WorldWideScience

Sample records for polar two-phase solvent

  1. Organic high ionic strength aqueous two-phase solvent system series for separation of ultra-polar compounds by spiral high-speed counter-current chromatography

    Science.gov (United States)

    Zeng, Yun; Liu, Gang; Ma, Ying; Chen, Xiaoyuan; Ito, Yoichiro

    2011-01-01

    Existing two-phase solvent systems for high-speed countercurrent chromatography cover the separation of hydrophobic to moderately polar compounds, but often fail to provide suitable partition coefficient values for highly polar compounds such as sulfonic acids, catecholamines and zwitter ions. The present paper introduces a new solvent series which can be applied for the separation of these polar compounds. It is composed of 1-butanol, ethanol, saturated ammonium sulfate and water at various volume ratios and consists of a series of 10 steps which are arranged according to the polarity of the solvent system so that the two-phase solvent system with suitable K values for the target compound(s) can be found in a few steps. Each solvent system gives proper volume ratio and high density difference between the two phases to provide a satisfactory level of retention of the stationary phase in the spiral column assembly. The method is validated by partition coefficient measurement of four typical polar compounds including methyl green (basic dye), tartrazine (sulfonic acid), tyrosine (zwitter ion) and epinephrine (a catecholamine), all of which show low partition coefficient values in the polar 1-butanol-water system. The capability of the method is demonstrated by separation of three catecholamines. PMID:22033108

  2. Dispersions of Goethite Nanorods in Aprotic Polar Solvents

    Directory of Open Access Journals (Sweden)

    Delphine Coursault

    2017-10-01

    Full Text Available Colloidal suspensions of anisotropic nanoparticles can spontaneously self-organize in liquid-crystalline phases beyond some concentration threshold. These phases often respond to electric and magnetic fields. At lower concentrations, usual isotropic liquids are observed but they can display very strong Kerr and Cotton-Mouton effects (i.e., field-induced particle orientation. For many examples of these colloidal suspensions, the solvent is water, which hinders most electro-optic applications. Here, for goethite (α-FeOOH nanorod dispersions, we show that water can be replaced by polar aprotic solvents, such as N-methyl-2-pyrrolidone (NMP and dimethylsulfoxide (DMSO, without loss of colloidal stability. By polarized-light microscopy, small-angle X-ray scattering and electro-optic measurements, we found that the nematic phase, with its field-response properties, is retained. Moreover, a strong Kerr effect was also observed with isotropic goethite suspensions in these polar aprotic solvents. Furthermore, we found no significant difference in the behavior of both the nematic and isotropic phases between the aqueous and non-aqueous dispersions. Our work shows that goethite nanorod suspensions in polar aprotic solvents, suitable for electro-optic applications, can easily be produced and that they keep all their outstanding properties. It also suggests that this solvent replacement method could be extended to the aqueous colloidal suspensions of other kinds of charged anisotropic nanoparticles.

  3. Scanning force microscopy study of phase segregation in fuel cell membrane materials as a function of solvent polarity and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, Marilyn Emily [Los Alamos National Laboratory; Kim, Yu S [Los Alamos National Laboratory; Hjelm, Rex P [Los Alamos National Laboratory

    2010-01-01

    Scanning force microscopy (SFM) phase imaging provides a powerful method for directly studying and comparing phase segregation in fuel cell membrane materials due to different preparation and under different temperature and hwnidity exposures. In this work, we explored two parameters that can influence phase segregation: the properties of the solvents used in casting membrane films and how these solvents alter phase segregation after exposure to boiling water as a function of time. SFM was used under ambient conditions to image phase segregation in Nafion samples prepared using five different solvents. Samples were then subjected to water vapor maintained at 100C for periods ranging from 30 minutes to three hours and re-imaged using the same phase imaging conditions. SFM shows what appears to be an increase in phase segregation as a function of solvent polarity that changes as a function of water exposure.

  4. Dispersing surface-modified imogolite nanotubes in polar and non-polar solvents

    Science.gov (United States)

    Li, Ming; Brant, Jonathan A.

    2018-02-01

    Furthering the development of nanocomposite structures, namely membranes for water treatment applications, requires that methods be developed to ensure nanoparticle dispersion in polar and non-polar solvents, as both are widely used in associated synthesis techniques. Here, we report on a two-step method to graft polyvinylpyrrolidone (PVP), and a one-step method for octadecylphosphonic acid (OPA), onto the outer surfaces of imogolite nanotubes. The goal of these approaches was to improve and maintain nanotube dispersion in polymer compatible polar and non-polar solvents. The PVP coating modified the imogolite surface charge from positive to weakly negative at pH ≤ 9; the OPA made it weakly positive at acidic pH values to negative at pH ≥ 7. The PVP surface coating stabilized the nanotubes through steric hindrance in polar protic, dipolar aprotic, and chloroform. In difference to the PVP, the OPA surface coating allowed the nanotubes to be dispersed in n-hexane and chloroform, but not in the polar solvents. The lack of miscibility in the polar solvents, as well as the better dispersion in n-hexane, was attributed to the stronger hydrophobicity of the OPA polymer relative to the PVP. [Figure not available: see fulltext.

  5. Simultaneously 'pushing' and 'pulling' graphene oxide into low-polar solvents through a designed interface.

    Science.gov (United States)

    Liu, Zhen; Liu, Jingquan; Wang, Yichao; Razal, Joselito M; Francis, Paul S; Biggs, Mark J; Barrow, Colin J; Yang, Wenrong

    2018-08-03

    Dispersing graphene oxide (GO) in low-polar solvents can realize a perfect self-assembly with functional molecules and application in removal of organic impurities that only dissolve in low-polar solvents. The surface chemistry of GO plays an important role in its dispersity in these solvents. The direct transfer of hydrophilic GO into low-polar solvents, however, has remained an experimental challenge. In this study, we design an interface to transfer GO by simultaneously 'pushing and pulling' the nanosheets into low-polar solvents. Our approach is outstanding due to the ability to obtain monolayers of chemically reduced GO (CRGO) with designed surface properties in the organic phase. Using the transferred GO or CRGO dispersions, we have fabricated GO/fullerene nanocomposites and assessed the ability of CRGOs for dye adsorption. We hope our work can provide a universal approach for the phase transfer of other nanomaterials.

  6. Photophysics of Curcumin excited state in toluene-polar solvent mixtures: Role of H-bonding properties of the polar solvent

    Energy Technology Data Exchange (ETDEWEB)

    Saini, R.K.; Das, K., E-mail: kaustuv@rrcat.gov.in

    2014-01-15

    Excited state dynamics of Curcumin in binary solvent mixtures of toluene and polar H-bonding solvents were compared by using an instrument endowed with 40 ps time resolution. The solvation time constant of Curcumin increases significantly (and can therefore be measured) in polar solvents which have, either, both H-bond donating and accepting ability, or, only H-bond donating ability. These results suggest that the rate limiting step in the excited state dynamics of the pigment might be the formation and reorganization of the intermolecular H-bonding between the keto group of the pigment and the H-bond donating moieties of the polar solvent. -- Highlights: • Excited state dynamics of Curcumin in a binary solvent mixture of toluene and three polar H-bonding solvents were compared. • The solvation time constant increases significantly with polar solvents having, H-bond donating and accepting, or, H-bond donating ability. • Observed results suggest that H-bonding property of polar solvent plays an important role in the excited state dynamics. • Intermolecular H-bonding between the keto group of the pigment and polar solvent may be the rate limiting step.

  7. Photophysics of Curcumin excited state in toluene-polar solvent mixtures: Role of H-bonding properties of the polar solvent

    International Nuclear Information System (INIS)

    Saini, R.K.; Das, K.

    2014-01-01

    Excited state dynamics of Curcumin in binary solvent mixtures of toluene and polar H-bonding solvents were compared by using an instrument endowed with 40 ps time resolution. The solvation time constant of Curcumin increases significantly (and can therefore be measured) in polar solvents which have, either, both H-bond donating and accepting ability, or, only H-bond donating ability. These results suggest that the rate limiting step in the excited state dynamics of the pigment might be the formation and reorganization of the intermolecular H-bonding between the keto group of the pigment and the H-bond donating moieties of the polar solvent. -- Highlights: • Excited state dynamics of Curcumin in a binary solvent mixture of toluene and three polar H-bonding solvents were compared. • The solvation time constant increases significantly with polar solvents having, H-bond donating and accepting, or, H-bond donating ability. • Observed results suggest that H-bonding property of polar solvent plays an important role in the excited state dynamics. • Intermolecular H-bonding between the keto group of the pigment and polar solvent may be the rate limiting step

  8. Switchable polarity solvent for liquid phase microextraction of Cd(II) as pyrrolidinedithiocarbamate chelates from environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Erkan, E-mail: kimyager_erkan@hotmail.com; Soylak, Mustafa, E-mail: soylak@erciyes.edu.tr

    2015-07-30

    A switchable polarity solvent was synthesized from triethylamine (TEA)/water/CO{sub 2} (Dry ice) via proton transfer reaction has been used for the microextraction of cadmium(II) as pyrrolidinedithiocarbamate (APDC) chelate. Cd(II)-APDC chelate was extracted into the switchable polarity solvent drops by adding 2 mL 10 M sodium hydroxide solution. Analytical parameters affecting the complex formation and microextraction efficiency such as pH, amount of ligand, volume of switchable polarity solvent and NaOH, sample volume were optimized. The effects of foreign ions were found tolerably. Under optimum conditions, the detection limit was 0.16 μg L{sup −1} (3Sb/m, n = 7) and the relative standard deviation was 5.4% (n = 7). The method was validated by the analysis of certified reference materials (TMDA-51.3 fortified water, TMDA-53.3 fortified water and SPS-WW2 waste water, 1573a Tomato Leaves and Oriental Basma Tobacco Leaves (INCT-OBTL-5)) and addition/recovery tests. The method was successfully applied to determination of cadmium contents of water, vegetable, fruit and cigarette samples. - Highlights: • Switchable polarity solvent was synthesized from triethylamine (TEA)/water/CO{sub 2}. • The switchable polarity solvent has been used for the microextraction of cadmium(II). • The important factors were optimized. • The method was applied to determination of cadmium in real samples.

  9. Polar and low polar solvents media effect on dipole moments of some diazo Sudan dyes

    Science.gov (United States)

    Zakerhamidi, M. S.; Golghasemi Sorkhabi, Sh.; Shamkhali, A. N.

    2014-06-01

    Absorption and fluorescence spectra of three Sudan dyes (SudanIII, SudanIV and Sudan black B) were recorded in various solvents with different polarity in the range of 300-800 nm, at room temperature. The solvatochromic method was used to investigate dipole moments of these dyes in ground and excited states, in different media. The solvatochromic behavior of these substances and their solvent-solute interactions were analyzed via solvent polarity parameters. Obtained results express the effects of solvation on tautomerism and molecular configuration (geometry) of Sudan dyes in solvent media with different polarity. Furthermore, analyze of solvent-solute interactions and value of ground and excited states dipole moments suggests different forms of resonance structures for Sudan dyes in polar and low-polar solvents.

  10. How many molecular layers of polar solvent molecules control chemistry? The concept of compensating dipoles.

    Science.gov (United States)

    Langhals, Heinz; Braun, Patricia; Dietl, Christian; Mayer, Peter

    2013-09-27

    The extension of the solvent influence of the shell into the volume of a polar medium was examined by means of anti-collinear dipoles on the basis of the E(T)(30) solvent polarity scale (i.e., the molar energy of excitation of a pyridinium-N-phenolatebetaine dye; generally: E(T) =28,591 nm kcal mol(-1)/λmax) where no compensation effects were found. As a consequence, solvent polarity effects are concentrated to a very thin layer of a few thousand picometres around the solute where extensions into the bulk solvent become unimportant. A parallelism to the thin surface layer of water to the gas phase is discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Directed Assembly of Janus Cylinders by Controlling the Solvent Polarity.

    Science.gov (United States)

    Kim, Jongmin; Choi, Chang-Hyung; Yeom, Su-Jin; Eom, Naye; Kang, Kyoung-Ku; Lee, Chang-Soo

    2017-08-01

    This study demonstrates the possibility of controlling the directed self-assembly of microsized Janus cylinders by changing the solvent polarity of the assembly media. Experimental results are analyzed and theoretical calculations of the free energy of adhesion (ΔG ad ) are performed to elucidate the underlying basic principles and investigate the effects of the solvent on the self-assembled structures. This approach will pave a predictive route for controlling the structures of assembly depending on the solvent polarity. In particular, we find that a binary solvent system with precisely controlled polarity induces directional assembly of the microsized Janus cylinders. Thus, the formation of two-dimensional (2D) and three-dimensional (3D) assembled clusters can be reliably tuned by controlling the numbers of constituent Janus cylinders in a binary solvent system. Finally, this approach is expanded to stepwise assembly, which forms unique microstructures via secondary growth of primary seed clusters formed by the Janus cylinders. We envision that this investigation is highly promising for the construction of desired superstructures using a wide variety of polymeric Janus microparticles with chemical and physical multicompartments.

  12. Biofiltration of paint solvent mixtures in two reactor types: overloading by polar components.

    Science.gov (United States)

    Paca, Jan; Halecky, Martin; Misiaczek, Ondrej; Kozliak, Evguenii I; Jones, Kim

    2012-01-01

    Steady-state performances of a trickle bed reactor (TBR) and a biofilter (BF) in loading experiments with increasing inlet concentrations of polar solvents, acetone, methyl ethyl ketone, methyl isobutyl ketone and n-butyl acetate, were investigated, along with the system's dynamic responses. Throughout the entire experimentation time, a constant loading rate of aromatic components of 4 g(c)·m(-3)·h(-1) was maintained to observe the interactions between the polar substrates and aromatic hydrocarbons. Under low combined substrate loadings, the BF outperformed TBR not only in the removal of aromatic hydrocarbons but also in the removal of polar substrates. However, increasing the loading rate of polar components above the threshold value of 31-36 g(c)·m(-3)·h(-1) resulted in a steep and significant drop in the removal efficiencies of both polar (except for butyl acetate) and hydrophobic components, which was more pronounced in the BF; so the relative TBR/BF efficiency became reversed under such overloading conditions. A step-drop of the overall OL(POLAR) (combined loading by polar air pollutants) from overloading values to 7 g(c)·m(-3)·h(-1) resulted in an increase of all pollutant removal efficiencies, although in TBR the recovery was preceded by lag periods lasting between 5 min (methyl ethyl ketone) to 3.7 h (acetone). The occurrence of lag periods in the TBR recovery was, in part, due to the saturation of mineral medium with water-soluble polar solvents, particularly, acetone. The observed bioreactor behavior was consistent with the biological steps being rate-limiting.

  13. Solvent polarity effects on supramolecular chirality of a polyfluorene-thiophene copolymer.

    Science.gov (United States)

    Hirahara, Takashi; Yoshizawa-Fujita, Masahiro; Takeoka, Yuko; Rikukawa, Masahiro

    2018-06-01

    This study demonstrates the supramolecular chirality control of a conjugated polymer via solvent polarity. We designed and synthesized a chiral polyfluorene-thiophene copolymer having two different chiral side chains at the 9-position of the fluorene unit. Chiral cyclic and alkyl ethers with different polarities were selected as the chiral side chains. The sign of the circular dichroism spectra in the visible wavelength region was affected by the solvent system, resulting from the change of supramolecular structure. The estimation of the solubility parameter revealed that the solubility difference of the side chains contributed to the change of the circular dichroism sign, which was also observed in spin-coated films prepared from good solvents having different polarities. © 2018 Wiley Periodicals, Inc.

  14. The Role of Solvent Polarity on Low-Temperature Methanol Synthesis Catalyzed by Cu Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ahoba-Sam, Christian [Department of Process, Energy and Environmental Technology, University College of Southeast Norway, Porsgrunn (Norway); Olsbye, Unni [Department of Chemistry, University of Oslo, Oslo (Norway); Jens, Klaus-Joachim, E-mail: Klaus.J.Jens@usn.no [Department of Process, Energy and Environmental Technology, University College of Southeast Norway, Porsgrunn (Norway)

    2017-07-14

    Methanol syntheses at low temperature in a liquid medium present an opportunity for full syngas conversion per pass. The aim of this work was to study the role of solvents polarity on low-temperature methanol synthesis reaction using eight different aprotic polar solvents. A “once through” catalytic system, which is composed of Cu nanoparticles and sodium methoxide, was used for methanol synthesis at 100°C and 20 bar syngas pressure. Solvent polarity rather than the 7–10 nm Cu (and 30 nm Cu on SiO{sub 2}) catalyst used dictated trend of syngas conversion. Diglyme with a dielectric constant (ε) = 7.2 gave the highest syngas conversion among the eight different solvents used. Methanol formation decreased with either increasing or decreasing solvent ε value of diglyme (ε = 7.2). To probe the observed trend, possible side reactions of methyl formate (MF), the main intermediate in the process, were studied. MF was observed to undergo two main reactions; (i) decarbonylation to form CO and MeOH and (ii) a nucleophilic substitution to form dimethyl ether and sodium formate. Decreasing polarity favored the decarbonylation side reaction while increasing polarity favored the nucleophilic substitution reaction. In conclusion, our results show that moderate polarity solvents, e.g., diglyme, favor MF hydrogenolysis and, hence, methanol formation, by retarding the other two possible side reactions.

  15. Effect of solvent polarity and temperature on the spectral and thermodynamic properties of exciplexes of 1-cyanonaphthalene with hexamethylbenzene in organic solvents

    International Nuclear Information System (INIS)

    Asim, Sadia; Mansha, Asim; Grampp, Günter; Landgraf, Stephan; Zahid, Muhammad; Bhatti, Ijaz Ahmad

    2014-01-01

    Study of the effect of solvent polarity and temperature is done on the exciplex emission spectra of 1-cyanonaphthalene with hexamethylbenzene. Exciplex system is studied in the range of partially polar solvents and in solvent mixture of propyl acetate and butyronitrile. The unique feature of this solvent mixture is that only the solvent polarity changes (6.0≤ε s ≤24.7) with the change in the mole fraction of solvents whereas the solvent viscosity and refractive index remains unaffected. Thermodynamic properties are calculated according to the models developed by Weller and Kuzmin. Fluorescence lifetimes for both the fluorophore as well as the exciplex are evaluated in all used solvents. Exciplex energetics as a function of solvent polarity and temperature are also discussed. Kuzmin model of self-consistent polarization is used for the explanation of the exciplex emission spectra. The effects of solvent polarity and temperature on energy of zero–zero transitions (hv 0 / ), Huang–Rhys factor (S), Gauss broadening of vibronic level (σ) and the dominant high-frequency vibration (hν ν ) are investigated. The strong dependence of exciplex stability and energetics upon the solvent polarity and temperature are observed. Full charge transfer exciplexes were observed in solvents of all polarities and stronger exciplex with large emission intensities were found in solvents of low polarities but with the increase in solvent polarity the exciplex becomes weak and they dissociate fastly into radical ion pairs. The kinetic model of Kuzmin was observed to reduce into the Weller kinetic model for this exciplex system with ∆G ET = −0.22 eV and the spectral shift, h∆ν>0.2 eV. - Highlights: • Exciplex formed as a result of mixing of charge transfer and locally excited states. • Effect of solvents polarity and temperature on the exciplex stability and thermodynamics. • Solvent polarity will decide the formation of contact radical ion pair or solvent separated

  16. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides

    International Nuclear Information System (INIS)

    Wang Ziming; Zhao Xin; Xu Xu; Wu Lijie; Su Rui; Zhao Yajing; Jiang Chengfei; Zhang Hanqi; Ma Qiang; Lu Chunmei; Dong Deming

    2013-01-01

    Highlights: ► An absorbing microwave μ-SPE device packed with activated carbon was used. ► Absorbing microwave μ-SPE device was made and used to enrich the analytes. ► Absorbing microwave μ-SPE device was made and used to heat samples directly. ► MAE-μ-SPE was applied to the extraction of OPPs with non-polar solvent only. - Abstract: A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60 °C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC–MS without any clean-up process. The recoveries were in the range of 93.5–104.6%, and the relative standard deviations were lower than 8.7%.

  17. Effect of solvent polarity and temperature on the spectral and thermodynamic properties of exciplexes of 1-cyanonaphthalene with hexamethylbenzene in organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Asim, Sadia [Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremaryrgasse 9, A-8010 Graz (Austria); Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad (Pakistan); Mansha, Asim [Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremaryrgasse 9, A-8010 Graz (Austria); Department of Chemistry, Government College University, Faisalabad (Pakistan); Grampp, Günter, E-mail: grampp@tugraz.at [Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremaryrgasse 9, A-8010 Graz (Austria); Landgraf, Stephan [Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremaryrgasse 9, A-8010 Graz (Austria); Zahid, Muhammad [Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremaryrgasse 9, A-8010 Graz (Austria); Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad (Pakistan); Bhatti, Ijaz Ahmad [Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad (Pakistan)

    2014-09-15

    Study of the effect of solvent polarity and temperature is done on the exciplex emission spectra of 1-cyanonaphthalene with hexamethylbenzene. Exciplex system is studied in the range of partially polar solvents and in solvent mixture of propyl acetate and butyronitrile. The unique feature of this solvent mixture is that only the solvent polarity changes (6.0≤ε{sub s}≤24.7) with the change in the mole fraction of solvents whereas the solvent viscosity and refractive index remains unaffected. Thermodynamic properties are calculated according to the models developed by Weller and Kuzmin. Fluorescence lifetimes for both the fluorophore as well as the exciplex are evaluated in all used solvents. Exciplex energetics as a function of solvent polarity and temperature are also discussed. Kuzmin model of self-consistent polarization is used for the explanation of the exciplex emission spectra. The effects of solvent polarity and temperature on energy of zero–zero transitions (hv{sub 0}{sup /}), Huang–Rhys factor (S), Gauss broadening of vibronic level (σ) and the dominant high-frequency vibration (hν{sub ν}) are investigated. The strong dependence of exciplex stability and energetics upon the solvent polarity and temperature are observed. Full charge transfer exciplexes were observed in solvents of all polarities and stronger exciplex with large emission intensities were found in solvents of low polarities but with the increase in solvent polarity the exciplex becomes weak and they dissociate fastly into radical ion pairs. The kinetic model of Kuzmin was observed to reduce into the Weller kinetic model for this exciplex system with ∆G{sub ET} = −0.22 eV and the spectral shift, h∆ν>0.2 eV. - Highlights: • Exciplex formed as a result of mixing of charge transfer and locally excited states. • Effect of solvents polarity and temperature on the exciplex stability and thermodynamics. • Solvent polarity will decide the formation of contact radical ion pair

  18. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ziming, E-mail: wangziming@jlu.edu.cn [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); College of Environment and Resources, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Zhao Xin; Xu Xu; Wu Lijie; Su Rui; Zhao Yajing; Jiang Chengfei; Zhang Hanqi [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Ma Qiang [Chinese Academy of Inspection and Quarantine, Beijing 100123 (China); Lu Chunmei [College of Technology Center, Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun 130062 (China); Dong Deming [College of Environment and Resources, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2013-01-14

    Highlights: Black-Right-Pointing-Pointer An absorbing microwave {mu}-SPE device packed with activated carbon was used. Black-Right-Pointing-Pointer Absorbing microwave {mu}-SPE device was made and used to enrich the analytes. Black-Right-Pointing-Pointer Absorbing microwave {mu}-SPE device was made and used to heat samples directly. Black-Right-Pointing-Pointer MAE-{mu}-SPE was applied to the extraction of OPPs with non-polar solvent only. - Abstract: A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction ({mu}-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave {mu}-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in {mu}-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave {mu}-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60 Degree-Sign C for 10 min. The extracts obtained by MAE-{mu}-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%.

  19. A green deep eutectic solvent-based aqueous two-phase system for protein extracting

    International Nuclear Information System (INIS)

    Xu, Kaijia; Wang, Yuzhi; Huang, Yanhua; Li, Na; Wen, Qian

    2015-01-01

    Highlights: • A strategy for the protein purification with a deep eutectic solvent(DES)-based aqueous two-phase system. • Choline chloride-glycerin DES was selected as the extraction solvent. • Bovine serum albumin and trypsin were used as the analytes. • Aggregation phenomenon was detected in the mechanism research. - Abstract: As a new type of green solvent, deep eutectic solvent (DES) has been applied for the extraction of proteins with an aqueous two-phase system (ATPS) in this work. Four kinds of choline chloride (ChCl)-based DESs were synthesized to extract bovine serum albumin (BSA), and ChCl-glycerol was selected as the suitable extraction solvent. Single factor experiments have been done to investigate the effects of the extraction process, including the amount of DES, the concentration of salt, the mass of protein, the shaking time, the temperature and PH value. Experimental results show 98.16% of the BSA could be extracted into the DES-rich phase in a single-step extraction under the optimized conditions. A high extraction efficiency of 94.36% was achieved, while the conditions were applied to the extraction of trypsin (Try). Precision, repeatability and stability experiments were studied and the relative standard deviations (RSD) of the extraction efficiency were 0.4246% (n = 3), 1.6057% (n = 3) and 1.6132% (n = 3), respectively. Conformation of BSA was not changed during the extraction process according to the investigation of UV–vis spectra, FT-IR spectra and CD spectra of BSA. The conductivity, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the mechanism of the extraction. It turned out that the formation of DES–protein aggregates play a significant role in the separation process. All the results suggest that ChCl-based DES-ATPS are supposed to have the potential to provide new possibilities in the separation of proteins

  20. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides.

    Science.gov (United States)

    Wang, Ziming; Zhao, Xin; Xu, Xu; Wu, Lijie; Su, Rui; Zhao, Yajing; Jiang, Chengfei; Zhang, Hanqi; Ma, Qiang; Lu, Chunmei; Dong, Deming

    2013-01-14

    A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60°C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. The spectral properties of (--epigallocatechin 3-O-gallate (EGCG fluorescence in different solvents: dependence on solvent polarity.

    Directory of Open Access Journals (Sweden)

    Vladislav Snitsarev

    Full Text Available (--Epigallocatechin 3-O-gallate (EGCG a molecule found in green tea and known for a plethora of bioactive properties is an inhibitor of heat shock protein 90 (HSP90, a protein of interest as a target for cancer and neuroprotection. Determination of the spectral properties of EGCG fluorescence in environments similar to those of binding sites found in proteins provides an important tool to directly study protein-EGCG interactions. The goal of this study is to examine the spectral properties of EGCG fluorescence in an aqueous buffer (AB at pH=7.0, acetonitrile (AN (a polar aprotic solvent, dimethylsulfoxide (DMSO (a polar aprotic solvent, and ethanol (EtOH (a polar protic solvent. We demonstrate that EGCG is a highly fluorescent molecule when excited at approximately 275 nm with emission maxima between 350 and 400 nm depending on solvent. Another smaller excitation peak was found when EGCG is excited at approximately 235 nm with maximum emission between 340 and 400 nm. We found that the fluorescence intensity (FI of EGCG in AB at pH=7.0 is significantly quenched, and that it is about 85 times higher in an aprotic solvent DMSO. The Stokes shifts of EGCG fluorescence were determined by solvent polarity. In addition, while the emission maxima of EGCG fluorescence in AB, DMSO, and EtOH follow the Lippert-Mataga equation, its fluorescence in AN points to non-specific solvent effects on EGCG fluorescence. We conclude that significant solvent-dependent changes in both fluorescence intensity and fluorescence emission shifts can be effectively used to distinguish EGCG in aqueous solutions from EGCG in environments of different polarity, and, thus, can be used to study specific EGCG binding to protein binding sites where the environment is often different from aqueous in terms of polarity.

  2. Solvent effect on the degree of (a)synchronicity in polar Diels-Alder reactions from the perspective of the reaction force constant analysis.

    Science.gov (United States)

    Yepes, Diana; Martínez-Araya, Jorge I; Jaque, Pablo

    2017-12-29

    In this work, we computationally evaluated the influence of six different molecular solvents, described as a polarizable continuum model at the M06-2X/6-31+G(d,p) level, on the activation barrier/reaction rate, overall energy change, TS geometry, and degree of (a)synchronicity of two concerted Diels-Alder cycloadditions of acrolein (R1) and its complex with Lewis acid acrolein···BH 3 (R2) to cyclopentadiene. In gas-phase, we found that both exothermicity and activation barrier are only reduced by about 2.0 kcal mol -1 , and the asynchronicity character of the mechanism is accentuated when BH 3 is included. An increment in the solvent's polarity lowers the activation energy of R1 by 1.3 kcal mol -1 , while for R2 the reaction rate is enhanced by more than 2000 times at room temperature (i.e., the activation energy decreases by 4.5 kcal mol -1 ) if the highest polar media is employed. Therefore, a synergistic effect is achieved when both external agents, i.e., Lewis acid catalyst and polar solvent, are included together. This effect was ascribed to the ability of the solvent to favor the encounter between cyclopentadiene and acrolein···BH 3 . This was validated by the asymmetry of the TS which becomes highly pronounced when either both or just BH 3 is considered or the solvent's polarity is increased. Finally, the reaction force constant κ(ξ) reveals that an increment in the solvent's polarity is able to turn a moderate asynchronous mechanism of the formation of the new C-C σ-bonds into a highly asynchronous one. Graphical abstract A synergistic effect is achieved when both external agents, i.e., Lewis acid catalyst and polar solvent, are included together: lowered energy barriers and increased asynchronicities.

  3. Plasma-polymerized films providing selective affinity to the polarity of vaporized organic solvents

    International Nuclear Information System (INIS)

    Akimoto, Takuo; Ikeshita, Yusuke; Terashima, Ryo; Karube, Isao

    2009-01-01

    Plasma-polymerized films (PPFs) were fabricated as recognition membranes for a vapor-sensing device, and their affinity to vaporized organic solvents was evaluated with surface plasmon resonance. The affinity we intended to create is the selective sorption of the vaporized organic solvents depending on their polarity. For this purpose, acetonitrile, ethylenediamine (EDA), styrene, hexamethyldisiloxane (HMDSO), and hexamethyldisilazane were used to fabricate PPFs. Vaporized methanol, ethanol, and 1-propanol were used as high-polar solvents to be analyzed. Hexane, toluene, and p-xylene were used as low-polar solvents. As a result, the HMDSO-PPF with 97.3 o of contact angle was found to provide affinity to the low-polar solvents. In contrast, the EDA-PPF with 7.1 o of contact angle provided affinity to the high-polar solvents. Observations of the surface morphology of the HMDSO- and EDA-PPFs with a scanning electron microscope revealed that they are composed of nano-scale islands.

  4. Synthesis of sol–gel silica particles in reverse micelles with mixed-solvent polar cores: tailoring nanoreactor structure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Bürglová, Kristýna; Hlaváč, Jan [Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry (Czech Republic); Bartlett, John R., E-mail: jbartlett@usc.edu.au [University of the Sunshine Coast, Faculty of Science, Health, Education and Engineering (Australia)

    2015-07-15

    In this paper, we describe a new approach for producing metal oxide nano- and microparticles via sol–gel processing in confined media (sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles), in which the chemical and physical properties of the polar aqueous core of the reverse micelles are modulated by the inclusion of a second polar co-solvent. The co-solvents were selected for their capacity to solubilise compounds with low water solubility and included dimethylsulfoxide, dimethylformamide, ethylene glycol, n-propanol, dimethylacetamide and N-methylpyrrolidone. A broad range of processing conditions across the sodium bis(2-ethylhexyl)sulfosuccinate/cyclohexane/water phase diagram were identified that are suitable for preparing particles with dimensions <50 to >500 nm. In contrast, only a relatively narrow range of processing conditions were suitable for preparing such particles in the absence of the co-solvents, highlighting the role of the co-solvent in modulating the properties of the polar core of the reverse micelles. A mechanism is proposed that links the interactions between the various reactive sites on the polar head group of the surfactant and the co-solvent to the nucleation and growth of the particles.

  5. Isolation Of Compounds Of Steroids Teripang Gamat (Stichopus variegatus With Various Types Of Solvents

    Directory of Open Access Journals (Sweden)

    Meydia Meydia

    2016-12-01

    Full Text Available Sea cucumber is one of the fisheries commodity that has an important economic value. Generally istraded in dried form (beche-de-mer. One of thebioactive substances contained in sea cucumber is steroidcompounds that serves as an aphrodisiac and sex reversal. The purpose of this study was to extract thesteroid of the gamma sea cucumber by using three types of solvents (methanol, ethyl acetate and hexaneand get the best solvent in producing the highest yield of the steroids. The study revealed that steroid ofgamma sea cucumber (Stichopus variegatus dissolved completely ethyl acetate (semi-polar solvent duringthe first phase, second phase and the third phase of extraction. In the methanol (polar solvent steroids onlydissolved in the first extraction phase, while using the hexane (non polar solvent steroid was undetectable.Fractionation by thin layer chromatography was obtained two fractions that identified as cholesterol (Rf =0.96 and testosterone (Rf = 0.91.

  6. Application of non-ionic surfactant as a developed method for the enhancement of two-phase solvent bar microextraction for the simultaneous determination of three phthalate esters from water samples.

    Science.gov (United States)

    Bandforuzi, Samereh Ranjbar; Hadjmohammadi, Mohammad Reza

    2018-08-03

    The extraction of phthalate esters (PEs) from aqueous matrices using two-phase solvent bar microextraction by organic micellar phase was investigated. A short hollow fiber immobilized with reverse micelles of Brij 35 surfactant in 1-octanol was served as the solvent bar for microextraction. Experimental results show that the extraction efficiency were much higher using two-phase solvent bar microextraction based on non-ionic surfactant than conventional two-phase solvent bar microextraction because of a positive effect of surfactant-containing extraction phase in promoting the partition process by non-ionic intermolecular forces such as polar and hydrophobicity interactions. The nature of the extraction solvent, type and concentration of non-ionic surfactant, extraction time, sample pH, temperature, stirring rate and ionic strength were the effecting parameters which optimized to obtain the highest extraction recovery. Analysis of recovered analytes was carried out with high performance liquid chromatography coupled with ultraviolet detection (HPLC-UV). Under the optimum conditions, linearity was observed in the range of 1-800 ng mL -1 for dimethylphthalate (DMP) and 0.5-800 ng mL -1 for diethylphthalate (DEP) and di-n-butyl phthalate (DBP) with correlation determination values above 0.99 for them. The limits of detection and quantification were ranged from 0.012 to 0.03 ng mL -1 and 0.04-0.1 ng mL -1 , respectively. The ranges of intra-day and inter-day RSD (n = 3) at 20 ng mL -1 of PEs were 1.8-2.1% and 2.1-2.6%, respectively. Results showed that developed method can be a very powerful, innovative and promising sample preparation technique in PEs analysis from environmental and drinking water samples. Copyright © 2018. Published by Elsevier B.V.

  7. Solvent polarity controls the helical conformation of short peptides rich in Calpha-tetrasubstituted amino acids.

    Science.gov (United States)

    Bellanda, Massimo; Mammi, Stefano; Geremia, Silvano; Demitri, Nicola; Randaccio, Lucio; Broxterman, Quirinus B; Kaptein, Bernard; Pengo, Paolo; Pasquato, Lucia; Scrimin, Paolo

    2007-01-01

    The two peptides, rich in C(alpha)-tetrasubstituted amino acids, Ac-[Aib-L-(alphaMe)Val-Aib](2)-L-His-NH(2) (1) and Ac-[Aib-L-(alphaMe)Val-Aib](2)-O-tBu (2 a) are prevalently helical. They present the unique property of changing their conformation from the alpha- to the 3(10)-helix as a function of the polarity of the solvent: alpha in more polar solvents, 3(10) in less polar ones. Conclusive evidence of this reversible change of conformation is reported on the basis of the circular dichroism (CD) spectra and a detailed two-dimensional NMR analysis in two solvents (trifluoroethanol and methanol) refined with molecular dynamics calculations. The X-ray diffractometric analysis of the crystals of both peptides reveals that they assume a prevalent 3(10)-helix conformation in the solid state. This conformation is practically superimposable on that obtained from the NMR analysis of 1 in methanol. The NMR results further validate the reported CD signature of the 3(10)-helix and the use of the CD technique for its assessment.

  8. Isolation Of Compounds Of Steroids Teripang Gamat (Stichopus variegatus With Various Types Of Solvents

    Directory of Open Access Journals (Sweden)

    Meydia Meydia

    2017-02-01

    Full Text Available AbstractSea cucumber is one of the fisheries commodity that has an important economic value. Generally is traded in dried form (beche-de-mer. One of thebioactive substances contained in sea cucumber is steroid compounds that serves as an aphrodisiac and sex reversal. The purpose of this study was to extract the steroid of the gamma sea cucumber by using three types of solvents (methanol, ethyl acetate and hexane and get the best solvent in producing the highest yield of the steroids. The study revealed that steroid of gamma sea cucumber (Stichopus variegatus dissolved completely ethyl acetate (semi-polar solvent during the first phase, second phase and the third phase of extraction. In the methanol (polar solvent steroids only dissolved in the first extraction phase, while using the hexane (non polar solvent steroid was undetectable. Fractionation by thin layer chromatography was obtained two fractions that identified as cholesterol (Rf = 0.96 and testosterone (Rf = 0.91.

  9. Application of non-aqueous solvents to batteries. I Physicochemical properties of propionitrile/water two-phase solvent relevant to zinc-bromine batteries

    Science.gov (United States)

    Singh, P.; White, K.; Parker, A. J.

    1983-11-01

    The properties of bromine/propionitrile solution are investigated with a view to its use as an electrolyte in zinc-bromine batteries which use circulating electrolyte. The solution, which forms a two-phase system with water, has higher conductivity than the oils formed by complexation of bromine with organic salts such as N,N-methoxymethyl methylpiperidinium bromide and N,N-ethyl methylmorpholinium bromide. The activity of bromine in the aqueous phase of the bromine-propionitrile/water, two-phase system is very low; thus, coulombic efficiencies greater than 85 percent are achieved. Zinc-bromine batteries containing this solvent system show good charge/discharge characteristics.

  10. Characterization of molecularly imprinted polymers using a new polar solvent titration method.

    Science.gov (United States)

    Song, Di; Zhang, Yagang; Geer, Michael F; Shimizu, Ken D

    2014-07-01

    A new method of characterizing molecularly imprinted polymers (MIPs) was developed and tested, which provides a more accurate means of identifying and measuring the molecular imprinting effect. In the new polar solvent titration method, a series of imprinted and non-imprinted polymers were prepared in solutions containing increasing concentrations of a polar solvent. The polar solvent additives systematically disrupted the templation and monomer aggregation processes in the prepolymerization solutions, and the extent of disruption was captured by the polymerization process. The changes in binding capacity within each series of polymers were measured, providing a quantitative assessment of the templation and monomer aggregation processes in the imprinted and non-imprinted polymers. The new method was tested using three different diphenyl phosphate imprinted polymers made using three different urea functional monomers. Each monomer had varying efficiencies of templation and monomer aggregation. The new MIP characterization method was found to have several advantages. To independently verify the new characterization method, the MIPs were also characterized using traditional binding isotherm analyses. The two methods appeared to give consistent conclusions. First, the polar solvent titration method is less susceptible to false positives in identifying the imprinting effect. Second, the method is able to differentiate and quantify changes in binding capacity, as measured at a fixed guest and polymer concentration, arising from templation or monomer aggregation processes in the prepolymerization solution. Third, the method was also easy to carry out, taking advantage of the ease of preparing MIPs. Copyright © 2014 John Wiley & Sons, Ltd.

  11. RETRIEVAL OF AEROSOL PHASE FUNCTION AND POLARIZED PHASE FUNCTION FROM POLARIZATION OF SKYLIGHT FOR DIFFERENT OBSERVATION GEOMETRIES

    Directory of Open Access Journals (Sweden)

    L. Li

    2018-04-01

    Full Text Available The phase function and polarized phase function are important optical parameters, which describe scattering properties of atmospheric aerosol particles. Polarization of skylight induced by the scattering processes is sensitive to the scattering properties of aerosols. The Stokes parameters I, Q, U and the polarized radiance Lp of skylight measured by the CIMEL dual-polar sun-sky radiometer CE318- DP can be use to retrieve the phase function and polarized phase function, respectively. Two different observation geometries (i.e., the principal plane and almucantar are preformed by the CE318-DP to detect skylight polarization. Polarization of skylight depends on the illumination and observation geometries. For the same solar zenith angle, retrievals of the phase function and the polarized phase function are still affected by the observation geometry. The performance of the retrieval algorithm for the principal plane and almucantar observation geometries was assessed by the numerical experiments at two typical high and low sun’s positions (i.e. solar zenith angles are equal to 45° and 65°. Comparing the results for the principal plane and almucantar geometries, it is recommended to utilize the principal plane observations to retrieve the phase function when the solar zenith angle is small. The Stokes parameter U and the polarized radiance Lp from the almucantar observations are suggested to retrieve the polarized phase function, especially for short wavelength channels (e.g., 440 and 500 nm.

  12. Retrieval of Aerosol Phase Function and Polarized Phase Function from Polarization of Skylight for Different Observation Geometries

    Science.gov (United States)

    Li, L.; Qie, L. L.; Xu, H.; Li, Z. Q.

    2018-04-01

    The phase function and polarized phase function are important optical parameters, which describe scattering properties of atmospheric aerosol particles. Polarization of skylight induced by the scattering processes is sensitive to the scattering properties of aerosols. The Stokes parameters I, Q, U and the polarized radiance Lp of skylight measured by the CIMEL dual-polar sun-sky radiometer CE318- DP can be use to retrieve the phase function and polarized phase function, respectively. Two different observation geometries (i.e., the principal plane and almucantar) are preformed by the CE318-DP to detect skylight polarization. Polarization of skylight depends on the illumination and observation geometries. For the same solar zenith angle, retrievals of the phase function and the polarized phase function are still affected by the observation geometry. The performance of the retrieval algorithm for the principal plane and almucantar observation geometries was assessed by the numerical experiments at two typical high and low sun's positions (i.e. solar zenith angles are equal to 45° and 65°). Comparing the results for the principal plane and almucantar geometries, it is recommended to utilize the principal plane observations to retrieve the phase function when the solar zenith angle is small. The Stokes parameter U and the polarized radiance Lp from the almucantar observations are suggested to retrieve the polarized phase function, especially for short wavelength channels (e.g., 440 and 500 nm).

  13. Cogeneration of biodiesel and nontoxic cottonseed meal from cottonseed processed by two-phase solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Qian Junfeng, E-mail: qianjunfeng80@126.co [Jiangsu Provincial Key Laboratory of Fine Petrochemical Engineering, Jiangsu Polytechnic University, Changzhou 213016 (China) and College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China); Yun Zhi; Shi Haixian [College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2010-12-15

    In the present work, the preparation of biodiesel from cottonseed oil produced by two-phase solvent extraction (TSE) was studied. The experimental results of TSE process of cottonseed showed that the optimal extraction conditions were 30 g samples, 240 mL extraction solvent mixture and methanol/petroleum ether volume ratio 60:40, extraction temperature 30 deg. C, extraction time 30 min. Under the extraction conditions, the extraction rate of cottonseed oil could achieve 98.3%, the free fatty acid (FFA) and water contents of cottonseed oil were reduced to 0.20% and 0.037%, respectively, which met the requirement of alkali-catalyzed transesterification. The free gossypol (FG) content in cottonseed meal produced from two-phase solvent extraction could reduce to 0.014% which was far below the FAO standard. And the nontoxic cottonseed meal could be used as animal protein feed resources. After the TSE process of cottonseed, the investigations were carried out on transesterification of methanol with oil-petroleum ether solution coming from TSE process in the presence of sodium hydroxide (CaO) as the solid base catalyst. The influences of weight ratio of petroleum ether to cottonseed oil, reaction temperature, molar ratio of methanol to oil, alkali catalyst amount and reaction time on cottonseed oil conversion were respectively investigated by mono-factor experiments. The conversion of cottonseed oil into fatty acid methyl ester (FAME) could achieve 98.6% with 3:1 petroleum ether/oil weight ratio, 65 deg. C reaction temperature, 9:1 methanol/oil mole ratio, 4% (catalyst/oil weight ratio, w/w) solid base catalyst amount and 3 h reaction time. The properties of FAME product prepared from cottonseed oil produced by two-phase solvent extraction met the ASTM specifications for biodiesel.

  14. Cogeneration of biodiesel and nontoxic cottonseed meal from cottonseed processed by two-phase solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Junfeng [Jiangsu Provincial Key Laboratory of Fine Petrochemical Engineering, Jiangsu Polytechnic University, Changzhou 213016 (China); College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China); Yun, Zhi; Shi, Haixian [College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2010-12-15

    In the present work, the preparation of biodiesel from cottonseed oil produced by two-phase solvent extraction (TSE) was studied. The experimental results of TSE process of cottonseed showed that the optimal extraction conditions were 30 g samples, 240 mL extraction solvent mixture and methanol/petroleum ether volume ratio 60:40, extraction temperature 30 C, extraction time 30 min. Under the extraction conditions, the extraction rate of cottonseed oil could achieve 98.3%, the free fatty acid (FFA) and water contents of cottonseed oil were reduced to 0.20% and 0.037%, respectively, which met the requirement of alkali-catalyzed transesterification. The free gossypol (FG) content in cottonseed meal produced from two-phase solvent extraction could reduce to 0.014% which was far below the FAO standard. And the nontoxic cottonseed meal could be used as animal protein feed resources. After the TSE process of cottonseed, the investigations were carried out on transesterification of methanol with oil-petroleum ether solution coming from TSE process in the presence of sodium hydroxide (CaO) as the solid base catalyst. The influences of weight ratio of petroleum ether to cottonseed oil, reaction temperature, molar ratio of methanol to oil, alkali catalyst amount and reaction time on cottonseed oil conversion were respectively investigated by mono-factor experiments. The conversion of cottonseed oil into fatty acid methyl ester (FAME) could achieve 98.6% with 3:1 petroleum ether/oil weight ratio, 65 C reaction temperature, 9:1 methanol/oil mole ratio, 4% (catalyst/oil weight ratio, w/w) solid base catalyst amount and 3 h reaction time. The properties of FAME product prepared from cottonseed oil produced by two-phase solvent extraction met the ASTM specifications for biodiesel. (author)

  15. Effects of polar protic solvents on dual emissions of 3 ...

    Indian Academy of Sciences (India)

    TECS

    Figure 1. Scheme of the ESIPT reaction of 3-hydroxy- chromone, 1. Chart 1. Chemical structures of the studied ... Materials and methods. Absorption and ... 85. Table 1. Spectroscopic properties of 3HC dyes in different polar solvents.a. Solvent.

  16. Anion-π aromatic neutral tweezers complexes: are they stable in polar solvents?

    Science.gov (United States)

    Sánchez-Lozano, Marta; Otero, Nicolás; Hermida-Ramón, Jose M; Estévez, Carlos M; Mandado, Marcos

    2011-03-17

    The impact of the solvent environment on the stabilization of the complexes formed by fluorine (T-F) and cyanide (T-CN) substituted tweezers with halide anions has been investigated theoretically. The study was carried out using computational methodologies based on density functional theory (DFT) and symmetry adapted perturbation theory (SAPT). Interaction energies were obtained at the M05-2X/6-31+G* level. The obtained results show a large stability of the complexes in solvents with large dielectric constant and prove the suitability of these molecular tweezers as potential hosts for anion recognition in solution. A detailed analysis of the effects of the solvent on the electron withdrawing ability of the substituents and its influence on the complex stability has been performed. In particular, the interaction energy in solution was split up into intermonomer and solvent-complex terms. In turn, the intermonomer interaction energy was partitioned into electrostatic, exchange, and polarization terms. Polar resonance structures in T-CN complexes are favored by polar solvents, giving rise to a stabilization of the intermonomer interaction, the opposite is found for T-F complexes. The solvent-complex energy increases with the polarity of the solvent in T-CN complexes, nonetheless the energy reaches a maximum and then decreases slowly in T-F complexes. An electron density analysis was also performed before and after complexation, providing an explanation to the trends followed by the interaction energies and their different components in solution.

  17. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals

    Science.gov (United States)

    Vybornyi, Oleh; Yakunin, Sergii; Kovalenko, Maksym V.

    2016-03-01

    A novel synthesis of hybrid organic-inorganic lead halide perovskite nanocrystals (CH3NH3PbX3, X = Br or I) that does not involve the use of dimethylformamide or other polar solvents is presented. The reaction between methylamine and PbX2 salts is conducted in a high-boiling nonpolar solvent (1-octadecene) in the presence of oleylamine and oleic acid as coordinating ligands. The resulting nanocrystals are characterized by high photoluminescence quantum efficiencies of 15-50%, outstanding phase purity and tunable shapes (nanocubes, nanowires, and nanoplatelets). Nanoplatelets spontaneously assemble into micrometer-length wires by face-to-face stacking. In addition, we demonstrate amplified spontaneous emission from thin films of green-emitting CH3NH3PbBr3 nanowires with low pumping thresholds of 3 μJ cm-2.A novel synthesis of hybrid organic-inorganic lead halide perovskite nanocrystals (CH3NH3PbX3, X = Br or I) that does not involve the use of dimethylformamide or other polar solvents is presented. The reaction between methylamine and PbX2 salts is conducted in a high-boiling nonpolar solvent (1-octadecene) in the presence of oleylamine and oleic acid as coordinating ligands. The resulting nanocrystals are characterized by high photoluminescence quantum efficiencies of 15-50%, outstanding phase purity and tunable shapes (nanocubes, nanowires, and nanoplatelets). Nanoplatelets spontaneously assemble into micrometer-length wires by face-to-face stacking. In addition, we demonstrate amplified spontaneous emission from thin films of green-emitting CH3NH3PbBr3 nanowires with low pumping thresholds of 3 μJ cm-2. Electronic supplementary information (ESI) available: Materials and methods, additional figures. See DOI: 10.1039/c5nr06890h

  18. Ultra-high performance size-exclusion chromatography in polar solvents.

    Science.gov (United States)

    Vancoillie, Gertjan; Vergaelen, Maarten; Hoogenboom, Richard

    2016-12-23

    Size-exclusion chromatography (SEC) is amongst the most widely used polymer characterization methods in both academic and industrial polymer research allowing the determination of molecular weight and distribution parameters, i.e. the dispersity (Ɖ), of unknown polymers. The many advantages, including accuracy, reproducibility and low sample consumption, have contributed to the worldwide success of this analytical technique. The current generation of SEC systems have a stationary phase mostly containing highly porous, styrene-divinylbenzene particles allowing for a size-based separation of various polymers in solution but limiting the flow rate and solvent compatibility. Recently, sub-2μm ethylene-bridged hybrid (BEH) packing materials have become available for SEC analysis. These packing materials can not only withstand much higher pressures up to 15000psi but also show high spatial stability towards different solvents. Combining these BEH columns with the ultra-high performance LC (UHPLC) technology opens up UHP-SEC analysis, showing strongly reduced runtimes and unprecedented solvent compatibility. In this work, this novel characterization technique was compared to conventional SEC using both highly viscous and highly polar solvents as eluent, namely N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF) and methanol, focusing on the suitability of the BEH-columns for analysis of highly functional polymers. The results show a high functional group compatibility comparable with conventional SEC with remarkably short runtimes and enhanced resolution in methanol. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Characterization of microenvironment polarity and solvent accessibility of polysilsesquioxane xerogels by the fluorescent probe technique

    Energy Technology Data Exchange (ETDEWEB)

    Shea, K.J.; Zhu, H.D. [Univ., of California, Irvine, CA (United States). Dept. of Chemistry; Loy, D.A. [Sandia National Labs., Albuquerque, NM (United States)

    1995-05-01

    Poly (1, 4 bis(triethoxysilyl)benzene) (PTESB), a representative of a new type of organic-inorganic hybrid polysilsesquioxane material, was characterized by fluorescence spectroscopy for both microenvironmental polarity and solvent accessibility. A dansyl fluorescent molecule was incorporated into the bulk as well as onto the surface of both PTESB and silica materials. Information about the microenvironment polarity and accessibility of PTESB to various organic solvents was determined and compared to that of silica gel. This study found that both the bulk and surface of PTESB are less polar than that of the silica material. The silica material is accessible to polar solvents and water, while YMB is accessible to polar solvents but not to water. The hydrophobicity of PTESB differentiates these new materials from silica gel.

  20. 10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation.

    Science.gov (United States)

    Lan, Xinzheng; Voznyy, Oleksandr; García de Arquer, F Pelayo; Liu, Mengxia; Xu, Jixian; Proppe, Andrew H; Walters, Grant; Fan, Fengjia; Tan, Hairen; Liu, Min; Yang, Zhenyu; Hoogland, Sjoerd; Sargent, Edward H

    2016-07-13

    Colloidal quantum dot (CQD) solar cells are solution-processed photovoltaics with broad spectral absorption tunability. Major advances in their efficiency have been made via improved CQD surface passivation and device architectures with enhanced charge carrier collection. Herein, we demonstrate a new strategy to improve further the passivation of CQDs starting from the solution phase. A cosolvent system is employed to tune the solvent polarity in order to achieve the solvation of methylammonium iodide (MAI) and the dispersion of hydrophobic PbS CQDs simultaneously in a homogeneous phase, otherwise not achieved in a single solvent. This process enables MAI to access the CQDs to confer improved passivation. This, in turn, allows for efficient charge extraction from a thicker photoactive layer device, leading to a certified solar cell power conversion efficiency of 10.6%, a new certified record in CQD photovoltaics.

  1. Effects of solvent polarity on mutual polypropylene grafting by electron beam irradiation

    International Nuclear Information System (INIS)

    Geraldo, A.B.C.; Moura, E.; Somessari, E.S.R.; Silveira, C.G.; Paes, H.A.; Souza, C.A.; Fernandes, W.; Manzoli, J.E.

    2011-01-01

    Complete text of publication follows. Copolymerization by grafting is a process largely known and the advantages of modifying polymers by radiation includes superimposition of properties related to the backbone and the grafted chains in the absence of an initiator. This process produces low byproduct levels, costs and hazards. Since polypropylene is applied in many industrial and commercial sectors, the grafting process is an alternative to improve some of its physical and chemical properties. The aim of this work was to verify the effect of distinct organic solvents on polypropylene grafting process by mutual irradiation applying absorbed doses from 30 kGy to 100 kGy at dose rates of 2.2 kGy/s and 22.4 kGy/s. All process were performed in atmosphere air presence. Styrene was the monomer grafted on polymer substrate and some non-polar and polar organic solvents, like toluene, xylene, acetone, methanol and its homologous, were used at distinct concentrations. The grafted samples were evaluated by degree of styrene grafting (gravimetric determination) and the Mid-FTIR spectrophotometry. As a general behavior, the degree of grafting increases when absorbed dose values increase in a specific solvent until a maximum dose value (50-70 kGy), after this, the degree of grafting decreases. Moreover, the grafting process have high yields when protic polar solvents are used. These results suggest the grafting process does not have dependence of substrate swelling, that is expected when a non-polar substrate and a non-polar media are in contact. The grafting, in this case, can be related to the free radical generation at protic polar solvents in a first step of process mechanism; these reactive specimens start the reaction on substrate surface to allow the accessibility of monomer species to active sites. Some reaction mechanisms are proposed.

  2. Lipase mediated synthesis of rutin fatty ester: Study of its process parameters and solvent polarity.

    Science.gov (United States)

    Vaisali, C; Belur, Prasanna D; Regupathi, Iyyaswami

    2017-10-01

    Lipophilization of antioxidants is recognized as an effective strategy to enhance solubility and thus effectiveness in lipid based food. In this study, an effort was made to optimize rutin fatty ester synthesis in two different solvent systems to understand the influence of reaction system hydrophobicity on the optimum conditions using immobilised Candida antartica lipase. Under unoptimized conditions, 52.14% and 13.02% conversion was achieved in acetone and tert-butanol solvent systems, respectively. Among all the process parameters, water activity of the system was found to show highest influence on the conversion in each reaction system. In the presence of molecular sieves, the ester production increased to 62.9% in tert-butanol system, unlike acetone system. Under optimal conditions, conversion increased to 60.74% and 65.73% in acetone and tert-butanol system, respectively. This study shows, maintaining optimal water activity is crucial in reaction systems having polar solvents compared to more non-polar solvents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Optical properties of polarization-dependent geometrical phase elements with partially polarized light

    International Nuclear Information System (INIS)

    Gorodetski, Y.; Biener, G.; Niv, A.; Kleiner, V.; Hasman, E.

    2005-01-01

    Full Text:The behavior of geometrical phase elements illuminated with partially polarized monochromatic beams is being theoretically as well as experimentally investigated. The element discussed in this paper is composed of wave plates with retardation and space-variant orientation angle. We found that a beam emerging from such an element comprises two polarization orders of right and left-handed circularly polarized states with conjugate geometrical phase modification. This phase equals twice the orientation angle of the space-variant wave plate comprising the element. Apart from the two polarization orders, the emerging beam coherence polarization matrix comprises a matrix termed as the vectorial interference matrix. This matrix contains the information concerning the correlation between the two orthogonal circularly polarized portions of the incident beam. In this paper we measure this correlation by a simple interference experiment. Furthermore, we found that the equivalent mutual intensity of the emerging beam is being modulated according to the geometrical phase induced by the element. Other interesting phenomena along propagation will be discussed theoretically and experimentally demonstrated. We demonstrate experimentally our analysis by using a spherical geometrical phase element, which is realized by use of space-variant sub wavelength grating and illuminated with a CO 2 laser radiation of 10.6μm wavelength

  4. Two novel solvent system compositions for protected synthetic peptide purification by centrifugal partition chromatography.

    Science.gov (United States)

    Amarouche, Nassima; Giraud, Matthieu; Forni, Luciano; Butte, Alessandro; Edwards, F; Borie, Nicolas; Renault, Jean-Hugues

    2014-04-11

    Protected synthetic peptide intermediates are often hydrophobic and not soluble in most common solvents. They are thus difficult to purify by preparative reversed-phase high-performance liquid chromatography (RP-HPLC), usually used for industrial production. It is then challenging to develop alternative chromatographic purification processes. Support-free liquid-liquid chromatographic techniques, including both hydrostatic (centrifugal partition chromatography or CPC) and hydrodynamic (counter-current chromatography or CCC) devices, are mainly involved in phytochemical studies but have also been applied to synthetic peptide purification. In this framework, two new biphasic solvent system compositions covering a wide range of polarity were developed to overcome solubility problems mentioned above. The new systems composed of heptane/tetrahydrofuran/acetonitrile/dimethylsulfoxide/water and heptane/methyl-tetrahydrofuran/N-methylpyrrolidone/water were efficiently used for the CPC purification of a 39-mer protected exenatide (Byetta®) and a 8-mer protected peptide intermediate of bivalirudin (Angiox®) synthesis. Phase compositions of the different biphasic solvent systems were determined by (1)H nuclear magnetic resonance. Physico-chemical properties including viscosity, density and interfacial tension of these biphasic systems are also described. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. studies dielectric behaviour of some long chain alcohols and their mixtures with a non-polar solvent at various concentration

    International Nuclear Information System (INIS)

    Yaqub, M.; Ahmed, S.S.; Hussain, A.

    2006-01-01

    Dielectric constant, refractive index and the Kirkwood linear correlation factor of 1-propanol, 1-butanol and 1-pentanol in mixtures with carbon tetrachloride at various concentration have been measured at fixed frequency (100 KHz) at 303.15 K. For the study of dielectric properties of polar molecules in a non-polar solvent at different concentrations, polarization per unit volume and excess free-energy of mixing were evaluated at this temperature. In order to study the association of polar molecules in such a non-polar solvent, the Kirkwood correlation factor (g) between molecular pairs, which exists due to the hydrogen bond association suggesting the presence of some dimension in the liquid phase with a number of dimmers, was determined. The refractive index and dielectric constant measurements are expected to shed some light on the configuration of molecules in various mixtures, and give some idea about the specific interactions between components, which decrese with the increase in the concentration of alcohol. All the three mixtures showed different behaviour for the value of correlation factor (g) as a function of concentration. The response of 1-pentanol was broadly identical to that of small chain alcohols. The different behaviour of the correlation factor (g) was interpreted in terms of the Kirkwood-Frohlich theory, as it takes into account, explicitly, such type of short and long range interactions of a mixture of polar molecules with non-polar solvents. (author)

  6. Investigation of the Use of a Bio-Derived Solvent for Non-Solvent-Induced Phase Separation (NIPS Fabrication of Polysulfone Membranes

    Directory of Open Access Journals (Sweden)

    Xiaobo Dong

    2018-05-01

    Full Text Available Organic solvents, such as N-methyl-2-pyrrolidone (NMP and dimethylacetamide (DMAc, have been traditionally used to fabricate polymeric membranes. These solvents may have a negative impact on the environment and human health; therefore, using renewable solvents derived from biomass is of great interest to make membrane fabrication sustainable. Methyl-5-(dimethylamino-2-methyl-5-oxopentanoate (Rhodiasolv PolarClean is a bio-derived, biodegradable, nonflammable and nonvolatile solvent. Polysulfone is a commonly used polymer to fabricate membranes due to its thermal stability, strong mechanical strength and good chemical resistance. From cloud point curves, PolarClean showed potential to be a solvent for polysulfone. Membranes prepared with PolarClean were investigated in terms of their morphology, porosity, water permeability and protein rejection, and were compared to membranes prepared with traditional solvents. The pores of polysulfone/PolarClean membranes were sponge-like, and the membranes displayed higher water flux values (176.0 ± 8.8 LMH along with slightly higher solute rejection (99.0 ± 0.51%. On the other hand, PSf/DMAc membrane pores were finger-like with lower water flux (63.1 ± 12.4 LMH and slightly lower solute rejection (96 ± 2.00% when compared to PSf/PolarClean membranes.

  7. Ionic magnetic fluids in polar solvents with tuned counter-ions

    Energy Technology Data Exchange (ETDEWEB)

    Lopes Filomeno, C. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Grupo de Fluidos Complexos Inst. de Quimica, Univ. de Brasília, Brasília (DF) (Brazil); Kouyaté, M. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Cousin, F. [Lab. Léon Brillouin – CE-Saclay, Gif-sur-Yvette (France); Demouchy, G. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Dpt de physique, Univ. de Cergy Pontoise, Cergy-Pontoise (France); Dubois, E.; Michot, L.; Mériguet, G. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Perzynski, R., E-mail: regine.perzynski@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Peyre, V.; Sirieix-Plénet, J. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Tourinho, F.A. [Grupo de Fluidos Complexos Inst. de Quimica, Univ. de Brasília, Brasília (DF) (Brazil)

    2017-06-01

    The aim of the present study is to propose a new reproducible method for preparing colloidal dispersions of electrostatically charged nanoparticles (NPs) in polar solvents with different kinds of counter-ions. Maghemite NPs are here dispersed in solvents of different dielectric constant, namely water, dimethylsulfoxide (DMSO) and an ionic liquid, ethylammonium nitrate (EAN). If the existence of a NP superficial charge happens to be necessary for the colloidal stability of the dispersions in these three solvents, the standard DLVO theory cannot be used any more to describe the colloidal stability in EAN. The structure of the dispersions and the strength of the interparticle repulsion are investigated by small angle X-ray scattering measurements, in association with Ludwig–Soret coefficient determinations. Specificities, associated to the nature of the counter-ions are identified in this work on the colloidal stability, on the interparticle repulsion and on the Ludwig–Soret coefficient. - Highlights: • A controlled synthesis of ionic magnetic fluids in three polar solvents is proposed. • Colloidal repulsion in the magnetic fluids depends on the counter-ion nature. • Soret coefficient of citrate-coated maghemite nanoparticles is probed in water-pH7. • Thermophilicity of nanoparticles depends on the nature of their counter-ions. • Nanoparticles dressed with same counter-ions have solvent-dependent thermoproperties.

  8. Phase Behavior and Evaporation Profile of Tween 20 - Eugenol System. Effect of Different Alkane Chain Length and Solvent System

    International Nuclear Information System (INIS)

    Kassim, A.; Lim, W.H.; Kuangl, D.; Rusmawati, W.W.M.; Abdullah, A.H.; Teoh, S.P.

    2003-01-01

    The isotropic region of Tween 20/eugenol/n-alkane in aqueous systems was determined. The solubilisation trend of isotropic solution formed in the presence of eugenol was studied as a function of different alkyl chain length of n-alkane. The solubility of solvent in surfactant solution is dependent on their molecular polarity. An increase in n-alkane chain length (lower polarity) lead to smaller isotropic region which will affect the surfactant partitioning between the interface, the oil phase and the aqueous phase of the microemulsion as the oil chain length is varied. The changes of evaporation behaviour were affected strongly by the types of phases existed in the systems. The increment of n-alkane and water content led to higher evaporation rate. But the formation of w/o microemulsion would lower the evaporation rate because water molecules were trapped in the core of aggregates. In solubilisation system, evaporation rate is dependent on the solvent content and the interaction between Tween 20 and solvent molecules in the mixed composition. (author)

  9. Influence of polar solvents on the enhancement of light-ends in ...

    African Journals Online (AJOL)

    Crude oil 'micelle' can be dispersed into fuels, oil and resin/asphalthene components using some hydrocarbon solvents. This can be adapted towards influencing/enhancing its product slates during the processing of crude oils. This research was carried out to investigate the effect of polar solvents (ethanol and acetone) in ...

  10. Solvent polarity scale on the fluorescence spectra of a dansyl monomer copolymerizable in aqueous media

    Science.gov (United States)

    Ren, Biye; Gao, Feng; Tong, Zhen; Yan, Yu

    1999-06-01

    A copolymerizable fluorescent monomer N-[2-[[[5-(N,N-dimethylamino)-1-naphthalenyl]sulfonyl]-amino]ethyl]-2-propenamide (DANSAEP) was synthesized, which exhibits dual fluorescence due to the twisted intramolecular charge transfer in the excited state. The emission maximum λem shifts from 463.3 nm in n-hexane to 530.0 nm in water, showing solvent polarity dependence. The relations between λem and the conventional solvent polarity parameters ET(30) or Z are linear, dividing solvents into protic and aprotic groups. Kamlet's linear solvation energy relationship gives a good description for λem as a solvent polarity scale. The increment of dipole moment Δ μ at the excited state was estimated as 5.09 D with the solvatochromic analysis.

  11. A green deep eutectic solvent-based aqueous two-phase system for protein extracting.

    Science.gov (United States)

    Xu, Kaijia; Wang, Yuzhi; Huang, Yanhua; Li, Na; Wen, Qian

    2015-03-15

    As a new type of green solvent, deep eutectic solvent (DES) has been applied for the extraction of proteins with an aqueous two-phase system (ATPS) in this work. Four kinds of choline chloride (ChCl)-based DESs were synthesized to extract bovine serum albumin (BSA), and ChCl-glycerol was selected as the suitable extraction solvent. Single factor experiments have been done to investigate the effects of the extraction process, including the amount of DES, the concentration of salt, the mass of protein, the shaking time, the temperature and PH value. Experimental results show 98.16% of the BSA could be extracted into the DES-rich phase in a single-step extraction under the optimized conditions. A high extraction efficiency of 94.36% was achieved, while the conditions were applied to the extraction of trypsin (Try). Precision, repeatability and stability experiments were studied and the relative standard deviations (RSD) of the extraction efficiency were 0.4246% (n=3), 1.6057% (n=3) and 1.6132% (n=3), respectively. Conformation of BSA was not changed during the extraction process according to the investigation of UV-vis spectra, FT-IR spectra and CD spectra of BSA. The conductivity, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the mechanism of the extraction. It turned out that the formation of DES-protein aggregates play a significant role in the separation process. All the results suggest that ChCl-based DES-ATPS are supposed to have the potential to provide new possibilities in the separation of proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. ESR imaging investigations of two-phase systems.

    Science.gov (United States)

    Herrmann, Werner; Stösser, Reinhard; Borchert, Hans-Hubert

    2007-06-01

    The possibilities of electron spin resonance (ESR) and electron spin resonance imaging (ESRI) for investigating the properties of the spin probes TEMPO and TEMPOL in two-phase systems have been examined in the systems water/n-octanol, Miglyol/Miglyol, and Precirol/Miglyol. Phases and regions of the phase boundary could be mapped successfully by means of the isotropic hyperfine coupling constants, and, moreover, the quantification of rotational and lateral diffusion of the spin probes was possible. For the quantitative treatment of the micropolarity, a simplified empirical model was established on the basis of the Nernst distribution and the experimentally determined isotropic hyperfine coupling constants. The model does not only describe the summarized micropolarities of coexisting phases, but also the region of the phase boundary, where solvent molecules of different polarities and tendencies to form hydrogen bonds compete to interact with the NO group of the spin probe. Copyright 2007 John Wiley & Sons, Ltd.

  13. Measurement of dielectric constant of organic solvents by indigenously developed dielectric probe

    Science.gov (United States)

    Keshari, Ajay Kumar; Rao, J. Prabhakar; Rao, C. V. S. Brahmmananda; Ramakrishnan, R.; Ramanarayanan, R. R.

    2018-04-01

    The extraction, separation and purification of actinides (uranium and plutonium) from various matrices are an important step in nuclear fuel cycle. One of the separation process adopted in an industrial scale is the liquid-liquid extraction or solvent extraction. Liquid-liquid extraction uses a specific ligand/extractant in conjunction with suitable diluent. Solvent extraction or liquid-liquid extraction, involves the partitioning of the solute between two immiscible phases. In most cases, one of the phases is aqueous, and the other one is an organic solvent. The solvent used in solvent extraction should be selective for the metal of interest, it should have optimum distribution ratio, and the loaded metal from the organic phase should be easily stripped under suitable experimental conditions. Some of the important physical properties which are important for the solvent are density, viscosity, phase separation time, interfacial surface tension and the polarity of the extractant.

  14. Solvent Dependency of the UV-Vis Spectrum of Indenoisoquinolines: Role of Keto-Oxygens as Polarity Interaction Probes

    Science.gov (United States)

    Coletta, Andrea; Castelli, Silvia; Chillemi, Giovanni; Sanna, Nico; Cushman, Mark; Pommier, Yves; Desideri, Alessandro

    2013-01-01

    Indenoisoquinolines are the most promising non-campthotecins topoisomerase IB inhibitors. We present an integrated experimental/computational investigation of the UV-Vis spectra of the IQNs parental compound (NSC314622) and two of its derivatives (NSC724998 and NSC725776) currently undergoing Phase I clinical trials. In all the three compounds a similar dependence of the relative absorption intensities at 270 nm and 290 nm on solvent polarity is found. The keto-oxygens in positions 5 and 11 of the molecular scaffold of the molecule are the principal chromophores involved in this dependence. Protic interactions on these sites are also found to give rise to absorptions at wavelength <250 nm observed in water solution, due to the stabilization of highly polarized tautomers of the molecule. These results suggest that the keto-oxygens are important polarizable groups that can act as useful interactors with the molecular receptor, providing at the same time an useful fingerprint for the monitoring of the drug binding to topoisomerase IB. PMID:24086299

  15. Evidence for the TICT mediated nonradiative deexcitation process for the excited coumarin-1 dye in high polarity protic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Barik, Atanu [Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Kumbhakar, Manoj [Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Nath, Sukhendu [Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Pal, Haridas [Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India)

    2005-08-29

    Photophysical properties of coumarin-1 (C1) dye in different protic solvents have been investigated using steady-state and time-resolved fluorescence measurements. Correlation of the Stokes' shifts ({delta}{nu}-bar ) with the solvent polarity ({delta}f) suggests the intramolecular charge transfer (ICT) character for the dye fluorescent state. Fluorescence quantum yields ({phi}{sub f}) and lifetimes ({tau}{sub f}) of the dye show an abrupt reduction in high polarity solvents having {delta}f >{approx}0.28. In these solvents {tau}{sub f} is seen to be strongly temperature dependent, though it is temperature independent in solvents with {delta}f <{approx}0.28. It is inferred that in high polarity protic solvents there is a participation of an additional nonradiative decay process via the involvement of twisted intramolecular charge transfer (TICT) state. Unlike present results, no involvement of TICT state was observed even in strongly polar aprotic solvent like acetonitrile. It is indicated that the intermolecular hydrogen bonding of the dye with protic solvents in addition with the solvent polarity helps in the stabilization of the TICT state for C1 dye. Unlike most TICT molecules, the activation barrier ({delta}E{sub a}) for the TICT mediated nonradiative process for C1 dye is seen to increase with solvent polarity. This is rationalized on the basis of the assumption that the TICT to ground state conversion is the activation-controlled rate-determining step for the present system than the usual ICT to TICT conversion as encountered for most other TICT molecules.

  16. Covalent Surface Modification of Silicon Oxides with Alcohols in Polar Aprotic Solvents.

    Science.gov (United States)

    Lee, Austin W H; Gates, Byron D

    2017-09-05

    Alcohol-based monolayers were successfully formed on the surfaces of silicon oxides through reactions performed in polar aprotic solvents. Monolayers prepared from alcohol-based reagents have been previously introduced as an alternative approach to covalently modify the surfaces of silicon oxides. These reagents are readily available, widely distributed, and are minimally susceptible to side reactions with ambient moisture. A limitation of using alcohol-based compounds is that previous reactions required relatively high temperatures in neat solutions, which can degrade some alcohol compounds or could lead to other unwanted side reactions during the formation of the monolayers. To overcome these challenges, we investigate the condensation reaction of alcohols on silicon oxides carried out in polar aprotic solvents. In particular, propylene carbonate has been identified as a polar aprotic solvent that is relatively nontoxic, readily accessible, and can facilitate the formation of alcohol-based monolayers. We have successfully demonstrated this approach for tuning the surface chemistry of silicon oxide surfaces with a variety of alcohol containing compounds. The strategy introduced in this research can be utilized to create silicon oxide surfaces with hydrophobic, oleophobic, or charged functionalities.

  17. High-throughput determination of octanol/water partition coefficients using a shake-flask method and novel two-phase solvent system.

    Science.gov (United States)

    Morikawa, Go; Suzuka, Chihiro; Shoji, Atsushi; Shibusawa, Yoichi; Yanagida, Akio

    2016-01-05

    A high-throughput method for determining the octanol/water partition coefficient (P(o/w)) of a large variety of compounds exhibiting a wide range in hydrophobicity was established. The method combines a simple shake-flask method with a novel two-phase solvent system comprising an acetonitrile-phosphate buffer (0.1 M, pH 7.4)-1-octanol (25:25:4, v/v/v; AN system). The AN system partition coefficients (K(AN)) of 51 standard compounds for which log P(o/w) (at pH 7.4; log D) values had been reported were determined by single two-phase partitioning in test tubes, followed by measurement of the solute concentration in both phases using an automatic flow injection-ultraviolet detection system. The log K(AN) values were closely related to reported log D values, and the relationship could be expressed by the following linear regression equation: log D=2.8630 log K(AN) -0.1497(n=51). The relationship reveals that log D values (+8 to -8) for a large variety of highly hydrophobic and/or hydrophilic compounds can be estimated indirectly from the narrow range of log K(AN) values (+3 to -3) determined using the present method. Furthermore, log K(AN) values for highly polar compounds for which no log D values have been reported, such as amino acids, peptides, proteins, nucleosides, and nucleotides, can be estimated using the present method. The wide-ranging log D values (+5.9 to -7.5) of these molecules were estimated for the first time from their log K(AN) values and the above regression equation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. In silico study of amphiphilic nanotubes based on cyclic peptides in polar and non-polar solvent

    DEFF Research Database (Denmark)

    Vijayakumar, Vinodhkumar; Vijayaraj, Ramadoss; Peters, Günther H.J.

    2016-01-01

    The stability of cyclic peptide assemblies (CPs) forming a macromolecular nanotube structure was investigated in solvents of different polarity using computational methods. The stability and structure of the complexes were studied using traditional molecular dynamics (MD). Energy of dissociation ...

  19. Effect of dynamic surface polarization on the oxidative stability of solvents in nonaqueous Li-O 2 batteries

    Science.gov (United States)

    Khetan, Abhishek; Pitsch, Heinz; Viswanathan, Venkatasubramanian

    2017-09-01

    Polarization-induced renormalization of the frontier energy levels of interacting molecules and surfaces can cause significant shifts in the excitation and transport behavior of electrons. This phenomenon is crucial in determining the oxidative stability of nonaqueous electrolytes in high-energy density electrochemical systems such as the Li-O2 battery. On the basis of partially self-consistent first-principles Sc G W0 calculations, we systematically study how the electronic energy levels of four commonly used solvent molecules, namely, dimethylsulfoxide (DMSO), dimethoxyethane (DME), tetrahydrofuran (THF), and acetonitrile (ACN), renormalize when physisorbed on the different stable surfaces of Li2O2 , the main discharge product. Using band level alignment arguments, we propose that the difference between the solvent's highest occupied molecular orbital (HOMO) level and the surface's valence-band maximum (VBM) is a refined metric of oxidative stability. This metric and a previously used descriptor, solvent's gas phase HOMO level, agree quite well for physisorbed cases on pristine surfaces where ACN is oxidatively most stable followed by DME, THF, and DMSO. However, this effect is intrinsically linked to the surface chemistry of the solvent's interaction with the surface states and defects, and depends strongly on their nature. We conclusively show that the propensity of solvent molecules to oxidize will be significantly higher on Li2O2 surfaces with defects as compared to pristine surfaces. This suggests that the oxidative stability of a solvent is dynamic and is a strong function of surface electronic properties. Thus, while gas phase HOMO levels could be used for preliminary solvent candidate screening, a more refined picture of solvent stability requires mapping out the solvent stability as a function of the state of the surface under operating conditions.

  20. Solvent wash solution

    International Nuclear Information System (INIS)

    Neace, J.C.

    1986-01-01

    This patent describes a process for removing diluent degradation products from a solvent extraction solution comprising an admixture of an organic extractant for uranium and plutonium and a non-polar organic liquid diluent, which has been used to recover uranium and plutonium from spent nuclear fuel. Comprising combining a wash solution consisting of: (a) water; and (b) a positive amount up to about, an including, 50 volume percent of at least one highly-polar water-miscible organic solvent, based on the total volume of the water and the highly-polar organic solvent, with the solvent extraction solution after uranium and plutonium values have been stripped from the solvent extraction solution, the diluent degradation products dissolving in the highly-polar organic solvent and the extractant and diluent of the extraction solution not dissolving in the highly-polar organic solvent, and separating the highly-polar organic solvent and the extraction solution to obtain a purified extraction solution

  1. Alginate as immobilization matrix and stabilizing agent in a two-phase liquid system: application in lipase-catalysed reactions.

    Science.gov (United States)

    Hertzberg, S; Kvittingen, L; Anthonsen, T; Skjåk-Braek, G

    1992-01-01

    Alginate was evaluated as an immobilization matrix for enzyme-catalyzed reactions in organic solvents. In contrast to most hydrogels, calcium alginate was found to be stable in a range of organic solvents and to retain the enzyme inside the gel matrix. In hydrophobic solvents, the alginate gel (greater than 95% water) thus provided a stable, two-phase liquid system. The lipase from Candida cylindracea, after immobilization in alginate beads, catalysed esterification and transesterification in n-hexane under both batch and continuous-flow conditions. The operational stability of the lipase was markedly enhanced by alginate entrapment. In the esterification of butanoic acid with n-butanol, better results were obtained in the typical hydrophilic calcium alginate beads than in less hydrophilic matrices. The effects of substrate concentration, matrix area, and polarity of the substrate alcohols and of the organic solvent on the esterification activity were examined. The transesterification of octyl 2-bromopropanoate with ethanol was less efficient than that of ethyl 2-bromopropanoate with octanol. By using the hydrophilic alginate gel as an immobilization matrix in combination with a mobile hydrophobic phase, a two-phase liquid system was achieved with definite advantages for a continuous, enzyme-catalysed process.

  2. Transfers of Colloidal Silica from Water into Organic Solvents of Intermediate Polarities

    Science.gov (United States)

    Kasseh; Keh

    1998-01-15

    Dispersions of discrete metal-oxide submicroparticles in organic solvents of medium polarities are uneasy to generate and weakly documented. We address this topic along two general methods focusing on silica. Successive transfers of colloidal particles from water into n-propanol and then into 1,2-dichloroethane by azeotropic distillation yield a stable organosol. The particles are found to be propanol-coated by surface esterification to the extent of 0.40 nm2 per molecule. Alternatively, centrifugation-redispersion cycles make it possible to obtain stable suspensions of unaltered silica in methanol and acetonitrile starting from an aqueous silicasol. Particles are characterized by various methods including nitrogen adsorption, transmission electron microscopy, dynamic light scattering, and electrophoresis. The stabilities of these suspensions in various organic solvents are investigated with special concern for the role of residual water. Stabilization of silica in methanol is inconspicuously related to solvent permittivity and prominently dependent on the presence of adsorbed water. In contrast, the acetonitrile silicasol, which is unaffected by residual water, displays electrophoretic behavior compatible with electrostatic stabilization. Copyright 1998 Academic Press. Copyright 1998Academic Press

  3. Lid opening and conformational stability of T1 Lipase is mediated by increasing chain length polar solvents

    Directory of Open Access Journals (Sweden)

    Jonathan Maiangwa

    2017-05-01

    Full Text Available The dynamics and conformational landscape of proteins in organic solvents are events of potential interest in nonaqueous process catalysis. Conformational changes, folding transitions, and stability often correspond to structural rearrangements that alter contacts between solvent molecules and amino acid residues. However, in nonaqueous enzymology, organic solvents limit stability and further application of proteins. In the present study, molecular dynamics (MD of a thermostable Geobacillus zalihae T1 lipase was performed in different chain length polar organic solvents (methanol, ethanol, propanol, butanol, and pentanol and water mixture systems to a concentration of 50%. On the basis of the MD results, the structural deviations of the backbone atoms elucidated the dynamic effects of water/organic solvent mixtures on the equilibrium state of the protein simulations in decreasing solvent polarity. The results show that the solvent mixture gives rise to deviations in enzyme structure from the native one simulated in water. The drop in the flexibility in H2O, MtOH, EtOH and PrOH simulation mixtures shows that greater motions of residues were influenced in BtOH and PtOH simulation mixtures. Comparing the root mean square fluctuations value with the accessible solvent area (SASA for every residue showed an almost correspondingly high SASA value of residues to high flexibility and low SASA value to low flexibility. The study further revealed that the organic solvents influenced the formation of more hydrogen bonds in MtOH, EtOH and PrOH and thus, it is assumed that increased intraprotein hydrogen bonding is ultimately correlated to the stability of the protein. However, the solvent accessibility analysis showed that in all solvent systems, hydrophobic residues were exposed and polar residues tended to be buried away from the solvent. Distance variation of the tetrahedral intermediate packing of the active pocket was not conserved in organic solvent

  4. Organic solvents improve hydrocarbon desorption and biodegradation in highly contaminated weathered soils

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Rivero, M. [Tecnologico de Estudios Superiores de Ecatepec, Mexico City (Mexico); Saucedo-Casteneda, G.; Gutierrez-Rojas, M. [Autonoma Metropolitan Univ., Mexico City (Mexico). Dept. of Biotechnology

    2007-07-15

    A toluene-based microbial slurry phase system was used to remediate hydrocarbons (HC) in highly contaminated soil samples collected from a site next to a working refinery in Mexico. Initial HC concentrations of the samples were 237.2 {+-} 16,6 g kg{sup -1} in dry soil. The microbial consortium consisted of 10 different strains in a mineral solution. Non-polar solvents used in the phase system included hexane, benzene, and toluene. Polar solvents included n-butanol, acetone, and methanol. The bioavailability of the HCs was increased using both polar and nonpolar solvents in order to promote desorption from the soil and to enhance overall HC biodegradation. HC desorption was analyzed in an abiotic system. Respiration and residual HCs were examined after a period of 30 days in order to compare the effects of the 2 solvents. The biodegradation extracts were then fractionated in a silica gel column to determine if the solvents actually enhanced the biodegradation of specific HC fractions. The study showed that induced dipole interactions forces resulted when nonpolar molecules were dissolved into a nonpolar solvent. Results for desorption and solubility varied among the 6 solvents. Higher dielectric constants resulted in higher solubility and desorption of HCs for nonpolar solvents, while the opposite effect was observed for polar solvents. It was concluded that toluene produced better biodegradation results than any of the milder solvents. 34 refs., 4 tabs., 1 fig.

  5. Effect of electrostatic interaction on thermochemical behavior of 12-crown-4 ether in various polar solvents

    International Nuclear Information System (INIS)

    Barannikov, Vladimir P.; Guseynov, Sabir S.; Vyugin, Anatoliy I.

    2010-01-01

    The enthalpies of solution of 12-crown-4 ether have been measured in chloroform, ethyl acetate, acetone, pyridine, acetonitrile and methanol at 298.15 K. The values of enthalpy of solvation and solute-solvent interaction were determined from the obtained results and similar literature data for 12-crown-4 in solvents of various polarities. It was shown that the certain correlation is observed between the enthalpy of solute-solvent interaction and the squared dipole moment of the solvent molecules for solutions in tetrachlormethane, ethyl acetate, pyridine, acetonitrile, DMF, DMSO and propylene carbonate. This means that the electrostatic interaction of 12-crown-4 with polar solvent molecules contributes significantly to the exothermic effect of solvation. The understated negative value was found for the enthalpy of interaction of 12-crown-4 with acetone that can be connected with domination of low polar conformer of the crown ether in acetone medium. The most negative values of enthalpy of solvation are observed for solutions in chloroform and water because of hydrogen bonding between O-atoms of crown ether and molecules of the indicated solvents. This effect is not observed for methanol. The negative coefficient of pairwise solute-solute interaction in methanol indicates that the effects of solvophobic solute-solute interaction and H-bonding of the ether molecule with chain associates of methanol are not evinced in the thermochemical behavior of 12-crown-4.

  6. Enhancement of polar crystalline phase formation in transparent PVDF-CaF{sub 2} composite films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Goo; Ha, Jong-Wook, E-mail: jongwook@krict.re.kr; Sohn, Eun-Ho; Park, In Jun; Lee, Soo-Bok

    2016-12-30

    Highlights: • The crystalline phase in transparent PVDF-CaF{sub 2} composite films was investigated. • CaF{sub 2} promoted the formation of polar crystalline phases in PVDF matrix. • Ordered γ-phase was obtained by thermal treatment of as-cast films at the vicinity of its melting temperature. - Abstract: We consider the influence of calcium fluoride (CaF{sub 2}) nanoparticles on the crystalline phase formation of poly(vinylidene fluoride) (PVDF) for the first time. The transparent PVDF-CaF{sub 2} composite films were prepared by casting on PET substrates using N,N-dimethylacetamide (DMAc) as a solvent. It was found that CaF{sub 2} promoted the formation of polar crystalline phase of PVDF in composites, whereas nonpolar α-phase was dominant in the neat PVDF film prepared at the same condition. The portion of polar crystalline phase increased in proportional to the weight fraction of CaF{sub 2} in the composite films up to 10 wt%. Further addition of CaF{sub 2} suppressed completely the α-phase formation. Polar crystalline phase observed in as-cast composite films was a mixture of β- and γ-polymorph structures. It was also shown that much ordered γ-phase could be obtained through thermal treatment of as-cast PVDF-CaF{sub 2} composite film at the temperatures above the melting temperature of the composite films, but below that of γ-phase.

  7. Optimizing gradient conditions in online comprehensive two-dimensional reversed-phase liquid chromatography by use of the linear solvent strength model

    DEFF Research Database (Denmark)

    Græsbøll, Rune; Janssen, Hans-Gerd; Christensen, Jan H.

    2017-01-01

    The linear solvent strength model was used to predict coverage in online comprehensive two-dimensional reversed-phase liquid chromatography. The prediction model uses a parallelogram to describe the separation space covered with peaks in a system with limited orthogonality. The corners of the par......The linear solvent strength model was used to predict coverage in online comprehensive two-dimensional reversed-phase liquid chromatography. The prediction model uses a parallelogram to describe the separation space covered with peaks in a system with limited orthogonality. The corners...... of the parallelogram are assumed to behave like chromatographic peaks and the position of these pseudo-compounds was predicted. A mix of 25 polycyclic aromatic compounds were used as a test. The precision of the prediction, span 0-25, was tested by varying input parameters, and was found to be acceptable with root...... factors were low, or when gradient conditions affected parameters not included in the model, e.g. second dimension gradient time affects the second dimension equilibration time. The concept shows promise as a tool for gradient optimization in online comprehensive two-dimensional liquid chromatography...

  8. Alkali-assisted coal extraction with polar aprotic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Makgato, M.H.; Moitsheki, L.J.; Shoko, L.; Kgobane, B.L.; Morgan, D.L.; Focke, W.W. [SARChI Chair in Carbon Technology and Materials, Institute of Applied Materials, University of Pretoria, Pretoria 0002 (South Africa)

    2009-04-15

    Coal extraction experiments were conducted using a coal, containing ca. 10% ash, from the Tshikondeni mine in South Africa. This coal dissolves only to a limited extent in pure polar aprotic solvents such as dimethylformamide (DMF) and N-methyl-2-pyrrolidinone (NMP). However, the addition of a strong base, e.g. sodium hydroxide (NaOH) or sodium tert-butoxide increased the degree of coal dissolution in these organic solvents. Depending on the extraction conditions, carbon extraction efficiencies of up to 90% were obtained. Carbon precursor material was recovered from the solution as a gel by precipitation with water. Ash content was reduced from 10% in the coal to less than 1.6% in the coal extracts. Sodium sulfide (Na{sub 2}S) addition further reduced ash content and aided the recovery of carbon precursors that led to graphitizable cokes but the degree of extraction was significantly reduced. (author)

  9. Two-Phase Extraction for Comprehensive Analysis of the Plant Metabolome by NMR.

    Science.gov (United States)

    Schripsema, Jan; Dagnino, Denise

    2018-01-01

    Metabolomics is the area of research, which strives to obtain complete metabolic fingerprints, to detect differences between them, and to provide hypothesis to explain those differences [1]. But obtaining complete metabolic fingerprints is not an easy task. Metabolite extraction is a key step during this process, and much research has been devoted to finding the best solvent mixture to extract as much metabolites as possible.Here a procedure is described for analysis of both polar and apolar metabolites using a two-phase extraction system. D 2 O and CDCl 3 are the solvents of choice, and their major advantage is that, for the identification of the compounds, standard databases can be used because D 2 O and CDCl 3 are the solvents most commonly used for pure compound NMR spectra. The procedure enables the absolute quantification of components via the addition of suitable internal standards. The extracts are also suitable for further analysis with other systems like LC-MS or GC-MS.

  10. Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems.

    Science.gov (United States)

    An, Jiwoo; Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L

    2017-06-02

    The development of rapid, convenient, and high throughput sample preparation approaches such as liquid phase microextraction techniques have been continuously developed over the last decade. More recently, significant attention has been given to the replacement of conventional organic solvents used in liquid phase microextraction techniques in order to reduce toxic waste and to improve selectivity and/or extraction efficiency. With these objectives, non-conventional solvents have been explored in liquid phase microextraction and aqueous biphasic systems. The utilized non-conventional solvents include ionic liquids, magnetic ionic liquids, and deep eutectic solvents. They have been widely used as extraction solvents or additives in various liquid phase microextraction modes including dispersive liquid-liquid microextraction, single-drop microextraction, hollow fiber-liquid phase microextraction, as well as in aqueous biphasic systems. This review provides an overview into the use of non-conventional solvents in these microextraction techniques in the past 5 years (2012-2016). Analytical applications of the techniques are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Solvent annealing induced phase separation and dewetting in PMMA∕SAN blend film: film thickness and solvent dependence.

    Science.gov (United States)

    You, Jichun; Zhang, Shuangshuang; Huang, Gang; Shi, Tongfei; Li, Yongjin

    2013-06-28

    The competition between "dewetting" and "phase separation" behaviors in polymer blend films attracts significant attention in the last decade. The simultaneous phase separation and dewetting in PMMA∕SAN [poly(methyl methacrylate) and poly(styrene-ran-acrylonitrile)] blend ultrathin films upon solvent annealing have been observed for the first time in our previous work. In this work, film thickness and annealing solvent dependence of phase behaviors in this system has been investigated using atomic force microscopy and grazing incidence small-angle X-ray scattering (GISAXS). On one hand, both vertical phase separation and dewetting take place upon selective solvent vapor annealing, leading to the formation of droplet∕mimic-film structures with various sizes (depending on original film thickness). On the other hand, the whole blend film dewets the substrate and produces dispersed droplets on the silicon oxide upon common solvent annealing. GISAXS results demonstrate the phase separation in the big dewetted droplets resulted from the thicker film (39.8 nm). In contrast, no period structure is detected in small droplets from the thinner film (5.1 nm and 9.7 nm). This investigation indicates that dewetting and phase separation in PMMA∕SAN blend film upon solvent annealing depend crucially on the film thickness and the atmosphere during annealing.

  12. Structural and phase transitions of one and two polymer mushrooms in poor solvent

    Science.gov (United States)

    Yang, Delian; Wang, Qiang

    2014-05-01

    Using the recently proposed fast lattice Monte Carlo (FLMC) simulations and the corresponding lattice self-consistent field (LSCF) calculations based on the same model system, where multiple occupancy of lattice sites is allowed [Q. Wang, Soft Matter 5, 4564 (2009); Q. Wang, Soft Matter 5, 6206 (2010)], we studied the coil-globule transition (CGT) of one-mushroom systems and the fused-separated transition (FST) of two-mushroom systems, where a polymer mushroom is formed by a group of n homopolymer chains each of N segments end-grafted at the same point onto a flat substrate and immersed in a poor solvent. With our soft potential that allows complete particle overlapping, LSCF theory neglecting the system fluctuations/correlations becomes exact in the limit of n → ∞, and FLMC results approach LSCF predictions with increasing n. Using LSCF calculations, we systematically constructed the phase diagrams of one- and two-mushroom systems. A second-order symmetric-asymmetric transition (SAT) was found in the globule state of one-mushroom systems, where the rotational symmetry around the substrate normal passing through the grafting point is broken in each individual configuration but preserved by the degeneracy of different orientations of these asymmetric configurations. Three different states were also found in two-mushroom systems: separated coils, separated globules, and fused globule. We further studied the coupling between FST in two-mushroom systems and CGT and SAT of each mushroom. Finally, direct comparisons between our simulation and theoretical results, without any parameter-fitting, unambiguously and quantitatively revealed the fluctuation/correlation effects on these phase transitions.

  13. Picosecond phase conjugation in two-photon absorption in poly-di-acetylenes

    International Nuclear Information System (INIS)

    Nunzi, Dominique Jean-Michel

    1990-01-01

    Poly-di-acetylenes exhibit a large two-photon absorption at 1064 nm wavelength. Its different effects on phase-conjugate nonlinearity are described in the framework of picosecond experiments. In solutions, gels, and films (optically thin media), third-order susceptibility appears as an increasing intensity dependent function. Phase measurements by nonlinear interferometry with the substrate or with the solvent are compared with predictions of a resonantly driven three level system. Phase-conjugate response exhibits a multi-exponential decay. Polarization symmetries analysis shows a one-dimensional effect. Study under strong static electric field action reveals that we face charged species bound to photoconductive polymer chains. In PTS single crystals (optically thick media), response saturates and cancels at high light intensity. This is well accounted for by propagation equations solved in large two-photon absorption conditions. The effect is exploited in a phase conjugation experiment under external optical pump excitation. We thus demonstrate that enhanced nonlinearity is a two-photon absorption relayed and amplified by mid-gap absorbing species which have been created by this two-photon absorption. We formally face a four-photon absorption described by a positive imaginary seventh-order non-linearity. (author) [fr

  14. Gels with exceptional thermal stability formed by bis(amino acid) oxalamide gelators and solvents of low polarity.

    Science.gov (United States)

    Makarević, Janja; Jokić, Milan; Frkanec, Leo; Katalenić, Darinka; Zinić, Mladen

    2002-10-07

    Some bis (amino acid) oxalamide gelators form common thermo-reversible gels with various organic solvents but also gels of exceptional thermal stability with some solvents of medium and low polarity; the latter gels can be heated up to 50 degrees C higher temperatures than the bp of the solvent without apparent gel-to-sol transition.

  15. Direct Detection of the Ion Pair to Free Ions Transformation upon Complexation with an Ion Receptor in Non‐Polar Solvents by using Conductometry

    Science.gov (United States)

    Iseda, Kazuya

    2018-01-01

    Abstract In this study, we performed conductometry in various organic solvents to directly detect the transformation from tetrabutylammonium chloride (TBACl) ion‐pair salt to the free ions through complexation with meso‐octamethylcalix[4]pyrrole (CP), which is a well‐known receptor for chloride anions. In the presence of CP, the conductivity of TBACl increases in various non‐polar solvents, indicating that complexation with CP enhances the ionic dissociation of TBACl in such non‐polar solvents. In other words, CP recognizes chloride as an ion‐paired salt as well as a free anion in non‐polar solvents. Additionally, the TBA(CP–Cl) complex exhibited a considerably lower ion‐pairing constant (K ip) than TBACl in non‐polar solvents, resulting in enhanced conductivity. Based on these findings, we can conclude that complexation of an anion with a hydrophobic anion receptor will be useful for creating functional and stimuli‐responsive soft materials in organic solvents using coulombic forces. PMID:29610717

  16. Direct Detection of the Ion Pair to Free Ions Transformation upon Complexation with an Ion Receptor in Non-Polar Solvents by using Conductometry.

    Science.gov (United States)

    Iseda, Kazuya; Kokado, Kenta; Sada, Kazuki

    2018-03-01

    In this study, we performed conductometry in various organic solvents to directly detect the transformation from tetrabutylammonium chloride ( TBACl ) ion-pair salt to the free ions through complexation with meso -octamethylcalix[4]pyrrole ( CP ), which is a well-known receptor for chloride anions. In the presence of CP , the conductivity of TBACl increases in various non-polar solvents, indicating that complexation with CP enhances the ionic dissociation of TBACl in such non-polar solvents. In other words, CP recognizes chloride as an ion-paired salt as well as a free anion in non-polar solvents. Additionally, the TBA(CP - Cl ) complex exhibited a considerably lower ion-pairing constant ( K ip ) than TBACl in non-polar solvents, resulting in enhanced conductivity. Based on these findings, we can conclude that complexation of an anion with a hydrophobic anion receptor will be useful for creating functional and stimuli-responsive soft materials in organic solvents using coulombic forces.

  17. Influence of solvent polarization and non-uniform ion size on electrostatic properties between charged surfaces in an electrolyte solution

    Science.gov (United States)

    Sin, Jun-Sik

    2017-12-01

    In this paper, we study electrostatic properties between two similar or oppositely charged surfaces immersed in an electrolyte solution by using the mean-field approach accounting for solvent polarization and non-uniform size effects. Applying a free energy formalism accounting for unequal ion sizes and orientational ordering of water dipoles, we derive coupled and self-consistent equations to calculate electrostatic properties between charged surfaces. Electrostatic properties for similarly charged surfaces depend on the counterion size but not on the coion size. Moreover, electrostatic potential and osmotic pressure between similarly charged surfaces are found to be increased with increasing counterion size. On the other hand, the corresponding ones between oppositely charged surfaces are related to both sizes of positive and negative ions. For oppositely charged surfaces, the electrostatic potential, number density of solvent molecules, and relative permittivity of an electrolyte having unequal ion sizes are not symmetric about the centerline between the charged surfaces. For either case, the consideration of solvent polarization results in a decrease in the electrostatic potential and the osmotic pressure compared to the case without the effect.

  18. Benchmarking Continuum Solvent Models for Keto-Enol Tautomerizations.

    Science.gov (United States)

    McCann, Billy W; McFarland, Stuart; Acevedo, Orlando

    2015-08-13

    Experimental free energies of tautomerization, ΔGT, were used to benchmark the gas-phase predictions of 17 different quantum mechanical methods and eight basis sets for seven keto-enol tautomer pairs dominated by their enolic form. The G4 method and M06/6-31+G(d,p) yielded the most accurate results, with mean absolute errors (MAE's) of 0.95 and 0.71 kcal/mol, respectively. Using these two theory levels, the solution-phase ΔGT values for 23 unique tautomer pairs composed of aliphatic ketones, β-dicarbonyls, and heterocycles were computed in multiple protic and aprotic solvents. The continuum solvation models, namely, polarizable continuum model (PCM), polarizable conductor calculation model (CPCM), and universal solvation model (SMD), gave relatively similar MAE's of ∼1.6-1.7 kcal/mol for G4 and ∼1.9-2.0 kcal/mol with M06/6-31+G(d,p). Partitioning the tautomer pairs into their respective molecular types, that is, aliphatic ketones, β-dicarbonyls, and heterocycles, and separating out the aqueous versus nonaqueous results finds G4/PCM utilizing the UA0 cavity to be the overall most accurate combination. Free energies of activation, ΔG(‡), for the base-catalyzed keto-enol interconversion of 2-nitrocyclohexanone were also computed using six bases and five solvents. The M06/6-31+G(d,p) reproduced the ΔG(‡) with MAE's of 1.5 and 1.8 kcal/mol using CPCM and SMD, respectively, for all combinations of base and solvent. That specific enolization was previously proposed to proceed via a concerted mechanism in less polar solvents but shift to a stepwise mechanism in more polar solvents. However, the current calculations suggest that the stepwise mechanism operates in all solvents.

  19. Itinerant Ferromagnetism in a Polarized Two-Component Fermi Gas

    DEFF Research Database (Denmark)

    Massignan, Pietro; Yu, Zhenhua; Bruun, Georg

    2013-01-01

    We analyze when a repulsively interacting two-component Fermi gas becomes thermodynamically unstable against phase separation. We focus on the strongly polarized limit, where the free energy of the homogeneous mixture can be calculated accurately in terms of well-defined quasiparticles, the repul......We analyze when a repulsively interacting two-component Fermi gas becomes thermodynamically unstable against phase separation. We focus on the strongly polarized limit, where the free energy of the homogeneous mixture can be calculated accurately in terms of well-defined quasiparticles...

  20. An elliptically-polarizing undulator with phase adjustable energy and polarization

    International Nuclear Information System (INIS)

    Lidia, S.

    1993-08-01

    The authors present a planar helical undulator designed to produce elliptically polarized light. Helical magnetic fields may be produced by a variety of undulators with four parallel cassettes of magnets. In their design, all cassettes are mounted in two planes on slides so that they may be moved parallel to the electron beam. This allows the undulator to produce x-rays of left- or right-handed elliptical or circular polarization as well as horizontal or vertical linear polarization. In model calculations, they have found that by sliding the top pair of rows with respect to the bottom pair, or the left pair with respect to the right pair, they retain the polarization setting but change the magnetic field strength, and hence the x-ray energy. This allows them to select both energy and polarization by independent phase adjustments alone, without changing the gap between the rows. Such a design may be simpler to construct than an adjustable gap machine. The authors present calculations that model its operation and its effects on an electron beam

  1. Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell

    Science.gov (United States)

    Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee

    Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23 mA/cm2, a photovoltage (Voc) of 0.75 V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%.

  2. Salting out the polar polymorph: analysis by alchemical solvent transformation.

    Science.gov (United States)

    Duff, Nathan; Dahal, Yuba Raj; Schmit, Jeremy D; Peters, Baron

    2014-01-07

    We computationally examine how adding NaCl to an aqueous solution with α- and γ-glycine nuclei alters the structure and interfacial energy of the nuclei. The polar γ-glycine nucleus in pure aqueous solution develops a melted layer of amorphous glycine around the nucleus. When NaCl is added, a double layer is formed that stabilizes the polar glycine polymorph and eliminates the surface melted layer. In contrast, the non-polar α-glycine nucleus is largely unaffected by the addition of NaCl. To quantify the stabilizing effect of NaCl on γ-glycine nuclei, we alchemically transform the aqueous glycine solution into a brine solution of glycine. The alchemical transformation is performed both with and without a nucleus in solution and for nuclei of α-glycine and γ-glycine polymorphs. The calculations show that adding 80 mg/ml NaCl reduces the interfacial free energy of a γ-glycine nucleus by 7.7 mJ/m(2) and increases the interfacial free energy of an α-glycine nucleus by 3.1 mJ/m(2). Both results are consistent with experimental reports on nucleation rates which suggest: J(α, brine) transformation approach can predict the results for both polar and non-polar polymorphs. The results suggest a general "salting out" strategy for obtaining polar polymorphs and also a general approach to computationally estimate the effects of solvent additives on interfacial free energies for nucleation.

  3. A comparison of geochemical features of extracts from coal-seams source rocks with different polarity solvents

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jianping; Deng, Chunping; Wang, Huitong

    2009-02-15

    There exists a great difference in group-type fractions and biomarker distributions of chloroform extracts from coals and coal-seams oils, which makes the source identification of coal-seams oils in sedimentary basins rather difficult. The experiment, in which four different polarity solvents, n-hexane, benzene, dichloromethane and chloroform, were used to extract 9 coal-seams source rocks and 3 typical lacustrine source rocks, showed that the yield of extracts increased gradually with increasing solvent polarity. The distribution features of their n-alkanes, isoprenoids and sterane and terpane biomarkers remained, in general, similar, showing no distinct enrichment or depletion for a certain fraction by any solvent. The compositional analysis on n-hexane and chloroform extracts showed that the absolute amount (concentration) of biomarkers was relatively low for the n-hexane extract but comparatively high for the chloroform extract, this difference became great among coal-seams source rocks but small among lacustrine mudstones. The statistical analysis on the relative amount of the 18 major biomarkers in n-hexane and chloroform extracts from 10 source rock samples showed that extracts with a proportional error for the same biomarker of less than 5% (including the analytical error) accounted for 84% while those with a proportional error over 10% amounted to below 5%. This suggested that the outcome of oil-source correlation made by these biomarkers will be independent of variations in amounts of saturates and biomarkers arising from solvent polarity. Therefore, biomarkers obtained from organic-rich source rocks including coals by the extraction with the commonly used chloroform solvent can be applied for the oilsource correlation of coal-seams petroliferous basins.

  4. Solvent polarity effects on hyperfine couplings of cyclohexadienyl-type radicals

    International Nuclear Information System (INIS)

    Vujosevic', D.; Scheuermann, R.; Dilger, H.; Tucker, I.M.; Martyniak, A.; McKenzie, I.; Roduner, E.

    2006-01-01

    In this study muon-spin rotation (μSR) serves as a tool for sensitive monitoring of the environment of muoniated radicals in isotropic liquids. A systematic investigation of the behaviour of the hyperfine coupling constants of cyclohexadienyl-type radicals is performed, and it is found that they are in linear dependence on solvent polarity, with certain deviations. These deviations are discussed in detail. It is found that with increasing length of the hydroxyalkyl substituent group the perturbation of the phenyl ring becomes smaller

  5. Solvent polarity effects on hyperfine couplings of cyclohexadienyl-type radicals

    Energy Technology Data Exchange (ETDEWEB)

    Vujosevic' , D. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Scheuermann, R. [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Dilger, H. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Tucker, I.M. [Unilever Research and Development, Port Sunlight, Wirral CH63 3JW (United Kingdom); Martyniak, A. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); McKenzie, I. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Roduner, E. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany)]. E-mail: e.rodunder@ipc.uni-stuttgart.de

    2006-03-31

    In this study muon-spin rotation ({mu}SR) serves as a tool for sensitive monitoring of the environment of muoniated radicals in isotropic liquids. A systematic investigation of the behaviour of the hyperfine coupling constants of cyclohexadienyl-type radicals is performed, and it is found that they are in linear dependence on solvent polarity, with certain deviations. These deviations are discussed in detail. It is found that with increasing length of the hydroxyalkyl substituent group the perturbation of the phenyl ring becomes smaller.

  6. In situ alcoholysis of triacylglycerols by application of switchable-polarity solvents. A new derivatization procedure for the gas-chromatographic analysis of vegetable oils.

    Science.gov (United States)

    Saliu, Francesco; Orlandi, Marco

    2013-10-01

    We describe a new use of switchable-polarity solvents for the simultaneous derivatization and extraction of triacylglycerols from vegetable oils before gas-chromatographic analysis. Different equimolecular mixtures of the commercially available amidine 1,8-diazabicyclo[5.4.0]undec-7-ene and n-alkyl alcohols were tested. Triolein was used as a model compound. Very good results were achieved by using butanol (recovery of butyl oleate was 89 ± 4%). The procedure was applied for the characterization of the fatty acid profile of different vegetable oils. No statistically significant differences from the results obtained with the application of two traditional methods were evidenced. Moreover, the use of switchable-polarity solvents showed many advantages: owing to the basicity of the amidines, no catalyst was required; the transterification reaction was conducted under mild conditions, one step and in situ; no particular matrix interferences were evidenced; the solvent was recovered.

  7. Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell.

    Science.gov (United States)

    Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee

    2014-05-21

    Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23mA/cm(2), a photovoltage (Voc) of 0.75V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Solvent polarity and nanoscale morphology in bulk heterojunction organic solar cells: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ajith [Centre for Nano-Bio-Polymer Science and Technology, Department of Physics, St. Thomas College, Pala, Kerala 686574 (India); Research and Development Centre, Bharathiar University, Coimbatore, Tamilnadu 641046 (India); Elsa Tom, Anju; Ison, V. V., E-mail: isonvv@yahoo.in, E-mail: praveen@materials.iisc.ernet.in [Centre for Nano-Bio-Polymer Science and Technology, Department of Physics, St. Thomas College, Pala, Kerala 686574 (India); Rao, Arun D.; Varman, K. Arul; Ranjith, K.; Ramamurthy, Praveen C., E-mail: isonvv@yahoo.in, E-mail: praveen@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science Bangalore, Karnataka 560012 (India); Vinayakan, R. [Department of Chemistry, SVR NSS College Vazhoor, Kerala 686505 (India)

    2014-03-14

    Organic bulk heterojunction solar cells were fabricated under identical experimental conditions, except by varying the solvent polarity used for spin coating the active layer components and their performance was evaluated systematically. Results showed that presence of nitrobenzene-chlorobenzene composition governs the morphology of active layer formed, which is due to the tuning of solvent polarity as well as the resulting solubility of the P3HT:PCBM blend. Trace amount of nitrobenzene favoured the formation of better organised P3HT domains, as evident from conductive AFM, tapping mode AFM and surface, and cross-sectional SEM analysis. The higher interfacial surface area thus generated produced cells with high efficiency. But, an increase in the nitrobenzene composition leads to a decrease in cell performance, which is due to the formation of an active layer with larger size polymer domain networks with poor charge separation possibility.

  9. Solvent polarity and nanoscale morphology in bulk heterojunction organic solar cells: A case study

    International Nuclear Information System (INIS)

    Thomas, Ajith; Elsa Tom, Anju; Ison, V. V.; Rao, Arun D.; Varman, K. Arul; Ranjith, K.; Ramamurthy, Praveen C.; Vinayakan, R.

    2014-01-01

    Organic bulk heterojunction solar cells were fabricated under identical experimental conditions, except by varying the solvent polarity used for spin coating the active layer components and their performance was evaluated systematically. Results showed that presence of nitrobenzene-chlorobenzene composition governs the morphology of active layer formed, which is due to the tuning of solvent polarity as well as the resulting solubility of the P3HT:PCBM blend. Trace amount of nitrobenzene favoured the formation of better organised P3HT domains, as evident from conductive AFM, tapping mode AFM and surface, and cross-sectional SEM analysis. The higher interfacial surface area thus generated produced cells with high efficiency. But, an increase in the nitrobenzene composition leads to a decrease in cell performance, which is due to the formation of an active layer with larger size polymer domain networks with poor charge separation possibility

  10. Environment effects on the optical properties of some fluorinated poly(oxadiazole ether)s in binary solvent mixtures

    International Nuclear Information System (INIS)

    Homocianu, Mihaela; Ipate, Alina Mirela; Hamciuc, Corneliu; Airinei, Anton

    2015-01-01

    The solvatochromic behavior of some fluorinated poly(oxadiazole ether)s was studied using UV–vis absorption and fluorescence spectroscopy in neat solvents and in their solvent mixtures at several ratios of cosolvents. Quantitative investigations of the spectral changes caused by solvent polarity were discussed using the Lippert‐Mataga, Bakhshiev and Kawski–Chamma–Viallet polarity functions. Repartitioning of cosolvent between local (solvation shell) and bulk phase was investigated by means of a solvatochromic shift method in chloroform–N,N-dimethylformamide (CHCl 3 /DMF) and chloroform–dimethyl sulfoxide (CHCl 3 /DMSO) solvent mixtures. Solvatochromic properties in the binary solvent environments were predominantly influenced by the acidity and basicity of the solvent systems. The fluorescence quenching process by nitrobenzene was characterized by Stern–Volmer plots which display a positive deviation from linearity. This was explained by static and dynamic quenching mechanisms. - Highlights: • Solvatochromic behavior in solvent mixtures was studied. • Stokes shift and local environments in binary mixed solvent were discussed. • Repartitioning of cosolvent between local and bulk phase in solvent mixture has been investigated. • Fluorescence intensity was quenched in presence of nitrobenzene

  11. Solvent-mediated pathways to gelation and phase separation in suspensions of grafted nanoparticles

    KAUST Repository

    Anyfantakis, Manos

    2009-01-01

    We explore the role of the solvent medium on the interplay between gelation and phase separation in suspensions of organosilicate planar hybrids grafted with hydrocarbon chains. We establish their phase diagram by means of dynamic light scattering, rheology and visual observations, and different routes to gelation, depending on the solvent used. In agreement with earlier works, the solvent quality for the grafted chains at a given temperature controls the balance between attractions and repulsions, and hence the phase diagram of the nanoparticles and their tendency to gel. Here we show how to tune the suspension state and hence its rheology. For decane, a good solvent for the hydrocarbon chains, gelation occurs at rather low volume fractions in the presence of phase separation. This is due to the interdigitation of solvent molecules with the grafted chains, resulting in their crystalline packing that promotes the attraction between particles. For toluene, a solvent of reduced quality for the hydrocarbon chains, no interdigitation takes place, and hence gelation is triggered by clustering at higher volume fractions before phase separation. Our results support the generic picture of complex kinetic arrest/phase separation interplay in soft matter, where phase separation can proceed, be interrupted or be completely inhibited. A number of interesting possibilities for tailoring the rheology of grafted colloidal systems emerge. © 2009 The Royal Society of Chemistry.

  12. Macroscopic polarization in crystalline dielectrics: the geometric phase approach

    International Nuclear Information System (INIS)

    Resta, R.

    1994-01-01

    The macroscopic electric polarization of a crystal is often defined as the dipole of a unit cell. In fact, such a dipole moment is ill defined, and the above definition is incorrect. Looking more closely, the quantity generally measured is differential polarization, defined with respect to a ''reference state'' of the same material. Such differential polarizations include either derivatives of the polarization (dielectric permittivity, Born effective charges, piezoelectricity, pyroelectricity) or finite differences (ferroelectricity). On the theoretical side, the differential concept is basic as well. Owing to continuity, a polarization difference is equivalent to a macroscopic current, which is directly accessible to the theory as a bulk property. Polarization is a quantum phenomenon and cannot be treated with a classical model, particularly whenever delocalized valence electrons are present in the dielectric. In a quantum picture, the current is basically a property of the phase of the wave functions, as opposed to the charge, which is a property of their modulus. An elegant and complete theory has recently been developed by King-Smith and Vanderbilt, in which the polarization difference between any two crystal states--in a null electric field--takes the form of a geometric quantum phase. This gives a comprehensive account of this theory, which is relevant for dealing with transverse-optic phonons, piezoelectricity, and ferroelectricity. Its relation to the established concepts of linear-response theory is also discussed. Within the geometric phase approach, the relevant polarization difference occurs as the circuit integral of a Berry connection (or ''vector potential''), while the corresponding curvature (or ''magnetic field'') provides the macroscopic linear response

  13. Third phase formation in organic solutions in the extraction of mono-acids by tertiary trialcoyl-amines diluted in very slightly polar organic solvents

    International Nuclear Information System (INIS)

    Robaglia, Michele

    1973-01-01

    The phenomena of third phase formation which can occur during the extraction of an acid with a tertiary amine diluted in a low polarity diluent are studied. In the first part a system including water (TnOA - C 6 H 12 - HCl - H 2 O) is compared with an anhydrous system (TnOA - C 6 H 12 - HCl - N 2 ). There are two kinds of gaps. One during amine salification, another one during the extraction of excess acid. The important part of the water content of the organic phase is demonstrated. The presence of water enhances the gaps. The polar water molecules are dissolved inside the tri-octylamine salt micelles. The heavy phase is formed by aggregates, the light phase represents the solubility of the non soluble species in the medium. In the second part are studied the influence of some parameters (like nature of diluent, acid, amine and temperature) on the gaps formation and on the extraction of excess acid and water. In every cases the part played by water remains the same. Finally some comparisons are made between tertiary systems and binary systems which formed them. The binary systems were studied by the mean of crystallization curves. (author) [fr

  14. Preferential solvation of fluorenone and 4-hydroxyfluorenone in binary solvent mixtures

    International Nuclear Information System (INIS)

    Jozefowicz, Marek; Heldt, Janina R.

    2003-01-01

    Preferential solvation of fluorenone and 4-hydroxyfluorenone in binary solvent mixtures has been studied using steady-state spectroscopic measurements. This study concerns the solvent-induced shift of the absorption and fluorescence spectra of both molecules in two solvent mixtures, i.e., cyclohexane-tetrahydrofuran and cyclohexane-ethanol. The first system contains polar solute molecules, fluorenone and 4-hydroxyfluorenone, in a mixture of polar aprotic (tetrahydrofuran) and non-polar (cyclohexane) solvents. In the second solvents mixture, hydrogen bonding with solute molecules (ethanol) may occur. The results of spectroscopic measurements are analysed using theoretical models of Bakshiev, Mazurenko and Suppan which describe preferential solvation phenomena. In the case of cyclohexane-tetrahydrofuran mixtures, the deviation from linearity in the absorption and fluorescence solvatochromic shifts vs. the solution polarity is due to non-specific dipolar solvent-solute interactions. For cyclohexane-ethanol binary mixtures, both non-specific and specific (hydrogen bond and proton-relay tautomerization) interactions contribute to the observed solvatochromism

  15. Unravelling the effects of mobile phase additives in supercritical fluid chromatography. Part I: Polarity and acidity of the mobile phase.

    Science.gov (United States)

    West, Caroline; Melin, Jodie; Ansouri, Hassna; Mengue Metogo, Maïly

    2017-04-07

    The mobile phases employed in current supercritical fluid chromatography (SFC) are usually composed of a mixture of pressurized carbon dioxide and a co-solvent. The co-solvent is most often an alcohol and may contain a third component in small proportions, called an additive (acid, base or salt). The polarity of such mobile phase compositions is here re-evaluated with a solvatochromic dye (Nile Red), particularly to assess the contribution of additives. It appears that additives, when employed in usual concentration range (0.1% or 20mM) do not modify the polarity in the immediate environment of the probe. In addition, the combination of carbon dioxide and an alcohol is known to form alkoxylcarbonic acid, supposedly conferring some acidic character to SFC mobile phases. Direct measurements of the apparent pH are impossible, but colour indicators of pH can be used to define the range of apparent pH provided by carbon dioxide-alcohol mixtures, with or without additives. Five colour indicators (Thymol Blue, Bromocresol Green, Methyl Red, Bromocresol Purple, and Bromothymol Blue) were selected to provide a wide range of aqueous pK a values (from 1.7 to 8.9). UV-vis absorption spectra measured in liquid phases of controlled pH were compared to those measured with a diode-array detector employed in SFC, with the help of chemometric methods. Based on these observations, it is concluded that the apparent pH range in carbon dioxide-methanol mobile phases is close to 5. Increasing the proportion of methanol (in the course of a gradient elution for instance) causes decreasing apparent pH. Strong acids can further decrease the apparent pH below 1.7; strong bases have little influence on the apparent pH, probably because, in this range of concentrations, they are titrated by alkoxylcarbonic acid or form ion pairs with alkoxycarbonate. However, bases and salts could stabilize the acidity in the course of gradient runs. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Two-photon interference of polarization-entangled photons in a Franson interferometer.

    Science.gov (United States)

    Kim, Heonoh; Lee, Sang Min; Kwon, Osung; Moon, Han Seb

    2017-07-18

    We present two-photon interference experiments with polarization-entangled photon pairs in a polarization-based Franson-type interferometer. Although the two photons do not meet at a common beamsplitter, a phase-insensitive Hong-Ou-Mandel type two-photon interference peak and dip fringes are observed, resulting from the two-photon interference effect between two indistinguishable two-photon probability amplitudes leading to a coincidence detection. A spatial quantum beating fringe is also measured for nondegenerate photon pairs in the same interferometer, although the two-photon states have no frequency entanglement. When unentangled polarization-correlated photons are used as an input state, the polarization entanglement is successfully recovered through the interferometer via delayed compensation.

  17. Nonequilibrium phase transitions, fluctuations and correlations in an active contractile polar fluid.

    Science.gov (United States)

    Gowrishankar, Kripa; Rao, Madan

    2016-02-21

    We study the patterning, fluctuations and correlations of an active polar fluid consisting of contractile polar filaments on a two-dimensional substrate, using a hydrodynamic description. The steady states generically consist of arrays of inward pointing asters and show a continuous transition from a moving lamellar phase, a moving aster street, to a stationary aster lattice with no net polar order. We next study the effect of spatio-temporal athermal noise, parametrized by an active temperature TA, on the stability of the ordered phases. In contrast to its equilibrium counterpart, we find that the active crystal shows true long range order at low TA. On increasing TA, the asters dynamically remodel, concomitantly we find novel phase transitions characterized by bond-orientational and polar order upon "heating".

  18. Natural deep eutectic solvents as the major mobile phase components in high-performance liquid chromatography-searching for alternatives to organic solvents.

    Science.gov (United States)

    Sutton, Adam T; Fraige, Karina; Leme, Gabriel Mazzi; da Silva Bolzani, Vanderlan; Hilder, Emily F; Cavalheiro, Alberto J; Arrua, R Dario; Funari, Cristiano Soleo

    2018-06-01

    Over the past six decades, acetonitrile (ACN) has been the most employed organic modifier in reversed-phase high-performance liquid chromatography (RP-HPLC), followed by methanol (MeOH). However, from the growing environmental awareness that leads to the emergence of "green analytical chemistry," new research has emerged that includes finding replacements to problematic ACN because of its low sustainability. Deep eutectic solvents (DES) can be produced from an almost infinite possible combinations of compounds, while being a "greener" alternative to organic solvents in HPLC, especially those prepared from natural compounds called natural DES (NADES). In this work, the use of three NADES as the main organic component in RP-HPLC, rather than simply an additive, was explored and compared to the common organic solvents ACN and MeOH but additionally to the greener ethanol for separating two different mixtures of compounds, one demonstrating the elution of compounds with increasing hydrophobicity and the other comparing molecules of different functionality and molar mass. To utilize NADES as an organic modifier and overcome their high viscosity monolithic columns, temperatures at 50 °C and 5% ethanol in the mobile phase were used. NADES are shown to give chromatographic performances in between those observed for ACN and MeOH when eluotropic strength, resolution, and peak capacity were taken into consideration, while being less environmentally impactful as shown by the HPLC-Environmental Assessment Tool (HPLC-EAT) metric. With the development of proper technologies, DES could open a new class of mobile phases increasing the possibilities of new separation selectivities while reducing the environmental impact of HPLC analyses. Graphical abstract Natural deep eutectic solvents versus traditional solvents in HPLC.

  19. Collapse in two good solvents, swelling in two poor solvents: defying the laws of polymer solubility?

    Science.gov (United States)

    Mukherji, Debashish; Marques, Carlos M; Kremer, Kurt

    2018-01-17

    In this work we discuss two mirror but distinct phenomena of polymer paradoxical properties in mixed solvents: co-non-solvency and co-solvency. When a polymer collapses in a mixture of two miscible good solvents the phenomenon is known as co-non-solvency, while co-solvency is a phenomenon that is associated with the swelling of a polymer in poor solvent mixtures. A typical example of co-non-solvency is provided by poly(N-isopropylacrylamide) in aqueous alcohol, while poly(methyl methacrylate) in aqueous alcohol shows co-solvency. We discuss these two phenomena to compare their microscopic origins and show that both can be understood within generic universal concepts. A broad range of polymers is therefore expected to exhibit these phenomena where specific chemical details play a lesser role than the appropriate combination of interactions between the trio of molecular components.

  20. TESTING MODELS FOR THE SHALLOW DECAY PHASE OF GAMMA-RAY BURST AFTERGLOWS WITH POLARIZATION OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Mi-Xiang; Dai, Zi-Gao [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wu, Xue-Feng, E-mail: dzg@nju.edu.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-08-01

    The X-ray afterglows of almost one-half of gamma-ray bursts have been discovered by the Swift satellite to have a shallow decay phase of which the origin remains mysterious. Two main models have been proposed to explain this phase: relativistic wind bubbles (RWBs) and structured ejecta, which could originate from millisecond magnetars and rapidly rotating black holes, respectively. Based on these models, we investigate polarization evolution in the shallow decay phase of X-ray and optical afterglows. We find that in the RWB model, a significant bump of the polarization degree evolution curve appears during the shallow decay phase of both optical and X-ray afterglows, while the polarization position angle abruptly changes its direction by 90°. In the structured ejecta model, however, the polarization degree does not evolve significantly during the shallow decay phase of afterglows whether the magnetic field configuration in the ejecta is random or globally large-scale. Therefore, we conclude that these two models for the shallow decay phase and relevant central engines would be testable with future polarization observations.

  1. Photoinduced electron transfer in covalent ruthenium-anthraquinone dyads: relative importance of driving-force, solvent polarity, and donor-bridge energy gap.

    Science.gov (United States)

    Hankache, Jihane; Wenger, Oliver S

    2012-02-28

    Four rigid rod-like molecules comprised of a Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) photosensitizer, a 9,10-anthraquinone electron acceptor, and a molecular bridge connecting the two redox partners were synthesized and investigated by optical spectroscopic and electrochemical means. An attempt was made to assess the relative importance of driving-force, solvent polarity, and bridge variation on the rates of photoinduced electron transfer in these molecules. Expectedly, introduction of tert-butyl substituents in the bipyridine ligands of the ruthenium complex and a change in solvent from dichloromethane to acetonitrile lead to a significant acceleration of charge transfer rates. In dichloromethane, photoinduced electron transfer is not competitive with the inherent excited-state deactivation processes of the photosensitizer. In acetonitrile, an increase in driving-force by 0.2 eV through attachment of tert-butyl substituents to the bpy ancillary ligands causes an increase in electron transfer rates by an order of magnitude. Replacement of a p-xylene bridge by a p-dimethoxybenzene spacer entails an acceleration of charge transfer rates by a factor of 3.5. In the dyads from this study, the relative order of importance of individual influences on electron transfer rates is therefore as follows: solvent polarity ≥ driving-force > donor-bridge energy gap.

  2. Decontamination of Oils Contaminated with Polychlorinated Biphenyls and Dibenzyl Disulfide Using Polar Aprotic Solvents

    Czech Academy of Sciences Publication Activity Database

    Kaštánek, František; Matějková, Martina; Spáčilová, Lucie; Maléterová, Ywetta; Kaštánek, P.; Šolcová, Olga

    2015-01-01

    Roč. 4, č. 2 (2015), s. 41-48 ISSN 2319-5967 R&D Projects: GA TA ČR(CZ) TA04020151 Institutional support: RVO:67985858 Keywords : corrosive sulfur * dibenzyl disulfide * polar aprotic solvents Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://www.ijesit.com/Volume%204/Issue%202/IJESIT201502_06.pdf

  3. Comparison of methanol and isopropanol as wash solvents for determination of hair cortisol concentration in grizzly bears and polar bears.

    Science.gov (United States)

    Kroshko, Thomas; Kapronczai, Luciene; Cattet, Marc R L; Macbeth, Bryan J; Stenhouse, Gordon B; Obbard, Martyn E; Janz, David M

    2017-01-01

    Methodological differences among laboratories are recognized as significant sources of variation in quantification of hair cortisol concentration (HCC). An important step in processing hair, particularly when collected from wildlife, is the choice of solvent used to remove or "wash" external hair shaft cortisol prior to quantification of HCC. The present study systematically compared methanol and isopropanol as wash solvents for their efficiency at removing external cortisol without extracting internal hair shaft cortisol in samples collected from free-ranging grizzly bears and polar bears. Cortisol concentrations in solvents and hair were determined in each of one to eight washes of hair with each solvent independently. •There were no significant decreases in internal hair shaft cortisol among all eight washes for either solvent, although methanol removed detectable hair surface cortisol after one wash in grizzly bear hair whereas hair surface cortisol was detected in all eight isopropanol washes.•There were no significant differences in polar bear HCC washed one to eight times with either solvent, but grizzly bear HCC was significantly greater in hair washed with isopropanol compared to methanol.•There were significant differences in HCC quantified using different commercial ELISA kits commonly used for HCC determinations.

  4. Development of a Front Tracking Method for Two-Phase Micromixing of Incompressible Viscous Fluids with Interfacial Tension in Solvent Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yijie [ORNL; Lim, Hyun-Kyung [ORNL; de Almeida, Valmor F [ORNL; Navamita, Ray [State University of New York, Stony Brook; Wang, Shuqiang [State University of New York, Stony Brook; Glimm, James G [ORNL; Li, Xiao-lin [State University of New York, Stony Brook; Jiao, Xiangmin [ORNL

    2012-06-01

    This progress report describes the development of a front tracking method for the solution of the governing equations of motion for two-phase micromixing of incompressible, viscous, liquid-liquid solvent extraction processes. The ability to compute the detailed local interfacial structure of the mixture allows characterization of the statistical properties of the two-phase mixture in terms of droplets, filaments, and other structures which emerge as a dispersed phase embedded into a continuous phase. Such a statistical picture provides the information needed for building a consistent coarsened model applicable to the entire mixing device. Coarsening is an undertaking for a future mathematical development and is outside the scope of the present work. We present here a method for accurate simulation of the micromixing dynamics of an aqueous and an organic phase exposed to intense centrifugal force and shearing stress. The onset of mixing is the result of the combination of the classical Rayleigh- Taylor and Kelvin-Helmholtz instabilities. A mixing environment that emulates a sector of the annular mixing zone of a centrifugal contactor is used for the mathematical domain. The domain is small enough to allow for resolution of the individual interfacial structures and large enough to allow for an analysis of their statistical distribution of sizes and shapes. A set of accurate algorithms for this application requires an advanced front tracking approach constrained by the incompressibility condition. This research is aimed at designing and implementing these algorithms. We demonstrate verification and convergence results for one-phase and unmixed, two-phase flows. In addition we report on preliminary results for mixed, two-phase flow for realistic operating flow parameters.

  5. Use of uranyl nitrate as a shift reagent in polar and inert solvents

    International Nuclear Information System (INIS)

    Nosov, B.P.

    1988-01-01

    This work examines the effect of uranyl nitrate as a shift reagent on the PMR spectra of different organic molecules in polar and inert solvents. In order to identify the coordination site of the uranyl ion, its effect on the spectra of amino acids and acetic or propionic acids in water was compared. It was found that the induced shifts of the protons in the corresponding positions of the different acids after addition of uranyl nitrate agreed to within ±0.01 ppm. When nitrogenous bases such as diethylamine and pyridine were added to solutions of the carboxylic acids with uranyl nitrate, an increase in the induced chemical shift of the resonance signals occurred. These facts suggest the coordination of the uranyl ion with the carboxyl oxygen both for acetic and propionic acids and for amino acids. The authors established that the addition of uranyl nitrate to solutions of organic compounds caused different downfield shifts of the resonance signals from the protons. In polar solvents shifts induced by uranyl nitrate in the PMR spectra of carboxylic acids occur only when nitrogenous bases are added

  6. Polarized differential-phase laser scanning microscope

    International Nuclear Information System (INIS)

    Chou Chien; Lyu, C.-W.; Peng, L.-C.

    2001-01-01

    A polarized differential-phase laser scanning microscope, which combines a polarized optical heterodyne Mach-Zehnder interferometer and a differential amplifier to scan the topographic image of a surface, is proposed. In the experiment the differential amplifier, which acts as a PM-AM converter, in the experiment, converting phase modulation (PM) into amplitude modulation (AM). Then a novel, to our knowledge, phase demodulator was proposed and implemented for the differential-phase laser scanning microscope. An optical grating (1800 lp/mm) was imaged. The lateral and the depth resolutions of the imaging system were 0.5 μm and 1 nm, respectively. The detection accuracy, which was limited by the reflectivity variation of the test surface, is discussed

  7. Theoretical Study on the Extraction of Alkaline Earth Salts by 18-Crown-6: Roles of Counterions, Solvent Types and Extraction Temperatures

    Directory of Open Access Journals (Sweden)

    Saprizal Hadisaputra

    2014-07-01

    Full Text Available The roles of counterions, solvent types and extraction temperatures on the selectivity of 18-crown-6 (L toward alkaline earth salts MX2 (M = Ca, Sr, Ba; X = Cl-, NO3- have been studied by density functional method at B3LYP level of theory in gas and solvent phase. In gas phase, the chloride anion Cl- is the preference counterion than nitrate anion NO3-. This result is confirmed by the interaction energies, the second order interaction energies, charge transfers, energy difference between HOMO-LUMO and electrostatic potential maps. The presence of solvent reversed the gas phase trend. It is found that NO3- is the preference counterion in solvent phase. The calculated free energies demonstrate that the solvent types strongly change the strength of the complex formation. The free energies are exothermic in polar solvent while for the non polar solvent the free energies are endothermic. As the temperature changes the free energies also vary where the higher the temperatures the lower the free energy values. The calculated free energies are correlated well with the experimental stability constants. This theoretical study would have a strong contribution in planning the experimental conditions in terms of the preference counterions, solvent types and optimum extraction temperatures.

  8. Nitrobenzene anti-parallel dimer formation in non-polar solvents

    Directory of Open Access Journals (Sweden)

    Toshiyuki Shikata

    2014-06-01

    Full Text Available We investigated the dielectric and depolarized Rayleigh scattering behaviors of nitrobenzene (NO2-Bz, which is a benzene mono-substituted with a planar molecular frame bearing the large electric dipole moment 4.0 D, in non-polar solvents solutions, such as tetrachloromethane and benzene, at up to 3 THz for the dielectric measurements and 8 THz for the scattering experiments at 20 °C. The dielectric relaxation strength of the system was substantially smaller than the proportionality to the concentration in a concentrated regime and showed a Kirkwood correlation factor markedly lower than unity; gK ∼ 0.65. This observation revealed that NO2-Bz has a tendency to form dimers, (NO2-Bz2, in anti-parallel configurations for the dipole moment with increasing concentration of the two solvents. Both the dielectric and scattering data exhibited fast and slow Debye-type relaxation modes with the characteristic time constants ∼7 and ∼50 ps in a concentrated regime (∼15 and ∼30 ps in a dilute regime, respectively. The fast mode was simply attributed to the rotational motion of the (monomeric NO2-Bz. However, the magnitude of the slow mode was proportional to the square of the concentration in the dilute regime; thus, the mode was assigned to the anti-parallel dimer, (NO2-Bz2, dissociation process, and the slow relaxation time was attributed to the anti-parallel dimer lifetime. The concentration dependencies of both the dielectric and scattering data show that the NO2-Bz molecular processes are controlled through a chemical equilibrium between monomers and anti-parallel dimers, 2NO2-Bz ↔ (NO2-Bz2, due to a strong dipole-dipole interaction between nitro groups.

  9. Active Polar Two-Fluid Macroscopic Dynamics

    Science.gov (United States)

    Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.

    2014-03-01

    We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria (in a solvent, shoals of fish (moving in water currents), flocks of birds and migrating insects (flying in windy air). Because the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this second velocity. We find a normal mode structure quite different compared to the static descriptions, as well as linear couplings between (active) flow and e.g. densities and concentrations due to the genuine two-fluid transport derivatives. On the other hand, we get, quite similar to the static case, a direct linear relation between the stress tensor and the structure tensor. This prominent ``active'' term is responsible for many active effects, meaning that our approach can describe those effects as well. In addition, we also deal with explicitly chiral systems, which are important for many active systems. In particular, we find an active flow-induced heat current specific for the dynamic chiral polar order.

  10. Phase locking of vortex cores in two coupled magnetic nanopillars

    Directory of Open Access Journals (Sweden)

    Qiyuan Zhu

    2014-11-01

    Full Text Available Phase locking dynamics of the coupled vortex cores in two identical magnetic spin valves induced by spin-polarized current are studied by means of micromagnetic simulations. Our results show that the available current range of phase locking can be expanded significantly by the use of constrained polarizer, and the vortices undergo large orbit motions outside the polarization areas. The effects of polarization areas and dipolar interaction on the phase locking dynamics are studied systematically. Phase locking parameters extracted from simulations are discussed by theoreticians. The dynamics of vortices influenced by spin valve geometry and vortex chirality are discussed at last. This work provides deeper insights into the dynamics of phase locking and the results are important for the design of spin-torque nano-oscillators.

  11. Solvent jet desorption capillary photoionization-mass spectrometry.

    Science.gov (United States)

    Haapala, Markus; Teppo, Jaakko; Ollikainen, Elisa; Kiiski, Iiro; Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2015-03-17

    A new ambient mass spectrometry method, solvent jet desorption capillary photoionization (DCPI), is described. The method uses a solvent jet generated by a coaxial nebulizer operated at ambient conditions with nitrogen as nebulizer gas. The solvent jet is directed onto a sample surface, from which analytes are extracted into the solvent and ejected from the surface in secondary droplets formed in collisions between the jet and the sample surface. The secondary droplets are directed into the heated capillary photoionization (CPI) device, where the droplets are vaporized and the gaseous analytes are ionized by 10 eV photons generated by a vacuum ultraviolet (VUV) krypton discharge lamp. As the CPI device is directly connected to the extended capillary inlet of the MS, high ion transfer efficiency to the vacuum of MS is achieved. The solvent jet DCPI provides several advantages: high sensitivity for nonpolar and polar compounds with limit of detection down to low fmol levels, capability of analyzing small and large molecules, and good spatial resolution (250 μm). Two ionization mechanisms are involved in DCPI: atmospheric pressure photoionization, capable of ionizing polar and nonpolar compounds, and solvent assisted inlet ionization capable of ionizing larger molecules like peptides. The feasibility of DCPI was successfully tested in the analysis of polar and nonpolar compounds in sage leaves and chili pepper.

  12. Carbon nanotube enhanced membrane distillation for online preconcentration of trace pharmaceuticals in polar solvents.

    Science.gov (United States)

    Gethard, Ken; Mitra, Somenath

    2011-06-21

    Carbon nanotube enhanced membrane distillation (MD) is presented as a novel, online analytical preconcentration method for removing polar solvents thereby concentrating the analytes, making this technique an alternate to conventional thermal evaporation. In a carbon nanotube immobilized membrane (CNIM), the CNTs serve as sorbent sites and provide additional pathways for enhanced solvent vapor transport, thus enhancing preconcentration. Enrichment using CNIM doubled compared to membranes without CNTs, while the methanol flux and mass transfer coefficients increased by 61% and 519% respectively. The carbon nanotube enhanced MD process showed excellent precision (RSD of 3-5%), linearity, and the detection limits were in the range of 0.001 to 0.009 mg L(-1) by HPLC analysis.

  13. Two-phase ozonation of chlorinated organics

    International Nuclear Information System (INIS)

    Bhattacharyya, D.; Freshour, A.; West, D.

    1995-01-01

    In the last few years the amount of research being conducted in the field of single-phase ozonation has grown extensively. However, traditional aqueous-phase ozonation systems are limited by a lack of selective oxidation potential, low ozone solubility in water, and slow intermediate decomposition rates. Furthermore, ozone may decompose before it can be utilized for pollutant destruction since ozone can be highly unstable in aqueous solutions. Naturally occurring compounds such as NaHCO 3 also affect ozone reactions by inhibiting the formation of OH-free radicals. To compensate for these factors, excess ozone is typically supplied to a reactor. Since ozone generation requires considerable electric power consumption (16 - 24 kWh/kg of O 3 ), attempts to enhance the ozone utilization rate and stability should lead to more efficient application of this process to hazardous waste treatment. To improve the process, ozonation may be more efficiently carried out in a two-phase system consisting of an inert solvent (saturated with O 3 ) contacted with an aqueous phase containing pollutants. The non-aqueous phase must meet the following criteria: (1) non-toxic, (2) very low vapor pressure, (3) high density (for ease of separation), (4) complete insolubility in water, (5) reusability, (6) selective pollutant extractability, (7) high oxidant solubility, and (8) extended O 3 stability. Previously published studies (1) have indicated that a number of fluorinated hydrocarbon compounds fit these criteria. For this project, FC40 (a product of 3M Co.) was chosen due to its low vapor pressure (3 mm Hg) and high specific gravity (1.9). The primary advantages of the FC40 solvent are that it is non-toxic, reusable, has an ozone solubility 10 times that of water, and that 85 % of the ozone remains in the solvent even after 2 hours. This novel two-phase process has been utilized to study the rapid destruction of organic chlorine compounds and organic mixtures

  14. Discrete and continuum modeling of solvent effects in a twisted intramolecular charge transfer system: The 4-N,N-dimethylaminobenzonitrile (DMABN) molecule.

    Science.gov (United States)

    Modesto-Costa, Lucas; Borges, Itamar

    2018-08-05

    The 4-N,N-dimethylaminobenzonitrile (DMABN) molecule is a prototypical system displaying twisted intramolecular (TICT) charge transfer effects. The ground and the first four electronic excited states (S 1 -S 4 ) in gas phase and upon solvation were studied. Charge transfer values as function of the torsion angle between the donor group (dimethylamine) and the acceptor moiety (benzonitrile) were explicitly computed. Potential energy curves were also obtained. The algebraic diagrammatic construction method at the second-order [ADC(2)] ab initio wave function was employed. Three solvents of increased polarities (benzene, DMSO and water) were investigated using discrete (average solvent electrostatic configuration - ASEC) and continuum (conductor-like screening model - COSMO) models. The results for the S 3 and S 4 excited states and the S 1 -S 4 charge transfer curves were not previously available in the literature. Electronic gas phase and solvent vertical spectra are in good agreement with previous theoretical and experimental results. In the twisted (90°) geometry the optical oscillator strengths have negligible values even for the S 2 bright state. Potential energy curves show two distinct pairs of curves intersecting at decreasing angles or not crossing in the more polar solvents. Charge transfer and electric dipole values allowed the rationalization of these results. The former effects are mostly independent of the solvent model and polarity. Although COSMO and ASEC solvent models mostly lead to similar results, there is an important difference: some crossings of the excitation energy curves appear only in the ASEC solvation model, which has important implications to the photochemistry of DMABN. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Development of green betaine-based deep eutectic solvent aqueous two-phase system for the extraction of protein.

    Science.gov (United States)

    Li, Na; Wang, Yuzhi; Xu, Kaijia; Huang, Yanhua; Wen, Qian; Ding, Xueqin

    2016-05-15

    Six kinds of new type of green betaine-based deep eutectic solvents (DESs) have been synthesized. Deep eutectic solvent aqueous two-phase systems (DES-ATPS) were established and successfully applied in the extraction of protein. Betaine-urea (Be-U) was selected as the suitable extractant. Single factor experiments were carried out to determine the optimum conditions of the extraction process, such as the salt concentration, the mass of DES, the separation time, the amount of protein, the temperature and the pH value. The extraction efficiency could achieve to 99.82% under the optimum conditions. Mixed sample and practical sample analysis were discussed. The back extraction experiment was implemented and the back extraction efficiency could reach to 32.66%. The precision experiment, repeatability experiment and stability experiment were investigated. UV-vis, FT-IR and circular dichroism (CD) spectra confirmed that the conformation of protein was not changed during the process of extraction. The mechanisms of extraction were researched by dynamic light scattering (DLS), the measurement of the conductivity and transmission electron microscopy (TEM). DES-protein aggregates and embraces phenomenon play considerable roles in the separation process. All of these results indicated that betaine-based DES-ATPS may provide a potential substitute new method for the separation of proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Solvent effects on the excited-state double proton transfer mechanism in the 7-azaindole dimer: a TDDFT study with the polarizable continuum model.

    Science.gov (United States)

    Yu, Xue-Fang; Yamazaki, Shohei; Taketsugu, Tetsuya

    2017-08-30

    Solvent effects on the excited-state double proton transfer (ESDPT) mechanism in the 7-azaindole (7AI) dimer were investigated using the time-dependent density functional theory (TDDFT) method. Excited-state potential energy profiles along the reaction paths in a locally excited (LE) state and a charge transfer (CT) state were calculated using the polarizable continuum model (PCM) to include the solvent effect. A series of non-polar and polar solvents with different dielectric constants were used to examine the polarity effect on the ESDPT mechanism. The present results suggest that in a non-polar solvent and a polar solvent with a small dielectric constant, ESDPT follows a concerted mechanism, similar to the case in the gas phase. In a polar solvent with a relatively large dielectric constant, however, ESDPT is likely to follow a stepwise mechanism via a stable zwitterionic intermediate in the LE state on the adiabatic potential energy surface, although inclusion of zero-point vibrational energy (ZPE) corrections again suggests the concerted mechanism. In the meantime, the stepwise reaction path involving the CT state with neutral intermediates is also examined, and is found to be less competitive than the concerted or stepwise path in the LE state in both non-polar and polar solvents. The present study provides a new insight into the experimental controversy of the ESDPT mechanism of the 7AI dimer in a solution.

  17. Design of a coil satellite centrifuge and its performance on counter-current chromatographic separation of 4-methylumbelliferyl sugar derivatives with polar organic-aqueous two-phase solvent systems.

    Science.gov (United States)

    Shinomiya, Kazufusa; Tokura, Koji; Kimura, Emiru; Takai, Midori; Harikai, Naoki; Yoshida, Kazunori; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2015-05-01

    A new high-speed counter-current chromatograph, named coil satellite centrifuge (CSC), was designed and fabricated in our laboratory. The CSC apparatus produces the satellite motion such that the coiled column simultaneously rotates around the sun axis (the angular velocity, ω1), the planet axis (ω2) and the satellite axis (the central axis of the column) (ω3). In order to achieve this triplicate rotary motion without twisting of the flow tube, the rotation of each axis was determined by the following formula: ω1=ω2+ω3. This relation enabled to lay out the flow tube without twisting by the simultaneous rotation of three axes. The flow tube was introduced from the bottom side of the apparatus into the sun axis of the first rotary frame reaching the upper side of the planet axis and connected to the column in the satellite axis. The performance of the apparatus was examined on separation of 4-methylumbelliferyl (MU) sugar derivatives as test samples with organic-aqueous two-phase solvent systems composed of ethyl acetate/1-butanol/water (3:2:5, v/v) for lower phase mobile and (1:4:5, v/v) for upper phase mobile. With lower phase mobile, five 4-MU sugar derivatives including β-D-cellobioside (Cel), β-D-glucopyranoside, α-D-mannopyranoside, β-D-fucopyranoside and α-L-fucopyranoside (α-L-Fuc) were separated with the combined rotation around each axis at counterclockwise (CCW) (ω1) - CCW (ω2) - CCW (ω3) by the flow tube distribution. With upper phase mobile, three 4-MU sugar derivatives including α-L-Fuc, β-D-galactopyranoside and Cel were separated with the combined rotation around each axis at clockwise (CW) (ω1) - CW (ω2) - CW (ω3) by the flow tube distribution. A series of experiments on peak resolution and stationary phase retention revealed that better partition efficiencies were obtained at the flow rate of 0.5 mL/min (column 1) and 0.8 mL/min (column 2) for lower phase mobile and 0.2 mL/min (column 1) and 0.4 mL/min (column 2) for upper phase

  18. Phase behaviour of heavy petroleum fractions in pure propane and n-butane and with methanol as co-solvent

    International Nuclear Information System (INIS)

    Canziani, D.; Ndiaye, P.M.; Franceschi, Elton; Corazza, Marcos L.; Vladimir Oliveira, J.

    2009-01-01

    This work reports phase equilibrium experimental results for heavy petroleum fractions in pure propane and n-butane as primary solvents and using methanol as co-solvent. Three kinds of oils were investigated from Marlim petroleum: a relatively light fraction coming from the first distillation of crude petroleum at atmospheric pressure (GOP - heavy gas oil of petroleum), the residue of such distillation (RAT) and the crude petroleum sample. Phase equilibrium measurements were performed in a high-pressure, variable-volume view cell, following the static synthetic method, over the temperature range of 323 K to 393 K, pressures up to 10 MPa and overall compositions of heavy component varying from 1 wt% to 40 wt%. Transition pressures for low methanol and oil concentrations were very close for GOP, RAT, and crude Marlim when using propane as the primary solvent. Close to propane critical temperature, two and three-phase transitions were observed for GOP and Marlim when methanol was increased. When n-butane was used as primary solvent, all transitions observed were of (vapour + liquid) type with transition pressure values smaller than those obtained for propane.

  19. Phase equilibrium in a polarized saturated 3He-4He mixture

    International Nuclear Information System (INIS)

    Rodrigues, A.; Vermeulen, G.

    1997-01-01

    We present experimental results on the phase equilibrium of a saturated 3 He- 4 He mixture, which has been cooled to a temperature of 10-15 mK and polarized in a 4 He circulating dilution refrigerator to a stationary polarization of 15 %, 7 times higher than the equilibrium polarization in the external field of 7 T. The pressure dependence of the polarization enhancement in the refrigerator shows that the molar susceptibilities of the concentrated and dilute phase of a saturated 3 He- 4 He mixture are equal at p = 2.60 ± 0.04 bar. This result affects the Fermi liquid parameters of the dilute phase. The osmotic pressure in the dilute phase has been measured as a function of the polarization of the coexisting concentrated phase up to 15 %. We find that the osmotic pressure at low polarization ( < 7 % ) agrees well with thermodynamics using the new Fermi liquid parameters of the dilute phase

  20. Berry phase and shot noise for spin-polarized and entangled electrons

    International Nuclear Information System (INIS)

    Wang Pei; Tang Weihua; Lu Dinghui; Jiang Lixia; Zhao Xuean

    2007-01-01

    Shot noise for entangled and spin-polarized states in a four-probe geometric setup has been studied by adding two rotating magnetic fields in an incoming channel. Our results show that the noise power oscillates as the magnetic fields vary. The singlet, entangled triplet and polarized states can be distinguished by adjusting the magnetic fields. The Berry phase can be derived by measuring the shot noise power

  1. Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress

    International Nuclear Information System (INIS)

    Rand, R.P.; Fuller, N.L.; Gruner, S.M.; Parsegian, V.A.

    1990-01-01

    Amphiphiles respond both to polar and to nonpolar solvents. In this paper X-ray diffraction and osmotic stress have been used to examine the phase behavior, the structural dimensions, and the work of deforming the monolayer-lined aqueous cavities formed by mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC) as a function of the concentration of two solvents, water and tetradecane (td). In the absence of td, most PE/PC mixtures show only lamellar phases in excess water; all of these become single reverse hexagonal (H II ) phases with addition of excess td. The spontaneous radius of curvature R 0 of lipid monolayers, as expressed in these H II phases, is allowed by the relief of hydrocarbon chain stress by td; R 0 increases with the ratio DOPC/DOPE. Single H II phases stressed by limited water or td show several responses. (a) the molecular area is compressed at the polar end of the molecule and expanded at the hydrocarbon ends. (b) For circularly symmetrical water cylinders, the degrees of hydrocarbon chain splaying and polar group compression are different for molecules aligned in different directions around the water cylinder. (c) A pivotal position exists along the length of the phospholipid molecule where little area change occurs as the monolayer is bent to increasing curvatures. (d) By defining R 0 at the pivotal position, the authors find that measured energies are well fit by a quadratic bending energy. (e) For lipid mixtures, enforced deviation of the H II monolayer from R 0 is sufficiently powerful to cause demixing of the phospholipids in a way suggesting that the DOPE/DOPC ratio self-adjusts so that its R 0 matches the amount of td or water available, i.e., that curvature energy is minimized

  2. Gate-tunable polarized phase of two-dimensional electrons at the LaAlO3/SrTiO3 interface.

    Science.gov (United States)

    Joshua, Arjun; Ruhman, Jonathan; Pecker, Sharon; Altman, Ehud; Ilani, Shahal

    2013-06-11

    Controlling the coupling between localized spins and itinerant electrons can lead to exotic magnetic states. A novel system featuring local magnetic moments and extended 2D electrons is the interface between LaAlO3 and SrTiO3. The magnetism of the interface, however, was observed to be insensitive to the presence of these electrons and is believed to arise solely from extrinsic sources like oxygen vacancies and strain. Here we show the existence of unconventional electronic phases in the LaAlO3/SrTiO3 system pointing to an underlying tunable coupling between itinerant electrons and localized moments. Using anisotropic magnetoresistance and anomalous Hall effect measurements in a unique in-plane configuration, we identify two distinct phases in the space of carrier density and magnetic field. At high densities and fields, the electronic system is strongly polarized and shows a response, which is highly anisotropic along the crystalline directions. Surprisingly, below a density-dependent critical field, the polarization and anisotropy vanish whereas the resistivity sharply rises. The unprecedented vanishing of the easy axes below a critical field is in sharp contrast with other coupled magnetic systems and indicates strong coupling with the moments that depends on the symmetry of the itinerant electrons. The observed interplay between the two phases indicates the nature of magnetism at the LaAlO3/SrTiO3 interface as both having an intrinsic origin and being tunable.

  3. Phases of a polar spin-1 Bose gas in a magnetic field

    International Nuclear Information System (INIS)

    Kis-Szabo, Krisztian; Szepfalusy, Peter; Szirmai, Gergely

    2007-01-01

    The two Bose-Einstein condensed phases of a polar spin-1 gas at nonzero magnetizations and temperatures are investigated. The Hugenholtz-Pines theorem is generalized to this system. Crossover to a quantum phase transition is also studied. Results are discussed in a mean field approximation

  4. A Small Ku-Band Polarization Tracking Active Phased Array for Mobile Satellite Communications

    Directory of Open Access Journals (Sweden)

    Wei Shi

    2013-01-01

    Full Text Available A compact polarization tracking active phased array for Ku-band mobile satellite signal reception is presented. In contrast with conventional mechanically tracking antennas, the approach presented here meets the requirements of beam tracking and polarization tracking simultaneously without any servo components. The two-layer stacked square patch fed by two probes is used as antenna element. The impedance bandwidth of 16% for the element covers the operating frequency range from 12.25 GHz to 12.75 GHz. In the presence of mutual coupling, the dimensional parameters for each element of the small 7 × 7 array are optimized during beam scanning and polarization tracking. The compact polarization tracking modules based on the low-temperature cofired ceramic (LTCC system-in-package (SiP technology are proposed. A small active phased array prototype with the size of 120 mm (length × 120 mm (width × 55 mm (height is developed. The measured polarization tracking patterns of the prototype are given. The polarization tracking beam can be steered in the elevation up to 50°. The gain of no less than 16.0 dBi and the aperture efficiency of more than 50% are obtained. The measured and simulated polarization tracking patterns agreed well.

  5. Qualitative and quantitative evaluation of solvent systems for countercurrent separation.

    Science.gov (United States)

    Friesen, J Brent; Ahmed, Sana; Pauli, Guido F

    2015-01-16

    Rational solvent system selection for countercurrent chromatography and centrifugal partition chromatography technology (collectively known as countercurrent separation) studies continues to be a scientific challenge as the fundamental questions of comparing polarity range and selectivity within a solvent system family and between putative orthogonal solvent systems remain unanswered. The current emphasis on metabolomic investigations and analysis of complex mixtures necessitates the use of successive orthogonal countercurrent separation (CS) steps as part of complex fractionation protocols. Addressing the broad range of metabolite polarities demands development of new CS solvent systems with appropriate composition, polarity (π), selectivity (σ), and suitability. In this study, a mixture of twenty commercially available natural products, called the GUESSmix, was utilized to evaluate both solvent system polarity and selectively characteristics. Comparisons of GUESSmix analyte partition coefficient (K) values give rise to a measure of solvent system polarity range called the GUESSmix polarity index (GUPI). Solvatochromic dye and electrical permittivity measurements were also evaluated in quantitatively assessing solvent system polarity. The relative selectivity of solvent systems were evaluated with the GUESSmix by calculating the pairwise resolution (αip), the number of analytes found in the sweet spot (Nsw), and the pairwise resolution of those sweet spot analytes (αsw). The combination of these parameters allowed for both intra- and inter-family comparison of solvent system selectivity. Finally, 2-dimensional reciprocal shifted symmetry plots (ReSS(2)) were created to visually compare both the polarities and selectivities of solvent system pairs. This study helps to pave the way to the development of new solvent systems that are amenable to successive orthogonal CS protocols employed in metabolomic studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Chlorination of some eliphatic organic compounds in liquid and gas phase

    International Nuclear Information System (INIS)

    Hassan, A.A.

    1990-01-01

    The photochlorination of different organic compounds and the relative slectivities of different positions have been investigated in both gaseous and liquid phases at different temperatures. The results have shown that the relative selectivity generally decreased with increasing temperature and in the gas phase has a higher value. Polar solvents increase the selectivity relative to the chlorination of pure liquid phases. The differences in activation energy between two positions were much higher in the gas phases chlorination, relative to that in the liquid phase. It was also found that the functional groups have great influence on the rate of chlorine free radical attack on different positions, for example the electron withdrawing groups decreasing the selectivity on the first position, but the electron donating groups increase the selectivity on the first position, but the electron donating groups increase the selectivity on the first position. Furthermore it was found that the polar solvents, which stabilize the resonance between oxygen and carbon atoms, increases the selectivity on that position. 23 tabs.; 16 figs.; 50 refs

  7. Freezing Point Depressions of Phase Change CO2 Solvents

    DEFF Research Database (Denmark)

    Arshad, Muhammad Waseem; Fosbøl, Philip Loldrup; von Solms, Nicolas

    2013-01-01

    Freezing point depressions (FPD) in phase change solvents containing 2-(diethylamino)ethanol (DEEA) and 3-(methylamino)propylamine (MAPA) were measured using a modified Beckmann apparatus. The measurements were performed for the binary aqueous DEEA and MAPA solutions, respectively...

  8. Thermodynamic modeling of liquid–liquid phase change solvents for CO2 capture

    DEFF Research Database (Denmark)

    Waseem Arshad, Muhammad; von Solms, Nicolas; Thomsen, Kaj

    2016-01-01

    A thermodynamic model based on Extended UNIQUAC framework has been developed in this work for the de-mixing liquid–liquid phase change solvents, DEEA (2-(diethylamino)ethanol) and MAPA (3-(methylamino)propylamine). Parameter estimation was performed for two ternary systems, H2O-DEEA-CO2 and H2O......-MAPA-CO2, and a quaternary system, H2O-DEEA-MAPA-CO2 (phase change system), by using different types of experimental data (equilibrium and thermal) consisting of pure amine vapor pressure, vapor-liquid equilibrium, solid-liquid equilibrium, liquid–liquid equilibrium, excess enthalpy, and heat of absorption...

  9. Dual-polarization interference microscopy for advanced quantification of phase associated with the image field.

    Science.gov (United States)

    Bouchal, Petr; Chmelík, Radim; Bouchal, Zdeněk

    2018-02-01

    A new concept of dual-polarization spatial light interference microscopy (DPSLIM) is proposed and demonstrated experimentally. The method works with two orthogonally polarized modes in which signal and reference waves are combined to realize the polarization-sensitive phase-shifting, thus allowing advanced reconstruction of the phase associated with the image field. The image phase is reconstructed directly from four polarization encoded interference records by a single step processing. This is a progress compared with common methods, in which the phase of the image field is reconstructed using the optical path difference and the amplitudes of interfering waves, which are calculated in multiple-step processing of the records. The DPSLIM is implemented in a common-path configuration using a spatial light modulator, which is connected to a commercial microscope Nikon E200. The optical performance of the method is demonstrated in experiments using both polystyrene microspheres and live LW13K2 cells.

  10. Partition efficiencies of newly fabricated universal high-speed counter-current chromatograph for separation of two different types of sugar derivatives with organic-aqueous two-phase solvent systems

    Science.gov (United States)

    Shinomiya, Kazufusa; Sato, Kazuki; Yoshida, Kazunori; Tokura, Koji; Maruyama, Hiroshi; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2013-01-01

    Universal high-speed counter-current chromatograph (HSCCC) was newly designed and fabricated in our laboratory. It holds a set of four column holders symmetrically around the rotary frame at a distance of 11.2 cm from the central axis. By engaging the stationary gear on the central axis of the centrifuge to the planetary gears on the column holder shaft through a set of idle gears, two pairs of diagonally located column holders simultaneously rotate about their own axes in the opposite directions: one forward (type-J planetary motion) and the other backward (type-I planetary motion) each synchronously with the revolution. Using the eccentric coil assembly, partition efficiencies produced by these two planetary motions were compared on the separation of two different types of sugar derivatives (4-methylumbelliferyl and 5-bromo-4-chloro-3-indoxyl sugar derivatives) using organic-aqueous two-phase solvent systems composed of n-hexane/ethyl acetate/1-butanol/methanol/water and aqueous 0.1 M sodium tetraborate, respectively. With lower phase mobile, better peak resolution was obtained by the type-J forward rotation for both samples probably due to higher retention of the stationary phase. With upper phase mobile, however, similar peak resolutions were obtained between these two planetary motions for both sugar derivatives. The overall results indicate that the present universal HSCCC is useful for counter-current chromatographic separation since each planetary motion has its specific applications: e.g., vortex CCC by the type-I planetary motion and HSCCC by the type-J planetary motion both for separation of various natural and synthetic products. PMID:24267319

  11. Fiber-based coherent polarization beam combining with cascaded phase-locking and polarization-transforming controls

    Science.gov (United States)

    Yang, Yan; Geng, Chao; Li, Feng; Huang, Guan; Li, Xinyang

    2018-05-01

    In this paper, the fiber-based coherent polarization beam combining (CPBC) with cascaded phase-locking (PL) and polarization-transforming (PT) controls was proposed to combine imbalanced input beams where the number of the input beams is not binary, in which the PL control was performed using the piezoelectric-ring fiber-optic phase compensator, and the PT control was realized by the dynamic polarization controller, simultaneously. The principle of the proposed CPBC was introduced. The performance of the proposed CPBC was analyzed in comparison with the CPBC based on PL control and the CPBC based on PT control. The basic experiment of CPBC of three laser beams was carried out to validate the feasibility of the proposed CPBC, where cascaded controls of PL and PT were implemented based on stochastic parallel gradient descent algorithm. Simulation and experimental results show that the proposed CPBC incorporates the advantages of the two previous CPBC schemes and performs well in the closed loop. Moreover, the expansibility and the application of the proposed CPBC were validated by scaling the CPBC to combine seven laser beams. We believe that the proposed fiber-based CPBC with cascaded PL and PT controls has great potential in free space optical communications employing the multi-aperture receiver with asymmetric structure.

  12. Distribution of multi-component solvents in solvent vapor extraction chamber

    Energy Technology Data Exchange (ETDEWEB)

    Das, S. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Marathon Oil Corp., Houston, TX (United States)

    2008-10-15

    Vapex process performance is sensitive to operating pressures, temperatures and the types of solvent used. The hydrocarbon solvents used in Vapex processes typically have between 5 and 10 per cent hydrocarbon impurities, and the accumulation of dense phases inside the vapor chamber reduces gravity drainage potential. This study investigated the partitioning of solvent compounds inside the vapor chamber during in situ Vapex processes.The aim of the study was to examine how the different components of the mixed solvent partitioned inside the extracted chamber during the oil and vapor phase. A 2-D homogenous reservoir model was used to simulate the Vapex process with a solvent mixture comprised of propane and methane at various percentages. The effect of injecting a hot solvent vapor was also investigated. The study showed that injected methane accumulated at both the top and the extraction interface. Accumulations near the top had a positive impact on solvent confinement in thin reservoirs. Diffusion of the solvent component was controlled by gas phase molecular diffusion, and was much faster than the diffusion of solvent molecules in the liquid phase. The use of hot solvent mixtures slowed the extraction process due to lower solvent solubility in the oil phase. It was concluded that the negative impact on viscosity reduction by dilution was not compensated by rises in temperature. 6 refs., 11 figs.

  13. Estimate of electrostatic solvation free energy of electron in various polar solvents by using modified born equation

    International Nuclear Information System (INIS)

    Yamashita, Kazuo; Kitamura, Mitsutaka; Imai, Hideo

    1976-01-01

    The modified Born equation was tentatively applied to estimate the electrostatic free energies of solvation of the electron in various polar solvents. The related data of halide ions and a datum of the hydration free energy of the electron obtained by radiation chemical studies were used for the numerical calculations. (auth.)

  14. Modified two-step emulsion solvent evaporation technique for fabricating biodegradable rod-shaped particles in the submicron size range.

    Science.gov (United States)

    Safari, Hanieh; Adili, Reheman; Holinstat, Michael; Eniola-Adefeso, Omolola

    2018-05-15

    Though the emulsion solvent evaporation (ESE) technique has been previously modified to produce rod-shaped particles, it cannot generate small-sized rods for drug delivery applications due to the inherent coupling and contradicting requirements for the formation versus stretching of droplets. The separation of the droplet formation from the stretching step should enable the creation of submicron droplets that are then stretched in the second stage by manipulation of the system viscosity along with the surface-active molecule and oil-phase solvent. A two-step ESE protocol is evaluated where oil droplets are formed at low viscosity followed by a step increase in the aqueous phase viscosity to stretch droplets. Different surface-active molecules and oil phase solvents were evaluated to optimize the yield of biodegradable PLGA rods. Rods were assessed for drug loading via an imaging agent and vascular-targeted delivery application via blood flow adhesion assays. The two-step ESE method generated PLGA rods with major and minor axis down to 3.2 µm and 700 nm, respectively. Chloroform and sodium metaphosphate was the optimal solvent and surface-active molecule, respectively, for submicron rod fabrication. Rods demonstrated faster release of Nile Red compared to spheres and successfully targeted an inflamed endothelium under shear flow in vitro and in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. The Future of Polar Organometallic Chemistry Written in Bio-Based Solvents and Water.

    Science.gov (United States)

    García-Álvarez, Joaquín; Hevia, Eva; Capriati, Vito

    2018-06-19

    There is a strong imperative to reduce the release of volatile organic compounds (VOCs) into the environment, and many efforts are currently being made to replace conventional hazardous VOCs in favour of safe, green and bio-renewable reaction media that are not based on crude petroleum. Recent ground-breaking studies from a few laboratories worldwide have shown that both Grignard and (functionalised) organolithium reagents, traditionally handled under strict exclusion of air and humidity and in anhydrous VOCs, can smoothly promote both nucleophilic additions to unsaturated substrates and nucleophilic substitutions in water and other bio-based solvents (glycerol, deep eutectic solvents), competitively with protonolysis, at room temperature and under air. The chemistry of polar organometallics in the above protic media is a complex phenomenon influenced by several factors, and understanding its foundational character is surely stimulating in the perspective of the development of a sustainable organometallic chemistry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Generating highly polarized nuclear spins in solution using dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Wolber, J.; Ellner, F.; Fridlund, B.

    2004-01-01

    A method to generate strongly polarized nuclear spins in solution has been developed, using Dynamic Nuclear Polarization (DNP) at a temperature of 1.2K, and at a field of 3.354T, corresponding to an electron spin resonance frequency of 94GHz. Trityl radicals are used to directly polarize 13C...... and other low-γ nuclei. Subsequent to the DNP process, the solid sample is dissolved rapidly with a warm solvent to create a solution of molecules with highly polarized nuclear spins. Two main applications are proposed: high-resolution liquid state NMR with enhanced sensitivity, and the use...

  17. Greening Reversed-Phase Liquid Chromatography Methods Using Alternative Solvents for Pharmaceutical Analysis

    Directory of Open Access Journals (Sweden)

    Moussa Yabré

    2018-05-01

    Full Text Available The greening of analytical methods has gained increasing interest in the field of pharmaceutical analysis to reduce environmental impacts and improve the health safety of analysts. Reversed-phase high-performance liquid chromatography (RP-HPLC is the most widely used analytical technique involved in pharmaceutical drug development and manufacturing, such as the quality control of bulk drugs and pharmaceutical formulations, as well as the analysis of drugs in biological samples. However, RP-HPLC methods commonly use large amounts of organic solvents and generate high quantities of waste to be disposed, leading to some issues in terms of ecological impact and operator safety. In this context, greening HPLC methods is becoming highly desirable. One strategy to reduce the impact of hazardous solvents is to replace classically used organic solvents (i.e., acetonitrile and methanol with greener ones. So far, ethanol has been the most often used alternative organic solvent. Others strategies have followed, such as the use of totally aqueous mobile phases, micellar liquid chromatography, and ionic liquids. These approaches have been well developed, as they do not require equipment investments and are rather economical. This review describes and critically discusses the recent advances in greening RP-HPLC methods dedicated to pharmaceutical analysis based on the use of alternative solvents.

  18. Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

    International Nuclear Information System (INIS)

    Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2014-01-01

    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible

  19. Thermodynamic constrains for life based on non-aqueous polar solvents on free-floating planets.

    Science.gov (United States)

    Badescu, Viorel

    2011-02-01

    Free-floating planets (FFPs) might originate either around a star or in solitary fashion. These bodies can retain molecular gases atmospheres which, upon cooling, have basal pressures of tens of bars or more. Pressure-induced opacity of these gases prevents such a body from eliminating its internal radioactive heat and its surface temperature can exceed for a long term the melting temperature of a life-supporting solvent. In this paper two non-aqueous but still polar solvents are considered: hydrogen sulfide and ammonia. Thermodynamic requirements to be fulfilled by a hypothetic gas constituent of a life-supporting FFP's atmosphere are studied. The three gases analyzed here (nitrogen, methane and ethane) are candidates. We show that bodies with ammonia oceans are possible in interstellar space. This may happen on FFPs of (significantly) smaller or larger mass than the Earth. Generally, in case of FFP smaller in size than the Earth, the atmosphere exhibits a convective layer near the surface and a radiative layer at higher altitudes while the atmosphere of FFPs larger in size than Earth does not exhibit a convective layer. The atmosphere mass of a life-hosting FFP of Earth size is two or three orders of magnitude larger than the mass of Earth atmosphere. For FFPs larger than the Earth and specific values of surface pressure and temperature, there are conditions for condensation (in the ethane atmosphere). Some arguments induce the conclusion than the associated surface pressures and temperatures should be treated with caution as appropriate life conditions.

  20. Ionic liquid phases with comprehensive two-dimensional gas chromatography of fatty acid methyl esters.

    Science.gov (United States)

    Pojjanapornpun, Siriluck; Nolvachai, Yada; Aryusuk, Kornkanok; Kulsing, Chadin; Krisnangkura, Kanit; Marriott, Philip J

    2018-02-17

    New generation inert ionic liquid (iIL) GC columns IL60i, IL76i and IL111i, comprising phosphonium or imidazolium cationic species, were investigated for separation of fatty acid methyl esters (FAME). In general, the iIL phases provide comparable retention times to their corresponding conventional columns, with only minor selectivity differences. The average tailing factors and peak widths were noticeably improved (reduced) for IL60i and IL76i, while they were slightly improved for IL111i. Inert IL phase columns were coupled with conventional IL columns in comprehensive two-dimensional GC (GC × GC) with a solid-state modulator which offers variable modulation temperature (T M ), programmable T M during analysis and trapping stationary phase material during the trap/release (modulation) process, independent of oven T and column sets. Although IL phases are classified as polar, relative polarity of the two phases comprising individual GC × GC column sets permits combination of less-polar IL/polar IL and polar IL/less-polar IL column sets; it was observed that a polar/less-polar column set provided better separation of FAME. A higher first dimension ( 1 D) phase polarity combined with a lower 2 D phase polarity, for instance 1 D IL111i with 2 D IL59 gave the best result; the greater difference in 1 D/ 2 D phase polarity results in increasing occupancy of peak area in the 2D space. The IL111i/IL59 column set was selected for analysis of fatty acids in fat and oil products (butter, margarine, fish oil and canola oil). Compared with the conventional IL111, IL111i showed reduced column bleed which makes this more suited to GC × GC analysis of FAME. The proposed method offers a fast profiling approach with good repeatability of analysis of FAME.

  1. Influence of the solvent environments on the spectral features of CdSe quantum dots with and without ZnS shell

    Energy Technology Data Exchange (ETDEWEB)

    Ibnaouf, K.H., E-mail: kheo90@gmail.com [Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Physics Department, College of Science, P.O. Box 90905, Riyadh 11623 (Saudi Arabia); Prasad, Saradh; Al Salhi, M.S.; Hamdan, A. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Research Chair for Laser Diagnosis of Cancer, King Saud University (Saudi Arabia); Zaman, M.B. [CEREM, College of Engineering, King Saud University (Saudi Arabia); Advanced Medical Research Institute of Canada, Sudbury (Canada); El Mir, L. [Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Physics Department, College of Science, P.O. Box 90905, Riyadh 11623 (Saudi Arabia)

    2014-05-01

    The spectral properties of 5 nm size of bare CdSe and (CdSe)ZnS core–shell quantum dots (QDs) have been recorded and investigated under different solvent environments with different polarities and different concentrations. The results showed that the spectral profile of absorption did not change for both quantum dots in different solvents under a wide range of concentrations. On the other hand, the photoluminescence (PL) spectra of (CdSe)ZnS core–shell quantum dots in non-polar solvents showed two bands; the primary around 420 nm and the secondary around 620 nm. In contrast, the PL spectra of bare CdSe in non-polar solvents, showed a very strong band around 590 nm, with a total absence of the primary wavelength band at 420 nm. Under high polar solvent environments, bare CdSe showed a new peak around 420 nm, which was totally absent in non-polar solvent. Therefore, the solvent plays an important role in the PL spectra of bare CdSe and (CdSe)ZnS core–shell quantum dots.

  2. Control of magnetic vortex polarity by the phase difference between voltage signals

    Science.gov (United States)

    Cui, Huanqing; Cai, Li; Yang, Xiaokuo; Wang, Sen; Zhang, Mingliang; Li, Cheng; Feng, Chaowen

    2018-02-01

    Using micromagnetic simulations, we investigate the voltage control of magnetic vortex polarity based on a designed multiferroic heterostructure that contains two separate piezoelectric films beneath a magnetostrictive nanodisk. The results show that controllable switching of vortex polarity can be achieved by proper modulation of the phase difference between two sinusoidal voltage pulses V1 and V2, which are applied to the two separate piezoelectric films, respectively. The frequencies of V1 and V2 are set at the gyrotropic eigenfrequency fG of the nanodisk, and the vortex polarity switching is completed via the nucleation-annihilation process of the vortex-antivortex pair. Our findings provide an additional effective means for ultralow power switching of the magnetic vortex, which lays the foundation for voltage-controlled vortex random access memory.

  3. A Complex Solar Coronal Jet with Two Phases

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jie; Su, Jiangtao; Deng, Yuanyong [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Priest, E. R., E-mail: chenjie@bao.ac.cn [Mathematical Institute, University of St Andrews, North Haugh, St Andrews, KY16 9SS (United Kingdom)

    2017-05-01

    Jets often occur repeatedly from almost the same location. In this paper, a complex solar jet was observed with two phases to the west of NOAA AR 11513 on 2012 July 2. If it had been observed at only moderate resolution, the two phases and their points of origin would have been regarded as identical. However, at high resolution we find that the two phases merge into one another and the accompanying footpoint brightenings occur at different locations. The phases originate from different magnetic patches rather than being one phase originating from the same patch. Photospheric line of sight (LOS) magnetograms show that the bases of the two phases lie in two different patches of magnetic flux that decrease in size during the occurrence of the two phases. Based on these observations, we suggest that the driving mechanism of the two successive phases is magnetic cancellation of two separate magnetic fragments with an opposite-polarity fragment between them.

  4. Salting-out-enhanced ionic liquid microextraction with a dual-role solvent for simultaneous determination of trace pollutants with a wide polarity range in aqueous samples.

    Science.gov (United States)

    Gao, Man; Qu, Jingang; Chen, Kai; Jin, Lide; Dahlgren, Randy Alan; Wang, Huili; Tan, Chengxia; Wang, Xuedong

    2017-11-01

    In real aquatic environments, many occupational pollutants with a wide range of polarities coexist at nanogram to milligram per liter levels. Most reported microextraction methods focus on extracting compounds with similar properties (e.g., polarity or specific functional groups). Herein, we developed a salting-out-enhanced ionic liquid microextraction based on a dual-role solvent (SILM-DS) for simultaneous detection of tetracycline, doxycycline, bisphenol A, triclosan, and methyltriclosan, with log K ow ranging from -1.32 to 5.40 in complex milk and environmental water matrices. The disperser in the ionic-liquid-based dispersive liquid-liquid microextraction was converted to the extraction solvent in the subsequent salting-out-assisted microextraction procedures, and thus a single solvent performed a dual role as both extractant and disperser in the SILM-DS process. Acetonitrile was selected as the dual-role solvent because of its strong affinity for both ionic liquids and water, as well as the extractant in the salting-out step. Optimized experimental conditions were 115 μL [C 8 MIM][PF 6 ] as extractor, 1200 μL acetonitrile as dual-role solvent, pH 2.0, 5.0 min ultrasound extraction time, 3.0 g Na 2 SO 4 , and 3.0 min vortex extraction time. Under optimized conditions, the recoveries of the five pollutants ranged from 74.5 to 106.9%, and their LODs were 0.12-0.75 μg kg -1 in milk samples and 0.11-0.79 μg L -1 in environmental waters. Experimental precision based on relative standard deviation was 1.4-6.4% for intraday and 2.3-6.5% for interday analyses. Compared with previous methods, the prominent advantages of the newly developed method are simultaneous determination of pollutants with a wide range of polarities and a substantially reduced workload for ordinary environmental monitoring and food tests. Therefore, the new method has great application potential for simultaneous determination of trace pollutants with strongly contrasting polarities in several

  5. Solvents effects on crystallinity and dissolution of β-artemether.

    Science.gov (United States)

    Xu, Jianghui; Singh, Vikramjeet; Yin, Xianzhen; Singh, Parbeen; Wu, Li; Xu, Xiaonan; Guo, Tao; Sun, Lixin; Gui, Shuangying; Zhang, Jiwen

    2017-03-01

    β-artemether (ARM) is a widely used anti-malarial drug isolated from the Chinese antimalarial plant, Artemisia annua. The solvent effects on crystal habits and dissolution of ARM were thoroughly investigated and discussed herein. The ARM was recrystallized in nine different solvents of varied polarity, namely, methanol, ethanol, isopropanol, tetrahydrofuran, dichloromethane, trichloromethane, ethyl acetate, acetone and hexane by solvent evaporation method. The obtained crystals were morphologically characterized using scanning electron microscope (SEM). The average sizes of crystals were 1.80-2.64 μm calculated from microscopic images using Image-Pro software. No significant change in chemical structure was noticed after recrystallization and the specific band at 875 cm -1 wavenumber (C-O-O-C) confirmed the presence of most sensitive functional group in the ARM chemical structure. The existence and production of two polymorphic forms, polymorph A and polymorph B, was confirmed by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). The data suggested that the fabrication of polymorph B can be simply obtained from the recrystallization of ARM in a specific solvent. Significant effects of solvent polarity, crystals shapes and sizes on drug dissolution were noticed during in vitro dissolution test. The release kinetics were calculated and well fitted by the Higuchi and Hixon-Crowell models. The ARM-methanol and ARM-hexane showed highest and slowest dissolution, respectively, due to the effects of solvent polarity and crystal morphologies. Overall, proper selection of the solvents for the final crystallization of ARM helps to optimize dissolution and bioavailability for a better delivery of anti-malarial drug.

  6. Investigation of Polarization Phase Difference Related to Forest Fields Characterizations

    Science.gov (United States)

    Majidi, M.; Maghsoudi, Y.

    2013-09-01

    The information content of Synthetic Aperture Radar (SAR) data significantly included in the radiometric polarization channels, hence polarimetric SAR data should be analyzed in relation with target structure. The importance of the phase difference between two co-polarized scattered signals due to the possible association between the biophysical parameters and the measured Polarization Phase Difference (PPD) statistics of the backscattered signal recorded components has been recognized in geophysical remote sensing. This paper examines two Radarsat-2 images statistics of the phase difference to describe the feasibility of relationship with the physical properties of scattering targets and tries to understand relevance of PPD statistics with various types of forest fields. As well as variation of incidence angle due to affecting on PPD statistics is investigated. The experimental forest pieces that are used in this research are characterized white pine (Pinus strobus L.), red pine (Pinus resinosa Ait.), jack pine (Pinus banksiana Lamb.), white spruce (Picea glauca (Moench Voss), black spruce (Picea mariana (Mill) B.S.P.), poplar (Populus L.), red oak (Quercus rubra L.) , aspen and ground vegetation. The experimental results show that despite of biophysical parameters have a wide diversity, PPD statistics are almost the same. Forest fields distributions as distributed targets have close to zero means regardless of the incidence angle. Also, The PPD distribution are function of both target and sensor parameters, but for more appropriate examination related to PPD statistics the observations should made in the leaf-off season or in bands with lower frequencies.

  7. INVESTIGATION OF POLARIZATION PHASE DIFFERENCE RELATED TO FOREST FIELDS CHARACTERIZATIONS

    Directory of Open Access Journals (Sweden)

    M. Majidi

    2013-09-01

    Full Text Available The information content of Synthetic Aperture Radar (SAR data significantly included in the radiometric polarization channels, hence polarimetric SAR data should be analyzed in relation with target structure. The importance of the phase difference between two co-polarized scattered signals due to the possible association between the biophysical parameters and the measured Polarization Phase Difference (PPD statistics of the backscattered signal recorded components has been recognized in geophysical remote sensing. This paper examines two Radarsat-2 images statistics of the phase difference to describe the feasibility of relationship with the physical properties of scattering targets and tries to understand relevance of PPD statistics with various types of forest fields. As well as variation of incidence angle due to affecting on PPD statistics is investigated. The experimental forest pieces that are used in this research are characterized white pine (Pinus strobus L., red pine (Pinus resinosa Ait., jack pine (Pinus banksiana Lamb., white spruce (Picea glauca (Moench Voss, black spruce (Picea mariana (Mill B.S.P., poplar (Populus L., red oak (Quercus rubra L. , aspen and ground vegetation. The experimental results show that despite of biophysical parameters have a wide diversity, PPD statistics are almost the same. Forest fields distributions as distributed targets have close to zero means regardless of the incidence angle. Also, The PPD distribution are function of both target and sensor parameters, but for more appropriate examination related to PPD statistics the observations should made in the leaf-off season or in bands with lower frequencies.

  8. A simple image-reject mixer based on two parallel phase modulators

    Science.gov (United States)

    Hu, Dapeng; Zhao, Shanghong; Zhu, Zihang; Li, Xuan; Qu, Kun; Lin, Tao; Zhang, Kun

    2018-02-01

    A simple photonic microwave image-reject mixer (IRM) using two parallel phase modulators is proposed. First, a photonic microwave mixer with phase shift ability is achieved using two parallel phase modulators (PMs), an optical bandpass filter, three polarization controllers, three polarization beam splitters and two balanced photodetectors. At the output of the mixer, two frequency downconverted signals with tunable frequency difference can be obtained. By adjusting the phase difference as 90° and utilizing an electrical 90° hybrid, the useless components can be eliminated, and the image reject operation is realized. The key advantage of the proposed scheme is the usage of PM, which avoid the DC bias shifting problem and make the system simple and stable. A simulation is performed to verify the proposed scheme, a relative - 90° or 90° phase shift can be obtained between the two output ports of the photonic microwave mixer, at the output of the IRM, 60 dB image-reject ratio is obtained.

  9. Stability of superfluid phases in the 2D spin-polarized attractive Hubbard model

    Science.gov (United States)

    Kujawa-Cichy, A.; Micnas, R.

    2011-08-01

    We study the evolution from the weak coupling (BCS-like limit) to the strong coupling limit of tightly bound local pairs (LPs) with increasing attraction, in the presence of the Zeeman magnetic field (h) for d=2, within the spin-polarized attractive Hubbard model. The broken symmetry Hartree approximation as well as the strong coupling expansion are used. We also apply the Kosterlitz-Thouless (KT) scenario to determine the phase coherence temperatures. For spin-independent hopping integrals (t↑=t↓), we find no stable homogeneous polarized superfluid (SCM) state in the ground state for the strong attraction and obtain that for a two-component Fermi system on a 2D lattice with population imbalance, phase separation (PS) is favoured for a fixed particle concentration, even on the LP (BEC) side. We also examine the influence of spin-dependent hopping integrals (mass imbalance) on the stability of the SCM phase. We find a topological quantum phase transition (Lifshitz type) from the unpolarized superfluid phase (SC0) to SCM and tricritical points in the h-|U| and t↑/t↓-|U| ground-state phase diagrams. We also construct the finite temperature phase diagrams for both t↑=t↓ and t↑≠t↓ and analyze the possibility of occurrence of a spin-polarized KT superfluid.

  10. Speeding up the self-assembly of a DNA nanodevice using a variety of polar solvents

    Science.gov (United States)

    Kang, Di; Duan, Ruixue; Tan, Yerpeng; Hong, Fan; Wang, Boya; Chen, Zhifei; Xu, Shaofang; Lou, Xiaoding; Wei, Wei; Yurke, Bernard; Xia, Fan

    2014-11-01

    The specific recognition and programmable assembly properties make DNA a potential material for nanodevices. However, the more intelligent the nanodevice is, the more complicated the structure of the nanodevice is, which limits the speed of DNA assembly. Herein, to address this problem, we investigate the performance of DNA Strand Displacement Reaction (DSDR) in a mixture of polar organic solvents and aqueous buffer and demonstrate that the organic polar solvent can speed up DNA self-assembly efficiently. Taking DSDR in 20% ethanol as an example, first we have demonstrated that the DSDR is highly accelerated in the beginning of the reaction and it can complete 60% of replacement reactions (160% enhancement compared with aqueous buffer) in the first 300 seconds. Secondly, we calculated that the ΔΔG of the DSDR in 20% ethanol (-18.2 kcal mol-1) is lower than that in pure aqueous buffer (-32.6 kcal mol-1), while the activation energy is lowered by introducing ethanol. Finally, we proved that the DSDR on the electrode surface can also be accelerated using this simple strategy. More importantly, to test the efficacy of this approach in nanodevices with a complicated and slow DNA self-assembly process, we apply this strategy in the hybridization chain reaction (HCR) and prove the acceleration is fairly obvious in 20% ethanol, which demonstrates the feasibility of the proposed strategy in DNA nanotechnology and DNA-based biosensors.The specific recognition and programmable assembly properties make DNA a potential material for nanodevices. However, the more intelligent the nanodevice is, the more complicated the structure of the nanodevice is, which limits the speed of DNA assembly. Herein, to address this problem, we investigate the performance of DNA Strand Displacement Reaction (DSDR) in a mixture of polar organic solvents and aqueous buffer and demonstrate that the organic polar solvent can speed up DNA self-assembly efficiently. Taking DSDR in 20% ethanol as an

  11. A comparative study on the effect of solvent on nucleophilic fluorination with [18F]fluoride. Protic solvents as co-solvents in SN2 and SNAr reactions

    International Nuclear Information System (INIS)

    Koivula, T.; Simecek, J.; Jalomaeki, J.; Helariutta, K.; Airaksinen, A.J.

    2011-01-01

    The effect of solvent on nucleophilic substitution with cyclotron-produced [ 18 F]fluoride was studied in polar aprotic (CH 3 CN and DMF) and protic solvent (t-BuOH and t-amyl alcohol) mixtures (CH 3 CN/co-solvent, 2:8) in a series of model compounds, 4-(R 1 -methyl)benzyl R 2 -benzoates, using a K2.2.2/[ 18 F]KF phase transfer system (R 1 = -Cl, -OMs or -OH; R 2 = -Cl, -I or -NO 2 ). 18 F-fluorination of compounds 1-3, with chloride or mesylate as a leaving group in the benzylic position (R 1 ), afforded the desired 4-([ 18 F]fluoromethyl)benzyl analogues in all solvents during 15 min reaction time. The highest radiochemical yields (RCY) in all the studied reaction temperatures (80, 120 and 160 C) were achieved in CH 3 CN. Radiochemical yields in protic solvents were comparable to RCY in CH 3 CN only with the sulfonate ester 3 as a starting material. 18 F-Fluorination of the benzylic halides 1 and 2 was not promoted in the same extent; in addition, labelled side-products were detected at higher reaction temperatures. Radiofluorination in tert-alcohols was also studied using [ 18 F]CsF with and without added phase transfer catalyst, resulting in both conditions lower RCY when compared to K2.2.2/[ 18 F]KF system. Protic solvents were not able to promote aromatic 18 F-fluorination. 18 F-Fluorination of compound 5, having para-activated nitro group in the aromatic position (R 2 ), failed in tert-alcohols even at the highest temperature, but it was labelled successfully in DMF and to some extent in CH 3 CN. (orig.)

  12. Polarization states encoded by phase modulation for high bit rate quantum key distribution

    International Nuclear Information System (INIS)

    Liu Xiaobao; Tang Zhilie; Liao Changjun; Lu Yiqun; Zhao Feng; Liu Songhao

    2006-01-01

    We present implementation of quantum cryptography with polarization code by wave-guide type phase modulator. At four different low input voltages of the phase modulator, coder encodes pulses into four different polarization states, 45 o , 135 o linearly polarized or right, left circle polarized, while the decoder serves as the complementary polarizers

  13. Cooling crystallization of Indomethacin from different organic solvents

    DEFF Research Database (Denmark)

    Malwade, Chandrakant Ramkrishna; Qu, Haiyan

    , 25, 35, and 45 °C. The solvents with varying polarities (ethanol, methanol, ethyl acetate, acetone, acetonitrile, and dichloromethane) were used for solubility measurement. Maximum solubility of IMC was observed in acetone, while acetonitrile showed the lowest solubility. Solid phase analysis...... of excess solute with XRPD and Raman spectroscopy confirmed formation of IMC solvate in acetone, methanol and dichloromethane at 15 °C. Based on solubility of IMC, the solvents ethanol, ethyl acetate, acetone, and dichloromethane were selected for crystallization experiments. Nucleation kinetics of IMC...... in selected solvents was investigated through the measurement of induction time at 5 °C and 15 °C. Longer induction times were observed for IMC in ethanol at both temperatures compared to the one in acetone. Metastable α form of IMC was obtained from ethanol, while solvate of IMC was produced from acetone....

  14. Magnetic liquid metal two-phase flow research. Phase 1. Final report

    International Nuclear Information System (INIS)

    Graves, R.D.

    1983-04-01

    The Phase I research demonstrates the feasibility of the magnetic liquid metal (MLM) two-phase flow concept. A dispersion analysis is presented based on a complete set of two-phase-flow equations augmented to include stresses due to magnetic polarization of the fluid. The analysis shows that the stability of the MLM two-phase flow is determined by the magnetic Mach number, the slip ratio, geometry of the flow relative to the applied magnetic field, and by the voidage dependence of the interfacial forces. Results of a set of experiments concerned with magnetic effects on the dynamics of single bubble motion in an aqueous-based, viscous, conducting magnetic fluid are presented. Predictions in the theoretical literature are qualitatively verified using a bench-top experimental apparatus. In particular, applied magnetic fields are seen to lead to reduced bubble size at fixed generating orifice pressure

  15. Wavelength Dependence of the Polarization Singularities in a Two-Mode Optical Fiber

    Directory of Open Access Journals (Sweden)

    V. V. G. Krishna Inavalli

    2012-01-01

    Full Text Available We present here an experimental demonstration of the wavelength dependence of the polarization singularities due to linear combination of the vector modes excited directly in a two-mode optical fiber. The coherent superposition of the vector modes excited by linearly polarized Gaussian beam as offset skew rays propagated in a helical path inside the fiber results in the generation of phase singular beams with edge dislocation in the fiber output. The polarization character of these beams is found to change dramatically with wavelength—from left-handed elliptically polarized edge dislocation to right-handed elliptically polarized edge-dislocation through disclinations. The measured behaviour is understood as being due to intermodal dispersion of the polarization corrections to the propagating vector modes, as the wavelength of the input beam is scanned.

  16. SFC-MS/MS as an orthogonal technique for improved screening of polar analytes in anti-doping control.

    Science.gov (United States)

    Parr, Maria Kristina; Wuest, Bernhard; Naegele, Edgar; Joseph, Jan F; Wenzel, Maxi; Schmidt, Alexander H; Stanic, Mijo; de la Torre, Xavier; Botrè, Francesco

    2016-09-01

    HPLC is considered the method of choice for the separation of various classes of drugs. However, some analytes are still challenging as HPLC shows limited resolution capabilities for highly polar analytes as they interact insufficiently on conventional reversed-phase (RP) columns. Especially in combination with mass spectrometric detection, limitations apply for alterations of stationary phases. Some highly polar sympathomimetic drugs and their metabolites showed almost no retention on different RP columns. Their retention remains poor even on phenylhexyl phases that show different selectivity due to π-π interactions. Supercritical fluid chromatography (SFC) as an orthogonal separation technique to HPLC may help to overcome these issues. Selected polar drugs and metabolites were analyzed utilizing SFC separation. All compounds showed sharp peaks and good retention even for the very polar analytes, such as sulfoconjugates. Retention times and elution orders in SFC are different to both RP and HILIC separations as a result of the orthogonality. Short cycle times could be realized. As temperature and pressure strongly influence the polarity of supercritical fluids, precise regulation of temperature and backpressure is required for the stability of the retention times. As CO2 is the main constituent of the mobile phase in SFC, solvent consumption and solvent waste are considerably reduced. Graphical Abstract SFC-MS/MS vs. LC-MS/MS.

  17. Co-C Dissociation of Adenosylcobalamin (Coenzyme B-12): Role of Dispersion, Induction Effects, Solvent Polarity, and Relativistic and Thermal Corrections

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2014-01-01

    for dispersion, relativistic effects, solvent polarity, basis set superposition error, and thermal and vibrational effects were investigated, totaling more than SSO single-point energies for the large model. The results show immense variability depending on method, including solvation, functional type...

  18. Electro-responsivity of ionic liquid boundary layers in a polar solvent revealed by neutron reflectance

    Science.gov (United States)

    Pilkington, Georgia A.; Harris, Kathryn; Bergendal, Erik; Reddy, Akepati Bhaskar; Palsson, Gunnar K.; Vorobiev, Alexei; Antzutkin, Oleg. N.; Glavatskih, Sergei; Rutland, Mark W.

    2018-05-01

    Using neutron reflectivity, the electro-responsive structuring of the non-halogenated ionic liquid (IL) trihexyl(tetradecyl)phosphonium-bis(mandelato)borate, [P6,6,6,14][BMB], has been studied at a gold electrode surface in a polar solvent. For a 20% w/w IL mixture, contrast matched to the gold surface, distinct Kiessig fringes were observed for all potentials studied, indicative of a boundary layer of different composition to that of the bulk IL-solvent mixture. With applied potential, the amplitudes of the fringes from the gold-boundary layer interface varied systematically. These changes are attributable to the differing ratios of cations and anions in the boundary layer, leading to a greater or diminished contrast with the gold electrode, depending on the individual ion scattering length densities. Such electro-responsive changes were also evident in the reflectivities measured for the pure IL and a less concentrated (5% w/w) IL-solvent mixture at the same applied potentials, but gave rise to less pronounced changes. These measurements, therefore, demonstrate the enhanced sensitivity achieved by contrast matching the bulk solution and that the structure of the IL boundary layers formed in mixtures is strongly influenced by the bulk concentration. Together these results represent an important step in characterising IL boundary layers in IL-solvent mixtures and provide clear evidence of electro-responsive structuring of IL ions in their solutions with applied potential.

  19. Visualization of Two-Phase Fluid Distribution Using Laser Induced Exciplex Fluorescence

    Science.gov (United States)

    Kim, J. U.; Darrow, J.; Schock, H.; Golding, B.; Nocera, D.; Keller, P.

    1998-03-01

    Laser-induced exciplex (excited state complex) fluorescence has been used to generate two-dimensional images of dispersed liquid and vapor phases with spectrally resolved two-color emissions. In this method, the vapor phase is tagged by the monomer fluorescence while the liquid phase is tracked by the exciplex fluorescence. A new exciplex visualization system consisting of DMA and 1,4,6-TMN in an isooctane solvent was developed.(J.U. Kim et al., Chem. Phys. Lett. 267, 323-328 (1997)) The direct ca

  20. Silk fibroin gelation via non-solvent induced phase separation

    Czech Academy of Sciences Publication Activity Database

    Kasoju, Naresh; Hawkins, N.; Pop-Georgievski, Ognen; Kubies, Dana; Vollrath, F.

    2016-01-01

    Roč. 4, č. 3 (2016), s. 460-473 ISSN 2047-4830 R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : silk fibroin * non-solvent induced phase separation * desolvation Subject RIV: CE - Biochemistry Impact factor: 4.210, year: 2016

  1. Preparing poly (caprolactone) micro-particles through solvent-induced phase separation

    DEFF Research Database (Denmark)

    Li, Xiaoqiang; Kanjwal, Muzafar Ahmed; Stephansen, Karen

    2012-01-01

    Poly (caprolactone) (PCL) particles with the size distribution from 1 to 100 μm were prepared through solvent-induced phase separation, in which polyvinyl-alcohol (PVA) was used as the matrix-forming polymer to stabilize PCL particles. The cloud point data of PCL-acetone-water was determined...

  2. Topology optimization of piezo modal transducers with null-polarity phases

    DEFF Research Database (Denmark)

    Donoso, A.; Sigmund, O.

    2016-01-01

    Piezo modal transducers in 2d can be designed theoretically by tailoring polarity of the surface electrodes. However, it is also necessary to include null-polarity phases of known width separating areas of opposite polarity in the manufacturing process in order to avoid short-circuiting. Otherwise...... the performance of such devices could be spoiled. In this work, we propose an appropriate topology optimization interpolation function for the electrode profile such that the effect of this new phase (hereafter gap-phase) is included in the formulation of the design problem. The approach is density-based, where...... the interface is controlled by including the gradient norm in the electrode profile interpolation. Through a detailed case study in 1d, conclusions on how to control the width of this gap-phase are extracted, and subsequently extended to the 2d case....

  3. Liquid phase solvent bonding of plastic microfluidic devices assisted by retention grooves.

    Science.gov (United States)

    Wan, Alwin M D; Sadri, Amir; Young, Edmond W K

    2015-01-01

    We report a novel method for achieving consistent liquid phase solvent bonding of plastic microfluidic devices via the use of retention grooves at the bonding interface. The grooves are patterned during the regular microfabrication process, and can be placed at the periphery of a device, or surrounding microfluidic features with open ports, where they effectively mitigate solvent evaporation, and thus substantially reduce poor bond coverage. This method is broadly applicable to a variety of plastics and solvents, and produces devices with high bond quality (i.e., coverage, strength, and microfeature fidelity) that are suitable for studies in physics, chemistry, and cell biology at the microscale.

  4. New solvent systems for gradient counter-current chromatography in separation of betanin and its derivatives from processed Beta vulgaris L. juice.

    Science.gov (United States)

    Spórna-Kucab, Aneta; Garrard, Ian; Ignatova, Svetlana; Wybraniec, Sławomir

    2015-02-06

    Betalains, natural plant pigments, are beneficial compounds due to their antioxidant and possible chemoprotective properties. A mixture of betalains: betanin/isobetanin, decarboxybetanins and neobetanin from processed red beet roots (Beta vulgaris L.) juice was separated in food-grade, gradient solvent systems using high-performance counter-current chromatography (HPCCC). The decarboxylated and dehydrogenated betanins were obtained by thermal degradation of betanin/isobetanin from processed B. vulgaris L. juice under mild conditions. Two solvent systems (differing in their composition by phosphoric acid and ethanol volume gradient) consisting of BuOH-EtOH-NaClsolution-H2O-H3PO4 (v/v/v/v/v, 1300:200-1000:1300:700:2.5-10) in the 'tail-to-head' mode were run. The flow rate of the mobile phase (organic phase) was 1.0 or 2.0 ml/min and the column rotation speed was 1,600 rpm (20°C). The retention of the solvent system stationary phase (aqueous phase) was ca. 80%. The system with the acid and ethanol volume gradient consisting of BuOH-EtOH-NaClsolution-H2O-H3PO4 (v/v/v/v/v, 1300:200-240:1300:700:2.5-4.5) pumped at 2.0 ml/min was the most effective for a separation of betanin/isobetanin, 17-decarboxy-betanin/-isobetanin, 2-decarboxy-betanin/-isobetanin, 2,17-bidecarboxy-betanin/-isobetanin pairs as well as neobetanin. The pigments were detected by LC-DAD and LC-MS. The results are crucial in the application of completely food-grade solvent systems in separation of food-grade compounds as well, and the systems can possibly be extended to other ionizable and polar compounds with potential health benefits. In particular, the method is applicable for the isolation and purification of betalains present in such rich sources as B. vulgaris L. roots as well as cacti fruits and Amaranthaceae flowering plants due to modification possibilities of the solvent systems polarity. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Thin-film composite crosslinked polythiosemicarbazide membranes for organic solvent nanofiltration (OSN)

    KAUST Repository

    Aburabie, Jamaliah

    2015-01-01

    In this work we report a new class of solvent stable thin-film composite (TFC) membrane fabricated on crosslinked polythiosemicarbazide (PTSC) as substrate that exhibits superior stability compared with other solvent stable polymeric membranes reported up to now. Integrally skinned asymmetric PTSC membranes were prepared by the phase inversion process and crosslinked with an aromatic bifunctional crosslinker to improve the solvent stability. TFC membranes were obtained via interfacial polymerization using trimesoyl chloride (TMC) and diaminopiperazine (DAP) monomers. The membranes were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and contact angle measurement.The membranes exhibited high fluxes toward solvents like tetrahydrofuran (THF), dimethylformamide (DMF) and dimethylsulfoxide (DMSO) ranging around 20L/m2 h at 5bar with a molecular weight cut off (MWCO) of around 1000g/mol. The PTSC-based thin-film composite membranes are very stable toward polar aprotic solvents and they have potential applications in the petrochemical and pharmaceutical industry.

  6. Solvent extraction: the coordination chemistry behind extractive metallurgy.

    Science.gov (United States)

    Wilson, A Matthew; Bailey, Phillip J; Tasker, Peter A; Turkington, Jennifer R; Grant, Richard A; Love, Jason B

    2014-01-07

    The modes of action of the commercial solvent extractants used in extractive hydrometallurgy are classified according to whether the recovery process involves the transport of metal cations, M(n+), metalate anions, MXx(n-), or metal salts, MXx into a water-immiscible solvent. Well-established principles of coordination chemistry provide an explanation for the remarkable strengths and selectivities shown by most of these extractants. Reagents which achieve high selectivity when transporting metal cations or metal salts into a water-immiscible solvent usually operate in the inner coordination sphere of the metal and provide donor atom types or dispositions which favour the formation of particularly stable neutral complexes that have high solubility in the hydrocarbons commonly used in recovery processes. In the extraction of metalates, the structures of the neutral assemblies formed in the water-immiscible phase are usually not well defined and the cationic reagents can be assumed to operate in the outer coordination spheres. The formation of secondary bonds in the outer sphere using, for example, electrostatic or H-bonding interactions are favoured by the low polarity of the water-immiscible solvents.

  7. Retention prediction of highly polar ionizable solutes under gradient conditions on a mixed-mode reversed-phase and weak anion-exchange stationary phase.

    Science.gov (United States)

    Balkatzopoulou, P; Fasoula, S; Gika, H; Nikitas, P; Pappa-Louisi, A

    2015-05-29

    In the present work the retention of three highly polar and ionizable solutes - uric acid, nicotinic acid and ascorbic acid - was investigated on a mixed-mode reversed-phase and weak anion-exchange (RP/WAX) stationary phase in buffered aqueous acetonitrile (ACN) mobile phases. A U-shaped retention behavior was observed for all solutes with respect to the eluent organic modifier content studied in a range of 5-95% (v/v). This retention behavior clearly demonstrates the presence of a HILIC-type retention mechanism at ACN-rich hydro-organic eluents and an RP-like retention at aqueous-rich hydro-organic eluents. Hence, this column should be promising for application under both RP and HILIC gradient elution modes. For this reason, a series of programmed elution runs were carried out with increasing (RP) and decreasing (HILIC) organic solvent concentration in the mobile phase. This dual gradient process was successfully modeled by two retention models exhibiting a quadratic or a cubic dependence of the logarithm of the solute retention factor (lnk) upon the organic modifier volume fraction (φ). It was found that both models produced by gradient retention data allow the prediction of solute retention times for both types of programmed elution on the mixed-mode column. Four, in the case of the quadratic model, or five, in the case of the cubic model, initial HILIC- and RP-type gradient runs gave satisfactory retention predictions of any similar kind elution program, even with different flow rate, with an overall error of only 2.5 or 1.7%, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Crosslinked copolyazoles with a zwitterionic structure for organic solvent resistant membranes

    KAUST Repository

    Chisca, Stefan

    2015-01-01

    The preparation of crosslinked membranes with a zwitterionic structure based on a facile reaction between a newly synthesized copolyazole with free OH groups and (3-glycidyloxypropyl)trimethoxysilane (GPTMS) is reported. The new OH-functionalized copolyazole is soluble in common organic solvents, such as tetrahydrofuran (THF), dimethylsulfoxide (DMSO), N,N′-dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP) and can be easily processed by phase inversion. After crosslinking with GPTMS, the membranes acquire high solvent resistance. We show the membrane performance and the influence of the crosslinking reaction conditions on the thermal stability, surface polarity, pore morphology, and solvent resistance. By using UV-spectroscopy we monitored the solvent resistance of the membranes in four aggressive solvents (THF, DMSO, DMF and NMP) for 30 days. After this time, only minor changes (less than 2%) were detected for membranes subjected to a crosslinking reaction for 6 hours or longer. Our data suggest that the novel crosslinked membranes can be used for industrial applications in wide harsh environments in the presence of organic solvents.

  9. Communication: Potentials of mean force study of ionic liquid ion pair aggregation in polar covalent molecule solvents

    Science.gov (United States)

    Bandlamudi, Santosh Rathan Paul; Benjamin, Kenneth M.

    2018-05-01

    Molecular dynamics (MD) simulations were conducted for 1-ethyl-3-methylimidazolium methylsulfate [EMIM][MeSO4] dissolved in six polar covalent molecules [acetic acid, acetone, chloroform, dimethyl sulfoxide (DMSO), isopropyl alcohol, and methanol] to understand the free energies of ionic liquid (IL) ion pairing/aggregation in the limit of infinite dilution. Free energy landscapes or potentials of mean force (PMF) were computed using umbrella sampling and the weighted histogram analysis method. The PMF studies showed the strongest IL ion pairing in chloroform, and the strength of IL ion pairing decreases in the order of chloroform, acetone, propanol, acetic acid, DMSO, and methanol. In the limit of infinite dilution, the free energy curves for IL ion aggregation in co-solvents were characterized by two distinct minima [global (˜3.6 Å) and local (˜5.7 Å)], while free energy values at these minima differed significantly for IL in each co-solvent. The PMF studies were extended for determining the free energy of IL ion aggregation as a function of concentration of methanol. Studies showed that as the concentration of methanol increased, the free energy of ion aggregation decreased, suggesting greater ion pair stability, in agreement with previously reported MD clustering and radial distribution function data.

  10. Stability of the solid electrolyte Li{sub 3}OBr to common battery solvents

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, D.J. [Department of Engineering Technology, College of Engineering and Engineering Technology, Northern Illinois University, 301B Still Gym, DeKalb, IL 60115 (United States); Hubaud, A.A. [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439-4837 (United States); Vaughey, J.T., E-mail: vaughey@anl.gov [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439-4837 (United States)

    2014-01-01

    Graphical abstract: The stability of the anti-perovskite phase Li{sub 3}OBr has been assessed in a variety of battery solvents. - Highlights: • Lithium stable solid electrolyte Li{sub 3}OBr unstable to polar organic solvents. • Solvation with no dissolution destroys long-range structure. • Ion exchange with protons observed. - Abstract: Recently a new class of solid lithium ion conductors was reported based on the anti-perovskite structure, notably Li{sub 3}OCl and Li{sub 3}OBr. For many beyond lithium-ion battery uses, the solid electrolyte is envisioned to be in direct contact with liquid electrolytes and lithium metal. In this study we evaluated the stability of the Li{sub 3}OBr phase against common battery solvents electrolytes, including diethylcarbonate (DEC) and dimethylcarbonate (DMC), as well as a LiPF{sub 6} containing commercial electrolyte. In contact with battery-grade organic solvents, Li{sub 3}OBr was typically found to be insoluble but lost its crystallinity and reacted with available protons and in some cases with the solvent. A low temperature heat treatment was able to restore crystallinity of the samples; however evidence of proton ion exchange was conserved.

  11. Design and simulation of a novel circularly polarized antenna with polarization reconfigurable characteristics

    Directory of Open Access Journals (Sweden)

    Zhang Hai

    2016-01-01

    Full Text Available A novel circularly polarized antenna with polarization reconfigurable characteristics was designed using co-simulation of Ansoft HFSS and Designer software. It consists of a dual-polarized antenna and phase switching network which act as the feed network for the dual-polarized antenna. The phase switching network was designed based on a Wilkinson power divider, where the output port was connected with SPDT to form a switching network. By controlling the SPDT state-off / on, the phase difference of the two ports could be alternated, which generated the orthogonal modes between the two ports of dual-polarized antenna. So that Left-hand circular polarization (LHCP and Right-hand circular polarization (RHCP could be achieved. The simulation shown that reflection coefficient was less than -12 dB and the axial ratio was below 3 dB between 1.8 GHz and 2.4 GHz with polarization reconfigurable characteristics.

  12. Effects of Organic Solvents on Indigo Formation by Pseudomonas sp. strain ST-200 Grown with High Levels of Indole.

    Science.gov (United States)

    Doukyu, N; Arai, T; Aono, R

    1998-01-01

    The indole tolerance level of Pseudomonas sp. strain ST-200 was 0.25 mg/ml. The level was raised to 4 mg/ml when diphenylmethane was added to the medium to 20% by volume. ST-200 grown in this two-phase culture system containing indole (1 mg/ml) and diphenylmethane (0.2 ml/ml) produced a water-soluble yellow pigment, isatic acid, and two water-insoluble and diphenylmethane-soluble pigments, blue indigo and purple indirubin. The amounts of the water-insoluble pigments corresponded to 0.5% (indigo) and 0.2% (indirubin) of the indole added to the medium. Of the conditions tried, indigo and indirubin were formed only when ST-200 was grown in the two-phase system overlaid with organic solvents with appropriate polarity.

  13. Caustic-Side Solvent Extraction: Chemical and Physical Properties of the Optimized Solvent

    Energy Technology Data Exchange (ETDEWEB)

    Delmau, L.H.

    2002-10-08

    This work was undertaken to optimize the solvent used in the Caustic Side Solvent Extraction (CSSX) process and to measure key chemical and physical properties related to its performance in the removal of cesium from the alkaline high-level salt waste stored in tanks at the Savannah River Site. The need to adjust the solvent composition arose from the prior discovery that the previous baseline solvent was supersaturated with respect to the calixarene extractant. The following solvent-component concentrations in Isopar{reg_sign} L diluent are recommended: 0.007 M calix[4]arene-bis(tert-octylbenzo-crown-6) (BOBCalixC6) extractant, 0.75 M 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol (Cs-7SB) phase modifier, and 0.003 M tri-n-octylamine (TOA) stripping aid. Criteria for this selection included BOBCalixC6 solubility, batch cesium distribution ratios (D{sub Cs}), calculated flowsheet robustness, third-phase formation, coalescence rate (dispersion numbers), and solvent density. Although minor compromises within acceptable limits were made in flowsheet robustness and solvent density, significant benefits were gained in lower risk of third-phase formation and lower solvent cost. Data are also reported for the optimized solvent regarding the temperature dependence of D{sub Cs} in extraction, scrubbing, and stripping (ESS); ESS performance on recycle; partitioning of BOBCalixC6, Cs-7SB, and TOA to aqueous process solutions; partitioning of organic anions; distribution of metals; solvent phase separation at low temperatures; solvent stability to elevated temperatures; and solvent density and viscosity. Overall, the technical risk of the CSSX process has been reduced by resolving previously identified issues and raising no new issues.

  14. Dynamics of a quantum two-level system under the action of phase-diffusion field

    Energy Technology Data Exchange (ETDEWEB)

    Sobakinskaya, E.A. [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation); Pankratov, A.L., E-mail: alp@ipm.sci-nnov.ru [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation); Vaks, V.L. [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation)

    2012-01-09

    We study a behavior of quantum two-level system, interacting with noisy phase-diffusion field. The dynamics is shown to split into two regimes, determined by the coherence time of the phase-diffusion field. For both regimes we present a model of quantum system behavior and discuss possible applications of the obtained effect for spectroscopy. In particular, the obtained analytical formula for the macroscopic polarization demonstrates that the phase-diffusion field does not affect the absorption line shape, which opens up an intriguing possibility of noisy spectroscopy, based on broadband sources with Lorentzian line shape. -- Highlights: ► We study dynamics of quantum system interacting with noisy phase-diffusion field. ► At short times the phase-diffusion field induces polarization in the quantum system. ► At long times the noise leads to polarization decay and heating of a quantum system. ► Simple model of interaction is derived. ► Application of the described effects for spectroscopy is discussed.

  15. Heat of Absorption of CO2 in Phase Change Solvents: 2-(Diethylamino)ethanol and 3-(Methylamino)propylamine

    DEFF Research Database (Denmark)

    Waseem Arshad, Muhammad; Fosbøl, Philip Loldrup; von Solms, Nicolas

    2013-01-01

    Heat of absorption of CO2 in phase change solvents containing 2-(diethylamino)ethanol (DEEA) and 3-(methylamino)propylamine (MAPA) were measured as a function of CO2 loading at different temperatures using a commercially available reaction calorimeter. The tested systems were aqueous single amines...... (5 M DEEA, 2 M MAPA, and 1 M MAPA) and aqueous amine mixtures (5 M DEEA + 2 M MAPA and 5 M DEEA + 1 M MAPA) which give two liquid phases on reacting with CO2. All parallel experiments have shown good repeatability. The measurements were taken isothermally at three different temperatures, (40, 80......, and 120) °C. The measured differential heat of absorption values were converted into integral values by integration. Heats of absorption of CO2 in aqueous single amines were affected by changing the solvent composition (large difference in concentrations) and CO2 feed pressure simultaneously. In addition...

  16. Organic Solvent Tolerant Lipases and Applications

    Directory of Open Access Journals (Sweden)

    Shivika Sharma

    2014-01-01

    Full Text Available Lipases are a group of enzymes naturally endowed with the property of performing reactions in aqueous as well as organic solvents. The esterification reactions using lipase(s could be performed in water-restricted organic media as organic solvent(s not only improve(s the solubility of substrate and reactant in reaction mixture but also permit(s the reaction in the reverse direction, and often it is easy to recover the product in organic phase in two-phase equilibrium systems. The use of organic solvent tolerant lipase in organic media has exhibited many advantages: increased activity and stability, regiospecificity and stereoselectivity, higher solubility of substrate, ease of products recovery, and ability to shift the reaction equilibrium toward synthetic direction. Therefore the search for organic solvent tolerant enzymes has been an extensive area of research. A variety of fatty acid esters are now being produced commercially using immobilized lipase in nonaqueous solvents. This review describes the organic tolerance and industrial application of lipases. The main emphasis is to study the nature of organic solvent tolerant lipases. Also, the potential industrial applications that make lipases the biocatalysts of choice for the present and future have been presented.

  17. Supramolecular Complexes Formed by the Self-assembly of Hydrophobic Bis(Zn(2+)-cyclen) Complexes, Copper, and Di- or Triimide Units for the Hydrolysis of Phosphate Mono- and Diesters in Two-Phase Solvent Systems (Cyclen=1,4,7,10-Tetraazacyclododecane).

    Science.gov (United States)

    Hisamatsu, Yosuke; Miyazawa, Yuya; Yoneda, Kakeru; Miyauchi, Miki; Zulkefeli, Mohd; Aoki, Shin

    2016-01-01

    We previously reported on supramolecular complexes 4 and 5, formed by the 4 : 4 : 4 or 2 : 2 : 2 assembly of a dimeric zinc(II) complex (Zn2L(1)) having 2,2'-bipyridyl linker, dianion of cyanuric acid (CA) or 5,5-diethylbarbituric acid (Bar), and copper(II) ion (Cu(2+)) in an aqueous solution. The supermolecule 4 possesses Cu2(μ-OH)2 centers and catalyzes hydrolysis of phosphate monoester dianion, mono(4-nitrophenyl)phosphate (MNP), at neutral pH. In this manuscript, we report on design and synthesis of hydrophobic supermolecules 9 and 10 by 4 : 4 : 4 and 2 : 2 : 2 self-assembly of hydrophobic Zn2L(2) and Zn2L(3) containing long alkyl chains, CA or Bar, and Cu(2+) and their phosphatase activity for the hydrolysis of MNP and bis(4-nitrophenyl)phosphate (BNP) in two-phase solvent systems. We assumed that the Cu2(μ-OH)2 active sites of 9 and 10 would be more stable in organic solvent than in aqueous solution and that product inhibition of the supermolecules might be avoided by the release of HPO4(2-) into the aqueous layer. The findings indicate that 9 and 10 exhibit phosphatase activity in the two-phase solvent system, although catalytic turnover was not observed. Furthermore, the hydrolysis of BNP catalyzed by the hydrophobic 2 : 2 : 2 supermolecules in the two-phase solvent system is described.

  18. Analysis of continuous fermentation processes in aqueous two-phase systems

    Energy Technology Data Exchange (ETDEWEB)

    Jarzebski, A B; Malinowski, J J [Polish Academy of Sciences, Gliwice (Poland). Inst. of Chemical Engineering; Goma, G; Soucaille, P [INSA, 31 - Toulouse (France). Dept. de Genie Biochimique et Alimentaire

    1992-05-01

    Simulations of continuous ethanol or acetonobutylic fermentations in aqueous two-phase systems show that at high substrate feed concentrations it is possible to obtain solvent productivities about 25-40% higher than in conventional systems with cell recycle if the biomass bleed rate is kept about one tenth of the value of D. (orig.).

  19. Polarized phase shift mask: concept, design, and potential advantages to photolithography process and physical design

    Science.gov (United States)

    Wang, Ruoping; Grobman, Warren D.; Reich, Alfred J.; Thompson, Matthew A.

    2002-03-01

    In this paper we introduce the concept and design of a novel phase shift mask technology, Polarized Phase Shift Mask (P:PSM). The P:PSM technology utilizes non-interference between orthogonally polarized light sources to avoid undesired destructive interference seen in conventional two-phase shift mask technology. Hence P:PSM solves the well-known 'phase edge' or 'phase conflict' problem. By obviating the 2nd exposure and 2nd mask in current Complementary Phase Shift Mask (C:PSM) technology, this single mask/single exposure technology offers significant advantages towards photolithography process as well as pattern design. We use examples of typical design and process difficulties associated with the C:PSM technology to illustrate the advantages of the P:PSM technology. We present preliminary aerial image simulation results that support the potential of this new reticle technology for enhanced design flexibility. We also propose possible mask structures and manufacturing methods for building a P:PSM.

  20. Photo-physical and interactional behavior of two members of group B vitamins in different solvent media

    Science.gov (United States)

    Zakerhamidi, M. S.; Zare Haghighi, L.; Seyed Ahmadian, S. M.

    2017-09-01

    In this paper, absorption and fluorescence spectra of vitamin B12 (cyanocobalamin) and vitamin B6 (pyridoxine) were recorded in solvents with different polarity, at room temperature. These vitamins' photo-physical behavior depends strongly on the solvent's nature along with different attached groups in their structures. In order to investigate the solvent-solute interactions and environmental effect on spectral variations, linear solvation energy relationships concept, suggested by Kamlet and Taft was used. Solvatochromic method was also used for measuring the ground and excited state dipole moments of these vitamins. According to our experimental results, dipole moment of these groups of vitamins in excited state is larger than ground state. Furthermore, obtained photo-physical and interactional properties of used vitamins can give important information on how this group of vitamins behaves in biological systems.

  1. Gas separation by composite solvent-swollen membranes

    Science.gov (United States)

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1989-01-01

    There is disclosed a composite immobulized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorous or sulfur atom, and having a boiling point of at least 100.degree. C. and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation.

  2. Gas separation by composite solvent-swollen membranes

    Science.gov (United States)

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1989-04-25

    There is disclosed a composite immobilized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorus or sulfur atom, and having a boiling point of at least 100 C and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation. 3 figs.

  3. High temperature solvent extraction of oil shale and bituminous coal using binary solvent mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, G.K.E. [Lehrstuhl fuer Geologie, Geochemie und Lagerstaetten des Erdoels und der Kohle, RWTH Aachen (Germany)

    1997-12-31

    A high volatile bituminous coal from the Saar Basin and an oil shale from the Messel deposit, both Germany, were extracted with binary solvent mixtures using the Advanced Solvent Extraction method (ASE). Extraction temperature and pressure were kept at 100 C, respectively 150 C, and 20,7 MPa. After the heating phase (5 min) static extractions were performed with mixtures (v:v, 1:3) of methanol with toluene, respectively trichloromethane, for further 5 min. Extract yields were the same or on a higher level compared to those from classical soxhlet extractions (3 days) using the same solvents at 60 C. Comparing the results from ASE with those from supercritical fluid extraction (SFE) the extract yields were similar. Increasing the temperature in ASE releases more soluble organic matter from geological samples, because compounds with higher molecular weight and especially more polar substances were solubilized. But also an enhanced extraction efficiency resulted for aliphatic and aromatic hydrocarbons which are used as biomarkers in Organic Geochemistry. Application of thermochemolysis with tetraethylammonium hydroxide (TEAH) using pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) on the extraction residues shows clearly that at higher extraction temperatures minor amounts of free fatty acids or their methyl esters (original or produced by ASE) were trapped inside the pore systems of the oil shale or the bituminous coal. ASE offers a rapid and very efficient extraction method for geological samples reducing analysis time and costs for solvents. (orig.)

  4. Quantum phases of dipolar rotors on two-dimensional lattices.

    Science.gov (United States)

    Abolins, B P; Zillich, R E; Whaley, K B

    2018-03-14

    The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.

  5. Quantum phases of dipolar rotors on two-dimensional lattices

    Science.gov (United States)

    Abolins, B. P.; Zillich, R. E.; Whaley, K. B.

    2018-03-01

    The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.

  6. Reduction of Solvent Effect in Reverse Phase Gradient Elution LC-ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Patrick Allen [Iowa State Univ., Ames, IA (United States)

    2005-12-17

    Quantification in liquid chromatography (LC) is becoming very important as more researchers are using LC, not as an analytical tool itself, but as a sample introduction system for other analytical instruments. The ability of LC instrumentation to quickly separate a wide variety of compounds makes it ideal for analysis of complex mixtures. For elemental speciation, LC is joined with inductively coupled plasma mass spectrometry (ICP-MS) to separate and detect metal-containing, organic compounds in complex mixtures, such as biological samples. Often, the solvent gradients required to perform complex separations will cause matrix effects within the plasma. This limits the sensitivity of the ICP-MS and the quantification methods available for use in such analyses. Traditionally, isotope dilution has been the method of choice for LC-ICP-MS quantification. The use of naturally abundant isotopes of a single element in quantification corrects for most of the effects that LC solvent gradients produce within the plasma. However, not all elements of interest in speciation studies have multiple naturally occurring isotopes; and polyatomic interferences for a given isotope can develop within the plasma, depending on the solvent matrix. This is the case for reverse phase LC separations, where increasing amounts of organic solvent are required. For such separations, an alternative to isotope dilution for quantification would be is needed. To this end, a new method was developed using the Apex-Q desolvation system (ESI, Omaha, NE) to couple LC instrumentation with an ICP-MS device. The desolvation power of the system allowed greater concentrations of methanol to be introduced to the plasma prior to destabilization than with direct methanol injection into the plasma. Studies were performed, using simulated and actual linear methanol gradients, to find analyte-internal standard (AIS) pairs whose ratio remains consistent (deviations {+-} 10%) over methanol concentration ranges of 5

  7. In-line phase retarder and polarimeter for conversion of linear to circular polarization

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Smith, N.V.; Denlinger, J.D. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    An in-line polarimeter including phase retarder and linear polarizer was designed and commissioned on undulator beamline 7.0 for the purpose of converting linear to circular polarization for experiments downstream. In commissioning studies, Mo/Si multilayers at 95 eV were used both as the upstream, freestanding phase retarder and the downstream linear polarized. The polarization properties of the phase retarder were characterized by direct polarimetry and by collecting MCD spectra in photoemission from Gd and other magnetic surfaces. The resonant birefringence of transmission multilayers results from differing distributions of s- and p-component wave fields in the multilayer when operating near a structural (Bragg) interference condition. The resulting phase retardation is especially strong when the interference is at or near the Brewster angle, which is roughly 45{degrees} in the EUV and soft x-ray ranges.

  8. Polymeric Sorbent with Controlled Surface Polarity: An Alternate for Solid-Phase Extraction of Nerve Agents and Their Markers from Organic Matrix.

    Science.gov (United States)

    Roy, Kanchan Sinha; Purohit, Ajay Kumar; Chandra, Buddhadeb; Goud, D Raghavender; Pardasani, Deepak; Dubey, Devendra Kumar

    2018-06-05

    Extraction and identification of lethal nerve agents and their markers in complex organic background have a prime importance from the forensic and verification viewpoint of the Chemical Weapons Convention (CWC). Liquid-liquid extraction with acetonitrile and commercially available solid phase silica cartridges are extensively used for this purpose. Silica cartridges exhibit limited applicability for relatively polar analytes, and acetonitrile extraction shows limited efficacy toward relatively nonpolar analytes. The present study describes the synthesis of polymeric sorbents with tunable surface polarity, their application as a solid-phase extraction (SPE) material against nerve agents and their polar as well as nonpolar markers from nonpolar organic matrices. In comparison with the acetonitrile extraction and commercial silica cartridges, the new sorbent showed better extraction efficiency toward analytes of varying polarity. The extraction parameters were optimized for the proposed method, which included ethyl acetate as an extraction solvent and n-hexane as a washing solvent. Under optimized conditions, method linearity ranged from 0.10 to 10 μg mL -1 ( r 2 = 0.9327-0.9988) for organophosphorus esters and 0.05-20 μg mL -1 ( r 2 = 0.9976-0.9991) for nerve agents. Limits of detection (S:N = 3:1) in the SIM mode were found in the range of 0.03-0.075 μg mL -1 for organophosphorus esters and 0.015-0.025 μg mL -1 for nerve agents. Limits of quantification (S:N = 10:1) were found in the range of 0.100-0.25 μg mL -1 for organophosphorus esters and 0.05-0.100 μg mL -1 for nerve agents in the SIM mode. The recoveries of the nerve agents and their markers ranged from 90.0 to 98.0% and 75.0 to 95.0% respectively. The repeatability and reproducibility (with relative standard deviations (RSDs) %) for organophosphorus esters were found in the range of 1.35-8.61% and 2.30-9.25% respectively. For nerve agents, the repeatability range from 1.00 to 7.75% and reproducibility

  9. Spatiotemporal polarization gradients in phase-bearing light

    International Nuclear Information System (INIS)

    Lembessis, V. E.; Babiker, M.

    2010-01-01

    It is shown how the interference of two circularly polarized laser beams endowed with orbital angular momentum can give rise to spatial and temporal polarization gradients, displaying axial as well as angular symmetry properties. Illustrations are given with reference to circularly polarized Laguerre-Gaussian beams as typical light beams carrying orbital angular momentum.

  10. Porous fiber formation in polymer-solvent system undergoing solvent evaporation

    Science.gov (United States)

    Dayal, Pratyush; Kyu, Thein

    2006-08-01

    Temporal evolution of the fiber morphology during dry spinning has been investigated in the framework of Cahn-Hilliard equation [J. Chem. Phys. 28, 258 (1958)] pertaining to the concentration order parameter or volume fraction given by the Flory-Huggins free energy of mixing [P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953), p. 672] in conjunction with the solvent evaporation rate. To guide the solvent evaporation induced phase separation, equilibrium phase diagram of the starting polymer solution was established on the basis of the Flory-Huggins free energy of mixing. The quasi-steady-state approximation has been adopted to account for the nonconserved nature of the concentration field caused by the solvent loss. The process of solvent evaporation across the fiber skin-air interface was treated in accordance with the classical Fick's law [R. B. Bird et al., Transport Phenomena (J. Wiley, New York, 1960), p. 780]. The simulated morphologies include gradient type, hollow fiber type, bicontinuous type, and host-guest type. The development of these diverse fiber morphologies is explicable in terms of the phase diagram of the polymer solution in a manner dependent on the competition between the phase separation dynamics and rate of solvent evaporation.

  11. Substituent and solvent effects on spectroscopic properties of 2-amino-1,3-dicyano-5,6,7,8-tetrahydronaphthalene derivatives

    International Nuclear Information System (INIS)

    Józefowicz, M.; Bajorek, A.; Pietrzak, M.; Heldt, J.R.; Heldt, J.

    2014-01-01

    In this article, we report the photophysical properties of six, newly synthesized donor-substituted 2-amino-1,3-dicyano-5,6,7,8-tetrahydronaphthalene fluorophores. The steady-state and time-resolved spectroscopic experiments have been used to investigate the substituent and solvent effects on the locally excited (LE) and intramolecular charge transfer (ICT) emission. We demonstrate that the spectroscopic characteristics (fluorescence quantum yields, fluorescence decay times, radiative rate constants, and ground and excited state dipole moments) of the studied D–A dyes, as well as the reorganization energies characterizing the solute–solvent interactions and intramolecular torsion motions greatly depend on different substituents and microenvironment. On the basis of the experimental results and our previous quantum-chemical calculations, it was shown that two emitting charge transfer states: non-relaxed (ICT) NR and relaxed (ICT) R exist in six biphenyl derivatives dissolved in polar solvents (e.g., THF), whereas in non-polar medium (MCH) the existence of two emissive states have been attributed to non-relaxed and relaxed, locally excited state ((LE) NR , (LE) R ). - Highlights: • Spectroscopic properties greatly depend on different substituents and microenvironment. • Investigated dyes form a typically spectrally inhomogeneous system. • Two emitting charge transfer states (ICT) NR and (ICT) R exist in polar solvents. • In non-polar medium locally excited fluorescence is possible from (LE) NR and (LE) R states

  12. Development of a distributed polarization-OTDR to measure two vibrations with the same frequency

    Science.gov (United States)

    Pan, Yun; Wang, Feng; Wang, Xiangchuan; Zhang, Mingjiang; Zhou, Ling; Sun, Zhenqing; Zhang, Xuping

    2015-08-01

    A polarization optical time-domain reflectometer (POTDR) can distributedly measure the vibration of fiber by detecting the vibration induced polarization variation only with a polarization analyzer. It has great potential in the monitoring of the border intrusion, structural healthy, anti-stealing of pipeline and so on, because of its simple configuration, fast response speed and distributed measuring ability. However, it is difficult to distinguish two vibrations with the same frequency for POTDR because the signal induced by the first vibration would bury the other vibration induced signal. This paper proposes a simple method to resolve this problem in POTDR by analyzing the phase of the vibration induced signal. The effectiveness of this method in distinguishing two vibrations with the same frequency for POTDR is proved by simulation.

  13. Blind equalization for dual-polarization two-subcarrier coherent QPSK-OFDM signals.

    Science.gov (United States)

    Li, Fan; Zhang, Junwen; Yu, Jianjun; Li, Xinying

    2014-01-15

    Dual-polarization two-subcarrier coherent optical orthogonal frequency division multiplexing (CO-OFDM) transmission and reception is successfully demonstrated with blind equalization. A two-subcarrier quadrature phase shift keyed OFDM (QPSK-OFDM) signal can be equalized as a 9-ary quadrature amplitude modulation signal in the time domain with the cascaded multimodulus algorithm equalization method. The nonlinear effect resistance and transmission distance can be enhanced compared with the traditional CO-OFDM transmission system based on frequency equalization with training sequence.

  14. Synergistic promotion of polar phase crystallization of PVDF by ionic liquid with PEG segment

    Science.gov (United States)

    Xu, Pei; Fu, Weijia; Cui, Zhaopei; Ding, Yunsheng

    2018-06-01

    To investigate the effect of imidazolium ionic liquid with poly(ethylene glycol) segment (IL) on the polar phase crystallization behavior of poly(vinylidene fluoride) (PVDF), a series of PVDF/IL composites were prepared using solution-cast method. The crystallization peak temperature of PVDF composites and the growth speed of samples decrease with increasing of IL. The >CF2 groups in amorphous region are retained and >CF2 groups in crystalline region are liberated by the PEG long soft segments of IL. The intensity of peaks represented as α phase reduces, moreover polar phase content increases with increasing of IL. The interaction between the >CF2 and the imidazolium cation can induce the polar phase, and the interaction between the >CF2 and PEG soft segment can strengthen polar crystalline induction. PVDF/12IL composite can form big γ spherulite circled by β phase.

  15. CO2 Absorption by Biphasic Solvents: Comparison with Lower Phase Alone

    International Nuclear Information System (INIS)

    Xu, Zhicheng; Wang, Shujuan; Qi, Guojie; Liu, Jinzhao; Zhao, Bo; Chen, Changhe

    2014-01-01

    The mixtures of 2 M 1,4-butanediamine (BDA) and 4 M 2-(diethylamino)-ethanol (DEEA) have been found to be promising biphasic solvents. This work identifies the composition of the lower phase using a DX-120 Ion Chromatograph (IC) and a Metrohm 809 Titrando auto titrator. The cyclic capacities, cyclic loadings and reaction products of the biphasic solvent are compared with those of the aqueous solution with the same amine concentration as the lower phase of the biphasic solvent at the rich loading ((2B4D) L ) using a fast screening facility and a JNM ECA-600 Nuclear Magnetic Resonance spectrometer (NMR). Their absorption rates at different loadings are also investigated using a Wetted Wall Column (WWC). The results show that the cyclic capacity and cyclic loading of (2B4D) L are almost the same as those of 2B4D. The absorption rate of (2B4D) L is higher than 2B4D at all the 3 tested loadings, except for the fresh solutions at CO 2 pressure lower than 10 kPa. NMR results show that the reaction products of (2B4D) L had more BDA bi-carbamate, less BDA and less BDA carbamate than 2B4D. The CO 2 reaction products of (2B4D) L had twice as much carbonate/bicarbonate as with 2B4D and less BDA carbamate. (authors)

  16. Effect of Beam Scanning on Target Polarization Scattering Matrix Observed by Fully Polarimetric Phased-array Radar

    Directory of Open Access Journals (Sweden)

    Li Mianquan

    2016-04-01

    Full Text Available The polarization feature of a fully Polarimetric Phased-Array Radar (PPAR antenna varies according to the beam-scanning angle, thereby introducing two problems on the target Polarization Scattering Matrix (PSM measurement. First, the antenna polarization basis is defined within the vertical cross-section of an electromagnetic wave propagation direction, and the polarization basis of each beam direction angle is not identical, resulting in the PSM of a fixed-posture target observed by PPAR being not identical for different beam-scanning angles. Second, the cross polarization of the PPAR antenna increases with increasing beamscanning angle, resulting in a crosstalk among the elements of PSM observed by PPAR. This study focuses on the analysis of the abovementioned two aspects of the effect of beam scanning on target PSM observed by PPAR. The results will establish a more accurate observation of the equation for the precision PSM measurement of PPAR.

  17. The local phase transitions of the solvent in the neighborhood of a solvophobic polymer at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Budkov, Yu. A., E-mail: urabudkov@rambler.ru [G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation); National Research University Higher School of Economics, Moscow (Russian Federation); Department of Chemistry, Lomonosov Moscow State University, Moscow (Russian Federation); Vyalov, I. I. [Istituto Italiano di Tecnologia, via Morego 30, Genova 16163 (Italy); Kolesnikov, A. L. [Ivanovo State University, Ivanovo (Russian Federation); Institut für Nichtklassische Chemie e.V., Universitat Leipzig, Leipzig (Germany); Georgi, N., E-mail: bancocker@mail.ru [Max Planck Institute for Mathematics in the Sciences, Leipzig (Germany); Chuev, G. N. [Max Planck Institute for the Physics of Complex Systems, Dresden (Germany); Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino, Moscow Region (Russian Federation); Kiselev, M. G. [G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation); Department of Chemistry, Lomonosov Moscow State University, Moscow (Russian Federation)

    2014-11-28

    We investigate local phase transitions of the solvent in the neighborhood of a solvophobic polymer chain which is induced by a change of the polymer-solvent repulsion and the solvent pressure in the bulk solution. We describe the polymer in solution by the Edwards model, where the conditional partition function of the polymer chain at a fixed radius of gyration is described by a mean-field theory. The contributions of the polymer-solvent and the solvent-solvent interactions to the total free energy are described within the mean-field approximation. We obtain the total free energy of the solution as a function of the radius of gyration and the average solvent number density within the gyration volume. The resulting system of coupled equations is solved varying the polymer-solvent repulsion strength at high solvent pressure in the bulk. We show that the coil-globule (globule-coil) transition occurs accompanied by a local solvent evaporation (condensation) within the gyration volume.

  18. Insight into the Local Solvent Environment of Biologically Relevant Iron-nitroysl Systems through Two-Dimensional Infrared Spectroscopy

    Science.gov (United States)

    Brookes, Jennifer Faith

    Iron-nitrosyl systems, particularly in the form of heme proteins, with their iron metal active sites play an important role in biological systems. Heme proteins act as storage, transporters, and receptors for nitric oxide (NO), a signaling molecule that is important in immune, nervous, and cardiovascular systems of mammals. By better understanding the local environment of the active site of NO binding heme proteins we can gain insight into disease in which the NO pathways have been implicated. This is an important step to being able to develop pharmaceuticals targeting NO pathways in humans. Sodium nitroprusside ((SNP, Na2[Fe(CN)5is NO]·2H 2O) investigated as a model system for the active site of nitric oxide binding heme proteins. Using two-dimensional infrared spectroscopy (2D IR) to obtain dephasing dynamics of the nitrosyl stretch (nuNO) in a series of solvents we are able to better understand the local environment of the more complicated metalloproteins. Rigorous line shape analysis is performed by using nonlinear response theory to simulate 2D IR spectra which are then fit to experimental data in an iterative process to extract frequency-frequency correlation functions (FFCFs). The time scales obtained are then correlated to empirical solvent polarity parameters. The analysis of the 2D IR lineshapes reveal that the spectral diffusion timescale of the nuNO in SNP varies from 0.8 -- 4 ps and is negatively correlated with the empirical solvent polarity scales. We continue to investigate NO binding of metalloproteins through 2D IR experiments on nitrophorin 4 (NP4). NP4 is a pH-sensitive NO transporter protein present in the salivary gland of the blood sucking insect Rhodius prolixus which undergoes a pH sensitive structural change between a closed and open conformation allowing for the storage and delivery of NO. The two structures are observed spectroscopically as two distinct pH-dependent nu NO frequencies at ~1904 and ~1917 cm-1. We obtain FFCFs by globally

  19. A Novel Aqueous Two Phase System Composed of a Thermo-Separating Polymer and an Organic Solvent for Purification of Thermo-Acidic Amylase Enzyme from Red Pitaya (Hylocereus polyrhizus Peel

    Directory of Open Access Journals (Sweden)

    Mehrnoush Amid

    2014-05-01

    Full Text Available The purification of thermo-acidic amylase enzyme from red pitaya (Hylocereus polyrhizus peel for the first time was investigated using a novel aqueous two-phase system (ATPS consisting of a thermo-separating copolymer and an organic solvent. The effectiveness of different parameters such as molecular weight of the thermo-separating ethylene oxide-propylene oxide (EOPO copolymer and type and concentration of organic solvent on the partitioning behavior of amylase was investigated. In addition, the effects of phase components, volume ratio (VR, pH and crude load of purification factor and yield of amylase were evaluated to achieve the optimum partition conditions of the enzyme. In the novel ATPS method, the enzyme was satisfactorily partitioned into the polymer-rich top phase in the system composed of 30% (w/w EOPO 2500 and 15% (w/w 2-propanol, at a volume ratio of 1.94 and with a crude load scale of 25% (w/w at pH 5.0. Recovery and recycling of components was also measured in each successive step of the ATPS process. The enzyme was successfully recovered by the method with a high purification factor of 14.3 and yield of 96.6% and copolymer was also recovered and recycled at a rate above 97%, making the method was more economical than the traditional ATPS method.

  20. Edge states and phase diagram for graphene under polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Xiang, E-mail: wangyixiang@jiangnan.edu.cn [School of Science, Jiangnan University, Wuxi 214122 (China); Li, Fuxiang [Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-07-01

    In this work, we investigate the topological phase transitions in graphene under the modulation of circularly polarized light, by analyzing the changes of edge states and its topological structures. A full phase diagram, with several different topological phases, is presented in the parameter space spanned by the driving frequency and light strength. We find that the high-Chern number behavior is very common in the driven system. While the one-photon resonance can create the chiral edge states in the π-gap, the two-photon resonance will induce the counter-propagating edge modes in the zero-energy gap. When the driving light strength is strong, the number and even the chirality of the edge states may change in the π-gap. The robustness of the edge states to disorder potential is also examined. We close by discussing the feasibility of experimental proposals.

  1. Dual-Polarized Planar Phased Array Analysis for Meteorological Applications

    Directory of Open Access Journals (Sweden)

    Chen Pang

    2015-01-01

    Full Text Available This paper presents a theoretical analysis for the accuracy requirements of the planar polarimetric phased array radar (PPPAR in meteorological applications. Among many factors that contribute to the polarimetric biases, four factors are considered and analyzed in this study, namely, the polarization distortion due to the intrinsic limitation of a dual-polarized antenna element, the antenna pattern measurement error, the entire array patterns, and the imperfect horizontal and vertical channels. Two operation modes, the alternately transmitting and simultaneously receiving (ATSR mode and the simultaneously transmitting and simultaneously receiving (STSR mode, are discussed. For each mode, the polarimetric biases are formulated. As the STSR mode with orthogonal waveforms is similar to the ATSR mode, the analysis is mainly focused on the ATSR mode and the impacts of the bias sources on the measurement of polarimetric variables are investigated through Monte Carlo simulations. Some insights of the accuracy requirements are obtained and summarized.

  2. Room-temperature solid phase ionic liquid (RTSPIL) coated Ω-transaminases: Development and application in organic solvents

    DEFF Research Database (Denmark)

    Grabner, B.; Nazario, M. A.; Gundersen, M. T.

    2018-01-01

    ω-Transaminases ATA-40, ATA-47 and ATA-82P were coated with room-temperature solid phase ionic liquids (RTSPILs) by means of three methods, melt coating, precipitation coating, and co‐lyophilization, and showed increased stability in all of the five tested organic solvents. Co‐lyophilization and ......ω-Transaminases ATA-40, ATA-47 and ATA-82P were coated with room-temperature solid phase ionic liquids (RTSPILs) by means of three methods, melt coating, precipitation coating, and co‐lyophilization, and showed increased stability in all of the five tested organic solvents. Co...

  3. Tolerance of anaerobic bacteria to chlorinated solvents.

    Science.gov (United States)

    Koenig, Joanna C; Groissmeier, Kathrin D; Manefield, Mike J

    2014-01-01

    The aim of this research was to evaluate the effects of four chlorinated aliphatic hydrocarbons (CAHs), perchloroethene (PCE), carbon tetrachloride (CT), chloroform (CF) and 1,2-dichloroethane (1,2-DCA), on the growth of eight anaerobic bacteria: four fermentative species (Escherichia coli, Klebsiella sp., Clostridium sp. and Paenibacillus sp.) and four respiring species (Pseudomonas aeruginosa, Geobacter sulfurreducens, Shewanella oneidensis and Desulfovibrio vulgaris). Effective concentrations of solvents which inhibited growth rates by 50% (EC50) were determined. The octanol-water partition coefficient or log Po/w of a CAH proved a generally satisfactory measure of its toxicity. Most species tolerated approximately 3-fold and 10-fold higher concentrations of the two relatively more polar CAHs CF and 1,2-DCA, respectively, than the two relatively less polar compounds PCE and CT. EC50 values correlated well with growth rates observed in solvent-free cultures, with fast-growing organisms displaying higher tolerance levels. Overall, fermentative bacteria were more tolerant to CAHs than respiring species, with iron- and sulfate-reducing bacteria in particular appearing highly sensitive to CAHs. These data extend the current understanding of the impact of CAHs on a range of anaerobic bacteria, which will benefit the field of bioremediation.

  4. Methanogenic biodegradation of paraffinic solvent hydrocarbons in two different oil sands tailings.

    Science.gov (United States)

    Mohamad Shahimin, Mohd Faidz; Siddique, Tariq

    2017-04-01

    Microbial communities drive many biogeochemical processes in oil sands tailings and cause greenhouse gas emissions from tailings ponds. Paraffinic solvent (primarily C 5 -C 6 ; n- and iso-alkanes) is used by some oil sands companies to aid bitumen extraction from oil sands ores. Residues of unrecovered solvent escape to tailings ponds during tailings deposition and sustain microbial metabolism. To investigate biodegradation of hydrocarbons in paraffinic solvent, mature fine tailings (MFT) collected from Albian and CNRL ponds were amended with paraffinic solvent at ~0.1wt% (final concentration: ~1000mgL -1 ) and incubated under methanogenic conditions for ~1600d. Albian and CNRL MFTs exhibited ~400 and ~800d lag phases, respectively after which n-alkanes (n-pentane and n-hexane) in the solvent were preferentially metabolized to methane over iso-alkanes in both MFTs. Among iso-alkanes, only 2-methylpentane was completely biodegraded whereas 2-methylbutane and 3-methylpentane were partially biodegraded probably through cometabolism. 16S rRNA gene pyrosequencing showed dominance of Anaerolineaceae and Methanosaetaceae in Albian MFT and Peptococcaceae and co-domination of "Candidatus Methanoregula" and Methanosaetaceae in CNRL MFT bacterial and archaeal communities, respectively, during active biodegradation of paraffinic solvent. The results are important for developing future strategies for tailings reclamation and management of greenhouse gas emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Catalyst of a metal heteropoly acid salt that is insoluble in a polar solvent on a non-metallic porous support and method of making

    Science.gov (United States)

    Wang, Yong [Richland, WA; Peden, Charles H. F. [West Richland, WA; Choi, Saemin [Richland, WA

    2002-10-29

    The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores. The method has the steps of: (a) obtaining a first solution containing a first precursor of a metal salt cation; (b) obtaining a second solution containing a second precursor of a heteropoly acid anion in a solvent having a limited dissolution potential for said first precursor; (c) impregnating the non-metallic support with the first precursor forming a first precursor deposit within the plurality of pores, forming a first precursor impregnated support; (d) heating said first precursor impregnated support forming a bonded first precursor impregnated support; (e) impregnating the second precursor that reacts with the precursor deposit and forms the metal heteropoly acid salt.

  6. Structure determination of small molecular phase in coal by solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Feng, J.; Wang, B.; Ye, C.; Li, W.; Xie, K. [Taiyuan University of Technology, Taiyuan (China)

    2004-04-01

    7 typical Chinese coal samples were extracted by NMP/CS{sub 2} system at around 90{degree}C by Soxhlet method. Compared with results from NMP, a higher coal extraction rate was acquired when NMP + CS{sub 2} solvent system was adopted. Except for anthracite extraction rate of about 20% was acquired, particularly 41% for long flame coal. By using the method of retention index of coal extracts analysis by HPLC, it is found that the polar part with less than six-carbon numbers in coal is the active site for coal reactivity, and the inert site belongs to the aromatic hydrocarbon derivation with 3 aromatic rings. 13 refs., 3 figs., 2 tabs.

  7. Solvent-dependent fluorescence enhancement and piezochromism of a carbazole-substituted naphthopyran

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lihui; Wang, Aixia [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Wang, Guang, E-mail: wangg923@nenu.edu.cn [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Munyentwari, Alexis [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Zhou, Yihan, E-mail: yhzhou@ciac.ac.cn [National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2015-09-15

    A novel carbazole-substituted naphthopyran, 3,3-bis-(4-carbazolylphenyl)-[3H]-naphtho[2,1-b]pyran (CzNP) was designed and synthesized. The new compound exhibited normal photochromism in dichloromethane solution and the UV irradiation did not influence its fluorescence. On the contrary, the fluorescence of CzNP in N,N-dimethylformamide (DMF) was intensively enhanced to 29 times after 60 min of the UV irradiation and this enhanced fluorescence can be quenched by addition of triethylamine (TEA). The study of enhanced extent of fluorescence of CzNP in solvents with different polarities and in mixed solvents demonstrated that the enhanced fluorescence is dependent on the polarity of solvents. The larger the polarity of solvent was, the stronger was the fluorescence of CzNP. CzNP also exhibited piezochromic performance and the pressure led to the cleavage of the C–O bond of pyran ring. - Highlights: • A carbazole-substituted photochromic naphthopyran was designed and synthesized. • The fluorescence was enhanced under the existence of DMF and UV irradiation. • The polarity of solvent was the dominating factor to affect the fluorescence. • The new compound also displayed piezochromic performance.

  8. Evaluation of thermophysical properties of ionic liquids with polar solvent: a comparable study of two families of ionic liquids with various ions.

    Science.gov (United States)

    Govinda, Varadhi; Attri, Pankaj; Venkatesu, Punnuru; Venkateswarlu, Ponneri

    2013-10-17

    In this work, we explore and compare the role of the ion effect on the thermophysical properties of two families of ionic liquids (ILs), namely, tetra-alkyl ammonium cation [R4N](+) with hydroxide [OH](-) anion and 1-alkyl-3-methyl imidazolium cation [amim](+) with different anions (chloride, methyl sulfate, and tetrafluoroborate), with polar solvent such as dimethylsulfoxide (DMSO) in the temperature range from 25 to 40 °C and over the whole concentration range of ILs. Two families of ILs, namely, tetramethyl ammonium hydroxide [(CH3)4N][OH] (TMAH), tetraethyl ammonium hydroxide [(C2H5)4N][OH] (TEAH), tetrapropyl ammonium hydroxide [(C3H7)4N][OH] (TPAH), and tetrabutyl ammonium hydroxide [(C4H9)4N][OH] (TBAH) from ammonium-based ILs and 1-ethyl-3-methylimidazolium chloride [Emim][Cl], 1-ethyl-3-methylimidazolium methylsulfate [Emim][MeSO4], 1-butyl-3-methylimidazolium tetrafluoroborate [Bmim][BF4], and 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) from imidazolium family of ILs, are used in the present study. To address the molecular interactions of ILs with DMSO, densities (ρ), ultrasonic sound velocities (u), and viscosities (η) have been measured over the entire composition range and at four temperatures, 25, 30, 35, and 40 °C, under atmospheric pressure. From these experimental data, the excess molar volume (V(E)), the deviation in isentropic compressibility (Δκs), and the deviation in viscosity (Δη) were calculated and were adequately correlated by using the Redlich-Kister polynomial equation. The measured and predicted data were interpreted on the basis of intermolecular interactions and structural effects between like and unlike molecules upon mixing. The hydrogen-bonding features between ammonium-based ILs and DMSO were analyzed using molecular modeling program by HyperChem 7.

  9. Dual Alkali Solvent System for CO2 Capture from Flue Gas.

    Science.gov (United States)

    Li, Yang; Wang, H Paul; Liao, Chang-Yu; Zhao, Xinglei; Hsiung, Tung-Li; Liu, Shou-Heng; Chang, Shih-Ger

    2017-08-01

    A novel two-aqueous-phase CO 2 capture system, namely the dual alkali solvent (DAS) system, has been developed. Unlike traditional solvent-based CO 2 capture systems in which the same solvent is used for both CO 2 absorption and stripping, the solvent of the DAS system consists of two aqueous phases. The upper phase, which contains an organic alkali 1-(2-hydroxyethyl) piperazine (HEP), is used for CO 2 absorption. The lower phase, which consists of a mixture of K 2 CO 3 /KHCO 3 aqueous solution and KHCO 3 precipitate, is used for CO 2 stripping. Only a certain kind of amine (such as HEP) is able to ensure the phase separation, satisfactory absorption efficiency, effective CO 2 transfer from the upper phase to the lower phase, and regeneration of the upper phase. In the meantime, due to the presence of K 2 CO 3 /KHCO 3 in the lower phase, HEP in the upper phase is capable of being regenerated from its sulfite/sulfate heat stable salt, which enables the simultaneous absorption of CO 2 and SO 2 /SO 3 from the flue gas. Preliminary experiments and simulations indicate that the implementation of the DAS system can lead to 24.0% stripping energy savings compared to the Econamine process, without significantly lowering the CO 2 absorption efficiency (∼90%).

  10. Polar silica-based stationary phases. Part II- Neutral silica stationary phases with surface bound maltose and sorbitol for hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Rathnasekara, Renuka; El Rassi, Ziad

    2017-07-28

    Two neutral polyhydroxylated silica bonded stationary phases, namely maltose-silica (MALT-silica) and sorbitol-silica (SOR-silica), have been introduced and chromatographically characterized in hydrophilic interaction liquid chromatography (HILIC) for a wide range of polar compounds. The bonding of the maltose and sorbitol to the silica surface was brought about by first converting bare silica to an epoxy-activated silica surface via reaction with γ-glycidoxypropyltrimethoxysilane (GPTMS) followed by attaching maltose and sorbitol to the epoxy surface in the presence of the Lewis acid catalyst BF 3 .ethereate. Both silica based columns offered the expected retention characteristics usually encountered for neutral polar surface. The retention mechanism is majorly based on solute' differential partitioning between an organic rich hydro-organic mobile phase (e.g., ACN rich mobile phase) and an adsorbed water layer on the surface of the stationary phase although additional hydrogen bonding was also responsible in some cases for solute retention. The MALT-silica column proved to be more hydrophilic and offered higher retention, separation efficiency and resolution than the SOR-silica column among the tested polar solutes such as derivatized mono- and oligosaccharides, weak phenolic acids, cyclic nucleotide monophosphate and nucleotide-5'-monophosphates, and weak bases, e.g., nucleobases and nucleosides. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Polar phase transitions in heteroepitaxial stabilized La0.5Y0.5AlO3 thin films

    Science.gov (United States)

    Liu, Shenghua; Zhang, Chunfeng; Zhu, Mengya; He, Qian; Chakhalian, Jak; Liu, Xiaoran; Borisevich, Albina; Wang, Xiaoyong; Xiao, Min

    2017-10-01

    We report on the fabrication of epitaxial La0.5Y0.5AlO3 ultrathin films on (001) LaAlO3 substrates. Structural characterizations by scanning transmission electron microscopy and x-ray diffraction confirm the high quality of the film with a - b + c - AlO6 octahedral tilt pattern. Unlike either of the nonpolar parent compound, LaAlO3 and YAlO3, second harmonic generation measurements on the thin films suggest a nonpolar-polar phase transition at T c near 500 K, and a polar-polar phase transition at T a near 160 K. By fitting the angular dependence of the second harmonic intensities, we further propose that the two polar structures can be assigned to the Pmc2 1 and Pmn2 1 space group, while the high temperature nonpolar structure belongs to the Pbnm space group.

  12. Vegetable Oils as Alternative Solvents for Green Oleo-Extraction, Purification and Formulation of Food and Natural Products.

    Science.gov (United States)

    Yara-Varón, Edinson; Li, Ying; Balcells, Mercè; Canela-Garayoa, Ramon; Fabiano-Tixier, Anne-Sylvie; Chemat, Farid

    2017-09-05

    Since solvents of petroleum origin are now strictly regulated worldwide, there is a growing demand for using greener, bio-based and renewable solvents for extraction, purification and formulation of natural and food products. The ideal alternative solvents are non-volatile organic compounds (VOCs) that have high dissolving power and flash point, together with low toxicity and less environmental impact. They should be obtained from renewable resources at a reasonable price and be easy to recycle. Based on the principles of Green Chemistry and Green Engineering, vegetable oils could become an ideal alternative solvent to extract compounds for purification, enrichment, or even pollution remediation. This review presents an overview of vegetable oils as solvents enriched with various bioactive compounds from natural resources, as well as the relationship between dissolving power of non-polar and polar bioactive components with the function of fatty acids and/or lipid classes in vegetable oils, and other minor components. A focus on simulation of solvent-solute interactions and a discussion of polar paradox theory propose a mechanism explaining the phenomena of dissolving polar and non-polar bioactive components in vegetable oils as green solvents with variable polarity.

  13. Catalytic Activity Control via Crossover between Two Different Microstructures

    KAUST Repository

    Zhou, Yuheng

    2017-09-08

    Metal nanocatalysts hold great promise for a wide range of heterogeneous catalytic reactions, while the optimization strategy of catalytic activity is largely restricted by particle size or shape control. Here, we demonstrate that a reversible microstructural control through the crossover between multiply-twinned nanoparticle (MTP) and single crystal (SC) can be readily achieved by solvent post-treatment on gold nanoparticles (AuNPs). Polar solvents (e.g. water, methanol) direct the transformation from MTP to SC accompanied by the disappearance of twinning and stacking faults. A reverse transformation from SC to MTP is achieved in non-polar solvent (e.g. toluene) mixed with thiol ligands. The transformation between two different microstructures is directly observed by in-situ TEM and leads to a drastic modulation of catalytic activity towards the gas-phase selective oxidation of alcohols. There is a quasi-linear relationship between TOFs and MTP concentrations. Based on the combined experimental and theoretical investigations of alcohol chemisorption on these nanocatalysts, we propose that the exposure of {211}-like microfacets associated with twin boundaries and stack faults accounts for the strong chemisorption of alcohol molecules on MTP AuNPs and thus the exceptionally high catalytic activity.

  14. Tipping Point for Expansion of Layered Aluminosilicates in Weakly Polar Solvents: Supercritical CO 2

    Energy Technology Data Exchange (ETDEWEB)

    Schaef, Herbert T.; Loganathan, Narasimhan; Bowers, Geoffrey M.; Kirkpatrick, Robert J.; Yazaydin, A. O.; Burton, Sarah D.; Hoyt, David W.; Thanthiriwatte, Sahan; Dixon, David A.; McGrail, Bernard P.; Rosso, Kevin M.; Ilton, Eugene S.; Loring, John S.

    2017-10-11

    Layered aluminosilicates play a dominant role in the mechanical and gas storage properties of the subsurface, are used in diverse industrial applications, and serve as model materials for understanding solvent-ion-support systems. Although expansion in the presence of H2O is well known to be systematically correlated with the hydration free energy of the interlayer cation, in environments dominated by non-polar solvents (i.e. CO2), uptake into the interlayer is not well-understood. Using novel high pressure capabilities, we investigated the interaction of super-critical CO2 with Na+-, NH4+-, and Cs+-saturated montmorillonite, comparing results with predictions from molecular dynamics simulations. Despite the known trend in H2O, and that cation solvation energies in CO2 suggest a stronger interaction with Na+, both the NH4+- and Cs+-clays readily absorbed CO2 and expanded while the Na+-clay did not. The apparent inertness of the Na+-clay was not due to kinetics, as experiments seeking a stable expanded state showed that none exists. Molecular dynamics simulations revealed a large endothermicity to CO2 intercalation in the Na+-clay, but little or no energy barrier for the NH4+- and Cs+-clays. Consequently, we have shown for the first time that in the presence of a low dielectric constant gas swelling depends more on the strength of the interaction between interlayer cation and aluminosilicate sheets and less on that with solvent. The finding suggests a distinct regime in layered aluminosilicates swelling behavior triggered by low solvent polarizability, with important implications in geomechanics, storage and retention of volatile gases, and across industrial uses in gelling, decoloring, heterogeneous catalysis, and semi-permeable reactive barriers.

  15. Porous polymeric membranes with thermal and solvent resistance

    KAUST Repository

    Pulido, Bruno

    2017-05-30

    Polymeric membranes are highly advantageous over their ceramic counterparts in terms of the simplicity of the manufacturing process, cost and scalability. Their main disadvantages are low stability at temperatures above 200 °C, and in organic solvents. We report for the first time porous polymeric membranes manufactured from poly(oxindolebiphenylylene) (POXI), a polymer with thermal stability as high as 500 °C in oxidative conditions. The membranes were prepared by solution casting and phase inversion by immersion in water. The asymmetric porous morphology was characterized by scanning electronic microscopy. The pristine membranes are stable in alcohols, acetone, acetonitrile and hexane, as well as in aqueous solutions with pH between 0 and 14. The membrane stability was extended for application in other organic solvents by crosslinking, using various dibromides, and the efficiency of the different crosslinkers was evaluated by thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). POXI crosslinked membranes are stable up to 329 °C in oxidative conditions and showed organic solvent resistance in polar aprotic solvents with 99% rejection of Red Direct 80 in DMF at 70 °C. With this development, the application of polymeric membranes could be extended to high temperature and harsh environments, fields currently dominated by ceramic membranes.

  16. Influence of anion on thermophysical properties of ionic liquids with polar solvent

    International Nuclear Information System (INIS)

    Govinda, Varadhi; Reddy, P. Madhusudhana; Attri, Pankaj; Venkatesu, P.; Venkateswarlu, P.

    2013-01-01

    Highlights: ► We have reported a series of ionic liquids (ILs) involving a common cation. ► The molecular interactions between ILs and DMSO. ► The results for observed anion dependent phenomena. ► Redlich–Kister polynomial was used to correlate the results. ► The intermolecular interactions were analyzed on the basis of properties. -- Abstract: In this work, we have reported a series of ionic liquids (ILs) involving a common cation trimethyl ammonium, ([(CH 3 ) 3 NH] + ), with generally used anions (acetate, [CH 3 COO] − , sulfate, [HSO 4 ] − , phosphate, [H 2 PO 4 ] − ). To address the molecular interactions between the relatively new class of solvents such as trimethylammonium acetate [(CH 3 ) 3 NH + ] [CH 3 COO – ] (TMAA), trimethylammonium hydrogen sulfate [(CH 3 ) 3 NH + ][HSO 4 − ] (TMAS), and trimethylammonium dihydrogen phosphate [(CH 3 ) 3 NH + ][H 2 PO 4 – ] (TMAP), with the polar solvent, dimethylsulfoxide (DMSO), the density (ρ), speed of sound (u) and viscosity (η) values have been measured over complete concentration range and wide temperature range from 298.15 K to 313.15 K in steps of 5 K under ambient pressure. By using these experimental results, excess volumes (V E ), isentropic compressibility deviations (Δκ s ) and viscosity deviations (Δη) were obtained for all these binary systems at all experimental temperatures. The results are correlated by the Redlich−Kister type function to derive the coefficients and estimate the standard error. Further, the results for observed anion dependent phenomena and temperature influence on measured and derived properties are also discussed

  17. Generation of a strong attosecond pulse train with an orthogonally polarized two-color laser field

    International Nuclear Information System (INIS)

    Kim, Chul Min; Kim, I Jong; Nam, Chang Hee

    2005-01-01

    We theoretically investigate the high-order harmonic generation from a neon atom irradiated by an intense two-color femtosecond laser pulse, in which the fundamental field and its second harmonic are linearly polarized and orthogonal to each other. In contrast to usual high-harmonic generation with linearly polarized fundamental field alone, a very strong and clean high-harmonic spectrum, consisting of both odd and even orders of harmonics, can be generated in the orthogonally polarized two-color laser field with proper selection of the relative phase between the fundamental and second-harmonic fields. In time domain, this results in a strong and regular attosecond pulse train. The origin of these behaviors is elucidated by analyzing semiclassical electron paths and by simulating high-harmonic generation quantum mechanically

  18. Analysis of small molecular phase in coal involved in pyrolysis and solvent extraction by PGC

    Energy Technology Data Exchange (ETDEWEB)

    Jie Feng; Wen-Ying Li; Ke-Chang Xie [Taiyuan University of Technology, Taiyuan (China). Key Laboratory of Coal Science and Technology

    2004-06-01

    The small molecular phase, which strongly affects coal's reactivity, is the main part of the structure unit in coal. At present, its composition and structure features have not been clearly understood. In this paper, a flash pyrolysis technique with on-line GC (PGC) was used to investigate the properties of the small molecular phase from six kinds of rank coal in China. Experiments were divided into two parts: one is PGC of parent coal; another is PGC of coal extracts from NMP + CS{sub 2} (75:1) solvent extraction at 373 K. Results show that the small molecular phase mainly consists of C12-C16 compounds that could be integrally released when the heating rate was greater than 10 K/ms and the final pyrolysis temperature was 1373 K; other compounds may be the products of decomposition and polymerization from this small molecular phase during pyrolysis. 13 refs., 7 figs., 1 tab.

  19. Estimation of phase separation temperatures for polyethersulfone/solvent/non-solvent systems in RTIPS and membrane properties

    DEFF Research Database (Denmark)

    Liu, Min; Liu, Sheng-Hui; Skov, Anne Ladegaard

    2018-01-01

    was observed. When the membrane-forming temperature was higher than the cloud point, membranes with a bi-continuous structure were acquired and showed a higher pure water permeation flux than that of membranes prepared with the non-solvent induced phase separation (NIPS) process. The pure water permeation flux...... and the mean pore size of membranes prepared with the RTIPS process decreased in line with an increase of PES molecular weight. When the membrane formation mechanism was the RTIPS process, the mechanical properties were better than those of the corresponding membranes prepared with the NIPS process....

  20. Acetone-based cellulose solvent.

    Science.gov (United States)

    Kostag, Marc; Liebert, Tim; Heinze, Thomas

    2014-08-01

    Acetone containing tetraalkylammonium chloride is found to be an efficient solvent for cellulose. The addition of an amount of 10 mol% (based on acetone) of well-soluble salt triethyloctylammonium chloride (Et3 OctN Cl) adjusts the solvent's properties (increases the polarity) to promote cellulose dissolution. Cellulose solutions in acetone/Et3 OctN Cl have the lowest viscosity reported for comparable aprotic solutions making it a promising system for shaping processes and homogeneous chemical modification of the biopolymer. Recovery of the polymer and recycling of the solvent components can be easily achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Solvent induced supramolecular anisotropy in molecular gels

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Michael A., E-mail: mroger09@uoguelph.ca [Department of Food Science, University of Guelph, Guelph, Ontario, N3C3X9 (Canada); Corradini, Maria G. [Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003 (United States); Emge, Thomas [Department of Chemistry and Biochemistry, Rutgers University, New Brunswick, NJ, 08901 (United States)

    2017-06-15

    Herein is the first report of solvent induced anisotropy in 12-hydroxystearic acid self-assembled fibrillar networks. Increasing the chain length of polar solvent, such as nitriles and ketones, tailored the anisotropy of the fibrillar aggregates. 12HSA molecular gels, comprised of alkanes, exhibited an isotropic fibrillar network irrespective of the alkane chain length. In polar solvents, anisotropy, observed using 2D powder x-ray diffraction profiles, is correlated to a fibrillar supramolecular morphologies in long chain nitriles and ketones while sphereulitic crystals are correlated to x-ray diffraction patterns with an isotropic scatter intensity in short chain ketones and nitriles. These changes directly modify the final physical properties of the gels. - Highlights: • 12-HSA self-assembles into crystalline supramolecular morphologies depending on the solvent. • Alkanes, short chain nitriles and ketones led to 12-HSA displaying supramolecular isotropy. • In long chain nitriles and ketones, 12-HSA displays supramolecular anisotropy.

  2. Solvent induced supramolecular anisotropy in molecular gels

    International Nuclear Information System (INIS)

    Rogers, Michael A.; Corradini, Maria G.; Emge, Thomas

    2017-01-01

    Herein is the first report of solvent induced anisotropy in 12-hydroxystearic acid self-assembled fibrillar networks. Increasing the chain length of polar solvent, such as nitriles and ketones, tailored the anisotropy of the fibrillar aggregates. 12HSA molecular gels, comprised of alkanes, exhibited an isotropic fibrillar network irrespective of the alkane chain length. In polar solvents, anisotropy, observed using 2D powder x-ray diffraction profiles, is correlated to a fibrillar supramolecular morphologies in long chain nitriles and ketones while sphereulitic crystals are correlated to x-ray diffraction patterns with an isotropic scatter intensity in short chain ketones and nitriles. These changes directly modify the final physical properties of the gels. - Highlights: • 12-HSA self-assembles into crystalline supramolecular morphologies depending on the solvent. • Alkanes, short chain nitriles and ketones led to 12-HSA displaying supramolecular isotropy. • In long chain nitriles and ketones, 12-HSA displays supramolecular anisotropy.

  3. A chromatographic determination of water in non-aqueous phases of solvent extraction systems

    International Nuclear Information System (INIS)

    Lyle, S.J.; Smith, D.B.

    1975-01-01

    The disadvantages of the Karl Fischer method for the determination of water in the non-aqueous phases of solvent extraction systems are pointed out, and a gas chromatographic method is described which is claimed to be potentially capable of overcoming these disadvantages. The method, as described, was developed to satisfy conditions relevant to measurement of the transfer rate of water from an aqueous phase into tri-n-butylphosphate in toluene, but it can be used for water determination in other solvent extraction systems. The apparatus used is described in detail. The concentration of water in water-saturated TBP was found to be 3.56 mol/litre, compared with a value of 3.55 obtained by Karl Fischer titration and previous literature values of 3.59 and 3.57. Measurements of water content in benzene solutions of long chain alkylamines were also sucessfully carried out. (U.K.)

  4. Kinetic isotope effects and tunnelling in the proton-transfer reaction between 4-nitrophenylnitromethane and tetramethylguanidine in various aprotic solvents

    International Nuclear Information System (INIS)

    Caldin, E.F.; Mateo, S.

    1975-01-01

    Rates and equilibrium constants have been determined for the proton-transfer reaction of 4-nitrophenylnitromethane, NO 2 C 6 H 4 CH 2 NO 2 , and its αα-deuterated analogue NO 2 C 6 H 4 CD 2 NO 2 , with the strong base tetramethylguanidine [HN=C(NMe 2 ) 2 ), at temperatures between -60 0 C and +65 0 in a range of aprotic solvents. Spectrophotometry and the stopped-flow technique were used. The reaction is a simple proton-transfer process leading to an ion-pair. The kinetic isotope effects are correlated with the polarity of the solvents, as measured by the dielectric constant or by the empirical parameter Esub(T). In the less polar solvents they are exceptionally large. In toluene, for example, at 25 0 C the rate ratio ksup(H)/ksup(D) = 45 +- 2, the activation energy difference Esub(a)sup(D) - Esub(a)sup(H) =4.3 +- 0.3 kcal molsup(-1) (16 kJ molsup(-1), and the ratio of the pre-exponential factors logsub(10) (Asup(D)/Asup(H)) = 1.5 +- 0.2+ and even larger values of logsub(10)(Asup(D)/Asup(H)) are found for mesitylene (1.94 +- 0.06) and cyclohexane (2.4 +- 0.2). Positive deviations from linear Arrhenius plots are found for these solvents. Tunnelling is the only interpretation that cannot account for these results. For the more polar solvents (dielectric constant 7 to 37), the isotope effects are closer to the range predicted by semi-classical theory. The isotope effects in all solvents have been fitted to Bell's equation for a parabolic barrier, and the barrier dimensions calculated for each solvent. The suggested interpretation of the results is that the solvent-solute interactions affect the height of the barrier and that motions of solvent molecules are coupled with the motion of the proton in the more polar solvents but not in the less polar ones; reorganization of solvent molecules accompanies the proton-transfer in the more polar solvents, but only electron-polarization in the less polar. Tunnelling has large effects in the less polar solvents, where the

  5. System Model of Heat and Mass Transfer Process for Mobile Solvent Vapor Phase Drying Equipment

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2014-01-01

    Full Text Available The solvent vapor phase drying process is one of the most important processes during the production and maintenance for large oil-immersed power transformer. In this paper, the working principle, system composition, and technological process of mobile solvent vapor phase drying (MVPD equipment for transformer are introduced in detail. On the basis of necessary simplification and assumption for MVPD equipment and process, a heat and mass transfer mathematical model including 40 mathematical equations is established, which represents completely thermodynamics laws of phase change and transport process of solvent, water, and air in MVPD technological processes and describes in detail the quantitative relationship among important physical quantities such as temperature, pressure, and flux in key equipment units and process. Taking a practical field drying process of 500 KV/750 MVA power transformer as an example, the simulation calculation of a complete technological process is carried out by programming with MATLAB software and some relation curves of key process parameters changing with time are obtained such as body temperature, tank pressure, and water yield. The change trend of theoretical simulation results is very consistent with the actual production record data which verifies the correctness of mathematical model established.

  6. Spectroscopic and DFT study of solvent effects on the electronic absorption spectra of sulfamethoxazole in neat and binary solvent mixtures

    Science.gov (United States)

    Almandoz, M. C.; Sancho, M. I.; Blanco, S. E.

    2014-01-01

    The solvatochromic behavior of sulfamethoxazole (SMX) was investigated using UV-vis spectroscopy and DFT methods in neat and binary solvent mixtures. The spectral shifts of this solute were correlated with the Kamlet and Taft parameters (α, β and π*). Multiple lineal regression analysis indicates that both specific hydrogen-bond interaction and non specific dipolar interaction play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra using TD-DFT methods were in good agreement with the experimental ones. Binary mixtures consist of cyclohexane (Cy)-ethanol (EtOH), acetonitrile (ACN)-dimethylsulfoxide (DMSO), ACN-dimethylformamide (DMF), and aqueous mixtures containing as co-solvents DMSO, ACN, EtOH and MeOH. Index of preferential solvation was calculated as a function of solvent composition and non-ideal characteristics are observed in all binary mixtures. In ACN-DMSO and ACN-DMF mixtures, the results show that the solvents with higher polarity and hydrogen bond donor ability interact preferentially with the solute. In binary mixtures containing water, the SMX molecules are solvated by the organic co-solvent (DMSO or EtOH) over the whole composition range. Synergistic effect is observed in the case of ACN-H2O and MeOH-H2O, indicating that at certain concentrations solvents interact to form association complexes, which should be more polar than the individual solvents of the mixture.

  7. The potential of cloud point system as a novel two-phase partitioning system for biotransformation.

    Science.gov (United States)

    Wang, Zhilong

    2007-05-01

    Although the extractive biotransformation in two-phase partitioning systems have been studied extensively, such as the water-organic solvent two-phase system, the aqueous two-phase system, the reverse micelle system, and the room temperature ionic liquid, etc., this has not yet resulted in a widespread industrial application. Based on the discussion of the main obstacles, an exploitation of a cloud point system, which has already been applied in a separation field known as a cloud point extraction, as a novel two-phase partitioning system for biotransformation, is reviewed by analysis of some topical examples. At the end of the review, the process control and downstream processing in the application of the novel two-phase partitioning system for biotransformation are also briefly discussed.

  8. Characterization of polarization-independent phase modulation method for practical plug and play quantum cryptography

    International Nuclear Information System (INIS)

    Kwon, Osung; Lee, Min-Soo; Woo, Min Ki; Park, Byung Kwon; Kim, Il Young; Kim, Yong-Su; Han, Sang-Wook; Moon, Sung

    2015-01-01

    We characterized a polarization-independent phase modulation method, called double phase modulation, for a practical plug and play quantum key distribution (QKD) system. Following investigation of theoretical backgrounds, we applied the method to the practical QKD system and characterized the performance through comparing single phase modulation (SPM) and double phase modulation. Consequently, we obtained repeatable and accurate phase modulation confirmed by high visibility single photon interference even for input signals with arbitrary polarization. Further, the results show that only 80% of the bias voltage required in the case of single phase modulation is needed to obtain the target amount of phase modulation. (paper)

  9. Exfoliation of graphite into graphene in polar solvents mediated by amphiphilic hexa-peri-hexabenzocoronene.

    Science.gov (United States)

    Kabe, Ryota; Feng, Xinliang; Adachi, Chihaya; Müllen, Klaus

    2014-11-01

    A water-soluble surfactant consisting of hexa-peri-hexabenzocoronene (HBC) as hydrophobic aromatic core and hydrophilic carboxy substituents was synthesized. It exhibited a self-assembled nanofiber structure in the solid state. Profiting from the π interactions between the large aromatic core of HBC and graphene, the surfactant mediated the exfoliation of graphite into graphene in polar solvents, which was further stabilized by the bulky hydrophilic carboxylic groups. A graphene dispersion with a concentration as high as 1.1 mg L(-1) containing 2-6 multilayer nanosheets was obtained. The lateral size of the graphene sheets was in the range of 100-500 nm based on atomic force microscope (AFM) and transmission electron microscope (TEM) measurements. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Separation by solvent extraction

    International Nuclear Information System (INIS)

    Holt, C.H. Jr.

    1976-01-01

    In a process for separating fission product values from U and Pu values contained in an aqueous solution, an oxidizing agent is added to the solution to secure U and Pu in their hexavalent state. The aqueous solution is contacted with a substantially water-immiscible organic solvent with agitation while the temperature is maintained at from -1 to -2 0 C until the major part of the water present is frozen. The solid ice phase is continuously separated as it is formed and a remaining aqueous liquid phase containing fission product values and a solvent phase containing Pu and U values are separated from each other. The last obtained part of the ice phase is melted and added to the separated liquid phase. The resulting liquid is treated with a new supply of solvent whereby it is practically depleted of U and Pu

  11. Intrinsically stable phase-modulated polarization encoding system for quantum key distribution

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiaobao [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Liao Changjun [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)], E-mail: chliao@scnu.edu.cn; Mi Jinglong; Wang Jindong; Liu Songhao [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)

    2008-12-22

    We demonstrate experimentally an intrinsically stable polarization coding and decoding system composed of optical-fiber Sagnac interferometers with integrated phase modulators for quantum key distribution. An interference visibility of 98.35% can be kept longtime during the experiment without any efforts of active compensation for coding all four desired polarization states.

  12. Influence of Solvent-Solvent and Solute-Solvent Interaction Properties on Solvent-Mediated Potential

    International Nuclear Information System (INIS)

    Zhou Shiqi

    2005-01-01

    A recently proposed universal calculational recipe for solvent-mediated potential is applied to calculate excess potential of mean force between two large Lennard-Jones (LJ) or hard core attractive Yukawa particles immersed in small LJ solvent bath at supercritical state. Comparison between the present prediction with a hypernetted chain approximation adopted for solute-solute correlation at infinitely dilute limit and existing simulation data shows high accuracy for the region with large separation, and qualitative reliability for the solute particle contact region. The calculational simplicity of the present recipe allows for a detailed investigation on the effect of the solute-solvent and solvent-solvent interaction details on the excess potential of mean force. The resultant conclusion is that gathering of solvent particles near a solute particle leads to repulsive excess PMF, while depletion of solvent particles away from the solute particle leads to attractive excess PMF, and minor change of the solvent-solvent interaction range has large influence on the excess PMF.

  13. Solvent Optimization for Efficient Enzymatic Monoacylglycerol Production Based on a Glycerolysis Reaction

    DEFF Research Database (Denmark)

    Damstrup, Marianne; Jensen, Tine; Sparsø, Flemming V.

    2005-01-01

    This study was aimed at screening solvent systems of varying polarities to identify suitable solvents for efficient and practical enzymatic glycerolysis. Several pure solvents and solvent mixtures were screened in a batch reaction system consisting of glycerol, sunflower oil, and Novozymo (R) 435...

  14. Design and fabrication of a polarization-independent two-port beam splitter.

    Science.gov (United States)

    Feng, Jijun; Zhou, Changhe; Zheng, Jiangjun; Cao, Hongchao; Lv, Peng

    2009-10-10

    We design and manufacture a fused-silica polarization-independent two-port beam splitter grating. The physical mechanism of this deeply etched grating can be shown clearly by using the simplified modal method with consideration of corresponding accumulated phase difference of two excited propagating grating modes, which illustrates that the binary-phase fused-silica grating structure depends little on the incident wavelength, but mainly on the ratio of groove depth to grating period and the ratio of incident wavelength to grating period. These analytic results would also be very helpful for wavelength bandwidth analysis. The exact grating profile is optimized by using the rigorous coupled-wave analysis. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results agree well with the theoretical values.

  15. Generation of an XUV supercontinuum by optimization of the angle between polarization planes of two linearly polarized pulses in a multicycle two-color laser field

    International Nuclear Information System (INIS)

    Yao Jinping; Zeng Bin; Fu Yuxi; Chu Wei; Ni Jielei; Li Yao; Xiong Hui; Xu Han; Cheng Ya; Xu Zhizhan; Liu Xiaojun; Chen, J.

    2010-01-01

    We theoretically investigate the high-order harmonic generation (HHG) in helium using a two-color laser field synthesized by an intense 25-fs laser pulse at 800 nm and a relatively weak ∼43-fs laser pulse at 1400 nm. When the polarization between the two pulses is arranged at an angle of ∼73 deg., supercontinuum spectra are dramatically broadened to 180 eV, which is sufficient to support an isolated ∼73-as pulse without any phase compensation. The physical mechanisms behind the phenomenon are well explained in terms of quantum and classical analyses. Furthermore, in the long-pulse regime, this method of extending the supercontinuum spectrum shows the significant advantage over previous two-color HHG schemes.

  16. Controlling nonsequential double ionization of Ne with parallel-polarized two-color laser pulses.

    Science.gov (United States)

    Luo, Siqiang; Ma, Xiaomeng; Xie, Hui; Li, Min; Zhou, Yueming; Cao, Wei; Lu, Peixiang

    2018-05-14

    We measure the recoil-ion momentum distributions from nonsequential double ionization of Ne by two-color laser pulses consisting of a strong 800-nm field and a weak 400-nm field with parallel polarizations. The ion momentum spectra show pronounced asymmetries in the emission direction, which depend sensitively on the relative phase of the two-color components. Moreover, the peak of the doubly charged ion momentum distribution shifts gradually with the relative phase. The shifted range is much larger than the maximal vector potential of the 400-nm laser field. Those features are well recaptured by a semiclassical model. Through analyzing the correlated electron dynamics, we found that the energy sharing between the two electrons is extremely unequal at the instant of recollison. We further show that the shift of the ion momentum corresponds to the change of the recollision time in the two-color laser field. By tuning the relative phase of the two-color components, the recollision time is controlled with attosecond precision.

  17. Green solvents and technologies for oil extraction from oilseeds

    OpenAIRE

    Kumar, S. P. Jeevan; Prasad, S. Rajendra; Banerjee, Rintu; Agarwal, Dinesh K.; Kulkarni, Kalyani S.; Ramesh, K. V.

    2017-01-01

    Oilseeds are crucial for the nutritional security of the global population. The conventional technology used for oil extraction from oilseeds is by solvent extraction. In solvent extraction, n-hexane is used as a solvent for its attributes such as simple recovery, non-polar nature, low latent heat of vaporization (330?kJ/kg) and high selectivity to solvents. However, usage of hexane as a solvent has lead to several repercussions such as air pollution, toxicity and harmfulness that prompted to...

  18. Effect of Solvents on the Product Distribution and Reaction Rate of a Buchwald-Hartwig Amination Reaction

    DEFF Research Database (Denmark)

    Christensen, H.; Kiil, Søren; Dam-Johansen, Kim

    2006-01-01

    The Buchwald-Hartwig amination reaction between p-bromotoluene and piperazine in the presence of the homogeneous catalytic system Pd(dba)(2)/(+/-)-BINAP and the base NaO-t-Bu was investigated in two different classes of solvents: aprotic, nonpolar and aprotic, polar. The reaction was carried out...... solvent for the Buchwald-Hartwig amination reaction under the conditions applied was m-xylene....

  19. Size effects of solvent molecules on the phase behavior and effective interaction of colloidal systems with the bridging attraction

    International Nuclear Information System (INIS)

    Chen, Jie; Wang, Xuewu; Kline, Steven R; Liu, Yun

    2016-01-01

    There has been much recent research interest towards understanding the phase behavior of colloidal systems interacting with a bridging attraction, where the small solvent particles and large solute colloidal particles can be reversibly associated with each other. These systems show interesting phase behavior compared to the more widely studied depletion attraction systems. Here, we use Baxter’s two-component sticky hard sphere model with a Percus–Yevick closure to solve the Ornstein–Zernike equation and study the size effect on colloidal systems with bridging attractions. The spinodal decomposition regions, percolation transition boundaries and binodal regions are systematically investigated as a function of the relative size of the small solvent and large solute particles as well as the attraction strength between the small and large particles. In the phase space determined by the concentrations of small and large particles, the spinodal and binodal regions form isolated islands. The locations and shapes of the spinodal and binodal regions sensitively depend on the relative size of the small and large particles and the attraction strength between them. The percolation region shrinks by decreasing the size ratio, while the binodal region slightly expands with the decrease of the size ratio. Our results are very important in understanding the phase behavior for a bridging attraction colloidal system, a model system that provides insight into oppositely charged colloidal systems, protein phase behavior, and colloidal gelation mechanisms. (paper)

  20. Size effects of solvent molecules on the phase behavior and effective interaction of colloidal systems with the bridging attraction.

    Science.gov (United States)

    Chen, Jie; Wang, Xuewu; Kline, Steven R; Liu, Yun

    2016-11-16

    There has been much recent research interest towards understanding the phase behavior of colloidal systems interacting with a bridging attraction, where the small solvent particles and large solute colloidal particles can be reversibly associated with each other. These systems show interesting phase behavior compared to the more widely studied depletion attraction systems. Here, we use Baxter's two-component sticky hard sphere model with a Percus-Yevick closure to solve the Ornstein-Zernike equation and study the size effect on colloidal systems with bridging attractions. The spinodal decomposition regions, percolation transition boundaries and binodal regions are systematically investigated as a function of the relative size of the small solvent and large solute particles as well as the attraction strength between the small and large particles. In the phase space determined by the concentrations of small and large particles, the spinodal and binodal regions form isolated islands. The locations and shapes of the spinodal and binodal regions sensitively depend on the relative size of the small and large particles and the attraction strength between them. The percolation region shrinks by decreasing the size ratio, while the binodal region slightly expands with the decrease of the size ratio. Our results are very important in understanding the phase behavior for a bridging attraction colloidal system, a model system that provides insight into oppositely charged colloidal systems, protein phase behavior, and colloidal gelation mechanisms.

  1. PHASE BEHAVIOR OF LIGHT GASES IN HYDROCARBON AND AQUEOUS SOLVENTS

    Energy Technology Data Exchange (ETDEWEB)

    KHALED A.M. GASEM; ROBERT L. ROBINSON, JR.

    1998-08-31

    Under previous support from the Department of Energy, an experimental facility has been established and operated to measure valuable vapor-liquid equilibrium data for systems of interest in the production and processing of coal fluids. To facilitate the development and testing of models for prediction of the phase behavior for such systems, we have acquired substantial amounts of data on the equilibrium phase compositions for binary mixtures of heavy hydrocarbon solvents with a variety of supercritical solutes, including hydrogen, methane, ethane, carbon monoxide, and carbon dioxide. The present project focuses on measuring the phase behavior of light gases and water in Fischer-Tropsch (F-T) type solvents at conditions encountered in indirect liquefaction processes and evaluating and developing theoretically-based correlating frameworks to predict the phase behavior of such systems. Specific goals of the proposed work include (a) developing a state-of-the-art experimental facility to permit highly accurate measurements of equilibrium phase compositions (solubilities) of challenging F-T systems, (b) measuring these properties for systematically-selected binary, ternary and molten F-T wax mixtures to provide critically needed input data for correlation development, (c) developing and testing models suitable for describing the phase behavior of such mixtures, and (d) presenting the modeling results in generalized, practical formats suitable for use in process engineering calculations. During the present period, the Park-Gasem-Robinson (PGR) equation of state (EOS) has been modified to improve its volumetric and equilibrium predictions. Specifically, the attractive term of the PGR equation was modified to enhance the flexibility of the model, and a new expression was developed for the temperature dependence of the attractive term in this segment-segment interaction model. The predictive capability of the modified PGR EOS for vapor pressure, and saturated liquid and

  2. Frequency dependence of polarization phase difference

    International Nuclear Information System (INIS)

    Rao, K.S.; Rao, Y.S.; Wang, J.R.

    1993-09-01

    Polarimetric AIRSAR data of July 13, 1990 acquired over Mahatango watershed area was processed for the identification of corn fields an forested areas. Polarization Phase Difference (PPD) values were computed for the corn fields at P-, L- and C- bands and studied as a function of frequency. The results compare well with the model calculations at 24 deg. incidence angle where as the locations of corn fields were computed to be at 35 deg. incidence angle. The discrepancy is attributed to lack of accurate ground truth and the undulating topography of the corn fields. Another study reported here deals with the usefulness of Polarization Index (PI) for the study of vegetation. PI was found to be dependent on frequency for corn fields where as for forest trees no such dependence was noticed. PI HH,HV is more useful parameter compared to PI HH,VV even for the study of corn fields. (author). 19 refs, 7 figs

  3. Separation of four flavonol glycosides from Solanum rostratum Dunal using aqueous two-phase flotation followed by preparative high-performance liquid chromatography.

    Science.gov (United States)

    Chang, Lin; Shao, Qian; Xi, Xingjun; Chu, Qiao; Wei, Yun

    2017-02-01

    Aqueous two-phase flotation followed by preparative high-performance liquid chromatography was used to separate four flavonol glycosides from Solanum rostratum Dunal. In the aqueous two-phase flotation section, the effects of sublation solvent, solution pH, (NH 4 ) 2 SO 4 concentration in aqueous solution, cosolvent, N 2 flow rate, flotation time, and volumes of the polyethylene glycol phase on the recovery were investigated in detail, and the optimal conditions were selected: 50 wt% polyethylene glycol 1000 ethanol solvent as the flotation solvent, pH 4, 350 g/L of (NH 4 ) 2 SO 4 concentration in aqueous phase, 40 mL/min of N 2 flow rate, 30 min of flotation time, 10.0 mL of flotation solvent volume, and two times. After aqueous two-phase flotation concentration, the flotation products were purified by preparative high-performance liquid chromatography. The purities of the final products A and B were 98.1 and 99.0%. Product B was the mixture of three compounds based on the analysis of high-performance liquid chromatography at the temperature of 10°C, while product A was hyperoside after the identification by nuclear magnetic resonance. Astragalin, 3'-O-methylquercetin 3-O-β-d-galactopyranoside, and 3'-O-methylquercetin 3-O-β-d-glucopyranoside were obtained with the purity of 93.8, 97.1, and 99.2%, respectively, after the further separation of product B using preparative high-performance liquid chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Photophysical properties of coumarin-120: Unusual behavior in nonpolar solvents

    International Nuclear Information System (INIS)

    Pal, Haridas; Nad, Sanjukta; Kumbhakar, Manoj

    2003-01-01

    Photophysical properties of coumarin-120 (C120; 7-amino-4-methyl-1,2-benzopyrone) dye have been investigated in different solvents using steady-state and time-resolved fluorescence and picosecond laser flash photolysis (LFP) and nanosecond pulse radiolysis (PR) techniques. C120 shows unusual photophysical properties in nonpolar solvents compared to those in other solvents of moderate to higher polarities. Where the Stokes shifts (Δν-bar=ν-bar abs -ν-bar fl ), fluorescence quantum yields (Φ f ), and fluorescence lifetimes (τ f ) show more or less linear correlation with the solvent polarity function Δf={(ε-1)/(2ε+1)-(n 2 -1)/(2n 2 +1)}, all these parameters are unusually lower in nonpolar solvents. Unlike in other solvents, both Φ f and τ f in nonpolar solvents are also strongly temperature dependent. It is indicated that the excited singlet (S 1 ) state of C120 undergoes a fast activation-controlled nonradiative deexcitation in nonpolar solvents, which is absent in all other solvents. LFP and PR studies indicate that the intersystem crossing process is negligible for the present dye in all the solvents studied. Photophysical behavior of C120 in nonpolar solvent has been rationalized assuming that in these solvents the dye exists in a nonpolar structure, with its 7-NH 2 group in a pyramidal configuration. In this structure, since the 7-NH 2 group is bonded to the 1,2-benzopyrone moiety by a single bond, the former group can undergo a fast flip-flop motion, which in effect causes the fast nonradiative deexcitation of the dye excited state. In moderate to higher polarity solvents, it is indicated that the dye exists in an intramolecular charge-transfer structure, where the bond between 7-NH 2 group and the 1,2-benzopyrone moiety attains substantial double bond character. In this structure, the flip-flop motion of the 7-NH 2 group is highly restricted and thus there is no fast nonradiative deexcitation process for the excited dye

  5. Transmission Magnitude and Phase Control for Polarization-Preserving Reflectionless Metasurfaces

    Science.gov (United States)

    Kwon, Do-Hoon; Ptitcyn, Grigorii; Díaz-Rubio, Ana; Tretyakov, Sergei A.

    2018-03-01

    For transmissive applications of electromagnetic metasurfaces, an array of subwavelength Huygens' meta-atoms are typically used to eliminate reflection and achieve a high-transmission power efficiency together with a wide transmission phase coverage. We show that the underlying principle of low reflection and full control over transmission is asymmetric scattering into the specular reflection and transmission directions that results from a superposition of symmetric and antisymmetric scattering components, with Huygens' meta-atoms being one example configuration. Available for oblique illumination in TM polarization, a meta-atom configuration comprising normal and tangential electric polarizations is presented, which is capable of reflectionless, full-power transmission and a 2 π transmission phase coverage as well as full absorption. For lossy metasurfaces, we show that a complete phase coverage is still available for reflectionless designs for any value of absorptance. Numerical examples in the microwave and optical regimes are provided.

  6. Determination and thermodynamic modeling of solid–liquid phase equilibrium for 3,5-dichloroaniline in pure solvents and ternary 3,5-dichloroaniline + 1,3,5-trichlorobenzene + toluene system

    International Nuclear Information System (INIS)

    Li, Rongrong; Du, Cunbin; Meng, Long; Han, Shuo; Wang, Jian; Zhao, Hongkun

    2016-01-01

    Highlights: • Solubility of 3,5-dichloroaniline in seven organic solvents were determined. • Solid–liquid phase equilibrium for ternary system was measured. • The binary and ternary phase diagrams were constructed. • The phase diagrams were correlated with thermodynamic models. - Abstract: The solid–liquid phase equilibrium data for 3,5-dichloroaniline in n-propanol, isopropanol, n-butanol, isobutanol, toluene, ethyl acetate and acetone at (283.15 to 308.15) K were determined experimentally by gas chromatography under 101.3 kPa. The solubility of 3,5-dichloroaniline in these solvents decreased according to the following order: ethyl acetate > (acetone, toluene) for the solvents of ethyl acetate, acetone, and toluene; and for the other solvents, (isopropanol, n-butanol) > n-propanol > isobutanol. According to the solubility of 3,5-dichloroaniline in pure solvents, the solid–liquid phase equilibrium for the ternary mixture of 3,5-dichloroaniline + 1,3,5-trichlorobenzene + toluene were measured by using an isothermal saturation method at three temperatures of 283.15, 293.15, and 303.15 K under 101.3 kPa, and the corresponding isothermal phase diagrams were constructed. Two pure solids were formed in the ternary system at a fixed temperature, which were pure 3,5-dichloroaniline and pure 1,3,5-trichlorobenzene and were identified by Schreinemakers’ method of wet residue. The temperature dependence of 3,5-dichloroaniline solubility in pure solvents was correlated by the modified Apelblat equation, λh equation, Wilson model and NRTL model; and the ternary solid–liquid phase equilibrium of 3,5-dichloroaniline + 1,3,5-trichlorobenzene + toluene were described by the Wilson model and NRTL model. Results showed that calculated solubility values with these models agreed well with the experimental ones for the studied binary and ternary systems. The solid–liquid equilibrium and the thermodynamic models for the binary and ternary systems can offer the

  7. Mobile phase effects on the retention on polar columns with special attention to the dual hydrophilic interaction-reversed-phase liquid chromatography mechanism, a review.

    Science.gov (United States)

    Jandera, Pavel; Hájek, Tomáš

    2018-01-01

    Hydrophilic interaction liquid chromatography on polar columns in aqueous-organic mobile phases has become increasingly popular for the separation of many biologically important compounds in chemical, environmental, food, toxicological, and other samples. In spite of many new applications appearing in literature, the retention mechanism is still controversial. This review addresses recent progress in understanding of the retention models in hydrophilic interaction liquid chromatography. The main attention is focused on the role of water, both adsorbed by the column and contained in the bulk mobile phase. Further, the theoretical retention models in the isocratic and gradient elution modes are discussed. The dual hydrophilic interaction liquid chromatography reversed-phase retention mechanism on polar columns is treated in detail, especially with respect to the practical use in one- and two-dimensional liquid chromatography separations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Polarization-independent broadband meta-holograms via polarization-dependent nanoholes.

    Science.gov (United States)

    Zhang, Xiaohu; Li, Xiong; Jin, Jinjin; Pu, Mingbo; Ma, Xiaoliang; Luo, Jun; Guo, Yinghui; Wang, Changtao; Luo, Xiangang

    2018-05-17

    Composed of ultrathin metal or dielectric nanostructures, metasurfaces can manipulate the phase, amplitude and polarization of electromagnetic waves at a subwavelength scale, which is promising for flat optical devices. In general, metasurfaces composed of space-variant anisotropic units are sensitive to the incident polarization due to the inherent polarization dependent geometric phase. Here, we implement polarization-independent broadband metasurface holograms constructed by polarization-dependent anisotropic elliptical nanoholes by elaborate design of complex amplitude holograms. The fabricated meta-hologram exhibits a polarization insensitive feature with an acceptable image quality. We verify the feasibility of the design algorithm for three-dimensional (3D) meta-holograms with simulation and the feasibility for two-dimensional (2D) meta-holograms is experimentally demonstrated at a broadband wavelength range from 405 nm to 632.8 nm. The effective polarization-independent broadband complex wavefront control with anisotropic elliptical nanoholes proposed in this paper greatly promotes the practical applications of the metasurface in technologies associated with wavefront manipulation, such as flat lens, colorful holographic displays and optical storage.

  9. Solvent effects on the fluorescence and effective three-photon absorption of a Zn(II)-[meso-tetrakis(4-octyloxyphenyl)porphyrin

    Science.gov (United States)

    Wan, Yong; Xue, Yuxiong; Sheng, Ning; Rui, Guanghao; Lv, Changgui; He, Jun; Gu, Bing; Cui, Yiping

    2018-06-01

    The fluorescence and effective three-photon absorption (3PA) properties of Zn(II)-[meso-tetrakis(4-octyloxyphenyl)porphyrin] (labeled Zn(II)-porphyrin) dissolved in three different polar solvents were systematically investigated. The electrochemical and photophysical properties of Zn(II)-porphyrin were investigated by 1H NMR spectra, IR spectra, mass spectroscopy, and electronic absorption spectra. The fluorescence emission of Zn(II)-porphyrin in three different solvents excited at the wavelengths of 420 nm (Soret band) and 550 nm (Q-band) were analyzed. By performing Z-scan experiments with femtosecond laser pulses at a wavelength of 800 nm, the effective 3PA process of Zn(II)-porphyrin in three different solvents was observed and the underlying mechanism was discussed in detail. It is found that the fluorescence spectra slightly depend on the polarity of the solvent. Interestingly, the effective 3PA properties of Zn(II)-porphyrin strongly depend on the solvent polarity. The lower the solvent polarity is, the larger effective 3PA cross-section is. Low polar solvents are beneficial to applications of Zn(II)-porphyrin in optical limiting, photodynamic therapy, etc.

  10. Substrate-induced phase of a [1]benzothieno[3,2-b]benzothiophene derivative and phase evolution by aging and solvent vapor annealing.

    Science.gov (United States)

    Jones, Andrew O F; Geerts, Yves H; Karpinska, Jolanta; Kennedy, Alan R; Resel, Roland; Röthel, Christian; Ruzié, Christian; Werzer, Oliver; Sferrazza, Michele

    2015-01-28

    Substrate-induced phases (SIPs) are polymorphic phases that are found in thin films of a material and are different from the single crystal or "bulk" structure of a material. In this work, we investigate the presence of a SIP in the family of [1]benzothieno[3,2-b]benzothiophene (BTBT) organic semiconductors and the effect of aging and solvent vapor annealing on the film structure. Through extensive X-ray structural investigations of spin coated films, we find a SIP with a significantly different structure to that found in single crystals of the same material forms; the SIP has a herringbone motif while single crystals display layered π-π stacking. Over time, the structure of the film is found to slowly convert to the single crystal structure. Solvent vapor annealing initiates the same structural evolution process but at a greatly increased rate, and near complete conversion can be achieved in a short period of time. As properties such as charge transport capability are determined by the molecular structure, this work highlights the importance of understanding and controlling the structure of organic semiconductor films and presents a simple method to control the film structure by solvent vapor annealing.

  11. Visualizing the phenomena of wave interference, phase-shifting and polarization by interactive computer simulations

    Science.gov (United States)

    Rivera-Ortega, Uriel; Dirckx, Joris

    2015-09-01

    In this manuscript a computer based simulation is proposed for teaching concepts of interference of light (under the scheme of a Michelson interferometer), phase-shifting and polarization states. The user can change some parameters of the interfering waves, such as their amplitude and phase difference in order to graphically represent the polarization state of a simulated travelling wave. Regarding to the interference simulation, the user is able to change the wavelength and type of the interfering waves by selecting combinations between planar and Gaussian profiles, as well as the optical path difference by translating or tilting one of the two mirrors in the interferometer setup, all of this via a graphical user interface (GUI) designed in MATLAB. A theoretical introduction and simulation results for each phenomenon will be shown. Due to the simulation characteristics, this GUI can be a very good non-formal learning resource.

  12. Virtual colorimetric sensor array: single ionic liquid for solvent discrimination.

    Science.gov (United States)

    Galpothdeniya, Waduge Indika S; Regmi, Bishnu P; McCarter, Kevin S; de Rooy, Sergio L; Siraj, Noureen; Warner, Isiah M

    2015-04-21

    There is a continuing need to develop high-performance sensors for monitoring organic solvents, primarily due to the environmental impact of such compounds. In this regard, colorimetric sensors have been a subject of intense research for such applications. Herein, we report a unique virtual colorimetric sensor array based on a single ionic liquid (IL) for accurate detection and identification of similar organic solvents and mixtures of such solvents. In this study, we employ eight alcohols and seven binary mixtures of ethanol and methanol as analytes to provide a stringent test for assessing the capabilities of this array. The UV-visible spectra of alcoholic solutions of the IL used in this study show two absorption bands. Interestingly, the ratio of absorbance for these two bands is found to be extremely sensitive to alcohol polarity. A virtual sensor array is created by using four different concentrations of IL sensor, which allowed identification of these analytes with 96.4-100% accuracy. Overall, this virtual sensor array is found to be very promising for discrimination of closely related organic solvents.

  13. Microcellular foams via phase separation

    International Nuclear Information System (INIS)

    Young, A.T.

    1985-01-01

    A study of wide variety of processes for making plastic foams shows that phase separation processes for polymers from solutions offers the most viable methods for obtaining rigid plastic foams which met the physical requirements for fusion target designs. Four general phase separation methods have been shown to give polymer foams with densities less than 0.1 g/cm 3 and cell sizes of 30μm or less. These methods involve the utilization of non-solvent, chemical or thermal cooling processes to achieve a controlled phase separation wherein either two distinct phases are obtained where the polymer phase is a continuous phase or two bicontinuous phases are obtained where both the polymer and solvent are interpenetrating, continuous, labyrinthine phases. Subsequent removal of the solvent gives the final foam structure

  14. Tight focusing of a radially polarized Laguerre–Bessel–Gaussian beam and its application to manipulation of two types of particles

    International Nuclear Information System (INIS)

    Nie, Zhongquan; Shi, Guang; Li, Dongyu; Zhang, Xueru; Wang, Yuxiao; Song, Yinglin

    2015-01-01

    The intensity distributions near the focus for radially polarized Laguerre–Bessel–Gaussian beams by a high numerical aperture objective in the immersion liquid are computed based on the vector diffraction theory. We compare the focusing properties of the radially polarized Laguerre–Bessel–Gaussian beams with those of Laguerre–Gaussian and Bessel–Gaussian modes. Furthermore, the effects of the optimally designed concentric three-zone phase filters on the intensity profiles in the focal region are examined. We further analyze the radiation forces on Rayleigh particles produced by the highly focused radially polarized Laguerre–Bessel–Gaussian beams using the specially engineered three-zone phase filters. - Highlights: • The tightly focusing of radially polarized LBG beams is examined. • The focusing performances of LBG beams are preferable over that of LG and BG modes. • A bright spot and an optical cage can be formed by special phase modulation. • These special focusing patterns can stably manipulate two types of particles

  15. Sugar-Based Polyamides: Self-Organization in Strong Polar Organic Solvents.

    Science.gov (United States)

    Rosu, Cornelia; Russo, Paul S; Daly, William H; Cueto, Rafael; Pople, John A; Laine, Roger A; Negulescu, Ioan I

    2015-09-14

    Periodic patterns resembling spirals were observed to form spontaneously upon unassisted cooling of d-glucaric acid- and d-galactaric acid-based polyamide solutions in N-methyl-N-morpholine oxide (NMMO) monohydrate. Similar observations were made in d-galactaric acid-based polyamide/ionic liquid (IL) solutions. The morphologies were investigated by optical, polarized light and confocal microscopy assays to reveal pattern details. Differential scanning calorimetry was used to monitor solution thermal behavior. Small- and wide-angle X-ray scattering data reflected the complex and heterogeneous nature of the self-organized patterns. Factors such as concentration and temperature were found to influence spiral dimensions and geometry. The distance between rings followed a first-order exponential decay as a function of polymer concentration. Fourier-Transform Infrared Microspectroscopy analysis of spirals pointed to H-bonding between the solvent and the pendant hydroxyl groups of the glucose units from the polymer backbone. Tests on self-organization into spirals of ketal-protected d-galactaric acid polyamides in NMMO monohydrate confirmed the importance of the monosaccharide's pendant free hydroxyl groups on the formation of these patterns. Rheology performed on d-galactaric-based polyamides at high concentration in NMMO monohydrate solution revealed the optimum conditions necessary to process these materials as fibers by spinning. The self-organization of these sugar-based polyamides mimics certain biological materials.

  16. Separation of polar betalain pigments from cacti fruits of Hylocereus polyrhizus by ion-pair high-speed countercurrent chromatography.

    Science.gov (United States)

    Wybraniec, Sławomir; Stalica, Paweł; Jerz, Gerold; Klose, Bettina; Gebers, Nadine; Winterhalter, Peter; Spórna, Aneta; Szaleniec, Maciej; Mizrahi, Yosef

    2009-10-09

    Polar betacyanin pigments together with betaxanthins from ripe cactus fruits of Hylocereus polyrhizus (Cactaceae) were fractionated by means of preparative ion-pair high-speed countercurrent chromatography (IP-HSCCC) also using the elution-extrusion (EE) approach for a complete pigment recovery. HSCCC separations were operated in the classical 'head-to-tail' mode with an aqueous mobile phase. Different CCC solvent systems were evaluated in respect of influence and effectiveness of fractionation capabilities to separate the occurring pigment profile of H. polyrhizus. For that reason, the additions of two different volatile ion-pair forming perfluorinated carboxylic acids (PFCA) were investigated. For a direct comparison, five samples of Hylocereus pigment extract were run on preparative scale (900 mg) in 1-butanol-acetonitrile-aqueous TFA 0.7% (5:1:6, v/v/v) and the modified systems tert.-butyl methyl ether-1-butanol-acetonitrile-aqueous PFCA (2:2:1:5, v/v/v/v) using 0.7% and 1.0% trifluoroacetic acid (TFA) or heptafluorobutyric acid (HFBA) in the aqueous phase, respectively. The chemical affinity to the organic stationary CCC solvent phases and in consequence the retention of these highly polar betalain pigments was significantly increased by the use of the more lipophilic fluorinated ion-pair reagent HFBA instead of TFA. The HFBA additions separated more effectively the typical cacti pigments phyllocactin and hylocerenin from betanin as well as their iso-forms. Unfortunately, similar K(D) ratios and selectivity factors alpha around 1.0-1.1 in all tested solvent systems proved that the corresponding diastereomers, 15S-type pigments cannot be resolved from the 15R-epimers (iso-forms). Surprisingly, additions of the stronger ion-pair reagent (HFBA) resulted in a partial separation of hylocerenin from phyllocactin which were not resolved in the other solvent systems. The pigments were detected by means of HPLC-DAD and HPLC-electrospray ionization-MS using also

  17. A pH and solvent optimized reverse-phase ion-paring-LC–MS/MS method that leverages multiple scan-types for targeted absolute quantification of intracellular metabolites

    DEFF Research Database (Denmark)

    McCloskey, Douglas; Gangoiti, Jon A.; Palsson, Bernhard O.

    2015-01-01

    Comprehensive knowledge of intracellular biochemistry is needed to accurately understand, model, and manipulate metabolism for industrial and therapeutic applications. Quantitative metabolomics has been driven by advances in analytical instrumentation and can add valuable knowledge to the underst......Comprehensive knowledge of intracellular biochemistry is needed to accurately understand, model, and manipulate metabolism for industrial and therapeutic applications. Quantitative metabolomics has been driven by advances in analytical instrumentation and can add valuable knowledge...... existing reverse phase ion-paring liquid chromatography methods for separation and detection of polar and anionic compounds that comprise key nodes of intracellular metabolism by optimizing pH and solvent composition. In addition, the presented method utilizes multiple scan types provided by hybrid...

  18. Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam.

    Science.gov (United States)

    Boruah, B R; Neil, M A A

    2009-01-01

    We describe the design and construction of a laser scanning confocal microscope with programmable beam forming optics. The amplitude, phase, and polarization of the laser beam used in the microscope can be controlled in real time with the help of a liquid crystal spatial light modulator, acting as a computer generated hologram, in conjunction with a polarizing beam splitter and two right angled prisms assembly. Two scan mirrors, comprising an on-axis fast moving scan mirror for line scanning and an off-axis slow moving scan mirror for frame scanning, configured in a way to minimize the movement of the scanned beam over the pupil plane of the microscope objective, form the XY scan unit. The confocal system, that incorporates the programmable beam forming unit and the scan unit, has been implemented to image in both reflected and fluorescence light from the specimen. Efficiency of the system to programmably generate custom defined vector beams has been demonstrated by generating a bottle structured focal volume, which in fact is the overlap of two cross polarized beams, that can simultaneously improve both the lateral and axial resolutions if used as the de-excitation beam in a stimulated emission depletion confocal microscope.

  19. Sensitivity of viscosity Arrhenius parameters to polarity of liquids

    Science.gov (United States)

    Kacem, R. B. H.; Alzamel, N. O.; Ouerfelli, N.

    2017-09-01

    Several empirical and semi-empirical equations have been proposed in the literature to estimate the liquid viscosity upon temperature. In this context, this paper aims to study the effect of polarity of liquids on the modeling of the viscosity-temperature dependence, considering particularly the Arrhenius type equations. To achieve this purpose, the solvents are classified into three groups: nonpolar, borderline polar and polar solvents. Based on adequate statistical tests, we found that there is strong evidence that the polarity of solvents affects significantly the distribution of the Arrhenius-type equation parameters and consequently the modeling of the viscosity-temperature dependence. Thus, specific estimated values of parameters for each group of liquids are proposed in this paper. In addition, the comparison of the accuracy of approximation with and without classification of liquids, using the Wilcoxon signed-rank test, shows a significant discrepancy of the borderline polar solvents. For that, we suggested in this paper new specific coefficient values of the simplified Arrhenius-type equation for better estimation accuracy. This result is important given that the accuracy in the estimation of the viscosity-temperature dependence may affect considerably the design and the optimization of several industrial processes.

  20. Solvation of graphite oxide in water-methanol binary polar solvents

    Energy Technology Data Exchange (ETDEWEB)

    You, Shujie; Yu, Junchun; Sundqvist, Bertil; Talyzin, Alexandr V. [Department of Physics, Umeaa University, SE-901 87 Umeaa (Sweden)

    2012-12-15

    The phase transition between two solvated phases was studied by DSC for graphite oxide (GO) powders immersed in water-methanol mixtures of various compositions. GO forms solid solvates with two different compositions when immersed in methanol. Reversible phase transition between two solvate states due to insertion/desertion of methanol monolayer occurs upon temperature variations. The temperature point and the enthalpy ({Delta}H) of the phase transition are maximal for pure methanol and decrease linearly with increase of water fraction up to 30%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. A novel, donor-active solvent-assisted liquid-phase microextraction procedure for spectrometric determination of zinc

    Energy Technology Data Exchange (ETDEWEB)

    Kocurova, Livia; Fatlova, Martina; Bazel, Yaroslav; Serbin, Rastislav; Andruch, Vasil, E-mail: liviamonika.kocurova@gmail.com [Department of Analytical Chemistry, University of P. J. Safarik, Kosice (Slovakia); Balogh, Ioseph S. [Department of Chemistry, College of Nyiregyhaza (Hungary); Simon, Andras [Department of General and Analytical Chemistry, Budapest University of Technology and Economics, Budapest (Hungary); Badida, Miroslav; Rusnak, Radoslav [Department of Environmentalistics, Faculty of Mechanical Engineering, Technical University of Kosice (Slovakia)

    2014-02-15

    Based on the reaction of Zn(II), thiocyanate and 2-[2-(5-dimethylamino-thiophen-2-yl)-vinyl]- 1,3,3-trimethyl-3H-indolium bromide (DTVTI), a donor-active solvent-assisted liquid-phase microextraction procedure followed by spectrophotometric determination of zinc at 570 nm was developed. The optimum experimental conditions were investigated and found to be as follows: concentration of NH{sub 4}SCN 0.02 mol L{sup -1} concentration of DTVTI 4 x 10{sup -5} mol L{sup -1}. Various extraction solvents were studied alone as well as in mixtures with different improvers, and a mixture of toluene as the extraction solvent and tributylphosphate as the donor-active solvent in a 4:1 v/v ratio was selected. The calibration plot was linear up to 2.62 mg L{sup 1} of zinc with limit of detection 0.09 mg L{sup -1}. The developed procedure was applied for zinc determination in dietary supplements. (author)

  2. Solvent effects in the synergistic solvent extraction of Co2+

    International Nuclear Information System (INIS)

    Kandil, A.T.; Ramadan, A.

    1979-01-01

    The extraction of Co 2+ from a 0.1M ionic strength aqueous phase (Na + , CH 3 COOH) of pH = 5.1 was studied using thenoyltrifluoroacetone, HTTA, in eight different solvents and HTTA + trioctylphosphine oxide, TOPO, in the same solvents. A comparison of the effect of solvent dielectric constant on the equilibrium constant shows a synergism as a result of the increased hydrophobic character imparted to the metal complex due to the formation of the TOPO adduct. (author)

  3. Field-induced magnetic phases and electric polarization in LiNiPO4

    DEFF Research Database (Denmark)

    Jensen, Thomas Bagger Stibius; Christensen, Niels Bech; Kenzelmann, M.

    2009-01-01

    Neutron diffraction is used to probe the (H,T) phase diagram of magnetoelectric (ME) LiNiPO4 for magnetic fields along the c axis. At zero field the Ni spins order in two antiferromagnetic phases. One has commensurate (C) structures and general ordering vectors k(C)=(0,0,0); the other one...... is incommensurate (IC) with k(IC)=(0,q,0). At low temperatures the C order collapses above mu H-0=12 T and adopts an IC structure with modulation vector parallel to k(IC). We show that C order is required for the ME effect and establish how electric polarization results from a field-induced reduction in the total...

  4. Preparation of CdS microtrumpets from a solvent extraction system by a two-phase approach

    International Nuclear Information System (INIS)

    Geng, Aifang; Liu, Yubing; Liao, Wuping

    2011-01-01

    Highlights: → CdS microtrumpets were prepared from an extraction system by a two-phase approach. → Triethanolamine plays a crucial role in the formation of the trumpets. → Some micro-lotus seedpods can also be obtained with trihydroxymethyl aminomethane. -- Abstract: CdS microtrumpets with the length being of about 4 μm and the bell wall being of 100 nm have been prepared using a cadmium di-(2-ethylhexyl) phosphoric acid chelate as the precursor by a two-phase thermal approach. The products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-vis spectroscopy. The effects of temperature, reaction time, and co-surfactant on the morphology were also examined. It was found that the co-surfactant triethanolamine plays a crucial role in the formation of the cubic phase trumpet-like CdS microstructures.

  5. INFLUENCE OF POLARIZATION MODE DISPERSION ON THE EFFECT OF CROSS-PHASE MODULATION IN INTENSITY MODULATION-DIRECT DETECTION WDM TRANSMISSION SYSTEM

    Directory of Open Access Journals (Sweden)

    M S Islam

    2010-03-01

    Full Text Available Cross-phase modulation (XPM changes the state-of-polarization (SOP of the channels through nonlinear polarization rotation and induces nonlinear time dependent phase shift for polarization components that leads to amplitude modulation of the propagating waves in a wavelength division multiplexing (WDM system. Due to the presence of birefringence, the angle between the SOP changes randomly and as a result polarization mode dispersion (PMD causes XPM modulation amplitude fluctuation random in the perturbed channel. In this paper we analytically determine the probability density function of the random angle between the SOP of pump and probe, and evaluate the impact of polarization mode dispersion on XPM in terms of bit error rate, channel spacing etc for a two channel intensity modulation-direct detection WDM system at 10 Gb/s. It is found that the XPM induced crosstalk is polarization independent for channel spacing greater than 3 nm or PMD coefficient larger than 2 ps/√km. We also investigate the dependence of SOP variance on PMD coefficient and channel spacing.

  6. Microfluidic Extraction of Biomarkers using Water as Solvent

    Science.gov (United States)

    Amashukeli, Xenia; Manohara, Harish; Chattopadhyay, Goutam; Mehdi, Imran

    2009-01-01

    A proposed device, denoted a miniature microfluidic biomarker extractor (mu-EX), would extract trace amounts of chemicals of interest from samples, such as soils and rocks. Traditionally, such extractions are performed on a large scale with hazardous organic solvents; each solvent capable of dissolving only those molecules lying within narrow ranges of specific chemical and physical characteristics that notably include volatility, electric charge, and polarity. In contrast, in the mu-EX, extractions could be performed by use of small amounts (typically between 0.1 and 100 L) of water as a universal solvent. As a rule of thumb, in order to enable solvation and extraction of molecules, it is necessary to use solvents that have polarity sufficiently close to the polarity of the target molecules. The mu-EX would make selection of specific organic solvents unnecessary, because mu-EX would exploit a unique property of liquid water: the possibility of tuning its polarity to match the polarity of organic solvents appropriate for extraction of molecules of interest. The change of the permittivity of water would be achieved by exploiting interactions between the translational states of water molecules and an imposed electromagnetic field in the frequency range of 300 to 600 GHz. On a molecular level, these interactions would result in disruption of the three-dimensional hydrogen-bonding network among liquid-water molecules and subsequent solvation and hydrolysis of target molecules. The mu-EX is expected to be an efficient means of hydrolyzing chemical bonds in complex macromolecules as well and, thus, enabling analysis of the building blocks of these complex chemical systems. The mu-EX device would include a microfluidic channel, part of which would lie within a waveguide coupled to an electronically tuned source of broad-band electromagnetic radiation in the frequency range from 300 to 600 GHz (see figure). The part of the microfluidic channel lying in the waveguide would

  7. Bragg transmission phase plates for the production of circularly polarized x-rays

    International Nuclear Information System (INIS)

    Lang, J.C.; Srajer, G.

    1994-01-01

    A thin-crystal Si (400) Bragg transmission x-ray phase plate has been constructed for the production of 5 to 12 keV circularly polarized x-rays. Using multiple beam diffraction from a GaAs crystal, a direct measurement of the degree of circular polarization as a function of off-Bragg position was made. These measurements indicated nearly complete circular polarization (|P c | ≥ 0.95) and full helicity reversal on opposite sides of the rocking curve

  8. Morphology versus Vertical Phase Segregation in Solvent Annealed Small Molecule Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Alexander Kovalenko

    2015-01-01

    Full Text Available The deep study of solvent annealed small molecules bulk heterojunction organic solar cells based on DPP(TBFu2 : PC60BM blend is carried out. To reveal the reason of the solvent annealing advantage over the thermal one, capacitance-voltage measurements were applied. It was found that controlling the vertical phase segregation in the solar cells a high fullerene population in the vicinity of the cathode could be achieved. This results in increase of the shunt resistance of the cell, thus improving the light harvesting efficiency.

  9. Optical field-strength polarization of two-mode single-photon states

    Energy Technology Data Exchange (ETDEWEB)

    Linares, J; Nistal, M C; Barral, D; Moreno, V, E-mail: suso.linares.beiras@usc.e [Optics Area, Department of Applied Physics, Faculty of Physics and School of Optics and Optometry, University of Santiago de Compostela, Campus Universitario Sur s/n, 15782-Santiago de Compostela, Galicia (Spain)

    2010-09-15

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of the two-mode optical field-strength plane. We will show that the mentioned probability distributions along with the values of quantum Stokes parameters allow us to characterize the polarization of a two-mode single-photon state, in an analogous way to the classical case, and to distinguish conceptually between mixture and partially polarized quantum states; in this way, we propose a simple definition of the quantum polarization degree based on the recent concept of distance measure to an unpolarized distribution, which gives rise to a depolarization degree equivalent to an overlapping between the probability distribution of the quantum state and a non-polarized two-mode Gaussian distribution. The work is particularly intended to university physics teachers and graduate students as well as to physicists and specialists concerned with the issue of optical polarization.

  10. Optical field-strength polarization of two-mode single-photon states

    International Nuclear Information System (INIS)

    Linares, J; Nistal, M C; Barral, D; Moreno, V

    2010-01-01

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of the two-mode optical field-strength plane. We will show that the mentioned probability distributions along with the values of quantum Stokes parameters allow us to characterize the polarization of a two-mode single-photon state, in an analogous way to the classical case, and to distinguish conceptually between mixture and partially polarized quantum states; in this way, we propose a simple definition of the quantum polarization degree based on the recent concept of distance measure to an unpolarized distribution, which gives rise to a depolarization degree equivalent to an overlapping between the probability distribution of the quantum state and a non-polarized two-mode Gaussian distribution. The work is particularly intended to university physics teachers and graduate students as well as to physicists and specialists concerned with the issue of optical polarization.

  11. Bandwidth broadening of a graphene-based circular polarization converter by phase compensation.

    Science.gov (United States)

    Gao, Xi; Yang, Wanli; Cao, Weiping; Chen, Ming; Jiang, Yannan; Yu, Xinhua; Li, Haiou

    2017-10-02

    We present a broadband tunable circular polarization converter composed of a single graphene sheet patterned with butterfly-shaped holes, a dielectric spacer, and a 7-layer graphene ground plane. It can convert a linearly polarized wave into a circularly polarized wave in reflection mode. The polarization converter can be dynamically tuned by varying the Fermi energy of the single graphene sheet. Furthermore, the 7-layer graphene acting as a ground plane can modulate the phase of its reflected wave by controlling the Femi energy, which provides constructive interference condition at the surface of the single graphene sheet in a broad bandwidth and therefore significantly broadens the tunable bandwidth of the proposed polarization converter.

  12. Sorption mechanism of solvent vapors to coals; Sekitan eno yobai joki no shuchaku kiko no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, K.; Takanohashi, T.; Iino, M. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    With an objective to clarify the interactions between micropore structure of coal and solvent reagents, a sorption experiment was carried out under solvent saturated vapor pressure. Low-volatile bituminous coal, Pocahontas No. 3 coal, has the aromatic ring structure developed, and makes solvent more difficult to diffuse into coal, hence sorption amount is small. Methanol has permeated since its polarity is high. High-volatile bituminous coal, Illinois No. 6 coal, makes solvent penetrate easily, and the sorption amount was large with both of aromatic and polar solvents. Since brown coal, Beulah Zap coal, contains a large amount of oxygen, and hydrogen bonding is predominant, sorption amount of cyclohexane and benzene having no polarity is small. Methanol diffuses while releasing hydrogen bond due to its polarity, and its sorption amount is large. A double sorption model is available, which expresses the whole sorption amount as a sum of physical sorption amount and amount of permeation into coal. This model was applied when it explained successfully the sorption behavior of the solvents relative to coals, excepting some of the systems. However, also observed were such abnormal behavior as sorption impediment due to interactions between coal surface and solvents, and permeation impediment due to hydroxyl groups inside the coals. 1 ref., 10 figs., 2 tabs.

  13. Lithium isotope separation factors of some two-phase equilibrium systems

    International Nuclear Information System (INIS)

    Palko, A.A.; Drury, J.S.; Begun, G.M.

    1976-01-01

    Isotope separation factors of seventeen two-phase equilibrium systems for lithium isotope enrichment have been determined. In all cases, lithium amalgam was used as one of the lithium-containing phases and was equilibrated with an aqueous or organic phase containing a lithium compound. In all systems examined, isotopic exchange was found to be extremely rapid, and 6 Li was concentrated in the amalgam phase. The isotopic separation factor for the LiOH(aqueous) vs Li(amalgam) system has been studied as a function of temperature from -2 to 80 degreeC. The values obtained have been compared with the ''electrolysis'' and exchange separation factors given in the literature. The two-phase systems, LiCl(ethylenediamine) vs Li(amalgam) and LiCl(propylenediamine) vs Li(amalgam), have been studied, and the isotopic separation factors have been determined as functions of the temperature. The factors for the two systems have been found to be substantially the same (within limits of the errors involved) over the temperature range studied (0 to 100 degreeC) as those for the aqueous system. The isotopic separation factors for the seventeen systems have been tabulated, and correlations have been drawn that show the salt and solvent effects upon the values obtained

  14. Continuum model of non-equilibrium solvation and solvent effect on ultra-fast processes

    International Nuclear Information System (INIS)

    Li Xiangyuan; Fu Kexiang; Zhu Quan

    2006-01-01

    In the past 50 years, non-equilibrium solvation theory for ultra-fast processes such as electron transfer and light absorption/emission has attracted particular interest. A great deal of research efforts was made in this area and various models which give reasonable qualitative descriptions for such as solvent reorganization energy in electron transfer and spectral shift in solution, were developed within the framework of continuous medium theory. In a series of publications by the authors, we clarified that the expression of the non-equilibrium electrostatic free energy that is at the dominant position of non-equilibrium solvation and serves as the basis of various models, however, was incorrectly formulated. In this work, the authors argue that reversible charging work integration was inappropriately applied in the past to an irreversible path linking the equilibrium or the non-equilibrium state. Because the step from the equilibrium state to the nonequilibrium state is factually thermodynamically irreversible, the conventional expression for non-equilibrium free energy that was deduced in different ways is unreasonable. Here the authors derive the non-equilibrium free energy to a quite different form according to Jackson integral formula. Such a difference throws doubts to the models including the famous Marcus two-sphere model for solvent reorganization energy of electron transfer and the Lippert-Mataga equation for spectral shift. By introducing the concept of 'spring energy' arising from medium polarizations, the energy constitution of the non-equilibrium state is highlighted. For a solute-solvent system, the authors separate the total electrostatic energy into different components: the self-energies of solute charge and polarized charge, the interaction energy between them and the 'spring energy' of the solvent polarization. With detailed reasoning and derivation, our formula for non-equilibrium free energy can be reached through different ways. Based on the

  15. Solvent effects on the photochemistry of dimethyl sulfoxide-Cl complexes studied by combined pulse radiolysis and laser flash photolysis

    International Nuclear Information System (INIS)

    Sumiyoshi, Takashi; Minegishi, Hideki; Fujiyoshi, Ryoko; Sawamura, Sadashi

    2006-01-01

    Photolysis of complexes of dimethyl sulfoxide (DMSO) with chlorine atoms results in rapid and permanent photobleaching which may be due to intramolecular hydrogen abstraction. The effects of solvent polarity were examined in a wide variety of DMSO-carbon tetrachloride mixed solvents. The quantum yields of photobleaching decreased from 0.27 to 0.08 as the solvent polarity increased, while significant changes were observed in the low DMSO concentration range ( -3 ). This cannot be accounted for by simple solvent polarity effects. The effects of polar and nonpolar additives were also examined and it is concluded that the specific solvation effect of DMSO was the main cause of the significant change in quantum yields in the low concentration range of DMSO

  16. Extraction of Polychlorinated Biphenyls (PCBs) and Dibenzyl Disulfide from Transformer Oils using Polar Aprotic Solvents andReductive Dehalogenation of Extracted PCBs

    OpenAIRE

    Kaštánek, P. (Petr); Kaštánek, F. (František); Maléterová, Y. (Ywetta); Matějková, M. (Martina); Spáčilová, L. (Lucie); Šolcová, O. (Olga)

    2014-01-01

    Extractions of PCBs from mineral oils with polar aprotic solvents (PAS) acrylonitrile AC, dimethyl sulfoxide DMSO, dimethyl formamide DMF, N-methyl pyrrolidone NMP and propylene carbonate PC were performed in order to compare the extraction efficiencies. In a single-stage extraction performed at room temperature, the efficiencies ranged from the highest to the lowest as follows: NMP → DMF → DMSO → PC → AC. NMP exhibited the highest efficiency, around 70%. . Pyridine N-oxide was also used a...

  17. Comparison of solvent extraction and solid-phase extraction for the determination of polychlorinated biphenyls in transformer oil.

    Science.gov (United States)

    Mahindrakar, A N; Chandra, S; Shinde, L P

    2014-01-01

    Solid-phase extraction (SPE) of nine polychlorinated biphenyls (PCBs) from transformer oil samples was evaluated using octadecyl (CI8)-bonded porous silica. The efficiency of SPE of these PCBs was compared with those obtained by solvent extraction with DMSO and hexane. Average recoveries exceeding 95% for these PCBs were obtained via the SPE method using small cartridges containing 100mg of 40 pm CI8-bonded porous silica. The average recovery by solvent extraction with DMSO and hexane exceeded 83%. It was concluded that the recoveries and precision for the solvent extraction of PCBs were poorer than those for the SPE. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Additives and solvents-induced phase and morphology modification of NaYF_4 for improving up-conversion emission

    International Nuclear Information System (INIS)

    Zhuang, Jianle; Yang, Xianfeng; Wang, Jing; Lei, Bingfu; Liu, Yingliang; Wu, Mingmei

    2016-01-01

    Both cubic and hexagonal NaYF_4 were synthesized in different reaction systems via hydro/solvo-thermal route. The effects of reaction temperature, solvents, and additives on the synthesis of NaYF_4 have been studied in detail. It has been shown that phase transformation from cubic NaYF_4 to hexagonal NaYF_4 always occurred. The sequence of the ability for inducing the phase transformation was ethanol>H_2O>acetic acid. It is found that ethanol can not only facilitate the formation of hexagonal NaYF_4 but also control the growth of the crystal. This is quite unusual for the growth of H-NaYF_4. The up-conversion emission properties of Yb/Er co-doped NaYF_4 have also been investigated and the results demonstrated some general principles for improving up-conversion emission. - Graphical abstract: Additives and solvents can induce the phase transformation of NaYF_4, typically the use of organic sodium salt and ethanol. - Highlights: • The effect of additives and solvents on the synthesis of NaYF_4 was studied in detail. • Ethanol can facilitate the formation of H-NaYF_4 while acetic acid restrain it. • Three general principles for improving up-conversion emission were summarized.

  19. Radiation destruction of vitamin A in lipid solvents

    International Nuclear Information System (INIS)

    Snauwaert, F.; Maes, E.; Tobback, P.; Bhushan, B.

    1978-01-01

    The radiation response of vitamin A alcohol and its acetate derivative was compared in different lipid solvents. In all the solvents vitamin A alcohol exhibited a much higher radiation sensitivity than its ester counterpart. The nature of the solvent and the initial concentration was found to have a great influence on the extent of radiation degradation of vitamin A alcohol. In contrast to a high radiolability in non-polar solvents, vitamin A alcohol exhibited a remarkable stability in isopropanol. In addition, in isopropanol the G(-) relationship with radiation dose showed a reverse trend to that observed for other solvents. A thin-layer chromatographic procedure was developed for separation of the radiation degradation products. (author)

  20. [Corrected Title: Solid-Phase Extraction of Polar Compounds from Water] Automated Electrostatics Environmental Chamber

    Science.gov (United States)

    Sauer, Richard; Rutz, Jeffrey; Schultz, John

    2005-01-01

    A solid-phase extraction (SPE) process has been developed for removing alcohols, carboxylic acids, aldehydes, ketones, amines, and other polar organic compounds from water. This process can be either a subprocess of a water-reclamation process or a means of extracting organic compounds from water samples for gas-chromatographic analysis. This SPE process is an attractive alternative to an Environmental Protection Administration liquid-liquid extraction process that generates some pollution and does not work in a microgravitational environment. In this SPE process, one forces a water sample through a resin bed by use of positive pressure on the upstream side and/or suction on the downstream side, thereby causing organic compounds from the water to be adsorbed onto the resin. If gas-chromatographic analysis is to be done, the resin is dried by use of a suitable gas, then the adsorbed compounds are extracted from the resin by use of a solvent. Unlike the liquid-liquid process, the SPE process works in both microgravity and Earth gravity. In comparison with the liquid-liquid process, the SPE process is more efficient, extracts a wider range of organic compounds, generates less pollution, and costs less.

  1. Recovery of acid-degraded tributyl phosphate by solvent extraction

    International Nuclear Information System (INIS)

    Young, G.C.; Holladay, D.W.

    1981-01-01

    During nuclear fuel reprocessing the organic solvent becomes loaded with various acidic degradation products, which can be effectively removed through solvent extraction. Studies have been made with a small bench-scale solvent extraction system to optimize such parameters as pH of aqueous phase, phase ratio, residence time, flow rates, and temperature. The necessary decontamination factors have been obtained for various degradation products during continuous solvent extraction in one stage, with the aqueous phase being recycled. The aqueous phase contains compounds that can be degraded to gases to minimize waste disposal problems

  2. Spin polarized and density modulated phases in symmetric electron-electron and electron-hole bilayers.

    Science.gov (United States)

    Kumar, Krishan; Moudgil, R K

    2012-10-17

    We have studied symmetric electron-electron and electron-hole bilayers to explore the stable homogeneous spin phase and the feasibility of inhomogeneous charge-/spin-density ground states. The former is resolved by comparing the ground-state energies in states of different spin polarizations, while the latter is resolved by searching for a divergence in the wavevector-dependent static charge/spin susceptibility. For this endeavour, we have used the dielectric approach within the self-consistent mean-field theory of Singwi et al. We find that the inter-layer interactions tend to change an abrupt spin-polarization transition of an isolated layer into a nearly gradual one, even though the partially spin-polarized phases are not clearly stable within the accuracy of our calculation. The transition density is seen to decrease with a reduction in layer spacing, implying a suppression of spin polarization by inter-layer interactions. Indeed, the suppression shows up distinctly in the spin susceptibility computed from the spin-polarization dependence of the ground-state energy. However, below a critical layer spacing, the unpolarized liquid becomes unstable against a charge-density-wave (CDW) ground state at a density preceding full spin polarization, with the transition density for the CDW state increasing on further reduction in the layer spacing. Due to attractive e-h correlations, the CDW state is found to be more pronounced in the e-h bilayer. On the other hand, the static spin susceptibility diverges only in the long-wavelength limit, which simply represents a transition to the homogeneous spin-polarized phase.

  3. Selective nonspecific solvation under dielectric saturation and fluorescence spectra of dye solutions in binary solvents.

    Science.gov (United States)

    Bakhshiev, N G; Kiselev, M B

    1991-09-01

    The influence of selective nonspecific solvation on the fluorescence spectra of three substitutedN-methylphthalimides in a binary solvent system consisting of a nonpolar (n-heptane) and a polar (pyridine) component has been studied under conditions close to dielectric saturation. The substantially nonlinearity of the effect is confirmation that the spectral shifts of fluorescence bands depend on the number of polar solvent molecules involved in solvating the dye molecule. The measured fluorescence spectral shifts determined by substituting one nonpolar solvent molecula with a polar one in the proximity of the dye molecule agree quantitatively with the forecasts of the previously proposed semiempirical theory which describes this nonlinear solvation phenomenon.

  4. Polarized object detection in crabs: a two-channel system.

    Science.gov (United States)

    Basnak, Melanie Ailín; Pérez-Schuster, Verónica; Hermitte, Gabriela; Berón de Astrada, Martín

    2018-05-25

    Many animal species take advantage of polarization vision for vital tasks such as orientation, communication and contrast enhancement. Previous studies have suggested that decapod crustaceans use a two-channel polarization system for contrast enhancement. Here, we characterize the polarization contrast sensitivity in a grapsid crab . We estimated the polarization contrast sensitivity of the animals by quantifying both their escape response and changes in heart rate when presented with polarized motion stimuli. The motion stimulus consisted of an expanding disk with an 82 deg polarization difference between the object and the background. More than 90% of animals responded by freezing or trying to avoid the polarized stimulus. In addition, we co-rotated the electric vector (e-vector) orientation of the light from the object and background by increments of 30 deg and found that the animals' escape response varied periodically with a 90 deg period. Maximum escape responses were obtained for object and background e-vectors near the vertical and horizontal orientations. Changes in cardiac response showed parallel results but also a minimum response when e-vectors of object and background were shifted by 45 deg with respect to the maxima. These results are consistent with an orthogonal receptor arrangement for the detection of polarized light, in which two channels are aligned with the vertical and horizontal orientations. It has been hypothesized that animals with object-based polarization vision rely on a two-channel detection system analogous to that of color processing in dichromats. Our results, obtained by systematically varying the e-vectors of object and background, provide strong empirical support for this theoretical model of polarized object detection. © 2018. Published by The Company of Biologists Ltd.

  5. Generation of Bright Phase-matched Circularly-polarized Extreme Ultraviolet High Harmonics

    Science.gov (United States)

    2014-12-08

    1995). 42. Eichmann , H. et al. Polarization-dependent high-order two-color mixing. Phys. Rev. A 51, R3414–R3417 (1995). 43. Fleischer, A., Kfir, O...calculations of polarization-dependent two- color high-harmonic generation. Phys. Rev. A 52, 2262–2278 (1995). 10. Eichmann , H. et al. polarization

  6. Nitropyrroles, Diels-Alder reactions assisted by microwave irradiation and solvent effect. An experimental and theoretical study

    Science.gov (United States)

    Mancini, Pedro M. E.; Kneeteman, María N.; Cainelli, Mauro; Ormachea, Carla M.; Domingo, Luis R.

    2017-11-01

    The behaviors of N-tosylnitropyrroles acting as electrophilic dienophiles in polar Diels-Alder reactions joint to different dienes of increeased nucleophilicity are analyzed. The reactions were developed under microwave irradiation using toluene or protic ionic liquids (PILs) as solvents and in free solvent conditions. In all the cases explored we observed good yields in short reaction times. For these reactions, the free solvent condition and the use of protic ionic liquids as solvents offer similar results. However, the free solvent conditions favor environmental sustainability. The role of PILs in these polar Diels-Alder reactions has been theoretically studied within the Molecular Electron Density Theory.

  7. Safety confirmation study of TRUEX solvent by accelerating rate calorimeter (ARC)

    International Nuclear Information System (INIS)

    Sato, Yoshihiko; Hirumachi, Suguru; Takeda, Shinso; Kanazawa, Yoshito; Sasaya, Shinji

    1999-02-01

    In order to confirm the engineering safety on the TRUEX solvent (mixed solvent of CMPO/TBP/n-dodecane) for separating the transuranics from high-level activity liquid waste in advanced nuclear fuel recycling technological R and D, thermal behavior and pressure behavior in heating PUREX solvent (mixed solvent of 30% TBP-n-dodecane), TRUEX solvent and in the exothermic reaction of TRUEX solvent etc. and nitric acid in sealed adiabatic system which was severer condition than actual plant were measured by using accelerating rate calorimeter (ARC). The Arrhenius parameters (activation energy and frequency factor) which are necessary for the evaluation of reaction rate was examined from the measurement data in ARC. Analytical method and analysis condition of reaction products were examined in order to clarify chemical form of reaction products in exothermic reaction between solvent and nitric acid in ARC, and the qualitative evaluation was carried out. Main results are shown in the following. 1) TBP, CMPO, n-dodecane and 10 M nitric acid hardly exothermed in the simple substance. 2) On the solvent phase after the solvent contacted with 10 M nitric acid and the equilibrium has been attained (single-phase sample), the heat quantity per unit sample weight of the TRUEX solvent tended to be bigger than that of the PUREX solvent when heat quantity was evaluated in ARC. However, on the mixed sample of solvent and 10 M nitric acid enclosed in a sample container simultaneously (two phase system sample), the heat quantity per unit solvent weight was almost equivalent for PUREX solvent and TRUEX solvent. 3) The kinetic analysis was carried out, and on the TBP-10 M nitric acid single-phase sample, the activation energy of the reaction was evaluated to be 118 kJ/mol. Its activation energy was approximately equal to 112 kJ/mol by Nichols. The reaction rate constant was calculated, and it was shown that reaction rate constants of PUREX solvent-10 M nitric acid single-phase sample and

  8. Sorption behaviour of polystyrene grafted sago starch in various solvents

    International Nuclear Information System (INIS)

    Janarthanan, P.; Yunus, W.M.Z.W.; Ahmed, M.B.; Rahman, M.Z.; Haron, M.J.; Silong, S.

    2001-01-01

    This paper describes swelling properties of polystyrene grafted sago starch in dimethyl sulfoxide (DMSO); chloroform (CHCl/sub 3/), water, acetone carbon tetrachloride (CCl/sub 4/) cyclohexanone and toluene. The copolymer for this study was prepared by grafting styrene onto sago starch using ceric ammonium nitrate as a redox initiator. Solvent uptake of the copolymer with respect to time was obtained by soaking the samples in chosen solvents for various time intervals at 25+-1 degree centigrade. The results obtained from swelling of polystyrene grafted sago starch in polar and non polar solvents showed that the percentage of swelling at equilibrium and the swelling rate coefficient decreased in the following order: DMSO > water > acetone cyclohexanone approx. CHCl/sub 3/ > toluene approx. CCl/sub 4/. Dimethyl sulfoxide showed the highest percentage of swelling at equilibrium that is 765%. Diffusions of the solvents onto the polymers were found to be of a Fickian only for DMSO. (author)

  9. Basicity comparison for di-substituted 4-nitropyridine derivatives in polar non-aqueous media

    International Nuclear Information System (INIS)

    Gurzynski, Lukasz; Puszko, Aniela; Chmurzynski, Lech

    2007-01-01

    Acid dissociation, as well as cationic homoconjugation equilibria have been studied potentiometrically in systems involving four di-substituted 4-nitropyridines and conjugate cationic acids in the polar non-aqueous solvents - aprotic protophobic acetonitrile (AN) and propylene carbonate (PC), the amphiprotic methanol (MeOH), and in the aprotic protophilic dimethyl sulfoxide (DMSO). The influence of solvent effect on the obtained acidity constants has been discussed. The acidity constants (expressed as pK a values) were compared with those previously determined in another polar protophobic aprotic solvent - acetone (AC), and obtained for the unsubstituted pyridine (Py). A comparison of the acid dissociation constants determined in all media studied has proved that the strength of the cationic acids increases on going from acetonitrile through propylene carbonate, acetone, and methanol to dimethyl sulfoxide. Furthermore, the values of acidity constants in the non-aqueous media have shown that in all the solvents studied they change according to the substituent effects. It has been also found that substituted 4-nitropyridine derivatives studied exhibit no tendency towards cationic homoconjugation in acetonitrile, propylene carbonate, and methanol and dimethyl sulfoxide. Moreover, it has been demonstrated that the acid dissociation constants determined by potentiometric titration method in all the solutions investigated correlate well with the calculated energy parameters of the protonation reactions in the gaseous phase

  10. Basicity comparison for di-substituted 4-nitropyridine derivatives in polar non-aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Gurzynski, Lukasz [Department of General and Inorganic Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Puszko, Aniela [Department of Organic Chemistry, School of Economics, Wroclaw (Poland); Chmurzynski, Lech [Department of General and Inorganic Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland)], E-mail: lech@chemik.chem.univ.gda.pl

    2007-12-15

    Acid dissociation, as well as cationic homoconjugation equilibria have been studied potentiometrically in systems involving four di-substituted 4-nitropyridines and conjugate cationic acids in the polar non-aqueous solvents - aprotic protophobic acetonitrile (AN) and propylene carbonate (PC), the amphiprotic methanol (MeOH), and in the aprotic protophilic dimethyl sulfoxide (DMSO). The influence of solvent effect on the obtained acidity constants has been discussed. The acidity constants (expressed as pK{sub a} values) were compared with those previously determined in another polar protophobic aprotic solvent - acetone (AC), and obtained for the unsubstituted pyridine (Py). A comparison of the acid dissociation constants determined in all media studied has proved that the strength of the cationic acids increases on going from acetonitrile through propylene carbonate, acetone, and methanol to dimethyl sulfoxide. Furthermore, the values of acidity constants in the non-aqueous media have shown that in all the solvents studied they change according to the substituent effects. It has been also found that substituted 4-nitropyridine derivatives studied exhibit no tendency towards cationic homoconjugation in acetonitrile, propylene carbonate, and methanol and dimethyl sulfoxide. Moreover, it has been demonstrated that the acid dissociation constants determined by potentiometric titration method in all the solutions investigated correlate well with the calculated energy parameters of the protonation reactions in the gaseous phase.

  11. Determination of Iron Species by Combination of Solvent Assisted-Dispersive Solid Phase Extraction and Spectrophotometry

    Directory of Open Access Journals (Sweden)

    Zahra Dehghani

    2015-06-01

    Full Text Available A simple, rapid and sensitive solvent assisted-dispersive solid phase extraction method was developed for the extraction of iron(II prior to its spectrophotometric determination. The Fe(II reacted with 2,4,6-tris(2-pyridyl-1,3,5-triazine, neutralized with sodium dodecyl sulfate and extracted onto the fine particles of benzophenone which were formed upon rapid injection of a mixture of benzophenone as the sorbent and ethanol as the disperser solvent into the aqueous solution. After phase separation, the sedimented phase containing the complex was dissolved in ethanol and the analyte concentration was determined by measuring its absorption at 594 nm. Total iron was determined after the reduction of Fe(III to Fe(II with hydroxylamine hydrochloride. Under the optimized conditions, an enhancement factor of 32, the detection limit of 0.16 µg l-1, and the relative standard deviation of 1.9% (n = 6 at 20 µg l-1 concentration level of Fe(II were achieved. The method was successfully applied to the determination of iron species in water samples and total iron in infant dry formula milk, apple, rice, spinach and parsley samples.

  12. A new method for generating axially-symmetric and radially-polarized beams

    International Nuclear Information System (INIS)

    Niu Chunhui; Gu Benyuan; Dong Bizhen; Zhang Yan

    2005-01-01

    A scheme for generating axially-symmetric and radially-polarized beams is proposed by using two diffractive phase elements (DPEs) made of birefringent materials. The design of these two DPEs is based on the general theory of phase-retrieval of optical system in combination with an iterative algorithm. The first DPE is used for demultiplexing two orthogonally linearly-polarized light beams to produce diffractive patterns, and the second DPE is used for compensating the phase difference to obtain the desired radially-polarized beam

  13. Solvent density mode instability in non-polar solutions

    Indian Academy of Sciences (India)

    and excited states of the solute with the compressibility and solvent structure is found to have .... The organization of the rest of the paper is as follows. ...... For the ground state term, as C2 is nearly flat at qσ = q0 = 2π, we can safely ignore.

  14. Photoluminescence Polarization Anisotropy in a Single Heterostructured III-V Nanowire with Mixed Crystal Phases

    International Nuclear Information System (INIS)

    Moses, A. F.; Hoang, T. B.; Ahtapodov, L.; Dheeraj, D. L.; Fimland, B. O.; Weman, H.; Helvoort, A. T. J. van

    2011-01-01

    Low temperature (10 K) micro-photoluminescence (μ-PL) of single GaAs/AlGaAs core-shell nanowires with single GaAsSb inserts were measured. The PL emission from the zinc blende GaAsSb insert is strongly polarized along the nanowire axis while the PL emission from the wurtzite GaAs nanowire is perpendiculary polarized to the nanowire axis. The result indicates that the crystal phase, through the optical selection rules, has significant effect on the polarization of the PL from NWs besides the dielectric mismatch. The analysis of the PL results based on the electronic structure of these nanowires supports the correlation between the crystal phase and the PL emission.

  15. Helicity-Selective Phase-Matching and Quasi-Phase matching of Circularly Polarized High-Order Harmonics: Towards Chiral Attosecond Pulses

    Science.gov (United States)

    2016-05-23

    2 Department of Physics and JILA, University of Colorado and NIST, Boulder, CO 80309, USA 3Department of Physics and Optical Engineering, Ort Braude...polarized high harmonic generation, phase matching, ultrafast chiral physics, attosecond pulses (Some figures may appear in colour only in the online...temporal resolution and in spectral regions unavailable to circular polarization thus far. Acknowledgments This work was supported by the USA –Israel

  16. Structure-retention and mobile phase-retention relationships for reversed-phase high-performance liquid chromatography of several hydroxythioxanthone derivatives in binary acetonitrile-water mixtures

    International Nuclear Information System (INIS)

    Amiri, Ali Asghar; Hemmateenejad, Bahram; Safavi, Afsaneh; Sharghi, Hashem; Beni, Ali Reza Salimi; Shamsipur, Mojtaba

    2007-01-01

    The reversed-phase high-performance liquid chromatographic (RP-HPLC) behavior of some newly synthesized hydroxythioxanthone derivatives using binary acetonitrile-water mixtures as mobile phase has been examined. First, the variation in the retention time of each molecule as a function of mobile phase properties was studied by Kamlet-Taft solvatochromic equations. Then, the influences of molecular structure of the hydroxythioxanthone derivatives on their retention time in various mobile phase mixtures were investigated by quantitative structure-property relationship (QSPR) analysis. Finally, a unified model containing both the molecular structure parameters and mobile phase properties was developed to describe the chromatographic behavior of the systems studied. Among the solvent properties, polarity/polarizability parameter (π * ) and hydrogen-bond basicity (β), and among the solute properties, the most positive local charge (MPC), the sum of positive charges on hydrogen atoms contributing in hydrogen bonding (SPCH) and lipophilicity index (log P) were identified as controlling factors in the RP-HPLC behavior of hydroxythioxanthone derivatives in actonitrile-water binary solvents

  17. General Solvent-dependent Strategy toward Enhanced Oxygen Reduction Reaction in Graphene/Metal Oxide Nanohybrids: Effects of Nitrogen-containing Solvent

    Science.gov (United States)

    Kao, Wei-Yao; Chen, Wei-Quan; Chiu, Yu-Hsiang; Ho, Yu-Hsuan; Chen, Chun-Hu

    2016-11-01

    A general solvent-dependent protocol directly influencing the oxygen reduction reaction (ORR) in metal oxide/graphene nanohybrids has been demonstrated. We conducted the two-step synthesis of cobalt oxide/N-doped graphene nanohybrids (CNG) with solvents of water, ethanol, and dimethylformamide (DMF), representing tree typical categories of aqueous, polar organic, and organic N-containing solvents commonly adopted for graphene nanocomposites preparation. The superior ORR performance of the DMF-hybrids can be attributed to the high nitrogen-doping, aggregation-free hybridization, and unique graphene porous structures. As DMF is the more effective N-source, the spectroscopic results support a catalytic nitrogenation potentially mediated by cobalt-DMF coordination complexes. The wide-distribution of porosity (covering micro-, meso-, to macro-pore) and micron-void assembly of graphene may further enhance the diffusion kinetics for ORR. As the results, CNG by DMF-synthesis exhibits the high ORR activities close to Pt/C (i.e. only 8 mV difference of half-wave potential with electron transfer number of 3.96) with the better durability in the alkaline condition. Additional graphene hybrids comprised of iron and manganese oxides also show the superior ORR activities by DMF-synthesis, confirming the general solvent-dependent protocol to achieve enhanced ORR activities.

  18. Controlled release of beta-estradiol from PLAGA microparticles: the effect of organic phase solvent on encapsulation and release.

    Science.gov (United States)

    Birnbaum, D T; Kosmala, J D; Henthorn, D B; Brannon-Peppas, L

    2000-04-03

    To determine the effect of the organic solvent used during microparticle preparation on the in vitro release of beta-estradiol, a number of formulations were evaluated in terms of size, shape and drug delivery performance. Biodegradable microparticles of poly(lactide-co-glycolide) were prepared containing beta-estradiol that utilized dichloromethane, ethyl acetate or a mixture of dichloromethane and methanol as the organic phase solvent during the particle preparation. The drug delivery behavior from the microparticles was studied and comparisons were made of their physical properties for different formulations. The varying solubilities of beta-estradiol and poly(lactide-co-glycolide) in the solvents studied resulted in biodegradable microparticles with very different physical characteristics. Microparticles prepared from solid suspensions of beta-estradiol using dichloromethane as the organic phase solvent were similar in appearance to microparticles prepared without drug. Microparticles prepared from dichloromethane/methanol solutions appeared transparent to translucent depending on the initial amount of drug used in the formulation. Microparticles prepared using ethyl acetate appeared to have the most homogeneous encapsulation of beta-estradiol, appearing as solid white spheres regardless of initial drug content. Studies showed that microparticles prepared from either ethyl acetate or a mixture of dichloromethane and methanol gave a more constant release profile of beta-estradiol than particles prepared using dichloromethane alone. For all formulations, an initial burst of release increased with increasing drug loading, regardless of the organic solvent used.

  19. Potential of mean force for ion pairs in non-aqueous solvents. Comparison of polarizable and non-polarizable MD simulations

    Science.gov (United States)

    Odinokov, A. V.; Leontyev, I. V.; Basilevsky, M. V.; Petrov, N. Ch.

    2011-01-01

    Potentials of mean force (PMF) are calculated for two model ion pairs in two non-aqueous solvents. Standard non-polarizable molecular dynamics simulation (NPMD) and approximate polarizable simulation (PMD) are implemented and compared as tools for monitoring PMF profiles. For the polar solvent (dimethylsulfoxide, DMSO) the PMF generated in terms of the NPMD reproduces fairly well the refined PMD-PMF profile. For the non-polar solvent (benzene) the conventional NPMD computation proves to be deficient. The validity of the correction found in terms of the approximate PMD approach is verified by its comparison with the result of the explicit PMD computation in benzene. The shapes of the PMF profiles in DMSO and in benzene are quite different. In DMSO, owing to dielectric screening, the PMF presents a flat plot with a shallow minimum positioned in the vicinity of the van der Waals contact of the ion pair. For the benzene case, the observed minimum proves to be unexpectedly deep, which manifests the formation of a tightly-binded contact ion pair. This remarkable effect arises owing to the strong electrostatic interaction that is incompletely screened by a non-polar medium. The PMFs for the binary benzene/DMSO mixtures display intermediate behaviour depending on the DMSO content.

  20. An overview of industrial solvent use or is there life after chlorinated solvents?

    International Nuclear Information System (INIS)

    Green, B.

    1991-01-01

    Everyone using industrial chemicals has been affected by the fire- storm of new regulations governing solvent use. How will companies currently using hazardous solvents prepare for the changes ahead? What will the impact be on commonly used industrial solvents? What effect are environmental pressures having on solvent use and disposal? Are the responsible individuals in your company up-to-date on phase-out schedules? This paper is written for an audience of compliance coordinators, consultants, production engineers and corporate management. In it, the either addresses the above questions and discusses the specific products affected. The author reviews currently available alternatives to chlorinated and hazardous solvents and introduces a simple system for rating alternatives. The program also includes a discussion of solvent minimization programs and worker reeducation

  1. Geometric phase from dielectric matrix

    International Nuclear Information System (INIS)

    Banerjee, D.

    2005-10-01

    The dielectric property of the anisotropic optical medium is found by considering the polarized photon as two component spinor of spherical harmonics. The Geometric Phase of a polarized photon has been evaluated in two ways: the phase two-form of the dielectric matrix through a twist and the Pancharatnam phase (GP) by changing the angular momentum of the incident polarized photon over a closed triangular path on the extended Poincare sphere. The helicity in connection with the spin angular momentum of the chiral photon plays the key role in developing these phase holonomies. (author)

  2. Parâmetros reacionais para a síntese enzimática do butirato de butila em solventes orgânicos Reactional parameters for enzymatic synthesis of butyl butyrate in organic solvent

    Directory of Open Access Journals (Sweden)

    Heizir F. CASTRO

    1997-12-01

    Full Text Available A síntese orgânica catalisada por enzimas envolve um mecanismo complexo dependente do tipo de substrato, enzima, solvente orgânico e teor de água no meio reacional. Neste trabalho foi estudado a influência de alguns desses parâmetros no rendimento da esterificação do butanol com ácido butírico, utilizando uma preparação enzimática comercial de lipase. A polaridade e natureza do solvente, bem como a razão molar entre o butanol e ácido butírico, foram considerados os fatores que mais influenciaram o desenvolvimento dessa síntese enzimática.The organic synthesis catalyzed by enzymes is a complex function of substrate concentration, water concentration in the liquid phase, enzyme and organic solvent properties. In this work the influence of some parameters on the esterification of butanol with butyric acid was investigated, using a commercial lipase preparation. The polarity and nature of the solvent and also the substrate mole ratios played an important role in the performance of this enzymatic synthesis.

  3. Universal holonomic single quantum gates over a geometric spin with phase-modulated polarized light.

    Science.gov (United States)

    Ishida, Naoki; Nakamura, Takaaki; Tanaka, Touta; Mishima, Shota; Kano, Hiroki; Kuroiwa, Ryota; Sekiguchi, Yuhei; Kosaka, Hideo

    2018-05-15

    We demonstrate universal non-adiabatic non-abelian holonomic single quantum gates over a geometric electron spin with phase-modulated polarized light and 93% average fidelity. This allows purely geometric rotation around an arbitrary axis by any angle defined by light polarization and phase using a degenerate three-level Λ-type system in a negatively charged nitrogen-vacancy center in diamond. Since the control light is completely resonant to the ancillary excited state, the demonstrated holonomic gate not only is fast with low power, but also is precise without the dynamical phase being subject to control error and environmental noise. It thus allows pulse shaping for further fidelity.

  4. In situ measurement of solvent-mediated phase transformations during dissolution testing

    DEFF Research Database (Denmark)

    Aaltonen, Jaakko; Heinänen, Paula; Peltonen, Leena

    2006-01-01

    In this study, solvent-mediated phase transformations of theophylline (TP) and nitrofurantoin (NF) were measured in a channel flow intrinsic dissolution test system. The test set-up comprised simultaneous measurement of drug concentration in the dissolution medium (with UV-Vis spectrophotometry......) and measurement of the solid-state form of the dissolving solid (in situ with Raman spectroscopy). The solid phase transformations were also investigated off-line with scanning electron microscopy. TP anhydrate underwent a transformation to TP monohydrate, and NF anhydrate (form beta) to NF monohydrate (form II......). Transformation of TP anhydrate to TP monohydrate resulted in a clear decrease in the dissolution rate, while the transformation of NF anhydrate (form beta) to NF monohydrate (form II) could not be linked as clearly to changes in the dissolution rate. The transformation of TP was an order of magnitude faster than...

  5. A Wideband and Polarization-Independent Metasurface Based on Phase Optimization for Monostatic and Bistatic Radar Cross Section Reduction

    Directory of Open Access Journals (Sweden)

    Jianxun Su

    2016-01-01

    Full Text Available A broadband and polarization-independent metasurface is analyzed and designed for both monostatic and bistatic radar cross section (RCS reduction in this paper. Metasurfaces are composed of two types of electromagnetic band-gap (EBG lattice, which is a subarray with “0” or “π” phase responses, arranged in periodic and aperiodic fashions. A new mechanism is proposed for manipulating electromagnetic (EM scattering and realizing the best reduction of monostatic and bistatic RCS by redirecting EM energy to more directions through controlling the wavefront of EM wave reflected from the metasurface. Scattering characteristics of two kinds of metasurfaces, periodic arrangement and optimized phase layout, are studied in detail. Optimizing phase layout through particle swarm optimization (PSO together with far field pattern prediction can produce a lot of scattering lobes, leading to a great reduction of bistatic RCS. For the designed metasurface based on optimal phase layout, a bandwidth of more than 80% is achieved at the normal incidence for the −9.5 dB RCS reduction for both monostatic and bistatic. Bistatic RCS reduction at frequency points with exactly 180° phase difference reaches 17.6 dB. Both TE and TM polarizations for oblique incidence are considered. The measured results are in good agreement with the corresponding simulations.

  6. Spectral behaviour of eosin Y in different solvents and aqueous surfactant media

    Science.gov (United States)

    Chakraborty, Moumita; Panda, Amiya Kumar

    2011-10-01

    Photophysical behaviour of the anionic xanthene dye, eosin Y (EY) was investigated in solvents of different polarities as well as in the presence of aqueous cationic surfactants. From the correlation between ET(30) and Kosower Z values of EY in different solvents, subsequent parameters for EY were determined in the presence of surfactants. A red shift, both in the absorption and emission spectra of EY, was observed with decreasing solvent polarity. Dimerisation of EY was found to be dependent on solvent polarity. Cationic surfactants retarded the process of dimerisation, which were evident from the lower dimerisation constant ( KD) values, compared to that of in pure water. Dye-surfactant interaction constants were determined at different temperatures (298-318 K) and subsequently the thermodynamic parameters, viz., Δ G°, Δ H° and Δ S° were evaluated using the interaction constant values. The fluorescence spectra of EY followed the same trend as in the absorption spectra, although with lesser extents. Stokes shifts were calculated and correlated with the polarity of the medium. Fluorescence of EY was initially quenched by the cationic surfactants in their pre-micellar region, which then followed a red shift with intensity enhancement. Fluorescence quenching was found to be of Stern-Volmer type where the excited state lifetime of EY remained unchanged in different surfactant media. However, the anisotropy value of EY was changed in the post micellar region of surfactants.

  7. Heavy atoms as molecular probes in studying the solvent dependence of the dynamics of triplet exciplexes

    International Nuclear Information System (INIS)

    Steiner, U.; Winter, G.

    1981-01-01

    Electron transfer reactions between thiopyronine triplet (acceptor 3 A + ) and the electron donors (D), aniline, p-Br-aniline and p-I-aniline, are investigated by flash spectroscopy in solvents of different viscosity and polarity. Due to the heavy-atom effect the radical yield becomes very sensitive to the solvent influence, which can be explained by the dynamic properties of a triplet exciplex ( 3 (AD + )) formed as a primary product in the reaction between acceptor triplet and donor. Whereas on variation of solvent viscosity the solvent cage effect on the dissociation of 3 (AD + ) is observed, a change in solvent polarity is suggested to affect the radiationless deactivation of 3 (AD + ) to the ground state of the components. (author)

  8. Influence of ionic liquids on actinides extraction by diphenyl(dibutyl)carbamoylmethylphosphine oxide in different solvents from nitric acid solution

    International Nuclear Information System (INIS)

    Pribylova, G.A.

    2011-01-01

    Influence of ionic liquids (ILs) addition (1-50 wt%) on extraction efficiency of actinides by diphenyl(dibutyl)carbamoylmethylphosphine oxide (Ph 2 Bu 2 ) from 3 M HNO 3 has been studied. Am(III) distribution ratios in two-phase systems 0.1 M Ph 2 Bu 2 in either DCE or CHCl 3 -3 M HNO 3 depending on the nature of additional ionic liquids: imidazolium-based ILs: [C 4 mim][PF 6 ], [C 4 mim][BF 4 ] and phosphonium-based ILs: PPF 6 , PBF 4 and PCl were determined. The highest value of Am(III) extraction ratio change (1040) was found on addition of PPF 6 to Ph 2 Bu 2 in CHCl 3 . Extraction of Pu(IV) and U(VI) by 0.001 M Ph 2 Bu 2 in the presence of [C 4 mim][PF 6 ] in DCE, CHCl 3 or meta-nitrobenzotrifluoride (NBTF) have been investigated. The greatest enhancement of extraction efficiency was observed using CHCl 3 , the least polar studied solvent. Using a mixture of conventional solvent and ionic liquid as a solvent for extractant enables one to increase distribution ratios and reduce viscosity of organic phase as compared with ionic liquid viscosity. The marked increase of Am(III), Pu(IV) and U(VI) extraction extent by Ph 2 Bu 2 on addition of ionic liquids to the extent of 10 wt% permit one essentially to diminish amounts considerably more expensive carbamoylmethylphosphine oxide(the general name is CMPO) used in TRUEX process. (author)

  9. Electrochemical behavior of uranyl in anhydrous polar organic media

    Energy Technology Data Exchange (ETDEWEB)

    Burn, Adam G.; Nash, Kenneth L. [Washington State Univ., Pullmann, WA (United States). Dept. of Chemistry

    2017-09-01

    Weak complexes between pentavalent and hexavalent actinyl cations have been reported to exist in acidic, non-complexing high ionic strength aqueous media. Such ''cation-cation complexes'' were first identified in the context of actinide-actinide redox reactions in acidic aqueous media relevant to solvent extraction-based separation systems, hence their characterization is of potential interest for advanced nuclear fuel reprocessing. This chemistry could be relevant to efforts to develop advanced actinide separations based on the upper oxidation states of americium, which are of current interest. In the present study, the chemical behavior of pentavalent uranyl was examined in non-aqueous, aprotic polar organic solvents (propylene carbonate and acetonitrile) to determine whether UO{sub 2}{sup +} cations generated at the reducing working electrode surface would interact with the UO{sub 2}{sup 2+} cations in the bulk phase to form cation-cation complexes in such media. In magnesium perchlorate media, the electrolyte adsorbed onto the working electrode surface and interfered with the uranyl reduction/diffusion process through an ECE (electron transfer/chemical reaction/electron transfer) mechanism. In parallel studies of uranyl redox behavior in tetrabutylammonium hexafluorophosphate solutions, an EC (electron transfer/chemical reaction) mechanism was observed in the cyclic voltammograms. Ultimately, no conclusive electrochemical evidence demonstrated uranyl cation-cation interactions in the non-aqueous, aprotic polar organic solvent solutions, though the results reported do not completely rule out the presence of UO{sub 2}{sup +}.UO{sub 2}{sup 2+} complexes.

  10. Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure.

    Science.gov (United States)

    Zhuang, Leimeng; Beeker, Willem; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris

    2013-02-11

    We propose and demonstrate a novel wideband microwave photonic polarization network for dual linear-polarized antennas. The polarization network is based on a waveguide-implemented fully-reconfigurable optical interleaver using a two-ring resonator-assisted asymmetric Mach-Zehnder structure. For microwave photonic signal processing, this structure is able to serve as a wideband 2 × 2 RF coupler with reconfigurable complex coefficients, and therefore can be used as a polarization network for wideband antennas. Such a device can equip the antennas with not only the polarization rotation capability for linear-polarization signals but also the capability to operate with and tune between two opposite circular polarizations. Operating together with a particular modulation scheme, the device is also able to serve for simultaneous feeding of dual-polarization signals. These photonic-implemented RF functionalities can be applied to wideband antenna systems to perform agile polarization manipulations and tracking operations. An example of such a interleaver has been realized in TriPleX waveguide technology, which was designed with a free spectral range of 20 GHz and a mask footprint of smaller than 1 × 1 cm. Using the realized device, the reconfigurable complex coefficients of the polarization network were demonstrated with a continuous bandwidth from 2 to 8 GHz and an in-band phase ripple of smaller than 5 degree. The waveguide structure of the device allows it to be further integrated with other functional building blocks of a photonic integrated circuit to realize on-chip, complex microwave photonic processors. Of particular interest, it can be included in an optical beamformer for phased array antennas, so that simultaneous wideband beam and polarization trackings can be achieved photonically. To our knowledge, this is the first-time on-chip demonstration of an integrated microwave photonic polarization network for dual linear-polarized antennas.

  11. An organic solvent-, detergent-, and thermo-stable alkaline protease from the mesophilic, organic solvent-tolerant Bacillus licheniformis 3C5.

    Science.gov (United States)

    Rachadech, W; Navacharoen, A; Ruangsit, W; Pongtharangkul, T; Vangnai, A S

    2010-01-01

    Bacillus licheniformis 3C5, isolated as mesophilic bacterium, exhibited tolerance towards a wide range of non-polar and polar organic solvents at 45 degrees C. It produced an extracellular organic solvent-stable protease with an apparent molecular mass of approximately 32 kDa. The inhibitory effect of PMSF and EDTA suggested it is likely to be an alkaline serine protease. The protease was active over abroad range of temperatures (45-70 degrees C) and pH (8-10) range with an optimum activity at pH 10 and 65 degrees C. It was comparatively stable in the presence ofa relatively high concentration (35% (v/v)) of organic solvents and various types of detergents even at a relatively high temperature (45 degrees C). The protease production by B. licheniformis 3C5 was growth-dependent. The optimization of carbon and nitrogen sources for cell growth and protease production revealed that yeast extract was an important medium component to support both cell growth and the protease production. The overall properties of the protease produced by B. licheniformis 3C5 suggested that this thermo-stable, solvent-stable, detergent-stable alkaline protease is a promising potential biocatalyst for industrial and environmental applications.

  12. Aqueous Two-Phase Extraction of Polyphenols Using a Microchannel System – Process Optimization and Intensification

    Directory of Open Access Journals (Sweden)

    Ivana Rukavina

    2011-01-01

    Full Text Available Polyphenols are one of the most numerous and widespread groups of compounds in the plant world. Nowadays, organic solvents such as methanol, ethanol, acetone, dimethylformamide, ethyl acetate and diethylether are mainly used for the extraction of polyphenols. These solvents require special process conditions and special care in the disposal of the used solvents. In this paper, the extraction of polyphenols from the model solution was performed using the aqueous two-phase system which contains 80.90 % water and represents low burden on the environment. The aqueous solution of gallic acid (GA was used as a model solution of polyphenols. The extraction was performed in the aqueous two-phase system containing PEG6000/H2O/(NH42SO4 in a macroextractor (V=10 mL and microextractor (V=14 ƒμL. The influence of the process parameters, the concentration of gallic acid, pH and composition of the aqueous two-phase system was investigated in order to maximize the partition coefficient. The method of multifactor experimental planning was used to optimize the extraction process and the results were statistically analysed using the evolutionary operation method (EVOP. Optimal operating conditions of the extraction process were pH=6.50, γGA=4.50 g/L, the mass fraction of polyethylene glycol (PEG wPEG=0.1037 g/g and the mass fraction of ammonium sulphate (AMS wAMS=0.0925 g/g. Under these conditions the maximal partition coefficient of K=5.54 and the extraction efficiency of E=89.11 % were achieved and successfully applied for total phenol extraction from white wine in the macro- and microextractor. Approximately the same partition coefficients and extraction efficiency were achieved in the microextractor within a 60-fold shorter residence time.

  13. Solvent Vapour Detection with Cholesteric Liquid Crystals—Optical and Mass-Sensitive Evaluation of the Sensor Mechanism

    Directory of Open Access Journals (Sweden)

    Adnan Mujahid

    2010-05-01

    Full Text Available Cholesteric liquid crystals (CLCs are used as sensitive coatings for the detection of organic solvent vapours for both polar and non-polar substances. The incorporation of different analyte vapours in the CLC layers disturbs the pitch length which changes the optical properties, i.e., shifting the absorption band. The engulfing of CLCs around non-polar solvent vapours such as tetrahedrofuran (THF, chloroform and tetrachloroethylene is favoured in comparison to polar ones, i.e., methanol and ethanol. Increasing solvent vapour concentrations shift the absorbance maximumto smaller wavelengths, e.g., as observed for THF. Additionally, CLCs have been coated on acoustic devices such as the quartz crystal microbalance (QCM to measure the frequency shift of analyte samples at similar concentration levels. The mass effect for tetrachloroethylene was about six times higher than chloroform. Thus, optical response can be correlated with intercalation in accordance to mass detection. The mechanical stability was gained by combining CLCs with imprinted polymers. Therefore, pre-concentration of solvent vapours was performed leading to an additional selectivity.

  14. Dependence of Polarization of the near-Earth Asteroids (1036) Ganymed and (5143) Heracles on Wavelength and Phase Angle

    Science.gov (United States)

    Maleszewski, C.; McMillan, R.; Smith, P.

    2012-12-01

    We are measuring the polarization of asteroids with the SPOL polarimeter of Steward Observatory. With monthly access to the instrument, we can obtain many observations throughout phase angle. This is in contrast to other recent work that had to rely on aggregate properties of targets of similar taxonomic type. Comparing individual objects to these aggregate results may reveal differences of regolith properties from object to object. Both the phase angle and spectral dependence of polarization are being measured. SPOL provides simultaneous coverage from 0.40-0.75 microns, equivalent to BVR filters. Three phase curves thus reveal differences of phase angle dependences with respect to wavelength. The spectral dependence of the linear polarization is determined according to a linear trend previously used to describe the dependence for Main Belt Asteroids (MBAs) in various taxonomic classes (Belskaya et al. 2009). The slopes of these linear trends vs. phase angle are also investigated as was also done in the Belskaya analysis for MBAs in the C-, M-, and S-types. Two initial objects of interest are the NEAs (1036) Ganymed and (5143) Heracles. The taxonomic types of Ganymed and Heracles are S-type and Q-type respectively (DeMeo et al. 2009). For Ganymed, twelve observations were made between 2011 September and 2012 March. These include observations below ten degrees phase angle, which are currently lacking in the polarimetric databases. The positive branch of Ganymed's polarization phase curve behaved similarly across SPOL's wavelength range. But for wavelengths associated with a typical B-filter, the negative branch is more shallow and narrow. The negative phase branch of Ganymed is smaller compared to the aggregate phase curve of S-types determined by Gil-Hutton and Cañada-Assandri (2011). The linear polarization decreases with increasing wavelength at all observed phase angles. As the phase angle increases, the slope of the wavelength dependence of polarization

  15. Reactor vessel and core two-phase flow ultrasonic densitometer

    International Nuclear Information System (INIS)

    Arave, A.E.

    1979-01-01

    A local ultrasonic density (LUD) detector has been developed by EG and G Idaho, Inc., at the Idaho National Engineering Laboratory (INEL) for the Loss-of-Fluid Test (LOFT) reactor vessel and core two-phase flow density measurements. The principle of operating the sensor is the change in propagation time of a torsional ultrasonic wave in a metal transmission line as a function of the density of the surrounding media. A theoretical physics model is presented which represents the total propagation time as a function of the sensor modulus of elasticity and polar moment of inertia. Separate effects tests and two-phase flow tests have been conducted to characterize the detector. Tests show the detector can perform in a 343 0 C pressurized water reactor environment and measure the average density of the media surrounding the sensor

  16. Excited-state inter- and intramolecular proton transfer in methyl 3-hydroxy-2-quinoxalinate: effects of solvent and acid or base concentrations

    International Nuclear Information System (INIS)

    Dogra, S.K.

    2005-01-01

    Absorption, fluorescence excitation and fluorescence spectroscopy, combined with time-dependent spectroscopy and semi-empirical (AM1) and density functional theory using Gaussian 98 program calculations have been used to study the effects of solvent and acid or base concentration on the spectral characteristics of methyl 3-hydroxy-2-quinoxalinate (M3HQ). M3HQ is present as enol in less polar solvents and as keto in polar media. In non-polar solvents, large Stokes shifted fluorescence band is assigned to the phototautomer, formed by the excited-state intramolecular proton transfer, whereas fluorescence is only observed from keto in the polar solvents. In aqueous and polar solvents the monocation (MC5/MC6) is formed by protonating the carbonyl oxygen atom in the ground (S 0 ) and the first excited singlet states (S 1 ). Dication is formed by protonating one of ?N- atom of MC5/MC6. Monoanion is formed by deprotonating the phenolic proton of enol in the basic solution. pK a values for different prototropic equilibriums were determined in S 0 and S 1 states and discussed

  17. Effects of Extraction Solvents on the Quantification of Free Amino Acids in Lyophilised Brewer’s Yeast

    Directory of Open Access Journals (Sweden)

    Andreea STĂNILĂ

    2018-05-01

    Full Text Available The aim of this work was to test some solvents in order to improve the free amino acids extraction from lyophilised brewer’s yeast. The brewer’ yeast was treated with four types of extraction solvents: Solvent I – acetonitrile 25%/HCl 0.01M (ACN; Solvent II – ethanol 80%; solvent III – HCl 0.05M/deionized water (1/1 volume; Solvent IV – HCl 0.05M/ethanol 80% (1/1 volume. The supernatants were analysed by HPLC-DAD-ESI-MS method. Acetonitrile provided the less quantities and number of amino acids extracted due to its weaker polarity. Solvent II and IV (ethanol, respectively acidified ethanol, which have an increased polarity, extracted 15 amino acids due to the addition of HCl in solvent IV. Solvent III (acidified water proved to be the best extraction solvent for the amino acids from brewer’s yeast providing the separation of 17 compounds: GLN, ASN, SER, GLY, ALA, ORN, PRO, HIS, LYS, GLU, TRP, LEU, PHE, ILE, AAA, HPHE, TYR.

  18. Selective Template Wetting Routes to Hierarchical Polymer Films: Polymer Nanotubes from Phase-Separated Films via Solvent Annealing.

    Science.gov (United States)

    Ko, Hao-Wen; Cheng, Ming-Hsiang; Chi, Mu-Huan; Chang, Chun-Wei; Chen, Jiun-Tai

    2016-03-01

    We demonstrate a novel wetting method to prepare hierarchical polymer films with polymer nanotubes on selective regions. This strategy is based on the selective wetting abilities of polymer chains, annealed in different solvent vapors, into the nanopores of porous templates. Phase-separated films of polystyrene (PS) and poly(methyl methacrylate) (PMMA), two commonly used polymers, are prepared as a model system. After anodic aluminum oxide (AAO) templates are placed on the films, the samples are annealed in vapors of acetic acid, in which the PMMA chains are swollen and wet the nanopores of the AAO templates selectively. As a result, hierarchical polymer films containing PMMA nanotubes can be obtained after the AAO templates are removed. The distribution of the PMMA nanotubes of the hierarchical polymer films can also be controlled by changing the compositions of the polymer blends. This work not only presents a novel method to fabricate hierarchical polymer films with polymer nanotubes on selective regions, but also gives a deeper understanding in the selective wetting ability of polymer chains in solvent vapors.

  19. Valley polarized quantum Hall effect and topological insulator phase transitions in silicene

    KAUST Repository

    Tahir, M.

    2013-01-25

    The electronic properties of silicene are distinct from both the conventional two dimensional electron gas and the famous graphene due to strong spin orbit interaction and the buckled structure. Silicene has the potential to overcome limitations encountered for graphene, in particular the zero band gap and weak spin orbit interaction. We demonstrate a valley polarized quantum Hall effect and topological insulator phase transitions. We use the Kubo formalism to discuss the Hall conductivity and address the longitudinal conductivity for elastic impurity scattering in the first Born approximation. We show that the combination of an electric field with intrinsic spin orbit interaction leads to quantum phase transitions at the charge neutrality point, providing a tool to experimentally tune the topological state. Silicene constitutes a model system for exploring the spin and valley physics not accessible in graphene due to the small spin orbit interaction.

  20. Effect of reaction solvent on hydroxyapatite synthesis in sol-gel process

    Science.gov (United States)

    Nazeer, Muhammad Anwaar; Yilgor, Emel; Yagci, Mustafa Baris; Unal, Ugur; Yilgor, Iskender

    2017-12-01

    Synthesis of hydroxyapatite (HA) through sol-gel process in different solvent systems is reported. Calcium nitrate tetrahydrate (CNTH) and diammonium hydrogen phosphate (DAHP) were used as calcium and phosphorus precursors, respectively. Three different synthesis reactions were carried out by changing the solvent media, while keeping all other process parameters constant. A measure of 0.5 M aqueous DAHP solution was used in all reactions while CNTH was dissolved in distilled water, tetrahydrofuran (THF) and N,N-dimethylformamide (DMF) at a concentration of 0.5 M. Ammonia solution (28-30%) was used to maintain the pH of the reaction mixtures in the 10-12 range. All reactions were carried out at 40 ± 2°C for 4 h. Upon completion of the reactions, products were filtered, washed and calcined at 500°C for 2 h. It was clearly demonstrated through various techniques that the dielectric constant and polarity of the solvent mixture strongly influence the chemical structure and morphological properties of calcium phosphate synthesized. Water-based reaction medium, with highest dielectric constant, mainly produced β-calcium pyrophosphate (β-CPF) with a minor amount of HA. DMF/water system yielded HA as the major phase with a very minor amount of β-CPF. THF/water solvent system with the lowest dielectric constant resulted in the formation of pure HA.

  1. Phase equilibria of didecyldimethylammonium nitrate ionic liquid with water and organic solvents

    International Nuclear Information System (INIS)

    Domanska, Urszula; Lugowska, Katarzyna; Pernak, Juliusz

    2007-01-01

    The phase diagrams for binary mixtures of an ammonium ionic liquid, didecyldimethylammonium nitrate, [DDA][NO 3 ], with: alcohols (propan-1-ol, butan-1-ol, octan-1-ol, and decan-1-ol): hydrocarbons (toluene, propylbenzene, hexane, and hexadecane) and with water were determined in our laboratory. The phase equilibria were measured by a dynamic method from T 220 K to either the melting point of the ionic liquid, or to the boiling point of the solvent. A simple liquidus curve in a eutectic system was observed for [DDA][NO 3 ] with: alcohols (propan-1-ol, butan-1-ol, and octan-1-ol); aromatic hydrocarbons (toluene and propylbenzene) and with water. (Solid + liquid) equilibria with immiscibility in the liquid phase were detected with the aliphatic hydrocarbons heptane and hexadecane and with decan-1-ol. (Liquid + liquid) equilibria for the system [DDA][NO 3 ] with hexadecane was observed for the whole mole fraction range of the ionic liquid. The observation of the upper critical solution temperature in binary mixtures of ([DDA][NO 3 ] + decan-1-ol, heptane, or hexadecane) was limited by the boiling temperature of the solvent. Characterisation and purity of the compounds were determined by elemental analysis, water content (Fisher method) and differential scanning microcalorimetry (d.s.c.) analysis. The d.s.c. method of analysis was used to determine melting temperatures and enthalpies of fusion. The thermal stability of the ionic liquid was resolved by the thermogravimetric technique-differential thermal analysis (TG-DTA) technique over a wide temperature range from (200 to 780) K. The thermal decomposition temperature of 50% of the sample was greater than 500 K. The (solid + liquid) phase equilibria, curves were correlated by means of different G Ex models utilizing parameters derived from the (solid + liquid) equilibrium. The root-mean-square deviations of the solubility temperatures for all calculated data are dependent upon the particular system and the particular

  2. Ions, solutes and solvents, oh my!

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Daniel David [Iowa State Univ., Ames, IA (United States)

    2009-08-01

    Modern methods in ab initio quantum mechanics have become efficient and accurate enough to study many gas-phase systems. However, chemists often work in the solution phase. The presence of solvent molecules has been shown to affect reaction mechanisms1, lower reaction energy barriers2, participate in energy transfer with the solute3 and change the physical properties of the solute4. These effects would be overlooked in simple gas phase calculations. Careful study of specific solvents and solutes must be done in order to fully understand the chemistry of the solution phase. Water is a key solvent in chemical and biological applications. The properties of an individual water molecule (a monomer) and the behavior of thousands of molecules (bulk solution) are well known for many solvents. Much is also understood about aqueous microsolvation (small clusters containing ten water molecules or fewer) and the solvation characteristics when bulk water is chosen to solvate a solute. However, much less is known about how these properties behave as the cluster size transitions from the microsolvated cluster size to the bulk. This thesis will focus on species solvated with water clusters that are large enough to exhibit the properties of the bulk but small enough to consist of fewer than one hundred solvent molecules. New methods to study such systems will also be presented.

  3. Polarization Imaging Apparatus for Cell and Tissue Imaging and Diagnostics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This work proposes to capitalize on our Phase I success in a novel visible-near infrared Stokes polarization imaging technology based on high performance fast...

  4. Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam.

    Science.gov (United States)

    Guo, Lina; Chen, Yahong; Liu, Xianlong; Liu, Lin; Cai, Yangjian

    2016-06-27

    Partially coherent radially polarized (PCRP) beam was introduced and generated in recent years. In this paper, we investigate the statistical properties of a PCRP beam embedded with a vortex phase (i.e., PCRP vortex beam). We derive the analytical formula for the cross-spectral density matrix of a PCRP vortex beam propagating through a paraxial ABCD optical system and analyze the statistical properties of a PCRP vortex beam focused by a thin lens. It is found that the statistical properties of a PCRP vortex beam on propagation are much different from those of a PCRP beam. The vortex phase induces not only the rotation of the beam spot, but also the changes of the beam shape, the degree of polarization and the state of polarization. We also find that the vortex phase plays a role of resisting the coherence-induced degradation of the intensity distribution and the coherence-induced depolarization. Furthermore, we report experimental generation of a PCRP vortex beam for the first time. Our results will be useful for trapping and rotating particles, free-space optical communications and detection of phase object.

  5. Diluent effects in solvent extraction. The Effects of Diluents in Solvent Extraction - a literature study

    International Nuclear Information System (INIS)

    Loefstroem-Engdahl, Elin; Aneheim, Emma; Ekberg, Christian; Foreman, Mark; Skarnemark, Gunnar

    2010-01-01

    The fact that the choice of organic diluent is important for a solvent extraction process goes without saying. Several factors, such as e.g. price, flash point, viscosity, polarity etc. each have their place in the planning of a solvent extraction system. This high number of variables makes the lack of compilations concerning diluent effects to an interesting topic. Often the interest for the research concerning a specific extraction system focuses on the extractant used and the complexes built up during an extraction. The diluents used are often classical ones, even if it has been shown that choice of diluent can affect extraction as well as separation in an extraction system. An attempt to point out important steps in the understanding of diluent effects in solvent extraction is here presented. This large field is, of course, not summarized in this article, but an attempt is made to present important steps in the understanding of diluents effects in solvent extraction. Trying to make the information concerning diluent effects and applications more easily accessible this review offers a selected summarizing of literature concerning diluents effects in solvent extraction. (authors)

  6. Nonhazardous solvent composition and method for cleaning metal surfaces

    International Nuclear Information System (INIS)

    Googin, J.M.; Simandl, R.F.; Thompson, L.M.

    1993-01-01

    A solvent composition for displacing greasy and oily contaminants as well as water and/or aqueous residue from metallic surfaces, especially surfaces of radioactive materials so that such surfaces can be wiped clean of the displaced contaminants, water and/or aqueous residue. The solvent composition consists essentially of a blend of nonpolar aliphatic hydrocarbon solvent having a minimum flash point of about 140 F and 2 to 25 volume percent of a polar solvent having a flash point sufficiently high so as to provide the solvent composition with a minimum flash point of at least 140 F. The solvent composition is nonhazardous so that when it is used to clean the surfaces of radioactive materials the waste in the form of paper or cloth wipes, lab coats and the like used in the cleaning operation is not considered to be mixed waste composed of a hazardous solvent and a radioactive material

  7. Free energy functionals for polarization fluctuations: Pekar factor revisited.

    Science.gov (United States)

    Dinpajooh, Mohammadhasan; Newton, Marshall D; Matyushov, Dmitry V

    2017-02-14

    The separation of slow nuclear and fast electronic polarization in problems related to electron mobility in polarizable media was considered by Pekar 70 years ago. Within dielectric continuum models, this separation leads to the Pekar factor in the free energy of solvation by the nuclear degrees of freedom. The main qualitative prediction of Pekar's perspective is a significant, by about a factor of two, drop of the nuclear solvation free energy compared to the total (electronic plus nuclear) free energy of solvation. The Pekar factor enters the solvent reorganization energy of electron transfer reactions and is a significant mechanistic parameter accounting for the solvent effect on electron transfer. Here, we study the separation of the fast and slow polarization modes in polar molecular liquids (polarizable dipolar liquids and polarizable water force fields) without relying on the continuum approximation. We derive the nonlocal free energy functional and use atomistic numerical simulations to obtain nonlocal, reciprocal space electronic and nuclear susceptibilities. A consistent transition to the continuum limit is introduced by extrapolating the results of finite-size numerical simulation to zero wavevector. The continuum nuclear susceptibility extracted from the simulations is numerically close to the Pekar factor. However, we derive a new functionality involving the static and high-frequency dielectric constants. The main distinction of our approach from the traditional theories is found in the solvation free energy due to the nuclear polarization: the anticipated significant drop of its magnitude with increasing liquid polarizability does not occur. The reorganization energy of electron transfer is either nearly constant with increasing the solvent polarizability and the corresponding high-frequency dielectric constant (polarizable dipolar liquids) or actually noticeably increases (polarizable force fields of water).

  8. Free energy functionals for polarization fluctuations: Pekar factor revisited

    International Nuclear Information System (INIS)

    Dinpajooh, Mohammadhasan; Newton, Marshall D.; Matyushov, Dmitry V.

    2017-01-01

    The separation of slow nuclear and fast electronic polarization in problems related to electron mobility in polarizable media was considered by Pekar 70 years ago. This separation leads to the Pekar factor in the free energy of solvation by the nuclear degrees of freedom, within dielectric continuum models. The main qualitative prediction of Pekar’s perspective is a significant, by about a factor of two, drop of the nuclear solvation free energy compared to the total (electronic plus nuclear) free energy of solvation. The Pekar factor enters the solvent reorganization energy of electron transfer reactions and is a significant mechanistic parameter accounting for the solvent effect on electron transfer. We study the separation of the fast and slow polarization modes in polar molecular liquids (polarizable dipolar liquids and polarizable water force fields) without relying on the continuum approximation. We derive the nonlocal free energy functional and use atomistic numerical simulations to obtain nonlocal, reciprocal space electronic and nuclear susceptibilities. A consistent transition to the continuum limit is introduced by extrapolating the results of finite-size numerical simulation to zero wavevector. The continuum nuclear susceptibility extracted from the simulations is numerically close to the Pekar factor. But, we derive a new functionality involving the static and high-frequency dielectric constants. The main distinction of our approach from the traditional theories is found in the solvation free energy due to the nuclear polarization: the anticipated significant drop of its magnitude with increasing liquid polarizability does not occur. The reorganization energy of electron transfer is either nearly constant with increasing the solvent polarizability and the corresponding high-frequency dielectric constant (polarizable dipolar liquids) or actually noticeably increases (polarizable force fields of water).

  9. Pressure and solvent shifts of charge transfer absorption band of iodine complexes

    International Nuclear Information System (INIS)

    Sawamura, Seiji; Taniguchi, Yoshihiro; Suzuki, Keizo

    1979-01-01

    Absorption spectra of the CT band of I 2 complexes were observed in several nonpolar solvents at 1 bar, and in heptane up to 4400 bar. All solvent shifts were red with an increase in (n 2 - 1)/(2n 2 + 1), the refractive index (n) function of solvents, consistent with the solvent shift theory. On the other hand pressure caused a variety of shifts, that is, red shifts in benzene-, toluene-, and mesitylene-I 2 complexes, an inversion shift from red to blue in HMB-I 2 complex, and blue shifts in Et 3 N-, n-Pr 3 N-, and n-Bu 3 N-I 2 complexes, though increase in pressure invariably raises the (n 2 - 1)/(2n 2 + 1) value of solvent. The pressure shifts of I 2 complexes seem to be interpreted by a sum of two effects. One is the increased polarity of the solvent, which causes a red shift. The other is the decrease in the bond distance between a donor and an acceptor, which contributes to a blue shift in a strong CT complex and to a red shift in a week one. The pressure and solvent shifts of I 2 complexes were compared with those of π-donor-TCNE complexes. (author)

  10. Additives and solvents-induced phase and morphology modification of NaYF{sub 4} for improving up-conversion emission

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Jianle, E-mail: zhuangjianle@126.com [Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Yang, Xianfeng; Wang, Jing [MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Lei, Bingfu; Liu, Yingliang [Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Wu, Mingmei, E-mail: ceswmm@mail.sysu.edu.cn [MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2016-01-15

    Both cubic and hexagonal NaYF{sub 4} were synthesized in different reaction systems via hydro/solvo-thermal route. The effects of reaction temperature, solvents, and additives on the synthesis of NaYF{sub 4} have been studied in detail. It has been shown that phase transformation from cubic NaYF{sub 4} to hexagonal NaYF{sub 4} always occurred. The sequence of the ability for inducing the phase transformation was ethanol>H{sub 2}O>acetic acid. It is found that ethanol can not only facilitate the formation of hexagonal NaYF{sub 4} but also control the growth of the crystal. This is quite unusual for the growth of H-NaYF{sub 4}. The up-conversion emission properties of Yb/Er co-doped NaYF{sub 4} have also been investigated and the results demonstrated some general principles for improving up-conversion emission. - Graphical abstract: Additives and solvents can induce the phase transformation of NaYF{sub 4}, typically the use of organic sodium salt and ethanol. - Highlights: • The effect of additives and solvents on the synthesis of NaYF{sub 4} was studied in detail. • Ethanol can facilitate the formation of H-NaYF{sub 4} while acetic acid restrain it. • Three general principles for improving up-conversion emission were summarized.

  11. Fractionation of lemon essential oil by solvent extraction: Phase equilibrium for model systems at T = 298.2 K

    International Nuclear Information System (INIS)

    Koshima, Cristina C.; Capellini, Maria C.; Geremias, Ivana M.; Aracava, Keila K.; Gonçalves, Cintia B.; Rodrigues, Christianne E.C.

    2012-01-01

    Highlights: ► Deterpenation of lemon oil by solvent extraction using hydrous ethanol. ► Limonene, γ-terpinene, β-pinene, and citral were used to simulate the oil. ► Citral shows a higher distribution coefficient than the hydrocarbons. ► Terpenic hydrocarbons exhibit very similar phase separation behaviour. ► NRTL and UNIQUAC models provided a good description of the phase equilibrium. - Abstract: The fractioning of lemon essential oil can be performed by liquid–liquid extraction using hydrous ethanol as a solvent. A quaternary mixture composed of limonene, γ-terpinene, β-pinene, and citral was used to simulate lemon essential oil. In this paper, we present (liquid + liquid) equilibrium data that were experimentally determined for systems containing essential oil compounds, ethanol, and water at T = 298.2 K. The experimental data were correlated using the NRTL and UNIQUAC models, and the mean deviations between calculated and experimental data were less than 0.0053 in all systems, indicating the accuracy of these molecular models in describing our systems. The results show that as the water content in the solvent phase increased, the values of the distribution coefficients decreased, regardless of the type of compound studied. However, the oxygenated compound always showed the highest distribution coefficient among the components of the essential oil, thus making deterpenation of the lemon essential oil a feasible process.

  12. Resonance Polarization and Phase-Mismatched CARS of Pheophytin b Excited in the Qy Band

    NARCIS (Netherlands)

    de Boeij, W.P.; Lucassen, G.W.; Lucassen, Gerald; Otto, Cornelis; Greve, Jan

    1993-01-01

    Resonance polarization and phase-mismatched coherent anti-Stokes Raman scattering (CARS) measurements were performed on pheophytin b dissolved in acetone excited in the Qy absorption band, where strong broad fluorescence makes spontaneous Raman spectroscopy impossible. The phase-mismatching

  13. Interferometric polarization control

    International Nuclear Information System (INIS)

    Chuss, David T.; Wollack, Edward J.; Moseley, S. Harvey; Novak, Giles

    2006-01-01

    We develop the Jones and Mueller matrices for structures that allow control of the path length difference between two linear orthogonal polarizations and consider the effect of placing multiple devices in series. Specifically, we find that full polarization modulation (measurement of Stokes Q, U, and V) can be achieved by placing two such modulators in series if the relative angles of the beam-splitting grids with respect to the analyzer orientation are appropriately chosen. Such a device has several potential advantages over a spinning wave plate modulator for measuring astronomical polarization in the far infrared through millimeter: (i) The use of small, linear motions eliminates the need for cryogenic rotational bearings; (ii) the phase flexibility allows measurement of circular as well as linear polarization; and (iii) this architecture allows for both multiwavelength and broadband modulation. We also present initial laboratory results

  14. Phase equilibrium study of the binary systems (N-hexyl-3-methylpyridinium tosylate ionic liquid + water, or organic solvent)

    International Nuclear Information System (INIS)

    Domanska, Urszula; Krolikowski, Marek

    2011-01-01

    Highlights: → Synthesis, DSC, and measurements of phase equilibrium of N-hexyl-3-methylpyridinium tosylate. → Solvents used: water, alcohols, benzene, alkylbenzenes, and aliphatic hydrocarbons. → Correlation with UNIQUAC, Wilson and NRTL models. → Comparison with different tosylate-based ILs. - Abstract: The (solid + liquid) phase equilibrium (SLE) and (liquid + liquid) phase equilibrium (LLE) for the binary systems ionic liquid (IL) N-hexyl-3-methylpyridinium tosylate (p-toluenesulfonate), {([HM 3 Py][TOS] + water, or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol), or an aromatic hydrocarbon (benzene, toluene, or ethylbenzene, or propylbenzene), or an alkane (n-hexane, n-heptane, n-octane)} have been determined at ambient pressure using a dynamic method. Simple eutectic systems with complete miscibility in the liquid phase were observed for the systems involving water and alcohols. The phase equilibrium diagrams of IL and aromatic or aliphatic hydrocarbons exhibit eutectic systems with immiscibility in the liquid phase with an upper critical solution temperature as for most of the ILs. The correlation of the experimental data has been carried out using the UNIQUAC, Wilson and the non-random two liquid (NRTL) correlation equations. The results reported here have been compared with analogous phase diagrams reported by our group previously for systems containing the tosylate-based ILs.

  15. DMFC anode polarization: Experimental analysis and model validation

    Energy Technology Data Exchange (ETDEWEB)

    Casalegno, A.; Marchesi, R. [Dipartimento di Energetica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2008-01-03

    Anode two-phase flow has an important influence on DMFC performance and methanol crossover. In order to elucidate two-phase flow influence on anode performance, in this work, anode polarization is investigated combining experimental and modelling approach. A systematic experimental analysis of operating conditions influence on anode polarization is presented. Hysteresis due to operating condition is observed; experimental results suggest that it arises from methanol accumulation and has to be considered in evaluating DMFC performances and measurements reproducibility. A model of DMFC anode polarization is presented and utilised as tool to investigate anode two-phase flow. The proposed analysis permits one to produce a confident interpretation of the main involved phenomena. In particular, it confirms that methanol electro-oxidation kinetics is weakly dependent on methanol concentration and that methanol transport in gas phase produces an important contribution in anode feeding. Moreover, it emphasises the possibility to optimise anode flow rate in order to improve DMFC performance and reduce methanol crossover. (author)

  16. Influence of the extracted solute on the aggregation of malonamide extractant in organic phases: Consequences for phase stability

    International Nuclear Information System (INIS)

    Berthon, L.; Martinet, L.; Testard, F.; Madic, Ch.; Zem, Th.

    2010-01-01

    Due to their amphiphilic properties, malonamide molecules in alkane are organized in reverse micelle type aggregates, composed of a polar core formed by the malonamide polar heads and the extracted solutes, and surrounded by a hydrophobic shell made up of the extractant alkyl chains. The aggregates interact with one another through an attractive potential, leading to the formation of a third phase. This occurs with the splitting of the organic phase into a light phase composed mostly of diluent, and a heavy third phase containing highly concentrated extractant and solutes. In this article, we show that the aggregation (monomer concentration, domain of stability, and attractive potential between micelles) greatly depends on the nature of the extracted solute, whereas the size of aggregate (aggregation number) is only slightly influenced by this. We describe the extraction of water, nitric acid, neodymium nitrate and uranyl nitrate. Strongly polarizable species induce consistently large attraction potentials and a small stability domain for the dispersion of nano-droplets in the solvent. Highly polarizable ions such as lanthanides or uranyl induce more long-range attractive interactions than do protons. (authors)

  17. Dynamically polarized hydrogen target as a broadband, wavelength-independent thermal neutron spin polarizer

    International Nuclear Information System (INIS)

    Zhao Jinkui; Garamus, Vasil M.; Mueller, Wilhelm; Willumeit, Regine

    2005-01-01

    A hydrogen-rich sample with dynamically polarized hydrogen nuclei was tested as a wavelength-independent neutron transmission spin polarizer. The experiment used a modified setup of the dynamic nuclear polarization target station at the GKSS research center. The standard solvent sample at the GKSS DNP station was used. It is 2.8mm thick and consists of 43.4wt% water, 54.6wt% glycerol, and 2wt% of EHBA-Cr(v) complex. The wavelength of the incident neutrons for the transmission experiment was λ=8.1A with Δλ/λ=10%. The polarization of neutron beam after the target sample was analyzed with a supermirror analyzer. A neutron polarization of -52% was achieved at the hydrogen polarization of -69%. Further experiments will test the feasibility of other hydrogen-rich materials, such as methane, as the polarizer. A theoretical calculation shows that a polarized methane target would allow over 95% neutron polarizations with more than 30% transmission

  18. Hydrophobic deep eutectic solvents as water-immiscible extractants

    NARCIS (Netherlands)

    Osch, van D.J.G.P.; Zubeir, L.F.; Bruinhorst, van den A.; Alves da Rocha, M.A.; Kroon, M.C.

    2015-01-01

    Hydrophobic deep eutectic solvents (DESs) are presented for the first time. They consist of decanoic acid and various quaternary ammonium salts. The effect of the alkyl chains on the hydrophobicity and the equilibrium of the two-phase DES–water system were investigated. These new DESs were

  19. Solvent extraction of thorium(IV) with dibutyldithiophosphoric acid in various organic solvents

    International Nuclear Information System (INIS)

    Curtui, M.; Haiduc, I.

    1994-01-01

    The extraction of thorium(IV) from perchlorate solutions with di-n-butyldithiophosphoric acid (HBudtp) in various organic solvents occurs through an ion exchange mechanism. The extracted species in the organic phase is an eight-coordinate complex Th(Budtp) 4 . The higher values of the distribution ratio obtained in HBudtp-benzene-water system than in HBudtp-n-butanol-water system are explained by higher solubility of the complex species in nonpolar solvents. The position of the extraction curves in the pH-range lower than 0.7 reduces the complexation of thorium(IV) with Budtp - in the aqueous phase and also the hydrolysis process. (author) 8 refs.; 4 figs.; 1 tab

  20. Control phase shift of spin-wave by spin-polarized current and its application in logic gates

    International Nuclear Information System (INIS)

    Chen, Xiangxu; Wang, Qi; Liao, Yulong; Tang, Xiaoli; Zhang, Huaiwu; Zhong, Zhiyong

    2015-01-01

    We proposed a new ways to control the phase shift of propagating spin waves by applying a local spin-polarized current on ferromagnetic stripe. Micromagnetic simulation showed that a phase shift of about π can be obtained by designing appropriate width and number of pinned magnetic layers. The ways can be adopted in a Mach-Zehnder-type interferometer structure to fulfill logic NOT gates based on spin waves. - Highlights: • Spin-wave phase shift can be controlled by a local spin-polarized current. • Spin-wave phase shift increased with the increasing of current density. • Spin-wave phase shift can reach about 0.3π at a particular current density. • The ways can be used in a Mach-Zehnder-type interferometer to fulfill logic gates

  1. IPRT polarized radiative transfer model intercomparison project - Three-dimensional test cases (phase B)

    Science.gov (United States)

    Emde, Claudia; Barlakas, Vasileios; Cornet, Céline; Evans, Frank; Wang, Zhen; Labonotte, Laurent C.; Macke, Andreas; Mayer, Bernhard; Wendisch, Manfred

    2018-04-01

    Initially unpolarized solar radiation becomes polarized by scattering in the Earth's atmosphere. In particular molecular scattering (Rayleigh scattering) polarizes electromagnetic radiation, but also scattering of radiation at aerosols, cloud droplets (Mie scattering) and ice crystals polarizes. Each atmospheric constituent produces a characteristic polarization signal, thus spectro-polarimetric measurements are frequently employed for remote sensing of aerosol and cloud properties. Retrieval algorithms require efficient radiative transfer models. Usually, these apply the plane-parallel approximation (PPA), assuming that the atmosphere consists of horizontally homogeneous layers. This allows to solve the vector radiative transfer equation (VRTE) efficiently. For remote sensing applications, the radiance is considered constant over the instantaneous field-of-view of the instrument and each sensor element is treated independently in plane-parallel approximation, neglecting horizontal radiation transport between adjacent pixels (Independent Pixel Approximation, IPA). In order to estimate the errors due to the IPA approximation, three-dimensional (3D) vector radiative transfer models are required. So far, only a few such models exist. Therefore, the International Polarized Radiative Transfer (IPRT) working group of the International Radiation Commission (IRC) has initiated a model intercomparison project in order to provide benchmark results for polarized radiative transfer. The group has already performed an intercomparison for one-dimensional (1D) multi-layer test cases [phase A, 1]. This paper presents the continuation of the intercomparison project (phase B) for 2D and 3D test cases: a step cloud, a cubic cloud, and a more realistic scenario including a 3D cloud field generated by a Large Eddy Simulation (LES) model and typical background aerosols. The commonly established benchmark results for 3D polarized radiative transfer are available at the IPRT website (http

  2. Predicting the Disorder–Order Transition of Solvent-Free Nanoparticle–Organic Hybrid Materials

    KAUST Repository

    Yu, Hsiu-Yu

    2013-07-02

    The transition from a disordered to a face-centered-cubic phase in solvent-free oligomer-tethered nanoparticles is predicted using a density-functional theory for model hard spheres with tethered bead-spring oligomers. The transition occurs without a difference of volume fraction for the two phases, and the phase boundary is influenced by the loss of oligomer configurational entropy relative to an ideal random system in one phase compared with the other. When the particles are localized in the ordered phase, the cooperation of the oligomers in filling the space is hindered. Therefore, shorter oligomers feel a stronger entropic penalty in the ordered solid and favor the disordered phase. Strikingly, we found that the solvent-free system has a later transition than hard spheres for all investigated ratios of oligomer radius of gyration to particle radius. © 2013 American Chemical Society.

  3. Optimization of soy isoflavone extraction with different solvents using the simplex-centroid mixture design.

    Science.gov (United States)

    Yoshiara, Luciane Yuri; Madeira, Tiago Bervelieri; Delaroza, Fernanda; da Silva, Josemeyre Bonifácio; Ida, Elza Iouko

    2012-12-01

    The objective of this study was to optimize the extraction of different isoflavone forms (glycosidic, malonyl-glycosidic, aglycone and total) from defatted cotyledon soy flour using the simplex-centroid experimental design with four solvents of varying polarity (water, acetone, ethanol and acetonitrile). The obtained extracts were then analysed by high-performance liquid chromatography. The profile of the different soy isoflavones forms varied with different extractions solvents. Varying the solvent or mixture used, the extraction of different isoflavones was optimized using the centroid-simplex mixture design. The special cubic model best fitted to the four solvents and its combination for soy isoflavones extraction. For glycosidic isoflavones extraction, the polar ternary mixture (water, acetone and acetonitrile) achieved the best extraction; malonyl-glycosidic forms were better extracted with mixtures of water, acetone and ethanol. Aglycone isoflavones, water and acetone mixture were best extracted and total isoflavones, the best solvents were ternary mixture of water, acetone and ethanol.

  4. 1D and 2D NMR Spectroscopy of Bonding Interactions within Stable and Phase-Separating Organic Electrolyte-Cellulose Solutions.

    Science.gov (United States)

    Clough, Matthew T; Farès, Christophe; Rinaldi, Roberto

    2017-09-11

    Organic electrolyte solutions (i.e. mixtures containing an ionic liquid and a polar, molecular co-solvent) are highly versatile solvents for cellulose. However, the underlying solvent-solvent and solvent-solute interactions are not yet fully understood. Herein, mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate, the co-solvent 1,3-dimethyl-2-imidazolidinone, and cellulose are investigated using 1D and 2D NMR spectroscopy. The use of a triply- 13 C-labelled ionic liquid enhances the signal-to-noise ratio for 13 C NMR spectroscopy, enabling changes in bonding interactions to be accurately pinpointed. Current observations reveal an additional degree of complexity regarding the distinct roles of cation, anion, and co-solvent toward maintaining cellulose solubility and phase stability. Unexpectedly, the interactions between the dialkylimidazolium ring C 2 -H substituent and cellulose become more pronounced at high temperatures, counteracted by a net weakening of acetate-cellulose interactions. Moreover, for mixtures that exhibit critical solution behavior, phase separation is accompanied by the apparent recombination of cation-anion pairs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Impact of solvents and supercritical CO2 drying on the morphology and structure of polymer-based biofilms

    Science.gov (United States)

    Causa, Andrea; Salerno, Aurelio; Domingo, Concepción; Acierno, Domenico; Filippone, Giovanni

    2014-05-01

    In the present work, two-dimensional systems based on biodegradable polymers such as poly(ɛ-caprolactone) (PCL), poly(ethylene oxide) (PEO) and polylactic acid (PLA) are fabricated by means of a sustainable approach which consists in inducing phase separation in solutions of such polymers and "green" solvents, namely ethyl lactate (EL) and ethyl acetate (EA). The extraction of the solvent is promoted by a controlled drying process, which is performed in either air or supercritical CO2. The latter can indeed act as both an antisolvent, which favors the deposition of the polymer by forming a mixture with EL and EA, and a plasticizing agent, whose solvation and transport properties may considerably affect the microstructure and crystallinity of the polymer films. The morphological, topographical and crystalline properties of the films are tailored through a judicial selection of the materials and the processing conditions and assessed by means of thermal analyses, polarized optical microscopy, scanning electron microscopy and confocal interferometric microscopy. The results show that the morphological and crystalline properties of the films are strongly dependent on the choice of both the polymer/solvent system and the operating conditions during the drying step. In particular, the morphological, topographical and thermal properties of films prepared starting from highly crystalline polymers, namely PCL and PEO, are greatly affected by the crystallization of the material. Conversely, the less crystalline PLA forms almost completely amorphous films.

  6. LIMITS ON OPTICAL POLARIZATION DURING THE PROMPT PHASE OF GRB 140430A

    Energy Technology Data Exchange (ETDEWEB)

    Kopac, D.; Mundell, C. G.; Arnold, D. M.; Steele, I. A.; Kobayashi, S.; Lamb, G. P.; Smith, R. J.; Virgili, F. J. [Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool, L3 5RF (United Kingdom); Japelj, J.; Gomboc, A. [Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia); Guidorzi, C.; Dichiara, S. [Department of Physics and Earth Sciences, University of Ferrara, via Saragat 1, I-44122, Ferrara (Italy); Harrison, R. M. [Department of Astrophysics, School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Melandri, A. [INAF—Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Italy); Castro-Tirado, A. J.; Gorosabel, J.; Sánchez-Ramírez, R.; Oates, S. R. [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomia s/n, E-18008 Granada (Spain); Järvinen, A. [AIP—Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Jelínek, M., E-mail: drejc.kopac@fmf.uni-lj.si [ASU-CAS—Astronomical Institute of the Czech Academy of Sciences, Fričova 298, 251 65 Ondřejov (Czech Republic)

    2015-11-01

    Gamma-ray burst GRB 140430A was detected by the Swift satellite and observed promptly with the imaging polarimeter RINGO3 mounted on the Liverpool Telescope, with observations beginning while the prompt γ-ray emission was still ongoing. In this paper, we present densely sampled (10-s temporal resolution) early optical light curves (LCs) in 3 optical bands and limits to the degree of optical polarization. We compare optical, X-ray, and gamma-ray properties and present an analysis of the optical emission during a period of high-energy flaring. The complex optical LC cannot be explained merely with a combination of forward and reverse shock emission from a standard external shock, implying additional contribution of emission from internal shock dissipation. We estimate an upper limit for time averaged optical polarization during the prompt phase to be as low as P < 12% (1σ). This suggests that the optical flares and early afterglow emission in this GRB are not highly polarized. Alternatively, time averaging could mask the presence of otherwise polarized components of distinct origin at different polarization position angles.

  7. LIMITS ON OPTICAL POLARIZATION DURING THE PROMPT PHASE OF GRB 140430A

    International Nuclear Information System (INIS)

    Kopac, D.; Mundell, C. G.; Arnold, D. M.; Steele, I. A.; Kobayashi, S.; Lamb, G. P.; Smith, R. J.; Virgili, F. J.; Japelj, J.; Gomboc, A.; Guidorzi, C.; Dichiara, S.; Harrison, R. M.; Melandri, A.; Castro-Tirado, A. J.; Gorosabel, J.; Sánchez-Ramírez, R.; Oates, S. R.; Järvinen, A.; Jelínek, M.

    2015-01-01

    Gamma-ray burst GRB 140430A was detected by the Swift satellite and observed promptly with the imaging polarimeter RINGO3 mounted on the Liverpool Telescope, with observations beginning while the prompt γ-ray emission was still ongoing. In this paper, we present densely sampled (10-s temporal resolution) early optical light curves (LCs) in 3 optical bands and limits to the degree of optical polarization. We compare optical, X-ray, and gamma-ray properties and present an analysis of the optical emission during a period of high-energy flaring. The complex optical LC cannot be explained merely with a combination of forward and reverse shock emission from a standard external shock, implying additional contribution of emission from internal shock dissipation. We estimate an upper limit for time averaged optical polarization during the prompt phase to be as low as P < 12% (1σ). This suggests that the optical flares and early afterglow emission in this GRB are not highly polarized. Alternatively, time averaging could mask the presence of otherwise polarized components of distinct origin at different polarization position angles

  8. Solvents interactions with thermochromic print

    Directory of Open Access Journals (Sweden)

    Mirela Rožić

    2017-12-01

    Full Text Available In this study, the interactions between different solvents (benzene, acetone, cyclohexanone, various alcohols and water and thermochromic printing ink were investigated. Thermochromic printing ink was printed on metal surface. Components of thermochromic printing inks are polymeric microcapsules and classic yellow offset printing ink. Below its activation temperature, dye and developer within the microcapsules form a blue coloured complex. Therefore, thermochromic print is green. By heating above the activation temperature, blue colour of the complex turns into the leuco dye colourless state and the green colour of the prints turns into the yellow colour of the classic offset pigment. The results of the interaction with various solvents show that the thermochromic print is stable in all tested solvents except in ethanol, acetone and cyclohexanone. In ethanol, the green colour of the print becomes yellow. SEM analysis shows that microcapsules are dissolved. In acetone and cyclohexanone, the green colour of the print turns into blue, and the microcapsules become significantly more visible. Thus, the yellow pigment interacts with examined ketones. Based on the obtained interactions it can be concluded that the microcapsules have more polar nature than the classical pigment particles. Solvent-thermocromic print interactions were analysed using Hansen solubility parameters that rank the solvents based on their estimated interaction capabilities.

  9. Self-Assembly of Block and Graft Copolymers in Organic Solvents: An Overview of Recent Advances

    Directory of Open Access Journals (Sweden)

    Leonard Ionut Atanase

    2018-01-01

    Full Text Available This review is an attempt to update the recent advances in the self-assembly of amphiphilic block and graft copolymers. Their micellization behavior is highlighted for linear AB, ABC triblock terpolymers, and graft structures in non-aqueous selective polar and non-polar solvents, including solvent mixtures and ionic liquids. The micellar characteristics, such as particle size, aggregation number, and morphology, are examined as a function of the copolymers’ architecture and molecular characteristics.

  10. High-efficiency resonant rf spin rotator with broad phase space acceptance for pulsed polarized cold neutron beams

    Directory of Open Access Journals (Sweden)

    P.-N. Seo

    2008-08-01

    Full Text Available High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPDGamma experiment, a search for the small parity-violating γ-ray asymmetry A_{γ} in polarized cold neutron capture on parahydrogen, is one example. For the NPDGamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5  cm×9.5  cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized ^{3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8±0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPDGamma experiment are considered.

  11. Electric Dipole Transition Moments and Solvent-Dependent Interactions of Fluorescent Boron-Nitrogen Substituted Indole Derivatives.

    Science.gov (United States)

    Saif, Mari; Widom, Julia R; Xu, Senmiao; Abbey, Eric R; Liu, Shih-Yuan; Marcus, Andrew H

    2015-06-25

    Fluorescent analogues of the indole side chain of tryptophan can be useful spectroscopic probes of protein-protein and protein-DNA interactions. Here we present linear dichroism and solvent-dependent spectroscopic studies of two fluorescent analogues of indole, in which the organic C═C unit is substituted with the isosteric inorganic B-N unit. We studied the so-called "external" BN indole, which has C2v symmetry, and the "fused" BN indole with Cs symmetry. We performed a combination of absorption and fluorescence spectroscopy, ultraviolet linear dichroism (UV-LD) in stretched poly(ethylene) (PE) films, and quantum chemical calculations on both BN indole compounds. Our measurements allowed us to characterize the degree of alignment for both molecules in stretched PE films. We thus determined the orientations and magnitudes of the two lowest energy electric dipole transition moments (EDTMs) for external BN indole, and the two lowest energy EDTMs for fused BN indole within the 30 000-45 000 cm(-1) spectral range. We compared our experimental results to those of quantum chemical calculations using standard density functional theory (DFT). Our theoretical predictions for the low-energy EDTMs are in good agreement with our experimental data. The absorption and fluorescence spectra of the external and the fused BN indoles are sensitive to solvent polarity. Our results indicate that the fused BN indole experiences much greater solvation interactions with polar solvents than does the external BN indole.

  12. Variation in Scent Compounds of Oil-Bearing Rose (Rosa damascena Mill. Produced by Headspace Solid Phase Microextraction, Hydrodistillation and Solvent Extraction

    Directory of Open Access Journals (Sweden)

    Sabri Erbaş

    2016-03-01

    Full Text Available In this research, rose oil and rose water were hydro-distilled from the fresh oil-bearing rose flowers (Rosa damascena Mill. using Clevenger-type apparatus. Rose concretes were extracted from the fresh rose flowers by using non-polar solvents, e.g. diethyl ether, petroleum ether, cyclo-hexane, chloroform and n-hexane, and subsequently by evaporation of the solvents under vacuum. Absolutes were produced from the concretes with ethyl alcohol extraction at -20°C, leaving behind the wax and other paraffinic substances. Scent compounds of all these products detected by gas chromatography (GC-FID/GC-MS were compared with the natural scent compounds of fresh rose flower detected by using headspace solid phase microextraction (HS-SPME with carboxen/polydimethylsiloxane (CAR/PDMS fiber. A total of 46 compounds analysis were identified by HS-SPME-GC-MS in the fresh flower, and a total of 15 compounds were identified by GC-MS in the hydrodistilled rose oil. While main compounds in rose oil were geraniol (35.4%, citronellol (31.6%, and nerol (15.3%, major compound in fresh rose flower, rose water and residue water was phenylethyl alcohol (43.2, 35.6 and 98.2%, respectively. While the highest concrete yield (0.7% was obtained from diethyl ether extraction, the highest absolute yield (70.9% was obtained from the n-hexane concrete. The diethyl ether concrete gave the highest productivity of absolute, as 249.7 kg of fresh rose flowers was needed to produce 1 kg of absolute.

  13. The second-order polarization propagator approximation (SOPPA) method coupled to the polarizable continuum model

    DEFF Research Database (Denmark)

    Eriksen, Janus Juul; Solanko, Lukasz Michal; Nåbo, Lina J.

    2014-01-01

    2) wave function coupled to PCM, we introduce dynamical PCM solvent effects only in the Random Phase Approximation (RPA) part of the SOPPA response equations while the static solvent contribution is kept in both the RPA terms as well as in the higher order correlation matrix components of the SOPPA...... response equations. By dynamic terms, we refer to contributions that describe a change in environmental polarization which, in turn, reflects a change in the core molecular charge distribution upon an electronic excitation. This new combination of methods is termed PCM-SOPPA/RPA. We apply this newly...... defined method to the challenging cases of solvent effects on the lowest and intense electronic transitions in o-, m- and p-nitroaniline and o-, m- and p-nitrophenol and compare the performance of PCM-SOPPA/RPA with more conventional approaches. Compared to calculations based on time-dependent density...

  14. Bottom-up excited state dynamics of two cinnamate-based sunscreen filter molecules.

    Science.gov (United States)

    Peperstraete, Yoann; Staniforth, Michael; Baker, Lewis A; Rodrigues, Natércia D N; Cole-Filipiak, Neil C; Quan, Wen-Dong; Stavros, Vasilios G

    2016-10-12

    Methyl-E-4-methoxycinnamate (E-MMC) is a model chromophore of the commonly used commercial sunscreen agent, 2-ethylhexyl-E-4-methoxycinnamate (E-EHMC). In an effort to garner a molecular-level understanding of the photoprotection mechanisms in operation with E-EHMC, we have used time-resolved pump-probe spectroscopy to explore E-MMC's and E-EHMC's excited state dynamics upon UV-B photoexcitation to the S 1 (1 1 ππ*) state in both the gas- and solution-phase. In the gas-phase, our studies suggest that the excited state dynamics are driven by non-radiative decay from the 1 1 ππ* to the S 3 (1 1 nπ*) state, followed by de-excitation from the 1 1 nπ* to the ground electronic state (S 0 ). Using both a non-polar-aprotic solvent, cyclohexane, and a polar-protic solvent, methanol, we investigated E-MMC and E-EHMC's photochemistry in a more realistic, 'closer-to-shelf' environment. A stark change to the excited state dynamics in the gas-phase is observed in the solution-phase suggesting that the dynamics are now driven by efficient E/Z isomerisation from the initially photoexcited 1 1 ππ* state to S 0 .

  15. A Correlation between the Activity of Candida antarctica Lipase B and Differences in Binding Free Energies of Organic Solvent and Substrate

    DEFF Research Database (Denmark)

    Banik, Sindrila Dutta; Nordblad, Mathias; Woodley, John

    2016-01-01

    in an inhibitory effect which is also confirmed by the binding free energies for the solvent and substrate molecules estimated from the simulations. Consequently, the catalytic activity of CALB decreases in polar solvents. This effect is significant, and CALB is over 10 orders of magnitude more active in nonpolar...... of the enzyme may be ascribed to binding of solvent molecules to the enzyme active site region and the solvation energy of substrate molecules in the different solvents. Polar solvent molecules interact strongly with CALB and compete with the substrate to bind to the active site region, resulting...

  16. Valley polarized quantum Hall effect and topological insulator phase transitions in silicene

    KAUST Repository

    Tahir, M.; Schwingenschlö gl, Udo

    2013-01-01

    encountered for graphene, in particular the zero band gap and weak spin orbit interaction. We demonstrate a valley polarized quantum Hall effect and topological insulator phase transitions. We use the Kubo formalism to discuss the Hall conductivity and address

  17. DEMONSTRATION OF THE NEXT-GENERATION CAUSTIC-SIDE SOLVENT EXTRACTION SOLVENT WITH 2-CM CENTRIGUGAL CONTRACTORS USING TANK 49H WASTE AND WASTE SIMULANT

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, R.; Peters, T.; Crowder, M.; Pak, D.; Fink, S.; Blessing, R.; Washington, A.; Caldwell, T.

    2011-11-29

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet using MaxCalix for the decontamination of high level waste (HLW). The demonstration was completed using a 12-stage, 2-cm centrifugal contactor apparatus at the Savannah River National Laboratory (SRNL). This represents the first CSSX process demonstration of the MaxCalix solvent system with Savannah River Site (SRS) HLW. Two tests lasting 24 and 27 hours processed non-radioactive simulated Tank 49H waste and actual Tank 49H HLW, respectively. A solvent extraction system for removal of cesium from alkaline solutions was developed utilizing a novel solvent invented at the Oak Ridge National Laboratory (ORNL). This solvent consists of a calix[4]arene-crown-6 extractant dissolved in an inert hydrocarbon matrix. A modifier is added to the solvent to enhance the extraction power of the calixarene and to prevent the formation of a third phase. An additional additive is used to improve stripping performance and to mitigate the effects of any surfactants present in the feed stream. The process that deploys this solvent system is known as Caustic Side Solvent Extraction (CSSX). The solvent system has been deployed at the Savannah River Site (SRS) in the Modular CSSX Unit (MCU) since 2008.

  18. Relaxation phenomena of polar non-polar liquid mixtures under low ...

    Indian Academy of Sciences (India)

    der high-frequency electric field have gained much importance to study the structure as ... Purohit et al [1,2] and Srivastava and Srivastava [3] had measured the real ε¼ ... The cell containing the experimental liquid in a given solvent .... due to inductive, mesomeric and electromeric effects of the substituent polar groups at-.

  19. New Polymeric Membranes for Organic Solvent Nanofiltration

    KAUST Repository

    Aburabie, Jamaliah

    2017-05-01

    The focus of this dissertation was the development, synthesis and modification of polymers for the preparation of membranes for organic solvent nanofiltration. High chemical stability in a wide range of solvents was a key requirement. Membranes prepared from synthesized polymers as well as from commercial polymers were designed and chemically modified to reach OSN requirements. A solvent stable thin-film composite (TFC) membrane is reported, which is fabricated on crosslinked polythiosemicarbazide (PTSC) as substrate. The membranes exhibited high fluxes towards solvents like THF, DMF and DMSO ranging around 20 L/m2 h at 5 bar with a MWCO of around 1000 g/mol. Ultrafiltration PTSC membranes were prepared by non-solvent induced phase separation and crosslinked with GPTMS. The crosslinking reaction was responsible for the formation of an inorganic-type-network that tuned the membrane pore size. The crosslinked membranes acquired high solvent stability in DMSO, DMF and THF with a MWCO above 1300 g/mol. Reaction Induced Phase Separation (RIPS) was introduced as a new method for the preparation of skinned asymmetric membranes. These membranes have two distinctive layers with different morphologies both from the same polymer. The top dense layer is composed of chemically crosslinked polymer chains while the bottom layer is a porous structure formed by non-crosslinked polymer chains. Such membranes were tested for vitamin B12 in solvents after either crosslinking the support or dissolving the support and fixing the freestanding membrane on alumina. Pebax® 1657 was utilized for the preparation of composite membranes by simple coating. Porous PAN membranes were coated with Pebax® 1657 which was then crosslinked using TDI. Crosslinked Pebax® membranes show high stability towards ethanol, propanol and acetone. The membranes were also stable in DMF once crosslinked PAN supports were used. Sodium alginate polymer was investigated for the preparation of thin film composite

  20. Quantitative relationship between adsorbed amount of solute and solvent composition

    International Nuclear Information System (INIS)

    Wang Yan; Geng Xindu; Zebolsky, Don M.

    2003-01-01

    A new adsorption isotherm that relates the amount of solute adsorbed to the solvent concentration is proposed. The new equation is derived from Geng and Shi's stoichiometric displacement model for adsorption (SDM-A). The obtained equation may be simplified to an expression containing two parameters. The equation with two parameters, valid for low concentrations of solute, is a logarithmically linear relationship. The intercept contains a thermodynamic equilibrium constant of the solute displacing solvent from the adsorbent. The slope is the negative value of the stoichiometric displacement parameter (Z), the average total number of solvent molecules displaced from an active site on the adsorbent and from the solute. Tests with a homologous series of aromatic alcohols by frontal analysis in reversed phase liquid chromatography demonstrate that experimental results fit the equation well

  1. Circularly Polarized Planar Helix Phased Antenna Array for 5G Mobile Terminals

    DEFF Research Database (Denmark)

    Syrytsin, Igor A.; Zhang, Shuai; Pedersen, Gert F.

    2017-01-01

    In this paper, a planar helix mobile phased antenna array is proposed for 5th generation communication systems with operating frequency of 28GHz. The proposed array displays circular polarization in the endfire direction. Over 65 degrees of axial ratio beamwidth and 7GHz of axial ratio bandwidth...... has been achieved in the proposed design. The coverage performance of the proposed phased antenna array has also been studied by using the coverage efficiency metric. Coverage efficiency of 50 % at 5 dBi gain is achieved by the proposed phased mobile antenna array....

  2. Polarization and pressure effects in caesium 6S-8S two-photon spectroscopy

    International Nuclear Information System (INIS)

    Lee, Yi-Chi; Tsai, Chin-Chun; Chui, Hsiang-Chen; Chang, Yi-Hsiu; Chen, Ying-Yu

    2010-01-01

    This work analyses the effects of polarization and pressure in caesium 6S-8S two-photon spectroscopy. The linewidth was broadened and the frequency was shifted by a change of polarization states. The frequency shift and the linewidth broadening of the caesium 6S-8S two-photon transition were measured as a function of laser power using one single-frequency Ti:sapphire ring cavity laser, two caesium cells and two quarter-wave plates to ensure polarization states of light, and we showed that the linewidth cannot be evaluated just by fitting data to a Lorentzian shape. As determined by fitting the data to a Voigt profile, the natural linewidth is independent of the polarization states of the pump beams, the laser power and the pressure. Caesium 6S-8S two-photon transitions pumped by a circularly polarized beam have narrower linewidths and smaller shifts than those pumped by a linearly polarized beam. The light shift obtained by pumping with the circularly polarized beam is -6.75(57) Hz (mW mm -2 ) -1 , and that obtained by pumping with a linearly polarized beam is -7.25(45) Hz (mW mm -2 ) -1 . These results agree closely with theoretical calculations. The pressure shift is -588(387) Hz mPa -1 . This work shows how to evaluate two-photon transitions with a Voigt profile, and then helps us to understand two-photon transitions with different polarization states, and improve the signal quality obtained when they are used as frequency markers.

  3. Relation between the interfacial tension in an organic solvent-water system and the parameters of the solvating capacity of the solvent

    International Nuclear Information System (INIS)

    Nikitin, S.D.; Shmidt, V.S.

    1987-01-01

    It was shown that there is a linear relation between the empirical DE (diluent effect) and E/sub T/ parameters, which characterize the solvating capacity of the solvent, and the interfacial tension in an organic solvent-water two-phase system. Analysis of the sample correlation coefficients shows that the relation between the interfacial tension and the DE parameters of the solvents is closer to linear than the corresponding relation for the E/sub T/ parameters. During analysis of the data for 31 solvents it was established that the largest inverse correlation coefficient r = -0.98 is obtained with an equation of the DE = a + bσ/rho 1/3, type, were a and b are constants, and rho is the density of the solvent. The regression equation has the following form: DE = 7.586 - 0.147 σ/rho 1/3. Since the interfacial activity of hydrophobic surfactants decreases linearly with increase in the DE values, it follows from the obtained equation that decrease of the interfacial tension at the water-organic solvent interface must lead to a decrease in the interfacial activity of hydrophobic surfactants present in the system

  4. Transient two-phase flow

    International Nuclear Information System (INIS)

    Hsu, Y.Y.

    1974-01-01

    The following papers related to two-phase flow are summarized: current assumptions made in two-phase flow modeling; two-phase unsteady blowdown from pipes, flow pattern in Laval nozzle and two-phase flow dynamics; dependence of radial heat and momentum diffusion; transient behavior of the liquid film around the expanding gas slug in a vertical tube; flooding phenomena in BWR fuel bundles; and transient effects in bubble two-phase flow. (U.S.)

  5. 4D profile of phase objects through the use of a simultaneous phase shifting quasi-common path interferometer

    International Nuclear Information System (INIS)

    Toto-Arellano, Noel-Ivan; Zurita, Gustavo Rodríguez; Montes-Pérez, Areli; Serrano-García, David Ignacio; García, Amalia Martínez

    2011-01-01

    Modulation of polarization is commonly employed in optical interferometry through the use of polarizers and quarter-wave retarders. Phase shifts between interfering beams can be easily controlled with such techniques. This communication describes some details of modulation of polarization which are useful in phase shifting interferometry applied to the study of phase objects. As an application, the case of a two-beam phase grating interferometer is discussed on the grounds of polarization analysis as an example. The configuration presented does not require micro-polarizer arrays or additional software to eliminate noise caused by vibration. This system does not use a double window, and generates two beams, the separation of which can be varied according to the characteristics of the grid used. Experimental results are also given

  6. Frequency modulation of high-order harmonic generation in an orthogonally polarized two-color laser field.

    Science.gov (United States)

    Li, Guicun; Zheng, Yinghui; Ge, Xiaochun; Zeng, Zhinan; Li, Ruxin

    2016-08-08

    We have experimentally investigated the frequency modulation of high-order harmonics in an orthogonally polarized two-color laser field consisting of a mid-infrared 1800nm fundamental pulse and its second harmonic pulse. It is demonstrated that the high harmonic spectra can be fine-tuned as we slightly change the relative delay of the two-color laser pulses. By analyzing the relative frequency shift of each harmonic at different two-color delays, the nonadiabatic spectral shift induced by the rapid variation of the intensity-dependent intrinsic dipole phase can be distinguished from the blueshift induced by the change of the refractive index during self-phase modulation (SPM). Our comprehensive analysis shows that the frequency modulation pattern is a reflection of the average emission time of high-order harmonic generation (HHG), thus offering a simple method to fine-tune the spectra of the harmonics on a sub-cycle time scale.

  7. CO2-Binding Organic Liquids Gas Capture with Polarity-Swing-Assisted Regeneration Full Technology Feasibility Study B1 - Solvent-based Systems

    Energy Technology Data Exchange (ETDEWEB)

    Heldebrant, David J

    2014-08-31

    PNNL, Fluor Corporation and Queens University (Kingston, ON) successfully completed a three year comprehensive study of the CO2BOL water-lean solvent platform with Polarity Swing Assisted Regeneration (PSAR). This study encompassed solvent synthesis, characterization, environmental toxicology, physical, thermodynamic and kinetic property measurements, Aspen Plus™ modeling and bench-scale testing of a candidate CO2BOL solvent molecule. Key Program Findings The key program findings are summarized as follows: • PSAR favorably reduced stripper duties and reboiler temperatures with little/no impact to absorption column • >90% CO2 capture was achievable at reasonable liquid-gas ratios in the absorber • High rich solvent viscosities (up to 600 cP) were successfully demonstrated in the bench-scale system. However, the projected impacts of high viscosity to capital cost and operational limits compromised the other levelized cost of electricity benefits. • Low thermal conductivity of organics significantly increased the required cross exchanger surface area, and potentially other heat exchange surfaces. • CO2BOL had low evaporative losses during bench-scale testing • There was no evidence of foaming during bench scale testing • Current CO2BOL formulation costs project to be $35/kg • Ecotoxicity (Water Daphnia) was comparable between CO2BOL and MEA (169.47 versus 103.63 mg/L) • Full dehydration of the flue gas was determined to not be economically feasible. However, modest refrigeration (13 MW for the 550 MW reference system) was determined to be potentially economically feasible, and still produce a water-lean condition for the CO2BOLs (5 wt% steady-state water loading). • CO2BOLs testing with 5 wt% water loading did not compromise anhydrous performance behavior, and showed actual enhancement of CO2 capture performance. • Mass transfer of CO2BOLs was not greatly impeded by viscosity • Facile separation of antisolvent from lean CO2BOL was

  8. Two-phase flow models in unbounded two-phase critical flows

    International Nuclear Information System (INIS)

    Celata, G.P.; Cumo, M.; Farello, G.E.

    1985-01-01

    With reference to a Loss-of-Coolant Accident in Light Water Reactors, an analysis of the unbounded two-phase critical flow (i.e. the issuing two-phase jet) has been accomplished. Considering jets external shape, obtained by means of photographic pictures; pressure profiles inside the jet, obtained by means of a movable ''Pitot;'' and jet phases distribution information, obtained by means of X-rays pictures; a characterization of the flow pattern in the unbounded region of a two-phase critical flow is given. Jets X-ray pictures show the existence of a central high density ''core'' gradually evaporating all around, which gives place to a characteristic ''dartflow'' the length of which depends on stagnation thermodynamic conditions

  9. Phase equilibria of carbohydrates in polar solvents

    DEFF Research Database (Denmark)

    Jonsdottir, Svava Osk; Rasmussen, Peter

    1999-01-01

    A method for calculating interaction energies and interaction parameters with molecular mechanics methods is extended to predict solid-liquid equilibria (SLE) for saccharides in aqueous solution, giving results in excellent agreement with experimental values. Previously, the method has been shown...

  10. Solvent and ion-pairing effects on the chlorine kinetic isotope effect of t-butyl chloride

    International Nuclear Information System (INIS)

    McCord, B.R.

    1986-01-01

    The solvolysis of t-butyl chloride and 1-adamantyl chloride was measured in mixtures of aqueous 2,2,2-trifluoroethanols and in mixtures of aqueous ethanols. The KIEs for t-butyl chloride at 25 0 C in 94% TFE/water, and 60% ethanol/water (solvent mixtures with similar polarity) were 1.0097 and 1.0104 respectively. Further investigations showed a KIE of 1.0104 in 50% ethanol/water and 1.0105 in 100% ethanol while the isotope effect in the fluorinated ethanols rose from 1.0094 in 99% TFE/water to 1.0101 in 70% ethanol/water. The KIE in all these solvents were shown to be directly proportional to the nucleophilicity of the solvent and indicates nucleophilic attack on an ion pair. The similar KIE of t-butyl chloride in the ethanol/water solvents was found to support the contention that solvent polarity exerts a minimal effect on the chlorine KIE

  11. Two-phase flow models

    International Nuclear Information System (INIS)

    Delaje, Dzh.

    1984-01-01

    General hypothesis used to simplify the equations, describing two-phase flows, are considered. Two-component and one-component models of two-phase flow, as well as Zuber and Findlay model for actual volumetric steam content, and Wallis model, describing the given phase rates, are presented. The conclusion is made, that the two-component model, in which values averaged in time are included, is applicable for the solving of three-dimensional tasks for unsteady two-phase flow. At the same time, using the two-component model, including values, averaged in space only one-dimensional tasks for unsteady two-phase flow can be solved

  12. The influence of molecular architecture and solvent type on the size and structure of poly(benzyl ether) dendrimers by SANS

    NARCIS (Netherlands)

    Evmenenko, G.; Bauer, B.J.; Kleppinger, R.; Forier, B.; Dehaen, W.; Amis, E.J.; Mischenko, N.; Reynaers, H.

    2001-01-01

    The size of poly(benzyl ether) dendrimers with different molecular architectures was measured by small angle neutron scattering (SANS). Both polar and non-polar solvents were used to measure the effect of solvent type. The radius of gyration (Rg) of all of the dendrimers follows a scaling law of Rg

  13. Carbon Nanotube Dispersion in Solvents and Polymer Solutions: Mechanisms, Assembly, and Preferences.

    Science.gov (United States)

    Pramanik, Chandrani; Gissinger, Jacob R; Kumar, Satish; Heinz, Hendrik

    2017-12-26

    Debundling and dispersion of carbon nanotubes (CNTs) in polymer solutions play a major role in the preparation of carbon nanofibers due to early effects on interfacial ordering and mechanical properties. A roadblock toward ultrastrong fibers is the difficulty to achieve homogeneous dispersions of CNTs in polyacrylonitrile (PAN) and poly(methyl methacrylate) (PMMA) precursor solutions in solvents such as dimethyl sulfoxide (DMSO), N,N-dimethylacetamide (DMAc), and N,N-dimethylformamide (DMF). In this contribution, molecular dynamics simulations with accurate interatomic potentials for graphitic materials that include virtual π electrons are reported to analyze the interaction of pristine single wall CNTs with the solvents and polymer solutions at 25 °C. The results explain the barriers toward dispersion of SWCNTs and quantify CNT-solvent, polymer-solvent, as well as CNT-polymer interactions in atomic detail. Debundling of CNTs is overall endothermic and unfavorable with dispersion energies of +20 to +30 mJ/m 2 in the pure solvents, + 20 to +40 mJ/m 2 in PAN solutions, and +20 to +60 mJ/m 2 in PMMA solutions. Differences arise due to molecular geometry, polar, van der Waals, and CH-π interactions. Among the pure solvents, DMF restricts CNT dispersion less due to the planar geometry and stronger van der Waals interactions. PAN and PMMA interact favorably with the pure solvents with dissolution energies of -0.7 to -1.1 kcal per mole monomer and -1.5 to -2.2 kcal per mole monomer, respectively. Adsorption of PMMA onto CNTs is stronger than that of PAN in all solvents as the molecular geometry enables more van der Waals contacts between alkyl groups and the CNT surface. Polar side groups in both polymers prefer interactions with the polar solvents. Higher polymer concentrations in solution lead to polymer aggregation via alkyl groups and reduce adsorption onto CNTs. PAN and PMMA solutions in DMSO and dilute solutions in DMF support CNT dispersion more than other

  14. Selective solvent extraction of oils

    Energy Technology Data Exchange (ETDEWEB)

    1938-04-09

    In the selective solvent extraction of naphthenic base oils, the solvent used consists of the extract obtained by treating a paraffinic base oil with a selective solvent. The extract, or partially spent solvent is less selective than the solvent itself. Selective solvents specified for the extraction of the paraffinic base oil are phenol, sulphur dioxide, cresylic acid, nitrobenzene, B:B/sup 1/-dichlorethyl ether, furfural, nitroaniline and benzaldehyde. Oils treated are Coastal lubricating oils, or naphthenic oils from the cracking, or destructive hydrogenation of coal, tar, lignite, peat, shale, bitumen, or petroleum. The extraction may be effected by a batch or counter-current method, and in the presence of (1) liquefied propane, or butane, or naphtha, or (2) agents which modify the solvent power such as, water, ammonia, acetonitrile, glycerine, glycol, caustic soda or potash. Treatment (2) may form a post-treatment effected on the extract phase. In counter-current treatment in a tower some pure selective solvent may be introduced near the raffinate outlet to wash out any extract therefrom.

  15. Chemical control of channel interference in two-photon absorption processes.

    Science.gov (United States)

    Alam, Md Mehboob; Chattopadhyaya, Mausumi; Chakrabarti, Swapan; Ruud, Kenneth

    2014-05-20

    The two-photon absorption (TPA) process is the simplest and hence the most studied nonlinear optical phenomenon, and various aspects of this process have been explored in the past few decades, experimentally as well as theoretically. Previous investigations have shown that the two-photon (TP) activity of a molecular system can be tuned, and at present, performance-tailored TP active materials are easy to develop by monitoring factors such as length of conjugation, dimensionality of charge-transfer network, strength of donor-acceptor groups, polarity of solvents, self-aggregation, H-bonding, and micellar encapsulation to mention but a few. One of the most intriguing phenomena affecting the TP activity of a molecule is channel interference. The phrase "channel interference" implies that if the TP transition from one electronic state to another involves more than one optical pathway or channel, characterized by the corresponding transition dipole moment (TDM) vectors, the channels may interfere with each other depending upon the angles between the TDM vectors and hence can either increase (constructive interference) or decrease (destructive interference) the overall TP activity of a system to a significant extent. This phenomenon was first pointed out by Cronstrand, Luo, and Ågren [Chem. Phys. Lett. 2002, 352, 262-269] in two-dimensional systems (i.e., only involving two components of the transition moment vectors). For three-dimensional molecules, an extended version of this idea was required. In order to fill this gap, we developed a generalized model for describing and exploring channel interference, valid for systems of any dimensionality. We have in particular applied it to through-bond (TB) and through-space (TS) charge-transfer systems both in gas phase and in solvents with different polarities. In this Account, we will, in addition to briefly describing the concept of channel interference, discuss two key findings of our recent work: (1) how to control the

  16. Myoglobin solvent structure at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, B.V.; Korszun, Z.R. [Brookhaven National Laboratory, Upton, NY (United States); Schoenborn, B.P. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    The structure of the solvent surrounding myoglobin crystals has been analyzed using neutron diffraction data, and the results indicate that the water around the protein is not disordered, but rather lies in well-defined hydration shells. We have analyzed the structure of the solvent surrounding the protein by collecting neutron diffraction data at four different temperatures, namely, 80, 130, 180, and 240K. Relative Wilson Statistics applied to low resolution data showed evidence of a phase transition in the region of 180K. A plot of the liquidity factor, B{sub sn}, versus distance from the protein surface begins with a high plateau near the surface of the protein and drops to two minima at distances from the protein surface of about 2.35{Angstrom} and 3.85{Angstrom}. Two distinct hydration shells are observed. Both hydration shells are observed to expand as the temperature is increased.

  17. Myoglobin solvent structure at different temperatures

    International Nuclear Information System (INIS)

    Daniels, B.V.; Korszun, Z.R.; Schoenborn, B.P.

    1994-01-01

    The structure of the solvent surrounding myoglobin crystals has been analyzed using neutron diffraction data, and the results indicate that the water around the protein is not disordered, but rather lies in well-defined hydration shells. We have analyzed the structure of the solvent surrounding the protein by collecting neutron diffraction data at four different temperatures, namely, 80, 130, 180, and 240K. Relative Wilson Statistics applied to low resolution data showed evidence of a phase transition in the region of 180K. A plot of the liquidity factor, B sn , versus distance from the protein surface begins with a high plateau near the surface of the protein and drops to two minima at distances from the protein surface of about 2.35 Angstrom and 3.85 Angstrom. Two distinct hydration shells are observed. Both hydration shells are observed to expand as the temperature is increased

  18. Liquid crystalline phases in suspensions of pigments in non-polar solvents

    Science.gov (United States)

    Klein, Susanne; Richardson, Robert M.; Eremin, Alexey

    We will discuss colloid suspensions of pigments and compare their electro-optic properties with those of traditional dyed low molecular weight liquid crystal systems. There are several potential advantages of colloidal suspensions over low molecular weight liquid crystal systems: a very high contrast because of the high orientational order parameter of suspensions of rod shaped nano-particles, the excellent light fastness of pigments as compared to dyes and high colour saturations resulting from the high loading of the colour stuff. Although a weak `single-particle' electro-optic response can be observed in dilute suspensions, the response is very much enhanced when the concentration of the particles is sufficient to lead to a nematic phase. Excellent stability of suspensions is beneficial for experimental observation and reproducibility, but it is a fundamental necessity for display applications. We therefore discuss a method to achieve long term stability of dispersed pigments and the reasons for its success. Small angle X-ray scattering was used to determine the orientational order parameter of the suspensions as a function of concentration and the dynamic response to an applied electric field. Optical properties were investigated for a wide range of pigment concentrations. Electro-optical phenomena, such as field-induced birefringence and switching, were characterised. In addition, mixtures of pigment suspensions with small amounts of ferrofluids show promise as future magneto-optical materials.

  19. Solvent effects on ion-receptor interactions in the presence of an external electric field.

    Science.gov (United States)

    Novák, Martin; Foroutan-Nejad, Cina; Marek, Radek

    2016-11-09

    In this work we investigated the influence of an external electric field on the arrangement of the solvent shells around ions interacting with a carbon-based receptor. Our survey reveals that the mechanism of interaction between a monoatomic ion and a π-type ion receptor varies by the variation in the solvent polarity, the nature of the ion, and the strength of the external field. The characteristics of the ion-surface interaction in nonpolar solvents are similar to those observed in a vacuum. However, in water, we identified two mechanisms. Soft and polarizable ions preferentially interact with the π-receptor. In contrast, two bonded states were found for hard ions. A fully solvated ion, weakly interacting with the receptor at weak field, and a strong π-complex at the strong-field regime were identified. An abrupt variation in the potential energy surface (PES) associated with the rearrangement of the solvation shell on the surface of the receptor induced by an external field was observed both in implicit and explicit solvent environments. The electric field at which the solvation shell breaks is proportional to the hardness of the ion as has been suggested recently based on experimental observations.

  20. Reversible Decomposition of Secondary Phases in BaO Infiltrated LSM Electrodes-Polarization Effects

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund; McIntyre, Melissa D.; Norrman, Kion

    2016-01-01

    and Raman spectroscopy reveal the formation of a secondary phase, Ba3Mn2O8, on the electrode. During the in operando Raman investigation of the BaO-infiltrated La0.85Sr0.15MnO3±δ electrodes, experiments are performed at 300 and 500 °C with oxygen partial pressure 0.1 atm and with −1 or +1 V Applied...... for the reduced polarization resistance observed at open Circuit voltage (OCV) in an oxygen containing atmosphere. Furthermore, the results illustrate the dramatic differences between the electrode surface composition at OCV and during cathodic polarization. Overall, the results highlight the dynamic interactions...... between minor secondary phases and applied potential, a general effect that may be important for the high-performance frequently observed with ceramic electrodes prepared by infiltration....

  1. Two-photon spin-polarization spectroscopy in silicon-doped GaAs.

    Science.gov (United States)

    Miah, M Idrish

    2009-05-14

    We generate spin-polarized electrons in bulk GaAs using circularly polarized two-photon pumping with excess photon energy (DeltaE) and detect them by probing the spin-dependent transmission of the sample. The spin polarization of conduction band electrons is measured and is found to be strongly dependent on DeltaE. The initial polarization, pumped with DeltaE=100 meV, at liquid helium temperature is estimated to be approximately 49.5%, which is very close to the theoretical value (50%) permitted by the optical selection rules governing transitions from heavy-hole and light-hole states to conduction band states in a bulk sample. However, the polarization pumped with larger DeltaE decreases rapidly because of the exciting carriers from the split-off band.

  2. Simulation of the catalyst layer in PEMFC based on a novel two-phase lattice model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jiejing; Yang Wei; Xu Li [School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China); Wang Yuxin, E-mail: yxwang@tju.edu.cn [School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China)

    2011-08-01

    Highlights: > We propose a novel two phase lattice model of catalyst layer in PEMFC. > The model features a catalyst phase and a mixed ionomer and pores phase. > Transport and electrochemical reaction in the lattice are simulated. > The model enables more accurate results than pore-solid two phase model. > Profiles of oxygen level and reaction rate across catalyst layer vary with cell current. - Abstract: A lattice model of catalyst layer in proton exchange membrane fuel cells (PEMFCs), consisting of randomly distributed catalyst phase (C phase) and mixed ionomer-pore phase (IP phase), was established by means of Monte Carlo method. Transport and electrochemical reactions in the model catalyst layer were calculated. The newly proposed C-IP model was compared with previously established pore-solid two phase model. The variation of oxygen level and reaction rate along the thickness of catalyst layer with cell current was discussed. The effect of ionomer distribution across catalyst layer was studied by comparing profiles of oxygen level, reaction rate and overpotential, as well as corresponding polarization curves.

  3. Superinsulating Polyisocyanate Based Aerogels: A Targeted Search for the Optimum Solvent System.

    Science.gov (United States)

    Zhu, Zhiyuan; Snellings, Geert M B F; Koebel, Matthias M; Malfait, Wim J

    2017-05-31

    Polyisocyanate based aerogels combine ultralow thermal conductivities with better mechanical properties than silica aerogel, but these properties critically depend on the nature of the gelation solvent, perhaps more so than on any other parameter. Here, we present a systematic study of the relationship between the polyurethane-polyisocyanurate (PUR-PIR) aerogel microstructure, surface area, thermal conductivity, and density and the gelation solvent's Hansen solubility parameters for an industrially relevant PUR-PIR rigid foam formulation. We first investigated aerogels prepared in acetone-dimethyl sulfoxide (DMSO) blends and observed a minimum in thermal conductivity (λ) and maximum in specific surface area for an acetone:DMSO ratio of 85:15 v/v. We then prepared PUR-PIR aerogels in 32 different solvent blends, divided into three series with δ Dispersion , δ Polarity , and δ H-bonding fixed at 15.94, 11.30, and 7.48 MPa 1/2 , respectively, corresponding to the optimum parameters for the acetone:DMSO series. The aerogel properties display distinct dependencies on the various solubility parameters: aerogels with low thermal conductivity can be synthesized in solvents with a high δ H-bonding parameter (above 7.2) and δ Dispersion around 16.3 MPa 1/2 . In contrast, the δ Polarity parameter is of lesser importance. Our study highlights the importance of the gelation solvent, clarifies the influence of the different solvent properties, and provides a methodology for a targeted search across the solvent chemical space based on the Hansen solubility parameters.

  4. Green solvents and technologies for oil extraction from oilseeds.

    Science.gov (United States)

    Kumar, S P Jeevan; Prasad, S Rajendra; Banerjee, Rintu; Agarwal, Dinesh K; Kulkarni, Kalyani S; Ramesh, K V

    2017-01-01

    Oilseeds are crucial for the nutritional security of the global population. The conventional technology used for oil extraction from oilseeds is by solvent extraction. In solvent extraction, n -hexane is used as a solvent for its attributes such as simple recovery, non-polar nature, low latent heat of vaporization (330 kJ/kg) and high selectivity to solvents. However, usage of hexane as a solvent has lead to several repercussions such as air pollution, toxicity and harmfulness that prompted to look for alternative options. To circumvent the problem, green solvents could be a promising approach to replace solvent extraction. In this review, green solvents and technology like aqueous assisted enzyme extraction are better solution for oil extraction from oilseeds. Enzyme mediated extraction is eco-friendly, can obtain higher yields, cost-effective and aids in obtaining co-products without any damage. Enzyme technology has great potential for oil extraction in oilseed industry. Similarly, green solvents such as terpenes and ionic liquids have tremendous solvent properties that enable to extract the oil in eco-friendly manner. These green solvents and technologies are considered green owing to the attributes of energy reduction, eco-friendliness, non-toxicity and non-harmfulness. Hence, the review is mainly focussed on the prospects and challenges of green solvents and technology as the best option to replace the conventional methods without compromising the quality of the extracted products.

  5. Extraction of acetanilides in rice using ionic liquid-based matrix solid phase dispersion-solvent flotation.

    Science.gov (United States)

    Zhang, Liyuan; Wang, Changyuan; Li, Zuotong; Zhao, Changjiang; Zhang, Hanqi; Zhang, Dongjie

    2018-04-15

    Ionic liquid-based matrix solid phase dispersion-solvent flotation coupled with high performance liquid chromatography was developed for the determination of the acetanilide herbicides, including metazachlor, propanil, alachlor, propisochlor, pretilachlor, and butachlor in rice samples. Some experimental parameters, including the type of dispersant, the mass ratio of dispersant to sample, pH of sample solution, the type of extraction solvent, the type of ionic liquid, flotation time, and flow rate of N 2 were optimized. The average recoveries of the acetanilide herbicides at spiked concentrations of 50, 125, and 250 µg/kg ranged from 89.4% to 108.7%, and relative standard deviations were equal to or lower than 7.1%, the limits of quantification were in the range of 38.0 to 84.7 µg/kg. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Current-induced spin polarization in a spin-polarized two-dimensional electron gas with spin-orbit coupling

    International Nuclear Information System (INIS)

    Wang, C.M.; Pang, M.Q.; Liu, S.Y.; Lei, X.L.

    2010-01-01

    The current-induced spin polarization (CISP) is investigated in a combined Rashba-Dresselhaus spin-orbit-coupled two-dimensional electron gas, subjected to a homogeneous out-of-plane magnetization. It is found that, in addition to the usual collision-related in-plane parts of CISP, there are two impurity-density-free contributions, arising from intrinsic and disorder-mediated mechanisms. The intrinsic parts of spin polarization are related to the Berry curvature, analogous with the anomalous and spin Hall effects. For short-range collision, the disorder-mediated spin polarizations completely cancel the intrinsic ones and the total in-plane components of CISP equal those for systems without magnetization. However, for remote disorders, this cancellation does not occur and the total in-plane components of CISP strongly depend on the spin-orbit interaction coefficients and magnetization for both pure Rashba and combined Rashba-Dresselhaus models.

  7. Studies on sludge from waxy crude oil storage tank. II. Solvent fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Fazal, S.A.; Zarapkar, S.S.; Joshi, G.C. [D.G. Ruparel College, Bombay (India). Dept. of Chemistry

    1995-12-31

    The sludge formed from crude oil (Bombay Hindu Crude oil) dump storage has been analysed by solvent extraction with a series of solvents of increasing polarity. The extract fractions so obtained have been analysed extensively. The nature of the sludge is compared with the similar sludges reported by other workers. 9 refs., 4 figs., 2 tabs.

  8. Ultrafast S1 and ICT state dynamics of a marine carotenoid probed by femtosecond one- and two-photon pump-probe spectroscopy

    International Nuclear Information System (INIS)

    Kosumi, Daisuke; Kusumoto, Toshiyuki; Fujii, Ritsuko; Sugisaki, Mitsuru; Iinuma, Yoshiro; Oka, Naohiro; Takaesu, Yuki; Taira, Tomonori; Iha, Masahiko; Frank, Harry A.; Hashimoto, Hideki

    2011-01-01

    Ultrafast relaxation kinetics of fucoxanthin in polar and non-polar solvents have been studied by femtosecond pump-probe spectroscopy. Transient absorption associated with S 1 or intramolecular charge transfer (ICT) excited state has been observed following either one-photon excitation to the optically allowed S 2 state or two-photon excitation to the symmetry-forbidden S 1 state. The results suggest that the ICT state formed after excitation of fucoxanthin in a polar solvent is a distinct excited state from S 1 .

  9. Solvent Extraction and Characterization of Neutral Lipids in Oocystis sp.

    Directory of Open Access Journals (Sweden)

    Renil eAnthony

    2015-01-01

    Full Text Available Microalgae are a favorable feedstock for bioproducts and biofuels due to their high oil content, fast growth rates and low resource demands. Solvent lipid extraction efficiency from microalgae is dependent on algal strain and the extraction solvent. Four non-polar extraction solvents were evaluated for the recovery of neutral cellular lipids from microalgae Oocystis sp. (UTEX LB2396. Methylene chloride, hexane, diethyl ether, and cyclohexane were selected as the extraction solvents. All solvent extracts contained hexadecanoic acid, linoleic acid and linolenic acid; accounting for 70% of total lipid content with a proportional wt% composition of the three fatty acids, except for the hexane extracts that showed only hexadecanoic acid and linoleic acid. While not statistically differentiated, methylene chloride proved to be the most effective solvent for Oocystis sp. among the four solvents tested with a total average neutral lipid recovery of 0.25% of dry weight followed by diethyl ether (0.18%, cyclohexane (0.14% and hexane (0.11%. This research presents a simple methodology to optimize the selection of lipid specific extraction solvents for the microalgal strain selected.

  10. Insights into the effects of solvent properties in graphene based electric double-layer capacitors with organic electrolytes

    Science.gov (United States)

    Zhang, Shuo; Bo, Zheng; Yang, Huachao; Yang, Jinyuan; Duan, Liangping; Yan, Jianhua; Cen, Kefa

    2016-12-01

    Organic electrolytes are widely used in electric double-layer capacitors (EDLCs). In this work, the microstructure of planar graphene-based EDLCs with different organic solvents are investigated with molecular dynamics simulations. Results show that an increase of solvent polarity could weaken the accumulation of counter-ions nearby the electrode surface, due to the screen of electrode charges and relatively lower ionic desolvation. It thus suggests that solvents with low polarity could be preferable to yield high EDL capacitance. Meanwhile, the significant effects of the size and structure of solvent molecules are reflected by non-electrostatic molecule-electrode interactions, further influencing the adsorption of solvent molecules on electrode surface. Compared with dimethyl carbonate, γ-butyrolactone, and propylene carbonate, acetonitrile with relatively small-size and linear structure owns weak non-electrostatic interactions, which favors the easy re-orientation of solvent molecules. Moreover, the shift of solvent orientation in surface layer, from parallel orientation to perpendicular orientation relative to the electrode surface, deciphers the solvent twin-peak behavior near negative electrode. The as-obtained insights into the roles of solvent properties on the interplays among particles and electrodes elucidate the solvent influences on the microstructure and capacitive behavior of EDLCs using organic electrolytes.

  11. Biodiesel production from ethanolysis of palm oil using deep eutectic solvent (DES) as co-solvent

    Science.gov (United States)

    Manurung, R.; Winarta, A.; Taslim; Indra, L.

    2017-06-01

    Biodiesel produced from ethanolysis is more renewable and have better properties (higher oxidation stability, lower cloud and pour point) compared to methanolysis, but it has a disadvantage such as complicated purification. To improve ethanolysis process, deep eutectic solvent (DES) can be prepared from choline chloride and glycerol and used as co-solvent in ethanolysis. The deep eutectic solvent is formed from a quaternary ammonium salt (choline chloride) and a hydrogen bond donor (Glycerol), it is a non-toxic, biodegradable solvent compared to a conventional volatile organic solvent such as hexane. The deep eutectic solvent is prepared by mixing choline chloride and glycerol with molar ratio 1:2 at temperature 80 °C, stirring speed 300 rpm for 1 hour. The DES is characterized by its density and viscosity. The ethanolysis is performed at a reaction temperature of 70 °C, ethanol to oil molar ratio of 9:1, potassium hydroxide as catalyst concentration of 1.2 wt. DES as co-solvent with concentration 0.5 to 3 wt. stirring speed 400 rpm, and a reaction time 1 hour. The obtained biodiesel is then characterized by its density, viscosity, and ester content. The oil - ethanol phase condition is observed in the reaction tube. The oil - ethanol phase with DES tends to form meniscus compared to without DES, showed that oil and ethanol become more slightly miscible, which favors the reaction. Using DES as co-solvent in ethanolysis showed increasing in yield and easier purification. The esters properties meet the international standards ASTM D6751, with the highest yield achieved 83,67 with 99,77 conversion at DES concentration 2 . Increasing DES concentration above 2 in ethanolysis decrease the conversion and yield, because of the excessive glycerol in the systems makes the reaction equilibrium moves to the reactant side.

  12. Marine target detection in quad-pol synthetic aperture radar imagery based on the relative phase of cross-polarized channels

    Science.gov (United States)

    Wang, Yunhua; Li, Huimin; Zhang, Yanmin; Guo, Lixin

    2015-01-01

    A focus on marine target detection in noise corrupted fully polarimetric synthetic aperture radar (SAR) is presented. The property of the relative phase between two cross-polarized channels reveals that the relative phases evaluated within sea surface area or noise corrupted area are widely spread phase angle region [-π,π] due to decorrelation effect; however, the relative phases are concentrated to zero and ±π for real target and its first-order azimuth ambiguities (FOAAs), respectively. Exploiting this physical behavior, the reciprocal of the mean square value of the relative phase (RMSRP) is defined as a new parameter for target detection, and the experiments based on fully polarimetric Radarsat-2 SAR images show that the strong noise and the FOAAs can be effectively suppressed in RMSRP image. Meanwhile, validity of the new parameter for target detection is also verified by two typical Radarsat-2 SAR images, in which targets' ambiguities and strong noise are present.

  13. Two-dimensional phase separated structures of block copolymers on solids

    Science.gov (United States)

    Sen, Mani; Jiang, Naisheng; Endoh, Maya; Koga, Tadanori; Ribbe, Alexander

    The fundamental, yet unsolved question in block copolymer (BCP) thin films is the self-organization process of BCPs at the solid-polymer melt interface. We here focus on the self-organization processes of cylinder-forming polystyrene-block-poly (4-vinylpyridine) diblock copolymer and lamellar-forming poly (styrene-block-butadiene-block-styrene) triblock copolymer on Si substrates as model systems. In order to reveal the buried interfacial structures, the following experimental protocols were utilized: the BCP monolayer films were annealed under vacuum at T>Tg of the blocks (to equilibrate the melts); vitrification of the annealed BCP films via rapid quench to room temperature; subsequent intensive solvent leaching (to remove unadsorbed chains) with chloroform, a non-selective good solvent for the blocks. The strongly bound BCP layers were then characterized by using atomic force microscopy, scanning electron microscopy, grazing incidence small angle X-ray scattering, and X-ray reflectivity. The results showed that both blocks lie flat on the substrate, forming the two-dimensional, randomly phase-separated structure irrespective of their microdomain structures and interfacial energetics. Acknowledgement of financial support from NSF Grant (CMMI -1332499).

  14. Suppression of metastable-phase inclusion in N-polar (0001¯) InGaN/GaN multiple quantum wells grown by metalorganic vapor phase epitaxy

    International Nuclear Information System (INIS)

    Shojiki, Kanako; Iwabuchi, Takuya; Kuboya, Shigeyuki; Choi, Jung-Hun; Tanikawa, Tomoyuki; Hanada, Takashi; Katayama, Ryuji; Matsuoka, Takashi; Usami, Noritaka

    2015-01-01

    The metastable zincblende (ZB) phase in N-polar (0001 ¯ ) (−c-plane) InGaN/GaN multiple quantum wells (MQWs) grown by metalorganic vapor phase epitaxy is elucidated by the electron backscatter diffraction measurements. From the comparison between the −c-plane and Ga-polar (0001) (+c-plane), the −c-plane MQWs were found to be suffered from the severe ZB-phase inclusion, while ZB-inclusion is negligible in the +c-plane MQWs grown under the same growth conditions. The ZB-phase inclusion is a hurdle for fabricating the −c-plane light-emitting diodes because the islands with a triangular shape appeared on a surface in the ZB-phase domains. To improve the purity of stable wurtzite (WZ)-phase, the optimum conditions were investigated. The ZB-phase is dramatically eliminated with decreasing the V/III ratio and increasing the growth temperature. To obtain much-higher-quality MQWs, the thinner InGaN wells and the hydrogen introduction during GaN barriers growth were tried. Consequently, MQWs with almost pure WZ phase and with atomically smooth surface have been demonstrated

  15. Efficient sample preparation method based on solvent-assisted dispersive solid-phase extraction for the trace detection of butachlor in urine and waste water samples.

    Science.gov (United States)

    Aladaghlo, Zolfaghar; Fakhari, Alireza; Behbahani, Mohammad

    2016-10-01

    In this work, an efficient sample preparation method termed solvent-assisted dispersive solid-phase extraction was applied. The used sample preparation method was based on the dispersion of the sorbent (benzophenone) into the aqueous sample to maximize the interaction surface. In this approach, the dispersion of the sorbent at a very low milligram level was achieved by inserting a solution of the sorbent and disperser solvent into the aqueous sample. The cloudy solution created from the dispersion of the sorbent in the bulk aqueous sample. After pre-concentration of the butachlor, the cloudy solution was centrifuged and butachlor in the sediment phase dissolved in ethanol and determined by gas chromatography with flame ionization detection. Under the optimized conditions (solution pH = 7.0, sorbent: benzophenone, 2%, disperser solvent: ethanol, 500 μL, centrifuged at 4000 rpm for 3 min), the method detection limit for butachlor was 2, 3 and 3 μg/L for distilled water, waste water, and urine sample, respectively. Furthermore, the preconcentration factor was 198.8, 175.0, and 174.2 in distilled water, waste water, and urine sample, respectively. Solvent-assisted dispersive solid-phase extraction was successfully used for the trace monitoring of butachlor in urine and waste water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Optical path difference measurements with a two-step parallel phase shifting interferometer based on a modified Michelson configuration

    Science.gov (United States)

    Toto-Arellano, Noel Ivan; Serrano-Garcia, David I.; Rodriguez-Zurita, Gustavo

    2017-09-01

    We report an optical implementation of a parallel phase-shifting quasi-common path interferometer using two modified Michelson interferometers to generate two interferograms. By using a displaceable polarizer's array, placed on the image plane, we can obtain four phase-shifted interferograms in two captures. The system operates as a quasi-common path interferometer generating four beams, which are to interfere with alignment procedures on the mirrors of the Michelson configurations. The optical phase data are retrieved using the well-known four-step algorithms. To present the capabilities of the system, experimental results obtained from transparent structures are presented.

  17. Solvent-free sample preparation by headspace solid-phase microextraction applied to the tracing of n-butyl nitrite abuse.

    Science.gov (United States)

    Tytgat, J; Daenens, P

    1996-01-01

    The most common alkyl nitrites encountered in forensic toxicology are iso-butyl, n-butyl and iso-pentyl(amyl) nitrites. All have become popular as an aphrodisiac, especially among the homosexual population. Alkyl nitrites are a volatile and unstable group of compounds, which hydrolyse in aqueous matrices to the alcohol and nitrite ion. Here we describe a fast, clean and sensitive procedure for the detection of hydrolysed n-butyl nitrite in whole human blood using a new, solvent-free sampling technique, the headspace solid-phase micro-extraction (HSPME), combined with GC/FID analysis. Sample preparation was investigated using two different stationary phases (100 microns polydimethylsiloxane and 85 microns polyacrylate), coating a fused silica fibre. The effect of different sampling times at fixed temperatures was also studied. Our results demonstrate that the HSPME/GC/FID procedure allows tracing of n-butyl nitrite abuse and detects hydrolysed n-butyl nitrite, i.e., released n-butanol, in whole blood at the 1 ng/mL level.

  18. How do evaporating thin films evolve? Unravelling phase-separation mechanisms during solvent-based fabrication of polymer blends

    KAUST Repository

    Wodo, Olga; Ganapathysubramanian, Baskar

    2014-01-01

    © 2014 AIP Publishing LLC. Solvent-based fabrication is a flexible and affordable approach to manufacture polymer thin films. The properties of products made from such films can be tailored by the internal organization (morphology) of the films. However, a precise knowledge of morphology evolution leading to the final film structure remains elusive, thus limiting morphology control to a trial and error approach. In particular, understanding when and where phases are formed, and how they evolve would provide rational guidelines for more rigorous control. Here, we identify four modes of phase formation and subsequent propagation within the thinning film during solvent-based fabrication. We unravel the origin and propagation characteristics of each of these modes. Finally, we construct a mode diagram that maps processing conditions with individual modes. The idea introduced here enables choosing processing conditions to tailor film morphology characteristics and paves the ground for a deeper understanding of morphology control with the ultimate goal of precise, yet affordable, morphology manipulation for a large spectrum of applications.

  19. How do evaporating thin films evolve? Unravelling phase-separation mechanisms during solvent-based fabrication of polymer blends

    KAUST Repository

    Wodo, Olga

    2014-10-13

    © 2014 AIP Publishing LLC. Solvent-based fabrication is a flexible and affordable approach to manufacture polymer thin films. The properties of products made from such films can be tailored by the internal organization (morphology) of the films. However, a precise knowledge of morphology evolution leading to the final film structure remains elusive, thus limiting morphology control to a trial and error approach. In particular, understanding when and where phases are formed, and how they evolve would provide rational guidelines for more rigorous control. Here, we identify four modes of phase formation and subsequent propagation within the thinning film during solvent-based fabrication. We unravel the origin and propagation characteristics of each of these modes. Finally, we construct a mode diagram that maps processing conditions with individual modes. The idea introduced here enables choosing processing conditions to tailor film morphology characteristics and paves the ground for a deeper understanding of morphology control with the ultimate goal of precise, yet affordable, morphology manipulation for a large spectrum of applications.

  20. Theoretical insights into the formation of thiolate-protected nanoparticles from gold (III) chloride

    International Nuclear Information System (INIS)

    Zhang Xue-Na; Wang Rong; Xue Gi

    2014-01-01

    Reaction pathways for the formation of thiolate-gold nanoparticles are investigated by density functional theory (DFT) and a new mechanism upon solvent polarity and tetraalkylammonium is obtained. In solvents with high polarities, [Au(I)SR] n polymers can be formed as the precursor of metal ions prior to the addition of a reducing agent; while a product of [Cl···AuCl(HSR)] is identified as the precursor in solvents with low polarities, such as toluene and chloroform. In addition, tetraalkylammonium also has an obvious effect on the reactions when it is used as a phase transfer agent in the two-phase synthesis. These findings offer a systematic analysis on the pathways to thiolate-stabilized nanoparticles and give a favorable explanation by comparison with those in an experimental system. (interdisciplinary physics and related areas of science and technology)

  1. Optical Field-Strength Polarization of Two-Mode Single-Photon States

    Science.gov (United States)

    Linares, J.; Nistal, M. C.; Barral, D.; Moreno, V.

    2010-01-01

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of…

  2. Ionic Liquids in Selective Oxidation: Catalysts and Solvents.

    Science.gov (United States)

    Dai, Chengna; Zhang, Jie; Huang, Chongpin; Lei, Zhigang

    2017-05-24

    Selective oxidation has an important role in environmental and green chemistry (e.g., oxidative desulfurization of fuels and oxidative removal of mercury) as well as chemicals and intermediates chemistry to obtain high-value-added special products (e.g., organic sulfoxides and sulfones, aldehydes, ketones, carboxylic acids, epoxides, esters, and lactones). Due to their unique physical properties such as the nonvolatility, thermal stability, nonexplosion, high polarity, and temperature-dependent miscibility with water, ionic liquids (ILs) have attracted considerable attention as reaction solvents and media for selective oxidations and are considered as green alternatives to volatile organic solvents. Moreover, for easy separation and recyclable utilization, IL catalysts have attracted unprecedented attention as "biphasic catalyst" or "immobilized catalyst" by immobilizing metal- or nonmetal-containing ILs onto mineral or polymer supports to combine the unique properties of ILs (chemical and thermal stability, capacity for extraction of polar substrates and reaction products) with the extended surface of the supports. This review highlights the most recent outcomes on ILs in several important typical oxidation reactions. The contents are arranged in the series of oxidation of sulfides, oxidation of alcohols, epoxidation of alkenes, Baeyer-Villiger oxidation reaction, oxidation of alkanes, and oxidation of other compounds step by step involving ILs as solvents, catalysts, reagents, or their combinations.

  3. Impact of solvents and supercritical CO2 drying on the morphology and structure of polymer-based biofilms

    International Nuclear Information System (INIS)

    Causa, Andrea; Acierno, Domenico; Filippone, Giovanni; Salerno, Aurelio; Domingo, Concepción

    2014-01-01

    In the present work, two-dimensional systems based on biodegradable polymers such as poly(ε-caprolactone) (PCL), poly(ethylene oxide) (PEO) and polylactic acid (PLA) are fabricated by means of a sustainable approach which consists in inducing phase separation in solutions of such polymers and “green” solvents, namely ethyl lactate (EL) and ethyl acetate (EA). The extraction of the solvent is promoted by a controlled drying process, which is performed in either air or supercritical CO 2 . The latter can indeed act as both an antisolvent, which favors the deposition of the polymer by forming a mixture with EL and EA, and a plasticizing agent, whose solvation and transport properties may considerably affect the microstructure and crystallinity of the polymer films. The morphological, topographical and crystalline properties of the films are tailored through a judicial selection of the materials and the processing conditions and assessed by means of thermal analyses, polarized optical microscopy, scanning electron microscopy and confocal interferometric microscopy. The results show that the morphological and crystalline properties of the films are strongly dependent on the choice of both the polymer/solvent system and the operating conditions during the drying step. In particular, the morphological, topographical and thermal properties of films prepared starting from highly crystalline polymers, namely PCL and PEO, are greatly affected by the crystallization of the material. Conversely, the less crystalline PLA forms almost completely amorphous films

  4. Reactivity of cyclohex-1-enylcarboxylic and 2-methylcyclohex-1-enylcarboxylic acids with diazodiphenylmethane in aprotic solvents

    Directory of Open Access Journals (Sweden)

    VERA V. KRSTIC

    2000-12-01

    Full Text Available Rate constants for the reaction of diazodiphenylmethane with cyclohex-1-enylcarboxylic acid and 2-methylcyclohex-1-enylcarboxylic acid were determined in nine aprotic solvents, as well as in seven protic solvents, at 30°C using the appropriate UV-spectroscopic method. In protic solvents the unsubsituted acid displayed higher reaction rates than the methyl-substituted one. The results in aprotic solvents showed quite the opposite, and the reaction rates were considerably lower. In order to explain the obtained results through solvent effects, reaction rate constants (k of the examined acids were correlated using the total solvatochromic equation of the form: log k=logk0+sp*+aa+bb, where p* is the measure of the solvent polarity, a represents the scale of the solvent hydrogen bond donor acidities (HBD and b represents the scale of the solvent hydrogen bond acceptor basicities (HBA. The correlation of the kinetic data were carried out by means of multiple linear regression analysis and the opposite effects of aprotic solvents, as well as the difference in the influence of protic and aprotic solvents on the reaction of the two examined acids with DDM were discussed. The results presented in this paper for cyclohex-1-enylcarboxylic and 2-methylcyclohex-1-enylcarboxylic acids were compared with the kinetic data for benzoic acid obtained in the same chemical reaction, under the same experimental conditions.

  5. Trimodal Mixed Mode Chromatography That Enables Efficient Offline Two-Dimensional Peptide Fractionation for Proteome Analysis.

    Science.gov (United States)

    Yu, Peng; Petzoldt, Svenja; Wilhelm, Mathias; Zolg, Daniel Paul; Zheng, Runsheng; Sun, Xuefei; Liu, Xiaodong; Schneider, Günter; Huhmer, Andreas; Kuster, Bernhard

    2017-09-05

    Offline two-dimensional chromatography is a common means to achieve deep proteome coverage. To reduce sample complexity and dynamic range and to utilize mass spectrometer (MS) time efficiently, high chromatographic resolution of and good orthogonality between the two dimensions are needed. Ion exchange and high pH reversed phase chromatography are often used for this purpose. However, the former requires desalting to be MS-compatible, and the latter requires fraction pooling to create orthogonality. Here, we report an alternative first-dimension separation technique using a commercial trimodal phase incorporating polar embedded reversed phase, weak anion exchange, and strong cation exchange material. The column is capable of retaining polar and nonpolar peptides alike without noticeable breakthrough. It allows separating ordinary and TMT-labeled peptides under mild acidic conditions using an acetonitrile gradient. The direct MS compatibility of solvents and good orthogonality to online coupled C18 columns enable a straightforward workflow without fraction pooling and desalting while showing comparable performance to the other techniques. The method scales from low to high microgram sample quantity and is amenable to full automation. To demonstrate practical utility, we analyzed the proteomes of 10 human pancreatic cancer cell lines to a depth of >8,700 quantified proteins.

  6. Polarization phenomena in two body systems

    International Nuclear Information System (INIS)

    Thomas, G.H.

    1978-01-01

    A review is given of strong interactions at very low, low, intermediate, and high energies over the range 6.14 MeV to 150 GeV/c with regard to polarization phenomena in two-body systems. From the one-pion-exchange model to the theory that can possibly relate to all the phenomena, namely, quantum electrodynamics the review pointed to a unified explanation for the interactions under study. 46 references

  7. SOLVENT EFFECTS IN THE LIQUID-PHASE HYDRATION OF CYCLOHEXENE CATALYZED BY A MACROPOROUS STRONG ACID ION-EXCHANGE RESIN

    NARCIS (Netherlands)

    PANNEMAN, HJ; BEENACKERS, AACM

    1992-01-01

    The liquid-phase hydration of cyclohexene, a pseudo first order reversible reaction catalyzed by a strong acid ion exchange resin, macroporous Amberlite XE 307, was investigated in solvent mixtures of water and sulfolane. A decrease by a factor of 3 and 6 is observed in the experimentally measured

  8. Polarity-based fractionation in proteomics: hydrophilic interaction vs reversed-phase liquid chromatography.

    Science.gov (United States)

    Jafari, M; Mirzaie, M; Khodabandeh, M; Rezadoost, H; Ghassempour, A; Aboul-Enein, H Y

    2016-07-01

    During recent decades, hydrophilic interaction liquid chromatography (HILIC) ahs been introduced to fractionate or purify especially polar solutes such as peptides and proteins while reversed-phase liquid chromatography (RPLC) is also a common strategy. RPLC is also a common dimension in multidimensional chromatography. In this study, the potential of HILIC vs RPLC chromatography was compared for proteome mapping of human peripheral blood mononuclear cell extract. In HILIC a silica-based stationary phase and for RPLC a C18 column were applied. Then separated proteins were eluted to an ion trap mass spectrometry system. Our results showed that the HILIC leads to more proteins being identified in comparison to RPLC. Among the total 181 identified proteins, 56 and 38 proteins were fractionated specifically by HILIC and RPLC, respectively. In order to demonstrate this, the physicochemical properties of identified proteins such as polarity and hydrophobicity were considered. This analysis indicated that polarity may play a major role in the HILIC separation of proteins vs RPLC. Using gene ontology enrichment analysis, it was also observed that differences in physicochemical properties conform to the cellular compartment and biological features. Finally, this study highlighted the potential of HILIC and the great orthogonality of RPLC in gel-free proteomic studies. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Deacidification of Soybean Oil Combining Solvent Extraction and Membrane Technology

    Directory of Open Access Journals (Sweden)

    M. L. Fornasero

    2013-01-01

    Full Text Available The aim of this work was to study the removal of free fatty acids (FFAs from soybean oil, combining solvent extraction (liquid-liquid for the separation of FFAs from the oil and membrane technology to recover the solvent through nanofiltration (NF. Degummed soybean oil containing 1.05 ± 0.10% w/w FFAs was deacidified by extraction with ethanol. Results obtained in the experiences of FFAs extraction from oil show that the optimal operating conditions are the following: 1.8 : 1 w : w ethanol/oil ratio, 30 minutes extraction time and high speed of agitation and 30 minutes repose time after extraction at ambient temperature. As a result of these operations two phases are obtained: deacidified oil phase and ethanol phase (containing the FFAs. The oil from the first extraction is subjected to a second extraction under the same conditions, reducing the FFA concentration in oil to 0.09%. Solvent recovery from the ethanol phase is performed using nanofiltration technology with a commercially available polymeric NF membrane (NF-99-HF, Alfa Laval. From the analysis of the results we can conclude that the optimal operating conditions are pressure of 20 bar and temperature of 35°C, allowing better separation performance: permeate flux of 28.3 L/m2·h and FFA retention of 70%.

  10. The effect of solvents on the stabilities (color and Fe) of anthocyanin isolated from the red-color-melinjo peels

    Energy Technology Data Exchange (ETDEWEB)

    Tarmizi, Ermiziar, E-mail: uph-ermi@yahoo.com, E-mail: ermitarmizi@gmail.com; Saragih, Raskita, E-mail: raskitasaragih@yahoo.com [Indonesia Institute of Technology (ITI), Raya PuspiptekSerpong, Tangerang Banten 15320 (Indonesia); Lalasari, Latifa Hanum, E-mail: ifa-sari@yahoo.com, E-mail: lati003@lipi.go.id [Research Centre for Metallurgy and Material, Indonesian Institute of Sciences (LIPI), KawasanPuspiptekSerpong, Tangerang Selatan 15314 (Indonesia)

    2015-12-29

    Anthocyanin from the red-color-melinjo peels could be isolated using a polar solvent (ethanol) [ermiziar, 2010]. The amount of hydrocarbons in the structure of anthocyanin might cause that anthocyanin could be isolated using a non polar solvent. The purpose of research is to isolate anthocyanin using non polar solvents (hexane and petroleum ether) with maceration steps for 24 hours and separate solvents using rotary evaporator equipment. The stability of anthocyanin could be observed every week (1,2,3 and 4 weeks) in various environmental conditions (with or without light in refrigerator and open or closed storage). The characterization of anthocyanin was analyzed with visual (physic photo) and or using equipments such as Fourier Transform Infrared Spectroscopy (FTIR) for determining functional groups, Ultraviolet–Visible Spectroscopy (UV/Vis) with 500-550 nm wavelengths for deciding absorption of anthocyanin and atomic absorption spectroscopy (AAS) for analyzing Fe element. The result showed that anthocyanin isolation with hexane solvent has yield higher than petroleum eter solvent. From the results of physic observation for 4 weeks looked that there are changing colors of samples significant after 3 and 4 weeks in cooler with or without light. The stability of anthocyanin color was the best on the storage time until 2 weeks using hexane solvent in refrigerator and closed condition that it has absorption of 0.6740 with 500 nm wavelengths and Fe concentration 6.29 ppm.

  11. The effect of solvents on the stabilities (color and Fe) of anthocyanin isolated from the red-color-melinjo peels

    International Nuclear Information System (INIS)

    Tarmizi, Ermiziar; Saragih, Raskita; Lalasari, Latifa Hanum

    2015-01-01

    Anthocyanin from the red-color-melinjo peels could be isolated using a polar solvent (ethanol) [ermiziar, 2010]. The amount of hydrocarbons in the structure of anthocyanin might cause that anthocyanin could be isolated using a non polar solvent. The purpose of research is to isolate anthocyanin using non polar solvents (hexane and petroleum ether) with maceration steps for 24 hours and separate solvents using rotary evaporator equipment. The stability of anthocyanin could be observed every week (1,2,3 and 4 weeks) in various environmental conditions (with or without light in refrigerator and open or closed storage). The characterization of anthocyanin was analyzed with visual (physic photo) and or using equipments such as Fourier Transform Infrared Spectroscopy (FTIR) for determining functional groups, Ultraviolet–Visible Spectroscopy (UV/Vis) with 500-550 nm wavelengths for deciding absorption of anthocyanin and atomic absorption spectroscopy (AAS) for analyzing Fe element. The result showed that anthocyanin isolation with hexane solvent has yield higher than petroleum eter solvent. From the results of physic observation for 4 weeks looked that there are changing colors of samples significant after 3 and 4 weeks in cooler with or without light. The stability of anthocyanin color was the best on the storage time until 2 weeks using hexane solvent in refrigerator and closed condition that it has absorption of 0.6740 with 500 nm wavelengths and Fe concentration 6.29 ppm

  12. Cleanup of Savannah River Plant solvent using solid sorbents

    International Nuclear Information System (INIS)

    Mailen, J.C.; Tallent, O.K.

    1985-04-01

    The degradation products produced in Purex solvent by exposure to nitric acid and radiation can be divided into two groups: those which are removed by scrubbing with sodium carbonate solutions and those which are not; these latter materials are called secondary degradation products. This study investigated the use of solid sorbents for removal of the secondary degradation products from first-cycle Savannah River Plant solvent that had been previously washed with sodium carbonate solution. Silica gel, activated charcoal, macroreticular resin, attapulgite clay and activated alumina were the sorbents investigated in preliminary testing. Activated alumina was found to be most effective for improving phase separation of the solvent from sodium carbonate solutions and for increasing the interfacial tension. The activated alumina was also the sorbent most useful for removing complexants which retain plutonium at low acidity, but it was less effective in removing anionic surfactants and ruthenium. We found that the capacity of the activated alumina was greatly improved by drying the solvent before treatment

  13. Fotodegradação da 4-((4-N,N-dimetilamino-benzilideno-2-feniloxazolona em diferentes solventes orgânicos = Photodegradation of 4-((4-N,N-dimethylamine-benzylidene-2- phenyl-oxazolone in different organic solvents

    Directory of Open Access Journals (Sweden)

    Mauricio Ferreira da Rosa

    2007-07-01

    Full Text Available Foram sintetizados 13 derivados oxazolônicos, e o comportamento fotoquímico de um deles foi analisado em função da polaridade do solvente utilizado quando irradiado no comprimento de onda de 350 nm. Observou-se que, em solvente polar aprótico (acetonitrila, a degradação ocorre mais rapidamente que em solvente apolar. Verifica-se, nos espectros de absorção no UV-vis em função do tempo de irradiação em acetonitrila, a presença de um ponto isobéstico em 419 nm, mostrando que somente duas espécies coexistem no meio. A adição de um segundo solvente destrói este comportamento. Para osoutros solventes utilizados, não foi observada a presença de ponto isosbéstico.Thirteen (13 oxazolone derivatives were synthesized and the photochemical behavior of one of them was analyzed for solventpolarity when submitted to irradiation in 350 nm. When acetonitrile is used as solvent, photodegradation is faster when compared with n-hexane. The electronic spectra in acetonitrile showed an isosbestic point in 419 nm, indicating that only two species co-exist in solution. The addition of a second solvent destroyed this behavior. The others solvents did not show an isosbestic point.

  14. Multi-layer solid-phase extraction and evaporation-enrichment methods for polar organic chemicals from aqueous matrices.

    Science.gov (United States)

    Köke, Niklas; Zahn, Daniel; Knepper, Thomas P; Frömel, Tobias

    2018-03-01

    Analysis of polar organic chemicals in the aquatic environment is exacerbated by the lack of suitable and widely applicable enrichment methods. In this work, we assessed the suitability of a novel combination of well-known solid-phase extraction (SPE) materials in one cartridge as well as an evaporation method and for the enrichment of 26 polar model substances (predominantly log D evaporation method were investigated for the recovery and matrix effects of the model substances and analyzed with hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS). In total, 65% of the model substances were amenable (> 10% recovery) to the mlSPE method with a mean recovery of 76% while 73% of the model substances were enriched with the evaporation method achieving a mean recovery of 78%. Target and non-target screening comparison of both methods with a frequently used reversed-phase SPE method utilizing "hydrophilic and lipophilic balanced" (HLB) material was performed. Target analysis showed that the mlSPE and evaporation method have pronounced advantages over the HLB method since the HLB material retained only 30% of the model substances. Non-target screening of a ground water sample with the investigated enrichment methods showed that the median retention time of all detected features on a HILIC system decreased in the order mlSPE (3641 features, median t R 9.7 min), evaporation (1391, 9.3 min), HLB (4414, 7.2 min), indicating a higher potential of the described methods to enrich polar analytes from water compared with HLB-SPE. Graphical abstract Schematic of the method evaluation (recovery and matrix effects) and method comparison (target and non-target analysis) of the two investigated enrichment methods for very polar chemicals in aqueousmatrices.

  15. Two solvent and temperature dependent copper(II) compounds formed by a flexible ligand: syntheses, structures and SC-SC transformation.

    Science.gov (United States)

    Sun, Haixia; Xie, Wenli; Lv, Shenghong; Xu, Yan; Wu, Yong; Zhou, Yaoming; Ma, Zhenmao; Fang, Min; Liu, Hong-Ke

    2012-07-07

    A nonporous neutral framework [CuCl(2)(m-bttmb)(2)](n) (1) was changed into a porous ionic {[Cu(m-bttmb)(2)(H(2)O)Cl]Cl(CH(3)CN)(0.5)(H(2)O)(2.75)}(n) (2) by simply increasing the amount of CH(3)CN in the mixed solvent (CH(3)CN and H(2)O) or temperature in the reactions of CuCl(2)·2H(2)O with 1,3-bis(triazol-1-ylmethyl)-2,4,6-trimethylbenzene (m-bttmb). 1 undergoes transformation into 2 when treated with CH(3)CN. Both 1 and 2 have 2D 4-connected (4,4) network architectures but in different packing arrangements. These compounds have been characterized by single-crystal X-ray diffraction analysis, elemental analysis, IR spectra and thermogravimetric analysis. This work may provide a way to control the formation of neutral or ionic frameworks, as well as porosities by adjusting the polarity and components of the solvents.

  16. Joint compensation scheme of polarization crosstalk, intersymbol interference, frequency offset, and phase noise based on cascaded Kalman filter

    Science.gov (United States)

    Zhang, Qun; Yang, Yanfu; Xiang, Qian; Zhou, Zhongqing; Yao, Yong

    2018-02-01

    A joint compensation scheme based on cascaded Kalman filter is proposed, which can implement polarization tracking, channel equalization, frequency offset, and phase noise compensation simultaneously. The experimental results show that the proposed algorithm can not only compensate multiple channel impairments simultaneously but also improve the polarization tracking capacity and accelerate the convergence speed. The scheme has up to eight times faster convergence speed compared with radius-directed equalizer (RDE) + Max-FFT (maximum fast Fourier transform) + BPS (blind phase search) and can track up polarization rotation 60 times and 15 times faster than that of RDE + Max-FFT + BPS and CMMA (cascaded multimodulus algorithm) + Max-FFT + BPS, respectively.

  17. Epitaxial engineering of polar ɛ-Ga2O3 for tunable two-dimensional electron gas at the heterointerface

    Science.gov (United States)

    Cho, Sung Beom; Mishra, Rohan

    2018-04-01

    We predict the formation of a polarization-induced two-dimensional electron gas (2DEG) at the interface of ɛ-Ga2O3 and CaCO3, wherein the density of the 2DEG can be tuned by reversing the spontaneous polarization in ɛ-Ga2O3, for example, with an applied electric field. ɛ-Ga2O3 is a polar and metastable ultra-wide band-gap semiconductor. We use density-functional theory (DFT) calculations and coincidence-site lattice model to predict the region of epitaxial strain under which ɛ-Ga2O3 can be stabilized over its other competing polymorphs and suggest promising substrates. Using group-theoretical methods and DFT calculations, we show that ɛ-Ga2O3 is a ferroelectric material where the spontaneous polarization can be reversed through a non-polar phase by using an electric field. Based on the calculated band alignment of ɛ-Ga2O3 with various substrates, we show the formation of a 2DEG with a high sheet charge density of 1014 cm-2 at the interface with CaCO3 due to the spontaneous and piezoelectric polarization in ɛ-Ga2O3, which makes the system attractive for high-power and high-frequency applications.

  18. A smooth and differentiable bulk-solvent model for macromolecular diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fenn, T. D. [Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford, California (United States); Schnieders, M. J. [Department of Chemistry, Stanford, California (United States); Brunger, A. T., E-mail: brunger@stanford.edu [Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford, California (United States); Departments of Neurology and Neurological Sciences, Structural Biology and Photon Science, Stanford, California (United States)

    2010-09-01

    A new method for modeling the bulk solvent in macromolecular diffraction data based on Babinet’s principle is presented. The proposed models offer the advantage of differentiability with respect to atomic coordinates. Inclusion of low-resolution data in macromolecular crystallography requires a model for the bulk solvent. Previous methods have used a binary mask to accomplish this, which has proven to be very effective, but the mask is discontinuous at the solute–solvent boundary (i.e. the mask value jumps from zero to one) and is not differentiable with respect to atomic parameters. Here, two algorithms are introduced for computing bulk-solvent models using either a polynomial switch or a smoothly thresholded product of Gaussians, and both models are shown to be efficient and differentiable with respect to atomic coordinates. These alternative bulk-solvent models offer algorithmic improvements, while showing similar agreement of the model with the observed amplitudes relative to the binary model as monitored using R, R{sub free} and differences between experimental and model phases. As with the standard solvent models, the alternative models improve the agreement primarily with lower resolution (>6 Å) data versus no bulk solvent. The models are easily implemented into crystallographic software packages and can be used as a general method for bulk-solvent correction in macromolecular crystallography.

  19. A smooth and differentiable bulk-solvent model for macromolecular diffraction

    International Nuclear Information System (INIS)

    Fenn, T. D.; Schnieders, M. J.; Brunger, A. T.

    2010-01-01

    A new method for modeling the bulk solvent in macromolecular diffraction data based on Babinet’s principle is presented. The proposed models offer the advantage of differentiability with respect to atomic coordinates. Inclusion of low-resolution data in macromolecular crystallography requires a model for the bulk solvent. Previous methods have used a binary mask to accomplish this, which has proven to be very effective, but the mask is discontinuous at the solute–solvent boundary (i.e. the mask value jumps from zero to one) and is not differentiable with respect to atomic parameters. Here, two algorithms are introduced for computing bulk-solvent models using either a polynomial switch or a smoothly thresholded product of Gaussians, and both models are shown to be efficient and differentiable with respect to atomic coordinates. These alternative bulk-solvent models offer algorithmic improvements, while showing similar agreement of the model with the observed amplitudes relative to the binary model as monitored using R, R free and differences between experimental and model phases. As with the standard solvent models, the alternative models improve the agreement primarily with lower resolution (>6 Å) data versus no bulk solvent. The models are easily implemented into crystallographic software packages and can be used as a general method for bulk-solvent correction in macromolecular crystallography

  20. SOLVEX: a computer program for simulation of solvent extraction processes

    International Nuclear Information System (INIS)

    Scotten, W.C.

    1975-09-01

    SOLVEX is a FORTRAN IV computer program that simulates the dynamic behavior of solvent extraction processes conducted in mixer-settlers and centrifugal contactors. Two options permit terminating dynamic phases by time or by achieving steady state, and a third option permits artificial rapid close to steady state. Thus the program is well suited to multiple phases of dynamic problems and multiple input of steady state problems. Changes from the previous problem are the only inputs required for each succeeding problem. Distribution data can be supplied by two-variable third-power polynomial equations or by three-variable tables in any one of 16 different combinations involving phase concentrations or distribution coefficients (ratio of phase concentrations) or their logarithms

  1. Compound forming extractants, solvating solvents and inert solvents IUPAC chemical data series

    CERN Document Server

    Marcus, Y; Kertes, A S

    2013-01-01

    Equilibrium Constants of Liquid-Liquid Distribution Reactions, Part III: Compound Forming Extractants, Solvating Solvents, and Inert Solvents focuses on the compilation of equilibrium constants of various compounds, such as acids, ions, salts, and aqueous solutions. The manuscript presents tables that show the distribution reactions of carboxylic and sulfonic acid extractants and their dimerization and other reactions in the organic phase and extraction reactions of metal ions from aqueous solutions. The book also states that the inorganic anions in these solutions are irrelevant, since they d

  2. Intramolecular, Exciplex-Mediated, Proton-Coupled, Charge-Transfer Processes in N,N-Dimethyl-3-(1-pyrenyl)propan-1-ammonium Cations: Influence of Anion, Solvent Polarity, and Temperature.

    Science.gov (United States)

    Safko, Trevor M; Faleiros, Marcelo M; Atvars, Teresa D Z; Weiss, Richard G

    2016-06-16

    An intramolecular exciplex-mediated, proton-coupled, charge-transfer (PCCT) process has been investigated for a series of N,N-dimethyl-3-(1-pyrenyl)propan-1-ammonium cations with different anions (PyS) in solvents of low to intermediate polarity over a wide temperature range. Solvent mediates both the equilibrium between conformations of the cation that place the pyrenyl and ammonium groups in proximity (conformation C) or far from each other (conformation O) and the ability of the ammonium group to transfer a proton adiabatically in the PyS excited singlet state. Thus, exciplex emission, concurrent with the PCCT process, was observed only in hydrogen-bond accepting solvents of relatively low polarity (tetrahydrofuran, ethyl acetate, and 1,4-dioxane) and not in dichloromethane. From the exciplex emission and other spectroscopic and thermodynamic data, the acidity of the ammonium group in conformation C of the excited singlet state of PyS (pKa*) has been estimated to be ca. -3.4 in tetrahydrofuran. The ratios between the intensities of emission from the exciplex and the locally excited state (IEx/ILE) appear to be much more dependent on the nature of the anion than are the rates of exciplex formation and decay, although the excited state data do not provide a quantitative measure of the anion effect on the C-O equilibrium. The activation energies associated with exciplex formation in THF are calculated to be 0.08 to 0.15 eV lower than for the neutral amine, N,N-dimethyl-3-(1-pyrenyl)propan-1-amine. Decay of the exciplexes formed from the deprotonation of PyS is hypothesized to occur through charge-recombination processes. To our knowledge, this is the first example in which photoacidity and intramolecular exciplex formation (i.e., a PCCT reaction) are coupled.

  3. Laboratory and pilot field-scale testing of surfactants for environmental restoration of chlorinated solvent DNAPLs

    International Nuclear Information System (INIS)

    Jackson, R.E.; Fountain, J.C.

    1994-01-01

    This project is composed of two phases and has the objective of demonstrating surfactant-enhanced aquifer remediation (SEAR) as a practical remediation technology at DOE sites with ground water contaminated by dense, non-aqueous phase liquids (DNAPLs), in particular, chlorinated solvents. The first phase of this project, Laboratory and Pilot Field Scale Testing, which is the subject of the work so far, involves (1) laboratory experiments to examine the solubilization of multiple component DNAPLs, e.g., solvents such as perchloroethylene (PCE) and trichloroethylene (TCE), by dilute surfactant solutions, and (2) a field test to demonstrate SEAR technology on a small scale and in an existing well

  4. Direct and solvent-assisted thione–thiol tautomerism in 5-(thiophen-2-yl)-1,3,4-oxadiazole-2(3H)-thione: Experimental and molecular modeling study

    Energy Technology Data Exchange (ETDEWEB)

    Burcu Arslan, N. [Department of Computer Education and Instructional Technology, Faculty of Education, Giresun University, 28100 Giresun (Turkey); Özdemir, Namık, E-mail: namiko@omu.edu.tr [Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun (Turkey); Dayan, Osman, E-mail: osmandayan@comu.edu.tr [Laboratory of Inorganic Synthesis and Molecular Catalysis, Çanakkale Onsekiz Mart University, 17020 Çanakkale (Turkey); Dege, Necmi [Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun (Turkey); Koparır, Metin [Department of Chemistry, Faculty of Science, Fırat University, 23169 Elazığ (Turkey); Koparır, Pelin [Department of Chemistry, Forensic Medicine Institute, 44000 Malatya (Turkey); Muğlu, Halit [Department of Chemistry, Faculty of Arts and Sciences, Kastamonu University, 37200 Kastamonu (Turkey)

    2014-08-17

    Graphical abstract: - Highlights: • The molecule exists in the thione form in the solid state. • FT-IR and NMR data support the thione form. • The anti-thione conformer has the lowest energy. • The barrier height increases with increasing polarity of the solvent. • Multiple methanol or water-assisted thione–thiol tautomerism may happen. - Abstract: The compound has been synthesized and characterized by IR, NMR and X-ray diffraction. Quantum chemical calculations at B3LYP/6−311++G(d,p) level were performed to study the molecular and spectroscopic properties, conformational equilibrium, thione ↔ thiol tautomerism and intermolecular double proton transfer reaction of the compound. The obtained structural and spectroscopic results are well in agreement with the experimental data. The solvent effect on the proton transfer reaction was investigated in three solvents using the polarizable continuum model approximation and solvent-assisted mechanism. The anti-thione tautomer is the most stable isomer among the four possible structural forms both in the gas phase and in solution phase. A high tautomeric energy barrier is found for the tautomerism between the anti and syn forms of the compound, indicating a quite disfavored process. Although the presence of one methanol or water solvent molecule significantly lowers the energy barrier, it is not adequate for the reaction to occur.

  5. Effects of solvation on partition and dimerization of benzoic acid in mixed solvent systems.

    Science.gov (United States)

    Yamada, H; Yajima, K; Wada, H; Nakagawa, G

    1995-06-01

    The partition of benzoic acid between 0.1M perchloric acid solution and two kinds of mixed solvents has been carried out at 25 degrees C. The partition and dimerization constants of benzoic acid have been determined in the 1-octanol-benzene and 2-octanone-benzene systems. In both the mixed solvent systems, with increasing content of 1-octanol and 2-octanone in each mixed solvent, the partition constant of benzoic acid has been found to increase, and the dimerization constant of benzoic acid in each organic phase to decrease. These phenomena are attributable to solvation of monomeric benzoic acid by 1-octanol and 2-octanone molecules in each mixed solvent.

  6. Essential roles of protein-solvent many-body correlation in solvent-entropy effect on protein folding and denaturation: Comparison between hard-sphere solvent and water

    International Nuclear Information System (INIS)

    Oshima, Hiraku; Kinoshita, Masahiro

    2015-01-01

    In earlier works, we showed that the entropic effect originating from the translational displacement of water molecules plays the pivotal role in protein folding and denaturation. The two different solvent models, hard-sphere solvent and model water, were employed in theoretical methods wherein the entropic effect was treated as an essential factor. However, there were similarities and differences in the results obtained from the two solvent models. In the present work, to unveil the physical origins of the similarities and differences, we simultaneously consider structural transition, cold denaturation, and pressure denaturation for the same protein by employing the two solvent models and considering three different thermodynamic states for each solvent model. The solvent-entropy change upon protein folding/unfolding is decomposed into the protein-solvent pair (PA) and many-body (MB) correlation components using the integral equation theories. Each component is further decomposed into the excluded-volume (EV) and solvent-accessible surface (SAS) terms by applying the morphometric approach. The four physically insightful constituents, (PA, EV), (PA, SAS), (MB, EV), and (MB, SAS), are thus obtained. Moreover, (MB, SAS) is discussed by dividing it into two factors. This all-inclusive investigation leads to the following results: (1) the protein-water many-body correlation always plays critical roles in a variety of folding/unfolding processes; (2) the hard-sphere solvent model fails when it does not correctly reproduce the protein-water many-body correlation; (3) the hard-sphere solvent model becomes problematic when the dependence of the many-body correlation on the solvent number density and temperature is essential: it is not quite suited to studies on cold and pressure denaturating of a protein; (4) when the temperature and solvent number density are limited to the ambient values, the hard-sphere solvent model is usually successful; and (5) even at the ambient

  7. Friction and diffusion of a nano-colloidal disk in a two-dimensional solvent with a liquid-liquid transition.

    Science.gov (United States)

    Torres-Carbajal, Alexis; Castañeda-Priego, Ramón

    2018-03-07

    We report on the friction and diffusion of a single mobile nano-colloidal disk, whose size and mass are one and two orders of magnitude, respectively, greater than the molecules of the host solvent; all particles are restricted to move in a two-dimensional space. Using molecular dynamics simulations, the variation of the transport coefficients as a function of the thermodynamic state of the supporting fluid, in particular, around those states in the neighbourhood of the liquid-liquid phase coexistence, is investigated. The diffusion coefficient is determined through the fit of the mean-square displacement at long times and with the Green-Kubo relationship for the velocity autocorrelation function, whereas the friction coefficient is computed from the correlation of the fluctuating force. From the determination of the transport properties, the applicability of the Stokes-Einstein relation in two dimensions around the second critical point is discussed.

  8. Effect of morphology and solvent on two-photon absorption of nano zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, M.K. [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, Kerala (India); Haripadmam, P.C.; Gopinath, Pramod; Krishnan, Bindu [Department of Physics, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, Kerala (India); John, Honey, E-mail: honey@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, Kerala (India)

    2013-05-15

    Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novel precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.

  9. Effect of a spiral phase on a vector optical field with hybrid polarization states

    International Nuclear Information System (INIS)

    Chen, Rui-Pin; Zhao, Tingyu; Zhong, Li-Xin; Chew, Khian-Hooi; Gu, Bing; Zhou, Guoquan

    2015-01-01

    The propagation dynamics of a vector field with inhomogeneous states of polarization (SoP) imposed a vortex is studied using the angular spectrum method. The evolution of SoP in the cross section of the field during propagation is analyzed numerically by the Stokes polarization parameters. The results indicate that SoP in the field cross section rotate along the propagation axis during propagation due to the existence of a vortex. In addition, the interaction between the phase singularity and the polarization singularity leads to the creation or annihilation of the optical field in the central region. In particular, the distributions of the transverse energy flow and both spin and orbital optical angular momentum fluxes in the cross section of the vortex vector optical field depend sensitively on both the vortex and polarization topology charges. (paper)

  10. Structuring of polymer solutions upon solvent evaporation

    NARCIS (Netherlands)

    Schaefer, C.; van der Schoot, P.|info:eu-repo/dai/nl/102140618; Michels, J. J.

    2015-01-01

    The morphology of solution-cast, phase-separated polymers becomes finer with increasing solvent evaporation rate. We address this observation theoretically for a model polymer where demixing is induced by steady solvent evaporation. In contrast to what is the case for a classical, thermal quench

  11. Solvent effects on extraction of polycyclic aromatic hydrocarbons in ambient aerosol samples

    Directory of Open Access Journals (Sweden)

    Flasch Mira

    2016-01-01

    Full Text Available Polycyclic Aromatic Hydrocarbons (PAHs in the ambient particulate matter pose one of the most important issues in the focus of environmental management. The concentration of their representative, Benzo(apyrene (BaP, undergoes limitations according to European Union directive. However, a successful control over the pollution levels and their sources is limited by the high uncertainty of analytical and statistical approaches used for their characterization. Here we compare differences in PAH concentrations related to the use of different solvents in the course of ultrasonic extraction of a certified reference material (PM10-like PAH mixture and filter samples of ambient particulate matter collected in Austria for the CG-MS PAH analysis. Using solvents of increasing polarity: Cyclohexane (0,006, Toluene (0,099, Dichloromethane (0,309, Acetone (0,43 and Acetonitrile (0,460, as well as mixtures of those, filters representing high and low concentrations of particulate matter were investigated. Although some scatter of the obtained concentrations was observed no trend related to the polarity of the solvent became visible. Regarding the reproducibility, which can be expected of PAH analysis no significant difference between the different solvents was determined. This result is valid for all compounds under investigation.

  12. Solvent-tolerant bacteria in biocatalysis.

    NARCIS (Netherlands)

    Bont, de J.A.M.

    1998-01-01

    The toxicity of fine chemicals to the producer organism is a problem in several biotechnological production processes. In several instances, an organic phase can be used to extract the toxic product from the aqueous phase during a fermentation. With the discovery of solvent-tolerant bacteria, more

  13. Ultrafast S{sub 1} and ICT state dynamics of a marine carotenoid probed by femtosecond one- and two-photon pump-probe spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kosumi, Daisuke, E-mail: kosumi@sci.osaka-cu.ac.j [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Kusumoto, Toshiyuki [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Fujii, Ritsuko; Sugisaki, Mitsuru [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka (Japan); Iinuma, Yoshiro; Oka, Naohiro; Takaesu, Yuki; Taira, Tomonori; Iha, Masahiko [South Product Co. Ltd., 12-75 Suzaki, Uruma-shi, Okinawa 904-2234 (Japan); Frank, Harry A. [Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 (United States); Hashimoto, Hideki, E-mail: hassy@sci.osaka-cu.ac.j [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka (Japan)

    2011-03-15

    Ultrafast relaxation kinetics of fucoxanthin in polar and non-polar solvents have been studied by femtosecond pump-probe spectroscopy. Transient absorption associated with S{sub 1} or intramolecular charge transfer (ICT) excited state has been observed following either one-photon excitation to the optically allowed S{sub 2} state or two-photon excitation to the symmetry-forbidden S{sub 1} state. The results suggest that the ICT state formed after excitation of fucoxanthin in a polar solvent is a distinct excited state from S{sub 1}.

  14. Two phase sampling

    CERN Document Server

    Ahmad, Zahoor; Hanif, Muhammad

    2013-01-01

    The development of estimators of population parameters based on two-phase sampling schemes has seen a dramatic increase in the past decade. Various authors have developed estimators of population using either one or two auxiliary variables. The present volume is a comprehensive collection of estimators available in single and two phase sampling. The book covers estimators which utilize information on single, two and multiple auxiliary variables of both quantitative and qualitative nature. Th...

  15. Photonic crystal based sensor for organic solvents and for solvent-water mixtures.

    Science.gov (United States)

    Fenzl, Christoph; Hirsch, Thomas; Wolfbeis, Otto S

    2012-12-12

    Monodisperse polystyrene nanoparticles with a diameter of 173 nm were incorporated into a polydimethylsiloxane matrix where they display an iridescent color that can be attributed to the photonic crystal effect. The film is of violet color if placed in plain water, but turns to red in the presence of the non-polar solvent n-hexane. Several solvents were studied in some detail. We show that such films are capable of monitoring the water content of ethanol/water mixtures, where only 1% (v/v) of water leads to a shift of the peak wavelength of reflected light by 5 nm. The method also can be applied to determine, both visually and instrumentally, the fraction of methanol in ethanol/methanol mixtures. Here, a fraction of 1% of methanol (v/v) results in a wavelength shift of 2 nm. The reflected wavelength is not influenced by temperature changes nor impeded by photobleaching. The signal changes are fully reversible and response times are <1 s.

  16. Photonic Crystal Based Sensor for Organic Solvents and for Solvent-Water Mixtures

    Directory of Open Access Journals (Sweden)

    Otto S. Wolfbeis

    2012-12-01

    Full Text Available Monodisperse polystyrene nanoparticles with a diameter of 173 nm were incorporated into a polydimethylsiloxane matrix where they display an iridescent color that can be attributed to the photonic crystal effect. The film is of violet color if placed in plain water, but turns to red in the presence of the non-polar solvent n-hexane. Several solvents were studied in some detail. We show that such films are capable of monitoring the water content of ethanol/water mixtures, where only 1% (v/v of water leads to a shift of the peak wavelength of reflected light by 5 nm. The method also can be applied to determine, both visually and instrumentally, the fraction of methanol in ethanol/methanol mixtures. Here, a fraction of 1% of methanol (v/v results in a wavelength shift of 2 nm. The reflected wavelength is not influenced by temperature changes nor impeded by photobleaching. The signal changes are fully reversible and response times are <1 s.

  17. Review of recent ORNL studies in solvent cleanup and diluent degradation. Consolidated Fuel-Reprocessing Program

    International Nuclear Information System (INIS)

    Mailen, J.C.; Tallent, O.K.

    1982-01-01

    Testing of solvent cleanup methods to replace the use of sodium carbonate in the Purex process has been ongoing for several years in order to reduce the quantity of waste sodium nitrate generated and to improve phase separation. Alternate solvent cleanup methods include the use of packed columns of base-treated silica gel or solvent scrubbing with hydrazine oxalate. Degradation of the diluent was shown to generate long-chain organic acids which appear to be the major culprits in the phase separation problems encountered in sodium carbonate scrubbers. Solvent scrubbing with hydrazine oxalate gives improved phase separations. Solvent cleanup in columns packed with base-treated silica gel avoids the phase separation problem since a dispersable aqueous phase is not present. Removals of TBP degradation products and metal-ion complexes by sodium carbonate, hydrazine salts, or by packed beds of base-treated silica gel are all satisfactory. Solvent scrubbing by hydrazine oxalate solutions is the prime candidate for solvent cleanup in fuel reprocessing plants

  18. Two-component self-assembly with solvent leading to "wet" and microcrystalline organogel fibers.

    Science.gov (United States)

    Löfman, Miika; Lahtinen, Manu; Rissanen, Kari; Sievänen, Elina

    2015-01-15

    The microcrystalline fibers of N-(2-aminoethyl)-3α-hydroxy-5β-cholan-24-amide 1 provided a useful model system for studying the complex relationship between morphology, experimental parameters, solvent, and the phenomenon of organogelation. The presence of solvents in the solid forms of 1 along with crystallization behavior suggested solvate formation and polymorphic behavior. Forty solid state- and xerogel samples of 1 formed in organic solvents and in three categories of experimental conditions were analyzed with single crystal X-ray diffraction (XRD), powder X-ray diffraction (PXRD), Raman microscopy, and attenuated total reflection Fourier-transform infrared spectroscopy (ATR FTIR). Two polymorphs and four isostructural aromatic solvates of 1 were found among some unknown forms in the samples. Single crystal X-ray structures of one polymorph and bromobenzene solvate were obtained, the latter from a xerogel. Multiple crystal forms could be present in a sample, and their contributions to gelation were estimated taking the experimental conditions into account. Gelator 1 could act as a variable component gelator, either alone or in combination with an aromatic solvent. The research brings new insight into the structures of microcrystalline organogel fibers, linking solvate/inclusion crystal formation with microcrystalline fibers of an organogelator for the first time. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Xerogel p-anisidinapropilsílica: estudo da estabilidade térmica e da resistência à lixiviação com solventes p-anisidinepropylsilica xerogel: thermal stability and resistance to leaching by solvents

    Directory of Open Access Journals (Sweden)

    Leonardo Franken

    2002-07-01

    Full Text Available The xerogel p-anisidinepropylsilica was obtained. This solid presents some residual paraffin and also a small fraction of high organofunctionalized material that was leached in polar solvent. The xerogel purification could be achieved by exhaustively washing with hexane and dichloromethane solvents, or submitting the xerogel to thermal treatment up to 300 ºC, in vacuum. The resulting purified xerogel material present an appreciable thermal stability and resistance to leaching by solvents.

  20. Application of non-aqueous solvents to batteries

    Science.gov (United States)

    Singh, P.

    1984-02-01

    The successful application of organic and aquo-organic solvents in lithium batteries and in zinc bromine batteries is discussed. Results are presented for a comparison of propylene carbonate and 50 percent propylene carbonate/acetonitrile for lithium intercalation cells at 25 C 1 M LiAsF6 as electrolyte and discharge at 2 mA/sq cm. Higher cathode utilization and energy efficiencies are achieved in PC/AN. It was found that the self-discharge problem of the zinc/bromine battery may be overcome by dissolving bromine and bromide salt in water-immiscible dipolar aprotic solvent-proprionitrile (PN). Cells using this PN/H2O two-phase system have an energy efficiency above 75 percent and coulombic efficiency above 85 percent.

  1. Study of the efectiveness of the mixed solvents for radically removing thiophenes from benzene and toluene by extractive rectification

    Energy Technology Data Exchange (ETDEWEB)

    Miroshnicenko, A.A.; Fedosyuk, A.A.

    1981-01-01

    A study has been made of the selectivity of solvents under the conditions of liquid-liquid equilibrium in the systems which include thiophene, benzene, toluene, the polar solvent and n-decane. The presence of the latter has maintained the heterogeneity of the mixtures being studied. The systems under consideration were drawn up in volumetric ratios. Equilibrium was studied in thermostat units. The equilibrium phases were analyzed by a special method, while the coefficient of the relative distribution of the components with respect to selectivity was calculated by the known relations. The investigations of the systems with different solvents have shown that there are functionally selective classes of extractants in which selectivity is determined by free unsubstituted functional groups of a solvent. The growth of the selectivity of solvents according to the following classes has been observed: aprotic ones with a keto group < protic ones with a hydroxyl < < unsubstituted amides of acids < sulphones < sulphoxides. To study the liquid-vapor equilibrium, use was made of the most selective extractants (including DMSO, Pyrrolidone-2, carbamide, ethylene carbamide, and NMP) which were revealed earlier in extraction investigations. Since the most selective representative of acid amides, namely, ethylene carbamide and carbamide, are solids, they were studied in mixtures with the less selective liquid solvents of NMP and pyrrolidone-2. NMP-ethylene-carbamide-water and pyrrolidone-2-ethylene carbamida-water are the most selective mixed solvents, and preference is given to the latter one.

  2. Biomolecular-solvent stereodynamic coupling probed by deuteration

    International Nuclear Information System (INIS)

    Fornili, S.L.; Leone, M.; Madonia, F.; Migliore, M.; Palma-Vittorelli, M.B.; Palma, M.U.; San Biagio, P.L.

    1983-01-01

    Thermodynamic interpretation of experiments with isotopically perturbed solvent supports the view that solvent stereodynamics is directly relevant to thermodynamic stability of biomolecules. According with the current understanding of the structure of the aqueous solvent, in any stereodynamic configuration of the latter, connectivity pathways are identifiable for their topologic and order properties. Perturbing the solvent by isotopic substitution or, e.g., by addition of co-solvents, can therefore be viewed as reinforcing or otherwise perturbing these topologic structures. This microscopic model readily visualizes thermodynamic interpretation. In conclusion, the topologic stereodynamic structures of connectivity pathways in the solvent, as modified by interaction with solutes, acquire a specific thermodynamic and biological significance, and the problem of thermodynamic and functional stability of biomolecules is seen in its full pertinent phase space

  3. A polyacrylamide-based silica stationary phase for the separation of carbohydrates using alcohols as the weak eluent in hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Cai, Jianfeng; Cheng, Lingping; Zhao, Jianchao; Fu, Qing; Jin, Yu; Ke, Yanxiong; Liang, Xinmiao

    2017-11-17

    A hydrophilic interaction liquid chromatography (HILIC) stationary phase was prepared by a two-step synthesis method, immobilizing polyacrylamide on silica sphere particles. The stationary phase (named PA, 5μm dia) was evaluated using a mixture of carbohydrates in HILIC mode and the column efficiency reached 121,000Nm -1 . The retention behavior of carbohydrates on PA stationary phase was investigated with three different organic solvents (acetonitrile, ethanol and methanol) employed as the weak eluent. The strongest hydrophilicity of PA stationary phase was observed in both acetonitrile and methanol as the weak eluent, when compared with another two amide stationary phases. Attributing to its high hydrophilicity, three oligosaccharides (xylooligosaccharide, fructooligosaccharide and chitooligosaccharides) presented good retention on PA stationary phase using alcohols/water as mobile phase. Finally, PA stationary phase was successfully applied for the purification of galactooligosaccharides and saponins of Paris polyphylla. It is feasible to use safer and cheaper alcohols to replace acetonitrile as the weak eluent for green analysis and purification of polar compounds on PA stationary phase. Copyright © 2017. Published by Elsevier B.V.

  4. Solvent Extraction and Characterization of Neutral Lipids in Oocystis sp

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, Renil [Department of Mechanical Engineering, Ohio University, Athens, OH (United States); Stuart, Ben, E-mail: stuart@ohio.edu [Department of Civil Engineering, Ohio University, Athens, OH (United States)

    2015-01-20

    Microalgae are a favorable feedstock for bioproducts and biofuels due to their high oil content, fast growth rates, and low resource demands. Solvent lipid extraction efficiency from microalgae is dependent on algal strain and the extraction solvent. Four non-polar extraction solvents were evaluated for the recovery of neutral cellular lipids from microalgae Oocystis sp. (University of Texas at Austin LB2396). Methylene chloride, hexane, diethyl ether, and cyclohexane were selected as the extraction solvents. The lipid extracts were derivatized and analyzed using gas chromatography–mass spectroscopy. All solvent extracts contained hexadecanoic acid, linoleic acid, and linolenic acid; accounting for 70% of total lipid content with a proportional wt% composition of the three fatty acids, except for the hexane extracts that showed only hexadecanoic acid and linoleic acid. While not statistically differentiated, methylene chloride proved to be the most effective solvent for Oocystis sp. among the four solvents tested with a total average neutral lipid recovery of 0.25% of dry weight followed by diethyl ether (0.18%), cyclohexane (0.14%), and hexane (0.11%). This research presents a simple methodology to optimize the selection of lipid specific extraction solvents for the microalgal strain selected.

  5. Solvent Extraction and Characterization of Neutral Lipids in Oocystis sp

    International Nuclear Information System (INIS)

    Anthony, Renil; Stuart, Ben

    2015-01-01

    Microalgae are a favorable feedstock for bioproducts and biofuels due to their high oil content, fast growth rates, and low resource demands. Solvent lipid extraction efficiency from microalgae is dependent on algal strain and the extraction solvent. Four non-polar extraction solvents were evaluated for the recovery of neutral cellular lipids from microalgae Oocystis sp. (University of Texas at Austin LB2396). Methylene chloride, hexane, diethyl ether, and cyclohexane were selected as the extraction solvents. The lipid extracts were derivatized and analyzed using gas chromatography–mass spectroscopy. All solvent extracts contained hexadecanoic acid, linoleic acid, and linolenic acid; accounting for 70% of total lipid content with a proportional wt% composition of the three fatty acids, except for the hexane extracts that showed only hexadecanoic acid and linoleic acid. While not statistically differentiated, methylene chloride proved to be the most effective solvent for Oocystis sp. among the four solvents tested with a total average neutral lipid recovery of 0.25% of dry weight followed by diethyl ether (0.18%), cyclohexane (0.14%), and hexane (0.11%). This research presents a simple methodology to optimize the selection of lipid specific extraction solvents for the microalgal strain selected.

  6. Impact of solvents and supercritical CO{sub 2} drying on the morphology and structure of polymer-based biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Causa, Andrea; Acierno, Domenico; Filippone, Giovanni [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale V. Tecchio, 80, 80125 Napoli (Italy); Salerno, Aurelio; Domingo, Concepción [Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra (Spain)

    2014-05-15

    In the present work, two-dimensional systems based on biodegradable polymers such as poly(ε-caprolactone) (PCL), poly(ethylene oxide) (PEO) and polylactic acid (PLA) are fabricated by means of a sustainable approach which consists in inducing phase separation in solutions of such polymers and “green” solvents, namely ethyl lactate (EL) and ethyl acetate (EA). The extraction of the solvent is promoted by a controlled drying process, which is performed in either air or supercritical CO{sub 2}. The latter can indeed act as both an antisolvent, which favors the deposition of the polymer by forming a mixture with EL and EA, and a plasticizing agent, whose solvation and transport properties may considerably affect the microstructure and crystallinity of the polymer films. The morphological, topographical and crystalline properties of the films are tailored through a judicial selection of the materials and the processing conditions and assessed by means of thermal analyses, polarized optical microscopy, scanning electron microscopy and confocal interferometric microscopy. The results show that the morphological and crystalline properties of the films are strongly dependent on the choice of both the polymer/solvent system and the operating conditions during the drying step. In particular, the morphological, topographical and thermal properties of films prepared starting from highly crystalline polymers, namely PCL and PEO, are greatly affected by the crystallization of the material. Conversely, the less crystalline PLA forms almost completely amorphous films.

  7. Characterizing the selectivity of stationary phases and organic modifiers in reversed-phase high-performance liquid chromatographic systems by a general solvation equation using gradient elution.

    Science.gov (United States)

    Du, C M; Valko, K; Bevan, C; Reynolds, D; Abraham, M H

    2000-11-01

    Retention data for a set of 69 compounds using rapid gradient elution are obtained on a wide range of reversed-phase stationary phases and organic modifiers. The chromatographic stationary phases studied are Inertsil (IN)-ODS, pentafluorophenyl, fluoro-octyl, n-propylcyano, Polymer (PLRP-S 100), and hexylphenyl. The organic solvent modifiers are 2,2,2-trifluoroethanol (TFE); 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP); isopropanol; methanol (MeOH); acetonitrile (AcN); tetrahydrofuran; 1,4-dioxane; N,N-dimethylformamide; and mixed solvents of dimethylsulfoxide (DMSO) with AcN and DMSO with MeOH (1:1). A total of 25 chromatographic systems are analyzed using a solvation equation. In general, most of the systems give reasonable statistics. The selectivity of the reversed phase-high-performance liquid chromatographic (HPLC) systems with respect to the solute's dipolarity-polarity, hydrogen-bond acidity, and basicity are reflected in correspondingly large coefficients in the solvation equation. We wanted to find the most orthogonal HPLC systems, showing the highest possible selectivity difference in order to derive molecular descriptors using the gradient retention times of a compound. We selected eight chromatographic systems that have a large range of coefficients of interest (s, a, and b) similar to those found in water-solvent partitions used previously to derive molecular descriptors. The systems selected are IN-ODS phases with AcN, MeOH, TFE, and HFIP as mobile phase, PLRP-S 100 phase with AcN, propylcyano phase with AcN and MeOH, and fluorooctyl phase with TFE. Using the retention data obtained for a compound in the selected chromatographic systems, we can estimate the molecular descriptors with the faster and simpler gradient elution method.

  8. Two-Dimensional Free Energy Surfaces for Electron Transfer Reactions in Solution

    Directory of Open Access Journals (Sweden)

    Shigeo Murata

    2008-01-01

    Full Text Available Change in intermolecular distance between electron donor (D and acceptor (A can induce intermolecular electron transfer (ET even in nonpolar solvent, where solvent orientational polarization is absent. This was shown by making simple calculations of the energies of the initial and final states of ET. In the case of polar solvent, the free energies are functions of both D-A distance and solvent orientational polarization. On the basis of 2-dimensional free energy surfaces, the relation of Marcus ET and exciplex formation is discussed. The transient effect in fluorescence quenching was measured for several D-A pairs in a nonpolar solvent. The results were analyzed by assuming a distance dependence of the ET rate that is consistent with the above model.

  9. Dysprosium separation from aqueous phase by non-dispersive solvent extraction employing hollow fibre membrane module

    International Nuclear Information System (INIS)

    Yadav, Kartikey K.; Singh, D.K.; Kain, V.

    2017-01-01

    Rare earth elements (REEs) consist of fourteen lanthanides and three elements which are Sc, Y and La resulting in total 17 REEs. In the last decade, these rare earths elements which have unique physical and chemical properties have been highly in demand for their application in almost all walks of life. Various methods such as ion exchange, precipitation and solvent extraction have been used to recover these elements from aqueous solutions. These traditional methods have some inherent disadvantages like handling of hazardous organic chemicals, ineffectiveness to recover a very low concentration of contaminated source etc. In this regard, an important method i.e. liquid membrane offers separation scheme; which combines the characteristics, of solvent extraction and solid membrane separation, to overcome the disadvantages of conventional techniques. Various experiments were carried out to evaluate the effect of feed acidity, metal ion concentration, carrier concentration, feed composition, flow rates and phase ratio on the transport of rare earths metal ions across the membrane

  10. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongfeng; Qu, Shaobo; Wang, Jiafu; Chen, Hongya [College of Science, Air Force Engineering University, Xi' an, Shaanxi 710051 (China); Zhang, Jieqiu [College of Science, Air Force Engineering University, Xi' an, Shaanxi 710051 (China); Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Xu, Zhuo [Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Zhang, Anxue [School of Electronics and Information Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2014-06-02

    Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.

  11. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces

    International Nuclear Information System (INIS)

    Li, Yongfeng; Qu, Shaobo; Wang, Jiafu; Chen, Hongya; Zhang, Jieqiu; Xu, Zhuo; Zhang, Anxue

    2014-01-01

    Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.

  12. Terahertz broadband polarization converter based on metamaterials

    Science.gov (United States)

    Li, Yonghua; Zhao, Guozhong

    2018-01-01

    Based on the metamaterial composed of symmetrical split resonant ring, a broadband reflective terahertz polarization converter is proposed. The numerical simulation shows that it can rotate the polarization direction of linear polarized wave 90° in the range of 0.7-1.8THz and the polarization conversion ratio is over 90%. The reflection coefficient of the two electric field components in the diagonal direction is the same and the phase difference is 180° ,which leads to the cross-polarization rotation.In order to further study the physical mechanism of high polarization conversion, we analyze the surface current distribution of the resonant ring. The polarization converter has potential applications in terahertz wave plate and metamaterial antenna design.

  13. Determination and correlation of the solubility for diosgenin in alcohol solvents

    International Nuclear Information System (INIS)

    Chen Feixiong; Zhao Mingrui; Liu Chuochuo; Peng Feifei; Ren Baozeng

    2012-01-01

    Highlights: ► The solubilities of diosgenin in different alcohols solvents have been obtained. ► The solubility decreases with the increase of the polarity of the alcohols solvents. ► The results show that the three models agree well with the experimental data. - Abstract: Using a laser monitoring technique, the solubility of diosgenin in ethanol, 1-propanol, 1-butanol, isobutyl alcohol, tert-butanol, 1-pentanol, and iso-octyl alcohol was measured over the temperature range from (290.15 to 330.15) K at atmospheric pressure. Its corresponding (solid + liquid) equilibrium data will provide essential support for industrial design and further theoretical studies. From the experimental results, the solubility of diosgenin in ethanol, 1-propanol, 1-butanol, isobutyl alcohol, tert-butanol, 1-pentanol, and iso-octyl alcohol was found to increase with increasing temperature and decrease with the increase of the polarity of the alcohols solvents. The Apelblat equation, the ideal model and the λh equation were used to correlate the solubility values. The results showed that the three models mentioned above agreed well with the experimental data.

  14. Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor

    Energy Technology Data Exchange (ETDEWEB)

    Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno [University of Zagreb, Zagreb (Croatia)

    2015-06-15

    Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R{sup 2}=0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k{sub L}a=4,652-1,9807 h{sup -1}.

  15. Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor

    International Nuclear Information System (INIS)

    Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno

    2015-01-01

    Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R 2 =0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k L a=4,652-1,9807 h -1

  16. Strain-induced phase transition and electron spin-polarization in graphene spirals.

    Science.gov (United States)

    Zhang, Xiaoming; Zhao, Mingwen

    2014-07-16

    Spin-polarized triangular graphene nanoflakes (t-GNFs) serve as ideal building blocks for the long-desired ferromagnetic graphene superlattices, but they are always assembled to planar structures which reduce its mechanical properties. Here, by joining t-GNFs in a spiral way, we propose one-dimensional graphene spirals (GSs) with superior mechanical properties and tunable electronic structures. We demonstrate theoretically the unique features of electron motion in the spiral lattice by means of first-principles calculations combined with a simple Hubbard model. Within a linear elastic deformation range, the GSs are nonmagnetic metals. When the axial tensile strain exceeds an ultimate strain, however, they convert to magnetic semiconductors with stable ferromagnetic ordering along the edges. Such strain-induced phase transition and tunable electron spin-polarization revealed in the GSs open a new avenue for spintronics devices.

  17. Initiate test loop irradiations of ALSEP process solvent

    Energy Technology Data Exchange (ETDEWEB)

    Peterman, Dean R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Olson, Lonnie G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); McDowell, Rocklan G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This report describes the initial results of the study of the impacts of gamma radiolysis upon the efficacy of the ALSEP process and is written in completion of milestone M3FT-14IN030202. Initial irradiations, up to 100 kGy absorbed dose, of the extraction section of the ALSEP process have been completed. The organic solvent used for these experiments contained 0.05 M TODGA and 0.75 M HEH[EHP] dissolved in n-dodecane. The ALSEP solvent was irradiated while in contact with 3 M nitric acid and the solutions were sparged with compressed air in order to maintain aerated conditions. The irradiated phases were used for the determination of americium and europium distribution ratios as a function of absorbed dose for the extraction and stripping conditions. Analysis of the irradiated phases in order to determine solvent composition as a function of absorbed dose is ongoing. Unfortunately, the failure of analytical equipment necessary for the analysis of the irradiated samples has made the consistent interpretation of the analytical results difficult. Continuing work will include study of the impacts of gamma radiolysis upon the extraction of actinides and lanthanides by the ALSEP solvent and the stripping of the extracted metals from the loaded solvent. The irradiated aqueous and organic phases will be analyzed in order to determine the variation in concentration of solvent components with absorbed gamma dose. Where possible, radiolysis degradation product will be identified.

  18. Development of Membrane Contactors Using Phase Change Solvents for CO2 Capture: Material Compatibility Study

    OpenAIRE

    Ansaloni, Luca; Asad, Arif; Çiftja, Arlinda; Knuutila, Hanna K; Deng, Liyuan

    2016-01-01

    Phase change solvents represent a new class of CO2 absorbents with a promising potential to reduce the energy penalty associated with CO2 capture. However, their high volatility is a major concern for their use at the industrial scale. It is believed that membrane absorption offers a solution to overcome this issue, particularly if the membrane can prevent amine evaporation. In the present work a compatibility study is carried out in order to identify suitable membranes in a membrane contacto...

  19. Action of solvents on torbanite and the nature of extracted products

    Energy Technology Data Exchange (ETDEWEB)

    Dulhunty, J A

    1943-01-01

    Tests were made on torbanite with polar and nonpolar solvents under various conditions. Torbanite undergoes no change when heated below 250/sup 0/C, but depolymerization of the organic matter, absorption of solvent, and swelling and softening of the torbanite occurred between 250 and 300/sup 0/C, although no appreciable quantity of soluble product was formed. Between 300 and 350/sup 0/C depolymerization continued and more solvent was absorbed, which caused swelling, softening, and partial breakdown of the physical structure of torbanite. The intimate mixture of torbanite and solvent produced a jellylike mass, which could not be filtered. Continued heating between 350 and 400/sup 0/C caused the organic matter to dissolve in the solvent and produced a complete breakdown in the physical structure of the torbanite. The extracts consisted largely of heavy paraffin compounds, including waxes.

  20. Studies on the effect of solvents on self-assembly of thioctic acid and Mercaptohexanol on gold

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhiguo; Niu Tianxing [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Zhang Zhenjiang [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215006 (China); Feng Guiying [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Bi Shuping, E-mail: bisp@nju.edu.c [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China)

    2011-04-29

    In this article we investigated the effect of solvents (CCl{sub 4}, CH{sub 3}CN, DMF, ethanol, ethanol-H{sub 2}O and H{sub 2}O) on self-assembly of Thioctic acid (TA) and Mercaptohexanol (MCH) on gold by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Electrochemical characteristics of TA and MCH self-assembled monolayers (SAMs) formed in different solvents were evaluated by inspecting the ions permeability (interfacial capacitance C and phase angle {phi}{sub 1Hz}) and electron transfer capability (current density difference {Delta}i and charge transfer resistance R{sub ct}). Experimental results indicated that the ability of solvents availing the ordering of SAMs was: for TA, CCl{sub 4} > ethanol > CH{sub 3}CN > ethanol-H{sub 2}O > DMF; for MCH, H{sub 2}O > ethanol-H{sub 2}O {approx} CCl{sub 4} > ethanol {approx} CH{sub 3}CN > DMF. Through relating the C, {phi}{sub 1Hz}, {Delta}i and R{sub ct} of SAMs (TA and MCH) with parameters of solvent (polarity E{sub T}{sup N}, solubility parameter {delta} and octanol/water partition coefficients logP{sub ow}), it was found that solvents with bigger logP{sub ow} (smaller E{sub T}{sup N} and {delta}) availed the ordering of TA-SAMs but the effect of solvents on MCH self-assembly was complex and MCH-SAMs formed in H{sub 2}O (the biggest E{sub T}{sup N}, {delta} and the smallest logP{sub ow}) and CCl{sub 4} (the smallest E{sub T}{sup N}, {delta} and the biggest logP{sub ow}) were more ordered than in other solvents.

  1. Solvent-dependent excited-state hydrogen transfer and intersystem crossing in 2-(2′-hydroxyphenyl)-benzothiazole

    KAUST Repository

    Aly, Shawkat Mohammede

    2015-02-12

    The excited-state intramolecular hydrogen transfer (ESIHT) of 2-(2′-hydroxyphenyl) benzothiazole (HBT) has been investigated in a series of nonpolar, polar aprotic, and polar protic solvents. A variety of state-of-the-art experimental methods were employed, including femto- and nanosecond transient absorption and fluorescence upconversion spectroscopy with broadband capabilities. We show that the dynamics and mechanism of ESIHT of the singlet excited HBT are strongly solvent-dependent. In nonpolar solvents, the data demonstrate that HBT molecules adopt a closed form stabilized by O-H⋯N chelated hydrogen bonds with no twisting angle, and the photoinduced H transfer occurs within 120 fs, leading to the formation of a keto tautomer. In polar solvents, owing to dipole-dipole cross talk and hydrogen bonding interactions, the H transfer process is followed by ultrafast nonradiative deactivation channels, including ultrafast internal conversion (IC) and intersystem crossing (ISC). This is likely to be driven by the twisting motion around the C-C bond between the hydroxyphenyl and thiazole moieties, facilitating the IC back to the enol ground state or to the keto triplet state. In addition, our femtosecond time-resolved fluorescence experiments indicate, for the first time, that the lifetime of the enol form in ACN is approximately 280 fs. This observation indicates that the solvent plays a crucial role in breaking the H bond and deactivating the excited state of the HBT. Interestingly, the broadband transient absorption and fluorescence up-conversion data clearly demonstrate that the intermolecular proton transfer from the excited HBT to the DMSO solvent is about 190 fs, forming the HBT anion excited state.

  2. Solvent-dependent excited-state hydrogen transfer and intersystem crossing in 2-(2′-hydroxyphenyl)-benzothiazole

    KAUST Repository

    Aly, Shawkat Mohammede; Usman, Anwar; Alzayer, Maytham; Hamdi, Ghada A.; Alarousu, Erkki; Mohammed, Omar F.

    2015-01-01

    The excited-state intramolecular hydrogen transfer (ESIHT) of 2-(2′-hydroxyphenyl) benzothiazole (HBT) has been investigated in a series of nonpolar, polar aprotic, and polar protic solvents. A variety of state-of-the-art experimental methods were employed, including femto- and nanosecond transient absorption and fluorescence upconversion spectroscopy with broadband capabilities. We show that the dynamics and mechanism of ESIHT of the singlet excited HBT are strongly solvent-dependent. In nonpolar solvents, the data demonstrate that HBT molecules adopt a closed form stabilized by O-H⋯N chelated hydrogen bonds with no twisting angle, and the photoinduced H transfer occurs within 120 fs, leading to the formation of a keto tautomer. In polar solvents, owing to dipole-dipole cross talk and hydrogen bonding interactions, the H transfer process is followed by ultrafast nonradiative deactivation channels, including ultrafast internal conversion (IC) and intersystem crossing (ISC). This is likely to be driven by the twisting motion around the C-C bond between the hydroxyphenyl and thiazole moieties, facilitating the IC back to the enol ground state or to the keto triplet state. In addition, our femtosecond time-resolved fluorescence experiments indicate, for the first time, that the lifetime of the enol form in ACN is approximately 280 fs. This observation indicates that the solvent plays a crucial role in breaking the H bond and deactivating the excited state of the HBT. Interestingly, the broadband transient absorption and fluorescence up-conversion data clearly demonstrate that the intermolecular proton transfer from the excited HBT to the DMSO solvent is about 190 fs, forming the HBT anion excited state.

  3. Theoretical and experimental study of the relaxation of excited states of the DCM laser dye. Intra-molecular electron transfer and photo-isomerization. Solvent effects

    International Nuclear Information System (INIS)

    Marguet, Sylvie

    1992-01-01

    This research thesis reports the study of a styrenic laser dye, the 4-(dicyanomethylene)-2-methyl-6-[p-(dimethylamino) styryl]-4H-pyrane or DCM for the characterization of the first electronic states and of the influence of the solvent on efficiencies of different relaxation processes of the first excited state S1 of the DCM. Due to the presence of a combination of a donor group and acceptor group, this compound has interesting properties of intra-molecular charge transfer and of photo-isomerization which highly depend on solvent polarity. Two approaches have been adopted to study these complementary processes: an experimental approach (determination of rate constants of the different deactivation ways of the S1 state by measuring fluorescence quantum efficiencies, photo-isomerization quantum efficiencies, and fluorescence lifetimes of DCM in about twenty solvent of increasing polarity), and a computational approach (a CS-INDO-MRI type quantum chemistry calculation to obtain potential energy curves, charge distributions, and dipolar moments of DCM first electronic states) [fr

  4. The structure of the interface in the solvent mediated interaction of dipolar surfaces

    International Nuclear Information System (INIS)

    Dzhavakhidze, P.G.; Levadny, V.G.

    1987-08-01

    Interaction of two dipolar surfaces separated by a polar medium is considered within the framework of nonlocal electrostatics. The dipolar surface layers are modelled as regular lattices with fixed orientation of dipoles which are immersed into the solvent; solvent response is characterized by nonlocal dielectric function. The model is elaborated in order to reveal the role of the dipolar layer discreteness in the electric field produced by one surface and the interaction between two surfaces (which gives rise to the so called ''hydration'' or ''structural'' force acting between mineral surfaces and phospholipid bilayers). The discreteness effects are present only for commensurate lattices. Their special mutual arrangement then may lead to considerable reduction of structural forces, viz. the usual repulsion regime may change at short distances to attraction. Conditions are considered when repulsion is entirely replaced by attraction, i.e. the ''hydration barrier'' disappears. In appended note we discuss the role of solvation of surface dipolar groups. We propose an explanation of why two modes of decay (one with oscillative fine structure) may be present in the dependence of the force upon distance if the surface dipolar groups are immersed deep enough in the solvent and how the long-range oscillative mode disappears when the surface is but weakly solvated. (author). 35 refs, 5 figs

  5. The structure of the interface in the solvent-mediated interaction of dipolar surfaces

    International Nuclear Information System (INIS)

    Dzhavakhidze, P.G.; Kornyshev, A.A.; Levadny, V.G.

    1988-01-01

    Interaction of two dipolar surfaces separated by a polar medium is considered within the framework of nonlocal electrostatics. The dipolar-surface layers are modelled as regular lattices with fixed orientation of dipoles which are immersed into the solvent; solvent response is characterized by nonlocal dielectric function. The model is elaborated in order to reveal the role of the dypolar-layer discreteness in the electric field produced by one surface and the interaction between two surfaces (which gives rise to the so-called ''hydration'' or ''structural'' force acting between mineral surfaces and phospholipid bilayers). The discreteness effects are present only for commensurate lattices. Their special mutual arrangement then may lead to considerable reduction of structural forces, viz. the usual repulsion regime may change at short distances to attraction. Conditions are considered when repulsion is entirely replaced by attraction, i.e. the ''hydration barrier'' disappears. In appended note it is discussed the role of solvation of surface dipolar groups. It is proposed an explanation of why two modes of decay (one with oscillative fine structure) may be present in the dependence of the force upon distance, if the surface dipolar groups are immersed deep enough in the solvent, and how the long-range oscillative mode disappears when the surface is but weakly solvated

  6. Dipole-Oriented Molecular Solids Can Undergo a Phase Change and Still Maintain Electrical Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Glavic, Artur G [ORNL; Cassidy, Andrew M [ORNL; Jorgensen, Mads Ry Ry [University of Aarhus, Denmark; Lauter, Valeria [ORNL; Rosu-Finsen, Alexander [Heriot-Watt University, Edinburgh, UK; Lasne, Jérôme [Heriot-Watt University, Edinburgh, UK; Jorgensen, Jakob [Aarhus University, Denmark; Iversen, Bo [ORNL; McCoustra, Martin [Heriot-Watt University, Edinburgh, UK; Field, David [University of Aarhus, Denmark

    2016-10-02

    It has recently been demonstrated that nanoscale molecular films can spontaneously assemble to self-generate intrinsic electric fields that can exceed 108 V/m. These electric fields originate from polarization charges in the material that arise because the films self-assemble to orient molecular dipole moments. This has been called the spontelectric effect. Such growth of spontaneously polarized layers of molecular solids has implications for our understanding of how intermolecular interactions dictate the structure of molecular materials used in a range of applications, for example, molecular semiconductors, sensors, and catalysts. In this paper, we present the first in situ structural characterization of a representative spontelectric solid, nitrous oxide. Infrared spectroscopy, temperature-programmed desorption, and neutron reflectivity measurements demonstrate that polarized films of nitrous oxide undergo a structural phase transformation upon heating above 48 K. A mean-field model can be used to describe quantitatively the magnitude of the spontaneously generated field as a function of film-growth temperature, and this model also recreates the phase change. Finally, this reinforces the spontelectric model as a means of describing long-range dipole–dipole interactions and points to a new type of ordering in molecular thin films.

  7. Polarity-dependent reversible resistance switching in Ge-Sb-Te phase-change thin films

    NARCIS (Netherlands)

    Pandian, Ramanathaswamy; Kooi, Bart J.; Palasantzas, George; De Hosson, Jeff T. M.; Pauza, Andrew

    2007-01-01

    In this paper, we demonstrate reversible resistance switching in a capacitorlike cell using a Ge-Sb-Te film that does not rely on amorphous-crystalline phase change. The polarity of the applied electric field switches the cell resistance between lower- and higher-resistance states, as was observed

  8. Relativity mission with two counter-orbiting polar satellites

    International Nuclear Information System (INIS)

    Van Patten, R.A.; Everitt, C.W.F.

    1975-01-01

    In 1918, J. Lense and H. Thirring calculated that a moon in orbit around a massive rotating planet would experience a nodal dragging effect due to general relativity. An experiment to measure this effect with two counter-orbiting drag-free satellites in polar earth orbit is described. For a 2 1 / 2 year experiment, the measurement accuracy should approach 1 percent. In addition to precision tracking data from existing ground stations, satellite-to-satellite Doppler ranging data are taken at points of passing near the poles. New geophysical information on both earth harmonics and tidal effects is inherent in the polar ranging data. (auth)

  9. Measurement and Modelling of Phase Equilibrium of Oil - Water - Polar Chemicals

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup

    in the temperature range of 303-323 K at atmospheric pressure. In the second part of this work, the CPA EoS has been used for modeling hydrocarbon systemcontaining polar chemicals, such as water and gas hydrate inhibitor MEG or methanol. All the experimental data measured in this work have been investigated using...... with the measurement of newexperimental data, but through the development of new experimental equipment for the study ofmulti-phase equilibrium. In addition to measurement of well-defined systems, LLE have beenmeasured for North Sea oils with MEG and water. The work can be split up into two parts: Experimental: VLE...... systems presented, confirming the quality of theequipment. The equipment is used for measurement of VLE for several systems of interest; methane+ water, methane + methanol, methane + methanol + water and methane + MEG. Details dealing with the design, assembling and testing of new experimental equipment...

  10. Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis.

    Science.gov (United States)

    Moradi-Kheibari, Narges; Ahmadzadeh, Hossein; Hosseini, Majid

    2017-09-01

    Lipid extraction is the bottleneck step for algae-based biodiesel production. Herein, 12 solvent mixture systems (mixtures of three non-polar and two polar organic solvents) were examined to evaluate their effects on the total lipid yield from Chlorella vulgaris (C. vulgaris). Moreover, the extraction yields of three solvent systems with maximum extraction efficiency of esterifiable lipids were determined by acidic transesterification and GC-FID analysis. Three solvent systems, which resulted in a higher extraction yield, were further subjected to fatty acid methyl ester (FAME) analysis. The total lipid extraction yields (based on dry biomass) were (38.57 ± 1.51), (25.33 ± 0.58), and (25.17 ± 1.14) %, for chloroform-methanol (1:2) (C1M2), hexane-methanol (1:2) (H1M2), and chloroform-methanol (2:1) (C2M1), respectively. The extraction efficiency of C1M2 was approximately 1.5 times higher than H1M2 and C2M1, whereas the FAME profile of extracted lipids by H1M2 and C1M2 were almost identical. Moreover, the esterifiable lipid extraction yields of (18.14 ± 2.60), (16.66 ± 0.35), and (13.22 ± 0.31) % (based on dry biomass) were obtained for C1M2, H1M2, and C2M1 solvent mixture systems, respectively. The biodiesel fuel properties produced from C. vulgaris were empirically predicted and compared to that of the EN 14214 and ASTM 6751 standard specifications.

  11. Quantum metrology of phase for accelerated two-level atom coupled with electromagnetic field with and without boundary

    Science.gov (United States)

    Yang, Ying; Liu, Xiaobao; Wang, Jieci; Jing, Jiliang

    2018-03-01

    We study how to improve the precision of the quantum estimation of phase for an uniformly accelerated atom in fluctuating electromagnetic field by reflecting boundaries. We find that the precision decreases with increases of the acceleration without the boundary. With the presence of a reflecting boundary, the precision depends on the atomic polarization, position and acceleration, which can be effectively enhanced compared to the case without boundary if we choose the appropriate conditions. In particular, with the presence of two parallel reflecting boundaries, we obtain the optimal precision for atomic parallel polarization and the special distance between two boundaries, as if the atom were shielded from the fluctuation.

  12. Interplay between spin polarization and color superconductivity in high density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constança

    2013-01-01

    Here, it is suggested that a four-point interaction of the tensor type may lead to spin polarization in quark matter at high density. It is found that the two-flavor superconducting phase and the spin polarized phase correspond to distinct local minima of a certain generalized thermodynamical pot...

  13. Elucidation of the structure of organic solutions in solvent extraction by combining molecular dynamics and X-ray scattering

    International Nuclear Information System (INIS)

    Ferru, G.; Gomes Rodrigues, D.; Berthon, L.; Guilbaud, P.; Diat, O.; Bauduin, P.

    2014-01-01

    Knowledge of the supramolecular structure of the organic phase containing amphiphilic ligand molecules is mandatory for full comprehension of ionic separation during solvent extraction. Existing structural models are based on simple geometric aggregates, but no consensus exists on the interaction potentials. Herein, we show that molecular dynamics crossed with scattering techniques offers key insight into the complex fluid involving weak interactions without any long range ordering. Two systems containing mono- or diamide extractants in heptane and contacted with an aqueous phase were selected as examples to demonstrate the advantages of coupling the two approaches for furthering fundamental studies on solvent extraction. (authors)

  14. Electronic excitations in a dielectric continuum solvent with quantum Monte Carlo: Acrolein in water

    International Nuclear Information System (INIS)

    Floris, Franca Maria; Amovilli, Claudio; Filippi, Claudia

    2014-01-01

    We investigate here the vertical n → π * and π → π * transitions of s-trans-acrolein in aqueous solution by means of a polarizable continuum model (PCM) we have developed for the treatment of the solute at the quantum Monte Carlo (QMC) level of the theory. We employ the QMC approach which allows us to work with highly correlated electronic wave functions for both the solute ground and excited states and, to study the vertical transitions in the solvent, adopt the commonly used scheme of considering fast and slow dielectric polarization. To perform calculations in a non-equilibrium solvation regime for the solute excited state, we add a correction to the global dielectric polarization charge density, obtained self consistently with the solute ground-state wave function by assuming a linear-response scheme. For the solvent polarization in the field of the solute in the ground state, we use the static dielectric constant while, for the electronic dielectric polarization, we employ the solvent refractive index evaluated at the same frequency of the photon absorbed by the solute for the transition. This choice is shown to be better than adopting the most commonly used value of refractive index measured in the region of visible radiation. Our QMC calculations show that, for standard cavities, the solvatochromic shifts obtained with the PCM are underestimated, even though of the correct sign, for both transitions of acrolein in water. Only by reducing the size of the cavity to values where more than one electron is escaped to the solvent region, we regain the experimental shift for the n → π * case and also improve considerably the shift for the π → π * transition

  15. Electronic excitations in a dielectric continuum solvent with quantum Monte Carlo: Acrolein in water

    Science.gov (United States)

    Floris, Franca Maria; Filippi, Claudia; Amovilli, Claudio

    2014-01-01

    We investigate here the vertical n → π* and π → π* transitions of s-trans-acrolein in aqueous solution by means of a polarizable continuum model (PCM) we have developed for the treatment of the solute at the quantum Monte Carlo (QMC) level of the theory. We employ the QMC approach which allows us to work with highly correlated electronic wave functions for both the solute ground and excited states and, to study the vertical transitions in the solvent, adopt the commonly used scheme of considering fast and slow dielectric polarization. To perform calculations in a non-equilibrium solvation regime for the solute excited state, we add a correction to the global dielectric polarization charge density, obtained self consistently with the solute ground-state wave function by assuming a linear-response scheme. For the solvent polarization in the field of the solute in the ground state, we use the static dielectric constant while, for the electronic dielectric polarization, we employ the solvent refractive index evaluated at the same frequency of the photon absorbed by the solute for the transition. This choice is shown to be better than adopting the most commonly used value of refractive index measured in the region of visible radiation. Our QMC calculations show that, for standard cavities, the solvatochromic shifts obtained with the PCM are underestimated, even though of the correct sign, for both transitions of acrolein in water. Only by reducing the size of the cavity to values where more than one electron is escaped to the solvent region, we regain the experimental shift for the n → π* case and also improve considerably the shift for the π → π* transition.

  16. Solvent cleaning system and method for removing contaminants from solvent used in resin recycling

    Science.gov (United States)

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

  17. Polarization digital holographic microscopy using low-cost liquid crystal polarization rotators

    Science.gov (United States)

    Dovhaliuk, Rostyslav Yu

    2018-02-01

    Polarization imaging methods are actively used to study anisotropic objects. A number of methods and systems, such as imaging polarimeters, were proposed to measure the state of polarization of light that passed through the object. Digital holographic and interferometric approaches can be used to quantitatively measure both amplitude and phase of a wavefront. Using polarization modulation optics, the measurement capabilities of such interference-based systems can be extended to measure polarization-dependent parameters, such as phase retardation. Different kinds of polarization rotators can be used to alternate the polarization of a reference beam. Liquid crystals are used in a rapidly increasing number of different optoelectronic devices. Twisted nematic liquid crystals are widely used as amplitude modulators in electronic displays and light valves or shutter glass. Such devices are of particular interest for polarization imaging, as they can be used as polarization rotators, and due to large-scale manufacturing have relatively low cost. A simple Mach-Zehnder polarized holographic setup that uses modified shutter glass as a polarization rotator is demonstrated. The suggested approach is experimentally validated by measuring retardation of quarter-wave film.

  18. Produced Water Treatment Using the Switchable Polarity Solvent Forward Osmosis (SPS FO) Desalination Process: Preliminary Engineering Design Basis

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel; Adhikari, Birendra; Orme, Christopher; Wilson, Aaron

    2016-05-01

    Switchable Polarity Solvent Forward Osmosis (SPS FO) is a semi-permeable membrane-based water treatment technology. INL is currently advancing SPS FO technology such that a prototype unit can be designed and demonstrated for the purification of produced water from oil and gas production operations. The SPS FO prototype unit will used the thermal energy in the produced water as a source of process heat, thereby reducing the external process energy demands. Treatment of the produced water stream will reduce the volume of saline wastewater requiring disposal via injection, an activity that is correlated with undesirable seismic events, as well as generate a purified product water stream with potential beneficial uses. This paper summarizes experimental data that has been collected in support of the SPS FO scale-up effort, and describes how this data will be used in the sizing of SPS FO process equipment. An estimate of produced water treatment costs using the SPS FO process is also provided.

  19. The Case for Tetrahedral Oxy-subhydride (TOSH Structures in the Exclusion Zones of Anchored Polar Solvents Including Water

    Directory of Open Access Journals (Sweden)

    Klaus Oehr

    2014-11-01

    Full Text Available We hypothesize a mechanistic model of how negatively-charged exclusion zones (EZs are created. While the growth of EZs is known to be associated with the absorption of ambient photonic energy, the molecular dynamics giving rise to this process need greater elucidation. We believe they arise due to the formation of oxy-subhydride structures (OH−(H2O4 with a tetrahedral (sp3 (OH−(H2O3 core. Five experimental data sets derived by previous researchers were assessed in this regard: (1 water-derived EZ light absorbance at specific infrared wavelengths, (2 EZ negative potential in water and ethanol, (3 maximum EZ light absorbance at 270 nm ultraviolet wavelength, (4 ability of dimethyl sulphoxide but not ether to form an EZ, and (5 transitory nature of melting ice derived EZs. The proposed tetrahedral oxy-subhydride structures (TOSH appear to adequately account for all of the experimental evidence derived from water or other polar solvents.

  20. Polarization Imaging Apparatus with Auto-Calibration

    Science.gov (United States)

    Zou, Yingyin Kevin (Inventor); Zhao, Hongzhi (Inventor); Chen, Qiushui (Inventor)

    2013-01-01

    A polarization imaging apparatus measures the Stokes image of a sample. The apparatus consists of an optical lens set, a first variable phase retarder (VPR) with its optical axis aligned 22.5 deg, a second variable phase retarder with its optical axis aligned 45 deg, a linear polarizer, a imaging sensor for sensing the intensity images of the sample, a controller and a computer. Two variable phase retarders were controlled independently by a computer through a controller unit which generates a sequential of voltages to control the phase retardations of the first and second variable phase retarders. A auto-calibration procedure was incorporated into the polarization imaging apparatus to correct the misalignment of first and second VPRs, as well as the half-wave voltage of the VPRs. A set of four intensity images, I(sub 0), I(sub 1), I(sub 2) and I(sub 3) of the sample were captured by imaging sensor when the phase retardations of VPRs were set at (0,0), (pi,0), (pi,pi) and (pi/2,pi), respectively. Then four Stokes components of a Stokes image, S(sub 0), S(sub 1), S(sub 2) and S(sub 3) were calculated using the four intensity images.

  1. Magnetism in grain-boundary phase of a NdFeB sintered magnet studied by spin-polarized scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kohashi, Teruo, E-mail: teruo.kohashi.fc@hitachi.com; Motai, Kumi [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Nishiuchi, Takeshi; Hirosawa, Satoshi [Magnetic Materials Research Laboratory, Hitachi Metals Ltd., Osaka 618-0013 (Japan)

    2014-06-09

    The magnetism in the grain-boundary phase of a NdFeB sintered magnet was measured by spin-polarized scanning electron microscopy (spin SEM). A sample magnet was fractured in the ultra-high-vacuum chamber to avoid oxidation, and its magnetizations in the exposed grain-boundary phase on the fracture surface were evaluated through the spin polarization of secondary electrons. Spin-SEM images were taken as the fracture surface was milled gradually by argon ions, and the magnetization in the grain-boundary phase was quantitatively obtained separately from that of the Nd{sub 2}Fe{sub 14}B phase. The obtained magnetization shows that the grain-boundary phase of this magnet has substantial magnetization, which was confirmed to be ferromagnetic.

  2. Polarization dependence of two-photon transition intensities in rare-earth doped crystals

    Energy Technology Data Exchange (ETDEWEB)

    Le Nguyen, An-Dien [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    A polarization dependence technique has been developed as a tool to investigate phonon scattering (PS), electronic Raman scattering (ERS), and two-photon absorption (TPA) transition intensities in vanadate and phosphate crystals. A general theory for the polarization dependence (PD) of two-photon transition intensities has been given. Expressions for the polarization dependent behavior of two-photon transition intensities have been tabulated for the 32 crystallographic point groups. When the wavefunctions for the initial and final states of a rare-earth doped in crystals are known, explicit PD expressions with no unknown parameters can be obtained. A spectroscopic method for measuring and interpreting phonon and ERS intensities has been developed to study PrVO4, NdVO4, ErVO4, and TmVO4 crystals. Relative phonon intensities with the polarization of the incident and scattered light arbitrarily varied were accurately predicted and subsequently used for alignment and calibration in ERS measurements in these systems for the first time. Since ERS and PS intensities generally follow different polarization curves as a function of polar angles, the two can be uniquely identified by comparing their respective polarization behavior. The most crucial application of the technique in ERS spectroscopy is the establishment of a stringent test for the Axe theory. For the first time, the F1/F2 ratio extracted from the experimental fits of the ERS intensities were compared with those predicted by theories which include both the second- and third-order contributions. Relatively good agreement between the fitted values of F1/F2 and the predicted values using the second-order theory has been found.

  3. Solvent accessible surface area (ASA) of simulated phospholipid membranes

    DEFF Research Database (Denmark)

    Tuchsen, E.; Jensen, Morten Østergaard; Westh, P.

    2003-01-01

    The membrane-solvent interface has been investigated through calculations of the solvent accessible surface area (ASA) for simulated membranes of DPPC and POPE. For DPPC at 52 degreesC we found an ASA of 126 +/- 8 Angstrom(2) per lipid molecule, equivalent to twice the projected lateral area......, even the most exposed parts of the PC head-group show average ASAs of less than half of its maximal or 'fully hydrated' value. The average ASA of a simulated POPE membrane was 96 +/- 7 Angstrom(2) per lipid. The smaller value than for DPPC reflects much lower ASA of the ammonium ion, which is partially...... compensated by increased exposure of the ethylene and phosphate moieties. The ASA of the polar moieties Of (PO4, NH3 and COO) constitutes 65% of the total accessible area for POPE, making this interface more polar than that of DPPC. It is suggested that ASA information can be valuable in attempts...

  4. Investigation of the polarization state of dual APPLE-II undulators.

    Science.gov (United States)

    Hand, Matthew; Wang, Hongchang; Dhesi, Sarnjeet S; Sawhney, Kawal

    2016-01-01

    The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used.

  5. Solvent/oxidant-switchable synthesis of multisubstituted quinazolines and benzimidazoles via metal-free selective oxidative annulation of arylamidines.

    Science.gov (United States)

    Lin, Jian-Ping; Zhang, Feng-Hua; Long, Ya-Qiu

    2014-06-06

    A fast and simple divergent synthesis of multisubstituted quinazolines and benzimidazoles was developed from readily available amidines, via iodine(III)-promoted oxidative C(sp(3))-C(sp(2)) and C(sp(2))-N bond formation in nonpolar and polar solvents, respectively. Further selective synthesis of quinazolines in polar solvent was realized by TEMPO-catalyzed sp(3)C-H/sp(2)C-H direct coupling of the amidine with K2S2O8 as the oxidant. No metal, base, or other additives were needed.

  6. Design of a novel coil satellite centrifuge and its performance on counter-current chromatographic separation of 4-methylumbelliferyl sugar derivatives with organic-aqueous two-phase solvent systems

    Science.gov (United States)

    Shinomiya, Kazufusa; Tokura, Koji; Kimura, Emiru; Takai, Midori; Harikai, Naoki; Yoshida, Kazunori; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2015-01-01

    A new high-speed counter-current chromatograph, named coil satellite centrifuge (CSC), was designed and fabricated in our laboratory. The CSC apparatus produces the satellite motion such that the coiled column simultaneously rotates around the sun axis (the angular velocity, ω1), the planet axis (ω2) and the satellite axis (the central axis of the column) (ω3). In order to achieve this triplicate rotary motion without twisting of the flow tube, the rotation of each axis was determined by the following formula: ω1 = ω2 + ω3. This relation enabled to lay out the flow tube by two different ways, the SS type and the JS type. In the SS type, the flow tube was introduced from the upper side of the apparatus into the sun axis of the first rotary frame and connected to the planet axis of the second rotary frame like a double letter SS. In the JS type, the flow tube was introduced from the bottom of the apparatus into the sun axis reaching the upper side of the planet axis an inversed letter J, followed by distribution as in the SS type. The performance of the apparatus was examined on separation of 4-methylumbelliferyl (MU) sugar derivatives as test samples with organic-aqueous two-phase solvent systems composed of ethyl acetate/1-butanol/water (3 : 2 : 5, v/v) for lower phase mobile and (1 : 4 : 5, v/v) for upper phase mobile. With lower phase mobile, five 4-MU sugar derivatives including β-D-cellobioside (Cel), β-D-glucopyranoside, α-D-mannopyranoside, β-D-fucopyranoside and α-L-fucopyranoside (α-L-Fuc) were separated with the combined rotation around each axis at counterclockwise (CCW) (ω1) – CCW (ω2) – CCW (ω3) by the JS type flow tube distribution. With upper phase mobile, three 4-MU sugar derivatives including α-L-Fuc, β-D-galactopyranoside and Cel were separated with the combined rotation around each axis at clockwise (CW) (ω1) – CW (ω2) – CW (ω3) by the JS type flow tube distribution. A series of experiments on peak resolution and

  7. Measuring political polarization: Twitter shows the two sides of Venezuela

    Science.gov (United States)

    Morales, A. J.; Borondo, J.; Losada, J. C.; Benito, R. M.

    2015-03-01

    We say that a population is perfectly polarized when divided in two groups of the same size and opposite opinions. In this paper, we propose a methodology to study and measure the emergence of polarization from social interactions. We begin by proposing a model to estimate opinions in which a minority of influential individuals propagate their opinions through a social network. The result of the model is an opinion probability density function. Next, we propose an index to quantify the extent to which the resulting distribution is polarized. Finally, we apply the proposed methodology to a Twitter conversation about the late Venezuelan president, Hugo Chávez, finding a good agreement between our results and offline data. Hence, we show that our methodology can detect different degrees of polarization, depending on the structure of the network.

  8. Development of Effective Solvent Modifiers for the Solvent Extraction of Cesium from Alkaline High-Level Tank Waste

    International Nuclear Information System (INIS)

    Bonnesen, Peter V.; Delmau, Laetitia H.; Moyer, Bruce A.; Lumetta, Gregg J.

    2003-01-01

    A series of novel alkylphenoxy fluorinated alcohols were prepared and investigated for their effectiveness as modifiers in solvents containing calix(4)arene-bis-(tert-octylbenzo)-crown-6 for extracting cesium from alkaline nitrate media. A modifier that contained a terminal 1,1,2,2-tetrafluoroethoxy group was found to decompose following long-term exposure to warm alkaline solutions. However, replacement of the tetrafluoroethoxy group with a 2,2,3,3-tetrafluoropropoxy group led to a series of modifiers that possessed the alkaline stability required for a solvent extraction process. Within this series of modifiers, the structure of the alkyl substituent (tert-octyl, tert-butyl, tert-amyl, and sec-butyl) of the alkylphenoxy moiety was found to have a profound impact on the phase behavior of the solvent in liquid-liquid contacting experiments, and hence on the overall suitability of the modifier for a solvent extraction process. The sec-butyl derivative(1-(2,2,3,3-tetrafluoropropoxy)-3- (4-sec-butylphenoxy)-2-propanol) (Cs-7SB) was found to possess the best overall balance of properties with respect to third phase and coalescence behavior, cleanup following degradation, resistance to solids formation, and cesium distribution behavior. Accordingly, this modifier was selected for use as a component of the solvent employed in the Caustic-Side Solvent Extraction (CSSX) process for removing cesium from high level nuclear waste (HLW) at the U.S. Department of Energy's (DOE) Savannah River Site. In batch equilibrium experiments, this solvent has also been successfully shown to extract cesium from both simulated and actual solutions generated from caustic leaching of HLW tank sludge stored in tank B-110 at the DOE's Hanford Site.

  9. Development of a micro-mixer-settler for nuclear solvent extraction

    International Nuclear Information System (INIS)

    Shekhar Kumar; Bijendra Kumar; Sampath, M.; Sivakumar, D.; Kamachi Mudali, U.; Natarajan, R.

    2012-01-01

    Nuclear solvent extraction was traditionally performed with packed columns, pulse columns, mixer-settlers and centrifugal extractors. However for rapid separations at micro-flow level, micro mixer-settlers were desired and in the past, few of them were actually designed and operated in nuclear solvent extraction research. In the current era of micro-reactor and microchannel devices, there is a renewed interest for micro-mixer-settlers for costly solvents and specialty solutes where small flow-rate is not an issue. In this article, development of a simple but effective micro-mixer-settler for nuclear solvent extraction is reported. The developed unit was tested with 30% TBP/n-dodecane/nitric acid system and in both the regimes of mass transfer c → d (mass transfer from continuous phase to dispersed phase, also written as c → d) and d → c (mass transfer from dispersed phase to continuous phase, also written as d → c) nearly 100% efficiency was observed in extraction as well as stripping modes of operation. (author)

  10. Multiple scattering of elliptically polarized light in two-dimensional medium with large inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Gorodnichev, E. E., E-mail: gorodn@theor.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    For elliptically polarized light incident on a two-dimensional medium with large inhomogeneities, the Stokes parameters of scattered waves are calculated. Multiple scattering is assumed to be sharply anisotropic. The degree of polarization of scattered radiation is shown to be a nonmonotonic function of depth when the incident wave is circularly polarized or its polarization vector is not parallel to the symmetry axis of the inhomogeneities.

  11. Reverse Schreinemakers Method for Experimental Analysis of Mixed-Solvent Electrolyte Systems

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Thomsen, Kaj; Stenby, Erling Halfdan

    2009-01-01

    the reverse Schreinemakers (RS) method. The method is based on simple mass balance principles similar to the wet residues method. It allows for accurate determination of the mixed-solvent phase composition even though part of the solvent may precipitate as complexes between solvent and salt. Discrepancies......A method based on Schreinemakers's tie-line theory of 1893 is derived for determining the composition and phase amounts in solubility experiments for multi-solvent electrolyte systems. The method uses the lever rule in reverse compared to Schreinemakers's wet residue method, and is therefore called...... from determining the composition of salt mixtures by pH titration are discussed, and the derived method significantly improves the obtained result from titration. Furthermore, the method reduces the required experimental work needed for analysis of phase composition. The method is applicable to multi...

  12. Stochastic modelling of two-phase flows including phase change

    International Nuclear Information System (INIS)

    Hurisse, O.; Minier, J.P.

    2011-01-01

    Stochastic modelling has already been developed and applied for single-phase flows and incompressible two-phase flows. In this article, we propose an extension of this modelling approach to two-phase flows including phase change (e.g. for steam-water flows). Two aspects are emphasised: a stochastic model accounting for phase transition and a modelling constraint which arises from volume conservation. To illustrate the whole approach, some remarks are eventually proposed for two-fluid models. (authors)

  13. Spontaneous spin-polarization and phase transition in the relativistic approach

    International Nuclear Information System (INIS)

    Maruyama, Tomoyuki; Tatsumi, Toshitaka

    2001-01-01

    We study the spin-polarization mechanism in the highly dense nuclear matter with the relativistic mean-field approach. In the relativistic Hartree-Fock framework we find that there are two kinds of spin-spin interaction channels, which are the axial-vector and tensor exchange ones. If each interaction is strong and different sign, the system loses the spherical symmetry and holds the spin-polarization in the high-density region. When the axial-vector interaction is negative enough, the system holds ferromagnetism. (author)

  14. Spin-polarized fuel in ICF pellets

    International Nuclear Information System (INIS)

    Wakuta, Yoshihisa; Emoto, Nobuya; Nakao, Yasuyuki; Honda, Takuro; Honda, Yoshinori; Nakashima, Hideki.

    1990-01-01

    The use of parallel spin-polarized DT or D 3 He fuel increases the fusion cross-section by 50%. By implosion-burn simulation for inertially confined fusion (ICF) pellets of the spin-polarized fuels, we found that the input energy requirement could be reduced by nearly a fact of two. These pellets taken up here include large-high-aspect-ratio DT target proposed in ILE Osaka University and DT ignitor/D 3 He fuel pellet proposed by our group. We also found that the polarized state could survive during the implosion-burn phase. (author)

  15. Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers

    Science.gov (United States)

    Del Sorbo, D.; Seipt, D.; Thomas, A. G. R.; Ridgers, C. P.

    2018-06-01

    It has recently been suggested that two counter-propagating, circularly polarized, ultra-intense lasers can induce a strong electron spin polarization at the magnetic node of the electromagnetic field that they setup (Del Sorbo et al 2017 Phys. Rev. A 96 043407). We confirm these results by considering a more sophisticated description that integrates over realistic trajectories. The electron dynamics is weakly affected by the variation of power radiated due to the spin polarization. The degree of spin polarization differs by approximately 5% if considering electrons initially at rest or already in a circular orbit. The instability of trajectories at the magnetic node induces a spin precession associated with the electron migration that establishes an upper temporal limit to the polarization of the electron population of about one laser period.

  16. System and process for polarity swing assisted regeneration of gas selective capture liquids

    Science.gov (United States)

    Heldebrant, David J.; Tegrotenhuis, Ward E.; Freeman, Charles J.; Elliott, Michael L.; Koech, Phillip K.; Humble, Paul H.; Zheng, Feng; Zhang, Jian

    2017-07-18

    A polarity swing-assisted regeneration (PSAR) process is disclosed for improving the efficiency of releasing gases chemically bound to switchable ionic liquids. Regeneration of the SWIL involves addition of a quantity of non-polar organic compound as an anti-solvent to destabilize the SWIL, which aids in release of the chemically bound gas. The PSAR decreases gas loading of a SWIL at a given temperature and increases the rate of gas release compared to heating in the absence of anti-solvent.

  17. Solubility and crystallization of piroxicam from different solvents in evaporative and cooling crystallizations

    DEFF Research Database (Denmark)

    Qu, Haiyan; Ostergaard, Iben

    2018-01-01

    polarities; It has been found that the solubility of piroxicam in the solvents is in the following order: chloroform > dichloromethane > acetone > ethyl acetate > acetonitrile > acetic acid > methanol > hexane. Crystallization of piroxicam from different solvents has been performed with evaporative.......Results obtained in the present work showed the stochastic nature of nucleation of different polymorphs as well as the complexity of the crystallization of a polymorphic system....

  18. submitter Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments

    CERN Document Server

    Nichman, Leonid; Järvinen, Emma; Ignatius, Karoliina; Höppel, Niko Florian; Dias, Antonio; Heinritzi, Martin; Simon, Mario; Tröstl, Jasmin; Wagner, Andrea Christine; Wagner, Robert; Williamson, Christina; Yan, Chao; Connolly, Paul James; Dorsey, James Robert; Duplissy, Jonathan; Ehrhart, Sebastian; Frege, Carla; Gordon, Hamish; Hoyle, Christopher Robert; Kristensen, Thomas Bjerring; Steiner, Gerhard; McPherson Donahue, Neil; Flagan, Richard; Gallagher, Martin William; Kirkby, Jasper; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Stratmann, Frank; Tomé, António

    2016-01-01

    Cloud microphysical processes involving the ice phase in tropospheric clouds are among the major uncertainties in cloud formation, weather, and general circulation models. The detection of aerosol particles, liquid droplets, and ice crystals, especially in the small cloud particle-size range below 50 μm, remains challenging in mixed phase, often unstable environments. The Cloud Aerosol Spectrometer with Polarization (CASPOL) is an airborne instrument that has the ability to detect such small cloud particles and measure the variability in polarization state of their backscattered light. Here we operate the versatile Cosmics Leaving OUtdoor Droplets (CLOUD) chamber facility at the European Organization for Nuclear Research (CERN) to produce controlled mixed phase and other clouds by adiabatic expansions in an ultraclean environment, and use the CASPOL to discriminate between different aerosols, water, and ice particles. In this paper, optical property measurements of mixed-phase clouds and viscous secondary ...

  19. Characterization of a Biomimetic Mesophase Composed of Nonionic Surfactants and an Aqueous Solvent.

    Science.gov (United States)

    Adrien, V; Rayan, G; Reffay, M; Porcar, L; Maldonado, A; Ducruix, A; Urbach, W; Taulier, N

    2016-10-11

    We have investigated the physical and biomimetic properties of a sponge (L 3 ) phase composed of pentaethylene glycol monododecyl ether (C 12 E 5 ), a nonionic surfactant, an aqueous solvent, and a cosurfactant. The following cosurfactants, commonly used for solubilizing membrane proteins, were incorporated: n-octyl-β-d-glucopyranoside (β-OG), n-dodecyl-β-d-maltopyranoside (DDM), 4-cyclohexyl-1-butyl-β-d-maltoside (CYMAL-4), and 5-cyclohexyl-1-pentyl-β-d-maltoside (CYMAL-5). Partial phase diagrams of these systems were created. The L 3 phase was characterized using crossed polarizers, diffusion of a fluorescent probe by fluorescence recovery after pattern photobleaching (FRAPP), and freeze fracture electron microscopy (FFEM). By varying the hydration of the phase, we were able to tune the distance between adjacent bilayers. The characteristic distance (d b ) of the phase was obtained from small angle scattering (SAXS/SANS) as well as from FFEM, which yielded complementary d b values. These d b values were neither affected by the nature of the cosurfactant nor by the addition of membrane proteins. These findings illustrate that a biomimetic surfactant sponge phase can be created in the presence of several common membrane protein-solubilizing detergents, thus making it a versatile medium for membrane protein studies.

  20. Novel/conceptual floating pulsatile system using high internal phase emulsion based porous material intended for chronotherapy.

    Science.gov (United States)

    Sher, Praveen; Ingavle, Ganesh; Ponrathnam, Surendra; Benson, James R; Li, Nai-Hong; Pawar, Atmaram P

    2009-01-01

    The aim of the present study was to design a novel/conceptual delivery system using ibuprofen, anticipated for chronotherapy in arthritis with porous material to overcome the formulation limits (multiple steps, polymers, excipients) and to optimize drug loading for a desired release profile suitable for in vitro investigations. The objective of this delivery system lies in the availability of maximum drug amount for absorption in the wee hours as recommended. Drug loading using 3(2) factorial design on porous carrier, synthesized by high internal phase emulsion technique using styrene and divinylbenzene, was done via solvent evaporation using methanol and dichloromethane. The system was evaluated in vitro for drug loading, encapsulation efficiency, and surface characterization by scanning electron, atomic force microscopy, and customized drug release study. This study examined critical parameters such as solvent volume, drug amount, and solvent polarity on investigations related to drug adsorption and release mostly favoring low-polarity solvent dichloromethane. Overall release in all batches ranged 0.98-52% in acidic medium and 71-94% in basic medium. These results exhibit uniqueness in achieving the least drug release of 0.98%, an ideal one, without using any release modifiers, making it distinct from other approaches/technologies for time and controlled release and for chronotherapy.