and K eq values than the materials synthesized without pyridine, most likely due to the ion-exchange properties of the phosphonic acid groups. The 31 P- 31 P DQ-DRENAR NMR technique was used to compare the average strength of dipolar coupling interactions between phosphorus atoms for the four materials. Because the strength of dipolar coupling interactions depends on the number and proximity of neighboring spins, this technique provides information about the average density of ligands on the surface. The conventional functionalization procedure yielded materials with the lowest average surface ligand density, while those using extended reaction times and the pyridine base catalyst yielded materials with higher surface ligand densities.

  4. Interaction of Cucurbit(5)uril with U(VI) in formic acid water medium

    International Nuclear Information System (INIS)

    Rawat, Neetika; Kar, Aishwarya; Tomar, B.S.; Nayak, S.K.; Mohapatra, M.

    2015-01-01

    Cucurbit(n)urils (CBn) are a new class of macrocyclic cage compounds capable of binding organic and inorganic species, owing to their unique pumpkin like structure comprising of both hydrophobic cavity and hydrophilic portal. Complexation of U(VI) with Cucurbit(5)uril (CB5) in 50 wt% formic acid medium has been studied by UV-Vis spectroscopy. In order to understand the species formed, the interaction of formic acid with CB5 was studied by monitoring fluorescence of CB5. Formic was found to form 1:1 species with interaction constant (K) 17.4 M -1 . (author)

  5. Modeling of the Enceladus water vapor jets for interpreting UVIS star and solar occultation observations

    Science.gov (United States)

    Portyankina, Ganna; Esposito, Larry W.; Aye, Klaus-Michael; Hansen, Candice J.

    2015-11-01

    One of the most spectacular discoveries of the Cassini mission is jets emitting from the southern pole of Saturn’s moon Enceladus. The composition of the jets is water vapor and salty ice grains with traces of organic compounds. Jets, merging into a wide plume at a distance, are observed by multiple instruments on Cassini. Recent observations of the visible dust plume by the Cassini Imaging Science Subsystem (ISS) identified as many as 98 jet sources located along “tiger stripes” [Porco et al. 2014]. There is a recent controversy on the question if some of these jets are “optical illusion” caused by geometrical overlap of continuous source eruptions along the “tiger stripes” in the field of view of ISS [Spitale et al. 2015]. The Cassini’s Ultraviolet Imaging Spectrograph (UVIS) observed occultations of several stars and the Sun by the water vapor plume of Enceladus. During the solar occultation separate collimated gas jets were detected inside the background plume [Hansen et al., 2006 and 2011]. These observations directly provide data about water vapor column densities along the line of sight of the UVIS instrument and could help distinguish between the presence of only localized or also continuous sources. We use Monte Carlo simulations and Direct Simulation Monte Carlo (DSMC) to model the plume of Enceladus with multiple (or continuous) jet sources. The models account for molecular collisions, gravitational and Coriolis forces. The models result in the 3-D distribution of water vapor density and surface deposition patterns. Comparison between the simulation results and column densities derived from UVIS observations provide constraints on the physical characteristics of the plume and jets. The specific geometry of the UVIS observations helps to estimate the production rates and velocity distribution of the water molecules emitted by the individual jets.Hansen, C. J. et al., Science 311:1422-1425 (2006); Hansen, C. J. et al, GRL 38:L11202 (2011

  6. Aqueous Complexation Reactions Governing the Rate and Extent of Biogeochemical U(VI) Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Scott C. Brooks; Wenming Dong; Sue Carroll; Jim Fredrickson; Ken Kemner; Shelly Kelly

    2006-06-01

    The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments. In addition, the work plan is designed to: (1) Generate fundamental scientific understanding on the relationship between U(VI) chemical speciation and its susceptibility to biogeochemical reduction reactions. ? Elucidate the controls on the rate and extent of contaminant reactivity. (2) Provide new insights into the aqueous and solid speciation of U(VI)/U(IV) under representative groundwater conditions.

  7. Aqueous Complexation Reactions Governing the Rate and Extent of Biogeochemical U(VI) Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Scott C. Brooks; Wenming Dong; Sue Carroll; James K. Fredrickson; Kenneth M. Kemner; Shelly D. Kelly

    2006-06-01

    The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments. In addition, the work plan is designed to: (1) Generate fundamental scientific understanding on the relationship between U(VI) chemical speciation and its susceptibility to biogeochemical reduction reactions. (2) Elucidate the controls on the rate and extent of contaminant reactivity. (3) Provide new insights into the aqueous and solid speciation of U(VI)/U(IV) under representative groundwater conditions.

  8. Surface complexation modeling of U(VI) sorption on GMZ bentonite in the presence of fulvic acid

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jie [Lanzhou Univ. (China). Radiochemistry Laboratory; Ministry of Industry and Information Technology, Guangzhou (China). The 5th Electronics Research Inst.; Luo, Daojun [Ministry of Industry and Information Technology, Guangzhou (China). The 5th Electronics Research Inst.; Qiao, Yahua; Wang, Liang; Zhang, Chunming [Ministry of Environmental Protection, Beijing (China). Nuclear and Radiation Safety Center; Wu, Wangsuo [Lanzhou Univ. (China). Radiochemistry Laboratory; Ye, Yuanlv [Ministry of Environmental Protection, Beijing (China). Nuclear and Radiation Safety Center; Lanzhou Univ. (China). Radiochemistry Laboratory

    2017-03-01

    In this work, experiments and modeling for the interactions between uranyl ion and GMZ bentonite in the presence of fulvic acid are presented. The results demonstrated that FA is strongly bound to GMZ bentonite, and these molecules have a very large effect on the U(VI) sorption. The results also demonstrated that U(VI) sorption to GMZ bentonite in the presence and absence of sorbed FA can be well predicted by combining SHM and DLM. According to the model calculations, the nature of the interactions between FA with U(VI) at GMZ bentonite surface is mainly surface complex. The first attempt to simulate clay interaction with humus by the SHM model.

  9. Detailed dayside auroral morphology as a function of local time for southeast IMF orientation: implications for solar wind-magnetosphere coupling

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2004-11-01

    Full Text Available In two case studies we elaborate on spatial and temporal structures of the dayside aurora within 08:00-16:00 magnetic local time (MLT and discuss the relationship of this structure to solar wind-magnetosphere interconnection topology and the different stages of evolution of open field lines in the Dungey convection cycle. The detailed 2-D auroral morphology is obtained from continuous ground observations at Ny Ålesund (76° magnetic latitude (MLAT, Svalbard during two days when the interplanetary magnetic field (IMF is directed southeast (By>0; Bz<0. The auroral activity consists of the successive activations of the following forms: (i latitudinally separated, sunward moving, arcs/bands of dayside boundary plasma sheet (BPS origin, in the prenoon (08:00-11:00 MLT and postnoon (12:00-16:00 MLT sectors, within 70-75° MLAT, (ii poleward moving auroral forms (PMAFs emanating from the pre- and postnoon brightening events, and (iii a specific activity appearing in the 07:00-10:00 MLT/75-80° MLAT during the prevailing IMF By>0 conditions. The pre- and postnoon activations are separated by a region of strongly attenuated auroral activity/intensity within the 11:00-12:00 MLT sector, often referred to as the midday gap aurora. The latter aurora is attributed to the presence of component reconnection at the subsolar magnetopause where the stagnant magnetosheath flow lead to field-aligned currents (FACs which are of only moderate intensity. The much more active and intense aurorae in the prenoon (07:00-11:00 MLT and postnoon (12:00-16:00 MLT sectors originate in magnetopause reconnection events that are initiated well away from the subsolar point. The high-latitude auroral activity in the prenoon sector (feature iii is found to be accompanied by a convection channel at the polar cap boundary. The associated ground magnetic deflection (DPY is a Svalgaard-Mansurov effect. The convection channel is attributed to effective momentum transfer from the

  10. Association between substorm onsets in auroral all-sky images and geomagnetic Pi2pulsations

    Science.gov (United States)

    Miura, T.; Ieda, A.; Teramoto, M.; Kawashima, T.

    2017-12-01

    Substorms are explosive disturbances in the magnetosphere and ionosphere of Earth. Substorm onsets are often identified usingsudden auroral brightenings (auroral breakup) or geomagnetic Pi2 pulsations. These auroral brightenings and Pi2 pulsations aresupposed to occur simultaneously within approximately 1 min of each other. However, as auroral brightenings typically includea two-stage development, this simultaneity is not straightforward. In this study, we clarify the correspondence between Pi2 pulsations and auroral brightenings, including the two-stage development.The first stage of the development is the sudden brightening of an auroral arc near the midnight (initial brightening)and the second stage is the poleward expansion of the auroral arc. We compared all-sky images (3 s resolution) in Canada andgeomagnetic observations (0.5-1 s resolution) in North and Central America, using data from the THEMIS project. In this study,we examined three substorms events that exhibit evidence of the two-stage auroral development. In the first event (4 March 2008), an auroral initial brightening occurred at 0533:57 UT and a poleward expansion was observedat 0538:12 UT (4 min after the initial brightening) in Gillam (magnetic latitude:66.0 °, longitude:333 °, MLT:22.9). In contract,the Pi2 pulsation started at 0539:30 UT, which is closer to the time of the poleward expansion, in Carson City (magnetic latitude:45.0 °, longitude:304 °). and San Juan (magnetic latitude:27.9 °, longitude:6.53 °). Thus, we consider this Pi2 pulsation ascorresponding to the poleward expansion rather than the initial brightening. This correspondence was also seen in the other twoevents, suggesting that it is not exceptional. We interpret that the Pi2 pulsation corresponds to the poleward expansion becauseboth are caused by the magnetic field dipolarization, which is a drastic change that propagates from low- to high-latitude fieldlines.

  11. The Isinglass Auroral Sounding Rocket Campaign: data synthesis incorporating remote sensing, in situ observations, and modelling

    Science.gov (United States)

    Lynch, K. A.; Clayton, R.; Roberts, T. M.; Hampton, D. L.; Conde, M.; Zettergren, M. D.; Burleigh, M.; Samara, M.; Michell, R.; Grubbs, G. A., II; Lessard, M.; Hysell, D. L.; Varney, R. H.; Reimer, A.

    2017-12-01

    The NASA auroral sounding rocket mission Isinglass was launched from Poker Flat Alaska in winter 2017. This mission consists of two separate multi-payload sounding rockets, over an array of groundbased observations, including radars and filtered cameras. The science goal is to collect two case studies, in two different auroral events, of the gradient scale sizes of auroral disturbances in the ionosphere. Data from the in situ payloads and the groundbased observations will be synthesized and fed into an ionospheric model, and the results will be studied to learn about which scale sizes of ionospheric structuring have significance for magnetosphere-ionosphere auroral coupling. The in situ instrumentation includes thermal ion sensors (at 5 points on the second flight), thermal electron sensors (at 2 points), DC magnetic fields (2 point), DC electric fields (one point, plus the 4 low-resource thermal ion RPA observations of drift on the second flight), and an auroral precipitation sensor (one point). The groundbased array includes filtered auroral imagers, the PFISR and SuperDarn radars, a coherent scatter radar, and a Fabry-Perot interferometer array. The ionospheric model to be used is a 3d electrostatic model including the effects of ionospheric chemistry. One observational and modelling goal for the mission is to move both observations and models of auroral arc systems into the third (along-arc) dimension. Modern assimilative tools combined with multipoint but low-resource observations allow a new view of the auroral ionosphere, that should allow us to learn more about the auroral zone as a coupled system. Conjugate case studies such as the Isinglass rocket flights allow for a test of the models' intepretation by comparing to in situ data. We aim to develop and improve ionospheric models to the point where they can be used to interpret remote sensing data with confidence without the checkpoint of in situ comparison.

  12. Multi-instrument mapping of the small-scale flow dynamics related to a cusp auroral transient

    Directory of Open Access Journals (Sweden)

    K. Oksavik

    2005-10-01

    Full Text Available In this paper we focus on flux transfer events (FTEs and poleward moving auroral forms (PMAFs in the cusp region, combining data from the EISCAT Svalbard radar, SuperDARN HF radars, ground-based optics, and three low-altitude polar-orbiting spacecraft. During an interval of southward interplanetary magnetic field the EISCAT Svalbard radar tracked a train of narrow flow channels drifting into the polar cap. One 30-60 km wide flow channel surrounded by flow running in the opposite direction is studied in great detail from when it formed equatorward of the cusp aurora, near magnetic noon, until it left the field-of-view and disappeared into the polar cap. Satellite data shows that the flow channel was on open field lines. The flow pattern is consistent with field-aligned currents on the sides of the flow channel; with a downward current on the equatorward side, and an upward current on the poleward side. The poleward edge of the flow channel was coincident with a PMAF that separated from the background cusp aurora and drifted into the polar cap. A passage of the DMSP F13 spacecraft confirms that the FTE flow channel was still discernable over 15 minutes after it formed, as the spacecraft revealed a 30–40 km wide region of sunward flow within the anti-sunward background convection. From the dimensions of the flow channel we estimate that the magnetic flux contained in the event was at least 1 MWb. This data set also shows that Birkeland current filaments often seen by low-altitude spacecraft in the cusp/mantle are really associated with individual FTE events or a train of FTEs in progress. As the region 0 or cusp/mantle current represents the statistical average consistent with the large-scale flow pattern, we therefore introduce a new term – FTE currents – to denote the unique pair of Birkeland current sheets that are associated with individual meso-scale FTE flow disturbances. The poleward moving auroral forms (PMAFs, often referred to in

  13. Multi-instrument mapping of the small-scale flow dynamics related to a cusp auroral transient

    Directory of Open Access Journals (Sweden)

    K. Oksavik

    2005-10-01

    Full Text Available In this paper we focus on flux transfer events (FTEs and poleward moving auroral forms (PMAFs in the cusp region, combining data from the EISCAT Svalbard radar, SuperDARN HF radars, ground-based optics, and three low-altitude polar-orbiting spacecraft. During an interval of southward interplanetary magnetic field the EISCAT Svalbard radar tracked a train of narrow flow channels drifting into the polar cap. One 30-60 km wide flow channel surrounded by flow running in the opposite direction is studied in great detail from when it formed equatorward of the cusp aurora, near magnetic noon, until it left the field-of-view and disappeared into the polar cap. Satellite data shows that the flow channel was on open field lines. The flow pattern is consistent with field-aligned currents on the sides of the flow channel; with a downward current on the equatorward side, and an upward current on the poleward side. The poleward edge of the flow channel was coincident with a PMAF that separated from the background cusp aurora and drifted into the polar cap. A passage of the DMSP F13 spacecraft confirms that the FTE flow channel was still discernable over 15 minutes after it formed, as the spacecraft revealed a 30–40 km wide region of sunward flow within the anti-sunward background convection. From the dimensions of the flow channel we estimate that the magnetic flux contained in the event was at least 1 MWb. This data set also shows that Birkeland current filaments often seen by low-altitude spacecraft in the cusp/mantle are really associated with individual FTE events or a train of FTEs in progress. As the region 0 or cusp/mantle current represents the statistical average consistent with the large-scale flow pattern, we therefore introduce a new term – FTE currents – to denote the unique pair of Birkeland current sheets that are associated with individual meso-scale FTE flow disturbances. The poleward moving auroral forms (PMAFs, often referred to in

  14. Auroral signature of comet Shoemaker-Levy 9 in the jovian magnetosphere.

    Science.gov (United States)

    Prangé, R; Engle, I M; Clarke, J T; Dunlop, M; Ballester, G E; Ip, W H; Maurice, S; Trauger, J

    1995-03-03

    The electrodynamic interaction of the dust and gas comae of comet Shoemaker-Levy 9 with the jovian magnetosphere was unique and different from the atmospheric effects. Early theoretical predictions of auroral-type processes on the comet magnetic field line and advanced modeling of the time-varying morphology of these lines allowed dedicated observations with the Hubble Space Telescope Wide Field Planetary Camera 2 and resulted in the detection of a bright auroral spot. In that respect, this observation of the surface signature of an externally triggered auroral process can be considered as a "magnetospheric active experiment" on Jupiter.

  15. Removal of U(VI) from aqueous media by hydrothermal cross-linking chitosan with phosphate group

    International Nuclear Information System (INIS)

    Zhi-min Dong; Yan-fang Qiu; Lin Wang; Pan-feng Wang; Zhong-jun Lai; Wen-long Zhang; Ying Dai; Xiao-hong Cao; Zhi-bin Zhang; Yun-hai Liu; Zhang-gao Le; East China University of Technology, Jiangxi; East China University of Technology, Jiangxi

    2016-01-01

    For the selective adsorption of U(VI) from aqueous solutions, the hydrothermal cross-linking chitosan (HCC) and its phosphorylation production (HCC-TPP) were synthesized by hydrothermal reaction. The monolayer maximum capacity of HCC-TPP was improved from 200 mg g -1 of HCC to 409.2 mg g -1 at 298 K. Calculated thermodynamic parameters showed endothermic property of the adsorption process, while kinetic parameters indicated that the interaction followed pseudo-second kinetic model. Selective separation of U(VI) from effluent by HCC-TPP was achieved. (author)

  16. TITAN’S UPPER ATMOSPHERE FROM CASSINI/UVIS SOLAR OCCULTATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Capalbo, Fernando J.; Bénilan, Yves [Laboratoire Inter-Universitaire des Systèmes Atmosphériques (LISA), UMR 7583 du CNRS, Universités Paris Est Créteil (UPEC) and Paris Diderot - UPD, 61 avenue du Général de Gaulle, F-94010, Créteil Cédex (France); Yelle, Roger V.; Koskinen, Tommi T., E-mail: fernando.capalbo@lisa.u-pec.fr [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd., Tucson, AZ 85721 (United States)

    2015-12-01

    Titan’s atmosphere is composed mainly of molecular nitrogen, methane being the principal trace gas. From the analysis of 8 solar occultations measured by the Extreme Ultraviolet channel of the Ultraviolet Imaging Spectrograph (UVIS) on board Cassini, we derived vertical profiles of N{sub 2} in the range 1100–1600 km and vertical profiles of CH{sub 4} in the range 850–1300 km. The correction of instrument effects and observational effects applied to the data are described. We present CH{sub 4} mole fractions, and average temperatures for the upper atmosphere obtained from the N{sub 2} profiles. The occultations correspond to different times and locations, and an analysis of variability of density and temperature is presented. The temperatures were analyzed as a function of geographical and temporal variables, without finding a clear correlation with any of them, although a trend of decreasing temperature toward the north pole was observed. The globally averaged temperature obtained is (150 ± 1) K. We compared our results from solar occultations with those derived from other UVIS observations, as well as studies performed with other instruments. The observational data we present confirm the atmospheric variability previously observed, add new information to the global picture of Titan’s upper atmosphere composition, variability, and dynamics, and provide new constraints to photochemical models.

  17. Plutonium(VI) accumulation and reduction by lichen biomass: correlation with U(VI)

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko; Aoyagi, Hisao; Kitatsuji, Yoshihiro; Samadfam, Mohammad; Kimura, Yasuhiko; William Purvis, O.

    2004-01-01

    The uptake of plutonium(VI) and uranium(VI) by lichen biomass was studied in the foliose lichen Parmotrema tinctorum to elucidate the migration behavior of Pu and U in the terrestrial environment. Pu and U uptake by P. tinctorum averaged 0.040±0.010 and 0.055±0.015 g g dry -1 , respectively, after 96 h incubation with 4.0x10 -4 mol l -1 Pu solutions of pH 3, 4 and 5. SEM observations showed that the accumulated Pu is evenly distributed on the upper and lower surfaces of P. tinctorum, in contrast to U(VI), which accumulated in both cortical and medullary layers. UV/VIS absorption spectroscopy demonstrates that a fraction of Pu(VI) in the solution is reduced to Pu(V) by the organic substances released from P. tinctorum, and the accumulated Pu on the surface is reduced to Pu(IV), while U(VI) keeps the oxidation state of VI. Since the solubility of Pu(IV) hydroxides is very low, reduced Pu(VI) does not penetrate to the medullary layers, but is probably precipitated as Pu(IV) hydroxides on the cortical lichen surface. It is concluded that the uptake and reduction of Pu(VI) by lichens is important to determine the mobilization and oxidation states of Pu in the terrestrial environment

  18. Plutonium(VI) accumulation and reduction by lichen biomass: correlation with U(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuki, Toshihiko E-mail: ohnuki@sparclt.tokai.jaeri.go.jp; Aoyagi, Hisao; Kitatsuji, Yoshihiro; Samadfam, Mohammad; Kimura, Yasuhiko; William Purvis, O

    2004-07-01

    The uptake of plutonium(VI) and uranium(VI) by lichen biomass was studied in the foliose lichen Parmotrema tinctorum to elucidate the migration behavior of Pu and U in the terrestrial environment. Pu and U uptake by P. tinctorum averaged 0.040{+-}0.010 and 0.055{+-}0.015 g g{sub dry}{sup -1}, respectively, after 96 h incubation with 4.0x10{sup -4} mol l{sup -1} Pu solutions of pH 3, 4 and 5. SEM observations showed that the accumulated Pu is evenly distributed on the upper and lower surfaces of P. tinctorum, in contrast to U(VI), which accumulated in both cortical and medullary layers. UV/VIS absorption spectroscopy demonstrates that a fraction of Pu(VI) in the solution is reduced to Pu(V) by the organic substances released from P. tinctorum, and the accumulated Pu on the surface is reduced to Pu(IV), while U(VI) keeps the oxidation state of VI. Since the solubility of Pu(IV) hydroxides is very low, reduced Pu(VI) does not penetrate to the medullary layers, but is probably precipitated as Pu(IV) hydroxides on the cortical lichen surface. It is concluded that the uptake and reduction of Pu(VI) by lichens is important to determine the mobilization and oxidation states of Pu in the terrestrial environment.

  19. Simultaneous auroral observations described in the historical records of China, Japan and Korea from ancient times to AD 1700

    Directory of Open Access Journals (Sweden)

    D. M. Willis

    Full Text Available Early auroral observations recorded in various oriental histories are examined in order to search for examples of strictly simultaneous and indisputably independent observations of the aurora borealis from spatially separated sites in East Asia. In the period up to ad 1700, only five examples have been found of two or more oriental auroral observations from separate sites on the same night. These occurred during the nights of ad 1101 January 31, ad 1138 October 6, ad 1363 July 30, ad 1582 March 8 and ad 1653 March 2. The independent historical evidence describing observations of mid-latitude auroral displays at more than one site in East Asia on the same night provides virtually incontrovertible proof that auroral displays actually occurred on these five special occasions. This conclusion is corroborated by the good level of agreement between the detailed auroral descriptions recorded in the different oriental histories, which furnish essentially compatible information on both the colour (or colours of each auroral display and its approximate position in the sky. In addition, the occurrence of auroral displays in Europe within two days of auroral displays in East Asia, on two (possibly three out of these five special occasions, suggests that a substantial number of the mid-latitude auroral displays recorded in the oriental histories are associated with intense geomagnetic storms.

    Key words. Magnetospheric physics (auroral phenomena; storms and substorms

  20. Field line projections of 6300 AA auroral emissions into the outer magnetosphere

    International Nuclear Information System (INIS)

    Shepherd, M.M.

    1979-07-01

    An empirical magnetospheric model is employed to project auroral intensity boundaries into the magnetosphere. The auroral data are in the form of instantaneous maps of 6300AA emission, acquired with the ISIS-II spacecraft and correspond to fluxes of low energy electrons. These are specific to a particular universal time and date. The magnetospheric model used is a purely empirical one, designed by Mead and Fairfield (1975) from 44.76 x 10 6 magnetic measurements made by 4 IMP satellites. Their model includes the dipole tilt as a variable, and permits selection from four different disturbance levels, so is particularly suited to these data. In a general way, the auroral projections agree with what is expected, giving some confidence in this application of the model. But a number of features appear that were not predicted, and which should permit new insights into the relationship of specific auroral boundaries to the structure of the magnetosphere. (author)

  1. IMS (International Magnetospheric Study) contributions to the understanding of auroral precipitation, transport, and particle sources

    Energy Technology Data Exchange (ETDEWEB)

    Fennell, J.F.

    1985-03-01

    The progress in our understanding of plasma processes throughout the magnetosphere has increased dramatically during the International Magnetospheric Study (IMS) period. In this report the auroral ionosphere as a source of particles for the magnetosphere and the auroral particle acceleration and precipitation are emphasized. Some of the processes involved in the transport of particles from the ionosphere out into the magnetosphere are treated as well as the precipitation of magnetospheric particles into the auroral and subauroral ionosphere. Some of the effects auroral ionospheric ions have on the magnetospheric plasma composition are described. A brief overview of pre-IMS results is also given to set the stage for a description of IMS contributions in these areas.

  2. Electron cyclotron waves in the presence of parallel electric fields in the Earth's auroral plasma

    Directory of Open Access Journals (Sweden)

    S. Kumar

    1997-01-01

    Full Text Available The electron cyclotron waves that originate at low altitudes (<0.5 RE and observed by ground facilities have been studied in the presence of a weak parallel electric field in auroral magnetoplasma consisting of trapped energetic auroral electrons and cold background electrons of ionospheric origin. The model distribution for auroral trapped electrons is taken as Maxwellian ring distribution. An expression for the growth rate has been obtained in the presence of parallel electric field assuming that the real frequency in the whistler mode is not affected by the presence of the electric field. The results show that waves grow (or damp in amplitude for a parallel (or antiparallel electric field. The influence of the electric field is more pronounced at a shorter wavelength spectrum. An increase in population of energetic electrons increases the growth rate and thus, plays a significant role in the wave excitation process in the auroral regions.

  3. Identification of possible intense historical geomagnetic storms using combined sunspot and auroral observations from East Asia

    Directory of Open Access Journals (Sweden)

    D. M. Willis

    2005-03-01

    Full Text Available Comprehensive catalogues of ancient sunspot and auroral observations from East Asia are used to identify possible intense historical geomagnetic storms in the interval 210 BC-AD 1918. There are about 270 entries in the sunspot catalogue and about 1150 entries in the auroral catalogue. Special databases have been constructed in which the scientific information in these two catalogues is placed in specified fields. For the purposes of this study, an historical geomagnetic storm is defined in terms of an auroral observation that is apparently associated with a particular sunspot observation, in the sense that the auroral observation occurred within several days of the sunspot observation. More precisely, a selection criterion is formulated for the automatic identification of such geomagnetic storms, using the oriental records stored in the sunspot and auroral databases. The selection criterion is based on specific assumptions about the duration of sunspot visibility with the unaided eye, the likely range of heliographic longitudes of an energetic solar feature, and the likely range of transit times for ejected solar plasma to travel from the Sun to the Earth. This selection criterion results in the identification of nineteen putative historical geomagnetic storms, although two of these storms are spurious in the sense that there are two examples of a single sunspot observation being associated with two different auroral observations separated by more than half a (synodic solar rotation period. The literary and scientific reliabilities of the East Asian sunspot and auroral records that define the nineteen historical geomagnetic storms are discussed in detail in a set of appendices. A possible time sequence of events is presented for each geomagnetic storm, including possible dates for both the central meridian passage of the sunspot and the occurrence of the energetic solar feature, as well as likely transit times for the ejected solar plasma

  4. Rocket-borne investigation of auroral patches in the evening sector during substorm recovery

    Directory of Open Access Journals (Sweden)

    M. A. Danielides

    Full Text Available On 11 February 1997 at 08:36 UT after a substorm onset the Auroral Turbulence 2 sounding rocket was launched from Poker Flat Research Range, Alaska into a moderately active auroral region. This experiment has allowed us to investigate evening (21:00 MLT auroral forms at the substorm recovery, which were discrete multiple auroral arcs stretched to, the east and southeast from the breakup region, and bright auroral patches propagating westward along the arcs like a luminosity wave, which is a typical feature of the disturbed arc. The rocket crossed an auroral arc of about 40 km width, stretched along southeast direction. Auroral patches and associated electric fields formed a 200 km long periodical structure, which propagated along the arc westward at a velocity of 3 km/s, whereas the ionospheric plasma velocity inside the arc was 300 m/s westward. The spatial periodicity in the rocket data was found from optical ground-based observations, from electric field in situ measurements, as well as from ground-based magnetic observations. The bright patches were co-located with equatorward plasma flow across the arc of the order of 200 m/s in magnitude, whereas the plasma flow tended to be poleward at the intervals between the patches, where the electric field reached the magnitude of up to 20 mV/m, and these maxima were co-located with the peaks in electron precipitations indicated by the electron counter on board the rocket. Pulsations of a 70-s period were observed on the ground in the eastern component of the magnetic field and this is consistent with the moving auroral patches and the north-south plasma flows associated with them. The enhanced patch-associated electric field and fast westward propagation suggest essential differences between evening auroral patches and those occurring in the morning ionosphere. We propose the wave that propagates along the plasma sheet boundary to be a promising mechanism for the evening auroral patches

  5. Rocket-borne investigation of auroral patches in the evening sector during substorm recovery

    Directory of Open Access Journals (Sweden)

    M. A. Danielides

    2003-03-01

    Full Text Available On 11 February 1997 at 08:36 UT after a substorm onset the Auroral Turbulence 2 sounding rocket was launched from Poker Flat Research Range, Alaska into a moderately active auroral region. This experiment has allowed us to investigate evening (21:00 MLT auroral forms at the substorm recovery, which were discrete multiple auroral arcs stretched to, the east and southeast from the breakup region, and bright auroral patches propagating westward along the arcs like a luminosity wave, which is a typical feature of the disturbed arc. The rocket crossed an auroral arc of about 40 km width, stretched along southeast direction. Auroral patches and associated electric fields formed a 200 km long periodical structure, which propagated along the arc westward at a velocity of 3 km/s, whereas the ionospheric plasma velocity inside the arc was 300 m/s westward. The spatial periodicity in the rocket data was found from optical ground-based observations, from electric field in situ measurements, as well as from ground-based magnetic observations. The bright patches were co-located with equatorward plasma flow across the arc of the order of 200 m/s in magnitude, whereas the plasma flow tended to be poleward at the intervals between the patches, where the electric field reached the magnitude of up to 20 mV/m, and these maxima were co-located with the peaks in electron precipitations indicated by the electron counter on board the rocket. Pulsations of a 70-s period were observed on the ground in the eastern component of the magnetic field and this is consistent with the moving auroral patches and the north-south plasma flows associated with them. The enhanced patch-associated electric field and fast westward propagation suggest essential differences between evening auroral patches and those occurring in the morning ionosphere. We propose the wave that propagates along the plasma sheet boundary to be a promising mechanism for the evening auroral patches.Key words

  6. Estimation of past solar and upper atmosphere conditions from historical and modern auroral observations

    Directory of Open Access Journals (Sweden)

    W. Schröder

    2004-06-01

    Full Text Available On the basis of the analysis of the data of auroral observations at middle latitudes during low solar activity, and modern spectrophotometric research, the feasibility of their joint use for the estimation of the level of the solar activity during periods without instrumental measurements is discussed. In this paper an attempt is undertaken to determine quantitative information on solar activity by comparing the data of visual auroral observations with the modern parameter of their luminescence.

  7. Balloon observations of auroral X-rays at Esrange, Sweden and related phenomena

    OpenAIRE

    Hirasima,Yo; Murakami,Hiroyuki; Okudaira,Kiyoaki; Fujii,Masami; Nishimura,Jun; Yamagami,Takamasa; Ejiri,Masaki; Miyaoka,Hiroshi; Ono,Takayuki; Kodama,Masahiro

    1984-01-01

    Balloon observations of auroral X-rays using different detector systems were carried out twice over Esrange, Sweden, in November and December 1982,in order to examine spatial and temporal characteristics of the energetic component of auroral electrons. One detector is a telescope system consisting of four scintillation counters whose fields of view are different with each other as well as with the viewing directions. It is shown from the first flight carrying the telescope system that a limit...

  8. Pathway and conversion of energy incident on auroral and sub-auroral ionosphere at substorm expansion onset

    Science.gov (United States)

    Ebihara, Y.; Tanaka, T.

    2017-12-01

    One explanation for SAPS/SAID is the poleward ionospheric electric field arising from a pair of Region 1 and Region 2 field-aligned currents (FACs). At substorm expansion onset, the FACs are intensified, resulting in intensification of energy incident on the auroral and sub-auroral ionosphere. Where does the energy comes from? Based on the results obtained by the global magnetohydrodynamics (MHD) simulation, we present energy flow and energy conversion associated with the Region 1 and Region 2 FACs that are intensified at the onset of substorm expansion. The cusp/mantle region transmits electromagnetic energy to almost the entire region of the magnetosphere. A part of electromagnetic energy is stored in the lobe in the growth phase. When reconnection takes place in the near-Earth tail region, the stored energy is released in addition to the continuously supplied one from the cusp/mantle dynamo. Two types of pathways of energy seem to be involved in the generation of the near-Earth dynamo that is associated with FACs at the expansion onset. The first type is related to the earthward fast flow in the plasma sheet. The electromagnetic energy coming from the lobe splits into the thermal energy and the kinetic energy. The kinetic energy is then converted to the thermal energy and the electromagnetic energy, in association of flow braking. The second type is that the plasma coming from the lobe goes into the inner magnetosphere directly. The electromagnetic energy is converted to the thermal energy, followed by the electromagnetic energy at off-equator. The near-Earth dynamo region seems to be embedded in the magnetospheric convection system. In this sense, the expansion onset may be regarded as a sudden, local intensification of the convection.

  9. Ground-based and satellite observations of high-latitude auroral activity in the dusk sector of the auroral oval

    Directory of Open Access Journals (Sweden)

    K. Kauristie

    2001-09-01

    Full Text Available On 7 December 2000, during 13:30–15:30 UT the MIRACLE all-sky camera at Ny Ålesund observed auroras at high-latitudes (MLAT ~ 76 simultaneously when the Cluster spacecraft were skimming the magnetopause in the same MLT sector (at ~ 16:00–18:00 MLT. The location of the auroras (near the ionospheric convection reversal boundary and the clear correlation between their dynamics and IMF variations suggests their close relationship with R1 currents. Consequently, we can assume that the Cluster spacecraft were making observations in the magnetospheric region associated with the auroras, although exact magnetic conjugacy between the ground-based and satellite observations did not exist. The solar wind variations appeared to control both the behaviour of the auroras and the magnetopause dynamics. Auroral structures were observed at Ny Ålesund especially during periods of negative IMF BZ. In addition, the Cluster spacecraft experienced periodic (T ~ 4 - 6 min encounters between magnetospheric and magnetosheath plasmas. These undulations of the boundary can be interpreted as a consequence of tailward propagating magnetopause surface waves. Simultaneous dusk sector ground-based observations show weak, but discernible magnetic pulsations (Pc 5 and occasionally periodic variations (T ~ 2 - 3 min in the high-latitude auroras. In the dusk sector, Pc 5 activity was stronger and had characteristics that were consistent with a field line resonance type of activity. When IMF BZ stayed positive for a longer period, the auroras were dimmer and the spacecraft stayed at the outer edge of the magnetopause where they observed electromagnetic pulsations with T ~ 1 min. We find these observations interesting especially from the viewpoint of previously presented studies relating poleward-moving high-latitude auroras with pulsation activity and MHD waves propagating at the magnetospheric boundary layers.Key words. Ionosphere (ionosphere-magnetosphere interaction

  10. Removal of U(VI) from aqueous solutions using Shewanella sp. RCRI7, isolated from Qurugoel Lake in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Abdehvand, Adib Zaheri; Keshtkar, Alireza; Fatemi, Faezeh [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Nuclear Fuel Cycle Research School; Tarhiz, Vahideh; Hejazi, Mohammad Saeid [Tabriz Univ. of Medical Sciences (Iran, Islamic Republic of). Molecular Medicine Research Center

    2017-04-01

    Isolation, genotypic and phenotypic characterization of an aqueous bacterium, Shewanella sp RCRI7, from Qurugoel Lake in Iran and uranium removal from aqueous solutions using the isolate is described. Based on 16S rRNA gene sequence analysis and phylogenetic tree, strain RCRI7{sup T} falls into genus Shewanella. Closely related type strains include Shewanella xiamenensis S4{sup T} KJ542801, Shewanella profunda DSM15900{sup T} FR733713, Shewanella putrefaciens LMG 26268{sup T} X81623 and Shewanella oneidensis MR-1{sup T} AE014299. Anaerobic incubation of the bacteria in the presence of U(VI) led to uranium removal from the solution and formation of a black precipitate. Analysis of the precipitate using UV-vis confirmed the reduction of U(VI) to U(IV). The effects of pH, temperature, U(VI) concentration and cell density on uranium removal were elucidated. The maximum uranium removal was 97%. As a conclusion, the findings revealed the ability of the local strain RCRI7 for U(VI) bioreduction as an effective bacterium for uranium immobilization.

  11. On the collocation between dayside auroral activity and coherent HF radar backscatter

    Directory of Open Access Journals (Sweden)

    J. Moen

    Full Text Available The 2D morphology of coherent HF radar and optical cusp aurora has been studied for conditions of predominantly southward IMF conditions, which favours low-latitude boundary layer reconnection. Despite the variability in shape of radar cusp Doppler spectra, the spectral width criterion of > 220 m s–1 proves to be a robust cusp discriminator. For extended periods of well-developed radar backscatter echoes, the equatorward boundary of the > 220 m s–1 spectral width enhancement lines up remarkably well with the equatorward boundary of the optical cusp aurora. The spectral width boundary is however poorly determined during development and fading of radar cusp backscatter. Closer inspection of radar Doppler profile characteristics suggests that a combination of spectral width and shape may advance boundary layer identification by HF radar. For the two December days studied the onset of radar cusp backscatter occurred within pre-existing 630.0 nm cusp auroral activity and appear to be initiated by sunrise, i.e. favourable radio wave propagation conditions had to develop. Better methods are put forward for analysing optical data, and for physical interpretation of HF radar data, and for combining these data, as applied to detection, tracking, and better understanding of dayside aurora. The broader motivation of this work is to develop wider use by the scientific community, of results of these techniques, to accelerate understanding of dynamic high-latitude boundary-processes. The contributions in this work are: (1 improved techniques of analysis of observational data, yielding meaningfully enhanced accuracy for deduced cusp locations; (2 a correspondingly more pronounced validation of correlation of boundary locations derived from the observational data set; and (3 a firmer physical rationale as to why the good correlation observed should theoretically be expected.

    Key words: Ionosphere (ionospheric

  12. Transport of Th(IV) and U(VI) through barium silico-phosphate composite membrane using electric field

    International Nuclear Information System (INIS)

    Zaki, E.E.

    2002-01-01

    The present paper describes the preparation of a novel barium silico-phosphate filter paper supported membrane. It is based on precipitation reaction of barium silico-phosphate on the outer surface and in the interstices of a filter paper by means of electrodialysis. The main physical and electrical properties of the membrane are given and its electrodialysis behaviour is assessed for Th(IV) and U(VI). The transport of Th(IV) in presence of U(VI) was studied. The cationic fluxes of Th(IV) and U(VI) were found to be 1.2 x 10 -8 and 6.5 x 10 -9 g eq cm -2 s -1 , respectively. Transport of Th(IV) and U(VI) in presence of EDTA was investigated. The cationic flux of U(VI) is found to be 9.8 x 10 -9 g eq cm -2 s -1 at a current density of 25 mA/cm 2 . A comparative study on the electro osmotic effect was carried out using the developed membrane and commercially available Nafion membranes. In this context, different parameters like current density, electrolyte concentration, etc. were investigated. The electro-osmotic permeability coefficient, D e , of Th(IV) through barium silico-phosphate and Nafion membranes were 6.9 x 10 -2 and 1.0 x 10 -2 cm 3 /As, respectively. It can be concluded that inorganic membranes have very marked electro-osmotic properties unlike their organic counterparts. (orig.)

  13. Simulating adsorption of U(VI) under transient groundwater flow and hydrochemistry: Physical versus chemical nonequilibrium model

    Science.gov (United States)

    Greskowiak, J.; Hay, M.B.; Prommer, H.; Liu, C.; Post, V.E.A.; Ma, R.; Davis, J.A.; Zheng, C.; Zachara, J.M.

    2011-01-01

    Coupled intragrain diffusional mass transfer and nonlinear surface complexation processes play an important role in the transport behavior of U(VI) in contaminated aquifers. Two alternative model approaches for simulating these coupled processes were analyzed and compared: (1) the physical nonequilibrium approach that explicitly accounts for aqueous speciation and instantaneous surface complexation reactions in the intragrain regions and approximates the diffusive mass exchange between the immobile intragrain pore water and the advective pore water as multirate first-order mass transfer and (2) the chemical nonequilibrium approach that approximates the diffusion-limited intragrain surface complexation reactions by a set of multiple first-order surface complexation reaction kinetics, thereby eliminating the explicit treatment of aqueous speciation in the intragrain pore water. A model comparison has been carried out for column and field scale scenarios, representing the highly transient hydrological and geochemical conditions in the U(VI)-contaminated aquifer at the Hanford 300A site, Washington, USA. It was found that the response of U(VI) mass transfer behavior to hydrogeochemically induced changes in U(VI) adsorption strength was more pronounced in the physical than in the chemical nonequilibrium model. The magnitude of the differences in model behavior depended particularly on the degree of disequilibrium between the advective and immobile phase U(VI) concentrations. While a clear difference in U(VI) transport behavior between the two models was noticeable for the column-scale scenarios, only minor differences were found for the Hanford 300A field scale scenarios, where the model-generated disequilibrium conditions were less pronounced as a result of frequent groundwater flow reversals. Copyright 2011 by the American Geophysical Union.

  14. Effect of pH and Fe/U ratio on the U(VI) removal rate by the synergistic effect of Fe(II) and O2

    Science.gov (United States)

    Fu, Yukui; Luo, Yingfeng; Fang, Qi; Xie, Yanpei; Wang, Zhihong; Zhu, Xiangyu

    2018-02-01

    As for the decommissioned uranium deposits of acid in-situ leaching, both of the concentrations of U(VI) and Fe(II) are relatively high in groundwater. In the presence of O2, the oxidation of Fe(II) into Fe(III) that forms Fe-hydroxides could effectively remove U(VI) in the forms of sorption or co-precipitation. In this process, pH condition and Fe content will have a significant effect on the U(VI) removal rate by the synergistic effect of Fe(II) and O2. In the present work, a series of batch experiments were carried out to investigate the effect of pH values and Fe/U mass ratio on the U(VI) removal rate by the synergistic effect of Fe(II) and O2. Experiment results show that the removal rate of U(VI) is mainly controlled by pH and secondly by Fe/U mass ratio. In the neutral conditions with pH at 7 and 8, the removal rate of U(VI) reaches up to 90% for all solutions with different initial Fe(II) concentrations. The optimal pH for the removal rate of U(VI) is above 7. In the acidic conditions with pH below 6, the effect of Fe/U mass ratio on the removal rate of U(VI) becomes more obvious and the optimal Fe/U mass ratio for U(VI) removal is 1:2.

  15. Ion chromatographic separation and spectrophotometric determination of U(IV) and U(VI)

    Energy Technology Data Exchange (ETDEWEB)

    De Beer, H.; Coetzee, P.P. (Dept. of Chemistry and Biochemistry, Rand Afrikaans Univ., Johannesburg (South Africa))

    1992-01-01

    An ion chromatographic method is described for the simultaneous determination of U(IV) and U(VI) species in mixtures of uranium oxides and fluorides. The separation of the uranium species was performed on a Dionex HPIC-AS5 column using a 0.1 M MgSO[sub 4]-0.05 M H[sub 2]SO[sub 4] eluent mixture. The uranium species were determined spectrophotometrically at 650 nm as uranium Arsenazo-III complexes after post-column derivitization. Oxygen was removed from all solutions by nitrogen flux to ensure the stability of the U(IV) species during the analytical procedure. Analysis time required per sample was 6 minutes. Detection limits for both species were around 200 [mu]g dm[sup -3]. The method was applied to the analysis of uranium compound mixtures from the uranium fluorination process for the production of UF[sub 6]. (orig.).

  16. Determination of U(VI) using novel reagent by extractive spectrophotometry

    International Nuclear Information System (INIS)

    Suvardhan, K.; Subrahmanyam, P.; Dilip Kumar, J.; Chiranjeevi, P.

    2007-01-01

    A simple and spectrophotometric method for the determination of U(VI) using a 5-(4-pyridyl azo)-8-quinolinol (PAQ) is developed the reagent was synthesized and used for extraction of uranium. At pH 7.0 ±0.2 uranium forms a yellowish orange colored complex with PAQ, which was then quantitatively extracted from chloroform showing maximum absorbance at wavelength of 485 nm. The proposed method obeys Beer's law in the range of 0.2-10.0 μg ml -1 . Molar absorptivity and Sandelson's sensitivity of extracted species was calculated to be 1.325x10 4 lmol -1 cm -1 and 0.421 x10 -4 μg cm -2 respectively. The method was applied for the determination of uranium in food and plant samples. It was found that the newly developed method is competent to those of standard methods. (author)

  17. Extraction of U(VI) with unsymmetrical N-methyl-N-decylalkylamide in toluene

    International Nuclear Information System (INIS)

    Yu Cui; Guoxin Sun; Zhenwei Zhang; Yexin Li; Sixiu Sun

    2005-01-01

    A number of structurally related new unsymmetrical monoamides with different substituting groups, N-methyl-N-decyloctylamide (MDOA), N-methyl-N-decyldecanamide (MDDA), and N-methyl-N-decyldodecanamide (MDDOA), were synthesized. The extraction of U(VI) from nitric acid medium by the synthesized monoamides diluted with toluene was investigated. The effect of nitric acid concentration, sodium nitrate concentration, extractant concentration and temperature on the distribution ratio was studied. The stoichiometry of the main extracted species confirms to UO 2 (NO 3 ) 2 .2A (A, amidic extractant). The values of thermodynamic parameters were determined and the extraction reactions were found exothermic. The IR spectral study was also made of the extracted species. (orig.)

  18. Temporal and spatial evolution of discrete auroral arcs as seen by Cluster

    Directory of Open Access Journals (Sweden)

    S. Figueiredo

    2005-10-01

    Full Text Available Two event studies are presented in this paper where intense convergent electric fields, with mapped intensities up to 1350 mV/m, are measured in the auroral upward current region by the Cluster spacecraft, at altitudes between 3 and 5 Earth radii. Both events are from May 2003, Southern Hemisphere, with equatorward crossings by the Cluster spacecraft of the pre-midnight auroral oval. Event 1 occurs during the end of the recovery phase of a strong substorm. A system of auroral arcs associated with convergent electric field structures, with a maximum perpendicular potential drop of about ~10 kV, and upflowing field-aligned currents with densities of 3 µA/m2 (mapped to the ionosphere, was detected at the boundary between the Plasma Sheet Boundary Layer (PSBL and the Plasma Sheet (PS. The auroral arc structures evolve in shape and in magnitude on a timescale of tens of minutes, merging, broadening and intensifying, until finally fading away after about 50 min. Throughout this time, both the PS region and the auroral arc structure in its poleward part remain relatively fixed in space, reflecting the rather quiet auroral conditions during the end of the substorm. The auroral upward acceleration region is shown for this event to extend beyond 3.9 Earth radii altitude. Event 2 occurs during a more active period associated with the expansion phase of a moderate substorm. Images from the Defense Meteorological Satellite Program (DMSP F13 spacecraft show that the Cluster spacecraft crossed the horn region of a surge-type aurora. Conjugated with the Cluster spacecraft crossing above the surge horn, the South Pole All Sky Imager recorded the motion and the temporal evolution of an east-west aligned auroral arc, 30 to 50 km wide. Intense electric field variations are measured by the Cluster spacecraft when crossing above the auroral arc structure, collocated with the density gradient at the PS poleward boundary, and coupled to intense upflowing field

  19. An experimental study on the inhibitory effect of high concentration bicarbonate on the reduction of U(VI) in groundwater by functionalized indigenous microbial communities

    International Nuclear Information System (INIS)

    Dianxin Li; Nan Hu; Dexin Ding; Shimi Li; Guangyue Li; Yongdong Wang

    2016-01-01

    The anaerobic microcosms amended with 30 mM bicarbonate and without bicarbonate were established, respectively, and the reduction of U(VI) in the microcosms by functionalized indigenous microbial communities was investigated. Results of the chemical extraction and XANES analysis showed that the proportions of U(IV) in the microcosms amended with bicarbonate were 10 % lower than without bicarbonate at day 46. The amount of Cellulomonadaceae, Desulfovibrionaceae, Peptococcaceae and Veillonellaceae amended with bicarbonate was lower than without bicarbonate, so the reduction of U(VI) was less. The experimental results show that the high concentration bicarbonate has a significantly inhibitory effect on the reduction of U(VI). (author)

  20. Chemical Interaction between U(VI) and Eu(III) ions on a Silica Surface

    International Nuclear Information System (INIS)

    Park, K. K.; Cha, W. S.; Cho, H. R.; Im, H. J.; Jung, E. C.

    2010-01-01

    Understanding the chemical behavior of actinide in groundwater flow is important for assessing the possibility of its migration with water flow in the radioactive waste disposal site. Precipitation/ dissolution in groundwater and adsorption/desorption onto a geological solid surface would determine its migration. The sorption in a geochemical system was expected to be a reaction on a naturally equilibrated surface. However, the construction of a waste disposal facility could disturb this equilibrium state, induce a new reaction environment and affect a nanoscopic surface reaction of actinide. Uranium is ubiquitous in the natural environment and a representative element in a nuclear fuel cycle and in a high level radioactive waste. In oxic environments, it is typically present as uranyl oxocation (UO 2 2+ ), which is easily adsorbed and thereby removed from a solution in the near neutral pH range. This adsorption would form a new surface condition to give an unexpected adsorption behavior for other actinide ions. Eu(III) frequently is used as a chemical analogue of Am(III) and Cm(III) in migration chemistry. The adsorption phenomena has been interpreted with the help of a SCM(surface complexation model). Some spectroscopic techniques such as EPR (Electron Paramagnetic Resonance), IR (InfraRed), EXAFS (Extended X-ray Absorption Fine Structure) and TRLFS (Time Resolved Laser Fluorescence Spectroscopy) have been used for the identification of a modeled adsorbing species. In the case of fluorescence elements, TRLFS has advantages over other techniques for its high sensitivity being proportional to laser source intensity and good selectivity depending on specific transition and lifetime. This technique can be applied to a species on a solid surface not absorbing light such as silica. U(VI) and Eu(III) have fluorescente properties reflecting their coordination structure. In this study, the interaction between U(VI) and Eu(III) on a silica surface was studied by a

  1. A comparative study of auroral morphology distribution between the Northern and Southern Hemisphere based on automatic classification

    Science.gov (United States)

    Yang, Qiuju; Hu, Ze-Jun

    2018-03-01

    Aurora is a very important geophysical phenomenon in the high latitudes of Arctic and Antarctic regions, and it is important to make a comparative study of the auroral morphology between the two hemispheres. Based on the morphological characteristics of the four labeled dayside discrete auroral types (auroral arc, drapery corona, radial corona and hot-spot aurora) on the 8001 dayside auroral images at the Chinese Arctic Yellow River Station in 2003, and by extracting the local binary pattern (LBP) features and using a k-nearest classifier, this paper performs an automatic classification of the 65 361 auroral images of the Chinese Arctic Yellow River Station during 2004-2009 and the 39 335 auroral images of the South Pole Station between 2003 and 2005. Finally, it obtains the occurrence distribution of the dayside auroral morphology in the Northern and Southern Hemisphere. The statistical results indicate that the four dayside discrete auroral types present a similar occurrence distribution between the two stations. To the best of our knowledge, we are the first to report statistical comparative results of dayside auroral morphology distribution between the Northern and Southern Hemisphere.

  2. Interactive Auroral Science for Hearing-Impaired Students

    Science.gov (United States)

    Samara, M.; Michell, R. G.; Jahn, J.; Pfeifer, M.; Ibarra, S.; Hampton, D. L.; Powell, D.

    2012-12-01

    Under a NASA E/PO grant, we have partnered with San Antonio's Sunshine Cottage School for Deaf Children to develop a science class experience where students directly interact with scientists and participate in a research-grade space science measurement campaign. The unique aspect of partnering with Sunshine Cottage lies in Sunshine's approach of auditory-verbal communication. Aided by technology (hearing aids, cochlear implants), a diverse student body with students of all levels of hearing loss (moderate through profound) is taught in an entirely auditory-verbal environment at Sunshine Cottage. Bringing these students into early contact with research work can lay the foundation for future careers in the STEM field that normally they might not consider as indicated by the first year of this collaboration where the student response was distinctly positive. Here we report on the first year of those activities, as they related to a ground based imaging approach to exploring the northern lights and from the point of view of the scientists that participated. The major components of that activity included a site visit to SwRI by the students and their teachers, a semester long lab at school utilizing current research tools and a real-time campaign night. The students used a number of diagnostics to first predict and then verify auroral activity. One of the tools used was the MOOSE observatory which is a community resource state of the art observatory comprised of 5 EMCCD imagers in Alaska, established through an NSF MRI grant. We will discuss the approach and lessons learned during the first year of the project and the directions that we will likely take in the second year. Lessons learned from teaching these students space science related topic can be flowed right back into mainstream classroom settings. One other significant and unexpected aspect of this first year was that we were able to connect two groups of students through skype (in the 4th to 5th grades) that

  3. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  4. Validation of Ground-based Optical Estimates of Auroral Electron Precipitation Energy Deposition

    Science.gov (United States)

    Hampton, D. L.; Grubbs, G. A., II; Conde, M.; Lynch, K. A.; Michell, R.; Zettergren, M. D.; Samara, M.; Ahrns, M. J.

    2017-12-01

    One of the major energy inputs into the high latitude ionosphere and mesosphere is auroral electron precipitation. Not only does the kinetic energy get deposited, the ensuing ionization in the E and F-region ionosphere modulates parallel and horizontal currents that can dissipate in the form of Joule heating. Global models to simulate these interactions typically use electron precipitation models that produce a poor representation of the spatial and temporal complexity of auroral activity as observed from the ground. This is largely due to these precipitation models being based on averages of multiple satellite overpasses separated by periods much longer than typical auroral feature durations. With the development of regional and continental observing networks (e.g. THEMIS ASI), the possibility of ground-based optical observations producing quantitative estimates of energy deposition with temporal and spatial scales comparable to those known to be exhibited in auroral activity become a real possibility. Like empirical precipitation models based on satellite overpasses such optics-based estimates are subject to assumptions and uncertainties, and therefore require validation. Three recent sounding rocket missions offer such an opportunity. The MICA (2012), GREECE (2014) and Isinglass (2017) missions involved detailed ground based observations of auroral arcs simultaneously with extensive on-board instrumentation. These have afforded an opportunity to examine the results of three optical methods of determining auroral electron energy flux, namely 1) ratio of auroral emissions, 2) green line temperature vs. emission altitude, and 3) parametric estimates using white-light images. We present comparisons from all three methods for all three missions and summarize the temporal and spatial scales and coverage over which each is valid.

  5. The ion experiment onboard the Interball-Aurora satellite; initial results on velocity-dispersed structures in the cleft and inside the auroral oval

    Directory of Open Access Journals (Sweden)

    J. A. Sauvaud

    1998-09-01

    Full Text Available The Toulouse ION experiment flown on the Russian Interball-Aurora mission performs simultaneous ion and electron measurements. Two mass spectrometers looking in opposing directions perpendicular to the satellite spin axis, which points toward the sun, measure ions in the mass and energy ranges 1–32 amu and ~0–14 000 eV. Two electron spectrometers also looking in opposing directions perform measurements in the energy range ~10 eV–20 000 eV. The Interball-Aurora spacecraft was launched on 29 August 1996 into a 62.8° inclination orbit with an apogee of ~3 RE. The satellite orbital period is 6 h, so that every four orbits the satellite sweeps about the same region of the auroral zone; the orbit plane drifts around the pole in ~9 months. We present a description of the ION experiment and discuss initial measurements performed in the cusp near noon, in the polar cleft at dusk, and inside the proton aurora at dawn. Ion-dispersed energy structures resulting from time-of-flight effects are observed both in the polar cleft at ~16 hours MLT and in the dawnside proton aurora close to 06 hours MLT. Magnetosheath plasma injections in the polar cleft, which appear as overlapping energy bands in particle energy-time spectrograms, are traced backwards in time using a particle trajectory model using 3D electric and magnetic field models. We found that the cleft ion source is located at distances of the order of 18 RE from the earth at about 19 MLT, i.e., on the flank of the magnetopause. These observations are in agreement with flux transfer events (FTE occurring not only on the front part of the magnetopause but also in a region extending at least to dusk. We also show that, during quiet magnetic conditions, time-of-flight ion dispersions can also be measured inside the dawn proton aurora. A method similar to that used for the cleft is applied to these auroral energy dispersion signatures. Unexpectedly, the ion source is found to be at distances of the

  6. The ion experiment onboard the Interball-Aurora satellite; initial results on velocity-dispersed structures in the cleft and inside the auroral oval

    Directory of Open Access Journals (Sweden)

    J. A. Sauvaud

    Full Text Available The Toulouse ION experiment flown on the Russian Interball-Aurora mission performs simultaneous ion and electron measurements. Two mass spectrometers looking in opposing directions perpendicular to the satellite spin axis, which points toward the sun, measure ions in the mass and energy ranges 1–32 amu and ~0–14 000 eV. Two electron spectrometers also looking in opposing directions perform measurements in the energy range ~10 eV–20 000 eV. The Interball-Aurora spacecraft was launched on 29 August 1996 into a 62.8° inclination orbit with an apogee of ~3 RE. The satellite orbital period is 6 h, so that every four orbits the satellite sweeps about the same region of the auroral zone; the orbit plane drifts around the pole in ~9 months. We present a description of the ION experiment and discuss initial measurements performed in the cusp near noon, in the polar cleft at dusk, and inside the proton aurora at dawn. Ion-dispersed energy structures resulting from time-of-flight effects are observed both in the polar cleft at ~16 hours MLT and in the dawnside proton aurora close to 06 hours MLT. Magnetosheath plasma injections in the polar cleft, which appear as overlapping energy bands in particle energy-time spectrograms, are traced backwards in time using a particle trajectory model using 3D electric and magnetic field models. We found that the cleft ion source is located at distances of the order of 18 RE from the earth at about 19 MLT, i.e., on the flank of the magnetopause. These observations are in agreement with flux transfer events (FTE occurring not only on the front part of the magnetopause but also in a region extending at least to dusk. We also show that, during quiet magnetic conditions, time-of-flight ion dispersions can also be measured inside the dawn proton aurora. A method similar to that used for the cleft is applied to these auroral energy dispersion signatures. Unexpectedly, the ion source is found to be

  7. Parameterization of ionization rate by auroral electron precipitation in Jupiter

    Directory of Open Access Journals (Sweden)

    Y. Hiraki

    2008-02-01

    Full Text Available We simulate auroral electron precipitation into the Jovian atmosphere in which electron multi-directional scattering and energy degradation processes are treated exactly with a Monte Carlo technique. We make a parameterization of the calculated ionization rate of the neutral gas by electron impact in a similar way as used for the Earth's aurora. Our method allows the altitude distribution of the ionization rate to be obtained as a function of an arbitrary initial energy spectrum in the range of 1–200 keV. It also includes incident angle dependence and an arbitrary density distribution of molecular hydrogen. We show that there is little dependence of the estimated ionospheric conductance on atomic species such as H and He. We compare our results with those of recent studies with different electron transport schemes by adapting our parameterization to their atmospheric conditions. We discuss the intrinsic problem of their simplified assumption. The ionospheric conductance, which is important for Jupiter's magnetosphere-ionosphere coupling system, is estimated to vary by a factor depending on the electron energy spectrum based on recent observation and modeling. We discuss this difference through the relation with field-aligned current and electron spectrum.

  8. Parameterization of ionization rate by auroral electron precipitation in Jupiter

    Directory of Open Access Journals (Sweden)

    Y. Hiraki

    2008-02-01

    Full Text Available We simulate auroral electron precipitation into the Jovian atmosphere in which electron multi-directional scattering and energy degradation processes are treated exactly with a Monte Carlo technique. We make a parameterization of the calculated ionization rate of the neutral gas by electron impact in a similar way as used for the Earth's aurora. Our method allows the altitude distribution of the ionization rate to be obtained as a function of an arbitrary initial energy spectrum in the range of 1–200 keV. It also includes incident angle dependence and an arbitrary density distribution of molecular hydrogen. We show that there is little dependence of the estimated ionospheric conductance on atomic species such as H and He. We compare our results with those of recent studies with different electron transport schemes by adapting our parameterization to their atmospheric conditions. We discuss the intrinsic problem of their simplified assumption. The ionospheric conductance, which is important for Jupiter's magnetosphere-ionosphere coupling system, is estimated to vary by a factor depending on the electron energy spectrum based on recent observation and modeling. We discuss this difference through the relation with field-aligned current and electron spectrum.

  9. The EXCEDE spectral artificial auroral experiment: An overview

    International Nuclear Information System (INIS)

    O'Neil, R.R.; Burt, D.A.; Pendleton, W.R.; Stair, A.T.

    1982-01-01

    This chapter investigates the detailed production and loss processes of various excited electronic and vibrational states that result in optical and infrared emissions as energetic primary electrons and their secondaries and all subsequent generation electrons are stopped in the atmosphere. The dosing conditions (primary electron energy, beam power, deposition volume, deposition altitude, and dose duration) in the examined artificial auroral experiment are well controlled and monitored. EXCEDE is a Defense Nuclear Agency and Air Force Geophysics Laboratory program designed to study atmospheric radiative processes resulting from the controlled deposition of energetic electrons from rocketborne electron accelerators. The EXCEDE SPECTRAL payload, launched in 1979, contained a 60 kilowatt (3 kV) electron accelerator, an array of ultraviolet, visible, and cryogenic infrared spectrometers, photometers, and photographic film and video cameras. The extensive set of spectra measured in this experiment will be analyzed to determine production mechanisms for each excited state, to determine electron-induced luminous efficiencies and to determine collisional deactivation rate coefficients in the 72 to 128 km altitude range

  10. New DMSP Database of Precipitating Auroral Electrons and Ions.

    Science.gov (United States)

    Redmon, Robert J; Denig, William F; Kilcommons, Liam M; Knipp, Delores J

    2017-08-01

    Since the mid 1970's, the Defense Meteorological Satellite Program (DMSP) spacecraft have operated instruments for monitoring the space environment from low earth orbit. As the program evolved, so to have the measurement capabilities such that modern DMSP spacecraft include a comprehensive suite of instruments providing estimates of precipitating electron and ion fluxes, cold/bulk plasma composition and moments, the geomagnetic field, and optical emissions in the far and extreme ultraviolet. We describe the creation of a new public database of precipitating electrons and ions from the Special Sensor J (SSJ) instrument, complete with original counts, calibrated differential fluxes adjusted for penetrating radiation, estimates of the total kinetic energy flux and characteristic energy, uncertainty estimates, and accurate ephemerides. These are provided in a common and self-describing format that covers 30+ years of DMSP spacecraft from F06 (launched in 1982) through F18 (launched in 2009). This new database is accessible at the National Centers for Environmental Information (NCEI) and the Coordinated Data Analysis Web (CDAWeb). We describe how the new database is being applied to high latitude studies of: the co-location of kinetic and electromagnetic energy inputs, ionospheric conductivity variability, field aligned currents and auroral boundary identification. We anticipate that this new database will support a broad range of space science endeavors from single observatory studies to coordinated system science investigations.

  11. H(+) - O(+) two-stream interaction on auroral field lines

    International Nuclear Information System (INIS)

    Bergmann, R.

    1990-01-01

    Upflowing beams of hydrogen, oxygen, and minor ion species, and downward accelerated electrons have been observed above several thousand kilometers altitude on evening auroral field lines. The mechanism for electron and ion acceleration is generally accepted to be the presence of a quasi-static electric field with a component parallel to the earth's magnetic field. The thermal energy of the observed beams is much larger than ionospheric ion temperatures indicating that the beams have been heated as they are accelerated upward. This heating is probably due to a two-stream interaction between beams of different mass ions. The beams gain equal energy in the potential drop and so have different average velocities. Their relative streaming initiates an ion-ion two-stream interaction which then mediates a transfer of energy and momentum between the beams and causes thermalization of each beam. The qualitative evidence that supports this scenario is reviewed. Properties of the two-stream instability are presented in order to demonstrate that a calculation of the evolution of ion beams requires a model that includes field-aligned spatial structure. 26 refs

  12. New DMSP database of precipitating auroral electrons and ions

    Science.gov (United States)

    Redmon, Robert J.; Denig, William F.; Kilcommons, Liam M.; Knipp, Delores J.

    2017-08-01

    Since the mid-1970s, the Defense Meteorological Satellite Program (DMSP) spacecraft have operated instruments for monitoring the space environment from low Earth orbit. As the program evolved, so have the measurement capabilities such that modern DMSP spacecraft include a comprehensive suite of instruments providing estimates of precipitating electron and ion fluxes, cold/bulk plasma composition and moments, the geomagnetic field, and optical emissions in the far and extreme ultraviolet. We describe the creation of a new public database of precipitating electrons and ions from the Special Sensor J (SSJ) instrument, complete with original counts, calibrated differential fluxes adjusted for penetrating radiation, estimates of the total kinetic energy flux and characteristic energy, uncertainty estimates, and accurate ephemerides. These are provided in a common and self-describing format that covers 30+ years of DMSP spacecraft from F06 (launched in 1982) to F18 (launched in 2009). This new database is accessible at the National Centers for Environmental Information and the Coordinated Data Analysis Web. We describe how the new database is being applied to high-latitude studies of the colocation of kinetic and electromagnetic energy inputs, ionospheric conductivity variability, field-aligned currents, and auroral boundary identification. We anticipate that this new database will support a broad range of space science endeavors from single observatory studies to coordinated system science investigations.

  13. Fluctuations of precipitated electron intensity in flickering auroral arcs

    International Nuclear Information System (INIS)

    Spiger, R.J.; Anderson, H.R.

    1985-01-01

    This paper reports on electron spectra associated with two aurorae observed by ground-based television. One auroral arc was observed to flicker, large variations in the precipitated electron energy occurring on a time scale of 114 ms. The major variations occur at the higher energies of the 0.5--20 keV range covered by the detectors. Changes in the particle flux occur primarily in the pitch angle range 0 0 to 60 0 . Analysis of the video data shows a larger variation in intensity along the lower border of the arc in keeping with the results of the electron spectra. The second arc was not observed to flicker, and the associated electron spectra and video data show no large variations in precipitated electron energy or video intensity modulation. While pitch angle distributions tend to be field-aligned in the first arc, the distributions in the second arc are nearly isotropic or peaked from 60 0 to 90 0 in the downward hemisphere

  14. Generation of Z mode radiation by diffuse auroral electron precipitation

    Science.gov (United States)

    Dusenbery, P. B.; Lyons, L. R.

    1985-01-01

    The generation of Z mode waves by diffuse auroral electron precipitation is investigated assuming that a loss cone exists in the upgoing portion of the distribution due to electron interactions with the atmosphere. The waves are generated at frequencies above, but very near, the local electron cyclotron frequency omega(e) and at wave normal angles larger than 90 deg. In agreement with Hewitt et al. (1983), the group velocity is directed downward in regions where the ratio of the upper hybrid frequency omega(pe) to Omega(e) is less than 0.5, so that Z mode waves excited above a satellite propagate toward it and away from the upper hybrid resonance. Z mode waves are excited in a frequency band between Omega(e) and about 1.02 Omega(e), and with maximum growth rates of about 0.001 Omega(e). The amplification length is about 100 km, which allows Z mode waves to grow to the intensities observed by high-altitude satellites.

  15. Polarization, political

    NARCIS (Netherlands)

    Wojcieszak, M.; Mazzoleni, G.; Barnhurst, K.G.; Ikeda, K.; Maia, R.C.M.; Wessler, H.

    2015-01-01

    Polarization has been studied in three different forms: on a social, group, and individual level. This entry first focuses on the undisputed phenomenon of elite polarization (i.e., increasing adherence of policy positions among the elites) and also outlines different approaches to assessing mass

  16. Reduction of U(VI) by the deep subsurface bacterium, Thermus scotoductus SA-01, and the involvement of the ABC transporter protein.

    Science.gov (United States)

    Cason, Errol Duncan; Piater, Lizelle Ann; van Heerden, Esta

    2012-02-01

    In this study we investigated the effect of uranium on the growth of the bacterium Thermus scotoductus strain SA-01 as well as the whole cell U(VI) reduction capabilities of the organism. Also, site-directed mutagenesis confirmed the identity of a protein capable of a possible alternative mechanism of U(VI) reduction. SA-01 can grow aerobically in up to 1.25 mM uranium and has the capability to reduce low levels of U(VI) in under 20 h. TEM analysis performed on cells exposed to uranium showed extracellular and membrane-bound accumulation of uranium. The reductase-like protein was surprisingly identified as a peptide ABC transporter, peptide-binding protein. This study showcases the concept of protein promiscuity, where this protein with a distinct function in situ can also have the unintended function of a reactant for the reduction of U(VI). Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Geomagnetic control of polar mesosphere summer echoes

    Directory of Open Access Journals (Sweden)

    J. Bremer

    2000-02-01

    Full Text Available Using observations with the ALOMAR SOUSY radar near Andenes (69.3°N, 16.0°E from 1994 until 1997 polar mesosphere summer echoes (PMSE have been investigated in dependence on geomagnetic K indices derived at the Auroral Observatory Tromsø (69.66°N, 18.94°E. During night-time and morning hours a significant correlation between the signal-to-noise ratio (SNR of the radar results and the geomagnetic K indices could be detected with a maximum correlation near midnight. The correlation becomes markedly smaller in the afternoon and early evening hours with a minimum near 17 UT. This diurnal variation is in reasonable agreement with riometer absorption at Ivalo (68.55°N, 27.28°E and can be explained by the diurnal variation of ionization due to precipitating high energetic particles. Therefore, a part of the diurnal PMSE variation is caused by this particle precipitation. The variability of the solar EUV variation, however, has no significant influence on the PMSE during the observation period.Keywords: Ionosphere (auroral ionosphere - Magnetospheric physics (energetic particles, precipitating - Radio science (remote sensing

  18. Geomagnetic control of polar mesosphere summer echoes

    Directory of Open Access Journals (Sweden)

    J. Bremer

    Full Text Available Using observations with the ALOMAR SOUSY radar near Andenes (69.3°N, 16.0°E from 1994 until 1997 polar mesosphere summer echoes (PMSE have been investigated in dependence on geomagnetic K indices derived at the Auroral Observatory Tromsø (69.66°N, 18.94°E. During night-time and morning hours a significant correlation between the signal-to-noise ratio (SNR of the radar results and the geomagnetic K indices could be detected with a maximum correlation near midnight. The correlation becomes markedly smaller in the afternoon and early evening hours with a minimum near 17 UT. This diurnal variation is in reasonable agreement with riometer absorption at Ivalo (68.55°N, 27.28°E and can be explained by the diurnal variation of ionization due to precipitating high energetic particles. Therefore, a part of the diurnal PMSE variation is caused by this particle precipitation. The variability of the solar EUV variation, however, has no significant influence on the PMSE during the observation period.

    Keywords: Ionosphere (auroral ionosphere - Magnetospheric physics (energetic particles, precipitating - Radio science (remote sensing

  19. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  20. Evidence of Polar Mesosphere Summer Echoes Observed by SuperDARN SANAE HF Radar in Antarctica

    OpenAIRE

    Olakunle Ogunjobi; Venkataraman Sivakumar; Judy Ann Elizabeth Stephenson; and William Tafon Sivla

    2015-01-01

    We report on the polar mesosphere summer echoes (PMSE) occurrence probability over SANAE (South African National Antarctic Expedition) IV, for the first time. A matching coincidence method is described and implemented for PMSE extraction from SuperDARN (Super Dual Auroral Radar Network) HF radar. Several SuperDARN-PMSE characteristics are studied during the summer period from years 2005 - 2007. The seasonal and interannual SuperDARN-PMSE variations in relation to the mesospheric neutral winds...

  1. Sorption of environmentally relevant radionuclides (U(VI), Np(V)) and lanthanides (Nd(III)) on feldspar and mica

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Constanze

    2015-11-05

    A safe storage of radioactive waste in repositories is an important task to protect humans and the environment from radio- and chemotoxicity. Long-term safety assessments predict the behavior of potential environmental contaminants like the actinides plutonium, uranium, or neptunium, in the near and far field of repositories. For such safety assessments, it is necessary to know the migration behavior of the contaminants in the environment, which is mainly dependent on the aquatic speciation, the solubility product of relevant solid phases, and the retardation due to sorption on surrounding minerals. Thus, an investigation of sorption processes of contaminants onto different minerals as well as the derivation of mineral specific surface complexation model (SCM) parameters is of great importance. Feldspar and mica are widely distributed in nature. They occur as components of granite, which is considered as a potential host rock for a repository in Germany, and in numerous other rocks, and thus also in the far field of nearly all repositories. However, their sorption behavior with actinides has only been scarcely investigated until now. In order to better characterize these systems and subsequently to integrate these minerals into the long-term safety assessments, this work focuses on the investigation of the sorption behavior of U(VI), Np(V), and Nd(III) as analogue for An(III) onto the minerals orthoclase and muscovite, representing feldspars and mica, respectively. All investigations were performed under conditions relevant to the far field of a repository. In addition to the extensive characterization of the minerals, batch sorption experiments, spectroscopic investigations, and surface complexation modeling were performed to elucidate the uptake and speciation of actinides on the mineral surfaces. In addition, the influence of microorganisms naturally occurring on the mineral surfaces and the effect of Ca{sup 2+} on U(VI) uptake on the minerals was studied. The

  2. Sorption of environmentally relevant radionuclides (U(VI), Np(V)) and lanthanides (Nd(III)) on feldspar and mica

    International Nuclear Information System (INIS)

    Richter, Constanze

    2015-01-01

    A safe storage of radioactive waste in repositories is an important task to protect humans and the environment from radio- and chemotoxicity. Long-term safety assessments predict the behavior of potential environmental contaminants like the actinides plutonium, uranium, or neptunium, in the near and far field of repositories. For such safety assessments, it is necessary to know the migration behavior of the contaminants in the environment, which is mainly dependent on the aquatic speciation, the solubility product of relevant solid phases, and the retardation due to sorption on surrounding minerals. Thus, an investigation of sorption processes of contaminants onto different minerals as well as the derivation of mineral specific surface complexation model (SCM) parameters is of great importance. Feldspar and mica are widely distributed in nature. They occur as components of granite, which is considered as a potential host rock for a repository in Germany, and in numerous other rocks, and thus also in the far field of nearly all repositories. However, their sorption behavior with actinides has only been scarcely investigated until now. In order to better characterize these systems and subsequently to integrate these minerals into the long-term safety assessments, this work focuses on the investigation of the sorption behavior of U(VI), Np(V), and Nd(III) as analogue for An(III) onto the minerals orthoclase and muscovite, representing feldspars and mica, respectively. All investigations were performed under conditions relevant to the far field of a repository. In addition to the extensive characterization of the minerals, batch sorption experiments, spectroscopic investigations, and surface complexation modeling were performed to elucidate the uptake and speciation of actinides on the mineral surfaces. In addition, the influence of microorganisms naturally occurring on the mineral surfaces and the effect of Ca 2+ on U(VI) uptake on the minerals was studied. The

  3. Polar Bears

    Science.gov (United States)

    Amstrup, Steven C.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Polar bears (Ursus maritimus) are hunted throughout most of their range. In addition to hunting polar bears of the Beaufort Sea region are exposed to mineral and petroleum extraction and related human activities such as shipping road-building, and seismic testing (Stirling 1990).Little was known at the start of this project about how polar bears move about in their environment, and although it was understood that many bears travel across political borders, the boundaries of populations had not been delineated (Amstrup 1986, Amstrup et al. 1986, Amstrup and DeMaster 1988, Garner et al. 1994, Amstrup 1995, Amstrup et al. 1995, Amstrup 2000).As human populations increase and demands for polar bears and other arctic resources escalate, managers must know the sizes and distributions of the polar bear populations. Resource managers also need reliable estimates of breeding rates, reproductive intervals, litter sizes, and survival of young and adults.Our objectives for this research were 1) to determine the seasonal and annual movements of polar bears in the Beaufort Sea, 2) to define the boundaries of the population(s) using this region, 3) to determine the size and status of the Beaufort Sea polar bear population, and 4) to establish reproduction and survival rates (Amstrup 2000).

  4. Records of auroral candidates and sunspots in Rikkokushi, chronicles of ancient Japan from early 7th century to 887

    Science.gov (United States)

    Hayakawa, Hisashi; Iwahashi, Kiyomi; Tamazawa, Harufumi; Ebihara, Yusuke; Kawamura, Akito Davis; Isobe, Hiroaki; Namiki, Katsuko; Shibata, Kazunari

    2017-12-01

    We present the results of the surveys on sunspots and auroral candidates in Rikkokushi, Japanese official histories from the early 7th century to 887, to review the solar and auroral activities. In total, we found one sunspot record and 13 auroral candidates in Rikkokushi. We then examine the records of the sunspots and auroral candidates, compare the auroral candidates with the lunar phase to estimate their reliability, and compare the records of the sunspots and auroral candidates with the contemporary total solar irradiance reconstructed from radioisotope data. We also identify the locations of the observational sites to review possible equatorward expansion of the auroral oval. These discussions suggest a major gap in auroral candidates from the late 7th to early 9th centuries, which includes the candidate of the grand minimum reconstructed from the radioisotope data, a similar tendency as the distributions of sunspot records in contemporary China, and a relatively high magnetic latitude of observational sites with a higher potential for observing aurorae more frequently than at present.

  5. The mechanism of uranium transformation from U(VI) into nano-uramphite by two indigenous Bacillus thuringiensis strains

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Xiaohong; Chen, Zhi [Key Lab of Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education & Fujian–Taiwan Joint Center for Ecological Control of Crop Pests, Fuzhou, Fujian 350002 (China); Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Chen, Fanbing [Key Lab of Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education & Fujian–Taiwan Joint Center for Ecological Control of Crop Pests, Fuzhou, Fujian 350002 (China); Cheng, Yangjian [Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Lin, Zhang, E-mail: zlin@fjirsm.ac.cn [Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Guan, Xiong, E-mail: guanxfafu@126.com [Key Lab of Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education & Fujian–Taiwan Joint Center for Ecological Control of Crop Pests, Fuzhou, Fujian 350002 (China)

    2015-10-30

    Highlights: • Indigenous B. thuringiensis exhibited highly accumulation ability to U(VI) in the absence of additional nutrients. • The amorphous uranium compound would transformed into crystalline nano-uramphite by B. thuringiensis. • The chemical nature of formed U-species were monitored. • The cell-free extracts of B. thuringiensis had better uranium-immobilization ability than its cell debris. • Provided the understanding of the uranium transformation mechanism. - Abstract: The mechanism of uranium transformation from U(VI) into nano-uramphite by two indigenous Bacillus thuringiensis strains was investigated in the present work. Our data showed that the bacteria isolated from uranium mine possessed highly accumulation ability to U(VI), and the maximum accumulation capacity was around 400 mg U/g biomass (dry weight). X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR) analyzes indicated that the U(VI) was adsorbed on the bacterial surface firstly through coordinating with phosphate, −CH{sub 2} and amide groups, and then needle-like amorphous uranium compounds were formed. With the extension of time, the extracellular crystalline substances were disappeared, but some particles were appeared in the intracellular region, and these particles were characterized as tetragonal-uramphite. Moreover, the disrupted experiment indicated that the cell-free extracts had better uranium-immobilization ability than cell debris. Our findings provided the understanding of the uranium transformation process from amorphous uranium to crystalline uramphite, which would be useful in the regulation of uranium immobilization process.

  6. U(VI) complexation with selected flavonoids investigated by absorption and emission spectroscopy at light acidic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Alix; Geipel, Gerhard [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry

    2017-06-01

    Flavonoids are secondary plant compounds and have important properties. Beside their antioxidant activity and effects as enzyme inhibitors, they can bind metals ions. The possible release of flavonoids from the root into the soil can affect the migration of radionuclides in the biological and geological environment. In this work, the complexation behavior of selected flavonols and a flavonol glycoside towards U(VI) were spectroscopically investigated and the corresponding complex stability constants were determined.

  7. Enhanced U(VI) release from autunite mineral by aerobic Arthrobacter sp. in the presence of aqueous bicarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Katsenovich, Yelena P.; Carvajal, Denny A.; Wellman, Dawn M.; Lagos, Leonel E.

    2012-05-01

    The bacterial effect on U(VI) release from the autunite mineral (Ca[(UO2)(PO4)]2•3H2O) was investigated to provide a more comprehensive understanding of the important microbiological processes affecting autunite stability within subsurface bicarbonate-bearing environments. Experiments were performed in a culture of the Arthrobacter oxydans G975 strain, herein referred to as G975, a soil bacterium previously isolated from Hanford Site soil. 91 mg of autunite powder and 50 mL of phosphorous-limiting sterile media were amended with bicarbonate (ranging between 1 and 10 mM) in glass reactor bottles and inoculated with the G975 strain after the dissolution of autunite was at steady state. SEM observations indicated that G975 formed a biofilm on the autunite surface and penetrated the mineral cleavages. The mineral surface colonization by bacteria tended to increase concomitantly with bicarbonate concentrations. Additionally, a sterile culture-ware with inserts was used in non-contact dissolution experiments where autunite and bacteria cells were kept separately. The data suggest that G975 bacteria is able to enhance the release of U(VI) from autunite without direct contact with the mineral. In the presence of bicarbonate, the damage to bacterial cells caused by U(VI) toxicity was reduced, yielding similar values for total organic carbon (TOC) degradation and cell density compared to U(VI)-free controls. The presence of active bacterial cells greatly enhanced the release of U(VI) from autunite in bicarbonate-amended media.

  8. Enhanced U(VI) release from autunite mineral by aerobic Arthrobacter sp. in the presence of aqueous bicarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Katsenovich, Yelena; Carvajal, Denny A.; Wellman, Dawn M.; Lagos, Leonel

    2012-04-20

    The bacterial effect on U(VI) leaching from the autunite mineral (Ca[(UO{sub 2})(PO{sub 4})]{sub 2} {center_dot} 3H{sub 2}O) was investigated to provide a more comprehensive understanding into important microbiological processes affecting autunite stability within subsurface bicarbonate-bearing environments. Experiments were performed in a culture of G975 Arthrobacter oxydans strain, herein referred to as G975, a soil bacterium previously isolated from Hanford Site soil. 91 mg of autunite powder and 50 mL of phosphorus-limiting sterile media were amended with bicarbonate ranging between 1-10 mM in glass reactor bottles and inoculated with G975 strain after the dissolution of autunite was at steady state. SEM observations indicated G975 formed a biofilm on the autunite surface and penetrated the mineral cleavages. The mineral surface colonization by bacteria tended to increase concomitantly with bicarbonate concentrations. Additionally, a sterile cultureware with inserts was used in non-contact bioleaching experiments where autunite and bacteria cells were kept separately. The data suggest the G975 bacteria is able to enhance U(VI) leaching from autunite without the direct contact with the mineral. In the presence of bicarbonate, the damage to bacterial cells caused by U(VI) toxicity was reduced, yielding similar values for total organic carbon (TOC) degradation and cell density compared to U(VI)-free controls. The presence of active bacterial cells greatly enhanced the U(VI) bioleaching from autunite in bicarbonate-amended media.

  9. The mechanism of uranium transformation from U(VI) into nano-uramphite by two indigenous Bacillus thuringiensis strains

    International Nuclear Information System (INIS)

    Pan, Xiaohong; Chen, Zhi; Chen, Fanbing; Cheng, Yangjian; Lin, Zhang; Guan, Xiong

    2015-01-01

    Highlights: • Indigenous B. thuringiensis exhibited highly accumulation ability to U(VI) in the absence of additional nutrients. • The amorphous uranium compound would transformed into crystalline nano-uramphite by B. thuringiensis. • The chemical nature of formed U-species were monitored. • The cell-free extracts of B. thuringiensis had better uranium-immobilization ability than its cell debris. • Provided the understanding of the uranium transformation mechanism. - Abstract: The mechanism of uranium transformation from U(VI) into nano-uramphite by two indigenous Bacillus thuringiensis strains was investigated in the present work. Our data showed that the bacteria isolated from uranium mine possessed highly accumulation ability to U(VI), and the maximum accumulation capacity was around 400 mg U/g biomass (dry weight). X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR) analyzes indicated that the U(VI) was adsorbed on the bacterial surface firstly through coordinating with phosphate, −CH 2 and amide groups, and then needle-like amorphous uranium compounds were formed. With the extension of time, the extracellular crystalline substances were disappeared, but some particles were appeared in the intracellular region, and these particles were characterized as tetragonal-uramphite. Moreover, the disrupted experiment indicated that the cell-free extracts had better uranium-immobilization ability than cell debris. Our findings provided the understanding of the uranium transformation process from amorphous uranium to crystalline uramphite, which would be useful in the regulation of uranium immobilization process

  10. [Evaluation of the perinatal network professionals' integration: study about 653 professionals of AURORE network].

    Science.gov (United States)

    Dupont, C; Touzet, S; Ploin, D; Croidieu, C; Balsan, M; Mazas, A-S; Rudigoz, R-C

    2007-06-01

    Evaluation of the AURORE perinatal network professionals' satisfaction and integration and identification of explanatory factors, three years after implementation. Transversal study with postal questionnaire sent at 653 AURORE network perinatal professionals. Awareness and participation to network meetings were not associated with the geographic proximity of administrative headquarters (p=0.2) but with consciousness of network website and of network experts identified for each maternity (p<0.001). Patients management was estimated more easy for 92% of professionals. Network impact was evaluated as positive in professional practice (88.2%). Professionals integration were demonstrated by knowledge of network guidelines (94.8%) and their use (96%). AURORE perinatal network professionals, three years after implementation, were involved in network maternity. Their participation and interest for this organisation were associated with directs benefits they could get in facilitating their relationship with patients and other health professionals in each day practice.

  11. Sizes of the Smallest Particles at Saturn Ring Edges from Diffraction in UVIS Stellar Occultations

    Science.gov (United States)

    Eckert, S.; Colwell, J. E.; Becker, T. M.; Esposito, L. W.

    2017-12-01

    Cassini's Ultraviolet Imaging Spectrograph (UVIS) has observed more than 150 ring stellar occultations since its arrival at Saturn in 2004. We use stellar occultation data from the UVIS High Speed Photometer (HSP) to identify diffraction signals at ring edges caused by small particles diffracting light into the detector and consequently increasing the signal above that of the unocculted star. The shape of a diffraction signal is indicative of the particle size distribution at the ring edge, which may be a dynamically perturbed region. Becker et al. (2015 Icarus doi:10.1016/j.icarus.2015.11.001) analyzed diffraction signals at the outer edge of the A Ring and the edges of the Encke Gap. We apply the Becker et al. (2015) model to the outer edge of the B Ring as well as the edges of ringlets within the C Ring and Cassini Division. In addition, we analyze diffraction signatures at the A Ring outer edge in 2 new occultations. The best-fit model signals to these occultations are consistent with the findings of Becker et al. (2015) who found an average minimum particle size amin =4.5 mm and average power law slope q=3.2. At the B Ring outer edge, we detect a diffraction signal in 10 of 28 occultations in which the diffraction signal would be observable according to our criteria for star brightness and observation geometry. We find a mean amin =11 mm and a mean q=3.0. At both edges of the so-called "Strange" ringlet (R6) we find a mean amin = 20 mm and mean q values of 3.0 and 2.8 at the inner and outer edges, respectively. In contrast, we do not observe any clear diffraction signals at either edge of the wider Huygens ringlet. This could imply an absence of cm-scale or smaller particles and indicates that collisions here may be less vigorous than at the other ring edges analyzed in this study. We detect diffraction in a small fraction ( 10%) of occultations at 3 ringlets within the Cassini Division: the Herschel ringlet, the Laplace ringlet, and the Barnard ringlet. We

  12. Particle sizes in Saturn's rings from UVIS stellar occultations 1. Variations with ring region

    Science.gov (United States)

    Colwell, J. E.; Esposito, L. W.; Cooney, J. H.

    2018-01-01

    The Cassini spacecraft's Ultraviolet Imaging Spectrograph (UVIS) includes a high speed photometer (HSP) that has observed stellar occultations by Saturn's rings with a radial resolution of ∼10 m. In the absence of intervening ring material, the time series of measurements by the HSP is described by Poisson statistics in which the variance equals the mean. The finite sizes of the ring particles occulting the star lead to a variance that is larger than the mean due to correlations in the blocking of photons due to finite particle size and due to random variations in the number of individual particles in each measurement area. This effect was first exploited by Showalter and Nicholson (1990) with the stellar occultation observed by Voyager 2. At a given optical depth, a larger excess variance corresponds to larger particles or clumps that results in greater variation of the signal from measurement to measurement. Here we present analysis of the excess variance in occultations observed by Cassini UVIS. We observe differences in the best-fitting particle size in different ring regions. The C ring plateaus show a distinctly smaller effective particle size, R, than the background C ring, while the background C ring itself shows a positive correlation between R and optical depth. The innermost 700 km of the B ring has a distribution of excess variance with optical depth that is consistent with the C ring ramp and C ring but not with the remainder of the B1 region. The Cassini Division, while similar to the C ring in spectral and structural properties, has different trends in effective particle size with optical depth. There are discrete jumps in R on either side of the Cassini Division ramp, while the C ring ramp shows a smooth transition in R from the C ring to the B ring. The A ring is dominated by self-gravity wakes whose shadow size depends on the occultation geometry. The spectral ;halo; regions around the strongest density waves in the A ring correspond to

  13. Why does substorm-associated auroral surge travel westward?

    Science.gov (United States)

    Ebihara, Y.; Tanaka, T.

    2018-01-01

    A substorm is a long-standing unsolved issue in solar-terrestrial physics. One of the big challenges is to explain reasonably the evolution of the morphological structure of the aurora associated with the substorm. The sudden appearance of a bright aurora and an auroral surge traveling westward (westward traveling surge, WTS) are noticeable features of the aurora during the substorm expansion phase. By using a global magnetohydrodynamics (MHD) simulation, we obtained the following results regarding the WTS. When the interplanetary magnetic field turns southward, a persistent dynamo appears in the cusp/mantle region, driving the two-cell magnetospheric convection. Then, the substorm growth phase begins. When magnetic reconnection takes place in the magnetotail, plasma is accelerated earthward in the plasma sheet, and accelerated toward the equatorial plane in the lobe. The second dynamo appears in the near-Earth region, which is closely associated with the generation of the field-aligned current (FAC) on the nightside. When the FAC reaches the ionosphere, the aurora becomes bright, and the onset of the expansion phase begins. In the ionosphere, the conductivity is intensified in the bright aurora due to the precipitation of accelerated electrons. The conductivity gradient gives rise to the overflow of the Hall current, which acts as the third dynamo. The overflow results in the accumulation of space charge, which causes a divergent electric field. The divergent electric field generates a thin, structured upward FAC adjacent to the bright aurora. The opposite process takes place on the opposite side of the bright aurora. In short, the upward FAC increases (appearance of aurora) at the leading edge of the surge, and decreases (disappearance of aurora) at the trailing edge of the surge. By repeating these processes, the surge seems to travel westward.

  14. Analogue model studies of induction effects at auroral latitudes

    Directory of Open Access Journals (Sweden)

    A. Viljanen

    1995-11-01

    Full Text Available In addition to field observations and numerical models, geomagnetic induction effects can be studied by scaled analogue model experiments. We present here results of analogue model studies of the auroral electrojet with an Earth model simulating the Arctic Ocean and inland conductivity structures in northern Fennoscandia. The main elements of the analogue model used were salt water simulating the host rock, an aluminium plate corresponding to the ocean and graphite pieces producing the inland highly conducting anomalies. The electrojet was a time-harmonic line current flowing at a (simulated height of 100 km above northern Fennoscandia. The period simulated was 9 min. The analogue model results confirmed the well-known rapid increase of the vertical field when the coast is approached from the continent. The increase of the horizontal field due to induced ocean currents was demonstrated above the ocean, as well as the essentially negligible effect of these currents on the horizontal field on the continent. The behaviour of the magnetic field is explained with a simple two-dimensional thin-sheet model. The range, or the adjustment distance, of the ocean effect inland was found to be some hundreds of kilometers, which also agrees with earlier results of the Siebert-Kertz separation of IMAGE magnetometer data. The modelled inland anomalies evidently had too large conductivities, but on the other hand, their influence decayed on scales of only some tens of kilometers. Analogue model results, thin-sheet calculations, and field observations show that the induction effect on the horizontal magnetic field Bx near the electrojet is negligible. On the other hand, the vertical component Bz is clearly affected by induced currents in the ocean. Evidence of this is the shift of the zero point of Bz 0-1° southwards from the maximum of Bx. The importance of these results are discussed, emphasizing the determination of ionospheric currents.

  15. Current-voltage relationship in the auroral particle acceleration region

    Directory of Open Access Journals (Sweden)

    M. Morooka

    2004-11-01

    Full Text Available The current-voltage relationship in the auroral particle acceleration region has been studied statistically by the Akebono (EXOS-D satellite in terms of the charge carriers of the upward field-aligned current. The Akebono satellite often observed field-aligned currents which were significantly larger than the model value predicted by Knight (1973. We compared the upward field-aligned current estimated by three different methods, and found that low-energy electrons often play an important role as additional current carriers, together with the high-energy primary electrons which are expected from Knight's relation. Such additional currents have been observed especially at high and middle altitudes of the particle acceleration region. Some particular features of electron distribution functions, such as "cylindrical distribution functions" and "electron conics", have often been observed coinciding with the additional currents. They indicated time variability of the particle acceleration region. Therefore, we have concluded that the low-energy electrons within the "forbidden" region of electron phase space in the stationary model often contribute to charge carriers of the current because of the rapid time variability of the particle acceleration region. "Cylindrical distribution functions" are expected to be found below the time-varying potential difference. We statistically examined the locations of "cylindrical distribution function", and found that their altitudes are related to the location where the additional currents have been observed. This result is consistent with the idea that the low-energy electrons can also carry significant current when the acceleration region changes in time.

  16. Nonlinear interactions of electromagnetic waves with the auroral ionosphere

    Science.gov (United States)

    Wong, Alfred Y.

    1999-09-01

    The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO2 through the use of ion cyclotron resonant heating.

  17. Simultaneous measurements of auroral particles and electric currents by a rocket-borne instrument system - Introductory remarks

    Science.gov (United States)

    Anderson, H. R.; Cloutier, P. A.

    1975-01-01

    A rocket-borne experiment package has been designed to obtain simultaneous in situ measurements of the pitch angle distributions and energy spectra of primary auroral particles, the flux of neutral hydrogen at auroral energies, the electric currents flowing in the vicinity of the auroral arc as determined from vector magnetic data, and the modulation of precipitating electrons in the frequency range 0.5-10 MHz. The experiment package was launched by a Nike-Tomahawk rocket from Poker Flat, Alaska, at 0722 UT on Feb. 25, 1972, over a bright auroral band. This paper is intended to serve as an introduction to the detailed discussion of results given in the companion papers. As such it includes a brief review of the general problem, a discussion of the rocket instrumentation, a delineation of the auroral and geomagnetic conditions at the time of launch, and comments on the overall payload performance.

  18. Adsorption of U(VI) ions from aqueous solutions by activated carbon prepared from Antep pistachio (Pistacia vera L.) shells

    Energy Technology Data Exchange (ETDEWEB)

    Donat, Ramazan [Pamukkale Univ., Denizli (Turkey). Dept. of Chemistry; Erden, Kadriye Esen [Pamukkale Univ., Kinikli-Denizli (Turkey). Denizli Vocational School of Technical Sciences

    2017-08-01

    Antep pistachio (Pistacia vera L.) shells an abundant and low cost natural resource in Turkey was used to prepare activated carbon by physiochemical activation and carbon dioxide (CO{sub 2}) atmosphere as the activating agents at 700 C for 2 h. The adsorption equilibrium of U(VI) from aqueous solutions on such carbon has been studied using a batch system. The parameters that affect the U(VI) adsorption, such as particle size of adsorbent, contact time, of pH of the solution, and temperature, have been investigated and conditions have also been optimized. The equilibrium data for U(VI) ions' adsorption onto activated carbon well fitted to the Langmuir equation, with a maximum monolayer adsorption capacity of 8.68 mg/g, The Freundlich and Dubinin-Radushkevich (D-R) isotherms have been applied and the data correlated well with Freundlich model and that the adsorption is physical in nature (E{sub a}=15.46 kJ/mol). Thermodynamic parameters [ΔH{sub s}=11.33 kJ/mol, ΔS=0.084 kJ/molK, ΔG (293.15 K)=-13.29 kJ/mol] showed the endothermic heat of adsorption and the feasibility of the process.

  19. Temperature effect on the retention of U(VI) by SrTiO{sub 3}; Effet de la temperature sur la retention de U(VI) par SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Rosales, G

    2007-11-15

    The purpose of this research was the study of the interaction mechanisms between U(VI) ions and SrTiO{sub 3} surfaces versus pH and temperature: 25, 50, 75 and 90 C. Firstly, a physicochemical characterization was realized (DRX, MEB, FTIR) and the surface site density was determined. The potentiometric titration data were simulated, for each temperature, using the constant capacitance model and taking into account bath protonation of the {identical_to}Sr-OH surface sites and deprotonation of the {identical_to}Ti-OH ones (one pK{sub a} model). Both enthalpy and entropy changes, corresponding to the surface acid-base reactions, were evaluated using the van't Hoff relation. U(VI) was sorbed onto SrTiO{sub 3} powder in the pH range 0.5-5.0 with an U(VI) initial concentration 1.10{sup -4} M. By TRLIFS two U(VI) complexes were detected associated with two lifetime values (60 {+-} 5 and 12 {+-} 2 {mu}s at 25 C). The sorption edges were simulated using FITEQL 4.0 software. The surface complexation constants of the system SrTiO{sub 3}/U(VI) between 25 and 90 C temperature range were thus obtained with the constant capacitance model considering two reactive surface sites. It reveals that two types of surface complex, namely [({identical_to}SrOH)({identical_to}TiOH)UO{sub 2}]{sup 2+} and [({identical_to}TiOH)({identical_to}TiO)UO{sup 2+}]{sup 2+}, are needed to properly describe the experimental observations. By application of the van't Hoff equation, Delta{sub R}S{sup 0} and Delta{sub R}H{sup 0} were obtained, which indicated an endothermic sorption process. Finally, an energy transfer study was realised by TRLIFS. The energy transfer between Tb{sup 3+} and Eu{sup 3+} ions sorbed onto SrTiO{sub 3} powders were investigated. The results showed that the energy transfer between Tb{sup 3+} and Eu{sup 3+} is a non-radiative process and follows a dipole-dipole type interaction. A formalism based on the Dexter and the Inokuti-Hirayama theories was used to calculate the

  20. The optical manifestation of dispersive field-aligned bursts in auroral breakup arcs

    Science.gov (United States)

    Dahlgren, H.; Semeter, J. L.; Marshall, R. A.; Zettergren, M.

    2013-07-01

    High-resolution optical observations of a substorm expansion show dynamic auroral rays with surges of luminosity traveling up the magnetic field lines. Observed in ground-based imagers, this phenomenon has been termed auroral flames, whereas the rocket signatures of the corresponding energy dispersions are more commonly known as field-aligned bursts. In this paper, observations of auroral flames obtained at 50 frames/s with a scientific-grade Complementary Metal Oxide Semiconductor (CMOS) sensor (30° × 30° field of view, 30 m resolution at 120 km) are used to provide insight into the nature of the precipitating electrons similar to high-resolution particle detectors. Thanks to the large field of view and high spatial resolution of this system, it is possible to obtain a first-order estimate of the temporal evolution in altitude of the volume emission rate from a single sensor. The measured volume emission rates are compared with the sum of modeled eigenprofiles obtained for a finite set of electron beams with varying energy provided by the TRANSCAR auroral flux tube model. The energy dispersion signatures within each auroral ray can be analyzed in detail during a fraction of a second. The evolution of energy and flux of the precipitation shows precipitation spanning over a large range of energies, with the characteristic energy dropping from 2.1 keV to 0.87 keV over 0.2 s. Oscillations at 2.4 Hz in the magnetic zenith correspond to the period of the auroral flames, and the acceleration is believed to be due to Alfvenic wave interaction with electrons above the ionosphere.

  1. Comparison and significance of auroral studies during the Swedish and Russian bilateral expedition to Spitsbergen in 1899–1900

    Directory of Open Access Journals (Sweden)

    S. Chernouss

    2008-05-01

    Full Text Available Results of measurements and visual observations of aurora at Spitsbergen, carried out by the joint Swedish-Russian expedition during 1899–1900, are described. Auroral observations took place during the great bilateral Arc-of-Meridian expedition, which was patronized by the Swedish Royal Family and the Russian Imperial Family. The Russian-Swedish Arc-of-Meridian measurements were closely coordinated but auroral measurements from the two sites in the Spitsbergen Archipelago were almost independent of each other. The basic auroral data for our presentation are reports of the Russian astronomer Josef Sykora and the Swedish geophysicist Jonas Westman. Both scientists used similar types of photo cameras and spectrographs, which were the best at that time and were made in Potsdam by Toepfer. Detailed descriptions of the optical devices and the system of spectral calibration are presented. A Toepfer spectrograph, possibly the one used by Westman, is still kept at IRF in Kiruna. We present a comparative analysis of auroral data from the Russian and Swedish stations on three themes: visual observations of aurora, describing features of auroral forms and giving us statistical data on aurora occurrence and the heights of aurora, photos of aurora, and auroral spectra. It is shown that the observations contain enough data to construct an auroral oval and to determine the heights of aurora. The expedition obtained the first photographic observations of the aurora in the Arctic. The auroral spectra demonstrate a high spectral resolution and show not only the main auroral emissions in the blue-green spectral range but also some weak emissions in the violet and ultraviolet region. All data are interpreted from a modern point of view. The Russian-Swedish 1899–1900 expedition carried out the first complex auroral investigations in the Arctic using optical instruments and presented well documented data and new results.

  2. Spontaneous generation of auroral arcs in a three dimensionally coupled magnetosphere-ionosphere system

    International Nuclear Information System (INIS)

    Watanabe, Kunihiko; Sato, Tetsuya.

    1988-01-01

    This paper presents the first full three-dimensional dynamic simulation of auroral arc formation. The magnetospheric and ionospheric dynamics are represented by one-fluid magnetohydrodynamic equations and two-fluid weakly ionized plasma equations, respectively. The feedback coupling between magnetospheric Alfven waves and ionospheric density waves are self-consistently and three-dimensionally solved. Obtained is a spontaneous generation of longitudinally elongated striations of field-aligned currents and ionospheric electron densities, which compare very well with many features of quiet auroral arcs. (author)

  3. Midday auroral breakup events and related energy and momentum transfer from the magnetosheath

    International Nuclear Information System (INIS)

    Sandholt, P.E.; Lybekk, B.; Egeland, A.; Oguti, T.; Cowley, S.W.

    1989-04-01

    Combined observation by meridan scanning photometers, all-sky auroral TV camera and the EISCAT radar, permitted a detailed analysis of the temporal and spatial development of the midday auroral breakup phenomenon and the related ionospheric ion flow pattern within the 71 o to 75 o invariant latitude radar field of view. The observations reported are considered to be strong evidence of transient reconnection at the dayside magnetopause. Furthermore, the observed relationship between the optical signature and the ion drift observations is found to be consistent with a twin-vortex flow/current pattern in the ionosphere. The geomagnetic signatures are also in accord with this interpretation

  4. Auroral spectrograph data annals of the international geophysical year, v.25

    CERN Document Server

    Carrigan, Anne; Norman, S J

    1964-01-01

    Annals of the International Geophysical Year, Volume 25: Auroral Spectrograph Data is a five-chapter text that contains tabulations of auroral spectrograph data. The patrol spectrograph built by the Perkin-Elmer Corporation for the Aurora and Airglow Program of the IGY is a high-speed, low-dispersion, automatic instrument designed to photograph spectra of aurora occurring along a given magnetic meridian of the sky. Data from each spectral frame were recorded on an IBM punched card. The data recorded on the cards are printed onto the tabulations in this volume. These tabulations are available

  5. Travelling ionospheric disturbance properties deduced from Super Dual Auroral Radar measurements

    Directory of Open Access Journals (Sweden)

    J. W. MacDougall

    2000-12-01

    Full Text Available Based on modeling of the perturbations in power and elevation angle produced by travelling ionospheric disturbances (TIDs, and observed by the Super Dual Auroral Radar Network, procedures for determining the TID properties are suggested. These procedures are shown to produce reasonable agreement with those properties of the TIDs that can be measured from simultaneous ionosonde measurements. The modeling shows that measurements of angle-of-elevation perturbations by SuperDARN allows for better determination of the TID properties than using only the perturbations of power as is commonly done.Key words: Ionosphere (auroral ionosphere; ionosphere-atmosphere interactions

  6. The biogeochemical behaviour of U(VI) in the simulated near-field of a low-level radioactive waste repository

    International Nuclear Information System (INIS)

    Fox, James R.; Mortimer, Robert J.G.; Lear, Gavin; Lloyd, Jonathan R.; Beadle, Ian; Morris, Katherine

    2006-01-01

    Microbial processes have the potential to affect the mobility of radionuclides, including U in radioactive wastes. A range of geochemical, molecular biological and mineralogical techniques were applied to investigate stable element biogeochemistry and U solubility in the simulated 'near-field' (or local environment) of a low-level radioactive waste (LLW) repository. The experiments used a microbial inoculum from the trench disposal area of the UK LLW repository at Drigg, Cumbria, England, in combination with a synthetic trench leachate representing the local environment at the Drigg site. In batch culture experiments in the absence of U, a classic redox progression of terminal electron accepting processes (TEAPs) occurred in the order NO 3 - , Fe(III) and SO 4 2- reduction. When 126μM U was added to the system as U(VI) aq , up to 80% was reduced to U(IV) by the indigenous microbial consortium. The U(IV) was retained in solution in these experiments, most likely by complexation with citrate present in the experimental medium. No U(VI) aq was reduced in sterile cultures, confirming that U(VI) aq reduction was microbially mediated. Interestingly, when U(VI) aq was present, the progression of TEAPs was altered. The rate of Fe(III) reduction slowed compared to experiments without U(VI) aq , and SO 4 reduction occurred at the same time as U(VI) reduction. Finally, an experiment where SO 4 2- -reducing microorgansisms were inhibited by Na molybdate showed no ingrowth of sulfide minerals, but U(VI) reduction continued in this experiment. This suggested that sulfide minerals did not play a significant role in abiotically reducing U(VI) in these systems, and that metal-reducing microorganisms were dominant in mediating U(VI) reduction. Bacteria closely related to microorganisms found in engineered and U-contaminated environments dominated in the experiments. Denaturing gradient gel electrophoresis (DGGE) on 16SrRNA products amplified from broad specificity primers showed

  7. The potential impact of microbial Fe(III) reduction on subsurface U(VI) mobility at a low level radioactive waste storage site

    International Nuclear Information System (INIS)

    Wilkins, M.J.; Livens, F.R.; Vaughan, D.J.; Lloyd, J.R.; Beadle, I.; Small, J.S.

    2005-01-01

    Full text of publication follows: Fe(III) oxy-hydroxides have the potential to be utilised as terminal electron acceptors by indigenous microbial communities in the British Nuclear Fuels (BNFL) low level radioactive waste storage site at Drigg (Cumbria, UK) and these organisms may have a critical control on the biogeochemical cycling of several environmentally important radionuclides. In terms of radiological impact at Drigg, uranium is the most significant contributor to radiological impact and it is strongly influenced by biogeochemical processes. In terms of mass (moles) it is also the most abundant radionuclide in the Drigg inventory. Thus, the potential biotic and abiotic effects of Fe(III) reduction on U(VI) mobility in the Drigg subsurface are of interest. Culture-dependent and molecular techniques showed that the sediments in and around the Drigg site contained a diversity of Fe(III)-reducing bacteria. A series of microcosm experiments were utilised to create environmentally relevant experimental conditions. Microcosms set up using Drigg sediment and synthetic ground water were spiked with 100 μM U(VI) and acetate as an electron donor. U(VI) concentrations in groundwater were measured using a chemical assay while total U levels were determined using ICP-MS. Fe(II) levels were determined using the ferrozine method. Sediment surface areas were measured using BET analysis. The low surface area of the sediments resulted in only a small proportion of the 100 μM U(VI) spike sorbing onto mineral surfaces. The addition of ferri-hydrite to some microcosms resulted in an immediate lowering of soluble U(VI) concentrations, suggesting that the formation of soluble U(VI) complexes were not responsible for the minimal adsorption. The presence of biogenic Fe(II) in the microcosms did not affect the soluble U(VI) concentration. Similarly, soluble U(VI) levels remained unchanged when sediments were spiked with U(VI) post-microbial Fe(III) reduction. However, a lowering in

  8. The Polar BEAR magnetic field experiment

    Science.gov (United States)

    Bythrow, P. F.; Potemra, T. A.; Zanetti, L. J.; Mobley, F. F.; Scheer, L.; Radford, W. E.

    1987-09-01

    The objectives and the instrumentation of the Polar BEAR magnetic field experiment are described along with the preliminary results from simultaneous measurements of Birkeland currents and UV auroral emissions. The experiment consists of an integrated sensor head, analog electronics, and digital electronics. The sensor head is a single unit containing sensor windings for each of the three orthogonal axes, oriented parrallel to the spacecraft coordinates; to minimize interference from spacecraft-generated magnetic fields, the sensor unit is located at the end of the +y solar panel. The digital electronics package is essentially identical to that flown on HILAT. A signal processor digitizes the analog outputs of the three orthogonal axes of the flux-gate magnetometer to a 13-bit resolution, yielding a magnetic field range of + or - 63,000 nT and a resolution of 15.2 nT. The full-resolution magnetic field values are recovered by data processing techniques on the ground.

  9. Valuation of vegetable crops produced in the UVI Commercial Aquaponic System

    Directory of Open Access Journals (Sweden)

    Donald S. Bailey

    2017-08-01

    Full Text Available The UVI Commercial Aquaponic System is designed to produce fish and vegetables in a recirculating aquaculture system. The integration of these systems intensifies production in a small land area, conserves water, reduces waste discharged into the environment, and recovers nutrients from fish production into valuable vegetable crops. A standard protocol has been developed for the production of tilapia yielding 5 MT per annum. The production of many vegetable crops has also been studied but, because of specific growth patterns and differences of marketable product, no single protocol can be promoted. Each crop yields different value per unit area and this must be considered when selecting varieties to produce to provide the highest returns to the farmer. Variables influencing the value of a crop are density (plants/m2, yield (unit or kg, production period (weeks and unit value ($. Combining these variables to one unit, $/m2/week, provides a common point for comparison among crops. Farmers can focus production efforts on the most valuable crops or continue to produce a variety of crops meeting market demand with the knowledge that each does not contribute equally to profitability.

  10. The auroral O+ non-Maxwellian velocity distribution function revisited

    Directory of Open Access Journals (Sweden)

    D. Hubert

    1997-02-01

    Full Text Available New characteristics of O+ ion velocity distribution functions in a background of atomic oxygen neutrals subjected to intense external electromagnetic forces are presented. The one dimensional (1-D distribution function along the magnetic field displays a core-halo shape which can be accurately fitted by a two Maxwellian model. The Maxwellian shape of the 1-D distribution function around a polar angle of 21 ± 1° from the magnetic field direction is confirmed, taking into account the accuracy of the Monte Carlo simulations. For the first time, the transition of the O+ 1-D distribution function from a core halo shape along the magnetic field direction to the well-known toroidal shape at large polar angles, through the Maxwellian shape at polar angle of 21 ± 1° is properly explained from a generic functional of the velocity moments at order 2 and 4.

  11. The dynamics and relationships of precipitation, temperature and convection boundaries in the dayside auroral ionosphere

    Directory of Open Access Journals (Sweden)

    J. Moen

    2004-06-01

    Full Text Available A continuous band of high ion temperature, which persisted for about 8h and zigzagged north-south across more than five degrees in latitude in the dayside (07:00-15:00MLT auroral ionosphere, was observed by the EISCAT VHF radar on 23 November 1999. Latitudinal gradients in the temperature of the F-region electron and ion gases (Te and Ti, respectively have been compared with concurrent observations of particle precipitation and field-perpendicular convection by DMSP satellites, in order to reveal a physical explanation for the persistent band of high Ti, and to test the potential role of Ti and Te gradients as possible markers for the open-closed field line boundary. The north/south movement of the equatorward Ti boundary was found to be consistent with the contraction/expansion of the polar cap due to an unbalanced dayside and nightside reconnection. Sporadic intensifications in Ti, recurring on ~10-min time scales, indicate that frictional heating was modulated by time-varying reconnection, and the band of high Ti was located on open flux. However, the equatorward Ti boundary was not found to be a close proxy of the open-closed boundary. The closest definable proxy of the open-closed boundary is the magnetosheath electron edge observed by DMSP. Although Te appears to be sensitive to magnetosheath electron fluxes, it is not found to be a suitable parameter for routine tracking of the open-closed boundary, as it involves case dependent analysis of the thermal balance. Finally, we have documented a region of newly-opened sunward convecting flux. This region is situated between the convection reversal boundary and the magnetosheath electron edge defining the open-closed boundary. This is consistent with a delay of several minutes between the arrival of the first (super-Alfvénic magnetosheath electrons and the response in the ionospheric

  12. The dynamics and relationships of precipitation, temperature and convection boundaries in the dayside auroral ionosphere

    Directory of Open Access Journals (Sweden)

    J. Moen

    2004-06-01

    Full Text Available A continuous band of high ion temperature, which persisted for about 8h and zigzagged north-south across more than five degrees in latitude in the dayside (07:00-15:00MLT auroral ionosphere, was observed by the EISCAT VHF radar on 23 November 1999. Latitudinal gradients in the temperature of the F-region electron and ion gases (Te and Ti, respectively have been compared with concurrent observations of particle precipitation and field-perpendicular convection by DMSP satellites, in order to reveal a physical explanation for the persistent band of high Ti, and to test the potential role of Ti and Te gradients as possible markers for the open-closed field line boundary. The north/south movement of the equatorward Ti boundary was found to be consistent with the contraction/expansion of the polar cap due to an unbalanced dayside and nightside reconnection. Sporadic intensifications in Ti, recurring on ~10-min time scales, indicate that frictional heating was modulated by time-varying reconnection, and the band of high Ti was located on open flux. However, the equatorward Ti boundary was not found to be a close proxy of the open-closed boundary. The closest definable proxy of the open-closed boundary is the magnetosheath electron edge observed by DMSP. Although Te appears to be sensitive to magnetosheath electron fluxes, it is not found to be a suitable parameter for routine tracking of the open-closed boundary, as it involves case dependent analysis of the thermal balance. Finally, we have documented a region of newly-opened sunward convecting flux. This region is situated between the convection reversal boundary and the magnetosheath electron edge defining the open-closed boundary. This is consistent with a delay of several minutes between the arrival of the first (super-Alfvénic magnetosheath electrons and the response in the ionospheric convection, conveyed to the ionosphere by the interior Alfvén wave. It represents a candidate footprint of the

  13. Dayside and nightside contributions to cross-polar cap potential variations: the 20 March 2001 ICME case

    Directory of Open Access Journals (Sweden)

    Y. L. Andalsvik

    2011-11-01

    Full Text Available We investigate the association between temporal-spatial structure of polar cap convection and auroral electrojet intensifications during a 5-h-long interval of strong forcing of the magnetosphere by an ICME/Magnetic cloud on 20 March 2001. We use data from coordinated ground-satellite observations in the 15:00–20:00 MLT sector. We take advantage of the good latitudinal coverage in the polar cap and in the auroral zone of the IMAGE chain of ground magnetometers in Svalbard – Scandinavia – Russia and the stable magnetic field conditions in ICMEs. The electrojet events are characterized by a sequence of 10 min-long AL excursions to −1000/−1500 nT followed by poleward expansions and auroral streamers. These events are superimposed on a high disturbance level when the AL index remains around −500 nT for several hours. These signatures are different from those appearing in classical substorms, most notably the absence of a complete recovery phase when AL usually reaches above −100 nT. We concentrate on polar cap convection in both hemispheres (DMSP F13 data in relation to the ICME By conditions, electrojet intensifications, and the global UV auroral configuration obtained from the IMAGE spacecraft. The temporal evolution of convection properties such as the cross-polar cap potential (CPCP drop and flow channels at the dawn/dusk polar cap (PC boundaries around the time of the electrojet events are investigated. This approach allows us to distinguish between dayside (magnetopause reconnection and nightside (magnetotail reconnection sources of the PC convection events within the context of the expanding-contracting model of high-latitude convection in the Dungey cycle. Inter-hemispheric symmetries/asymmetries in the presence of newly-discovered convection channels at the dawn or dusk side PC boundaries are determined.

  14. Large plasma density enhancements occurring in the northern polar region during the 6 April 2000 superstorm

    Science.gov (United States)

    Horvath, Ildiko; Lovell, Brian C.

    2014-06-01

    We focus on the ionospheric response of northern high-latitude region to the 6 April 2000 superstorm and aim to investigate how the storm-enhanced density (SED) plume plasma became distributed in the regions of auroral zone and polar cap plus to study the resultant ionospheric features and their development. Multi-instrument observational results combined with model-generated, two-cell convection maps permitted identifying the high-density plasma's origin and the underlying plasma transportation processes. Results show the plasma density feature of polar cap enhancement (PCE; 600 × 103 i+/cm3) appearing for 7 h during the main phase and characterized by increases reaching up to 6 times of the quiet time values. Meanwhile, strong westward convections ( 17,500 m/s) created low plasma densities in a wider region of the dusk cell. Oppositely, small ( 750 m/s) but rigorous westward drifts drove the SED plume plasma through the auroral zone, wherein plasma densities doubled. As the SED plume plasma traveled along the convection streamlines and entered the polar cap, a continuous enhancement of the tongue of ionization (TOI) developed under steady convection conditions. However, convection changes caused slow convections and flow stagnations and thus segmented the TOI feature by locally depleting the plasma in the affected regions of the auroral zone and polar cap. From the strong correspondence of polar cap potential drop and subauroral polarization stream (SAPS), we conclude that the SAPS E-field strength remained strong, and under its prolonged influence, the SED plume provided a continuous supply of downward flowing high-density plasma for the development and maintenance of PCEs.

  15. Excitation of transient lobe cell convection and auroral arc at the cusp poleward boundary during a transition of the interplanetary magnetic field from south to north

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2001-05-01

    Full Text Available We document the activation of transient polar arcs emanating from the cusp within a 15 min long intermediate phase during the transition from a standard two-cell convection pattern, representative of a strongly southward interplanetary magnetic field (IMF, to a "reverse" two-cell pattern, representative of strongly northward IMF conditions. During the 2–3 min lifetime of the arc, its base in the cusp, appearing as a bright spot, moved eastward toward noon by ~ 300 km. As the arc moved, it left in its "wake" enhanced cusp precipitation. The polar arc is a tracer of the activation of a lobe convection cell with clockwise vorticity, intruding into the previously established large-scale distorted two-cell pattern, due to an episode of localized lobe reconnection. The lobe cell gives rise to strong flow shear (converging electric field and an associated sheet of outflowing field-aligned current, which is manifested by the polar arc. The enhanced cusp precipitation represents, in our view, the ionospheric footprint of the lobe reconnection process.Key words. Magnetospheric physics (auroral phenomena; magnetopause, cusp, and boundary layers; plasma convection

  16. On the occurrence of auroral westward flow channels and substorm phase

    Science.gov (United States)

    Parkinson, M. L.; Dyson, P. L.; Pinnock, M.

    2006-01-01

    Auroral westward flow channels (AWFCs) are intense, narrow channels of westward drift overlapping the equatorward edge of the auroral oval in the pre-magnetic midnight sector. They are a close relative of the sub-auroral polarisation stream which encompasses polarisation jets, a phenomenon also known as sub-auroral ion drift events. Recent observations made with the Tasman Geospace Environment Radar (TIGER) (147.2°E, 43.4°S Geodetic; 55.0° Geomagnetic) have revealed close associations between the appearance of AWFCs and substorm onset, and their subsequent decay toward the end of recovery phase. In fact, in terms of electric field strength, they are the strongest signatures of substorms in the ionospheric convection (>50 mV m-1). In terms of electric potential difference (>10 kV), they also represent a substantial fraction of the total potential difference generated during substorms. The AWFCs exhibit a diverse range of behaviour, there being no typical event. The radar observations show that radial polarisation fields sometimes oscillate towards and away from the Earth, and bifurcate, within regions of closed flux in the magnetotail throughout substorm evolution. We have identified every AWFC observed by TIGER during the first year of operation, 2000. Simple statistical arguments imply that one, if not more, AWFC probably occurs during every substorm. AWFCs are a fundamental aspect of substorm evolution.

  17. Auroral Current and Electrodynamics Structure Measured by Two SOunding Rockets in Flight Simultaneously

    Science.gov (United States)

    Bounds, Scott R.; Kaeppler, Steve; Kletzing, Craig; Lessard, Marc; Cohen, Ian J.; Jones, Sarah; Pfaff, Robert F.; Rowland, Douglas E.; Anderson, Brian Jay; Gjerloev, Jesper W.; hide

    2011-01-01

    On January 29, 2009, two identically instrumented sounding rockets were launched into a sub-storm auroral arc from Poker Flat Alaska. Labeled the Auroral Currents and Electrodynamics Structure (ACES) mission, the payloads were launched to different apogees (approx.350km and approx.120km) and staggered in time so as to optimize their magnetic conjunctions. The different altitudes provided simultaneous in-situ measurements of magnetospheric input and output to the ionosphere and the ionospheric response in the lower F and E region. Measurements included 3-axis magnetic field, 2-axis electric field nominally perpendicular to the magnetic field, energetic particles, electron and ion, up to 15keV, cold plasma temperature and density. In addition, PFISR was also operating in a special designed mode to measure electric field and density profiles in the plane defined by the rocket trajectories and laterally to either side of the trajectories. Observation of the measured currents and electrodynamics structure of the auroral form encountered are presented in the context of standard auroral models and the temporal/spatial limitations of mission designs.

  18. Transient auroral events near midday: Relationship with solar wind/magnetosheath plasma and magnetic field conditions

    International Nuclear Information System (INIS)

    Jacobsen, B.; Sandholt, P.E.; Lybekk, B.; Egeland, A.

    1990-09-01

    Ground-based observations of auroral/geomagnetic transient events near magnetic midday and magnetosheath magnetic field and plasma observations from spacecraft IMP-8 are presented. One category of events is characterized by a sequence of discrete auroral arc fragments moving westward along the poleward boundary of the persistent cusp arc, accompanied by an isolated magnetic pulse at latitudes close to the auroral event. This phenomenon occurs mainly during intervals of southward directed magnetosheath/interplanetary magnetic field. The auroral display in the second category of events is separated in two components, possibly associated with the cusp and the cleft/low latitude boundary layer. Intensification of the cleft aurora and magnetic perturbations over a wide latitudinal range were observed after a sharp northward magnetosheath magnetic field transition and a large variation in plasma density. It is suggested that these different events are ionospheric footprints of different time-dependent coupling processes near/in the magnetopause boundary layer. However, the specific mechanism involved (e.g. flux transfer events or pressure pulses/boundary waves) may not be uniquely inferred from these observations. 37 refs., 13 figs

  19. Correlated observations of two auroral substorms from an aircraft and from a Vela satellite

    International Nuclear Information System (INIS)

    Wolcott, J.H.; Pongratz, M.B.; Hones, E.W. Jr.; Peterson, R.W.

    1976-01-01

    A jet aircraft, flying from Goose Bay, Labrador, to Fairbanks, Alaska, made auroral observations at nearly constant magnetic local time (approx.2100 MLT) in the auroral zone while a Vela satellite passed through the plasma sheet at rapprox. =18R/subE/ at nearly the same magnetic local time. Comparison of data from the two locations provide further confirmation of the 'poleward leap' of the auroral electrojet which occurs in a late phase of an auroral substorm and is associated with a rapid tailward motion of an X-type neutral line in the magnetotail. The poleward leap is a a distinctive feature of the substorm evolution and is not simply the superposition of a new substorm on the recovery phase of a preceding substorm. It probably marks the sudden transition of the magnetotail from one quasi-stable configuration to another more stable one. Onset of a substorm expansive phase brings about a change of tail magnetic field from a configuration that is extremely tailike, with field lines from lambda/subm/approximately-less-than66degree stretching to the Vela orbit, to one that is much less taillike, with field lines from lambdam/sub approximately-greater-than/70degree not stretching as far as the Vela orbit

  20. Observations of the auroral width spectrum at kilometre-scale size

    Directory of Open Access Journals (Sweden)

    N. Partamies

    2010-03-01

    Full Text Available This study examines auroral colour camera data from the Canadian Dense Array Imaging SYstem (DAISY. The Dense Array consists of three imagers with different narrow (compared to all-sky view field-of-view optics. The main scientific motivation arises from an earlier study by Knudsen et al. (2001 who used All-Sky Imager (ASI combined with even earlier TV camera observations (Maggs and Davis, 1968 to suggest that there is a gap in the distribution of auroral arc widths at around 1 km. With DAISY observations we are able to show that the gap is an instrument artifact and due to limited spatial resolution and coverage of commonly used instrumentation, namely ASIs and TV cameras. If the auroral scale size spectrum is indeed continuous, the mechanisms forming these structures should be able to produce all of the different scale sizes. So far, such a single process has not been proposed in the literature and very few models are designed to interact with each other even though the range of their favourable conditions do overlap. All scale-sizes should be considered in the future studies of auroral forms and electron acceleration regions, both in observational and theoretical approaches.

  1. On I(5577 Å and I (7620 Å auroral emissions and atomic oxygen densities

    Directory of Open Access Journals (Sweden)

    R. L. Gattinger

    1996-07-01

    Full Text Available A model of auroral electron deposition processes has been developed using Monte Carlo techniques to simulate electron transport and energy loss. The computed differential electron flux and pitch angle were compared with in situ auroral observations to provide a check on the accuracy of the model. As part of the energy loss process, a tally was kept of electronic excitation and ionization of the important atomic and molecular states. The optical emission rates from these excited states were computed and compared with auroral observations of η(3914 Å, η(5577 Å, η(7620 Å and η(N2VK. In particular, the roles played by energy transfer from N2(A3Σ+u and by other processes in the excitation of O(1S and O2(b1Σ+g were investigated in detail. It is concluded that the N2(A3Σ+u mechanism is dominant for the production of OI(5577 Å in the peak emission region of normal aurora, although the production efficiency is much smaller than the measured laboratory value; above 150 km electron impact on atomic oxygen is dominant. Atomic oxygen densities in the range of 0.75±0.25 MSIS-86 [O] were derived from the optical comparisons for auroral latitudes in mid-winter for various levels of solar and magnetic activity.

  2. Oxygen auroral transition laser system excited by collisional and photolytic energy transfer

    International Nuclear Information System (INIS)

    Murray, J.R.; Powell, H.T.; Rhodes, C.K.

    1975-06-01

    The properties of laser media involving the auroral transition of atomic oxygen and analogous systems are examined. A discussion of the atomic properties, collisional mechanisms, excitation processes, and collisionally induced radiative phenomena is given. Crossing phenomena play a particularly important role in governing the dynamics of the medium

  3. A Comparative Study of Spectral Auroral Intensity Predictions From Multiple Electron Transport Models

    Science.gov (United States)

    Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Hecht, James; Solomon, Stanley; Jahn, Jorg-Micha

    2018-01-01

    It is important to routinely examine and update models used to predict auroral emissions resulting from precipitating electrons in Earth's magnetotail. These models are commonly used to invert spectral auroral ground-based images to infer characteristics about incident electron populations when in situ measurements are unavailable. In this work, we examine and compare auroral emission intensities predicted by three commonly used electron transport models using varying electron population characteristics. We then compare model predictions to same-volume in situ electron measurements and ground-based imaging to qualitatively examine modeling prediction error. Initial comparisons showed differences in predictions by the GLobal airglOW (GLOW) model and the other transport models examined. Chemical reaction rates and radiative rates in GLOW were updated using recent publications, and predictions showed better agreement with the other models and the same-volume data, stressing that these rates are important to consider when modeling auroral processes. Predictions by each model exhibit similar behavior for varying atmospheric constants, energies, and energy fluxes. Same-volume electron data and images are highly correlated with predictions by each model, showing that these models can be used to accurately derive electron characteristics and ionospheric parameters based solely on multispectral optical imaging data.

  4. Polarisation of auroral emission lines in the Earth's upper atmosphere : first results and perspectives

    Science.gov (United States)

    Lamy, H.; Barthelemy, M.; Simon Wedlund, C.; Lilensten, J.; Bommier, V.

    2011-12-01

    Polarisation of light is a key observable to provide information about asymmetry or anisotropy within a radiative source. Following the pioneering and controversial work of Duncan in 1959, the polarisation of auroral emission lines in the Earth's upper atmosphere has been overlooked for a long time, even though the red intense auroral line (6300Å) produced by collisional impacts with electrons precipitating along magnetic field lines is a good candidate to search for polarisation. This problem was investigated again by Lilensten et al (2006) and observations were obtained by Lilensten et al (2008) confirming that the red auroral emission line is polarised. More recent measurements obtained by Barthélemy et al (2011) are presented and discussed. The results are compared to predictions of the theoretical work of Bommier et al (2011) and are in good agreement. Following these encouraging results, a new dedicated spectropolarimeter is currently under construction between BIRA-IASB and IPAG to provide simultaneously the polarisation of the red line and of other interesting auroral emission lines such as N2+ 1NG (4278Å), other N2 bands, etc... Perspectives regarding the theoretical polarisation of some of these lines will be presented. The importance of these polarisation measurements in the framework of atmospheric modeling and geomagnetic activity will be discussed.

  5. A study of a sector spectrophotometer and auroral O+(2P-2D) emissions

    Science.gov (United States)

    Swenson, G. R.

    1976-01-01

    The metastable O+(2P-2D) auroral emission was investigated. The neighboring OH contaminants and low intensity levels of the emission itself necessitated the evolution of an instrument capable of separating the emission from the contaminants and having a high sensitivity in the wavelength region of interest. A new type of scanning photometer was developed and its properties are discussed. The theoretical aspects of auroral electron interaction with atomic oxygen and the resultant O+(2P-2D) emissions were examined in conjunction with N2(+)1NEG emissions. Ground based measurements of O+(2P-2D) auroral emission intensities were made using the spatial scanning photometer (sector spectrophotometer). Simultaneous measurements of N2(+)1NEG sub 1,0 emission intensity were made in the same field of view using a tilting photometer. Time histories of the ratio of these two emissions made in the magnetic zenith during auroral breakup periods are given. Theories of I sub 7319/I sub 4278 of previous investigators were presented. A rocket measurement of N2(+)1NEG sub 0,0 and O+(2P-2D) emission in aurora was examined in detail and was found to agree with the ground based measurements. Theoretical examination resulted in the deduction of the electron impact efficiency generating O+(2P) and also suggests a large source of O+(2P) at low altitude. A possible source is charge exchange of N+(1S) with OI(3P).

  6. ISINGLASS Auroral Sounding Rocket Campaign Data Synthesis: Radar, Imagery, and In Situ Observations

    Science.gov (United States)

    Clayton, R.; Lynch, K. A.; Evans, T.; Hampton, D. L.; Burleigh, M.; Zettergren, M. D.; Varney, R. H.; Reimer, A.; Hysell, D. L.; Michell, R.; Samara, M.; Grubbs, G. A., II

    2017-12-01

    E-field and flow variations across auroral arc boundaries are typically sub-grid measurements for ground based sensors such as radars and imagers, even for quiet stable arcs. In situ measurements can provide small scale resolution, but only provide a snapshot at a localized time and place. Using ground based and in situ measurements of the ISINGLASS auroral sounding rocket campaign in conjunction, we use the in situ measurements to validate ground based synthesis of these small scale observations based on the classification of auroral arcs in Marklund(1984). With validation of this technique, sub-grid information can be gained from radar data using particular visible auroral features during times where only ground based measurements are present. The ISINGLASS campaign (Poker Flat Alaska, Winter 2017) included the nights of Feb 22 2017 and Mar 02 2017, which possessed multiple stable arc boundaries that can be used for synthesis, including the two events into which the ISINGLASS rockets were launched. On Mar 02 from 0700 to 0800 UT, two stable slowly southward-propagating auroral arcs persisted within the instrument field of view, and lasted for a period of >15min. The second of these events contains the 36.304 rocket trajectory, while both events have full ground support from camera imagery and radar. Data synthesis from these events is accomplished using Butler (2010), Vennell (2009), and manually selected auroral boundaries from ground based cameras. With determination of the auroral arc boundaries from ground based imagery, a prediction of the fields along the length of a long straight arc boundary can be made using the ground based radar data, even on a sub-radar-grid scale, using the Marklund arc boundary classification. We assume that fields everywhere along a long stable arc boundary should be the same. Given a long stable arc, measurements anywhere along the arc (i.e. from PFISR) can be replicated along the length of the boundary. This prediction can then

  7. Temporal and spatial evolution of discrete auroral arcs as seen by Cluster

    Directory of Open Access Journals (Sweden)

    S. Figueiredo

    2005-10-01

    Full Text Available Two event studies are presented in this paper where intense convergent electric fields, with mapped intensities up to 1350 mV/m, are measured in the auroral upward current region by the Cluster spacecraft, at altitudes between 3 and 5 Earth radii. Both events are from May 2003, Southern Hemisphere, with equatorward crossings by the Cluster spacecraft of the pre-midnight auroral oval.

    Event 1 occurs during the end of the recovery phase of a strong substorm. A system of auroral arcs associated with convergent electric field structures, with a maximum perpendicular potential drop of about ~10 kV, and upflowing field-aligned currents with densities of 3 µA/m2 (mapped to the ionosphere, was detected at the boundary between the Plasma Sheet Boundary Layer (PSBL and the Plasma Sheet (PS. The auroral arc structures evolve in shape and in magnitude on a timescale of tens of minutes, merging, broadening and intensifying, until finally fading away after about 50 min. Throughout this time, both the PS region and the auroral arc structure in its poleward part remain relatively fixed in space, reflecting the rather quiet auroral conditions during the end of the substorm. The auroral upward acceleration region is shown for this event to extend beyond 3.9 Earth radii altitude.

    Event 2 occurs during a more active period associated with the expansion phase of a moderate substorm. Images from the Defense Meteorological Satellite Program (DMSP F13 spacecraft show that the Cluster spacecraft crossed the horn region of a surge-type aurora. Conjugated with the Cluster spacecraft crossing above the surge horn, the South Pole All Sky Imager recorded the motion and the temporal evolution of an east-west aligned auroral arc, 30 to 50 km wide. Intense electric field variations are measured by the Cluster spacecraft when crossing above the auroral arc structure, collocated with the

  8. Polyarnye siyaniya sistemy avroral'nogo ovala kak kosmoloficheskij obraz drevnej mifologii %t The northern light of the auroral oval system as a cosmological concept of the archaic mythology

    Science.gov (United States)

    Alekseeva, L. M.

    Since archaic epochs people attentively observe the sky. They used to associate the sky phenomena with gods, heroes, spirits, etc. People interpreted the regularities in the motion of celestial objects in terms of their mythological model of the Universe. These observations and interpretations were first steps of the archaeoastronomy. Many remarkable features are inherent in the patterns of northern lights of the auroral oval system. Their manifestations are fairly regular. Did the ancients observe and some how classify these northern light phenomena? If yes, with which mythological personages were they associated? When were studies of the polar lights initiated? The present work is an attempt to answer these questions. We shall see that the ancient people assumed the spirit-world to be situated on the North. If so, it should manifest itself in spectacular polar aurorae. The specifically northern mythic cosmology formed the basis for Slavic fairy tales (theme of the Serpent and Serpent Fighter) and folk-beliefs. Other inhabitants of snowy latitudes should also manifest similar views. Studying the mythological reflections of typical auroral phenomena, it is possible to trace up long-standing ideological trends from the late glaciation epoch to the present time. Our results can help geophysicists in studying paleoauroral phenomena.

  9. M–I coupling across the auroral oval at dusk and midnight: repetitive substorm activity driven by interplanetary coronal mass ejections (CMEs

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2014-04-01

    Full Text Available We study substorms from two perspectives, i.e., magnetosphere–ionosphere coupling across the auroral oval at dusk and at midnight magnetic local times. By this approach we monitor the activations/expansions of basic elements of the substorm current system (Bostrøm type I centered at midnight and Bostrøm type II maximizing at dawn and dusk during the evolution of the substorm activity. Emphasis is placed on the R1 and R2 types of field-aligned current (FAC coupling across the Harang reversal at dusk. We distinguish between two distinct activity levels in the substorm expansion phase, i.e., an initial transient phase and a persistent phase. These activities/phases are discussed in relation to polar cap convection which is continuously monitored by the polar cap north (PCN index. The substorm activity we selected occurred during a long interval of continuously strong solar wind forcing at the interplanetary coronal mass ejection passage on 18 August 2003. The advantage of our scientific approach lies in the combination of (i continuous ground observations of the ionospheric signatures within wide latitude ranges across the auroral oval at dusk and midnight by meridian chain magnetometer data, (ii "snapshot" satellite (DMSP F13 observations of FAC/precipitation/ion drift profiles, and (iii observations of current disruption/near-Earth magnetic field dipolarizations at geostationary altitude. Under the prevailing fortunate circumstances we are able to discriminate between the roles of the dayside and nightside sources of polar cap convection. For the nightside source we distinguish between the roles of inductive and potential electric fields in the two substages of the substorm expansion phase. According to our estimates the observed dipolarization rate (δ Bz/δt and the inferred large spatial scales (in radial and azimuthal dimensions of the dipolarization process in these strong substorm expansions may lead to 50–100 kV enhancements of the

  10. The Effect of Si and Al Concentration Ratios on the Removal of U(VI) under Hanford Site 200 Area Conditions-12115

    International Nuclear Information System (INIS)

    Katsenovich, Yelena; Gonzalez, Nathan; Moreno-Pastor, Carol; Lagos, Leonel

    2012-01-01

    Injection of reactive gases, such as NH 3 , is an innovative technique to mitigate uranium contamination in soil for a vadose zone (VZ) contaminated with radionuclides. A series of experiments were conducted to examine the effect of the concentration ratio of silicon to aluminum in the presence of various bicarbonate concentrations on the coprecipitation process of U(VI). The concentration of Al in all tests remained unchanged at 2.8 mM. Experiments showed that the removal efficiency of uranium was not significantly affected by the different bicarbonate and U(VI) concentrations tested. For the lower Si:Al molar ratios of 2:1 and 18:1, the removal efficiency of uranium was relatively low (≤ 8%). For the Si:Al molar ratio of 35:1, the removal efficiency of uranium was increased to an average of ∼82% for all bicarbonate concentrations tested. At higher Si:Al molar ratios (53:1 and above), a relatively high removal efficiency of U(VI), approximately 85% and higher, was observed. These results demonstrate that the U(VI) removal efficiency is more affected by the Si:Al molar ratio than by the bicarbonate concentration in solution. The results of this experiment are promising for the potential implementation of NH 3 gas injection for the remediation of U(VI) -contaminated VZ. (authors)

  11. Nonlinear model of short-scale electrodynamics in the auroral ionosphere

    Directory of Open Access Journals (Sweden)

    J.-M. A. Noël

    2000-09-01

    Full Text Available The optical detection of auroral subarcs a few tens of m wide as well as the direct observation of shears several m/s per m over km to sub km scales by rocket instrumentation both indicate that violent and highly localized electrodynamics can occur at times in the auroral ionosphere over scales 100 m or less in width. These observations as well as the detection of unstable ion-acoustic waves observed by incoherent radars along the geomagnetic field lines has motivated us to develop a detailed time-dependent two-dimensional model of short-scale auroral electrodynamics that uses current continuity, Ohm's law, and 8-moment transport equations for the ions and electrons in the presence of large ambient electric fields to describe wide auroral arcs with sharp edges in response to sharp cut-offs in precipitation (even though it may be possible to describe thin arcs and ultra-thin arcs with our model, we have left such a study for future work. We present the essential elements of this new model and illustrate the model's usefulness with a sample run for which the ambient electric field is 100 mV/m away from the arc and for which electron precipitation cuts off over a region 100 m wide. The sample run demonstrates that parallel current densities of the order of several hundred µA m-2 can be triggered in these circumstances, together with shears several m/s per m in magnitude and parallel electric fields of the order of 0.1 mV/m around 130 km altitude. It also illustrates that the local ionospheric properties like densities, temperature and composition can strongly be affected by the violent localized electrodynamics and vice-versa.Key words: Ionosphere (auroral ionosphere, electric fields and currents, ionosphere-magnetosphere interactions

  12. Space Weather Products and Tools Used in Auroral Monitoring and Forecasting at CCMC/SWRC

    Science.gov (United States)

    Zheng, Yihua; Rastaetter, Lutz

    2015-01-01

    Key points discussed in this chapter are (1) the importance of aurora research to scientific advances and space weather applications, (2) space weather products at CCMC that are relevant to aurora monitoring and forecasting, and (3) the need for more effort from the whole community to achieve a better and long-lead-time forecast of auroral activity. Aurora, as manifestations of solar wind-magnetosphere-ionosphere coupling that occurs in a region of space that is relatively easy to access for sounding rockets, satellites, and other types of observational platforms, serves as a natural laboratory for studying the underlying physics of the complex system. From a space weather application perspective, auroras can cause surface charging of technological assets passing through the region, result in scintillation effects affecting communication and navigation, and cause radar cluttering that hinders military and civilian applications. Indirectly, an aurora and its currents can induce geomagnetically induced currents (GIC) on the ground, which poses major concerns for the wellbeing and operation of power grids, particularly during periods of intense geomagnetic activity. In addition, accurate auroral forecasting is desired for auroral tourism. In this chapter, we first review some of the existing auroral models and discuss past validation efforts. Such efforts are crucial in transitioning a model(s) from research to operations and for further model improvement and development that also benefits scientific endeavors. Then we will focus on products and tools that are used for auroral monitoring and forecasting at the Space Weather Research Center (SWRC). As part of the CCMC (Community Coordinated Modeling Center), SWRC has been providing space weather services since 2010.

  13. Substorm associated radar auroral surges: a statistical study and possible generation model

    Directory of Open Access Journals (Sweden)

    B. A. Shand

    Full Text Available Substorm-associated radar auroral surges (SARAS are a short lived (15–90 minutes and spatially localised (~5° of latitude perturbation of the plasma convection pattern observed within the auroral E-region. The understanding of such phenomena has important ramifications for the investigation of the larger scale plasma convection and ultimately the coupling of the solar wind, magnetosphere and ionosphere system. A statistical investigation is undertaken of SARAS, observed by the Sweden And Britain Radar Experiment (SABRE, in order to provide a more extensive examination of the local time occurrence and propagation characteristics of the events. The statistical analysis has determined a local time occurrence of observations between 1420 MLT and 2200 MLT with a maximum occurrence centred around 1700 MLT. The propagation velocity of the SARAS feature through the SABRE field of view was found to be predominately L-shell aligned with a velocity centred around 1750 m s–1 and within the range 500 m s–1 and 3500 m s–1. This comprehensive examination of the SARAS provides the opportunity to discuss, qualitatively, a possible generation mechanism for SARAS based on a proposed model for the production of a similar phenomenon referred to as sub-auroral ion drifts (SAIDs. The results of the comparison suggests that SARAS may result from a similar geophysical mechanism to that which produces SAID events, but probably occurs at a different time in the evolution of the event.

    Key words. Substorms · Auroral surges · Plasma con-vection · Sub-auroral ion drifts

  14. Nonlinear model of short-scale electrodynamics in the auroral ionosphere

    Directory of Open Access Journals (Sweden)

    J.-M. A. Noël

    Full Text Available The optical detection of auroral subarcs a few tens of m wide as well as the direct observation of shears several m/s per m over km to sub km scales by rocket instrumentation both indicate that violent and highly localized electrodynamics can occur at times in the auroral ionosphere over scales 100 m or less in width. These observations as well as the detection of unstable ion-acoustic waves observed by incoherent radars along the geomagnetic field lines has motivated us to develop a detailed time-dependent two-dimensional model of short-scale auroral electrodynamics that uses current continuity, Ohm's law, and 8-moment transport equations for the ions and electrons in the presence of large ambient electric fields to describe wide auroral arcs with sharp edges in response to sharp cut-offs in precipitation (even though it may be possible to describe thin arcs and ultra-thin arcs with our model, we have left such a study for future work. We present the essential elements of this new model and illustrate the model's usefulness with a sample run for which the ambient electric field is 100 mV/m away from the arc and for which electron precipitation cuts off over a region 100 m wide. The sample run demonstrates that parallel current densities of the order of several hundred µA m-2 can be triggered in these circumstances, together with shears several m/s per m in magnitude and parallel electric fields of the order of 0.1 mV/m around 130 km altitude. It also illustrates that the local ionospheric properties like densities, temperature and composition can strongly be affected by the violent localized electrodynamics and vice-versa.

    Key words: Ionosphere (auroral ionosphere, electric fields and currents, ionosphere-magnetosphere interactions

  15. SA13B-1900 Auroral Charging of the International Space Station

    Science.gov (United States)

    Minow, Joseph I.; Chandler, Michael O.; Wright, Kenneth H., Jr.

    2011-01-01

    Electrostatic potential variations of the International Space Station (ISS) relative to the space plasma environment are dominated by interaction of the negatively grounded 160 volt US photovoltaic power system with the plasma environment in sunlight and inductive potential variations across the ISS structure generated by motion of the vehicle across the Earth's magnetic field. Auroral charging is also a source of potential variations because the 51.6? orbital inclination of ISS takes the vehicle to sufficiently high magnetic latitudes to encounter precipitating electrons during geomagnetic storms. Analysis of auroral charging for small spacecraft or isolated insulating regions on ISS predict rapid charging to high potentials of hundreds of volts but it has been thought that the large capacitance of the entire ISS structure on the order of 0.01 F will limit frame potentials to less than a volt when exposed to auroral conditions. We present three candidate auroral charging events characterized by transient ISS structure potentials varying from approximately 2 to 17 volts. The events occur primarily at night when the solar arrays are unbiased and cannot therefore be due to solar array current collection. ISS potential decreases to more negative values during the events indicating electron current collection and the events are always observed at the highest latitudes along the ISS trajectory. Comparison of the events with integral >30 keV electron flux measurements from NOAA TIROS spacecraft demonstrate they occur within regions of precipitating electron flux at levels consistent with the energetic electron thresholds reported for onset of auroral charging of the DMSP and Freja satellites. In contrast to the DMSP and Freja events, one of the ISS charging events occur in sunlight.

  16. Upscaling of U(VI) Desorption and Transport Using Decimeter-Scale Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Derrick [Colorado School of Mines, Golden, CO (United States)

    2014-12-22

    Two decimeter-scale 2D experiments were conducted in the proposed research. To the extent possible, the first experiment (2.44 m x 0.61 m x 10 cm) was be packed to reproduce the observed distributions of sediment size fractions in the subsurface at the tracer test site. Four size fractions of sediment (<125m, 125-250m, 250m to 2 mm, >2mm) were packed in the tank and the size fractions were placed in a sediment structure imitating pattern rather than the block pattern used in the previous experiments conducted with Naturita sediment. The second tank used the same total amount of sediment and proportions of the three size fractions used in the first experiment but was packed at larger geostatistical correlation lengths to evaluate how the scale of heterogeneity affects the upscaling results. This experiment was conducted with the goal of trying to determine how the upscaling would be affected by the diffusion path length associated with low permeability zones. The initial conditions in the tanks were based on observed field conditions. The influent was a synthetic groundwater that mimicked uncontaminated groundwater observed at the Naturita site. Samples were collected from side and end ports of the tank and were analyzed for U(VI), alkalinity, pH and major ions as was done in previous experiments. Each decimeter scale experiment was run for approximately 6 months and the experiments were run in parallel. Extensive premodeling occurred for both tanks and lasted the first year of the project.

  17. Biomineralization of U(VI) phosphate promoted by microbially-mediated phytate hydrolysis in contaminated soils

    Science.gov (United States)

    Salome, Kathleen R.; Beazley, Melanie J.; Webb, Samuel M.; Sobecky, Patricia A.; Taillefert, Martial

    2017-01-01

    The bioreduction of uranium may immobilize a significant fraction of this toxic contaminant in reduced environments at circumneutral pH. In oxic and low pH environments, however, the low solubility of U(VI)-phosphate minerals also makes them good candidates for the immobilization of U(VI) in the solid phase. As inorganic phosphate is generally scarce in soils, the biomineralization of U(VI)-phosphate minerals via microbially-mediated organophosphate hydrolysis may represent the main immobilization process of uranium in these environments. In this study, contaminated sediments were incubated aerobically in two pH conditions to examine whether phytate, a naturally-occurring and abundant organophosphate in soils, could represent a potential phosphorous source to promote U(VI)-phosphate biomineralization by natural microbial communities. While phytate hydrolysis was not evident at pH 7.0, nearly complete hydrolysis was observed both with and without electron donor at pH 5.5, suggesting indigenous microorganisms express acidic phytases in these sediments. While the rate of hydrolysis of phytate generally increased in the presence of uranium, the net rate of inorganic phosphate production in solution was decreased and inositol phosphate intermediates were generated in contrast to similar incubations conducted without uranium. These findings suggest uranium stress enhanced the phytate-metabolism of the microbial community, while simultaneously inhibiting phosphatase production and/or activity by the indigenous population. Finally, phytate hydrolysis drastically decreased uranium solubility, likely due to formation of ternary sorption complexes, U(VI)-phytate precipitates, and U(VI)-phosphate minerals. Overall, the results of this study provide evidence for the ability of natural microbial communities to liberate phosphate from phytate in acidic sediments, possibly as a detoxification mechanism, and demonstrate the potential utility of phytate-promoted uranium

  18. Influence of phosphate and silica on U(VI) precipitation from acidic and neutralized wastewaters.

    Science.gov (United States)

    Kanematsu, Masakazu; Perdrial, Nicolas; Um, Wooyong; Chorover, Jon; O'Day, Peggy A

    2014-06-03

    Uranium speciation and physical-chemical characteristics were studied in solids precipitated from synthetic acidic to circumneutral wastewaters in the presence and absence of dissolved silica and phosphate to examine thermodynamic and kinetic controls on phase formation. Composition of synthetic wastewater was based on disposal sites 216-U-8 and 216-U-12 Cribs at the Hanford site (WA, USA). In the absence of dissolved silica or phosphate, crystalline or amorphous uranyl oxide hydrates, either compreignacite or meta-schoepite, precipitated at pH 5 or 7 after 30 d of reaction, in agreement with thermodynamic calculations. In the presence of 1 mM dissolved silica representative of groundwater concentrations, amorphous phases dominated by compreignacite precipitated rapidly at pH 5 or 7 as a metastable phase and formation of poorly crystalline boltwoodite, the thermodynamically stable uranyl silicate phase, was slow. In the presence of phosphate (3 mM), meta-ankoleite initially precipitated as the primary phase at pH 3, 5, or 7 regardless of the presence of 1 mM dissolved silica. Analysis of precipitates by U LIII-edge extended X-ray absorption fine structure (EXAFS) indicated that "autunite-type" sheets of meta-ankoleite transformed to "phosphuranylite-type" sheets after 30 d of reaction, probably due to Ca substitution in the structure. Low solubility of uranyl phosphate phases limits dissolved U(VI) concentrations but differences in particle size, crystallinity, and precipitate composition vary with pH and base cation concentration, which will influence the thermodynamic and kinetic stability of these phases.

  19. Influence of Reactive Transport on the Reduction of U(VI) in the Presence of Fe(III) and Nitrate: Implications for U(VI) Immobilization by Bioremediation/Biobarriers - Final Report

    International Nuclear Information System (INIS)

    B.D. Wood

    2007-01-01

    Subsurface contamination by metals and radionuclides represent some of the most challenging remediation problems confronting the Department of Energy (DOE) complex. In situ remediation of these contaminants by dissimilatory metal reducing bacteria (DMRB) has been proposed as a potential cost effective remediation strategy. The primary focus of this research is to determine the mechanisms by which the fluxes of electron acceptors, electron donors, and other species can be controlled to maximize the transfer of reductive equivalents to the aqueous and solid phases. The proposed research is unique in the NABIR portfolio in that it focuses on (i) the role of flow and transport in the initiation of biostimulation and the successful sequestration of metals and radionuclides [specifically U(VI)], (ii) the subsequent reductive capacity and stability of the reduced sediments produced by the biostimulation process, and (iii) the potential for altering the growth of biomass in the subsurface by the addition of specific metabolic uncoupling compounds. A scientifically-based understanding of these phenomena are critical to the ability to design successful bioremediation schemes. The laboratory research will employ Shewanella putrefaciens (CN32), a facultative DMRB that can use Fe(III) oxides as a terminal electron acceptor. Sediment-packed columns will be inoculated with this organism, and the reduction of U(VI) by the DMRB will be stimulated by the addition of a carbon and energy source in the presence of Fe(III). Separate column experiments will be conducted to independently examine: (1) the importance of the abiotic reduction of U(VI) by biogenic Fe(II); (2) the influence of the transport process on Fe(III) reduction and U(VI) immobilization, with emphasis on methods for controlling the fluxes of aqueous species to maximize uranium reduction; (3) the reductive capacity of biologically-reduced sediments (with respect to re-oxidation by convective fluxes of O2 and NO3-) and

  20. Political polarization

    OpenAIRE

    Dixit, Avinash K.; Weibull, Jörgen W.

    2007-01-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  1. Political polarization.

    Science.gov (United States)

    Dixit, Avinash K; Weibull, Jörgen W

    2007-05-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  2. Fourier analysis of polar cap electric field and current distributions

    Science.gov (United States)

    Barbosa, D. D.

    1984-01-01

    A theoretical study of high-latitude electric fields and currents, using analytic Fourier analysis methods, is conducted. A two-dimensional planar model of the ionosphere with an enhanced conductivity auroral belt and field-aligned currents at the edges is employed. Two separate topics are treated. A field-aligned current element near the cusp region of the polar cap is included to investigate the modifications to the convection pattern by the east-west component of the interplanetary magnetic field. It is shown that a sizable one-cell structure is induced near the cusp which diverts equipotential contours to the dawnside or duskside, depending on the sign of the cusp current. This produces characteristic dawn-dusk asymmetries to the electric field that have been previously observed over the polar cap. The second topic is concerned with the electric field configuration obtained in the limit of perfect shielding, where the field is totally excluded equatorward of the auroral oval. When realistic field-aligned current distributions are used, the result is to produce severely distorted, crescent-shaped equipotential contours over the cap. Exact, analytic formulae applicable to this case are also provided.

  3. Aurora and open magnetic flux during isolated substorms, sawteeth, and SMC events

    Directory of Open Access Journals (Sweden)

    A. D. DeJong

    2007-08-01

    Full Text Available Using Polar UVI LBHl and IMAGE FUV WIC data, we have compared the auroral signatures and polar cap open flux for isolated substorms, sawteeth oscillations, and steady magnetospheric convection (SMC events. First, a case study of each event type is performed, comparing auroral signatures and open magnetic fluxes to one another. The latitude location of the auroral oval is similar during isolated substorms and SMC events. The auroral intensity during SMC events is similar to that observed during the expansion phase of an isolated substorm. Examination of an individual sawtooth shows that the auroral intensity is much greater than the SMC or isolated substorm events and the auroral oval is displaced equatorward making a larger polar cap. The temporal variations observed during the individual sawtooth are similar to that observed during the isolated substorm, and while the change in polar cap flux measured during the sawtooth is larger, the percent change in flux is similar to that measured during the isolated substorm. These results are confirmed by a statistical analysis of events within these three classes. The results show that the auroral oval measured during individual sawteeth contains a polar cap with, on average, 150% more magnetic flux than the oval measured during isolated substorms or during SMC events. However, both isolated substorms and sawteeth show a 30% decrease in polar cap magnetic flux during the dipolarization (expansion phase.

  4. Enhanced Transport of U(Vi) and Th(IV) Through Cation Exchange Membrane Using Electric Field

    International Nuclear Information System (INIS)

    Zaki, E.E.; Aly, H.F.

    2000-01-01

    Transport of ionic species through ion exchange membrane found several applications for water effluents purification and metal ion separation. To enhance the transport performance, the effect of electric field was introduced in this work. The transport of U (Vi) and Th(IV) species in nitric acid solutions across cation exchange membrane was investigated. In this concern, different parameters affecting the transport were studied. These parameters include; nitric acid concentration in the feed solution, stripping solution concentration and applied electric field. From the results obtained the permeability coefficient of U(Vi) and Th(IV) were calculated. Based on these information, a process for separation of thorium from uranium is developed

  5. Geochemical control on the reduction of U(VI) to mononuclear U(IV) species in lacustrine sediments

    Science.gov (United States)

    Stetten, L.; Mangeret, A.; Brest, J.; Seder-Colomina, M.; Le Pape, P.; Ikogou, M.; Zeyen, N.; Thouvenot, A.; Julien, A.; Alcalde, G.; Reyss, J. L.; Bombled, B.; Rabouille, C.; Olivi, L.; Proux, O.; Cazala, C.; Morin, G.

    2018-02-01

    Contaminated systems in which uranium (U) concentrations slightly exceed the geochemical background are of particular interest to identify natural processes governing U trapping and accumulation in Earth's surface environments. For this purpose, we examined the role of early diagenesis on the evolution of U speciation and mobility in sediments from an artificial lake located downstream from a former mining site. Sediment and pore water chemistry together with U and Fe solid state speciation were analyzed in sediment cores sampled down to 50 cm depth at four locations in the lake. These organic-rich sediments (∼12% organic C) exhibited U concentrations in the 40-80 mg kg-1 range. The sediment columns were anoxic 2-3 mm below the sediment-water interface and pore waters pH was circumneutral. Pore water chemistry profiles showed that organic carbon mineralization was associated with Fe and Mn reduction and was correlated with a decrease in dissolved U concentration with depth. Immobilization of U in the sediment was correlated with the reduction of U(VI) to U(IV) at depth, as shown by U LIII-edge XANES spectroscopic analysis. XANES and EXAFS spectroscopy at the Fe K-edge showed the reduction of structural Fe(III) to Fe(II) in phyllosilicate minerals with depth, coincident with U(VI) to U(IV) reduction. Thermodynamic modeling suggests that Fe(II) could act as a major reducing agent for U(VI) during early diagenesis of these sediments, leading to complete U reduction below ∼30 cm depth. Shell-by-shell and Cauchy-Wavelet analysis of U LIII-EXAFS spectra indicates that U(VI) and U(IV) are mainly present as mononuclear species bound to C, P or Si ligands. Chemical extractions confirmed that ∼60-80% of U was present as non-crystalline species, which emphasizes that such species should be considered when evaluating the fate of U in lacustrine environments and the efficiency of sediment remediation strategies.

  6. Electron Transfer Pathways Facilitating U(VI) Reduction by Fe(II) on Al- vs Fe-Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, S. D. [Pacific Northwest National Laboratory, Physical Sciences Division, P.O. Box; Becker, U. [The University of Michigan, Department of Earth; Rosso, K. M. [Pacific Northwest National Laboratory, Physical Sciences Division, P.O. Box

    2017-09-06

    This study continues mechanistic development of heterogeneous electron transfer (ET) pathways at mineral surfaces in aquatic environments that enable the reduction U(VI) by surface-associated Fe(II). Using computational molecular simulation within the framework of Marcus Theory, our findings highlight the importance of the configurations and interaction of the electron donor and acceptor species with the substrate, with respect to influencing its electronic structure and thereby the ability of semiconducting minerals to facilitate ET. U(VI) reduction by surface-associated Fe(II) (adsorbed or structurally incorporated into the lattice) on an insulating, corundum (001) surface (α-Al2O3) occurs when proximal inner-sphere (IS) surface complexes are formed, such that ET occurs through a combination of direct exchange (i.e., Fe d- and U f-orbitals overlap through space) and superexchange via intervening surface oxygen atoms. U(VI) reduction by coadsorbed Fe(II) on the isostructural semiconducting hematite (α-Fe2O3) basal surface requires either their direct electronic interaction (e.g., IS complexation) or mediation of this interaction indirectly through the surface via an intrasurface pathway. Conceptually possible longer-range ET by charge-hopping through surface Fe atoms was investigated to determine whether this indirect pathway is competitive with direct ET. The calculations show that energy barriers are large for this conduction-based pathway; interfacial ET into the hematite surface is endothermic (+80.1 kJ/mol) and comprises the rate-limiting step (10–6 s–1). The presence of the IS adsorbates appears to weaken the electronic coupling between underlying Fe ions within the surface, resulting in slower intra-surface ET (10–5 s–1) than expected in the bulk basal plane. Our findings lay out first insights into donor-acceptor communication via a charge-hopping pathway through the surface for heterogeneous reduction of U(VI) by Fe(II) and help provide a basis

  7. The polar cliff in the morning sector of the ionosphere

    Directory of Open Access Journals (Sweden)

    G. W. Prölss

    2013-05-01

    Full Text Available By "polar cliff" we mean the steep increase in the ionization density observed in the morning sector of the polar ionosphere. Here the properties of this remarkable feature are investigated. The data set consists of electron density and temperature measurements obtained by the Dynamics Explorer 2 satellite. Only data recorded in the Northern Hemisphere winter are considered (solar zenith angle ≥ 90°. We find that for moderately disturbed conditions, the foot of the polar cliff is located below 60° invariant latitude. Here, within about 4°, the density increases by a factor of 4, on average. The actual location of the polar cliff depends primarily on the level of geomagnetic activity, its associated density increase on geographic longitude and altitude. As to the longitudinal variations, they are attributed to asymmetries in the background ionization density at middle latitudes. Using a superposed epoch type of averaging procedure, mean latitudinal profiles of the polar cliff and the associated electron temperature changes are derived. Since these differ significantly from those derived for the afternoon/evening sector, we conclude that the subauroral ionospheric trough does not extend into the morning sector. As to the origin of the polar cliff in the morning sector, local auroral particle precipitation should play only a secondary role.

  8. A new DMSP magnetometer and auroral boundary data set and estimates of field-aligned currents in dynamic auroral boundary coordinates

    Science.gov (United States)

    Kilcommons, Liam M.; Redmon, Robert J.; Knipp, Delores J.

    2017-08-01

    We have developed a method for reprocessing the multidecadal, multispacecraft Defense Meteorological Satellite Program Special Sensor Magnetometer (DMSP SSM) data set and have applied it to 15 spacecraft years of data (DMSP Flight 16-18, 2010-2014). This Level-2 data set improves on other available SSM data sets with recalculated spacecraft locations and magnetic perturbations, artifact signal removal, representations of the observations in geomagnetic coordinates, and in situ auroral boundaries. Spacecraft locations have been recalculated using ground-tracking information. Magnetic perturbations (measured field minus modeled main field) are recomputed. The updated locations ensure the appropriate model field is used. We characterize and remove a slow-varying signal in the magnetic field measurements. This signal is a combination of ring current and measurement artifacts. A final artifact remains after processing: step discontinuities in the baseline caused by activation/deactivation of spacecraft electronics. Using coincident data from the DMSP precipitating electrons and ions instrument (SSJ4/5), we detect the in situ auroral boundaries with an improvement to the Redmon et al. (2010) algorithm. We embed the location of the aurora and an accompanying figure of merit in the Level-2 SSM data product. Finally, we demonstrate the potential of this new data set by estimating field-aligned current (FAC) density using the Minimum Variance Analysis technique. The FAC estimates are then expressed in dynamic auroral boundary coordinates using the SSJ-derived boundaries, demonstrating a dawn-dusk asymmetry in average FAC location relative to the equatorward edge of the aurora. The new SSM data set is now available in several public repositories.

  9. On auroral dynamics observed by HF radar: 1. Equatorward edge of the afternoon-evening diffuse luminosity belt

    Directory of Open Access Journals (Sweden)

    M. Uspensky

    2000-12-01

    Full Text Available Observations and modelling are presented which illustrate the ability of the Finland CUTLASS HF radar to monitor the afternoon-evening equatorward auroral boundary during weak geomagnetic activity. The subsequent substorm growth phase development was also observed in the late evening sector as a natural continuation of the preceding auroral oval dynamics. Over an 8 h period the CUTLASS Finland radar observed a narrow (in range and persistent region of auroral F- and (later E-layer echoes which gradually moved equatorward, consistent with the auroral oval diurnal rotation. This echo region corresponds to the subvisual equatorward edge of the diffuse luminosity belt (SEEL and the ionospheric footprint of the inner boundary of the electron plasma sheet. The capability of the Finland CUTLASS radar to monitor the E-layer SEEL-echoes is a consequence of the nearly zero E-layer rectilinear aspect angles in a region 5–10° poleward of the radar site. The F-layer echoes are probably the boundary blob echoes. The UHF EISCAT radar was in operation and observed a similar subvisual auroral arc and an F-layer electron density enhancement when it appeared in its antenna beam.Key words: Ionsophere (ionospheric irregularities · Magnetospheric physics (auroral phenomena; magnetosphere–ionosphere interactions

  10. On auroral dynamics observed by HF radar: 1. Equatorward edge of the afternoon-evening diffuse luminosity belt

    Directory of Open Access Journals (Sweden)

    M. Uspensky

    Full Text Available Observations and modelling are presented which illustrate the ability of the Finland CUTLASS HF radar to monitor the afternoon-evening equatorward auroral boundary during weak geomagnetic activity. The subsequent substorm growth phase development was also observed in the late evening sector as a natural continuation of the preceding auroral oval dynamics. Over an 8 h period the CUTLASS Finland radar observed a narrow (in range and persistent region of auroral F- and (later E-layer echoes which gradually moved equatorward, consistent with the auroral oval diurnal rotation. This echo region corresponds to the subvisual equatorward edge of the diffuse luminosity belt (SEEL and the ionospheric footprint of the inner boundary of the electron plasma sheet. The capability of the Finland CUTLASS radar to monitor the E-layer SEEL-echoes is a consequence of the nearly zero E-layer rectilinear aspect angles in a region 5–10° poleward of the radar site. The F-layer echoes are probably the boundary blob echoes. The UHF EISCAT radar was in operation and observed a similar subvisual auroral arc and an F-layer electron density enhancement when it appeared in its antenna beam.

    Key words: Ionsophere (ionospheric irregularities · Magnetospheric physics (auroral phenomena; magnetosphere–ionosphere interactions

  11. Multi-site observations of the association between aurora and plasma convection in the cusp/polar cap during a southeastward(By ~ |Bz| IMF orientation

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2003-02-01

    Full Text Available In a case study we demonstrate the spatiotemporal structure of aurora and plasma convection in the cusp/polar cap when the interplanetary magnetic field (IMF Bz < 0 and By ~ | Bz | (clock angle in GSM Y - Z plane: ~ 135°. This IMF orientation elicited a response different from that corresponding to strongly northward and southward IMF. Our study of this "intermediate state" is based on a combination of ground observations of optical auroral emissions and ionospheric plasma convection. Utilizing all-sky cameras at NyAlesund, Svalbard and Heiss Island (Russian arctic, we are able to monitor the high-latitude auroral activity within the ~10:00–15:00 MLT sector. Information on plasma convection is obtained from the SuperDARN radars, with emphasis placed on line of sight observations from the radar situated in Hankasalmi, Finland (Cutlass. A central feature of the auroral observations in the cusp/polar cap region is a ~ 30-min long sequence of four brightening events, some of which consists of latitudinally and longitudinally separated forms, which are found to be associated with pulsed ionospheric flows in merging and lobe convection cells. The auroral/convection events may be separated into different forms/cells and phases, reflecting a spatiotem-poral evolution of the reconnection process on the dayside magnetopause. The initial phase consists of a brightening in the postnoon sector (~ 12:00–14:00 MLT at ~ 73° MLAT, accompanied by a pulse of enhanced westward convection in the postnoon merging cell. Thereafter, the event evolution comprises two phenomena which occur almost simultaneously: (1 westward expansion of the auroral brightening (equatorward boundary intensification across noon, into the ~ 10:00–12:00 MLT sector, where the plasma convection subsequently turns almost due north, in the convection throat, and where classical poleward moving auroral forms (PMAFs are observed; and (2 auroral brightening at slightly higher latitudes

  12. Plasma-induced grafting of acrylic acid on bentonite for the removal of U(VI) from aqueous solution

    Science.gov (United States)

    Hongshan, ZHU; Shengxia, DUAN; Lei, CHEN; Ahmed, ALSAEDI; Tasawar, HAYAT; Jiaxing, LI

    2017-11-01

    Fabrication of reusable adsorbents with satisfactory adsorption capacity and using environment-friendly preparation processes is required for the environment-related applications. In this study, acrylic acid (AA) was grafted onto bentonite (BT) to generate an AA-graft-BT (AA-g-BT) composite using a plasma-induced grafting technique considered to be an environment-friendly method. The as-prepared composite was characterized by scanning electron microscopy, x-ray powder diffraction, thermal gravity analysis, Fourier transform infrared spectroscopy and Barrett-Emmett-Teller analysis, demonstrating the successful grafting of AA onto BT. In addition, the removal of uranium(VI) (U(VI)) from contaminated aqueous solutions was examined using the as-prepared composite. The influencing factors, including contact time, pH value, ionic strength, temperature, and initial concentration, for the removal of U(VI) were investigated by batch experiments. The experimental process fitted best with the pseudo-second-order kinetic and the Langmuir models. Moreover, thermodynamic investigation revealed a spontaneous and endothermic process. Compared with previous adsorbents, AA-g-BT has potential practical applications in treating U(VI)-contaminated solutions.

  13. Aqueous U(VI) interaction with magnetite nanoparticles in a mixed flow reactor system: HR-XANES study

    International Nuclear Information System (INIS)

    Pidchenko, I; Heberling, F; Finck, N; Schild, D; Bohnert, E; Schäfer, T; Rothe, J; Geckeis, H; Vitova, T; Kvashnina, KO

    2016-01-01

    The redox variations and changes in local atomic environment of uranium (U) interacted with the magnetite nanoparticles were studied in a proof of principle experiment by the U L 3 and M 4 edges high energy resolution X-ray absorption near edge structure (HR-XANES) technique. We designed and applied a mixed flow reactor (MFR) set-up to maintain dynamic flow conditions during U-magnetite interactions. Formation of hydrolyzed, bi- and poly-nuclear U species were excluded by slow continuous injection of U(VI) (10 -6 M) and pH control integrated in the MFR set-up. The applied U HR-XANES technique is more sensitive to minor changes in the U redox states and bonding compared to the conventional XANES method. Major U(VI) contribution in uranyl type of bonding is found in the magnetite nanoparticles after three days operation time of the MFR. Indications for shortening of the U-O axial bond length for the magnetite compared to the maghemite system are present too. (paper)

  14. Layered Double Hydroxides as Effective Adsorbents for U(VI and Toxic Heavy Metals Removal from Aqueous Media

    Directory of Open Access Journals (Sweden)

    G. N. Pshinko

    2013-01-01

    Full Text Available Capacities of different synthesized Zn,Al-hydrotalcite-like adsorbents, including the initial carbonate [Zn4Al2(OH12]·CO3·8H2O and its forms intercalated with chelating agents (ethylenediaminetetraacetic acid (EDTA, diethylenetriaminepentaacetic acid (DTPA, and hexamethylenediaminetetraacetic acid (HMDTA and heat-treated form Zn4Al2O7, to adsorb uranium(VI and ions of toxic heavy metals have been compared. Metal sorption capacities of hydrotalcite-like adsorbents have been shown to correlate with the stability of their complexes with the mentioned chelating agents in a solution. The synthesized layered double hydroxides (LDHs containing chelating agents in the interlayer space are rather efficient for sorption purification of aqueous media free from U(VI irrespective of its forms of natural abundance (including water-soluble bi- and tricarbonate forms and from heavy metal ions. [Zn4Al2(OH12]·EDTA·nH2O is recommended for practical application as one of the most efficient and inexpensive synthetic adsorbents designed for recovery of both cationic and particularly important anionic forms of U(VI and other heavy metals from aqueous media. Carbonate forms of LDHs turned out to be most efficient for recovery of Cu(II from aqueous media with pH0≥7 owing to precipitation of Cu(II basic carbonates and Cu(II hydroxides. Chromate ions are efficiently adsorbed from water only by calcinated forms of LDHs.

  15. The far-ultraviolet main auroral emission at Jupiter. Pt. 1. Dawn-dusk brightness asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Bonfond, B.; Gustin, J.; Gerard, J.C.; Grodent, D.; Radioti, A. [Liege Univ. (Belgium). Lab. de Physique Atmospherique et Planetaire; Palmaerts, B. [Liege Univ. (Belgium). Lab. de Physique Atmospherique et Planetaire; Max-Planck-Institut fuer Sonnensystemforschung, Goettingen (Germany); Badman, S.V. [Lancaster Univ. (United Kingdom). Dept. of Physics; Khurana, K.K. [California Univ., Los Angeles, CA (United States); Tao, C. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France)

    2015-07-01

    The main auroral emission at Jupiter generally appears as a quasi-closed curtain centered around the magnetic pole. This auroral feature, which accounts for approximately half of the total power emitted by the aurorae in the ultraviolet range, is related to corotation enforcement currents in the middle magnetosphere. Early models for these currents assumed axisymmetry, but significant local time variability is obvious on any image of the Jovian aurorae. Here we use far-UV images from the Hubble Space Telescope to further characterize these variations on a statistical basis. We show that the dusk side sector is ∝ 3 times brighter than the dawn side in the southern hemisphere and ∝ 1:1 brighter in the northern hemisphere, where the magnetic anomaly complicates the interpretation of the measurements.We suggest that such an asymmetry between the dawn and the dusk sectors could be the result of a partial ring current in the nightside magnetosphere.

  16. Magnetospheric magnetic field modelling for the 2011 and 2012 HST Saturn aurora campaigns – implications for auroral source regions

    Directory of Open Access Journals (Sweden)

    E. S. Belenkaya

    2014-06-01

    Full Text Available A unique set of images of Saturn's northern polar UV aurora was obtained by the Hubble Space Telescope in 2011 and 2012 at times when the Cassini spacecraft was located in the solar wind just upstream of Saturn's bow shock. This rare situation provides an opportunity to use the Kronian paraboloid magnetic field model to examine source locations of the bright auroral features by mapping them along field lines into the magnetosphere, taking account of the interplanetary magnetic field (IMF measured near simultaneously by Cassini. It is found that the persistent dawn arc maps to closed field lines in the dawn to noon sector, with an equatorward edge generally located in the inner part of the ring current, typically at ~ 7 Saturn radii (RS near dawn, and a poleward edge that maps variously between the centre of the ring current and beyond its outer edge at ~ 15 RS, depending on the latitudinal width of the arc. This location, together with a lack of response in properties to the concurrent IMF, suggests a principal connection with ring-current and nightside processes. The higher-latitude patchy auroras observed intermittently near to noon and at later local times extending towards dusk are instead found to straddle the model open–closed field boundary, thus mapping along field lines to the dayside outer magnetosphere and magnetopause. These emissions, which occur preferentially for northward IMF directions, are thus likely associated with reconnection and open-flux production at the magnetopause. One image for southward IMF also exhibits a prominent patch of very high latitude emissions extending poleward of patchy dawn arc emissions in the pre-noon sector. This is found to lie centrally within the region of open model field lines, suggesting an origin in the current system associated with lobe reconnection, similar to that observed in the terrestrial magnetosphere for northward IMF.

  17. Storm time dynamics of auroral electrojets: CHAMP observation and the Space Weather Modeling Framework comparison

    Directory of Open Access Journals (Sweden)

    H. Wang

    2008-03-01

    Full Text Available We investigate variations of the location and intensity of auroral currents during two magnetic storm periods based on magnetic field measurements from CHAMP separately for both hemispheres, as well as for the dayside and nightside. The corresponding auroral electrojet current densities are on average enhanced by about a factor of 7 compared to the quiet time current strengths. The nightside westward current densities are on average 1.8 (2.2 times larger than the dayside eastward current densities in the Northern (Southern Hemisphere. Both eastward and westward currents are present during the storm periods with the most intense electrojets appearing during the main phase of the storm, before the ring current maximizes in strength. The eastward and westward electrojet centers can expand to 55° MLat during intense storms, as is observed on 31 March 2001 with Dst=−387 nT. The equatorward shift of auroral currents on the dayside is closely controlled by the southward IMF, while the latitudinal variations on the nightside are better described by the variations of the Dst index. However, the equatorward and poleward motion of the nightside auroral currents occur earlier than the Dst variations. The Space Weather Modeling Framework (SWMF can capture the general dynamics of the storm time current variations. Both the model and the actual data show that the currents tend to saturate when the merging electric field is larger than 10 mV/m. However, the exact prediction of the temporal development of the currents is still not satisfactory.

  18. Storm time dynamics of auroral electrojets: CHAMP observation and the Space Weather Modeling Framework comparison

    Directory of Open Access Journals (Sweden)

    H. Wang

    2008-03-01

    Full Text Available We investigate variations of the location and intensity of auroral currents during two magnetic storm periods based on magnetic field measurements from CHAMP separately for both hemispheres, as well as for the dayside and nightside. The corresponding auroral electrojet current densities are on average enhanced by about a factor of 7 compared to the quiet time current strengths. The nightside westward current densities are on average 1.8 (2.2 times larger than the dayside eastward current densities in the Northern (Southern Hemisphere. Both eastward and westward currents are present during the storm periods with the most intense electrojets appearing during the main phase of the storm, before the ring current maximizes in strength. The eastward and westward electrojet centers can expand to 55° MLat during intense storms, as is observed on 31 March 2001 with Dst=−387 nT. The equatorward shift of auroral currents on the dayside is closely controlled by the southward IMF, while the latitudinal variations on the nightside are better described by the variations of the Dst index. However, the equatorward and poleward motion of the nightside auroral currents occur earlier than the Dst variations. The Space Weather Modeling Framework (SWMF can capture the general dynamics of the storm time current variations. Both the model and the actual data show that the currents tend to saturate when the merging electric field is larger than 10 mV/m. However, the exact prediction of the temporal development of the currents is still not satisfactory.

  19. Swarm Observation of Field-Aligned Currents Associated With Multiple Auroral Arc Systems

    Science.gov (United States)

    Wu, J.; Knudsen, D. J.; Gillies, D. M.; Donovan, E. F.; Burchill, J. K.

    2017-10-01

    Auroral arcs occur in regions of upward field-aligned currents (FACs); however, the relation is not one to one, since kinetic energy of the current-carrying electrons is also important in the production of auroral luminosity. Multiple auroral arc systems provide an opportunity to study the relation between FACs and auroral brightness in detail. In this study, we have identified two types of FAC configurations in multiple parallel arc systems using ground-based optical data from the Time History of Events and Macroscale Interactions during Substorms all-sky imagers, magnetometers and electric field instruments on board the Swarm satellites. In "unipolar FAC" events, each arc is an intensification within a broad, unipolar current sheet and downward return currents occur outside of this broad sheet. In "multipolar FAC" events, multiple arc systems represent a collection of multiple up/down current pairs. By collecting 17 events with unipolar FAC and 12 events with multipolar FACs, we find that (1) unipolar FAC events occur most frequently between 20 and 21 magnetic local time and multipolar FAC events tend to occur around local midnight and within 1 h after substorm onset. (2) Arcs in unipolar FAC systems have a typical width of 10-20 km and a spacing of 25-50 km. Arcs in multipolar FAC systems are wider and more separated. (3) Upward currents with more arcs embedded have larger intensities and widths. (4) Electric fields are strong and highly structured on the edges of multiple arc system with unipolar FAC. The fact that arcs with unipolar FAC are much more highly structured than the associated currents suggests that arc multiplicity is indicative not of a structured generator deep in the magnetosphere, but rather of the magnetosphere-ionosphere coupling process.

  20. A Study of Current Driven Electrostatic Instability on the Auroral Zone

    Directory of Open Access Journals (Sweden)

    S. Y. Kim

    1986-12-01

    Full Text Available According to recent satellite observations, strong ion transverse acceleration to the magnetic field(ion conics has been known. The ion conics may be a result of electrostatic waves frequently observed on the auroral zone. Both linear and nonlinear theory of electrostatic instability driven by an electron current based on 1-dimenstional particle simulation experiment have been considered. From the results of simulation strong ion transverse acceleration has been shown.

  1. Custom auroral electrojet indices calculated by using MANGO value-added services

    Science.gov (United States)

    Bargatze, L. F.; Moore, W. B.; King, T. A.

    2009-12-01

    A set of computational routines called MANGO, Magnetogram Analysis for the Network of Geophysical Observatories, is utilized to calculate customized versions of the auroral electrojet indices, AE, AL, and AU. MANGO is part of an effort to enhance data services available to users of the Heliophysics VxOs, specifically for the Virtual Magnetospheric Observatory (VMO). The MANGO value-added service package is composed of a set of IDL routines that decompose ground magnetic field observations to isolate secular, diurnal, and disturbance variations of magnetic field disturbance, station-by-station. Each MANGO subroutine has been written in modular fashion to allow "plug and play"-style flexibility and each has been designed to account for failure modes and noisy data so that the programs will run to completion producing as much derived data as possible. The capabilities of the MANGO service package will be demonstrated through their application to the study of auroral electrojet current flow during magnetic substorms. Traditionally, the AE indices are calculated by using data from about twelve ground stations located at northern auroral zone latitudes spread longitudinally around the world. Magnetogram data are corrected for secular variation prior to calculating the standard version of the indices but the data are not corrected for diurnal variations. A custom version of the AE indices will be created by using the MANGO routines including a step to subtract diurnal curves from the magnetic field data at each station. The custom AE indices provide more accurate measures of auroral electrojet activity due to isolation of the sunstorm electrojet magnetic field signiture. The improvements in the accuracy of the custom AE indices over the tradition indices are largest during the northern hemisphere summer when the range of diurnal variation reaches its maximum.

  2. Search for auroral belt Eparallel fields with high-velocity barium ion injections

    International Nuclear Information System (INIS)

    Heppner, J.P.; Ledley, B.G.; Miller, M.L.; Marionni, P.A.; Pongratz, M.B.; Slater, D.W.; Hallinan, T.J.; Rees, D.

    1989-01-01

    Four high-velocity shaped charge Ba + injections were conducted from two Black Brant-10 rockets at collision-free altitudes (770-975 km) over northern Alaska (L = 7.4-10.6) in April 1984 under active auroral and magnetic disturbance (Kp 4+ and 5) conditions. The motions of the Ba + pencil beams from these injections were accurately triangulated to altitudes ranging from 9,000 to 14,000 km from multistation image observations. Well-defined initial conditions and improved software for predicting the unperturbed. E = 0, trajectories in the presence of convection, E perpendicular , fields permitted an accurate detection of changes in the motion which could be attributed to E parallel fields. Large (> 1 keV) potential changes that might be anticipated from double-layer or V-, U- and S-shaped potential structures were not encountered even though the Ba + rays were clearly located on auroral arc flux tubes on at least several occasions and were at various times in close proximity to auroral flux tubes for many minutes. Abnormally intense E perpendicular fields that might also indicate that the above potential structures were also not observed. Transient accelerations and/or decelerations involving magnetic field-aligned energy changes ≤ 375 eV were, however, encountered by each of the seven principal Ba + rays tracked to high altitudes. Acceleration events were only slightly more frequent than deceleration events. Interpretation, taking into account limits on the duration of the events and simultaneous auroral conditions, favors explanation in terms of propagating waves, soliton trains, or other pulse forms provided that the propagation is primarily field-aligned

  3. Towards a synthesis of substorm electrodynamics: HF radar and auroral observations

    Directory of Open Access Journals (Sweden)

    A. Grocott

    2006-12-01

    Full Text Available At 08:35 UT on 21 November 2004, the onset of an interval of substorm activity was captured in the southern hemisphere by the Far UltraViolet (FUV instrument on board the IMAGE spacecraft. This was accompanied by the onset of Pi2 activity and subsequent magnetic bays, evident in ground magnetic data from both hemispheres. Further intensifications were then observed in both the auroral and ground magnetic data over the following ~3 h. During this interval the fields-of-view of the two southern hemisphere Tasman International Geospace Enviroment Radars (TIGER moved through the evening sector towards midnight. Whilst initially low, the amount of backscatter from TIGER increased considerably during the early stages of the expansion phase such that by ~09:20 UT an enhanced dusk flow cell was clearly evident. During the expansion phase the equatorward portion of this flow cell developed into a narrow high-speed flow channel, indicative of the auroral and sub-auroral flows identified in previous studies (e.g. Freeman et al., 1992; Parkinson et al., 2003. At the same time, higher latitude transient flow features were observed and as the interval progressed the flow reversal region and Harang discontinuity became very well defined. Overall, this study has enabled the spatial and temporal development of many different elements of the substorm process to be resolved and placed within a simple conceptual framework of magnetospheric convection. Specifically, the detailed observations of ionospheric flows have illustrated the complex interplay between substorm electric fields and associated auroral dynamics. They have helped define the distinct nature of different substorm current systems such as the traditional substorm current wedge and the more equatorward currents associated with polarisation electric fields. Additionally, they have revealed a radar signature of nightside reconnection which provides the promise of quantifying nightside reconnection in a

  4. Observation of Polar Mesosphere Summer Echoes using the Northernmost MST Radar at Eureka (80 deg N)

    Science.gov (United States)

    Swarnalingam, N.; Hocking, W.; Janches, D.; Drummond, J.

    2017-01-01

    We investigate long-term Polar Mesosphere Summer Echoes (PMSEs) observations conducted by the northern most geographically located MST radar at Eureka (80 deg N, 86 deg W). While PMSEs are a well recognized summer phenomenon in the polar regions, previous calibrated studies at Resolute Bay and Eureka using 51.5 MHz and33 MHz radars respectively, showed that PMSE backscatter signal strengths are relatively weak in the polar cap sites, compared to the auroral zone sites (Swarnalingam et al., 2009b; Singer et al., 2010). Complications arise with PMSEs in which the echo strength is controlled by the electrons, which are, in turn, influenced by heavily charged ice particles as well as the variability in the D-region plasma. In recent years, PMSE experiments were conducted inside the polar cap utilizing a 51 MHz radar located at Eureka. In this paper, we investigate calibrated observations, conducted during 2009-2015. Seasonal and diurnal variations of the backscatter signal strengths are discussed and compared to previously published results from the ALOMAR radar, which is a radar of similar design located in the auroral zone at Andenes, Norway (69 deg N, 16 deg E). At Eureka, while PMSEs are present with a daily occurrence rate which is comparable to the rate observed at the auroral zone site for at least two seasons, they show a great level of inter-annual variability. The occurrence rate for the strong echoes tends to be low. Furthermore, comparison of the absolute backscatter signal strengths at these two sites clearly indicates that the PMSE backscatter signal strength at Eureka is weak. Although this difference could be caused by several factors, we investigate the intensity of the neutral air turbulence at Eureka from the measurements of the Doppler spectrum of the PMSE backscatter signals. We found that the level of the turbulence intensity at Eureka is weak relative to previously reported results from three high latitude sites.

  5. Dynamic variability in F-region ionospheric composition at auroral arc boundaries

    Directory of Open Access Journals (Sweden)

    M. Zettergren

    2010-02-01

    Full Text Available The work presents a data-model synthesis examining the response of the auroral F-region ion temperature, composition, and density to short time scale (<1 min electric field disturbances associated with auroral arcs. Ion temperature profiles recorded by the Sondrestrom incoherent scatter radar (ISR are critically analyzed with the aid of theoretical calculations to infer ion composition variability. The analyses presented include a partial accounting for the effects of neutral winds on frictional heating and show promise as the groundwork for future attempts to address ion temperature-mass ambiguities in short-integration ISR data sets. Results indicate that large NO+ enchancements in the F-region can occur in as little as 20 s in response to impulsive changes in ion frictional heating. Enhancements in molecular ion density result in recombination and a depletion in plasma, which is shown to occur on time scales of several minutes. This depletion process, thus, appears to be of comparable importance to electrodynamic evacuation processes in producing auroral arc-related plasma depletions. Furthermore, the potential of ionospheric composition in regulating the amounts and types of ions supplied to the magnetosphere is outlined.

  6. Using spectral characteristics to interpret auroral imaging in the 731.9 nm O+ line

    Directory of Open Access Journals (Sweden)

    H. Dahlgren

    2008-07-01

    Full Text Available Simultaneous observations were made of dynamic aurora during substorm activity on 26 January 2006 with three high spatial and temporal resolution instruments: the ASK (Auroral Structure and Kinetics instrument, SIF (Spectrographic Imaging Facility and ESR (EISCAT Svalbard Radar, all located on Svalbard (78° N, 16.2° E. One of the narrow field of view ASK cameras is designed to detect O+ ion emission at 731.9 nm. From the spectrographic data we have been able to determine the amount of contaminating N2 and OH emission detected in the same filter. This is of great importance to further studies using the ASK instrument, when the O+ ion emission will be used to detect flows and afterglows in active aurora. The ratio of O+ to N2 emission is dependent on the energy spectra of electron precipitation, and was found to be related to changes in the morphology of the small-scale aurora. The ESR measured height profiles of electron densities, which allowed estimates to be made of the energy spectrum of the precipitation during the events studied with optical data from ASK and SIF. It was found that the higher energy precipitation corresponded to discrete and dynamic features, including curls, and low energy precipitation corresponded to auroral signatures that were dominated by rays. The evolution of these changes on time scales of seconds is of importance to theories of auroral acceleration mechanisms.

  7. Study of AKR hollow pattern characteristics at sub-auroral regions

    Science.gov (United States)

    Boudjada, Mohammed Y.; Sawas, Sami; Galopeau, Patrick; Berthelier, Jean-Jacques; Schwingenschuh, Konrad

    2014-05-01

    The Earth's auroral kilometric radiation (AKR) is expected to exhibit a hollow pattern similar to that reported for the comparable emissions from Jupiter (e.g. Jovian decametric emissions - DAM). The hollow pattern is a hollow cone beam with apex at the point of AKR emission, axis tangent to the magnetic field direction, and an opening angle of the order of 80°. The properties of the hollow cone can be derived from the so-called dynamic spectrum which displays the radiation versus the observation time and the frequency. We analyze the auroral kilometric radiation recorded by the electric field experiment (ICE) onboard DEMETER micro-satellite. The dynamic spectra lead us to study the occurrence of the AKR recorded in the sub-auroral regions when the micro-satellite was at altitudes of about 700 km. We address in this contribution issues concerning the characteristics (occurrence, latitude and longitude) of the AKR hollow beam and their relations to the seasonal and solar activity variations.

  8. Auroral-zone electric fields from DE-1 and -2 at magnetic conjuctions

    International Nuclear Information System (INIS)

    Weimer, D.R.

    1984-01-01

    Nearly simultaneous measurements of auroral zone electric fields are obtained by the Dynamics Explorer spacecraft at altitudes below 900 km and above 4500 km during magnetic conjuctions. The measured electric fields are approximately perpendicular to the magnetic field lines. The north-south meridional electric fields are projected to a common altitude by a mapping function. When plotted as a function of invariant latitude, graphs of the projected electric fields measured by DE-1 and DE-2 show that the large-scale electric field is the same at both altitudes. However, superimposed on the large-scale fields are small-scale features with wavelengths less than 100 km which are larger in magnitude at the higher altitude. Fourier transforms of the electric fields show that the magnitudes depend on wavelength. Outside of the auroral zone the electric field spectrums are nearly identical. But within the auroral zone the spectrums of the high and low altitude electric fields have a ratio which increases with the reciprocal of the wavelength. The small-scale electric field variations are associated with field-aligned currents. These currents are measured with both a plasma instrument and magnetometer on DE-1

  9. Coordinated ground-based and geosynchronous satellite-based measurements of auroral pulsations

    Energy Technology Data Exchange (ETDEWEB)

    Suszcynsky, David M.; Borovsky, Joseph E.; Thomsen, Michelle F.; McComas, David J.; Belian, Richard D.

    1996-09-01

    We describe a technique that uses a ground-based all-sky video camera and geosynchronous satellite-based plasma and energetic particle detectors to study ionosphere-magnetosphere coupling as it relates to the aurora. The video camera system was deployed in Eagle, Alaska for a seven month period at the foot of the magnetic field line that threads geosynchronous satellite 1989-046. Since 1989-046 corotates with the earth, its footprint remains nearly fixed in the vicinity of Eagle, allowing for routine continuous monitoring of an auroral field line at its intersections with the ground and with geosynchronous orbit. As an example of the utility of this technique, we present coordinated ground-based and satellite based observations during periods of auroral pulsations and compare this data to the predictions of both the relaxation oscillator theory and flow cyclotron maser theory for the generation of pulsating aurorae. The observed plasma and energetic particle characteristics at geosynchronous orbit during pulsating aurorae displays are found to be in agreement with the predictions of both theories lending further support that a cyclotron resonance mechanism is responsible for auroral pulsations.

  10. An empirical determination of the production efficiency for auroral 6300 AA emmission by energetic electrons

    International Nuclear Information System (INIS)

    Winningham, J.D.; Bunn, F.E.; Thirkettle, F.W.; Shepherd, G.G.

    1979-06-01

    Auroral data from the Soft Particle Spectrometer and the Red Line Photometer on the ISIS-2 spacecraft have been selected to form an electron energy flux and optical auroral emission data base. The energy fluxes are stored as integrated fluxes over four energy bands, and the corresponding stored optical emission rates are corrected for airglow and for albedo. Because of the variety of electron energy spectra represented in the data base it was possible to perform a regression analysis that yielded the production efficiency for the production of emission for each of the four bands. While the results of this analysis are interesting to compare with theoretical predictions of 6300 AA excitation processes, these statistical results are not as precise as the comparisons of individual experiments where all parameters, such as the atmospheric composition and temperature profiles are measured. The significance of this approach is that it permits a multiparameter description of an electron energy spectrum, and its relationship to a specific optical emission, by purely empirical means. This is particularly useful in the interpretation of ISIS-2 data from the instruments which provided the results, but should find further application in optical-particle auroral studies. (author)

  11. Strategic Polarization.

    Science.gov (United States)

    Kalai, Adam; Kalai, Ehud

    2001-08-01

    In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.

  12. GREECE -- Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment: High resolution rocket and ground-based investigations of small-scale auroral structure and dynamics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Methodology The methodology is based on making comparisons between downward electron flux, DC electric fields, electromagnetic waves, and auroral morphology. The...

  13. Sequestration of U(VI) from Acidic, Alkaline, and High Ionic-Strength Aqueous Media by Functionalized Magnetic Mesoporous Silica Nanoparticles: Capacity and Binding Mechanisms

    Science.gov (United States)

    Uranium (VI) exhibits little adsorption onto sediment minerals in acidic, alkaline or high ionic-strength aqueous media that often occur in U mining or contaminated sites, which makes U(VI) very mobile and difficult to sequester. In this work, magnetic mesoporous silica nanoparti...

  14. Interhemispheric asymmetries in the occurrence of magnetically conjugate sub-auroral polarisation streams

    Directory of Open Access Journals (Sweden)

    M. L. Parkinson

    2005-06-01

    Full Text Available Earthward injections of energetic ions and electrons mark the onset of magnetospheric substorms. In the inner magnetosphere (L4, the energetic ions drift westward and the electrons eastward, thereby enhancing the equatorial ring current. Wave-particle interactions can accelerate these particles to radiation belt energies. The ions are injected slightly closer to Earth in the pre-midnight sector, leading to the formation of a radial polarisation field in the inner magnetosphere. This maps to a poleward electric field just equatorward of the auroral oval in the ionosphere. The poleward electric field is subsequently amplified by ionospheric feedback, thereby producing auroral westward flow channels (AWFCs. In terms of electric field strength, AWFCs are the strongest manifestation of substorms in the ionosphere. Because geomagnetic flux tubes are essentially equi-potentials, similar AWFC signatures should be observed simultaneously in the Northern and Southern Hemispheres. Here we present magnetically conjugate SuperDARN radar observations of AWFC activity observed in the pre-midnight sector during two substorm intervals including multiple onsets during the evening of 30 November 2002. The Northern Hemisphere observations were made with the Japanese radar located at King Salmon, Alaska (57, and the Southern Hemisphere observations with the Tasman International Geospace Environment Radar (TIGER located at Bruny Island, Tasmania (55. LANL geosynchronous satellite observations of energetic ion and electron fluxes monitored the effects of substorms in the inner magnetosphere (L6. The radar-observed AWFC activity was coincident with activity observed at geosynchronous orbit, as well as westward current surges in the ionosphere observed using ground-based magnetometers. The location of AWFCs with respect to the auroral oval was inferred from FUV auroral images recorded on board the IMAGE spacecraft. DMSP SSIES ion drift measurements confirmed the

  15. Measurements of auroral particles by means of sounding rockets of mother-daughter type

    International Nuclear Information System (INIS)

    Falck, A.

    1985-11-01

    The scientific objective of the S17 payloads was to study the ionosphere during auroral situations and especially with regards to the local fine structure and a possible separation of spatial and temporal variations of auroral phenomena. The intensities of 8 keV and 2 keV electrons have been measured from one sounding rocket launched into a breakup aurora of moderate activity and from another rocket launched into a very active substorm situation. Both the rockets were of mother-daughter type i.e. had two separated payloads. The general features in the data of different particle energies were very similar over the whole flight time of the rockets. Special events and gradients and well identifiable shapes in the particle intensities were studied to see if the intensity fluctuations obtained from two detectors in one payload or from detectors into separate payloads were time delayed. Such time delays in the particle flux intensities were obvious in both of the rocket measurements and most of these time shifts could be understood as caused by spatial variations in the particle precipitation. In parts of the rocket flights the particle intensity variations were true temporal changes. The time lags between 8 keV and 2 keV electron intensities detected in the same payload, which could be observed and were obtained by crosscorrelation analyses, were in the range less than 0.3 s and most of them less than 0.1 s. If the time differences are assumed to be caused by the velocity dispersion of the particles, the particle data reported here placed the modulation source at a distance of less than 10 000 km from the rocket position. Measurements at the S17-1 mother payload of the electric field have been compared with data of precipitating electrons and low-light-level-TV-recording of the auroral situation. An inverted-V precipitation event was observed and was associated with auroral arcs and with reversals of the measured electric field components implicating the possibility of

  16. Necessary Conditions For Establishing Quasi-Stable Double Layers in Earth's Auroral Upward Current Region

    Science.gov (United States)

    Main, D. S.; Newman, D.; Ergun, R. E.

    2010-12-01

    Observations from the Fast Auroral SnapshoT (FAST) spacecraft indicate that a strong localized electric field often exists at the boundary between the ionosphere and auroral cavity in the upward current region. The observed electric field structures are found to have widths that are on the order of tens of electron Debye lengths and have components both parallel and perpendicular to Earth’s magnetic field and are therefore said to be an “oblique” electric field. These oblique electric fields have previously been modeled by static BGK double layer solutions. Dynamic Vlasov simulations have shown that a non-oblique double layer models the parallel component of the observed electric field structures well, is quasi-stable and persists long enough to account for the often observed ion phase space holes in the auroral cavity. However, to date, it has not been clear how an oblique double layer can form and remain quasi-stable. Using an open boundary 1D3V particle-in-cell simulation, we present a parameter study of over 20 simulations in which we vary cold electron density and temperature and show the necessary conditions for maintaining both oblique and non-oblique double layers at the lower boundary of the upward current region. The simulation includes an assumed density cavity, hot auroral cavity electrons, cold ionospheric electrons, a hot H+ component and anti-earthward traveling H+ and O+ ion beams. We do not assume that any localized potential drop initially exists. Rather, if a DL forms, it does so self-consistently at the interface of the dense ionosphere and tenuous auroral cavity. Based on the PIC results, we find that the oblique double layer requires a cold (< 5 eV) ionospheric electron population to remain quasi-stable. We also compare the shape of the simulated double layer with observed double layers and show that the observed asymmetric shape can also be explained by the temperature and density of the cold ionospheric electrons. We will also present

  17. Swarm-Aurora: A web-based tool for quickly identifying multi-instrument auroral events

    Science.gov (United States)

    Chaddock, D.; Donovan, E.; Spanswick, E.; Knudsen, D. J.; Frey, H. U.; Kauristie, K.; Partamies, N.; Jackel, B. J.; Gillies, M.; Holmdahl Olsen, P. E.

    2016-12-01

    In recent years there has been a dramatic increase in ground-based auroral imaging systems. These include the continent-wide THEMIS-ASI network, and imagers operated by other programs including GO-Canada, MIRACLE, AGO, OMTI, and more. In the near future, a new Canadian program called TREx will see the deployment of new narrow-band ASIs that will provide multi-wavelength imaging across Western Canada. At the same time, there is an unprecedented fleet of international spacecraft probing geospace at low and high altitudes. We are now in the position to simultaneously observe the magnetospheric drivers of aurora, observe in situ the waves, currents, and particles associated with MI coupling, and the conjugate aurora. Whereas a decade ago, a single magnetic conjunction between one ASI and a low altitude satellite was a relatively rare event, we now have a plethora of triple conjunctions between imagers, low-altitude spacecraft, and near-equatorial magnetospheric probes. But with these riches comes a new level of complexity. It is often difficult to identify the many useful conjunctions for a specific line of inquiry from the multitude of conjunctions where the geospace conditions are often not relevant and/or the imaging is compromised by clouds, moon, or other factors. Swarm-Aurora was designed to facilitate and drive the use of Swarm in situ measurements in auroral science. The project seeks to build a bridge between the Swarm science community, Swarm data, and the complimentary auroral data and community. Swarm-Aurora (http://swarm-aurora.phys.ucalgary.ca) incorporates a web-based tool which provides access to quick-look summary data for a large array of instruments, with Swarm in situ and ground-based ASI data as the primary focus. This web interface allows researchers to quickly and efficiently browse Swarm and ASI data to identify auroral events of interest to them. This allows researchers to be able to easily and quickly identify Swarm overflights of ASIs that

  18. Conversion from HST ACS and STIS auroral counts into brightness, precipitated power and radiated power for H2 giant planets

    Science.gov (United States)

    Gustin, J.; Bonfond, B.; Grodent, D.; Gerard, J. C.

    2012-09-01

    The STIS and ACS instruments onboard HST are widely used to study the giant planet's aurora. Several assumptions have to be made to convert the instrumental counts into meaningful physical values (type and bandwidth of the filters, definition of the physical units, etc…), but these may significantly differ from one author to another, which makes it difficult to compare the auroral characteristics published in different studies. We present a method to convert the counts obtained in representative ACS and STIS imaging modes / filters used by the auroral scientific community to brightness, precipitated power and radiated power in the ultraviolet (700- 1800 Å). Since hydrocarbon absorption may considerably affect the observed auroral emission, the conversion factors are determined for several attenuation levels. Several properties of the auroral emission have been determined: the fraction of the H2 emission shortward and longward of the HLy-a line is 50.3 % and 49.7 % respectively, the contribution of HLy-a to the total unabsorbed auroral signal has been set to 9.1 % and an input of 1 mW m-2 produces 10 kR of H2 in the Lyman and Werner bands. A first application sets the order of magnitude of Saturn's auroral characteristics in the total UV bandwidth to a brightness of 10 kR and an emitted power of ~2.8 GW. A second application uses published brighnesses of Europa's footprint to determine the current density associated with the Europa auroral spot: 0.21 and 0.045 μA m-2 assuming no hydrocarbon absorption and a color ratio of 2, respectively.

  19. Rationally designed core-shell and yolk-shell magnetic titanate nanosheets for efficient U(VI) adsorption performance.

    Science.gov (United States)

    Yin, Ling; Song, Shuang; Wang, Xiangxue; Niu, Fenglei; Ma, Ran; Yu, Shujun; Wen, Tao; Chen, Yuantao; Hayat, Tasawar; Alsaedi, Ahmed; Wang, Xiangke

    2018-04-03

    The hierarchical core-shell and yolk-shell magnetic titanate nanosheets (Fe 3 O 4 @TNS) were successfully synthesized by employing magnetic nanoparticles (NPs) as interior core and intercrossed titanate nanostructures (NSs) as exterior shell. The as-prepared magnetic Fe 3 O 4 @TNS nanosheets had high specific areas (114.9 m 2  g -1 for core-shell Fe 3 O 4 @TNS and 130.1 m 2  g -1 for yolk-shell Fe 3 O 4 @TNS). Taking advantage of the unique multilayer structure, the nanosheets were suitable for eliminating U(VI) from polluted water environment. The sorption was strongly affected by pH values and weakly influenced by ionic strength, suggesting that the sorption of U(VI) on Fe 3 O 4 @TNS was mainly dominated by ion exchange and outer-sphere surface complexion. The maximum sorption capacities (Q max ) calculated from the Langmuir model were 68.59, 121.36 and 264.55 mg g -1 for core-shell Fe 3 O 4 @TNS and 82.85, 173.01 and 283.29 mg g -1 for yolk-shell Fe 3 O 4 @TNS, at 298 K, 313 K and 328 K, respectively. Thermodynamic parameters (ΔH 0 , ΔS 0 and ΔG 0 ) demonstrated that the sorption process was endothermic and spontaneous. Based on X-ray photoelectron spectroscopy (XPS) analyses, the sorption mechanism was confirmed to be cation-exchange between interlayered Na + and UO 2 2+ . The yolk-shell Fe 3 O 4 @TNS had more extraordinary sorption efficiency than core-shell Fe 3 O 4 @TNS since the yolk-shell structure provided internal void space inside the titanate shell to accommodate more exchangeable active sites. The flexible recollection and high efficient sorption capacity made core-shell and yolk-shell Fe 3 O 4 @TNS nanosheets promising materials to eliminate U(VI) or other actinides in wastewater cleanup applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Dependence of the open-closed field line boundary in Saturn's ionosphere on both the IMF and solar wind dynamic pressure: comparison with the UV auroral oval observed by the HST

    Directory of Open Access Journals (Sweden)

    E. S. Belenkaya

    2008-02-01

    Full Text Available We model the open magnetic field region in Saturn's southern polar ionosphere during two compression regions observed by the Cassini spacecraft upstream of Saturn in January 2004, and compare these with the auroral ovals observed simultaneously in ultraviolet images obtained by the Hubble Space Telescope. The modelling employs the paraboloid model of Saturn's magnetospheric magnetic field, whose parameters are varied according to the observed values of both the solar wind dynamic pressure and the interplanetary magnetic field (IMF vector. It is shown that the open field area responds strongly to the IMF vector for both expanded and compressed magnetic models, corresponding to low and high dynamic pressure, respectively. It is also shown that the computed open field region agrees with the poleward boundary of the auroras as well as or better than those derived previously from a model in which only the variation of the IMF vector was taken into account. The results again support the hypothesis that the auroral oval at Saturn is associated with the open-closed field line boundary and hence with the solar wind interaction.

  1. Accurate determination of U(IV), U(VI) and total uranium in uranium dioxide pellet by coulometry at constant current

    International Nuclear Information System (INIS)

    Li Guohua; Zhou Yongzhong

    1999-04-01

    The accurate determination is studied of U(IV), U(VI), total U and ratio of Oxygen to Uranium (O/U) by Coulometry at a constant current. The sample is dissolved rapidly and thoroughly in thermostatic phosphoric acid solution (adding a little of hydrofluoric acid) by a new method of stirring reflux at 270 +- 5 degree C, and the U (VI) in the solution is reduced to U(IV) by ferrous iron. Weigh a little of excess reference bichrome material precisely, then add it into the solution to oxide the U(IV). And the excess bichrome is titrated by electrolytic iron ion (II) under a constant current. With the bichrome amount consumed by uranium oxide, the total U thus can be calculated. The U(IV) is also measured with the same method and principle of dissolving the sample as that of the total U measurement except the reduction of U(VI) to U(IV) by adding ferrous iron. The U(VI) and the O/U ratio can be calculated with the results of total U and U(IV). So the uncertainty by the method is better than 0.035% for total U, 0.025% for U(IV), 9.03% for U(VI) and ).0001 O/U unit for O/U ratio. This method is applicable to the accurate determinations of U(IV), U(VI), total U and O/U ratio in UO 2 and U 3 O 8 powders and UO 2 pellet

  2. Surface Engineering of PAMAM-SDB Chelating Resin with Diglycolamic Acid (DGA) Functional Group for Efficient Sorption of U(VI) and Th(IV) from Aqueous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Ilaiyaraja, P.; Venkatraman, B., E-mail: chemila07@gmail.com [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Deb, A.K. Singha [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India); Ponraju, D. [Safety Engineering Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Ali, Sk. Musharaf [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    2017-04-15

    Highlights: • A new DGA-PAMAM-SDB chelating resin has been synthesized for actinide sorption. • Maximum sorption capacities of resin are 682 and 544.2 mg g{sup −1}for U(VI) and Th(IV). • DGA-PAMAM-SDB chelating resin could be regenerated and reused. • DFT calculation of actinides interaction with resin corroborates the experimental. • Resin is effective for sorption of actinides from both aqueous and HNO{sub 3} medium. - Abstract: A novel chelating resin obtained via growth of PAMAM dendron on surface of styrene divinyl benzene resin beads, followed by diglycolamic acid functionalization of the dendrimer terminal. Batch experiments were conducted to study the effects of pH, nitric acid concentration, amount of adsorbent, shaking time, initial metal ion concentration and temperature on U(VI) and Th(IV) adsorption efficiency. Diglycolamic acid terminated PAMAM dendrimer functionalized styrene divinylbenzene chelating resin (DGA-PAMAM-SDB) is found to be an efficient candidate for the removal of U(VI) and Th(IV) ions from aqueous (pH > 4) and nitric acid media (> 3 M). The sorption equilibrium could be reached within 60 min, and the experimental data fits with pseudo-second-order model. Langmuir sorption isotherm model correlates well with sorption equilibrium data. The maximum U(VI) and Th(IV) sorption capacity onto DGA-PAMAMG{sub 5}-SDB was estimated to be about 682 and 544.2 mg g{sup −1} respectively at 25 °C. The interaction of actinides and chelating resin is reversible and hence, the resin can be regenerated and reused. DFT calculation on the interaction of U(VI) and Th(IV) ions with chelating resin validates the experimental findings.

  3. Ce(III), Th(IV) and U(VI) chelates of alizarin viridine, alizarin heliotrope and alizarin maroon

    International Nuclear Information System (INIS)

    Idriss, K.A.; Issa, I.M.; Seleim, M.M.

    1977-01-01

    The complexes of 7,8-dihydroxy-1,4-di(2'-sulpho-4' methylanilino)-anthraquinone (alizarin viridine); 1,4-dihydroxy-2(2'-sulpho-4'-methylanilino)anthraquinone (alizarin heliotrope) and 3-amino-1,2-dihydroxyanthraquinone (alizarin maroon) with Ce(III), and U(VI) have been investigated using spectrophotometric and conductometric methods. The study revealed the formation of complexes having the metal: ligand ratios 1:1 and 1:2. The mean values of logβ (β being stability constant) for the different complexes are determined. The structure of the ligands in the solid chelates were studied by i.r. spectrophotmetry which showed that chelate formation takes place through the C=O and neighbouring OH group and leads to proton displacement. (author)

  4. Precessing deuteron polarization

    International Nuclear Information System (INIS)

    Sitnik, I.M.; Volkov, V.I.; Kirillov, D.A.; Piskunov, N.M.; Plis, Yu.A.

    2002-01-01

    The feasibility of the acceleration in the Nuclotron of deuterons polarized in the horizontal plane is considered. This horizontal polarization is named precessing polarization. The effects of the main magnetic field and synchrotron oscillations are included. The precessing polarization is supposed to be used in studying the polarization parameters of the elastic dp back-scattering and other experiments

  5. On-line monitoring of the U(VI) concentration in 30 vol.% TBP/kerosene: an evaluation of real-time analysis in polyetheretherketone (PEEK) containers via Raman spectroscopy

    International Nuclear Information System (INIS)

    Xue Bai; Ding-Ming Li; Zhi-Yuan Chang; De-Jun Fan; Jin-Ping Liu; Hui Wang

    2015-01-01

    In order to evaluate the practicability of Raman spectroscopy for on-line U(VI) concentration monitoring in 30 vol.% TBP/kerosene within polyetheretherketone containers, laboratory scale experiments were performed and several influencing factors for real-time determination were investigated. A method of internal standard was employed for the first time. Software developed for real-time concentration data display can give the U(VI) concentration autonomously within several seconds. The study confirmed Raman spectroscopy as a promising methodology for on-line U(VI) concentration monitoring in organic phase. (author)

  6. The storm time position of the auroral electrojet and the acceleration of the outer belt relativistic electrons

    Science.gov (United States)

    Kozyreva, Olga; Antonova, Elizaveta

    One of the main feature of the magnetospheric dynamics during magnetic storms is the motion of the auroral oval to the equator and the development of the powerful ring current. The main magnetic disturbances at the auroral latitudes are connected with the development of the westward electrojet. The motion of the auroral oval to the equator is accompanied by the motion to the equator of the auroral electrojet and the increase of the intensity of ultra low frequency (ULF) waves. We analyze the position of the auroral electrojet and ULF activity during magnetic storms for the period of Van Allen Probes mission. We also produce such analysis for a number of great magnetic storms with min Dst<-200 nT. We compare the localization of the position of the start of the increase of relativistic electrons for the Van Allen Probes period with the latitude of the westward electrojet and show that such increase is localized near its equatorial boundary. We compare the results of observations with the suggested theories of the acceleration of relativistic electrons.

  7. Investigating the Role of Sub-Auroral Polarization Stream Electric Field in Coupled Magnetosphere-Ionosphere-Thermosphere Systemwide Processes

    Science.gov (United States)

    2017-04-04

    Technology and Electrical Engineering - Address: The University of Queensland, St. Lucia, Brisbane, QLD, Australia Period of Performance: 1 June 2015 to...24-25 September 2000. Date received: 14 December 2016 Authors: Horvath, I., and B. C. Lovell f) List any interactions with industry or...Even Name: 2016 Joint CEDAR-GEM Workshop, Eldorado Hotel and Santa Fe Convention Center, Santa Fe, NM, USA Title: Flow channel events

  8. Polare maskuliniteter

    Directory of Open Access Journals (Sweden)

    Marit Anne Hauan

    2012-05-01

    Full Text Available In this paper my aim is to read and understand the journal of Gerrit de Veer from the last journey of William Barents to the Arctic Regions in 1596 and the journal of captain Junge on his hunting trip from Tromsø to Svalbard in 1834.It is nearly 240 years between this to voyages. The first journal is known as the earliest report from the arctic era. Gerrit de Veer adds instructive copper engravings to his text and give us insight in the crews meeting with this new land. Captain Junges journal is found together with his dead crew in a house in a fjord nearby Ny-Ålesund and has no drawings, but word. Both of these journals may be read as sources of the knowledge and understanding of the polar region. They might also unveil the ideas of how to deal with and survive under the challenges that is given. In addition one can ask if the sources can tell us more about how men describe their challenges. Can the way they expressed themselves in the journals give us an understanding of masculinity? And not least help us to create good questions of the change in the ideas of masculinities which is said to follow the change in understanding of the wilderness.

  9. The role of natural E-region plasma turbulence in the enhanced absorption of HF radio waves in the auroral ionosphere:Implications for RF heating of the auroral electrojet

    Directory of Open Access Journals (Sweden)

    T. R. Robinson

    1994-03-01

    Full Text Available Physical processes which affect the absorption of radio waves passing through the auroral E-region when Farley-Buneman irregularities are present are examined. In particular, the question of whether or not it is legitimate to include the anomalous wave-enhanced collision frequency, which has been used successfully to account for the heating effects of Farley-Buneman waves in the auroral E-region, in the usual expression for the radio-wave absorption coefficient is addressed. Effects also considered are those due to wave coupling between electromagnetic waves and high-frequency electrostatic waves in the presence of Farley-Buneman irregularities. The implications for radio-wave heating of the auroral electrojet of these processes are also discussed. In particular, a new theoretical model for calculating the effects of high-power radio-wave heating on the electron temperature in an electrojet containing Farley-Buneman turbulence is presented.

  10. Polar ionospheric responses to solar wind IMF changes

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2000-06-01

    Full Text Available Auroral and airglow emissions over Eureka (89° CGM during the 1997-98 winter show striking variations in relation to solar wind IMF changes. The period January 19 to 22, 1998, was chosen for detailed study, as the IMF was particularly strong and variable. During most of the period, Bz was northward and polar arcs were observed. Several overpasses by DMSP satellites during the four day period provided a clear picture of the particle precipitation producing the polar arcs. The spectral character of these events indicated excitation by electrons of average energy 300 to 500 eV. Only occasionally were electrons of average energy up to ~1 keV observed and these appeared transitory from the ground optical data. It is noted that polar arcs appear after sudden changes in IMF By, suggesting IMF control over arc initiation. When By is positive there is arc motion from dawn to dusk, while By is negative the motion is consistently dusk to dawn. F-region (anti-sunward convections were monitored through the period from 630.0 nm emissions. The convection speed was low (100-150 m/s when Bz was northward but increased to 500 m/s after Bz turned southward on January 20.Key words: Atmospheric composition and structure (airglow and aurora - Ionosphere (particle precipitation - Magnetospheric Physics (polar cap phenomena

  11. Parallel electric field in the auroral ionosphere: excitation of acoustic waves by Alfvén waves

    Directory of Open Access Journals (Sweden)

    P. L. Israelevich

    2004-09-01

    Full Text Available We investigate a new mechanism for the formation of a parallel electric field observed in the auroral ionosphere. For this purpose, the excitation of acoustic waves by propagating Alfvén waves was studied numerically. We find that the magnetic pressure perturbation due to finite amplitude Alfvén waves causes the perturbation of the plasma pressure that propagates in the form of acoustic waves, and gives rise to a parallel electric field. This mechanism explains the observations of the strong parallel electric field in the small-scale electromagnetic perturbations of the auroral ionosphere. For the cases when the parallel electric current in the small-scale auroral perturbations is so strong that the velocity of current carriers exceeds the threshold of the ion sound instability, the excited ion acoustic waves may account for the parallel electric fields as strong as tens of mV/m.

  12. The dependence of modeled OI 1356 and N2 Lyman Birge Hopfield auroral emissions on the neutral atmosphere

    Science.gov (United States)

    Germany, G. A.; Torr, M. R.; Richards, P. G.; Torr, D. G.

    1990-01-01

    The sensitivity of selected auroral emissions to anticipated changes in the neutral atmosphere was investigated from the results of a series of sensitivity studies conducted using an auroral emission code developed by Richards and Torr (1990). In particular, the behavior of OI 1356 and two Lyman Birge Hopfield (LBH) bands and their ratios to each other with changing atmospheric composition was examined. It was found that, for anticipated average uncertainties in the neutral atmosphere (factor 2 at auroral altitudes), the resultant change in the modeled intensities is comparable to or less than the uncertainty in the neutral atmosphere. The variation in the I 1356/I 1838 ratio over the equivalent of a solar cycle is less than 50 percent, and the summer-to-winter changes are approximately a factor of 2.

  13. Study of auroral forms and electron precipitation with the IRIS, DASI and EISCAT systems

    Directory of Open Access Journals (Sweden)

    C. F. del Pozo

    Full Text Available Simultaneous observations with the IRIS, DASI and EISCAT systems are employed in the study of the spatial distribution and temporal evolution of auroral forms and precipitation regions during substorm activity. The evolution of the spectrum of precipitating electrons above Tromsø during the various phases of substorms is discussed. The flux-energy spectrum in the 1–320 keV range is derived from EISCAT electron density profiles in the 70–140 km altitude range. At the late growth phase the precipitation flux at the higher energies increases faster than at the lower energies. The flux is always greater in the lower energy side of the spectrum and reaches a maximum a few minutes after substorm onset, then it decays while the spectrum narrows. The systematic analysis of 2-D structures corresponding with well-defined optical and absorption features is also discussed. The orientation, characteristic lengths (elongation and width and the gravity centre of these spatial features are determined. The statistical analysis of centre position and the sizes of the corresponding signatures is presented. When substorm onset falls within the common field of view, there is a close correspondence between the optical and the absorption signatures of the auroral forms, as well as in their over-all north-south motion characteristic of the various phases of the substorm. Optical signatures of arcs are more evenly distributed in space, being narrower and elongated along the L-shells, while the absorption regions appear more structured and patchy, although generally following the arcs’ shape and alignment. Cross-correlation of the time series of maximum absorption and maximum green-line emission is very high and seems to show a systematic delay of absorption relative to optical emission. Time delays are generally larger for disturbed conditions (40 to 60 s than for moderately active conditions (10 to 20 s.

    Key words. Interplanetary physics (energetic

  14. Study of auroral forms and electron precipitation with the IRIS, DASI and EISCAT systems

    Directory of Open Access Journals (Sweden)

    C. F. del Pozo

    2002-09-01

    Full Text Available Simultaneous observations with the IRIS, DASI and EISCAT systems are employed in the study of the spatial distribution and temporal evolution of auroral forms and precipitation regions during substorm activity. The evolution of the spectrum of precipitating electrons above Tromsø during the various phases of substorms is discussed. The flux-energy spectrum in the 1–320 keV range is derived from EISCAT electron density profiles in the 70–140 km altitude range. At the late growth phase the precipitation flux at the higher energies increases faster than at the lower energies. The flux is always greater in the lower energy side of the spectrum and reaches a maximum a few minutes after substorm onset, then it decays while the spectrum narrows. The systematic analysis of 2-D structures corresponding with well-defined optical and absorption features is also discussed. The orientation, characteristic lengths (elongation and width and the gravity centre of these spatial features are determined. The statistical analysis of centre position and the sizes of the corresponding signatures is presented. When substorm onset falls within the common field of view, there is a close correspondence between the optical and the absorption signatures of the auroral forms, as well as in their over-all north-south motion characteristic of the various phases of the substorm. Optical signatures of arcs are more evenly distributed in space, being narrower and elongated along the L-shells, while the absorption regions appear more structured and patchy, although generally following the arcs’ shape and alignment. Cross-correlation of the time series of maximum absorption and maximum green-line emission is very high and seems to show a systematic delay of absorption relative to optical emission. Time delays are generally larger for disturbed conditions (40 to 60 s than for moderately active conditions (10 to 20 s.Key words. Interplanetary physics (energetic particles

  15. The statistical dependence of auroral absorption on geomagnetic and solar wind parameters

    Directory of Open Access Journals (Sweden)

    A. J. Kavanagh

    2004-03-01

    Full Text Available Data from the Imaging Riometer for Ionospheric Studies (IRIS at Kilpisjärvi, Finland, have been compiled to form statistics of auroral absorption based on seven years of observations. In a previous study a linear relationship between the logarithm of the absorption and the Kp index provided a link between the observations of precipitation with the level of geomagnetic activity. A better fit to the absorption data is found in the form of a quadratic in Kp for eight magnetic local time sectors. Past statistical investigations of absorption have hinted at the possibility of using the solar wind velocity as a proxy for the auroral absorption, although the lack of available satellite data made such an investigation difficult. Here we employ data from the solar wind monitors, WIND and ACE, and derive a linear relationship between the solar wind velocity and the cosmic noise absorption at IRIS for the same eight magnetic local time sectors. As far as the authors are aware this is the first time that in situ measurements of the solar wind velocity have been used to create a direct link with absorption on a statistical basis. The results are promising although, it is clear that some other factor is necessary in providing reliable absorption predictions. Due to the substorm related nature of auroral absorption, this is likely formed by the recent time history of the geomagnetic activity, or by some other indicator of the energy stored within the magnetotail. For example, a dependence on the southward IMF (interplanetary magnetic field is demonstrated with absorption increasing with successive decreases in Bz; a northward IMF appears to have little effect and neither does the eastward component, By.

    Key words. Magnetospheric physics (energetic particles, precipitating; solar wind-magnetosphere interactions – Ionosphere (modeling and forecasting

  16. Imaging of Vector Electric Fields Surrounding Auroral Arcs from Multibeam Incoherent Scatter Radar Measurements.

    Science.gov (United States)

    Maksimova, N.; Varney, R. H.; Cosgrove, R. B.; Kaeppler, S. R.; Nicolls, M. J.

    2015-12-01

    Evaluating the ionospheric electric fields and current systems surrounding auroral arcs aids in distinguishing physical mechanisms that drive arc generation and current closure. Auroral forms involve spatial scales that are small in comparison with the magnetosphere-ionosphere-thermosphere (MIT) system, and yet these forms are thought to be closely tied to the overall system response. Spatially resolved measurements of the horizontal ionospheric current can, in principle, be used to determine the field-aligned currents (FAC) that are responsible for energy transfer between the magnetosphere and the ionosphere/thermosphere, leading to heating and upwelling of the neutral gas and acceleration of ion upflows and outflows. Furthermore, the closure of FACs in the ionosphere regulates modes of magnetospheric convection and substorms. An algorithm has been developed to image the local structure in the convection electric field using multibeam incoherent scatter radar (ISR) measurements. Given the inherent difficulty of reconstructing vector quantities from line of sight (LOS) velocity measurements, the algorithm's aim is to select from the solution space for the possible field configurations a unique solution for the electric field distribution by constraining the reconstructed electric field to reproduce the LOS measurements within measurement errors while simultaneously minimizing a measure of the field's curvature and absolute gradient. Using the method of Lagrange multipliers, the algorithm regularizes the underdetermined problem defined by the LOS radar velocity measurements and guarantees a unique solution when the average measurement error is smaller than the average measurement amplitude. The algorithm is tested on a variety of simulated fields in a sensitivity study to determine the extent to which the solution depends on the a priori assumptions and the observation geometry. In addition, a case study of a quiescent auroral arc observed by the Poker Flat

  17. Jupiter Thermospheric General Circulation Model (JTGCM): Global Structure and Dynamics Driven by Auroral and Joule Heating

    Science.gov (United States)

    Bougher, S. W.; J. Il. Waite, Jr.; Majeed, T.

    2005-01-01

    A growing multispectral database plus recent Galileo descent measurements are being used to construct a self-consistent picture of the Jupiter thermosphere/ionosphere system. The proper characterization of Jupiter s upper atmosphere, embedded ionosphere, and auroral features requires the examination of underlying processes, including the feedbacks of energetics, neutral-ion dynamics, composition, and magnetospheric coupling. A fully 3-D Jupiter Thermospheric General Circulation Model (JTGCM) has been developed and exercised to address global temperatures, three-component neutral winds, and neutral-ion species distributions. The domain of this JTGCM extends from 20-microbar (capturing hydrocarbon cooling) to 1.0 x 10(exp -4) nbar (including aurora/Joule heating processes). The resulting JTGCM has been fully spun-up and integrated for greater than or equal to40 Jupiter rotations. Results from three JTGCM cases incorporating moderate auroral heating, ion drag, and moderate to strong Joule heating processes are presented. The neutral horizontal winds at ionospheric heights vary from 0.5 km/s to 1.2 km/s, atomic hydrogen is transported equatorward, and auroral exospheric temperatures range from approx.1200-1300 K to above 3000 K, depending on the magnitude of Joule heating. The equatorial temperature profiles from the JTGCM are compared with the measured temperature structure from the Galileo AS1 data set. The best fit to the Galileo data implies that the major energy source for maintaining the equatorial temperatures is due to dynamical heating induced by the low-latitude convergence of the high-latitude-driven thermospheric circulation. Overall, the Jupiter thermosphere/ionosphere system is highly variable and is shown to be strongly dependent on magnetospheric coupling which regulates Joule heating.

  18. Measurement of diffraction-pattern parameters during the probing of the auroral ionosphere by satellite signals

    Science.gov (United States)

    Bogoliubov, A. A.; Erukhimov, L. M.; Miasnikov, E. N.; Ogloblina, O. F.; Chekalev, S. P.; Cheremnyi, V. A.

    1984-02-01

    In a study of the irregular structure of the auroral ionosphere over the Murmansk region, 150-MHz signals were received from an NNSSA satellite in April 1979. It is shown that, during the radio probing of ionospheric irregularities by satellite signals, the observed motion of the diffraction pattern is significantly determined by the magnetic-field geometry. Motion inducing signal fluctuations occurs in a directional that is almost perpendicular to the geomagnetic field. Measured fluctuation power spectra therefore reflect the cross section of irregularities that is transverse to the H field.

  19. Response of the auroral electrojet indices to abrupt southward IMF turnings

    Directory of Open Access Journals (Sweden)

    J. W. Gjerloev

    2010-05-01

    Full Text Available We present results from a study of the behavior of the auroral electrojet indices following abrupt southward turnings of the IMF Bz. The auroral electrojet indices are calculated from observations made by more than 100 ground based stations provided by the SuperMAG collaborators. Based on three simple criteria we selected 73 events. In each event the interval of analysis started at the time of the IMF Bz southward turning and ended 45 minutes later or at the onset of any abrupt energy unloading event in the magnetosphere, regardless of size. We refer to this period as the "pre-unloading phase". To isolate the dependence of the auroral electrojets on the solar induced ionospheric conductivity during this phase we separated the standard AU/AL indices into two new sets of indices defined by the upper and lower envelope of the north-south component for all sunlit stations (AUs/ALs and for all stations in darkness (AUd/ALd. Based on events and statistical analyses we can conclude that following a southward turning of the IMF Bz the AUd/ALd indices show no measurable response while the AUs/ALs indices clearly intensify. The intensifications of AUs/ALs are dependent on the intensity of the solar wind driver (as measured by IMF Bz or the Akasofu ε parameter. The lack of AUd/ALd response does not depend on the intensity of any subsequent substorm. We find that during these isolated events the ionospheric current system is primarily confined to the sunlit ionosphere. This truncated version of the classical global DP-2 current system suggests that auroral electrojet continuity is not maintained across the terminator. Because of its conductivity dependence on the solar zenith angle, this truncated global current pattern is expected to be highly dependent on UT and season and thus can be asymmetric between hemispheres. Thus we argue that the global two-cell DP-2 current system is not a consequence only of a southward turning of the IMF but requires also the

  20. High spatial and spectral resolution measurements of Jupiter's auroral regions using Gemini-North-TEXES

    Science.gov (United States)

    Sinclair, J. A.; Orton, G. S.; Greathouse, T. K.; Lacy, J.; Giles, R.; Fletcher, L. N.; Vogt, M.; Irwin, P. G.

    2017-12-01

    Jupiter exhibits auroral emission at a multitude of wavelengths. Auroral emission at X-ray, ultraviolet and near-infrared wavelengths demonstrate the precipitation of ion and electrons in Jupiter's upper atmosphere, at altitudes exceeding 250 km above the 1-bar level. Enhanced mid-infrared emission of CH4, C2H2, C2H4 and further hydrocarbons is also observed coincident with Jupiter's auroral regions. Retrieval analyses of infrared spectra from IRTF-TEXES (Texas Echelon Cross Echelle Spectrograph on NASA's Infrared Telescope Facility) indicate strong heating at the 1-mbar level and evidence of ion-neutral chemistry, which enriches the abundances of unsaturated hydrocarbons (Sinclair et al., 2017b, doi:10.1002/2017GL073529, Sinclair et al., 2017c (under review)). The extent to which these phenomena in the stratosphere are correlated and coupled physically with the shorter-wavelength auroral emission originating from higher altitudes has been a challenge due to the limited spatial resolution available on the IRTF. Smaller-scale features observed in the near-infrared and ultraviolet emission, such as the main `oval', transient `swirls' and dusk-active regions within the main oval (e.g. Stallard et al., 2014, doi:10.1016/j/Icarus.2015.12.044, Nichols et al., 2017, doi: 10.1002/2017GL073029) are potentially being blurred in the mid-infrared by the diffraction-limited resolution (0.7") of IRTF's 3-metre primary aperture. However, on March 17-19th 2017, we obtained spectral measurements of H2 S(1), CH4, C2H2, C2H4 and C2H6 emission of Jupiter's high latitudes using TEXES on Gemini-North, which has a 8-metre primary aperture. This rare opportunity combines the superior spectral resolving power of TEXES and the high spatial resolution provided by Gemini-North's 8-metre aperture. We will perform a retrieval analyses to determine the 3D distributions of temperature, C2H2, C2H4 and C2H6. The morphology will be compared with near-contemporaneous measurements of H3+ emission from

  1. Comprehensive simulation study on local and global development of auroral arcs and field-aligned potentials

    Science.gov (United States)

    Watanabe, Tomohiko; Oya, Hiroshi; Watanabe, Kunihiko; Sato, Tetsuya

    1993-12-01

    Extensive three-dimensional computer simulations of the magnetosphere-ionosphere (M-I) coupling are performed to study self-excitation of an auroral arclike structure with special emphasis on (1) nonlinear evolution of the feedback instability in the M-I coupling system, (2) controlling mechanisms of the arc structure, (3) formation of a field-aligned electric potential structure in association with the development of the feedback instability, and (4) effects of the parallel potential generation on the development of the arclike structure. The present study takes the first step toward the theoretical understanding of the M-I coupling system with parallel potentials.

  2. Observation and interpretation of particle and electric field measurements inside and adjacent to an active auroral arc

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, C.W.; Kelley, M.C.

    1977-06-01

    A Javelin sounding rocket instrumented to measure electric fields, energetic particles, and suprathermal electrons was flown across an auroral display in the late expansion phase of a substorm. Four distinct regions of fields and particles were interpreted here in light of our present understanding of auroral dynamics.r of 10 and resemble fluxes mesured in the equatorial plane during the expansion phase. The hard fluxes in the equatorward zone are further energized and may act as a source for the outer radiation belt as inward convection further energizes them.

  3. Study of new U(VI) and Pu(VI) coprecipitation methods for the preparation of (U,Pu)O2

    International Nuclear Information System (INIS)

    Sanoit, J. de.

    1990-01-01

    Two U(VI) and Pu(VI) coprecipitation methods have been studied, for the definition of new processes to prepare (U,Pu)O 2 mixed oxides suitable for making MoX fuels or fast breeder reactor fuels. The first system is based on the coprecipitation of a new U(VI), Pu(VI) compound; ammonium uranoplutonate, where as a second system is related to the precipitation of uranyl plutonyl monocarbonate. Experimental conditions to optimize the precipitation and the filtration steps of these two systems have been determined. After calcination under reducing conditions, the mixed oxides obtained are characterized according to different techniques: granulometry, thermogravimetry, solubility in boiling HNO 3 solutions. The properties of such oxides are excellent. The possible processes for preparing (U, Pu)O 2 using these new routes are compared with those actually exploited [fr

  4. The thermodynamics of extraction of U(VI) and Th(IV) from nitric acid by neutral phosphorus-based organic compounds

    International Nuclear Information System (INIS)

    Kalina, D.G.; Mason, G.W.; Horwitz, E.P.

    1981-01-01

    The extraction of Th(IV) and U(VI) from dilute nitric acid solution by several neutral phosphorus-based extractants has been studied as a function of temperature in the range of 0 to 50 0 C. From the variation of the distribution ratio (Ksub(d)) with temperature the thermodynamic quantities ΔG, ΔH and ΔS have been calculated for these extractions. The results of this study indicate that the steric bulk of the extractant plays a major role in determining how well Th(IV) is extracted. The size of the extractant appears to be of little or no importance in the extraction of U(VI). Similarly, the basicity of the extractant is of lesser importance in the extraction of uranyl ion relative to thorium ion. (author)

  5. The effect of Si and Al concentrations on the removal of U(VI) in the alkaline conditions created by NH3 gas

    International Nuclear Information System (INIS)

    Katsenovich, Yelena P.; Cardona, Claudia; Lapierre, Robert; Szecsody, Jim; Lagos, Leonel E.

    2016-01-01

    Remediation of uranium in the deep unsaturated zone is a challenging task, especially in the presence of oxygenated, high-carbonate alkalinity soil and pore water composition typical for arid and semi-arid environments of the western regions of the U.S. This study evaluates the effect of various pore water constituencies on changes of uranium concentrations in alkaline conditions, created in the presence of reactive gases such as NH 3 to effectively mitigate uranium contamination in the vadose zone sediments. This contaminant is a potential source for groundwater pollution through slow infiltration of soluble and highly mobile uranium species towards the water table. The objective of this research was to evaluate uranium sequestration efficiencies in the alkaline synthetic pore water solutions prepared in a broad range of Si, Al, and bicarbonate concentrations typically present in field systems of the western U.S. regions and identify solid uranium-bearing phases that result from ammonia gas treatment. In previous studies (Szecsody et al. 2012; Zhong et al. 2015), although uranium mobility was greatly decreased, solid phases could not be identified at the low uranium concentrations in field-contaminated sediments. The chemical composition of the synthetic pore water used in the experiments varied for silica (5–250 mM), Al 3+ (2.8 or 5 mM), HCO 3 − (0–100 mM) and U(VI) (0.0021–0.0084 mM) in the solution mixture. Experiment results suggested that solutions with Si concentrations higher than 50 mM exhibited greater removal efficiencies of U(VI). Solutions with higher concentrations of bicarbonate also exhibited greater removal efficiencies for Si, Al, and U(VI). Overall, the silica polymerization reaction leading to the formation of Si gel correlated with the removal of U(VI), Si, and Al from the solution. If no Si polymerization was observed, there was no U removal from the supernatant solution. Speciation modeling indicated that the dominant uranium

  6. Observation of Polar Mesosphere Summer Echoes using the northernmost MST radar at Eureka (80°N)

    Science.gov (United States)

    Swarnalingam, N.; Hocking, W.; Janches, D.; Drummond, J.

    2017-09-01

    We investigate long-term Polar Mesosphere Summer Echoes (PMSEs) observations conducted by the northernmost geographically located MST radar at Eureka (80°N, 86°W). While PMSEs are a well recognized summer phenomenon in the polar regions, previous calibrated studies at Resolute Bay and Eureka using 51.5 MHz and 33 MHz radars respectively, showed that PMSE backscatter signal strengths are relatively weak in the polar cap sites, compared to the auroral zone sites (Swarnalingam et al., 2009b; Singer et al., 2010). Complications arise with PMSEs in which the echo strength is controlled by the electrons, which are, in turn, influenced by heavily charged ice particles as well as the variability in the D-region plasma. In recent years, PMSE experiments were conducted inside the polar cap utilizing a 51 MHz radar located at Eureka. In this paper, we investigate calibrated observations, conducted during 2009-2015. Seasonal and diurnal variations of the backscatter signal strengths are discussed and compared to previously published results from the ALOMAR radar, which is a radar of similar design located in the auroral zone at Andenes, Norway (69°N, 16°E). At Eureka, while PMSEs are present with a daily occurrence rate which is comparable to the rate observed at the auroral zone site for at least two seasons, they show a great level of inter-annual variability. The occurrence rate for the strong echoes tends to be low. Furthermore, comparison of the absolute backscatter signal strengths at these two sites clearly indicates that the PMSE backscatter signal strength at Eureka is weak. Although this difference could be caused by several factors, we investigate the intensity of the neutral air turbulence at Eureka from the measurements of the Doppler spectrum of the PMSE backscatter signals. We found that the level of the turbulence intensity at Eureka is weak relative to previously reported results from three high latitude sites.

  7. X-ray probes of magnetospheric interactions with Jupiter's auroral zones, the Galilean satellites, and the Io plasma torus

    Science.gov (United States)

    Elsner, R. F.; Ramsey, B. D.; Waite, J. H.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.

    2005-11-01

    Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the jovian system is a source of X-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are both powerful sources of X-ray emission. Chandra observations revealed X-ray emission from the Io plasma torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from the moons is due to bombardment of their surfaces by highly energetic magnetospheric protons, and oxygen and sulfur ions. These ions excite atoms in their surfaces leading to fluorescent X-ray emission lines. These lines are produced against an intense background continuum, including bremsstrahlung radiation from surface interactions of primary magnetospheric and secondary electrons. Although the X-ray emission from the Galilean moons is faint when observed from Earth orbit, an imaging X-ray spectrometer in orbit around one or more of these moons, operating from 200 eV to 8 keV with 150 eV energy resolution, would provide a detailed mapping of the elemental composition in their surfaces. Surface resolution of 40 m for small features could be achieved in a 100-km orbit around one moon while also remotely imaging surfaces of other moons and Jupiter's upper atmosphere at maximum regional resolutions of hundreds of kilometers. Due to its relatively more benign magnetospheric radiation environment, its intrinsic interest as the largest moon in the Solar System, and its mini-magnetosphere, Ganymede would be the ideal orbital location for long-term observational studies of the jovian system. Here we describe the physical processes leading to X-ray emission from the surfaces of Jupiter's moons and the properties required for the technique of imaging X-ray spectroscopy to map the elemental composition of their surfaces, as well as studies of the X-ray emission from the planet's aurora and disk and from the Io plasma torus.

  8. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  9. Alfven waves in the auroral ionosphere: A numerical model compared with measurements

    International Nuclear Information System (INIS)

    Knudsen, D.J.; Kelley, M.C.; Vickrey, J.F.

    1992-01-01

    The authors solve a linear numerical model of Alfven waves reflecting from the high-latitude ionosphere, both to better understanding the role of the ionosphere in the magnetosphere/ionosphere coupling process and to compare model results with in situ measurements. They use the model to compute the frequency-dependent amplitude and phase relations between the meridional electric and the zonal magnetic fields due to Alfven waves. These relations are compared with measurements taken by an auroral sounding rocket flow in the morningside oval and by the HILAT satellite traversing the oval at local noon. The sounding rocket's trajectory was mostly parallel to the auroral oval, and is measured enhanced fluctuating field energy in regions of electron precipitation. The rocket-measured phase data are in excellent agreement with the Alfven wave model, and the relation between the modeled and the measured by HILAT are related by the height-integrated Pedersen conductivity Σ p , indicating that the measured field fluctuations were due mainly to structured field-aligned current systems. A reason for the relative lack of Alfven wave energy in the HILAT measurements could be the fact that the satellite traveled mostly perpendicular to the oval and therefore quickly traversed narrow regions of electron precipitation and associated wave activity

  10. Rocket measurements of electrons in a system of multiple auroral arcs

    Science.gov (United States)

    Boyd, J. S.; Davis, T. N.

    1977-01-01

    A Nike-Tomahawk rocket was launched into a system of auroral arcs northward of Poker Flat Research Range, Fairbanks, Alaska. The pitch-angle distribution of electrons was measured at 2.5, 5, and 10 keV and also at 10 keV on a separating forward section of the payload. The auroral activity appeared to be the extension of substorm activity centered to the east. The rocket crossed a westward-propagating fold in the brightest band. The electron spectrum was relatively hard through most of the flight, showing a peak in the range from 2.5 to 10 keV in the weaker aurora and below 5 keV in the brightest arc. The detailed structure of the pitch-angle distribution suggested that, at times, a very selective process was accelerating some electrons in the magnetic field direction, so that a narrow field-aligned component appeared superimposed on a more isotropic distribution. It is concluded that this process could not be a near-ionosphere field-aligned potential drop, although the more isotropic component may have been produced by a parallel electric field extending several thousand kilometers along the field line above the ionosphere.

  11. Observation of large-scale traveling ionospheric disturbances of auroral origin by global GPS networks

    Science.gov (United States)

    Afraimovich, Edward L.; Kosogorov, Eugene A.; Leonovich, Ludmila A.; Palamartchouk, Kirill S.; Perevalova, Natalia P.; Pirog, Olga M.

    2000-10-01

    The intention in this paper is to investigate the form and dynamics of large-scale traveling ionospheric disturbances (LS TIDs) of auroral origin. We have devised a technique for determining LS TID parameters using GPS arrays whose elements can be selected from a large set of GPS stations forming part of the international GPS network. The method was used to determine LS TID parameters during a strong magnetic storm of September 25, 1998. The North-American sector where many GPS stations are available, and also the time interval 00:00-06:00 UT characterized by a maximum value of the derivative Dst were used in the analysis. The study revealed that this period of time was concurrent with the formation of the main ionospheric trough (MIT) with a conspicuous southward wall in the range of geographic latitudes 50-60° and the front width of no less than 7500 km. The auroral disturbance-induced large-scale solitary wave with a duration of about 1 hour and the front width of at least 3700 km propagated in the equatorward direction to a distance of no less than 2000-3000 km with the mean velocity of about 300 m/s. The wave front behaved as if it `curled' to the west in longitude where the local time was around noon. Going toward the local nighttime, the propagation direction progressively approximated an equatorward direction.

  12. Determining parameters of large-scale traveling ionospheric disturbances of auroral origin using GPS-arrays

    Science.gov (United States)

    Afraimovich, E. L.; Kosogorov, E. A.; Leonovich, L. A.; Palamartchouk, K. S.; Perevalova, N. P.; Pirog, O. M.

    2000-05-01

    The intention in this paper is to investigate the form and dynamics of large-scale traveling ionospheric disturbances (LS TIDs) of auroral origin. We have devised a technique for determining LS TID parameters using GPS-arrays whose elements can be selected from a large set of GPS stations forming part of the International GPS Service network. The method was used to determine LS TID parameters during a strong magnetic storm of September 25, 1998. The North-American sector where many GPS stations are available, and also the time interval 00:00-06:00 UT characterized by a maximum value of the derivative Dst were used in the analysis. The study revealed that this period of time was concurrent with the formation of the main ionospheric trough with a conspicuous southward wall in the range of geographic latitudes 50-60° and the front width of no less than 7500 km. The auroral disturbance-induced large-scale solitary wave with a duration of about 1 h and the front width of at least 3700 km propagated in the equatorward direction to a distance of no less than 2000-3000 km with the mean velocity of about 300 m/s. The wave front behaved as if it `curled' to the west in longitude where the local time was around afternoon. Going toward the local nighttime, the propagation direction progressively approximated an equatorward direction.

  13. EISCAT observations of plasma patches at sub-auroral cusp latitudes

    Directory of Open Access Journals (Sweden)

    J. Moen

    2006-09-01

    Full Text Available A sequence of 3 patches of high-density (1012 m−3 cold plasma on a horizontal scale-size of 300–700 km was observed near magnetic noon by the EISCAT VHF radar above Svalbard on 17 December 2001. The patches followed a trajectory towards the cusp inflow region. The combination of radar and all-sky observations demonstrates that the patches must have been segmented equatorward of the cusp/cleft auroral display, and hence their properties had not yet been influenced by cusp particle showers and electrodynamics on open flux tubes. The last patch in the sequence was intersected by radio tomography observations, and was found to be located adjacent to a broader region of the same high electron density further south. The patches occurred under moderately active conditions (Kp=3 and the total electron content (TEC of the high-density plasma was 45 TEC units. The train of patches appeared as a segmentation of the tongue of ionization. The sequence of patches occurred in association with a sequence of flow bursts in the dusk cell return flow. It is proposed that reconnection driven pulsed convection is able to create sub-auroral patches in the region where high density mid-latitude plasma is diverted poleward toward the cusp. It is the downward Birkeland current sheet located at the equatorward boundary of the flow disturbance that represents the actual cutting mechanism.

  14. EISCAT observations of plasma patches at sub-auroral cusp latitudes

    Directory of Open Access Journals (Sweden)

    J. Moen

    2006-09-01

    Full Text Available A sequence of 3 patches of high-density (1012 m−3 cold plasma on a horizontal scale-size of 300–700 km was observed near magnetic noon by the EISCAT VHF radar above Svalbard on 17 December 2001. The patches followed a trajectory towards the cusp inflow region. The combination of radar and all-sky observations demonstrates that the patches must have been segmented equatorward of the cusp/cleft auroral display, and hence their properties had not yet been influenced by cusp particle showers and electrodynamics on open flux tubes. The last patch in the sequence was intersected by radio tomography observations, and was found to be located adjacent to a broader region of the same high electron density further south. The patches occurred under moderately active conditions (Kp=3 and the total electron content (TEC of the high-density plasma was 45 TEC units. The train of patches appeared as a segmentation of the tongue of ionization. The sequence of patches occurred in association with a sequence of flow bursts in the dusk cell return flow. It is proposed that reconnection driven pulsed convection is able to create sub-auroral patches in the region where high density mid-latitude plasma is diverted poleward toward the cusp. It is the downward Birkeland current sheet located at the equatorward boundary of the flow disturbance that represents the actual cutting mechanism.

  15. High resolution measurements and modeling of auroral hydrogen emission line profiles

    Directory of Open Access Journals (Sweden)

    B. S. Lanchester

    2003-07-01

    Full Text Available Measurements in the visible wavelength range at high spectral resolution (1.3 Å have been made at Longyearbyen, Svalbard (15.8 E,78.2 N during an interval of intense proton precipitation. The shape and Doppler shift of hydrogen Balmer beta line profiles have been compared with model line profiles, using as input ion energy spectra from almost coincident passes of the FAST and DMSP spacecraft. The comparison shows that the simulation contains the important physical processes that produce the profiles, and confirms that measured changes in the shape and peak wave-length of the hydrogen profiles are the result of changing energy input. This combination of high resolution measurements with modeling provides a method of estimating the incoming energy and changes in flux of precipitating protons over Svalbard, for given energy and pitch-angle distributions. Whereas for electron precipitation, information on the incident particles is derived from brightness and brightness ratios which require at least two spectral windows, for proton precipitation the Doppler profile of resulting hydrogen emission is directly related to the energy and energy flux of the incident energetic protons and can be used to gather information about the source region. As well as the expected Doppler shift to shorter wavelengths, the measured profiles have a significant red-shifted component, the result of upward flowing emitting hydrogen atoms.Key words. Ionosphere (auroral ionosphere; particle precipitation – Magnetospheric physics (auroral phenomena

  16. X-ray probes of Jupiter's auroral zones, Galilean moons, and the Io plasma torus

    Science.gov (United States)

    Elsner, R. F.; Ramsey, B. D.; Swartz, D. A.; Gaskin, J. A.; Rehak, P.; Waite, J. H., Jr.; Cooper, J. F.; Johnson, R. E.

    2005-09-01

    Remote observations from the Earth orbiting Chandra X-ray Observatory and the XMM-Newton Observatory have shown the the Jovian system is a rich and complex source of x-ray emission. The planet's auroral zones and its disk are powerful sources of x-ray emission, though with different origins. Chandra observations discovered x-ray emission from the Io plasma torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from the moons is due to bombardment of their surfaces by highly energetic magnetospheric protons, and oxygen and sulfur ions, producing fluorescent x-ray emission lines from the elements in their surfaces against an intense background continuum. Although very faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around the icy Galilean moons would provide a detail mapping of the elemental composition in their surfaces. Here we examine the necessary characteristics of such an instrument and the challenges it would face in the extreme radiation environment in which it would have to survive and operate. Such an instrument would have the ultimate goal of providing detailed high-resolution maps of the elemental abundances of the surfaces of Jupiter's icy moons and Io, as well as detailed study of the x-ray mission from the Io plasma torus, Jupiter's auroral zones, and the planetary disk.

  17. High resolution measurements and modeling of auroral hydrogen emission line profiles

    Directory of Open Access Journals (Sweden)

    B. S. Lanchester

    Full Text Available Measurements in the visible wavelength range at high spectral resolution (1.3 Å have been made at Longyearbyen, Svalbard (15.8 E,78.2 N during an interval of intense proton precipitation. The shape and Doppler shift of hydrogen Balmer beta line profiles have been compared with model line profiles, using as input ion energy spectra from almost coincident passes of the FAST and DMSP spacecraft. The comparison shows that the simulation contains the important physical processes that produce the profiles, and confirms that measured changes in the shape and peak wave-length of the hydrogen profiles are the result of changing energy input. This combination of high resolution measurements with modeling provides a method of estimating the incoming energy and changes in flux of precipitating protons over Svalbard, for given energy and pitch-angle distributions. Whereas for electron precipitation, information on the incident particles is derived from brightness and brightness ratios which require at least two spectral windows, for proton precipitation the Doppler profile of resulting hydrogen emission is directly related to the energy and energy flux of the incident energetic protons and can be used to gather information about the source region. As well as the expected Doppler shift to shorter wavelengths, the measured profiles have a significant red-shifted component, the result of upward flowing emitting hydrogen atoms.

    Key words. Ionosphere (auroral ionosphere; particle precipitation – Magnetospheric physics (auroral phenomena

  18. Generation of auroral kilometric and Z mode radiation by the cyclotron maser mechanism

    Science.gov (United States)

    Omidi, N.; Gurnett, D. A.; Wu, C. S.

    1984-01-01

    The relativistic Doppler-shifted cyclotron resonance condition for EM wave interactions with a plasma defines an ellipse in velocity space when the product of the index of refraction and cosine of the wave normal angle is less than or equal to unity, and defines a partial ellipse when the product is greater than unity. It is also noted that waves with frequencies greater than the gyrofrequency can only resonate with particles moving in the same direction along the magnetic field, while waves with lower frequencies than these resonate with particles moving in both directions along the magnetic field. It is found, in the case of auroral kilometric radiation, that both the upgoing and the downgoing electrons are unstable and can give rise to this radiation's growth. The magnitudes of the growth rates for both the upgoing and downgoing auroral kilometric radiation are comparable, and indicate that the path lengths needed to account for the observed intensities of this radiation are of the order of a few hundred km, which is probably too large. Growth rate calculations for the Z mode radiation show that, for wave frequencies just below the gyrofrequency and wave normal angles at or near 90 deg, the electron distribution is unstable and the growth rates are large enough to account for the observed intensities.

  19. An Ad-hoc Satellite Network to Measure Filamentary Current Structures in the Auroral Zone

    Science.gov (United States)

    Nabong, C.; Fritz, T. A.; Semeter, J. L.

    2014-12-01

    An ad-hoc cubesat-based satellite network project known as ANDESITE is under development at Boston University. It aims to develop a dense constellation of easy-to-use, rapidly-deployable low-cost wireless sensor nodes in space. The objectives of the project are threefold: 1) Demonstrate viability of satellite based sensor networks by deploying an 8-node miniature sensor network to study the filamentation of the field aligned currents in the auroral zones of the Earth's magnetosphere. 2) Test the scalability of proposed protocols, including localization techniques, tracking, data aggregation, and routing, for a 3 dimensional wireless sensor network using a "flock" of nodes. 3) Construct a 6U Cube-sat running the Android OS as an integrated constellation manager, data mule and sensor node deplorer. This small network of sensor nodes will resolve current densities at different spatial resolutions in the near-Earth magnetosphere using measurements from magnetometers with 1-nT sensitivities and 0.2 nT/√Hz self-noise. Mapping of these currents will provide new constraints for models of auroral particle acceleration, wave-particle interactions, ionospheric destabilization, and other kinetic processes operating in the low-beta plasma of the near Earth magnetosphere.

  20. Alaskan Auroral All-Sky Images on the World Wide Web

    Science.gov (United States)

    Stenbaek-Nielsen, H. C.

    1997-01-01

    In response to a 1995 NASA SPDS announcement of support for preservation and distribution of important data sets online, the Geophysical Institute, University of Alaska Fairbanks, Alaska, proposed to provide World Wide Web access to the Poker Flat Auroral All-sky Camera images in real time. The Poker auroral all-sky camera is located in the Davis Science Operation Center at Poker Flat Rocket Range about 30 miles north-east of Fairbanks, Alaska, and is connected, through a microwave link, with the Geophysical Institute where we maintain the data base linked to the Web. To protect the low light-level all-sky TV camera from damage due to excessive light, we only operate during the winter season when the moon is down. The camera and data acquisition is now fully computer controlled. Digital images are transmitted each minute to the Web linked data base where the data are available in a number of different presentations: (1) Individual JPEG compressed images (1 minute resolution); (2) Time lapse MPEG movie of the stored images; and (3) A meridional plot of the entire night activity.

  1. The solar wind plasma density control of night-time auroral particle precipitation

    Directory of Open Access Journals (Sweden)

    V. G. Vorobjev

    2004-03-01

    Full Text Available DMSP F6 and F7 spacecraft observations of the average electron and ion energy, and energy fluxes in different night-time precipitation regions for the whole of 1986 were used to examine the precipitation features associated with solar wind density changes. It was found that during magnetic quietness |AL|<100nT, the enhancement of average ion fluxes was observed at least two times, along with the solar wind plasma density increase from 2 to 24cm–3. More pronounced was the ion flux enhancement that occurred in the b2i–b4s and b4s–b5 regions, which are approximately corresponding to the statistical auroral oval and map to the magnetospheric plasma sheet tailward of the isotropy boundary. The average ion energy decrease of about 2–4kev was registered simultaneously with this ion flux enhancement. The results verify the occurrence of effective penetration of the solar wind plasma into the magnetospheric tail plasma sheet. Key words. Ionosphere (auroral ionosphere, particle precipitation – Magnetospheric physics (solar windmagnetosphere interaction

  2. Extraction of U(VI), Th(IV), and La(III) from acidic streams and geological samples using AXAD-16-POPDE polymer.

    Science.gov (United States)

    Prabhakaran, D; Subramanian, M S

    2004-10-01

    A new chromatographic extraction method has been developed using Amberlite XAD-16 (AXAD-16) resin chemically modified with (3-hydroxyphosphinoyl-2-oxo-propyl)phosphonic acid dibenzyl ester (POPDE). The chemically modified polymer was characterized by 13C CPMAS and 31P solid-state NMR, Fourier Transform-NIR-FIR-Raman spectroscopy, CHNPS elemental analysis, and thermogravimetric analysis. Extraction studies performed for U(VI), Th(IV), and La(III) showed good distribution ratio ( D) values of approximately 10(3), even under high acidities (1-4 M). Various physiochemical parameters that influence the quantitative metal ion extraction were optimized by static and dynamic methods. Data obtained from kinetic studies revealed that a time duration of metal ion extraction. Maximum metal sorption capacity values under optimum pH conditions were found to be 1.38, 1.33, and 0.75 mmol g(-1) for U(VI), Th(IV), and La(III), respectively. Interference studies performed in the presence of concentrated diverse ions and electrolyte species showed quantitative analyte recovery with lower limits of analyte detection being 10 and 20 ng cm(-3) for U(VI) and both Th(IV) and La(III), respectively. Sample breakthrough studies performed on the extraction column showed an enrichment factor value of 330 for U(VI) and 270 for Th(IV) and La(III), respectively. Analyte desorption was effective using 15 cm3 of 1 M (NH4)2CO3 with >99.8% analyte recovery. The analytical applicability of the developed resin was tested with synthetic mixtures mimicking nuclear spent fuels, seawater compositions and real water and geological samples. The rsd values of the data obtained were within 5.2%, thereby reflecting the reliability of the developed method.

  3. Selective extraction of U(VI) over Th(IV) from acidic streams using di-bis(2-ethylhexyl) malonamide anchored chloromethylated polymeric matrix

    International Nuclear Information System (INIS)

    Prabhakaran, D.; Subramanian, M.S.

    2005-01-01

    A new chelating polymeric sorbent has been developed using Merrifield chloromethylated resin anchored with di-bis (2-ethylhexyl) malonamide (DB2EHM). The modified resin was characterized by 13 C CPMAS NMR spectroscopy, FT-NIR-FIR spectroscopy, CHN elemental analysis and also by thermo gravimetric analysis. The fabricated sorbent showed superior binding affinity for U(VI) over Th(IV) and other diverse ions, even under high acidities. Various physio-chemical parameters, like solution acidity, phase exchange kinetics, metal sorption capacity, electrolyte tolerance studies, etc., influencing the resin's metal extractive behavior were studied by both static and dynamic method. Batch extraction studies performed over a wide range of solution acidity (0.01-10M) revealed that selective extraction of U(VI) could be achieved even up to 4M acidity with distribution ratios (D) in the order of circa 10 3 . The phase exchange kinetics studies performed for U(VI) and Th(IV) revealed that time duration of 99.5% extraction. But similar studies when preformed for trivalent lanthanides gave very low D values ( 3 was found to be 62.5 and 38.2mgg -1 ,respectively. Extraction efficiency in the presence of inferring electrolyte species and inorganic cations were also examined. Metal ion desorption was effective using 10-15mL of 1M (NH 4 ) 2 CO 3 or 0.5M α-hydroxy isobutyric acid (HIBA). Extraction studies performed on a chromatographic column at 5M acidity were found to give enrichment factor values of 310 and 250 for U(VI) and Th(IV), respectively. The practical utility of the fabricated chelating sorbent and its efficiency to extract actinides from acidic waste streams was tested using a synthetic nuclear spent fuel solution. The R.S.D. values obtained on triplicate measurements (n = 3) were within 5.2%

  4. Kinetic Controls on the Desorption/Dissolution of Sorbed U(VI) and Their Influence on Reactive Transport

    International Nuclear Information System (INIS)

    J. M. Zachara; C. Liu; N. Qafoku; J. P. McKinley; J. A. Davis; D. Stoliker; Y. Arai; J. G. Catalano; G. E. Brown, Jr.

    2007-01-01

    disposal source to groundwater; (2) Measure desorption/dissolution rates of sorbed U(VI), quantify controlling factors, and develop descriptive kinetic models to provide a scientific basis to forecast U(VI) fluxes to groundwater, future plume dynamics, and long-term contaminant attenuation; and (3) Establish reaction networks and determine geochemically/ physically realistic reaction parameters to drive state-of-the-art reactive transport modeling of U in vadose zone pore fluids and groundwater

  5. Interhemispheric asymmetries in the occurrence of magnetically conjugate sub-auroral polarisation streams

    Directory of Open Access Journals (Sweden)

    M. L. Parkinson

    2005-06-01

    Full Text Available Earthward injections of energetic ions and electrons mark the onset of magnetospheric substorms. In the inner magnetosphere (L${sim}$4, the energetic ions drift westward and the electrons eastward, thereby enhancing the equatorial ring current. Wave-particle interactions can accelerate these particles to radiation belt energies. The ions are injected slightly closer to Earth in the pre-midnight sector, leading to the formation of a radial polarisation field in the inner magnetosphere. This maps to a poleward electric field just equatorward of the auroral oval in the ionosphere. The poleward electric field is subsequently amplified by ionospheric feedback, thereby producing auroral westward flow channels (AWFCs. In terms of electric field strength, AWFCs are the strongest manifestation of substorms in the ionosphere. Because geomagnetic flux tubes are essentially equi-potentials, similar AWFC signatures should be observed simultaneously in the Northern and Southern Hemispheres. Here we present magnetically conjugate SuperDARN radar observations of AWFC activity observed in the pre-midnight sector during two substorm intervals including multiple onsets during the evening of 30 November 2002. The Northern Hemisphere observations were made with the Japanese radar located at King Salmon, Alaska (57$^{circ}$$Lambda $, and the Southern Hemisphere observations with the Tasman International Geospace Environment Radar (TIGER located at Bruny Island, Tasmania (

  6. Preparation of amidoxime-functionalized mesoporous silica nanospheres (ami-MSN) from coal fly ash for the removal of U(VI).

    Science.gov (United States)

    Wang, Bangda; Zhou, Yuexi; Li, Lei; Wang, Yi

    2018-06-01

    It is usually difficult to control the microstructure of mesoporous silica materials using coal fly ash as raw materials. In this study, amidoxime-functionalized mesoporous silica nanospheres (ami-MSN) were prepared from coal fly ash using a novel interfacial cohydrolysis-condensation method in an alkane-aqueous system. Characterizations suggested a regular microstructure, high specific surface area (676 m 2 /g) as well as stable and uniformly distributed amidoxime groups in the ami-MSN framework. Furthermore, ami-MSN displays a high U(VI) removal capacity in sorption experiments (98.9% removal efficiency of 50 ppm U(VI) at a dosage of 600 mg/L). The sorption showed significant pH dependence. Introducing various cations and anions showed differing effects on sorption, which can be attributed to differing complexation abilities of ions/ami-MSN/U(VI). The sorption mechanism was also studied. In pursuit of the strategy of "treating wastewater with materials derived from waste," this work suggests that ami-MSN can be an effective and low-cost sorbent for U(VI) removal. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. INVESTIGATION OF THE TRANSFORMATION OF URANIUM UNDER IRON-REDUCING CONDITIONS: REDUCTION OF UVI BY BIOGENIC FEII/FEIII HYDROXIDE (GREEN RUST)

    International Nuclear Information System (INIS)

    O'Loughlin, Edward J.; Scherer, Michelle M.; Kemner, Kenneth M.

    2006-01-01

    The recent identification of green rusts (GRs) as products of the reduction of FeIII oxyhydroxides by dissimilatory iron-reducing bacteria, coupled with the ability of synthetic (GR) to reduce UVI species to insoluble UO2, suggests that biogenic green rusts (BioGRs) may play an important role in the speciation (and thus mobility) of U in FeIII-reducing environments. The objective of our research was to examine the potential for BioGR to affect the speciation of U under FeIII-reducing conditions. To meet this objective, we designed and executed a hypothesis-driven experimental program to identify key factors leading to the formation of BioGRs as products of dissimilatory FeIII reduction, to determine the key factors controlling the reduction of UVI to UIV by GRs, and to identify the resulting U-bearing mineral phases. The results of this research significantly increase our understanding of the coupling of biotic and abiotic processes with respect to the speciation of U in iron-reducing environments. In particular, the reduction of UVI to UIV by BioGR with the subsequent formation of U-bearing mineral phases may be effective for immobilizing U in suboxic subsurface environments. This information has direct applications to contaminant transport modeling and bioremediation engineering for natural or enhanced in situ remediation of subsurface contamination

  8. Optimization Concentration of Sulfuric Acid on the Reduction U(VI) UsingJones Reductor to U(IV) with UV-VIS Spectrophotometry Method

    International Nuclear Information System (INIS)

    Simbolon, Sahat

    2000-01-01

    Reduction of U(VI) solution in sulfuric acid media with reductor Jones invarying concentration of sulfuric acid from 0.05 M - 1.5 M had been done.Compound of U 3 O 8 was used as a standard, it was dissolved in varying ofsulfuric acid from 0.05 M to 1.5 M, the amount of U(IV) was determined bytitration with KMnO 4 solution. The amount of U(VI) in solution was based onthe concentration U(IV) and the U 3 O 8 formula. Each concentration ofsulfuric acid 0.05 M to 1.5 M were used to dissolve U 3 O 8 and it was used tocalibrate the amount of U(IV) in solution after reduction with Jonesreductor. Analysis varian was used to determine the difference the absorbanceof uranyl sulfate. It was found that optimum concentration of sulfuric acidmedia for reduction U(VI) solution to U(IV) was 0.5 M. (author)

  9. Dayside aurorae and polar arcs under south-east IMF orientation

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2006-12-01

    Full Text Available We document a characteristic spatial and temporal structure of the aurora in the postnoon sector present during a 10-h-long interval of very steady southeast IMF orientation (clock angle=135° ending in a sharp south-to-north transition. Focus is placed on the detailed morphology of auroral forms/activities corresponding to merging and lobe convection cells obtained from SuperDARN convection data and Greenland magnetograms. The ground optical instruments at Ny Ålesund, Svalbard (76° MLAT recorded different auroral forms/activities as the station moved to higher magnetic local times (MLTs in the 13:00–17:00 MLT sector. Whereas the 13:00–15:00 MLT sector is characterized by classical poleward moving auroral forms (PMAFs associated with merging cell transients, the aurora in the 15:00–17:00 MLT sector shows instead a characteristic latitudinal bifurcation consisting of standard oval forms and polar arcs, and a corresponding composite pattern of merging and lobe convection cells. The merging and lobe cells respond to the southward and northward IMF transitions by activation/fading and fading/activation, respectively. A sequence of brightening events is characterized by successive activations progressing in latitude from the merging cell regime to the lobe cell regime. Emphasis is placed on the association between polar arc brightenings and the activation of the channel of enhanced sunward flow in the lobe cell. The observations are discussed in relation to recent work on solar wind-magnetosphere-ionosphere interconnection topology.

  10. Complete wave-vector directions of electromagnetic emissions: Application to INTERBALL-2 measurements in the nightside auroral zone

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej; Lefeuvre, F.; Parrot, M.; Rauch, J. L.

    2001-01-01

    Roč. 106, - (2001), s. 13,191-13,201 ISSN 0148-0227 R&D Projects: GA ČR GA205/01/1064 Institutional research plan: CEZ:AV0Z3042911 Keywords : auroral kilometric radiation * wave propagation * analysis techniques Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.609, year: 2001

  11. IR Fingerprints of U(VI) Nitrate Monoamides Complexes: A Joint Experimental and Theoretical Study

    International Nuclear Information System (INIS)

    Prestianni, A.; Joubert, L.; Chagnes, A.; Cote, G.; Adamo, C.; Ohnet, M. N.; Rabbe, C.; Charbonnel, M. Ch.

    2010-01-01

    Infrared spectra or 0. 5 mol. L -1 uranium(VI) nitrate monoamide complexes in toluene have been recorded and compared with infrared spectra calculated by DFT. The investigated monoamides were N, N-dimethylformamide (DMF), N, N-dibutyl-formamide (DBF), and N, N-dicyclohexyl-formamide (DeHF). The validity of DFT calculations for describing uranium nitrate monoamide complexes has been confirmed as a fair agreement between experimental and calculated spectra was obtained. Furthermore, a topological analysis of the electron density has been carried out to characterize monoamide-uranium interactions. From this work, it appears that the increase of stability of uranyl-monoamide complexes may be directly linked to the degree of polarization of the ligands in interaction with uranyl-nitrate. Among the investigated monoamides, the most stable complex is UO 2 (NO 3 ) 2 .2DcHF. This complex is characterized by a high positive charge delocalization in the outer part or the ligand molecule, which leads to a more concentrated positive charge close to the uranyl cation (UO 2 2+ ), thus strengthening the electrostatic interaction between the metal and the ligand. (authors)

  12. Extraction and separation of U(VI and Th(IV from hydrobromic acid media using Cyanex-923 extractant

    Directory of Open Access Journals (Sweden)

    Ghag Snehal M.

    2010-01-01

    Full Text Available A systematic study of the solvent extraction of uranium(VI and thorium(IV from hydrobromic acid media was performed using the neutral phosphine oxide extractant Cyanex-923 in toluene. These metal ions were found to be quantitatively extracted with Cyanex-923 in toluene in the acidity range 5x10-5-1x10-4 M and 5x10-5-5x10-3 M, respectively, and they are stripped from the organic phase with 7.0 M HClO4 and 2.0- 4.0 M HCl, respectively. The effect of the equilibrium period, diluents, diverse ions and stripping agent on the extraction of U(VI and Th(IV was studied. The stoichiometry of the extracted species of these metal ions was determined based on the slope analysis method. The extraction reactions proceed by solvation and their probable extracted species found in the organic phase were UO2Br2•2Cyanex-923 and ThBr4•2Cyanex-923. Based on these results, a sequential procedure for their separation from each other was developed.

  13. Measuring the accelerating effect of the planetary-scale waves on Venus observed with UVI/AKATSUKI and ground-based telescopes

    Science.gov (United States)

    Imai, M.; Kouyama, T.; Takahashi, Y.; Watanabe, S.; Yamazaki, A.; Yamada, M.; Nakamura, M.; Satoh, T.; Imamura, T.; Nakaoka, T.; Kawabata, M.; Yamanaka, M.; Kawabata, K. S.

    2017-12-01

    Venus has a global cloud layer, and the atmosphere rotates with the speed over 100 m/s. The scattering of solar radiance and absorber in clouds cause the strong dark and bright contrast in 365 nm unknown absorption bands. The Japanese Venus orbiter AKATSUKI and the onboard instrument UVI capture 100 km mesoscale cloud features over the entire visible dayside area. In contrast, planetary-scale features are observed when the orbiter is at the moderate distance from Venus and when the Sun-Venus-orbiter phase angle is smaller than 45 deg. Cloud top wind velocity was measured with the mesoscale cloud tracking technique, however, observations of the propagation velocity and its variation of the planetary-scale feature are not well conducted because of the limitation of the observable area. The purpose of the study is measuring the effect of wind acceleration by planetary-scale waves. Each cloud motion can be represented as the wind and phase velocity of the planetary-scale waves, respectively. We conducted simultaneous observations of the zonal motion of both mesoscale and planetary-scale feature using UVI/AKATSUKI and ground-based Pirka and Kanata telescopes in Japan. Our previous ground-based observation revealed the periodicity change of planetary-scale waves with a time scale of a couple of months. For the initial analysis of UVI images, we used the time-consecutive images taken in the orbit #32. During this orbit (from Nov. 13 to 20, 2016), 7 images were obtained with 2 hr time-interval in a day whose spatial resolution ranged from 10-35 km. To investigate the typical mesoscale cloud motion, the Gaussian-filters with sigma = 3 deg. were used to smooth geometrically mapped images with 0.25 deg. resolution. Then the amount of zonal shift for each 5 deg. latitudinal bands between the pairs of two time-consecutive images were estimated by searching the 2D cross-correlation maximum. The final wind velocity (or rotation period) for mesoscale features were determined with

  14. ELF wave production by an electron beam emitting rocket system and its suppression on auroral field lines - Evidence for Alfven and drift waves

    Science.gov (United States)

    Winckler, J. R.; Erickson, K. N.; Abe, Y.; Steffen, J. E.; Malcolm, P. R.

    1985-01-01

    Orthogonal probes on a free-flying plasma diagnostics payload are used to study ELF electric disturbances in the auroral ionosphere that are due to the injection of powerful electron beams. Frequency spectrograms are presented for various pitch angles, pulsing characteristics, and other properties of the injected beams; the large scale DC ionospheric convection electric field is measured, together with auroral particle precipitation, visual auroral forms, and ionospheric parameters. In view of the experimental results obtained, it is postulated that the observed ELF waves are in the Alfven and drift modes, and are generated by the positive vehicle potential during beam injection.

  15. Geographical Income Polarization

    DEFF Research Database (Denmark)

    Azhar, Hussain; Jonassen, Anders Bruun

    inter municipal income inequality. Counter factual simulations show that rising property prices to a large part explain the rise in polarization. One side-effect of polarization is tendencies towards a parallel polarization of residence location patterns, where low skilled individuals tend to live......In this paper we estimate the degree, composition and development of geographical income polarization based on data at the individual and municipal level in Denmark from 1984 to 2002. Rising income polarization is reconfirmed when applying new polarization measures, the driving force being greater...

  16. Metaproteomics Identifies the Protein Machinery Involved in Metal and Radionuclide Reduction in Subsurface Microbiomes and Elucidates Mechanisms and U(VI) Reduction Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Pfiffner, Susan M. [Univ. of Tennessee, Knoxville, TN (United States); Löffler, Frank [Univ. of Tennessee, Knoxville, TN (United States); Ritalahti, Kirsti [Univ. of Tennessee, Knoxville, TN (United States); Sayler, Gary [Univ. of Tennessee, Knoxville, TN (United States); Layton, Alice [Univ. of Tennessee, Knoxville, TN (United States); Hettich, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-31

    The overall goal for this funded project was to develop and exploit environmental metaproteomics tools to identify biomarkers for monitoring microbial activity affecting U speciation at U-contaminated sites, correlate metaproteomics profiles with geochemical parameters and U(VI) reduction activity (or lack thereof), elucidate mechanisms contributing to U(VI) reduction, and provide remediation project managers with additional information to make science-based site management decisions for achieving cleanup goals more efficiently. Although significant progress has been made in elucidating the microbiology contribution to metal and radionuclide reduction, the cellular components, pathway(s), and mechanisms involved in U trans-formation remain poorly understood. Recent advances in (meta)proteomics technology enable detailed studies of complex samples, including environmental samples, which differ between sites and even show considerable variability within the same site (e.g., the Oak Ridge IFRC site). Additionally, site-specific geochemical conditions affect microbial activity and function, suggesting generalized assessment and interpretations may not suffice. This research effort integrated current understanding of the microbiology and biochemistry of U(VI) reduction and capitalize on advances in proteomics technology made over the past few years. Field-related analyses used Oak Ridge IFRC field ground water samples from locations where slow-release substrate biostimulation has been implemented to accelerate in situ U(VI) reduction rates. Our overarching hypothesis was that the metabolic signature in environmental samples, as deciphered by the metaproteome measurements, would show a relationship with U(VI) reduction activity. Since metaproteomic and metagenomic characterizations were computationally challenging and time-consuming, we used a tiered approach that combines database mining, controlled laboratory studies, U(VI) reduction activity measurements, phylogenetic

  17. Observation and interpretation of energetic ion conics in Jupiter's polar magnetosphere

    Science.gov (United States)

    Clark, G.; Mauk, B. H.; Paranicas, C.; Haggerty, D.; Kollmann, P.; Rymer, A.; Brown, L.; Jaskulek, S.; Schlemm, C.; Kim, C.; Peachey, J.; LaVallee, D.; Allegrini, F.; Bagenal, F.; Bolton, S.; Connerney, J.; Ebert, R. W.; Hospodarsky, G.; Levin, S.; Kurth, W. S.; McComas, D. J.; Mitchell, D. G.; Ranquist, D.; Valek, P.

    2017-05-01

    NASA's Juno spacecraft successfully completed its first science polar pass over Jupiter's northern and southern aurora, with all the instruments powered, on 27 August 2016. Observations of conical energetic proton distributions at low altitudes (broad region of upward beaming electrons and were accompanied by broadband low-frequency wave emissions as well as low-altitude trapped magnetospheric protons and heavy ions. The characteristic energies associated with these accelerated ion conics are 100 times more energetic than similar distributions observed in the Earth's auroral region and similar in energy to those found at Saturn. In addition, the ion conics also exhibited pitch angle dispersion with time that is interpreted as a consequence of the structure of the source location. Mapping these distributions along magnetic field lines connected from the spacecraft to the ionosphere suggests that the source region exists at altitudes between 3 and 5 RJ. These new and exciting observations of accelerated ions over the polar region of Jupiter open up new areas for comparative planetary auroral physics.

  18. Polarized Light Corridor Demonstrations.

    Science.gov (United States)

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  19. Multi-spacecraft studies of the auroral acceleration region: From cluster to nanosatellites

    Science.gov (United States)

    Sadeghi, S.; Emami, M. R.

    2017-03-01

    This paper discusses the utilization of multiple Cubesats in various formations for studies in the auroral acceleration region. The focus is on the quasi-static properties, spatio-temporal features, electric potential structures, field-aligned currents, and their relationships, all of which are fundamentally important for an understanding of the magnetosphere-ionosphere coupling. It is argued that a multitude of nanosatellites can address some of the relevant outstanding questions in a broader range of spatial, temporal, and geometrical features, with higher redundancy and data consistency, potentially resulting in a shorter mission period and a higher chance of mission success. A number of mission concepts consisting of a cluster of 6-12 Cubesats with their specific onboard payloads are suggested for such missions over a period of as short as two months.

  20. Incoherent-scatter radar measurements of electric field and plasma in the auroral ionosphere

    International Nuclear Information System (INIS)

    Vondrak, R.

    1983-01-01

    This chapter summarizes Chatanika radar measurements of electric fields and currents, and their relation to E-region ionization and conductivity. Electric-field coupling between the ionosphere and magnetosphere and the relationship between field-aligned currents and meridional ionospheric currents are examined. Topics considered include the diurnal pattern of the ionization and electric field; electrical coupling between the ionosphere and magnetosphere; and the relationship between meridional currents and field-aligned currents. It is concluded that the incoherent-scatter radar technique has been developed into a powerful method for remotely measuring the electrical and thermal properties of the auroral ionospheric plasma, and that the usefulness of the radar measurements is greatly enhanced when combined with simultaneous satellite measurements

  1. Finite-Difference Time-Domain Modeling of Infrasonic Waves Generated by Supersonic Auroral Arcs

    Science.gov (United States)

    Pasko, V. P.

    2010-12-01

    Atmospheric infrasonic waves are acoustic waves with frequencies ranging from ˜0.02 to ˜10 Hz [e.g., Blanc, Ann. Geophys., 3, 673, 1985]. The importance of infrasound studies has been emphasized in the past ten years from the Comprehensive Nuclear-Test-Ban Treaty verification perspective [e.g., Le Pichon et al., JGR, 114, D08112, 2009]. A proper understanding of infrasound propagation in the atmosphere is required for identification and classification of different infrasonic waves and their sources [Drob et al., JGR, 108, D21, 4680, 2003]. In the present work we employ a FDTD model of infrasound propagation in a realistic atmosphere to provide quantitative interpretation of infrasonic waves produced by auroral arcs moving with supersonic speed. We have recently applied similar modeling approaches for studies of infrasonic waves generated from thunderstorms [e.g., Few, Handbook of Atmospheric Electrodynamics, H. Volland (ed.), Vol. 2, pp.1-31, CRC Press, 1995], quantitative interpretation of infrasonic signatures from pulsating auroras [Wilson et al., GRL, 32, L14810, 2005], and studies of infrasonic waves generated by transient luminous events in the middle atmosphere termed sprites [e.g., Farges, Lightning: Principles, Instruments and Applications, H.D. Betz et al. (eds.), Ch.18, Springer, 2009]. The related results have been reported in [Pasko, JGR, 114, D08205, 2009], [de Larquier et al., GRL, 37, L06804, 2010], and [de Larquier, MS Thesis, Penn State, Aug. 2010], respectively. In the FDTD model, the altitude and frequency dependent attenuation coefficients provided by Sutherland and Bass [J. Acoust. Soc. Am., 115, 1012, 2004] are included in classical equations of acoustics in a gravitationally stratified atmosphere using a decomposition technique recently proposed by de Groot-Hedlin [J. Acoust. Soc. Am., 124, 1430, 2008]. The auroral infrasonic waves (AIW) in the frequency range 0.1-0.01 Hz associated with the supersonic motion of auroral arcs have been

  2. Explaining occurrences of auroral kilometric radiation in Van Allen radiation belts

    Science.gov (United States)

    Xiao, Fuliang; Zhou, Qinghua; Su, Zhenpeng; He, Zhaoguo; Yang, Chang; Liu, Si; He, Yihua; Gao, Zhonglei

    2016-12-01

    Auroral kilometric radiation (AKR) is a strong terrestrial radio emission and dominates at higher latitudes because of reflection in vicinities of the source cavity and plasmapause. Recently, Van Allen Probes have observed occurrences of AKR emission in the equatorial region of Earth's radiation belts but its origin still remains an open question. Equatorial AKR can produce efficient acceleration of radiation belt electrons and is a risk to space weather. Here we report high-resolution observations during two small storm periods 4-6 April and 18-20 May 2013 and show, using a 3-D ray tracing simulation, that AKR can propagate downward all the way into the equatorial plane in the radiation belts under appropriate conditions. The simulated results can successfully explain the observed AKR's spatial distribution and frequency range, and the current results have a wide application to all other magnetized astrophysical objects in the universe.

  3. A mechanism for driving the gross Birkeland current configuration in the auroral oval

    International Nuclear Information System (INIS)

    Rostoker, G.; Bostrom, R.

    1976-01-01

    Birkeland (field-aligned) sheet currents flowing into and out of the auroral oval as reported by Zmuda and Armstrong (1974) are integrally associated with convective motion of plasma in the magnetotail. It is demonstrated that these currents can be driven by energy supplied by the braking of this convective motion of the plasma sheet particles as they drift toward the flanks of the magnetosphere. In the ionosphere the sheet currents close as Pedersen currents, resulting in the dissipation of power, while far from the earth the closure currents, which provide the braking force for the plasma, flow in the plasma sheet approximately normal to the neutral sheet out to radial distances of about 80 R/subE/. During periods of moderate magnetospheric activity the Birkeland currents result in a rate of dissipation of convective energy of the order of 10 GW

  4. Scaling in the space climatology of the auroral indices: is SOC the only possible description?

    Directory of Open Access Journals (Sweden)

    N. W. Watkins

    2002-01-01

    Full Text Available The study of the robust features of the magnetosphere is motivated both by new "whole system" approaches, and by the idea of "space climate" as opposed to "space weather". We enumerate these features for the AE index, and discuss whether self-organised criticality (SOC is the most natural explanation of the "stylised facts" so far known for AE. We identify and discuss some open questions, answers to which will clarify the extent to which AE's properties provide evidence for SOC. We then suggest an SOC-like reconnection-based scenario drawing on the result of Craig (2001 as an explanation of the very recent demonstration by Uritsky et al. (2001b of power laws in several properties of spatiotemporal features seen in auroral images.

  5. Influence of ammonium availability on expression of nifD and amtB genes during biostimulation of a U(VI) contaminated aquifer: implications for U(VI) removal and monitoring the metabolic state of Geobacteraceae

    Energy Technology Data Exchange (ETDEWEB)

    Mouser, Paula J.; N' Guessan, A. Lucie; Elifantz, Hila; Holmes, Dawn E.; Williams, Kenneth H; Wilkins, Michael J.; Long, Philip E.; Lovley, Derek R.

    2009-03-25

    The influence of ammonium availability on bacterial community structure and the physiological status of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by 2 orders of magnitude (<4 to 400 ?M) across the study site. Analysis of 16S rRNA sequences suggested that ammonium may have been one factor influencing the community composition prior to acetate amendment with Rhodoferax species predominating over Geobacter species with higher ammonium and Dechloromonas species dominating at the site with lowest ammonium. However, once acetate was added and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to acetate concentrations rather than ammonium levels. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium transporter gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during uranium reduction. The abundance of amtB was inversely correlated to ammonium levels, whereas nifD transcript levels were similar across all sites examined. These results suggest that nifD and amtB expression are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB transcript expression appears to be a useful approach for monitoring the nitrogen-related physiological status of subsurface Geobacter species. This study also emphasizes the need for more detailed analysis of geochemical and physiological interactions at the field scale in order to adequately model subsurface microbial processes during bioremediation.

  6. Inductive electric fields in the magnetotail and their relation to auroral and substorm phenomena

    International Nuclear Information System (INIS)

    Pellinen, R.J.; Heikkila, W.J.

    1982-11-01

    The paper reviews the importance of inductive electric fields in explaining different magnetospheric and auroral phenomena during moderately and highly distrubed conditions. Quiet-time particle energization and temporal development of the tail structure during the substorm growth phase are explained by the presence of a large-scale elctrostatic field directed from dawn to dusk over the magentotail. Conservation of the first adiabatic invariant in the neutral sheet with a small value of the gradient in the magnetic field implies that the longitudical energy increases at each crossing of the neutral sheet. At a certain moment, this may result in a rapid local growth of the current and in an instability that triggers the onset. During the growth phase energy is stored in the magnetic field, since the energy density in the electric field is negligible compared to that of the magnetic field. An analytical model is described in which the characteristic observations of a substorm onset are taken into account. One major feature is that the triggering is confined to a small local time sector. During moderate disturbances, the induction fields in the magnetotail are stronger by at least one order of magnitude than the average cross-tail field. Temporal development of the disturbed area results in X- and O-type neutral lines. Particles near to these neutral lines are energized to over 1 MeV energies within a few seconds, due to an effective combination of linear and betatron acceleration. The rotational property of the induction field promotes energization in a restricted area wiht dimensions equivalent to a few Earth's radii. The model also predicts the existence of highly localized cable-type field-aligned currents appearing on the eastern and western edges of the expanding auroral bulge

  7. The Jovian Auroral Distributions Experiment (JADE) on the Juno Mission to Jupiter

    Science.gov (United States)

    McComas, D. J.; Alexander, N.; Allegrini, F.; Bagenal, F.; Beebe, C.; Clark, G.; Crary, F.; Desai, M. I.; De Los Santos, A.; Demkee, D.; Dickinson, J.; Everett, D.; Finley, T.; Gribanova, A.; Hill, R.; Johnson, J.; Kofoed, C.; Loeffler, C.; Louarn, P.; Maple, M.; Mills, W.; Pollock, C.; Reno, M.; Rodriguez, B.; Rouzaud, J.; Santos-Costa, D.; Valek, P.; Weidner, S.; Wilson, P.; Wilson, R. J.; White, D.

    2017-11-01

    The Jovian Auroral Distributions Experiment (JADE) on Juno provides the critical in situ measurements of electrons and ions needed to understand the plasma energy particles and processes that fill the Jovian magnetosphere and ultimately produce its strong aurora. JADE is an instrument suite that includes three essentially identical electron sensors (JADE-Es), a single ion sensor (JADE-I), and a highly capable Electronics Box (EBox) that resides in the Juno Radiation Vault and provides all necessary control, low and high voltages, and computing support for the four sensors. The three JADE-Es are arrayed 120∘ apart around the Juno spacecraft to measure complete electron distributions from ˜0.1 to 100 keV and provide detailed electron pitch-angle distributions at a 1 s cadence, independent of spacecraft spin phase. JADE-I measures ions from ˜5 eV to ˜50 keV over an instantaneous field of view of 270∘×90∘ in 4 s and makes observations over all directions in space each 30 s rotation of the Juno spacecraft. JADE-I also provides ion composition measurements from 1 to 50 amu with m/Δ m˜2.5, which is sufficient to separate the heavy and light ions, as well as O+ vs S+, in the Jovian magnetosphere. All four sensors were extensively tested and calibrated in specialized facilities, ensuring excellent on-orbit observations at Jupiter. This paper documents the JADE design, construction, calibration, and planned science operations, data processing, and data products. Finally, the Appendix describes the Southwest Research Institute [SwRI] electron calibration facility, which was developed and used for all JADE-E calibrations. Collectively, JADE provides remarkably broad and detailed measurements of the Jovian auroral region and magnetospheric plasmas, which will surely revolutionize our understanding of these important and complex regions.

  8. Plasma transport along discrete auroral arcs and its contribution to the ionospheric plasma convection

    Directory of Open Access Journals (Sweden)

    A. Kullen

    2008-10-01

    Full Text Available The role of intense high-altitude electric field (E-field peaks for large-scale plasma convection is investigated with the help of Cluster E-field, B-field and density data. The study covers 32 E-field events between 4 and 7 RE geocentric distance, with E-field magnitudes in the range 500–1000 mV/m when mapped to ionospheric altitude. We focus on E-field structures above the ionosphere that are typically coupled to discrete auroral arcs and their return current region. Connected to such E-field peaks are rapid plasma flows directed along the discrete arcs in opposite directions on each side of the arc. Nearly all the E-field events occur during active times. A strong dependence on different substorm phases is found: a majority of intense E-field events appearing during substorm expansion or maximum phase are located on the nightside oval, while most recovery events occur on the dusk-to-dayside part of the oval. For most expansion and maximum phase cases, the average background plasma flow is in the sunward direction. For a majority of recovery events, the flow is in the anti-sunward direction. The net plasma flux connected to a strong E-field peak is in two thirds of the cases in the same direction as the background plasma flow. However, in only one third of the cases the strong flux caused by an E-field peak makes an important contribution to the plasma transport within the boundary plasma sheet. For a majority of events, the area covered by rapid plasma flows above discrete arcs is too small to have an effect on the global convection. This questions the role of discrete auroral arcs as major driver of plasma convection.

  9. Auroral ion acceleration from lower hybrid solitary structures: A summary of sounding rocket observations

    Science.gov (United States)

    Lynch, K. A.; Arnoldy, R. L.; Kintner, P. M.; Schuck, P.; Bonnell, J. W.; Coffey, V.

    In this paper we present a review of sounding rocket observations of the ion acceleration seen in nightside auroral zone lower hybrid solitary structures. Observations from Topaz3, Amicist, and Phaze2 are presented on various spatial scales, including the two-point measurements of the Amicist mission. From this collection of observations we will demonstrate the following characteristics of transverse acceleration of ions (TAI) in lower hybrid solitary structures (LHSS). The ion acceleration process is narrowly confined to 90° pitch angle, in spatially confined regions of up to a few hundred meters across B. The acceleration process does not affect the thermal core of the ambient distribution and does not directly create a measurable effect on the ambient ion population outside the LHSS themselves. This precludes observation with these data of any nonlinear feedback between the ion acceleration and the existence or evolution of the density irregularities on which these LHSS events grow. Within the LHSS region the acceleration process creates a high-energy tail beginning at a few times the thermal ion speed. The ion acceleration events are closely associated with localized wave events. Accelerated ions bursts are also seen without a concurrent observation of a localized wave event, for two possible reasons. In some cases, the pitch angles of the accelerated tail ions are elevated above perpendicular; that is, the acceleration occurred below the observer and the mirror force has begun to act upon the distribution, moving it upward from the source. In other cases, the accelerated ion structure is spatially larger than the wave event structure, and the observation catches only the ion event. The occurrence rate of these ion acceleration events is related to the ambient environment in two ways: its altitude dependence can be modeled with the parameter B2/ne, and it is highest in regions of intense VLF activity. The cumulative ion outflow from these LHSS TAI is

  10. Substorm related changes in precipitation in the dayside auroral zone – a multi instrument case study

    Directory of Open Access Journals (Sweden)

    A. J. Kavanagh

    Full Text Available A period (08:10–14:40 MLT, 11 February 1997 of enhanced electron density in the D- and E-regions is investigated using EISCAT, IRIS and other complementary instruments. The precipitation is determined to be due to substorm processes occurring close to magnetic midnight. Energetic electrons drift eastward after substorm injection and precipitate in the morning sector. The precipitation is triggered by small pulses in the solar wind pressure, which drive wave particle interactions. The characteristic energy of precipitation is inferred from drift timing on different L-shells and apparently verified by EISCAT measurements. The IMF influence on the precipitation in the auroral zone is also briefly discussed. A large change in the precipitation spectrum is attributed to increased numbers of ions and much reduced electron fluxes. These are detected by a close passing DMSP satellite. The possibility that these ions are from the low latitude boundary layer (LLBL is discussed with reference to structured narrow band Pc1 waves observed by a search coil magnetometer, co-located with IRIS. The intensity of the waves grows with increased distance equatorward of the cusp position (determined by both satellite and HF radar, contrary to expectations if the precipitation is linked to the LLBL. It is suggested that the ion precipitation is, instead, due to the recovery phase of a small geomagnetic storm, following on from very active conditions. The movement of absorption in the later stages of the event is compared with observations of the ionospheric convection velocities. A good agreement is found to exist in this time interval suggesting that E × B drift has become the dominant drift mechanism over the gradient-curvature drift separation of the moving absorption patches observed at the beginning of the morning precipitation event.

    Key words. Ionosphere (auroral ionosphere; particle precipitation Magnetospheric physics (storms and substorms

  11. Substorm related changes in precipitation in the dayside auroral zone – a multi instrument case study

    Directory of Open Access Journals (Sweden)

    A. J. Kavanagh

    2002-09-01

    Full Text Available A period (08:10–14:40 MLT, 11 February 1997 of enhanced electron density in the D- and E-regions is investigated using EISCAT, IRIS and other complementary instruments. The precipitation is determined to be due to substorm processes occurring close to magnetic midnight. Energetic electrons drift eastward after substorm injection and precipitate in the morning sector. The precipitation is triggered by small pulses in the solar wind pressure, which drive wave particle interactions. The characteristic energy of precipitation is inferred from drift timing on different L-shells and apparently verified by EISCAT measurements. The IMF influence on the precipitation in the auroral zone is also briefly discussed. A large change in the precipitation spectrum is attributed to increased numbers of ions and much reduced electron fluxes. These are detected by a close passing DMSP satellite. The possibility that these ions are from the low latitude boundary layer (LLBL is discussed with reference to structured narrow band Pc1 waves observed by a search coil magnetometer, co-located with IRIS. The intensity of the waves grows with increased distance equatorward of the cusp position (determined by both satellite and HF radar, contrary to expectations if the precipitation is linked to the LLBL. It is suggested that the ion precipitation is, instead, due to the recovery phase of a small geomagnetic storm, following on from very active conditions. The movement of absorption in the later stages of the event is compared with observations of the ionospheric convection velocities. A good agreement is found to exist in this time interval suggesting that E × B drift has become the dominant drift mechanism over the gradient-curvature drift separation of the moving absorption patches observed at the beginning of the morning precipitation event.Key words. Ionosphere (auroral ionosphere; particle precipitation Magnetospheric physics (storms and substorms

  12. The relationship between VHF radar auroral backscatter amplitude and Doppler velocity: a statistical study

    Directory of Open Access Journals (Sweden)

    B. A. Shand

    1996-08-01

    Full Text Available A statistical investigation of the relationship between VHF radar auroral backscatter intensity and Doppler velocity has been undertaken with data collected from 8 years operation of the Wick site of the Sweden And Brita