WorldWideScience

Sample records for polar tilt solar

  1. Tilted Foils Nuclear Spin Polarization at REX-ISOLDE

    CERN Document Server

    Törnqvist, Hans Toshihide

    2013-08-08

    This thesis will explain and summarize my work and involvement in experiments aimed at producing nuclear spin polarization of post-accelerated beams of ions with the tilted-foils technique at the REX-ISOLDE linear accelerator at CERN. Polarizing the nuclear spin of radioactive beams in particular may provide access to observables which may be difficult to obtain otherwise. Currently, the techniques commonly employed for nuclear spin polarization are restricted to specific nuclides and experimental measurement techniques. Tilted foils polarization may provide a new tool to extend the range of nuclides that can be polarized and the types of experiments that can be performed. The experiments rely not only on the production but also on the method to measure the degree of attained polarization. Two methods will be treated, based on particle scattering in Coulomb excitation that may be utilized for stable beams, and the $\\beta$-NMR that requires $\\beta$-decaying nuclei. The experimental setups and measurements will...

  2. Integrated polymer polarization rotator based on tilted laser ablation

    Science.gov (United States)

    Poulopoulos, Giannis; Kalavrouziotis, Dimitrios; Missinne, Jeroen; Bosman, Erwin; Van Steenberge, Geert; Apostolopoulos, Dimitrios; Avramopoulos, Hercules

    2017-02-01

    The ubiquitous need for compact, low-cost and mass production photonic devices, for next generation photonic enabled applications, necessitates the development of integrated components exhibiting functionalities that are, to date, carried out by free space elements or standard fiber equipment. The polarization rotator is a typical example of such tendency, as it is a crucial part of the PBS operation of future transceiver modules that leverage polarization multiplexing schemes for increasing the optical network capacity. Up to now, a variety of integrated polarization rotating concepts has been proposed and reported, relying, mainly, on special waveguide crossection configurations for achieving the rotation. Nevertheless, most of those concepts employ SiPh or III-V integration platforms, significantly increasing the fabrication complexity required for customizing the waveguide crossection, which in turn leads to either prohibitively increased cost or compromised quality and performance. In this manuscript we demonstrate the extensive design of a low-cost integrated polymer polarization rotator employing a right-trapezoidal waveguide interfaced to standard square polymer waveguides. First the crossection of the waveguide is defined by calculating and analyzing the components of the hybrid modes excited in the waveguide structure, using a Finite Difference mode solver. Mode overlaps between the fundamental polymer mode and each hybrid mode reveal the optimum lateral offset between the square polymer and the trapezoidal waveguide that ensures both minimum interface loss and maximized polarization rotation performance. The required trapezoidal waveguide length is obtained through EigenMode Expansion (EME) propagation simulations, while more than 95% maximum theoretical conversion efficiency is reported over the entire C-band, resulting to more than 13dB polarization extinction ratio. The polarization rotator design relies on the development of angled polymer waveguide

  3. Comparative analysis of diffused solar radiation models for optimum tilt angle determination for Indian locations

    International Nuclear Information System (INIS)

    Yadav, P.; Chandel, S.S.

    2014-01-01

    Tilt angle and orientation greatly are influenced on the performance of the solar photo voltaic panels. The tilt angle of solar photovoltaic panels is one of the important parameters for the optimum sizing of solar photovoltaic systems. This paper analyses six different isotropic and anisotropic diffused solar radiation models for optimum tilt angle determination. The predicted optimum tilt angles are compared with the experimentally measured values for summer season under outdoor conditions. The Liu and Jordan model is found to exhibit t lowest error as compared to other models for the location. (author)

  4. The effect of tilt angle on the performance of evacuated tube solar air ...

    African Journals Online (AJOL)

    The evacuated tube solar air collector had different collector tilt angles from the horizontal with the one inclined at 30° and 45°. Experimental results revealed that tilt angle had significant influence on the thermal performance of the evacuated tube solar air collector along with or without reflector. Experiments also showed ...

  5. Spin-polarized radioactive isotope beam produced by tilted-foil technique

    International Nuclear Information System (INIS)

    Hirayama, Yoshikazu; Mihara, Mototsugu; Watanabe, Yutaka; Jeong, Sun-Chan; Miyatake, Hiroari; Momota, Sadao; Hashimoto, Takashi; Imai, Nobuaki; Matsuta, Kensaku; Ishiyama, Hironobu; Ichikawa, Shin-ichi; Ishii, Tetsuro; Izumikawa, Takuji; Katayama, Ichiro; Kawakami, Hirokane; Kawamura, Hirokazu; Nishinaka, Ichiro; Nishio, Katsuhisa; Makii, Hiroyuki; Mitsuoka, Shin-ichi

    2013-01-01

    Highlights: • Detail study for tilted foil technique. • New equation for estimating nuclear polarization dependence on the beam energy. • Production of nuclear polarization for heaviest nucleus 123 In in ground state. -- Abstract: The tilted-foil method for producing spin-polarized radioactive isotope beams has been studied using the re-accelerated radioactive 8 Li and 123 In beams produced at Tokai Radioactive Ion Accelerator Complex (TRIAC) facility. We successfully produced polarization in a 8 Li beam of 7.3(5)% using thin polystyrene foils (4.2 μg/cm 2 ). The systematic study of the nuclear polarization as a function of the number of foils and beam energy has been performed, confirming the features of the tilted-foil technique experimentally. After the study, a spin-polarized radioactive 123 In beam, which is the heaviest ever polarized in its ground state by this method, has been successfully generated by the tilted-foil method, for the nuclear spectroscopy around the doubly magic nucleus 132 Sn

  6. Optimum Tilt Angle for Photovoltaic Solar Panels in Zomba District, Malawi

    Directory of Open Access Journals (Sweden)

    B. Kamanga

    2014-01-01

    Full Text Available A study to determine the optimum tilt angle for installing photovoltaic solar panels in Zomba district, Malawi, has been conducted. The study determined the optimum monthly tilt angles of PV solar panels and the seasonal adjustments needed for the panels in order to collect maximum solar radiation throughout the year. In this study, global solar radiation (GSR on four tilted surfaces was measured. The north-facing surfaces were titled at angles of 0°, 15°, 20°, and 25°. The GSR data was used to determine the daily and monthly optimum tilt angles for the PV panels. The optimum tilt angles were found to be 0° or 25° depending on the time of the year. From October to February, the optimum tilt angle has been determined to be 0° and, from March to September, the optimum tilt angle is observed to be 25°. There are only two seasonal adjustments that are needed for PV solar panels in Zomba district and these should be carried out at the end of February and at the end of September. For fixed solar panels with no seasonal adjustments, the optimum tilt angle for the PV solar panels that are northfacing has been determined to be 25°.

  7. Solar Cycle Variability Induced by Tilt Angle Scatter in a Babcock-Leighton Solar Dynamo Model

    Science.gov (United States)

    Karak, Bidya Binay; Miesch, Mark

    2017-09-01

    We present results from a three-dimensional Babcock-Leighton (BL) dynamo model that is sustained by the emergence and dispersal of bipolar magnetic regions (BMRs). On average, each BMR has a systematic tilt given by Joy’s law. Randomness and nonlinearity in the BMR emergence of our model produce variable magnetic cycles. However, when we allow for a random scatter in the tilt angle to mimic the observed departures from Joy’s law, we find more variability in the magnetic cycles. We find that the observed standard deviation in Joy’s law of {σ }δ =15^\\circ produces a variability comparable to the observed solar cycle variability of ˜32%, as quantified by the sunspot number maxima between 1755 and 2008. We also find that tilt angle scatter can promote grand minima and grand maxima. The time spent in grand minima for {σ }δ =15^\\circ is somewhat less than that inferred for the Sun from cosmogenic isotopes (about 9% compared to 17%). However, when we double the tilt scatter to {σ }δ =30^\\circ , the simulation statistics are comparable to the Sun (˜18% of the time in grand minima and ˜10% in grand maxima). Though the BL mechanism is the only source of poloidal field, we find that our simulations always maintain magnetic cycles even at large fluctuations in the tilt angle. We also demonstrate that tilt quenching is a viable and efficient mechanism for dynamo saturation; a suppression of the tilt by only 1°-2° is sufficient to limit the dynamo growth. Thus, any potential observational signatures of tilt quenching in the Sun may be subtle.

  8. The influence of the solar radiation model on the calcutated solar radiation from a horizontal surface to a tilted surface

    DEFF Research Database (Denmark)

    Andersen, Elsa; Lund, Hans; Furbo, Simon

    2004-01-01

    in the calculation. The weather data are measured at the solar radiation measurement station, SMS at the Department of Civil Engineering at the Technical University of Denmark. In this study the weather data are combined with solar collector calculations based on solar collector test carried out at Solar Energy...... Center, SEC, Denmark. With measured solar radiation on horizontal and the different solar radiation processing models the total radiation is calculated on differently tilted and oriented surfaces and compared with the measured solar radiation on the different surfaces. Further, the impact on the yearly......Measured solar radiation data are most commonly available as total solar radiation on a horizontal surface. When using solar radiation measured on horizontal to calculate the solar radiation on tilted surfaces and thereby the thermal performance of different applications such as buildings and solar...

  9. Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia

    International Nuclear Information System (INIS)

    Benghanem, M.

    2011-01-01

    This article analyzes the optimal choice of the tilt angle for the solar panel in order to collect the maximum solar irradiation. In this paper, the collector surface is assumed to be facing toward equator. The study is based upon the measured values of daily global and diffuse solar radiation on a horizontal surface. It is shown that the optimal angle of tilt (β opt ) for each month, allows us to collected the maximum solar energy for Madinah site. Annual optimum tilt angle is found to be approximately equal to latitude of the location. It is found that the loss in the amount of collected energy when using the yearly average fixed angle is around 8% compared with the monthly optimum tilt β opt .

  10. Establishing a diffuse solar radiation model for determining the optimum tilt angle of solar surfaces in Tabass, Iran

    International Nuclear Information System (INIS)

    Khorasanizadeh, H.; Mohammadi, K.; Mostafaeipour, A.

    2014-01-01

    Highlights: • Optimum tilt angles of solar surfaces in the Iranian city of Tabass are determined. • Due to lack of measured diffuse data, a new two variables diffuse model is established. • The monthly optimum tilt varies between 0° and 64° and the best annual tilt is 32°. • The semi-yearly tilt strategy of 10° for warm and 55° for cold periods are suggested. • Radiation components obtained for horizontal, tilted and vertical surfaces are compared. - Abstract: In this study the optimum tilt angle for south-facing solar surfaces in Tabass, Iran, for the fixed monthly, seasonal, semi-yearly and yearly adjustments were calculated. Due to lack of measured diffuse solar radiation data, to predict the horizontal diffuse radiation nine diffuse models from three different categories were established. Based on some statistical indicators the three degree model, in which both clearness index and relative sunshine duration are variables, was recognized the best. The monthly optimum tilt varies from 0° in June and July up to 64° in December and the yearly optimum tilt is around 32°, which is very close to latitude of Tabass (33.36°). For different adjustments, particularly for a vertically mounted surface, the received monthly mean daily solar radiation components and the annual solar energy gains were calculated and compared. Total yearly extra solar gain for the monthly, seasonal, semi-yearly and yearly optimally adjusted surfaces compared to that of horizontal surface are 23.15%, 21.55%, 21.23% and 13.76%, respectively. The semi-yearly tilt adjustment of 10° for warm period (April–September) and 55° for cold period (October–March) is highly recommended, since it provides almost the same level of annual solar energy gain as those of monthly and seasonal adjustments

  11. Optimal tilt-angles of all-glass evacuated tube solar collectors

    International Nuclear Information System (INIS)

    Tang, Runsheng; Gao, Wenfeng; Yu, Yamei; Chen, Hua

    2009-01-01

    In this paper, a detailed mathematical procedure is developed to estimate daily collectible radiation on single tube of all-glass evacuated tube solar collectors based on solar geometry, knowledge of two-dimensional radiation transfer. Results shows that the annual collectible radiation on a tube is affected by many factors such as collector type, central distance between tubes, size of solar tubes, tilt and azimuth angles, use of diffuse flat reflector (DFR, in short); For collectors with identical parameters, T-type collectors (collectors with solar tubes tilt-arranged) annually collect slightly more radiation than H-type collectors (those with solar tubes horizontally arranged) do. The use of DFR can significantly improve the energy collection of collectors. Unlike the flat-plate collectors, all-glass evacuated tube solar collectors should be generally mounted with a tilt-angle less than the site latitude in order to maximize the annual energy collection. For most areas with the site latitude larger than 30 o in China, T-type collectors should be installed with a tilt-angle about 10 o less than the site latitude, whereas for H-type collectors without DFR, the reasonable tilt-angle should be about 20 o less than the site latitude. Effects of some parameters on the annual collectible radiation on the collectors are also presented.

  12. Determination of the Optimal Tilt Angle for Solar Photovoltaic Panel in Ilorin, Nigeria

    Directory of Open Access Journals (Sweden)

    K.R. Ajao

    2013-06-01

    Full Text Available The optimal tilt angle of solar photovoltaic panel in Ilorin, Nigeria was determined. The solar panel was first mounted at 0o to the horizontal and after ten minutes, the voltage and current generated with the corresponding atmospheric temperature were recorded. The same procedure was repeated for 2o to 30o at a succession of 2o at ten minutes time interval over the entire measurement period. The result obtained shows that the average optimal tilt angle at which a solar panel will be mounted for maximum power performance at fixed position in Ilorin is 22o. This optimum angle of tilt of the solar panel and the orientation are dependent on the month of the year and the location of the site of study.

  13. Evaluating solar radiation on a tilted surfaces - a study case in Timis (Romania)

    International Nuclear Information System (INIS)

    Vasar, C; Prostean, O; Prostean, G

    2016-01-01

    In the last years the usage of solar energy has grown considerably in Romania, as well as in Europe, stimulated by various factors as government programs, green pricing policies, decreasing of photovoltaic components cost etc. Also, the rising demand of using Solar Energy Conversion Systems (SECS) is driven by the desire of individuals or companies to obtain energy from a clean renewable source. In many applications, remote consumers far from other energetic grids can use solar systems more cost-effectively than extending the grid to reach the location. Usually the solar energy is measured or forecast on horizontal surface, but in SECS there is needed the total solar radiation incident on the collector surface, that is oriented in a position that maximize the harvested energy. There are many models that convert the solar radiation from horizontal surface to a tilted surface, but they use empirical coefficients and the accuracy is influenced by different facts as geographical location or sky conditions. Such models were used considering measured values for solar radiation on horizontal plane, in the western part of Romania. Hourly values measured for global solar irradiation on the horizontal plane, diffuse solar irradiation on the horizontal plane and reflected solar irradiation by ground are used to compute the total solar radiation incident on different tilted surfaces. The calculated incident radiation is then compared with the real radiation measured on tilted surface in order to evaluate the performance of the considered conversion models. (paper)

  14. Magnetic moment of $^{17}$Ne using beta -NMR and tilted foil polarization

    CERN Document Server

    Baby, L T; Hass, M; Haas, H; Weissman, L; Brown, B A

    2004-01-01

    We report on the measurement of the magnetic moment of the ground state of /sup 17/Ne. Radioactive /sup 17/Ne nuclei were delivered from the high resolution mass separator at ISOLDE onto a high voltage platform at -200 kV and were polarized using the tilted foil polarization method. The polarized nuclei were implanted into a Pt stopper situated in a liquid-helium cooled beta -NMR apparatus and the asymmetry destruction of the ensuing beta rays was monitored as a function of the rf frequency applied to the polarized nuclei. The measured value of mu = 0.74 +or- 0.03 affirms the nu p/sub 1/2//sup - / nature of the ground state of /sup 17/Ne and is compared to shell model calculations. (10 refs).

  15. Annual Optimum Tilt Angle Prediction of Solar Collector using PSO Estimator

    Science.gov (United States)

    Dixit, T. V.; Yadav, Anamika; pre="Senior Member ">IEEE,

    2017-08-01

    The amount of solar flux falls on solar collector depends on tilt angle and orientation of collector from the surface. By efficiently regulating the tilt and orientation of solar collector unnecessary loss in potential power can be minimized. In general, for north hemisphere, south facing of the collector is considered as optimum orientation. There are several metrological and geographical factors which affect the optimum tilt angle. In this paper, the PSO estimator has been proposed in order to find optimum tilt angle on annual basis. The results of PSO estimators are compared with ANN estimator and satellite (RETScreen software) data. To evaluate the performance of proposed model MBE, RMSE, Error range, percentage annual error as well as direct method of statistical study have been carried out. During annual tilt angle prediction the annual percentage errors of proposed method and RETScreensoftware data are 0.03% and 7.03% respectively with respect to ANN results. Finally, the average percentage error indicates that the proposed estimator gives better prediction as compared to satellite based results for collecting maximum solar flux at surface of solar collector.

  16. Precise estimation of total solar radiation on tilted surface

    African Journals Online (AJOL)

    rajeev

    The estimated values of hourly solar radiation have also been compared with 15 years measured ... systems. The total solar radiation at different orientation and slope is needed to calculate the efficiency of the installed solar energy systems. To calculate ... includes both a direct component from the Sun itself and a diffuse.

  17. Effect of manual tilt adjustments on incident irradiance on fixed and tracking solar panels

    International Nuclear Information System (INIS)

    Lubitz, William David

    2011-01-01

    Hourly typical meteorological year (TMY3) data was utilized with the Perez radiation model to simulate solar radiation on fixed, azimuth tracking and two axis tracking surfaces at 217 geographically diverse temperate latitude sites across the contiguous United States of America. The optimum tilt angle for maximizing annual irradiation on a fixed south-facing panel varied from being equal to the latitude at low-latitude, high clearness sites, to up to 14 o less than the latitude at a north-western coastal site with very low clearness index. Across the United States, the optimum tilt angle for an azimuth tracking panel was found to be on average 19 o closer to vertical than the optimum tilt angle for a fixed, south-facing panel at the same site. Azimuth tracking increased annual solar irradiation incident on a surface by an average of 29% relative to a fixed south-facing surface at optimum tilt angle. Two axis tracking resulted in an average irradiation increase of 34% relative to the fixed surface. Introduction of manual surface tilt changes during the year produced a greater impact for non-tracking surfaces than it did for azimuth tracking surfaces. Even monthly tilt changes only resulted in an average annual irradiation increase of 5% for fixed panels and 1% for azimuth tracked surfaces, relative to using a single optimized tilt angle in each case. In practice, the decision whether to manually tilt panels requires balancing the added cost in labor and the panel support versus the extra energy generation and the cost value of that energy. A spreadsheet file is available that gives individual results for each of the 217 simulated sites.

  18. Investigations on efficiencies of HT solar collectors for different flow rates and collector tilts

    DEFF Research Database (Denmark)

    Chen, Ziqian; Perers, Bengt; Furbo, Simon

    2013-01-01

    Two HT solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one solar collector is equipped with an ETFE foil between the abso......Two HT solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one solar collector is equipped with an ETFE foil between...... the absorber and the cover glass and the other is without ETFE foil. The efficiencies for the collectors are tested at different flow rates and tilt. On the basis of the measured efficiencies, the efficiencies for the collectors as functions of flow rates are obtained. The calculated efficiencies are in good...

  19. Solar Illumination Control of the Polar Wind

    Science.gov (United States)

    Maes, L.; Maggiolo, R.; De Keyser, J.; André, M.; Eriksson, A. I.; Haaland, S.; Li, K.; Poedts, S.

    2017-11-01

    Polar wind outflow is an important process through which the ionosphere supplies plasma to the magnetosphere. The main source of energy driving the polar wind is solar illumination of the ionosphere. As a result, many studies have found a relation between polar wind flux densities and solar EUV intensity, but less is known about their relation to the solar zenith angle at the ionospheric origin, certainly at higher altitudes. The low energy of the outflowing particles and spacecraft charging means it is very difficult to measure the polar wind at high altitudes. We take advantage of an alternative method that allows estimations of the polar wind flux densities far in the lobes. We analyze measurements made by the Cluster spacecraft at altitudes from 4 up to 20 RE. We observe a strong dependence on the solar zenith angle in the ion flux density and see that both the ion velocity and density exhibit a solar zenith angle dependence as well. We also find a seasonal variation of the flux density.

  20. Effect of radiation on convective flow in a tilted solar collector filled ...

    African Journals Online (AJOL)

    user

    Keywords: Radiation, tilted solar collector, finite element method, water- alumina nanofluid. ... instead of conventional heat transfer fluids (like water). The poor heat transfer properties ... to suspend ultra fine solid particles in the fluid for improving the thermal conductivity of the fluid Hetsroni and Rozenblit (1994). These early ...

  1. System for the Automatic Estimation of the Tilt Angle of a Flat Solar Collector

    Directory of Open Access Journals (Sweden)

    Jorge Fonseca-Campos

    2017-08-01

    Full Text Available In this work, a compact system for the automatic estimation of the tilt angle at any location of the world is presented. The system components are one computer, one GPS receiver and one Python program. The tilt angle is calculated through the maximization of the flux of direct radiation incident upon a flat solar collector. An estimation of the adjustments of this angle at different time periods are obtained. This angle is calculated in steps of six minutes during a whole year. Daily, monthly, biannually and yearly averages of this value are obtained. A comparison of the energetic gain when the tilt angle changes at the different time periods is made as well. Because, the algorithm doesn’t receive as an input the solar radiation incident upon a surface at the location of the calculation, a comparison was made between the results obtained and the results reported for the monthly tilt angle of 22 different places. The root mean square error obtained with this comparison was between 1.5 and 9.5 degrees. The monthly tilt angle estimated deviated in average for less than 6.3° with respect to the values reported for the different locations. Finally, the application of a correction factor in the monthly estimated angles is proposed, which might increase the collected energy.

  2. Scattering Polarization in Solar Flares

    Czech Academy of Sciences Publication Activity Database

    Štěpán, Jiří; Heinzel, Petr

    2013-01-01

    Roč. 778, č. 1 (2013), L6/1-L6/6 ISSN 2041-8205 R&D Projects: GA ČR GAP209/12/1652; GA ČR GPP209/12/P741 Institutional support: RVO:67985815 Keywords : line formation * polarization * radiative transfer Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.602, year: 2013

  3. Geometric considerations of polar mesospheric summer echoes in tilted beams using coherent radar imaging

    Science.gov (United States)

    Sommer, S.; Stober, G.; Chau, J. L.; Latteck, R.

    2014-11-01

    We present observations of polar mesospheric summer echoes (PMSE) using the Middle Atmosphere Alomar Radar System in Northern Norway (69.30° N, 16.04° E). The radar is able to resolve PMSE at high spatial and temporal resolution and to perform pulse-to-pulse beam steering. In this experiment, 81 oblique beam directions were used with off-zenith angles up to 25°. For each beam pointing direction and range gate, coherent radar imaging was applied to determine the mean backscatter location. The location of the mean scatterer in the beam volume was calculated by the deviation from the nominal off-zenith angle of the brightest pixel. It shows that in tilted beams with an off-zenith angle greater than 5°, structures appear at the altitudinal edges of the PMSE layer. Our results indicate that the mean influence of the location of the maximum depends on the tilt of the beam and on the observed area of the PMSE layer. At the upper/lower edge of the PMSE layer, the mean backscatter has a greater/smaller off-zenith angle than the nominal off-zenith angle. This effect intensifies with greater off-zenith beam pointing direction, so the beam filling factor plays an important role in the observation of PMSE layers for oblique beams.

  4. Tilted columnar thin film coatings with anisotropic light scattering properties for solar energy applications

    Science.gov (United States)

    Sadeghi-Khosravieh, Saba

    The main goal of this thesis is to show the versatility of glancing angle deposition (GLAD) thin films in applications. This research is first focused on studying the effect of select deposition variables in GLAD thin films and secondly, to demonstrate the flexibility of GLAD films to be incorporated in two different applications: (1) as a reflective coating in low-level concentration photovoltaic systems, and (2) as an anode structure in dye-sensitized solar cells (DSSC). A particular type of microstructure composed of tilted micro-columns of titanium is fabricated by GLAD. The microstructures form elongated and fan-like tilted micro-columns that demonstrate anisotropic scattering. The thin films texture changes from fiber texture to tilted fiber texture by increasing the vapor incidence angle. At very large deposition angles, biaxial texture forms. The morphology of the thin films deposited under extreme shadowing condition and at high temperature (below recrystallization zone) shows a porous and inclined micro-columnar morphology, resulting from the dominance of shadowing over adatom surface diffusion. The anisotropic scattering behavior of the tilted Ti thin film coatings is quantified by bidirectional reflectance distribution function (BRDF) measurements and is found to be consistent with reflectance from the microstructure acting as an array of inclined micro-mirrors that redirect the incident light in a non-specular reflection. A silver-coating of the surface of the tilted-Ti micro-columns is performed to enhance the total reflectance of the Ti-thin films while keeping the anisotropic scattering behavior. By using such coating is as a booster reflector in a laboratory-scale low-level concentration photovoltaic system, the short-circuit current of the reference silicon solar cell by 25%. Finally, based on the scattering properties of the tilted microcolumnar microstructure, its scattering effect is studied as a part of titanium dioxide microstructure for the

  5. Study on the optimum tilted angle of solar panels in Hainan tropical photovoltaic facility agricultural system

    Science.gov (United States)

    Wang, Jingxuan; Ge, Zhiwu; Yang, Xiaoyan; Ye, Chunhua; Lin, Yanxia

    2017-04-01

    Photovoltaic facility agriculture system can effectively alleviate the contradiction between limited land and Photovoltaic power generation. It’s flexible to create suitable environment for crop growth, and generate electricity over the same land at the same time. It’s necessary to set appropriate solar panel angle to get more solar energy. Through detailed analysis and comparison, we chose the Hay’s model as solar radiation model. Based on the official meteorological data got from Haikou Meteorological Bureau, and by comparing the amount of radiation obtained at different tilted angles per month, the optimal placement angle of PV panels at different seasons in Haikou was obtained through calculation, and the optimal placement angle from April to October was also obtained. Through optimized angle and arrangement of solar photovoltaic panels, we can get greater power efficiency.

  6. Experimental Investigations of Cochannel Interference Reduction Effect at High Elevation Base Station Using Beam Tilt and Orthogonal Polarization

    Directory of Open Access Journals (Sweden)

    Shuta Uwano

    2014-01-01

    Full Text Available This paper addresses the problem of cochannel interference (CCI generated in a mixed cell architecture in microcellular systems. In this type of microcellular systems in which both microcells and macrocells coexist in the same geographical urban area, the base station antennas mounted on the rooftops of buildings to cover wide circular radio zones suffer severe CCI from the surrounding low base stations. A dielectric-loaded slotted-cylinder antenna (DSCA is applied to horizontally polarized omnidirectional array antennas in a height-diversity configuration with the high gain of 8 dBi, which is comparable to that of a collinear antenna, to reduce the CCI. The measurements conducted in a suburban area clarify the reduction in the CCI for three techniques. The beam-tilt technique reduces the CCI level by approximately 10 dB for both collinear antennas and the DSCA array antennas. The use of horizontal polarization reduces the CCI level by approximately 13 dB for the DSCA array antennas with and without beam tilt. The combination of the beam tilt and horizontal polarization or the DSCA array antennas with beam tilt significantly reduces the CCI level by approximately 23 dB.

  7. Plasma depletion layer: its dependence on solar wind conditions and the Earth dipole tilt

    Directory of Open Access Journals (Sweden)

    Y. L. Wang

    2004-12-01

    Full Text Available The plasma depletion layer (PDL is a layer on the sunward side of the magnetopause with lower plasma density and higher magnetic field compared to their corresponding upstream magnetosheath values. It is believed that the PDL is controlled jointly by conditions in the solar wind plasma and the (IMF. In this study, we extend our former model PDL studies by systematically investigating the dependence of the PDL and the slow mode front on solar wind conditions using global MHD simulations. We first point out the difficulties for the depletion factor method and the plasma β method for defining the outer boundary of the plasma depletion layer. We propose to use the N/B ratio to define the PDL outer boundary, which can give the best description of flux tube depletion. We find a strong dependence of the magnetosheath environment on the solar wind magnetosonic Mach number. A difference between the stagnation point and the magnetopause derived from the open-closed magnetic field boundary is found. We also find a strong and complex dependence of the PDL and the slow mode front on the IMF Bz. A density structure right inside the subsolar magnetopause for higher IMF Bz;might be responsible for some of this dependence. Both the IMF tilt and clock angles are found to have little influence on the magnetosheath and the PDL structures. However, the IMF geometry has a much stronger influence on the slow mode fronts in the magnetosheath. Finally, the Earth dipole tilt is found to play a minor role for the magnetosheath geometry and the PDL along the Sun-Earth line. A complex slow mode front geometry is found for cases with different Earth dipole tilts. Comparisons between our results with those from some former studies are conducted, and consistencies and inconsistencies are found. Key words. Magnetospheric physics (magnetosheath, solar wind-magnetosphere interactions – Space plasma physics (numerical simulation studies

  8. Variations in Solar Parameters and Cosmic Rays with Solar Magnetic Polarity

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S. [Department of Earth Science Education, Chonnam National University, Gwangju, 61186 (Korea, Republic of); Yi, Y., E-mail: suyeonoh@jnu.ac.kr [Department of Astronomy, Space Science and Geology, Chungnam National University, Daejeon, 34134 (Korea, Republic of)

    2017-05-01

    The sunspot number varies with the 11-year Schwabe cycle, and the solar magnetic polarity reverses every 11 years approximately at the solar maximum. Because of polarity reversal, the difference between odd and even solar cycles is seen in solar activity. In this study, we create the mean solar cycle expressed by phase using the monthly sunspot number for all solar cycles 1–23. We also generate the mean solar cycle for sunspot area, solar radio flux, and cosmic ray flux within the allowance of observational range. The mean solar cycle has one large peak at solar maximum for odd solar cycles and two small peaks for most even solar cycles. The odd and even solar cycles have the statistical difference in value and shape at a confidence level of at least 98%. For solar cycles 19–23, the second peak in the even solar cycle is larger than the first peak. This result is consistent with the frequent solar events during the declining phase after the solar maximum. The difference between odd and even solar cycles can be explained by a combined model of polarity reversal and solar rotation. In the positive/negative polarity, the polar magnetic field introduces angular momentum in the same/opposite direction as/to the solar rotation. Thus the addition/subtraction of angular momentum can increase/decrease the motion of plasma to support the formation of sunspots. Since the polarity reverses at the solar maximum, the opposite phenomenon occurs in the declining phase.

  9. CHROMOSPHERIC POLARIZATION IN THE PHOTOSPHERIC SOLAR OXYGEN INFRARED TRIPLET

    Energy Technology Data Exchange (ETDEWEB)

    Del Pino Alemán, Tanausú; Trujillo Bueno, Javier [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2015-07-20

    We present multilevel radiative transfer modeling of the scattering polarization observed in the solar O i infrared triplet around 777 nm. We demonstrate that the scattering polarization pattern observed on the solar disk forms in the chromosphere, far above the photospheric region where the bulk of the emergent intensity profiles originate. We investigate the sensitivity of the polarization pattern to the thermal structure of the solar atmosphere and to the presence of weak magnetic fields (10{sup −2}–100 G) through the Hanle effect, showing that the scattering polarization signals of the oxygen infrared triplet encode information on the magnetism of the solar chromosphere.

  10. Alfvénic fluctuations in "newborn"' polar solar wind

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2005-06-01

    Full Text Available The 3-D structure of the solar wind is strongly dependent upon the Sun's activity cycle. At low solar activity a bimodal structure is dominant, with a fast and uniform flow at the high latitudes, and slow and variable flows at low latitudes. Around solar maximum, in sharp contrast, variable flows are observed at all latitudes. This last kind of pattern, however, is a relatively short-lived feature, and quite soon after solar maximum the polar wind tends to regain its role. The plasma parameter distributions for these newborn polar flows appear very similar to those typically observed in polar wind at low solar activity. The point addressed here is about polar wind fluctuations. As is well known, the low-solar-activity polar wind is characterized by a strong flow of Alfvénic fluctuations. Does this hold for the new polar flows too? An answer to this question is given here through a comparative statistical analysis on parameters such as total energy, cross helicity, and residual energy, that are of general use to describe the Alfvénic character of fluctuations. Our results indicate that the main features of the Alfvénic fluctuations observed in low-solar-activity polar wind have been quickly recovered in the new polar flows developed shortly after solar maximum. Keywords. Interplanetary physics (MHD waves and turbulence; Sources of the solar wind – Space plasma physics (Turbulence

  11. Plasma depletion layer: its dependence on solar wind conditions and the Earth dipole tilt

    Directory of Open Access Journals (Sweden)

    Y. L. Wang

    2004-12-01

    Full Text Available The plasma depletion layer (PDL is a layer on the sunward side of the magnetopause with lower plasma density and higher magnetic field compared to their corresponding upstream magnetosheath values. It is believed that the PDL is controlled jointly by conditions in the solar wind plasma and the (IMF. In this study, we extend our former model PDL studies by systematically investigating the dependence of the PDL and the slow mode front on solar wind conditions using global MHD simulations. We first point out the difficulties for the depletion factor method and the plasma β method for defining the outer boundary of the plasma depletion layer. We propose to use the N/B ratio to define the PDL outer boundary, which can give the best description of flux tube depletion. We find a strong dependence of the magnetosheath environment on the solar wind magnetosonic Mach number. A difference between the stagnation point and the magnetopause derived from the open-closed magnetic field boundary is found. We also find a strong and complex dependence of the PDL and the slow mode front on the IMF Bz. A density structure right inside the subsolar magnetopause for higher IMF Bz;might be responsible for some of this dependence. Both the IMF tilt and clock angles are found to have little influence on the magnetosheath and the PDL structures. However, the IMF geometry has a much stronger influence on the slow mode fronts in the magnetosheath. Finally, the Earth dipole tilt is found to play a minor role for the magnetosheath geometry and the PDL along the Sun-Earth line. A complex slow mode front geometry is found for cases with different Earth dipole tilts. Comparisons between our results with those from some former studies are conducted, and consistencies and inconsistencies are found.

    Key words. Magnetospheric physics (magnetosheath, solar wind-magnetosphere interactions – Space plasma physics (numerical

  12. The Solar Ultraviolet Magnetograph Investigation: Polarization Properties

    Science.gov (United States)

    West, E. A.; Porter, J. G.; Davis, J. M.; Gary, G. A.; Kobayashi, K.; Noble, M.

    2005-01-01

    This paper will describe the objectives of the Marshall Space Flight Center (MSFC) Solar Ultraviolet Magnetograph Investigation (SUMI) and the optical components that have been developed to meet those objectives. A sounding rocket payload is being developed to test the feasibility of magnetic field measurements in the Sun s transition region. This paper will review the scientific measurements that will be made by the SUMI sounding rocket program, and the optics have been optimized for simultaneous measurements of two magnetic lines formed in the transition region (CIV at 1550 A and MgII at 2800 A). Finally, this paper will concentrate on the polarization properties of the SUM1 polarimeter and toroidal varied-line-space gratings.

  13. Cold Ion Outflow Modulated by the Solar Wind Energy Input and Tilt of the Geomagnetic Dipole

    Science.gov (United States)

    Li, Kun; Wei, Y.; André, M.; Eriksson, A.; Haaland, S.; Kronberg, E. A.; Nilsson, H.; Maes, L.; Rong, Z. J.; Wan, W. X.

    2017-10-01

    The solar wind energy input into the Earth's magnetosphere-ionosphere system drives ionospheric outflow, which plays an important role in both the magnetospheric dynamics and evolution of the atmosphere. However, little is known about the cold ion outflow with energies lower than a few tens of eV, as the direct measurement of cold ions is difficult because a spacecraft gains a positive electric charge due to the photoemission effect, which prevents cold ions from reaching the onboard detectors. A recent breakthrough in the measurement technique using Cluster spacecraft revealed that cold ions dominate the ion population in the magnetosphere. This new technique yields a comprehensive data set containing measurements of the velocities and densities of cold ions for the years 2001-2010. In this paper, this data set is used to analyze the cold ion outflow from the ionosphere. We found that about 0.1% of the solar wind energy input is transformed to the kinetic energy of cold ion outflow at the topside ionosphere. We also found that the geomagnetic dipole tilt can significantly affect the density of cold ion outflow, modulating the outflow rate of cold ion kinetic energy. These results give us clues to study the evolution of ionospheric outflow with changing global magnetic field and solar wind condition in the history.

  14. A strong, highly-tilted interstellar magnetic field near the Solar System.

    Science.gov (United States)

    Opher, M; Bibi, F Alouani; Toth, G; Richardson, J D; Izmodenov, V V; Gombosi, T I

    2009-12-24

    Magnetic fields play an important (sometimes dominant) role in the evolution of gas clouds in the Galaxy, but the strength and orientation of the field in the interstellar medium near the heliosphere has been poorly constrained. Previous estimates of the field strength range from 1.8-2.5 microG and the field was thought to be parallel to the Galactic plane or inclined by 38-60 degrees (ref. 2) or 60-90 degrees (ref. 3) to this plane. These estimates relied either on indirect observational inferences or modelling in which the interstellar neutral hydrogen was not taken into account. Here we report measurements of the deflection of the solar wind plasma flows in the heliosheath to determine the magnetic field strength and orientation in the interstellar medium. We find that the field strength in the local interstellar medium is 3.7-5.5 microG. The field is tilted approximately 20-30 degrees from the interstellar medium flow direction (resulting from the peculiar motion of the Sun in the Galaxy) and is at an angle of about 30 degrees from the Galactic plane. We conclude that the interstellar medium field is turbulent or has a distortion in the solar vicinity.

  15. Mechanism of Cyclically Polarity Reversing Solar Magnetic Cycle as ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We briefly describe historical development of the concept of solar dynamo mechanism that generates electric current and magnetic field by plasma ... The dynamo is the driver of the cyclically polarity reversing solar magnetic cycle. ... Department of Astronomy, University of Tokyo, Tokyo, Japan 113-0033.

  16. Influence of the tilting reflection mirror on the temperature and wind velocity retrieved by a polarizing atmospheric Michelson interferometer.

    Science.gov (United States)

    Zhang, Chunmin; Li, Ying

    2012-09-20

    The principles of a polarizing atmospheric Michelson interferometer are outlined. The tilt of its reflection mirror results in deflection of the reflected beam and affects the intensities of the observed inteferogram. This effect is systematically analyzed. Both rectangular and circular apertures are considered. The theoretical expression of the modulation depth and phase of the interferogram are derived. These parameters vary with the inclination angle of the mirror and the distance between the deflection center and the optical axis and significantly influence the retrieved temperature and wind speed. If the wind and temperature errors are required to be less than 3 m/s and 5 K, the deflection angle must be less than 0.5°. The errors are also dependent on the shape of aperture. If the reflection mirror is deflected in one direction, the temperature error is smaller for a circular aperture (1.3 K) than for a rectangular one (2.6 K), but the wind velocity errors are almost the same (less than 3 m/s). If the deflection center and incident light beam are coincident, the temperature errors are 3 × 10(-4) K and 0.45 K for circular and rectangular apertures, respectively. The wind velocity errors are 1.2 × 10(-3) m/s and 0.06 m/s. Both are small. The result would be helpful for theoretical research and development of the static polarization wind imaging interferometer.

  17. Impact of the Tilted Detector Solenoid on the Ion Polarization at JLEIC

    Science.gov (United States)

    Kondratenko, A. M.; Kondratenko, M. A.; Filatov, Yu N.; Derbenev, Ya S.; Lin, F.; Morozov, V. S.; Zhang, Y.

    2017-12-01

    Jefferson Lab Electron Ion Collider (JLEIC) is a figure-8 collider “transparent” to the spin. This allows one to control the ion polarization using a universal 3D spin rotator based on weak solenoids. Besides the 3D spin rotator, a coherent effect on the spin is produced by a detector solenoid together with the dipole correctors and anti-solenoids compensating betatron oscillation coupling. The 4 m long detector solenoid is positioned along a straight section of the electron ring and makes a 50 mrad horizontal angle with a straight section of the ion ring. Such a large crossing angle is needed for a quick separation of the two colliding beams near the interaction point to make sufficient space for placement of interaction region magnets and to avoid parasitic collisions of shortly-spaced 476 MHz electron and ion bunches. We present a numerical analysis of the detector solenoid effect on the proton and deuteron polarizations. We demonstrate that the effect of the detector solenoid on the proton and deuteron polarizations can be compensated globally using an additional 3D rotator located anywhere in the ring. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contracts DE-AC05-06OR23177 and DE-AC02-06CH11357.

  18. Tilting and Wobble of Myosin V by High-Speed Single-Molecule Polarized Fluorescence Microscopy

    Science.gov (United States)

    Beausang, John F.; Shroder, Deborah Y.; Nelson, Philip C.; Goldman, Yale E.

    2013-01-01

    Myosin V is biomolecular motor with two actin-binding domains (heads) that take multiple steps along actin by a hand-over-hand mechanism. We used high-speed polarized total internal reflection fluorescence (polTIRF) microscopy to study the structural dynamics of single myosin V molecules that had been labeled with bifunctional rhodamine linked to one of the calmodulins along the lever arm. With the use of time-correlated single-photon counting technology, the temporal resolution of the polTIRF microscope was improved ∼50-fold relative to earlier studies, and a maximum-likelihood, multitrace change-point algorithm was used to objectively determine the times when structural changes occurred. Short-lived substeps that displayed an abrupt increase in rotational mobility were detected during stepping, likely corresponding to random thermal fluctuations of the stepping head while it searched for its next actin-binding site. Thus, myosin V harnesses its fluctuating environment to extend its reach. Additional, less frequent angle changes, probably not directly associated with steps, were detected in both leading and trailing heads. The high-speed polTIRF method and change-point analysis may be applicable to single-molecule studies of other biological systems. PMID:23528086

  19. Effect of radiation on convective flow in a tilted solar collector filled ...

    African Journals Online (AJOL)

    alumina nanofluid. ... International Journal of Engineering, Science and Technology ... The effect of radiation on natural convective flow inside a solar collector having a flat-plate cover and a sine-wave absorber is analyzed numerically. The solar ...

  20. The Lyman-alpha Imager onboard Solar Polar Orbit Telescope

    Science.gov (United States)

    Li, Baoquan; Li, Haitao; Zhou, Sizhong; Jiang, Bo

    2013-12-01

    Solar Polar ORbit Telescope (SPORT) was originally proposed in 2004 by the National Space Science Center, Chinese Academy of Sciences, which is currently being under background engineering study phase in China. SPORT will carry a suite of remote-sensing and in-situ instruments to observe coronal mass ejections (CMEs), solar high-latitude magnetism, and the fast solar wind from a polar orbit around the Sun. The Lyman-alpha Imager (LMI) is one of the key remotesensing instruments onboard SPORT with 45arcmin FOV, 2000mm effective focal length and 1.4arcsec/pixel spatial resolution . The size of LMI is φ150×1000mm, and the weight is less than10kg, including the 7kg telescope tube and 3kg electronic box. There are three 121.6nm filters used in the LMI optical path, so the 98% spectral purity image of 121.6nm can be achieved. The 121.6nm solar Lyman-alpha line is produced in the chromosphere and very sensitive to plasma temperature, plasma velocity and magnetism variation in the chromosphere. Solar Lyman-alpha disk image is an ideal tracker for corona magnetism variation.

  1. Solar small-scale dynamo and polarity of sunspot groups

    Science.gov (United States)

    Sokoloff, D.; Khlystova, A.; Abramenko, V.

    2015-08-01

    In order to clarify a possible role of small-scale dynamo in formation of solar magnetic field, we suggest an observational test for small-scale dynamo action based on statistics of anti-Hale sunspot groups. As we have shown, according to theoretical expectations the small-scale dynamo action has to provide a population of sunspot groups which do not follow the Hale polarity law, and the density of such groups on the time-latitude diagram is expected to be independent on the phase of the solar cycle. Correspondingly, a percentage of the anti-Hale groups is expected to reach its maximum values during solar minima. For several solar cycles, we considered statistics of anti-Hale groups obtained by several scientific teams, including ours, to find that the percentage of anti-Hale groups becomes indeed maximal during a solar minimum. Our interpretation is that this fact may be explained by the small-scale dynamo action inside the solar convective zone.

  2. Velocity fluctuations in polar solar wind: a comparison between different solar cycles

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2009-02-01

    Full Text Available The polar solar wind is a fast, tenuous and steady flow that, with the exception of a relatively short phase around the Sun's activity maximum, fills the high-latitude heliosphere. The polar wind properties have been extensively investigated by Ulysses, the first spacecraft able to perform in-situ measurements in the high-latitude heliosphere. The out-of-ecliptic phases of Ulysses cover about seventeen years. This makes possible to study heliospheric properties at high latitudes in different solar cycles. In the present investigation we focus on hourly- to daily-scale fluctuations of the polar wind velocity. Though the polar wind is a quite uniform flow, fluctuations in its velocity do not appear negligible. A simple way to characterize wind velocity variations is that of performing a multi-scale statistical analysis of the wind velocity differences. Our analysis is based on the computation of velocity differences at different time lags and the evaluation of statistical quantities (mean, standard deviation, skewness, and kurtosis for the different ensembles. The results clearly show that, though differences exist in the three-dimensional structure of the heliosphere between the investigated solar cycles, the velocity fluctuations in the core of polar coronal holes exhibit essentially unchanged statistical properties.

  3. Velocity fluctuations in polar solar wind: a comparison between different solar cycles

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2009-02-01

    Full Text Available The polar solar wind is a fast, tenuous and steady flow that, with the exception of a relatively short phase around the Sun's activity maximum, fills the high-latitude heliosphere. The polar wind properties have been extensively investigated by Ulysses, the first spacecraft able to perform in-situ measurements in the high-latitude heliosphere. The out-of-ecliptic phases of Ulysses cover about seventeen years. This makes possible to study heliospheric properties at high latitudes in different solar cycles. In the present investigation we focus on hourly- to daily-scale fluctuations of the polar wind velocity. Though the polar wind is a quite uniform flow, fluctuations in its velocity do not appear negligible. A simple way to characterize wind velocity variations is that of performing a multi-scale statistical analysis of the wind velocity differences. Our analysis is based on the computation of velocity differences at different time lags and the evaluation of statistical quantities (mean, standard deviation, skewness, and kurtosis for the different ensembles. The results clearly show that, though differences exist in the three-dimensional structure of the heliosphere between the investigated solar cycles, the velocity fluctuations in the core of polar coronal holes exhibit essentially unchanged statistical properties.

  4. Polar ionospheric responses to solar wind IMF changes

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2000-06-01

    Full Text Available Auroral and airglow emissions over Eureka (89° CGM during the 1997-98 winter show striking variations in relation to solar wind IMF changes. The period January 19 to 22, 1998, was chosen for detailed study, as the IMF was particularly strong and variable. During most of the period, Bz was northward and polar arcs were observed. Several overpasses by DMSP satellites during the four day period provided a clear picture of the particle precipitation producing the polar arcs. The spectral character of these events indicated excitation by electrons of average energy 300 to 500 eV. Only occasionally were electrons of average energy up to ~1 keV observed and these appeared transitory from the ground optical data. It is noted that polar arcs appear after sudden changes in IMF By, suggesting IMF control over arc initiation. When By is positive there is arc motion from dawn to dusk, while By is negative the motion is consistently dusk to dawn. F-region (anti-sunward convections were monitored through the period from 630.0 nm emissions. The convection speed was low (100-150 m/s when Bz was northward but increased to 500 m/s after Bz turned southward on January 20.Key words: Atmospheric composition and structure (airglow and aurora - Ionosphere (particle precipitation - Magnetospheric Physics (polar cap phenomena

  5. Polar ionospheric responses to solar wind IMF changes

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    Full Text Available Auroral and airglow emissions over Eureka (89° CGM during the 1997-98 winter show striking variations in relation to solar wind IMF changes. The period January 19 to 22, 1998, was chosen for detailed study, as the IMF was particularly strong and variable. During most of the period, Bz was northward and polar arcs were observed. Several overpasses by DMSP satellites during the four day period provided a clear picture of the particle precipitation producing the polar arcs. The spectral character of these events indicated excitation by electrons of average energy 300 to 500 eV. Only occasionally were electrons of average energy up to ~1 keV observed and these appeared transitory from the ground optical data. It is noted that polar arcs appear after sudden changes in IMF By, suggesting IMF control over arc initiation. When By is positive there is arc motion from dawn to dusk, while By is negative the motion is consistently dusk to dawn. F-region (anti-sunward convections were monitored through the period from 630.0 nm emissions. The convection speed was low (100-150 m/s when Bz was northward but increased to 500 m/s after Bz turned southward on January 20.

    Key words: Atmospheric composition and structure (airglow and aurora - Ionosphere (particle precipitation - Magnetospheric Physics (polar cap phenomena

  6. Occurrence Locations, Dipole Tilt Angle Effects, and Plasma Cloud Drift Paths of Polar Cap Neutral Density Anomalies

    Science.gov (United States)

    Lin, C. S.; Sutton, E. K.; Huang, C. Y.; Cooke, D. L.

    2018-02-01

    Polar cap neutral density anomaly (PCNDA) with large mass density enhancements over the background has been frequently observed in the polar cap during magnetic storms. By tracing field lines to the magnetosphere from the polar ionosphere, we divide the polar cap into two regions, an open field line (OFL) region with field lines connecting to the magnetopause boundary and a distant tail field line (TFL) region threaded with magnetotail lobe field lines. A statistical study of neutral density observed by the Challenging Minisatellite Payload satellite during major magnetic storms with Dst atmospheric disturbance could be generated in the nightside polar cap. From the PCNDA size and speed of sound at 400 km, we derive an initial energy deposition duration for producing traveling atmospheric disturbance in the range from 0.5 to 2.5 hr.

  7. Backscatter, anisotropy, and polarization of solar hard X-rays

    International Nuclear Information System (INIS)

    Bai, T.; Ramaty, R.

    1978-01-01

    Hard X-rays incident upon the photosphere with energies > or approx. =15 keV have high probabilities of backscatter due to Compton collisions with electrons. This effect has a strong influence on the spectrum, intensity, and polarization of solar hard X-rays - especially for anisotropic models in which the primary X-rays are emitted predominantly toward the photosphere. We have carried out a detailed study of X-ray backscatter, and we have investigated the interrelated problems of anisotropy, polarization, center-to-limb variation of the X-ray spectrum, and Compton backscatter in a coherent fashion. The results of this study are compared with observational data. Because of the large contribution from backscatter, for an anisotropic primary X-ray source which is due to bremsstrahlung of accelerated electrons moving predominantly down toward the photosphere, the observed X-ray flux around 30 keV does not depend significantly on the position of flare on the Sun. For such an anisotropic source, the X-ray spectrum observed in the 15-50 keV range becomes steeper with the increasing heliocentric angle of the flare. These results are compatible with the data. The degree of polarization of the sum of the primary and reflected X-rays with energies between about 15 and 30 keV can be very large for anisotropic primary X-ray sources, but it is less than about 4% for isotropic sources. We also discuss the characteristics of the brightness distribution of the X-ray albedo patch created by the Compton backscatter. The height and anisotropy of the primary hard X-ray source might be inferred from the study of the albedo patch

  8. Polar mesosphere summer echoes during the July 2000 solar protonevent

    Directory of Open Access Journals (Sweden)

    V. Barabash

    2004-03-01

    Full Text Available The influence of the solar proton event (SPE 14–16 July 2000 on Polar Mesosphere Summer Echoes (PMSE is examined. PMSE were observed by the Esrange VHF MST Radar (ESRAD at 67°53'N, 21°06'E. The 30MHz Imaging Riometer for Ionospheric Studies IRIS in Kilpisjärvi (69°30'N, 20°47'E registered cosmic radio noise absorption caused by ionisation changes in response to the energetic particle precipitation. An energy deposition/ion-chemical model was used to estimate the density of free electrons and ions in the upper atmosphere. Particle collision frequencies were calculated from the MSISE-90 model. Electric fields were calculated using conductivities from the model and measured magnetic disturbances. The electric field reached a maximum of 91mV/m during the most intensive period of the geomagnetic storm accompanying the SPE. The temperature increase due to Joule and particle heating was calculated, taking into account radiative cooling. The temperature increase at PMSE heights was found to be very small. The observed PMSE were rather intensive and extended over the 80–90km height interval. PMSE almost disappeared above 86km at the time of greatest Joule heating on 15 July 2000. Neither ionisation changes, nor Joule/particle heating can explain the PMSE reduction. Transport effects due to the strong electric field are a more likely explanation. Key words. Meteorology and atmospheric dynamics (middle atmospheric dynamics, ionosphere (ionospheric disturbances; solar radiation and cosmic ray effects

  9. Solar polar magnetic field dependency of geomagnetic activity semiannual variation indicated in the Aa index

    Science.gov (United States)

    Oh, Suyeon; Yi, Yu

    2018-01-01

    Three major hypotheses have been proposed to explain the well-known semiannual variation of geomagnetic activity, maxima at equinoxes and minima at solstices. This study examined whether the seasonal variation of equinoctial geomagnetic activity is different in periods of opposite solar magnetic polarity in order to understand the contribution of the interplanetary magnetic field (IMF) in the Sun-Earth connection. Solar magnetic polarity is parallel to the Earth's polarity in solar minimum years of odd/even cycles but antiparallel in solar minimum years of even/odd cycles. The daily mean of the aa, Aa indices during each solar minimum was compared for periods when the solar magnetic polarity remained in opposite dipole conditions. The Aa index values were used for each of the three years surrounding the solar minimum years of the 14 solar cycles recorded since 1856. The Aa index reflects seasonal variation in geomagnetic activity, which is greater at the equinoxes than at the solstices. The Aa index reveals solar magnetic polarity dependency in which the geomagnetic activity is stronger in the antiparallel solar magnetic polarity condition than in the parallel one. The periodicity in semiannual variation of the Aa index is stronger in the antiparallel solar polar magnetic field period than in the parallel period. Additionally, we suggest the favorable IMF condition of the semiannual variation in geomagnetic activity. The orientation of IMF toward the Sun in spring and away from the Sun in fall mainly contributes to the semiannual variation of geomagnetic activity in both antiparallel and parallel solar minimum years.

  10. Polar mesosphere summer echoes during the July 2000 solar protonevent

    Directory of Open Access Journals (Sweden)

    V. Barabash

    2004-03-01

    Full Text Available The influence of the solar proton event (SPE 14–16 July 2000 on Polar Mesosphere Summer Echoes (PMSE is examined. PMSE were observed by the Esrange VHF MST Radar (ESRAD at 67°53'N, 21°06'E. The 30MHz Imaging Riometer for Ionospheric Studies IRIS in Kilpisjärvi (69°30'N, 20°47'E registered cosmic radio noise absorption caused by ionisation changes in response to the energetic particle precipitation. An energy deposition/ion-chemical model was used to estimate the density of free electrons and ions in the upper atmosphere. Particle collision frequencies were calculated from the MSISE-90 model. Electric fields were calculated using conductivities from the model and measured magnetic disturbances. The electric field reached a maximum of 91mV/m during the most intensive period of the geomagnetic storm accompanying the SPE. The temperature increase due to Joule and particle heating was calculated, taking into account radiative cooling. The temperature increase at PMSE heights was found to be very small.

    The observed PMSE were rather intensive and extended over the 80–90km height interval. PMSE almost disappeared above 86km at the time of greatest Joule heating on 15 July 2000. Neither ionisation changes, nor Joule/particle heating can explain the PMSE reduction. Transport effects due to the strong electric field are a more likely explanation.

    Key words. Meteorology and atmospheric dynamics (middle atmospheric dynamics, ionosphere (ionospheric disturbances; solar radiation and cosmic ray effects

  11. Role of polarizer-tilting-angle in zero-field spin-transfer nano-oscillators with perpendicular anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Fuentes, C.; Gallardo, R. A., E-mail: rodolfo.gallardo@usm.cl; Landeros, P. [Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso (Chile)

    2015-10-05

    An analytical model for studying the stability of a single domain ferromagnetic layer under the influence of a spin-polarized current is presented. The theory is applied to bias-field-free nano-oscillators with perpendicular anisotropy, which allows to obtain a polarizer-angle vs. current phase diagram that describes the stability of magnetic states. Explicit formulae for the critical current densities unveil the influence of the relative orientation between free and polarizer layers, allowing the emergence of precessional steady-states, and also the possibility to reduce the magnitude of the threshold current density to produce microwave oscillations. It is shown that oscillating steady-states arise in a broad angular region, and the dependence of their boundaries is fully specified by the model. The reliability of the analytical results has been corroborated by comparison to numerical calculations. Such structures are currently under intense research because of remarkable properties offering new prospects for microwave applications in communication technologies.

  12. Polar solar panels: Arctic and Antarctic microbiomes display similar taxonomic profiles.

    Science.gov (United States)

    Tanner, Kristie; Martí, Jose Manuel; Belliure, Josabel; Fernández-Méndez, Mar; Molina-Menor, Esther; Peretó, Juli; Porcar, Manuel

    2018-02-01

    Solar panels located on high (Arctic and Antarctic) latitudes combine the harshness of the climate with that of the solar exposure. We report here that these polar solar panels are inhabited by similar microbial communities in taxonomic terms, dominated by Hymenobacter spp., Sphingomonas spp. and Ascomycota. Our results suggest that solar panels, even on high latitudes, can shape a microbial ecosystem adapted to irradiation and desiccation. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Magnetic materials. Tilt engineering of spontaneous polarization and magnetization above 300 K in a bulk layered perovskite.

    Science.gov (United States)

    Pitcher, Michael J; Mandal, Pranab; Dyer, Matthew S; Alaria, Jonathan; Borisov, Pavel; Niu, Hongjun; Claridge, John B; Rosseinsky, Matthew J

    2015-01-23

    Crystalline materials that combine electrical polarization and magnetization could be advantageous in applications such as information storage, but these properties are usually considered to have incompatible chemical bonding and electronic requirements. Recent theoretical work on perovskite materials suggested a route for combining both properties. We used crystal chemistry to engineer specific atomic displacements in a layered perovskite, (Ca(y)Sr(1- y))(1.15)Tb(1.85)Fe2O7, that change its symmetry and simultaneously generate electrical polarization and magnetization above room temperature. The two resulting properties are magnetoelectrically coupled as they arise from the same displacements. Copyright © 2015, American Association for the Advancement of Science.

  14. HEMISPHERIC ASYMMETRIES IN THE POLAR SOLAR WIND OBSERVED BY ULYSSES NEAR THE MINIMA OF SOLAR CYCLES 22 AND 23

    International Nuclear Information System (INIS)

    Ebert, R. W.; Dayeh, M. A.; Desai, M. I.; McComas, D. J.; Pogorelov, N. V.

    2013-01-01

    We examined solar wind plasma and interplanetary magnetic field (IMF) observations from Ulysses' first and third orbits to study hemispheric differences in the properties of the solar wind and IMF originating from the Sun's large polar coronal holes (PCHs) during the declining and minimum phase of solar cycles 22 and 23. We identified hemispheric asymmetries in several parameters, most notably ∼15%-30% south-to-north differences in averages for the solar wind density, mass flux, dynamic pressure, and energy flux and the radial and total IMF magnitudes. These differences were driven by relatively larger, more variable solar wind density and radial IMF between ∼36°S-60°S during the declining phase of solar cycles 22 and 23. These observations indicate either a hemispheric asymmetry in the PCH output during the declining and minimum phase of solar cycles 22 and 23 with the southern hemisphere being more active than its northern counterpart, or a solar cycle effect where the PCH output in both hemispheres is enhanced during periods of higher solar activity. We also report a strong linear correlation between these solar wind and IMF parameters, including the periods of enhanced PCH output, that highlight the connection between the solar wind mass and energy output and the Sun's magnetic field. That these enhancements were not matched by similar sized variations in solar wind speed points to the mass and energy responsible for these increases being added to the solar wind while its flow was subsonic.

  15. Characteristics of the Polarity Inversion Line and Solar Flare Forecasts

    Science.gov (United States)

    Sadykov, Viacheslav M.; Kosovichev, Alexander G.

    2017-08-01

    Studying connection between solar flares and properties of magnetic field in active regions is very important for understanding the flare physics and developing space weather forecasts. In this work, we analyze relationship between the flare X-ray peak flux from the GOES satellite, and characteristics of the line-of-sight (LOS) magnetograms obtained by the SDO/HMI instrument during the period of April, 2010 - June, 2016. We try to answer two questions: 1) What characteristics of the LOS magnetic field are most important for the flare initiation and magnitude? 2) Is it possible to construct a reliable forecast of ≥ M1.0 and ≥ X1.0 class flares based only on the LOS magnetic field characteristics? To answer these questions, we apply a Polarity Inversion Line (PIL) detection algorithm, and derive various properties of the PIL and the corresponding Active Regions (AR). The importance of these properties for flare forecasting is determined by their ability to separate flaring cases from non-flaring, and their Fisher ranking score. It is found that the PIL characteristics are of special importance for the forecasts of both ≥ M1.0 and ≥ X1.0 flares, while the global AR characteristics become comparably discriminative only for ≥ X1.0 flares. We use the Support Vector Machine (SVM) classifier and train it on the six characteristics of the most importance for each case. The obtained True Skill Statistics (TSS) values of 0.70 for ≥ M1.0 flares and 0.64 for ≥ X1.0 flares are better than the currently-known expert-based predictions. Therefore, the results confirm the importance of the LOS magnetic field data and, in particular, the PIL region characteristics for flare forecasts.

  16. MgII Linear Polarization Measurements Using the MSFC Solar Ultraviolet Magnetograph Sounding Rocket

    Science.gov (United States)

    West, Edward; Cirtain, Jonathan; Kobayashi, Ken; Davis, John; Gary, Allen

    2011-01-01

    This paper will describe the Marshall Space Flight Center's Solar Ultraviolet Magnetograph Investigation (SUMI) sounding rocket program, with emphasis on the polarization characteristics of the VUV optics and their spectral, spatial and polarization resolution. SUMI's first flight (7/30/2010) met all of its mission success criteria and this paper will describe the data that was acquired with emphasis on the MgII linear polarization measurements.

  17. Polarization Observations of the Total Solar Eclipse of August 21, 2017

    Science.gov (United States)

    Burkepile, J.; Boll, A.; Casini, R.; de Toma, G.; Elmore, D. F.; Gibson, K. L.; Judge, P. G.; Mitchell, A. M.; Penn, M.; Sewell, S. D.; Tomczyk, S.; Yanamandra-Fisher, P. A.

    2017-12-01

    A total solar eclipse offers ideal sky conditions for viewing the solar corona. Light from the corona is composed of three components: the E-corona, made up of spectral emission lines produced by ionized elements in the corona; the K-corona, produced by photospheric light that is Thomson scattered by coronal electrons; and the F-corona, produced by sunlight scattered from dust particles in the near Sun environment and in interplanetary space. Polarized white light observations of the corona provide a way of isolating the K-corona to determine its structure, brightness, and density. This work focuses on broadband white light polarization observations of the corona during the upcoming solar eclipse from three different instruments. We compare coronal polarization brightness observations of the August 21, 2017 total solar eclipse from the NCAR/High Altitude Observatory (HAO) Rosetta Stone experiment using the 4-D Technology PolarCam camera with the two Citizen PACA_CATE17Pol telescopes that will acquire linear polarization observations of the eclipse and the NCAR/HAO K-Cor white light coronagraph observations from the Mauna Loa Solar Observatory in Hawaii. This comparison includes a discussion of the cross-calibration of the different instruments and reports the results of the coronal polarization brightness and electron density of the corona. These observations will be compared with results from previous coronal measurements taken at different phases of the solar cycle. In addition, we report on the performance of the three different polarimeters. The 4-D PolarCam uses a linear polarizer array, PACA_CATE17Pol uses a nematic liquid crystal retarder in a single beam configuration and K-Cor uses a pair of ferroelectric liquid crystal retarders in a dual-beam configuration. The use of the 4-D PolarCam camera in the Rosetta Stone experiment is to demonstrate the technology for acquiring high cadence polarization measurements. The Rosetta Stone experiment is funded through

  18. THE HANLE AND ZEEMAN POLARIZATION SIGNALS OF THE SOLAR Ca II 8542 Å LINE

    Energy Technology Data Exchange (ETDEWEB)

    Štěpán, Jiri [Astronomical Institute ASCR, Fričova 298, 251 65 Ondřejov (Czech Republic); Bueno, Javier Trujillo [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2016-07-20

    We highlight the main results of a three-dimensional (3D) multilevel radiative transfer investigation about the solar disk-center polarization of the Ca ii 8542 Å line. First, through the use of a 3D model of the solar atmosphere, we investigate the linear polarization that occurs due to the atomic level polarization produced by the absorption and scattering of anisotropic radiation, taking into account the symmetry-breaking effects caused by its thermal, dynamic, and magnetic structure. Second, we study the contribution of the Zeeman effect to the linear and circular polarization. Finally, we show examples of the Stokes profiles produced by the joint action of the atomic level polarization and the Hanle and Zeeman effects. We find that the Zeeman effect tends to dominate the linear polarization signals only in the localized patches of opposite magnetic polarity, where the magnetic field is relatively strong and slightly inclined; outside such very localized patches, the linear polarization is often dominated by the contribution of atomic level polarization. We demonstrate that a correct modeling of this last contribution requires taking into account the symmetry-breaking effects caused by the thermal, dynamic, and magnetic structure of the solar atmosphere, and that in the 3D model used the Hanle effect in forward-scattering geometry (disk-center observation) mainly reduces the polarization corresponding to the zero-field case. We emphasize that, in general, a reliable modeling of the linear polarization in the Ca ii 8542 Å line requires taking into account the joint action of atomic level polarization and the Hanle and Zeeman effects.

  19. Polar and equatorial coronal hole winds at solar minima: From the heliosphere to the inner corona

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Landi, E., E-mail: lzh@umich.edu [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48105 (United States)

    2014-02-01

    Fast solar wind can be accelerated from at least two different sources: polar coronal holes and equatorial coronal holes. Little is known about the relationship between the wind coming from these two different latitudes and whether these two subcategories of fast wind evolve in the same way during the solar cycle. Nineteen years of Ulysses observations, from 1990 to 2009, combined with ACE observations from 1998 to the present provide us with in situ measurements of solar wind properties that span two entire solar cycles. These missions provide an ideal data set to study the properties and evolution of the fast solar wind originating from equatorial and polar holes. In this work, we focus on these two types of fast solar wind during the minima between solar cycles 22 and 23 and 23 and 24. We use data from SWICS, SWOOPS, and VHM/FGM on board Ulysses and SWICS, SWEPAM, and MAG on board ACE to analyze the proton kinetic, thermal, and dynamic characteristics, heavy ion composition, and magnetic field properties of these two fast winds. The comparison shows that: (1) their kinetic, thermal, compositional, and magnetic properties are significantly different at any time during the two minima and (2) they respond differently to the changes in solar activity from cycle 23 to 24. These results indicate that equatorial and polar fast solar wind are two separate subcategories of fast wind. We discuss the implications of these results and relate them to remote-sensing measurements of the properties of polar and equatorial coronal holes carried out in the inner corona during these two solar minima.

  20. Polar and equatorial coronal hole winds at solar minima: From the heliosphere to the inner corona

    International Nuclear Information System (INIS)

    Zhao, L.; Landi, E.

    2014-01-01

    Fast solar wind can be accelerated from at least two different sources: polar coronal holes and equatorial coronal holes. Little is known about the relationship between the wind coming from these two different latitudes and whether these two subcategories of fast wind evolve in the same way during the solar cycle. Nineteen years of Ulysses observations, from 1990 to 2009, combined with ACE observations from 1998 to the present provide us with in situ measurements of solar wind properties that span two entire solar cycles. These missions provide an ideal data set to study the properties and evolution of the fast solar wind originating from equatorial and polar holes. In this work, we focus on these two types of fast solar wind during the minima between solar cycles 22 and 23 and 23 and 24. We use data from SWICS, SWOOPS, and VHM/FGM on board Ulysses and SWICS, SWEPAM, and MAG on board ACE to analyze the proton kinetic, thermal, and dynamic characteristics, heavy ion composition, and magnetic field properties of these two fast winds. The comparison shows that: (1) their kinetic, thermal, compositional, and magnetic properties are significantly different at any time during the two minima and (2) they respond differently to the changes in solar activity from cycle 23 to 24. These results indicate that equatorial and polar fast solar wind are two separate subcategories of fast wind. We discuss the implications of these results and relate them to remote-sensing measurements of the properties of polar and equatorial coronal holes carried out in the inner corona during these two solar minima.

  1. POLAR NETWORK INDEX AS A MAGNETIC PROXY FOR THE SOLAR CYCLE STUDIES

    International Nuclear Information System (INIS)

    Priyal, Muthu; Banerjee, Dipankar; Ravindra, B.; Singh, Jagdev; Karak, Bidya Binay; Muñoz-Jaramillo, Andrés; Choudhuri, Arnab Rai

    2014-01-01

    The Sun has a polar magnetic field which oscillates with the 11 yr sunspot cycle. This polar magnetic field is an important component of the dynamo process which operates in the solar convection zone and produces the sunspot cycle. We have direct systematic measurements of the Sun's polar magnetic field only from about the mid-1970s. There are, however, indirect proxies which give us information about this field at earlier times. The Ca-K spectroheliograms taken at the Kodaikanal Solar Observatory during 1904-2007 have now been digitized with 4k × 4k CCD and have higher resolution (∼0.86 arcsec) than the other available historical data sets. From these Ca-K spectroheliograms, we have developed a completely new proxy (polar network index, hereafter PNI) for the Sun's polar magnetic field. We calculate PNI from the digitized images using an automated algorithm and calibrate our measured PNI against the polar field as measured by the Wilcox Solar Observatory for the period 1976-1990. This calibration allows us to estimate the polar fields for the earlier period up to 1904. The dynamo calculations performed with this proxy as input data reproduce reasonably well the Sun's magnetic behavior for the past century

  2. HEMISPHERIC ASYMMETRIES IN THE POLAR SOLAR WIND OBSERVED BY ULYSSES NEAR THE MINIMA OF SOLAR CYCLES 22 AND 23

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, R. W.; Dayeh, M. A.; Desai, M. I.; McComas, D. J. [Southwest Research Institute, P.O. Drawer 28510, San Antonio, TX 78228 (United States); Pogorelov, N. V. [Physics Department, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2013-05-10

    We examined solar wind plasma and interplanetary magnetic field (IMF) observations from Ulysses' first and third orbits to study hemispheric differences in the properties of the solar wind and IMF originating from the Sun's large polar coronal holes (PCHs) during the declining and minimum phase of solar cycles 22 and 23. We identified hemispheric asymmetries in several parameters, most notably {approx}15%-30% south-to-north differences in averages for the solar wind density, mass flux, dynamic pressure, and energy flux and the radial and total IMF magnitudes. These differences were driven by relatively larger, more variable solar wind density and radial IMF between {approx}36 Degree-Sign S-60 Degree-Sign S during the declining phase of solar cycles 22 and 23. These observations indicate either a hemispheric asymmetry in the PCH output during the declining and minimum phase of solar cycles 22 and 23 with the southern hemisphere being more active than its northern counterpart, or a solar cycle effect where the PCH output in both hemispheres is enhanced during periods of higher solar activity. We also report a strong linear correlation between these solar wind and IMF parameters, including the periods of enhanced PCH output, that highlight the connection between the solar wind mass and energy output and the Sun's magnetic field. That these enhancements were not matched by similar sized variations in solar wind speed points to the mass and energy responsible for these increases being added to the solar wind while its flow was subsonic.

  3. Study of the Effect of Active Regions on the Scattering Polarization in the Solar Corona

    Science.gov (United States)

    Derouich, M.; Badruddin

    2018-03-01

    The solar photospheric/chromospheric light exciting atoms/ions is not homogeneous because of the presence of active regions (ARs). The effect of ARs on the scattering polarization at the coronal level is an important ingredient for a realistic determination of the magnetic field. This effect is usually disregarded or mixed with other effects in the sense that the degree of its importance is not well known. The aim of this paper is to study the effect of atmospheric inhomogeneities on the coronal scattering polarization. We determined quantitatively the importance of the atmospheric inhomogeneities by using given geometries of solar ARs (plages and sunspots).

  4. Coronal temperatures, heating, and energy flow in a polar region of the sun at solar maximum

    Science.gov (United States)

    Withbroe, G. L.; Kohl, J. L.; Weiser, H.; Munro, R. H.

    1985-01-01

    The profiles of resonantly scattered Lyman-alpha coronal radiation have been used to determine the hydrogen kinetic temperature from 1.5 to 4 solar radius from the center of the polar region of the corona observed in 1980 at solar maximum. Hydrogen temperatures derived from the line profiles were found to decrease with height from 1.2 million K at r = 1.5 solar radii to 600,000 K at r = 4 solar radius. Comparison of the measured kinetic temperatures with predictions from a semiempirical two-fluid model showed evidence of a small amount of heating or a nonthermal contribution to the motions of coronal protons between 1.5 and 4 solar radius. The widths of the profiles confirmed an upper limit of 110 + or - 15 km/s on the rms magnitude of the line-of-sight component of velocities between 1.5 and 4 solar radius. Density measurements obtained in situ in the solar wind in the ecliptic were used to locate the sources of low speed and high-speed winds in the polar region. An eclipse photograph of the corona at solar maximum is provided.

  5. Effect of III-nitride polarization on V{sub OC} in p-i-n and MQW solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Namkoong, Gon; Boland, Patrick; Foe, Kurniawan; Latimer, Kevin [Department of Electrical and Computer Engineering, Old Dominion University, Applied Research Center, 12050 Jefferson Avenue, Newport News, VA 23606 (United States); Bae, Si-Young; Shim, Jae-Phil; Lee, Dong-Seon [School of Information and Communications, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju 500-712 (Korea, Republic of); Jeon, Seong-Ran [Korea Photonics Technology Institute, 971-35, Wolchul-dong, Buk-gu, Gwangju, 500-779 (Korea, Republic of); Doolittle, W. Alan [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2011-02-15

    We performed detailed studies of the effect of polarization on III-nitride solar cells. Spontaneous and piezoelectric polarizations were assessed to determine their impacts upon the open circuit voltages (V{sub OC}) in p-i(InGaN)-n and multi-quantum well (MQW) solar cells. We found that the spontaneous polarization in Ga-polar p-i-n solar cells strongly modifies energy band structures and corresponding electric fields in a way that degrades V{sub OC} compared to non-polar p-i-n structures. In contrast, we found that piezoelectric polarization in Ga-polar MQW structures does not have a large influence on V{sub OC} compared to non-polar MQW structures. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Solar particle effects on minor components of the Polar atmosphere

    Directory of Open Access Journals (Sweden)

    A. Damiani

    2008-02-01

    Full Text Available Solar activity can influence the Earth's environment, and in particular the ozone layer, by direct modulation of the e.m. radiation or through variability of the incoming cosmic ray flux (solar and galactic particles. In particular, solar energetic particles (SEPs provide additional external energy to the terrestrial environment; they are able to interact with the minor constituents of the atmospheric layer and produce ionizations, dissociations, dissociative ionizations and excitations. This paper highlights the SEP effects on the chemistry of the upper atmosphere by analysing some SEP events recorded during 2005 in the descending phase of the current solar cycle. It is shown that these events can lead to short- (hours and medium- (days term ozone variations through catalytic cycles (e.g. HOx and NOx increases. We focus attention on the relationship between ozone and OH data (retrieved from MLS EOS AURA for four SEP events: 17 and 20 January, 15 May and 8 September. We confirm that SEP effects are different on the night and day hemispheres at high latitudes.

  7. Mechanism of Cyclically Polarity Reversing Solar Magnetic Cycle as ...

    Indian Academy of Sciences (India)

    tribpo

    solar dynamo mechanism that generates electric current and magnetic field by plasma flows inside the .... on the flow which makes the flow pattern twist and propagate to drive the dynamo must be strong enough to .... drive electric current in cosmos, Elsassar, a friend of Einstein, proposed that non- axisymmetric flows could ...

  8. Solar radiation as a forest management tool: a primer of principles and application

    Science.gov (United States)

    Howard G. Halverson; James L. Smith

    1979-01-01

    Forests are products of solar radiation use. The sun also drives the hydrologic cycle on forested watersheds. Some basic concepts of climatology and solar radiation are summarized in including earth-sun relations, polar tilt, solar energy, terrestrial energy, energy balance, and local energy. An example shows how these principles can be applied in resource management....

  9. Discovery of Scattering Polarization in the Hydrogen Ly α Line of the Solar Disk Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kano, R.; Narukage, N.; Ishikawa, R.; Bando, T.; Katsukawa, Y.; Kubo, M.; Giono, G.; Hara, H.; Suematsu, Y. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Bueno, J. Trujillo [Instituto de Astrofísica de Canarias, La Laguna, Tenerife, E-38205 (Spain); Winebarger, A.; Kobayashi, K. [Marshall Space Flight Center, National Aeronautics and Space Administration (NASA), Huntsville, AL 35812 (United States); Auchère, F. [Institut d’Astrophysique Spatiale, Université Paris Sud, Batiment 121, F-91405 Orsay (France); Ishikawa, S.; Shimizu, T.; Sakao, T.; Tsuneta, S. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Ichimoto, K. [Hida Observatory, Kyoto University, Takayama, Gifu 506-1314 (Japan); Goto, M. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Belluzzi, L., E-mail: ryouhei.kano@nao.ac.jp [Istituto Ricerche Solari Locarno, CH-6605 Locarno Monti (Switzerland); and others

    2017-04-10

    There is a thin transition region (TR) in the solar atmosphere where the temperature rises from 10,000 K in the chromosphere to millions of degrees in the corona. Little is known about the mechanisms that dominate this enigmatic region other than the magnetic field plays a key role. The magnetism of the TR can only be detected by polarimetric measurements of a few ultraviolet (UV) spectral lines, the Ly α line of neutral hydrogen at 121.6 nm (the strongest line of the solar UV spectrum) being of particular interest given its sensitivity to the Hanle effect (the magnetic-field-induced modification of the scattering line polarization). We report the discovery of linear polarization produced by scattering processes in the Ly α line, obtained with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) rocket experiment. The Stokes profiles observed by CLASP in quiet regions of the solar disk show that the Q / I and U / I linear polarization signals are of the order of 0.1% in the line core and up to a few percent in the nearby wings, and that both have conspicuous spatial variations with scales of ∼10 arcsec. These observations help constrain theoretical models of the chromosphere–corona TR and extrapolations of the magnetic field from photospheric magnetograms. In fact, the observed spatial variation from disk to limb of polarization at the line core and wings already challenge the predictions from three-dimensional magnetohydrodynamical models of the upper solar chromosphere.

  10. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    International Nuclear Information System (INIS)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van; Rodríguez, J. Blanco; Iniesta, J. C. Del Toro; Suárez, D. Orozco; Schmidt, W.; Pillet, V. Martínez; Knölker, M.

    2017-01-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  11. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Iniesta, J. C. Del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain); Schmidt, W. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Knölker, M., E-mail: chitta@mps.mpg.de [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2017-03-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  12. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  13. Making Ultraviolet Spectro-Polarimetry Polarization Measurements with the MSFC Solar Ultraviolet Magnetograph Sounding Rocket

    Science.gov (United States)

    West, Edward; Cirtain, Jonathan; Kobayashi, Ken; Davis, John; Gary, Allen

    2011-01-01

    This paper will describe the Marshall Space Flight Center's Solar Ultraviolet Magnetograph Investigation (SUMI) sounding rocket program. This paper will concentrate on SUMI's VUV optics, and discuss their spectral, spatial and polarization characteristics. While SUMI's first flight (7/30/2010) met all of its mission success criteria, there are several areas that will be improved for its second and third flights. This paper will emphasize the MgII linear polarization measurements and describe the changes that will be made to the sounding rocket and how those changes will improve the scientific data acquired by SUMI.

  14. Study of the nuclear structure far from stability: Coulomb excitation of neutron-rich Rb isotopes around N=60; Production of nuclear spin polarized beams using the tilted foils technique

    International Nuclear Information System (INIS)

    Sotty, C.

    2013-01-01

    The underlying structure in the region A ∼ 100, N ∼ 60 has been under intensive and extensive investigation, mainly by β-decay and γ-ray spectroscopy from fission processes. Around N ∼ 60, by adding just few neutrons, protons a rapid shape change occurs from spherical-like to well deformed g.s. shape. Shape coexistence has been observed in the Sr and Zr nuclei, and is expected to take place in the whole region. The mechanisms involved in the appearance of the deformation is not well understood. The interplay between down-sloping and up-sloping neutron Nilsson orbital is evoked as one of the main reasons for the sudden shape change. However, a clear identification of the active proton and neutron orbitals was still on-going. For that purpose, the neutron rich 93;95;97;99 Rb isotopes have been studied by Coulomb excitation at CERN (ISOLDE) using the REX-ISOLDE post-accelerator and the MINIBALL setup. The completely unknown structures of 97;99 Rb have been populated and observed. Prompt γ-ray coincidences of low-lying states have been observed and time-correlated in order to build level schemes. The associated transition strengths have been extracted with the GOSIA code. The observed matrix elements of the electromagnetic operator constituted new inputs of further theoretical calculations giving new insight on the involved orbitals. The sensitivity of such experiment can be increased using nuclear spin polarized radioactive ion beam. For that purpose the Tilted Foils Technique (TFT) of polarization has been investigated at CERN. This technique consists to spin polarize the ion beam, passing through thin foils tilted at an oblique angle with respect to the beam direction. The initially obtained atomic polarization is transferred to the nucleus by hyperfine interaction. This technique does not depend on the chemical nature of the element. Short lived nuclei can be polarized in-flight without any need to be stopped in a catcher. It opens up the possibility to

  15. Automated identification and tracking of polar-cap plasma patches at solar minimum

    Directory of Open Access Journals (Sweden)

    R. Burston

    2014-03-01

    Full Text Available A method of automatically identifying and tracking polar-cap plasma patches, utilising data inversion and feature-tracking methods, is presented. A well-established and widely used 4-D ionospheric imaging algorithm, the Multi-Instrument Data Assimilation System (MIDAS, inverts slant total electron content (TEC data from ground-based Global Navigation Satellite System (GNSS receivers to produce images of the free electron distribution in the polar-cap ionosphere. These are integrated to form vertical TEC maps. A flexible feature-tracking algorithm, TRACK, previously used extensively in meteorological storm-tracking studies is used to identify and track maxima in the resulting 2-D data fields. Various criteria are used to discriminate between genuine patches and "false-positive" maxima such as the continuously moving day-side maximum, which results from the Earth's rotation rather than plasma motion. Results for a 12-month period at solar minimum, when extensive validation data are available, are presented. The method identifies 71 separate structures consistent with patch motion during this time. The limitations of solar minimum and the consequent small number of patches make climatological inferences difficult, but the feasibility of the method for patches larger than approximately 500 km in scale is demonstrated and a larger study incorporating other parts of the solar cycle is warranted. Possible further optimisation of discrimination criteria, particularly regarding the definition of a patch in terms of its plasma concentration enhancement over the surrounding background, may improve results.

  16. Polarization Characteristics of Zebra Patterns in Type IV Solar Radio Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Kaneda, K.; Misawa, H.; Tsuchiya, F.; Obara, T. [Planetary Plasma and Atmospheric Research Center, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Iwai, K. [National Institute of Information and Communications Technology, 4-2-1, Nukui-Kitamachi, Koganei, Tokyo 184-8795 (Japan); Katoh, Y. [Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Masuda, S., E-mail: k.kaneda@pparc.gp.tohoku.ac.jp [Institute for Space—Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan)

    2017-06-10

    The polarization characteristics of zebra patterns (ZPs) in type IV solar bursts were studied. We analyzed 21 ZP events observed by the Assembly of Metric-band Aperture Telescope and Real-time Analysis System between 2010 and 2015 and identified the following characteristics: a degree of circular polarization (DCP) in the range of 0%–70%, a temporal delay of 0–70 ms between the two circularly polarized components (i.e., the right- and left-handed components), and dominant ordinary-mode emission in about 81% of the events. For most events, the relation between the dominant and delayed components could be interpreted in the framework of fundamental plasma emission and depolarization during propagation, though the values of DCP and delay were distributed across wide ranges. Furthermore, it was found that the DCP and delay were positively correlated (rank correlation coefficient R = 0.62). As a possible interpretation of this relationship, we considered a model based on depolarization due to reflections at sharp density boundaries assuming fundamental plasma emission. The model calculations of depolarization including multiple reflections and group delay during propagation in the inhomogeneous corona showed that the DCP and delay decreased as the number of reflections increased, which is consistent with the observational results. The dispersive polarization characteristics could be explained by the different numbers of reflections causing depolarization.

  17. Vertical and Horizontal Polarization Observations of Slowly Varying Solar Emissions from Operational Swiss Weather Radars

    Directory of Open Access Journals (Sweden)

    Marco Gabella

    2014-12-01

    Full Text Available The electromagnetic power that arrives from the Sun in the C-band has been used to check the quality of the polarimetric, Doppler weather radar network that has recently been installed in Switzerland. The operational monitoring of this network is based on the analysis of Sun signals in the polar volume data produced during the MeteoSwiss scan program. It relies on a method that has been developed to: (1 determine electromagnetic antenna pointing; (2 monitor receiver stability; and (3 assess the differential reflectivity offset. Most of the results from such a method had been derived using data acquired in 2008, which was a period of quiet solar flux activity. Here, it has been applied, in simplified form, to the currently active Sun period. This note describes the results that have been obtained recently thanks to an inter-comparison of three polarimetric operational radars and the Sun’s reference signal observed in Canada in the S-band by the Dominion Radio Astrophysical Observatory (DRAO. The focus is on relative calibration: horizontal and vertical polarization are evaluated versus the DRAO reference and mutually compared. All six radar receivers (three systems, two polarizations are able to capture and describe the monthly variability of the microwave signal emitted by the Sun. It can be concluded that even this simplified form of the method has the potential to routinely monitor dual-polarization weather radar networks during periods of intense Sun activity.

  18. Textile solar light collectors based on models for polar bear hair

    Energy Technology Data Exchange (ETDEWEB)

    Bahners, Thomas; Schlosser, Uwe; Schollmeyer, Eckhard [Deutsches Textilforschungszentrum Nord-West e.V., Adlerstr. 1, D-47798 Krefeld (Germany); Gutmann, Rainer [Institut fuer Textilchemie und Chemiefasern, Koerschtalstr. 26, D-73770 Denkendorf (Germany)

    2008-12-15

    Concepts of technical fibers following models for the polar bear hair to be used for textile solar collectors are discussed. The approach to coat fibers with a thin layer into which fluorescent dyestuff was dispersed was studied experimentally. Modified fibers made of different polymers were characterized with respect to optical properties relevant for the bionic model. In the case of poly(methylmethacrylate) fibers, the envisaged effect could be achieved to high efficiency. The optical performance could be enhanced by ultrasonic dispersion of the dyestuff in the coating matrix. The effect is less significant in semi-crystalline fibers such as poly(ethylene terephthalate), which is attributed to diffuse scattering. (author)

  19. Polarized Light from the Sun: Unification of the Corona and Analysis of the Second Solar Spectrum — Further Implications of a Liquid Metallic Hydrogen Solar Model

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2015-07-01

    Full Text Available In order to account for the slight polarization of the continuum towards the limb, propo- nents of the Standard Solar Model (SSM must have recourse to electron or hydrogen- based scattering of light, as no other mechanism is possible in a gaseous Sun. Con- versely, acceptance that the solar body is comprised of condensed matter opens up new avenues in the analysis of this problem, even if the photospheric surface itself is viewed as incapable of emitting polarized light. Thus, the increased disk polarization, from the center to the limb, can be explained by invoking the scattering of light by the at- mosphere above the photosphere. The former is reminiscent of mechanisms which are known to account for the polarization of sunlight in the atmosphere of the Earth. Within the context of the Liquid Metallic Hydrogen Solar Model (LMHSM, molecules and small particles, not electrons or hydrogen atoms as required by the SSM, would primarily act as scattering agents in regions also partially comprised of condensed hy- drogen structures (CHS. In addition, the well-known polarization which characterizes the K-corona would become a sign of emission polarization from an anisotropic source, without the need for scattering. In the LMHSM, the K, F, and T- coronas can be viewed as emissive and reflective manifestations of a single corona l entity adopting a radially anisotropic structure, while slowly cooling with altitude above the photosphere. The presence of “dust particles”, advanced by proponents of the SSM, would no longer be required to explain the F and T-corona, as a single cooling structure would account for the properties of the K, F, and T coronas. At the same time, the polarized “Second Solar Spectrum”, characterized by the dominance of certain elemental or ionic spectral lines and an abundance of molecular lines, could be explained in the LMHSM, by first invoking interface polarization and coordination of these species with condensed matter

  20. 24/7 Solar Minimum Polar Cap and Auroral Ion Temperature Observations

    Science.gov (United States)

    Sojka, Jan J.; Nicolls, Michael; van Eyken, Anthony; Heinselman, Craig; Bilitza, Dieter

    2011-01-01

    During the International Polar Year (IPY) two Incoherent Scatter Radars (ISRs) achieved close to 24/7 continuous observations. This presentation describes their data sets and specifically how they can provide the International Reference Ionosphere (IRI) a fiduciary E- and F-region ionosphere description for solar minimum conditions in both the auroral and polar cap regions. The ionospheric description being electron density, ion temperature and electron temperature profiles from as low as 90 km extending to several scale heights above the F-layer peak. The auroral location is Poker Flat in Alaska at 65.1 N latitude, 212.5 E longitude where the NSF s new Poker Flat Incoherent Scatter Radar (PFISR) is located. This location during solar minimum conditions is in the auroral region for most of the day but is at midlatitudes, equator ward of the cusp, for about 4-8 h per day dependent upon geomagnetic activity. In contrast the polar location is Svalbard, at 78.2 N latitude, 16.0 E longitude where the EISCAT Svalbard Radar (ESR) is located. For most of the day the ESR is in the Northern Polar Cap with a noon sector passage often through the dayside cusp. Of unique relevance to IRI is that these extended observations have enabled the ionospheric morphology to be distinguished between quiet and disturbed geomagnetic conditions. During the IPY year, 1 March 2007 - 29 February 2008, about 50 solar wind Corotating Interaction Regions (CIRs) impacted geospace. Each CIR has a two to five day geomagnetic disturbance that is observed in the ESR and PFISR observations. Hence, this data set also enables the quiet-background ionospheric climatology to be established as a function of season and local time. These two separate climatologies for the ion temperature at an altitude of 300 km are presented and compared with IRI ion temperatures. The IRI ion temperatures are about 200-300 K hotter than the observed values. However, the MSIS neutral temperature at 300 km compares favorably

  1. Tilt Table Test

    Science.gov (United States)

    ... test may also be appropriate to investigate the cause of fainting if you've fainted only once, but another ... recommend a tilt table test to evaluate the cause of syncope. A tilt table test may also be recommended ...

  2. Estimation of spectral solar radiation based on global insolation and characteristics of spectral solar radiation on a tilt surface; Zenten nissharyo ni motozuku zenten nissha supekutoru no suitei to keishamen bunko tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Baba, H.; Kanayama, K.; Endo, N.; Koromohara, K.; Takayama, H. [Kitami Institute of Technology, Hokkaido (Japan)

    1996-10-27

    Use of global insolation for estimating the corresponding spectral distribution is proposed. Measurements of global insolation spectrum throughout a year were compiled for clear days and cloudy days, ranked by 100W/m{sup 2}, for the clarification of spectral distribution. Global insolation quantity for a clear day was subject mainly to sun elevation. The global insolation spectral distribution with the sun elevation not lower than 15{degree} was similar to Bird`s model. Under the cloudy sky, energy density was lower in the region of wavelengths longer than the peak wavelength of 0.46{mu}m, and the distribution curve was sharper than that under the clear sky. Values given by Bird`s model were larger than measured values in the wavelength range of 0.6-1.8{mu}m, which was attributed to absorption by vapor. From the standard spectral distribution charts for the clear sky and cloudy sky, and from the dimensionless spectral distributions obtained by dividing them by the peak values, spectral distributions could be estimated of insolation quantities for the clear sky, cloudy sky, etc. As for the characteristics of spectral solar radiation on a tilt surface obtained from Bird`s model, they agreed with actually measured values at an angle of inclination of 60{degree} or smaller. 6 refs., 10 figs., 1 tab.

  3. The aurora at quite magnetospheric conditions: Repeatability and dipole tilt angle dependence

    International Nuclear Information System (INIS)

    Oznovich, I.; Eastes, R.W.; Huffman, R.E.; Tur, M.; Glaser, I.

    1993-01-01

    Is there a magnetospheric ground state? Do the position and size of the auroral oval depend on the magnetic dipole tilt angle at quiet magnetospheric conditions? In order to address these questions, northern hemisphere images of the aurora at 1356 Angstrom, obtained by Polar BEAR at solar minimum (beginning of 1987), were related to high temporal resolution IPM 8 measurements of the interplanetary magnetic field, to solar wind velocity, and to the ground-based activity index Kp. The first problem was addressed by a two-dimensional correlation study of the repeatability of auroral emissions in corrected geomagnetic space at conditions of minimum energy transfer from the magnetosphere. The correlation measure of auroral images was 0.6-0.85. Error simulations indicate that given the uncertainties in pixel position and intensity, the maximum expected value of the correlation measure is 0.65-0.9. The notion of a ground state magnetosphere is therefore supported by this data. Repeatability was found at the same level regardless of time or reconfigurations of the magnetosphere between images and independent of magnetic time sector. The second problem was addressed by relating latitudinal shifts of the aurora with dipole tilt angle without resorting to auroral boundary specification. This data indicate that the latitude of the continuous aurora is related to the dipole tilt angle at quiet magnetospheric conditions. In the winter hemisphere a 10 degrees increase in the dipole tilt angle causes a 1 degree decrease (increase) in the latitude of auroral emissions at noon (midnight). The magnetic local time distribution of the latitudinal shifts with dipole tilt angle support a simple model in which the dipole tilt angle determines the position of the center of the auroral circle along the magnetic meridian 1320-0120 MLT (for IMF B y positive) and does not affect its radius. 22 refs., 8 figs

  4. Onset of the Magnetic Explosion in Solar Polar Coronal X-Ray Jets

    Science.gov (United States)

    Moore, Ronald L.; Sterling, Alphonse C.; Panesar, Navdeep

    2017-08-01

    We examine the onset of the driving magnetic explosion in 15 random polar coronal X-ray jets. Each eruption is observed in a coronal X-ray movie from Hinode and in a coronal EUV movie from Solar Dynamics Observatory. Contrary to the Sterling et al (2015, Nature, 523, 437) scenario for minifilament eruptions that drive polar coronal jets, these observations indicate: (1) in most polar coronal jets (a) the runaway internal tether-cutting reconnection under the erupting minifilament flux rope starts after the spire-producing breakout reconnection starts, not before it, and (b) aleady at eruption onset, there is a current sheet between the explosive closed magnetic field and ambient open field; and (2) the minifilament-eruption magnetic explosion often starts with the breakout reconnection of the outside of the magnetic arcade that carries the minifilament in its core. On the other hand, the diversity of the observed sequences of occurrence of events in the jet eruptions gives further credence to the Sterlling et al (2015, Nature, 523, 437) idea that the magnetic explosions that make a polar X-ray jet work the same way as the much larger magnetic explosions that make and flare and CME. We point out that this idea, and recent observations indicating that magnetic flux cancelation is the fundamental process that builds the field in and around pre-jet minifilaments and triggers the jet-driving magnetic explosion, together imply that usually flux cancelation inside the arcade that explodes in a flare/CME eruption is the fundamental process that builds the explosive field and triggers the explosion.This work was funded by the Heliophysics Division of NASA's Science Mission Directorate through its Living With a Star Targeted Research and Technology Program, its Heliophsyics Guest Investigators Program, and the Hinode Project.

  5. Tilting Saturn without Tilting Jupiter: Constraints on Giant Planet Migration

    Science.gov (United States)

    Brasser, R.; Lee, Man Hoi

    2015-11-01

    The migration and encounter histories of the giant planets in our solar system can be constrained by the obliquities of Jupiter and Saturn. We have performed secular simulations with imposed migration and N-body simulations with planetesimals to study the expected obliquity distribution of migrating planets with initial conditions resembling those of the smooth migration model, the resonant Nice model and two models with five giant planets initially in resonance (one compact and one loose configuration). For smooth migration, the secular spin-orbit resonance mechanism can tilt Saturn’s spin axis to the current obliquity if the product of the migration timescale and the orbital inclinations is sufficiently large (exceeding 30 Myr deg). For the resonant Nice model with imposed migration, it is difficult to reproduce today’s obliquity values, because the compactness of the initial system raises the frequency that tilts Saturn above the spin precession frequency of Jupiter, causing a Jupiter spin-orbit resonance crossing. Migration timescales sufficiently long to tilt Saturn generally suffice to tilt Jupiter more than is observed. The full N-body simulations tell a somewhat different story, with Jupiter generally being tilted as often as Saturn, but on average having a higher obliquity. The main obstacle is the final orbital spacing of the giant planets, coupled with the tail of Neptune’s migration. The resonant Nice case is barely able to simultaneously reproduce the orbital and spin properties of the giant planets, with a probability ˜ 0.15%. The loose five planet model is unable to match all our constraints (probability <0.08%). The compact five planet model has the highest chance of matching the orbital and obliquity constraints simultaneously (probability ˜0.3%).

  6. High-speed solar wind streams and polar mesosphere winter echoes at Troll, Antarctica

    Directory of Open Access Journals (Sweden)

    S. Kirkwood

    2015-06-01

    Full Text Available A small, 54 MHz wind-profiler radar, MARA, was operated at Troll, Antarctica (72° S, 2.5° E, continuously from November 2011 to January 2014, covering two complete Antarctic winters. Despite very low power, MARA observed echoes from heights of 55–80 km (polar mesosphere winter echoes, PMWE on 60% of all winter days (from March to October. This contrasts with previous reports from radars at high northern latitudes, where PWME have been reported only by very high power radars or during rare periods of unusually high electron density at PMWE heights, such as during solar proton events. Analysis shows that PWME at Troll were not related to solar proton events but were often closely related to the arrival of high-speed solar wind streams (HSS at the Earth, with PWME appearing at heights as low as 56 km and persisting for up to 15 days following HSS arrival. This demonstrates that HSS effects penetrate directly to below 60 km height in the polar atmosphere. Using local observations of cosmic-noise absorption (CNA, a theoretical ionization/ion-chemistry model and a statistical model of precipitating energetic electrons associated with HSS, the electron density conditions during the HSS events are estimated. We find that PMWE detectability cannot be explained by these variations in electron density and molecular-ion chemistry alone. PWME become detectable at different thresholds depending on solar illumination and height. In darkness, PWME are detected only when the modelled electron density is above a threshold of about 1000 cm−3, and only above 75 km height, where negative ions are few. In daylight, the electron density threshold falls by at least 2 orders of magnitude and PWME are found primarily below 75 km height, even in conditions when a large proportion of negative ions is expected. There is also a strong dawn–dusk asymmetry with PWME detected very rarely during morning twilight but often during evening twilight. This behaviour cannot be

  7. High-speed solar wind streams and polar mesosphere winter echoes at Troll, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Kirkwood, S.; Belova, E. [Swedish Institute of Space Physics, Kiruna (Sweden). Polar Atmospheric Research; Osepian, A. [Polar Geophysical Institute, Murmansk (Russian Federation); Lee, Y.S. [Korea Astronomy and Space Science Institute, Daejeon (Korea, Republic of)

    2015-10-01

    A small, 54 MHz wind-profiler radar, MARA, was operated at Troll, Antarctica (72 S, 2.5 E), continuously from November 2011 to January 2014, covering two complete Antarctic winters. Despite very low power, MARA observed echoes from heights of 55-80 km (polar mesosphere winter echoes, PMWE) on 60% of all winter days (from March to October). This contrasts with previous reports from radars at high northern latitudes, where PWME have been reported only by very high power radars or during rare periods of unusually high electron density at PMWE heights, such as during solar proton events. Analysis shows that PWME at Troll were not related to solar proton events but were often closely related to the arrival of high-speed solar wind streams (HSS) at the Earth, with PWME appearing at heights as low as 56 km and persisting for up to 15 days following HSS arrival. This demonstrates that HSS effects penetrate directly to below 60 km height in the polar atmosphere. Using local observations of cosmic-noise absorption (CNA), a theoretical ionization/ion-chemistry model and a statistical model of precipitating energetic electrons associated with HSS, the electron density conditions during the HSS events are estimated. We find that PMWE detectability cannot be explained by these variations in electron density and molecular-ion chemistry alone. PWME become detectable at different thresholds depending on solar illumination and height. In darkness, PWME are detected only when the modelled electron density is above a threshold of about 1000 cm{sup -3}, and only above 75 km height, where negative ions are few. In daylight, the electron density threshold falls by at least 2 orders of magnitude and PWME are found primarily below 75 km height, even in conditions when a large proportion of negative ions is expected. There is also a strong dawn-dusk asymmetry with PWME detected very rarely during morning twilight but often during evening twilight. This behaviour cannot be explained if PMWE

  8. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    International Nuclear Information System (INIS)

    Kramar, M.; Lin, H.; Tomczyk, S.

    2016-01-01

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments

  9. Possible effect of extreme solar energetic particle events of September–October 1989 on polar stratospheric aerosols: a case study

    Directory of Open Access Journals (Sweden)

    I. A. Mironova

    2013-09-01

    Full Text Available The main ionization source of the middle and low Earth's atmosphere is related to energetic particles coming from outer space. Usually it is ionization from cosmic rays that is always present in the atmosphere. But in a case of a very strong solar eruption, some solar energetic particles (SEPs can reach middle/low atmosphere increasing the ionization rate up to some orders of magnitude at polar latitudes. We continue investigating such a special class of solar events and their possible applications for natural variations of the aerosol content. After the case study of the extreme SEP event of January 2005 and its possible effect upon polar stratospheric aerosols, here we analyze atmospheric applications of the sequence of several events that took place over autumn 1989. Using aerosol data obtained over polar regions from two satellites with space-borne optical instruments SAGE II and SAM II that were operating during September–October 1989, we found that an extreme major SEP event might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, the effect of the additional ambient air ionization on the aerosol formation is minor, in comparison with temperature effect, and can take place only in the cold polar atmospheric conditions. The extra aerosol mass formed under the temperature effect allows attributing most of the changes to the "ion–aerosol clear sky mechanism".

  10. A planet in a polar orbit of 1.4 solar-mass star

    Directory of Open Access Journals (Sweden)

    Guenther E.W.

    2015-01-01

    Full Text Available Although more than a thousand transiting extrasolar planets have been discovered, only very few of them orbit stars that are more massive than the Sun. The discovery of such planets is interesting, because they have formed in disks that are more massive but had a shorter life time than those of solar-like stars. Studies of planets more massive than the Sun thus tell us how the properties of the proto-planetary disks effect the formation of planets. Another aspect that makes these planets interesting is that they have kept their original orbital inclinations. By studying them we can thus find out whether the orbital axes planets are initially aligned to the stars rotational axes, or not. Here we report on the discovery of a planet of a 1.4 solar-mass star with a period of 5.6 days in a polar orbit made by CoRoT. This new planet thus is one of the few known close-in planets orbiting a star that is substantially more massive than the Sun.

  11. Simultaneously improving optical absorption of both transverse-electric polarized and transverse-magnetic polarized light for organic solar cells with Ag grating used as transparent electrode

    Directory of Open Access Journals (Sweden)

    Yongbing Long

    2014-08-01

    Full Text Available Theoretical simulations are performed to investigate optical performance of organic solar cells with Ag grating electrode. It is demonstrated that optical absorption for both transverse-electric (TE polarized and transverse-magnetic(TM polarized light is simultaneously improved when compared with that for the device without the Ag grating. The improvement is respectively attributed to the resonance and the surface plasmon polaritons within the device. After an additional WO3 layer is capped on the Ag grating, absorption of TE-polarized light is further improved due to resonance of double microcavities within the device, and absorption of TM-polarized light is improved by the combined effects of the microcavity resonance and the surface plasmon polaritons. Correspondingly, the short current density for randomly polarized light is improved by 18.1% from that of the device without the Ag grating. Finally, it is demonstrated that high transmission may not be an essential prerequisite for metallic gratings when they are used as transparent electrode since absorption loss caused by low transmission can be compensated by using a capping layer to optimize optical resonance of the WMC structure within the device.

  12. Estimativas das componentes da radiação solar incidente em superfícies inclinadas baseadas na radiação global horizontal Estimates of solar radiation components on a tilted surface based on global horizontal radiation

    Directory of Open Access Journals (Sweden)

    Adilson P. Souza

    2011-03-01

    Full Text Available Foram avaliadas equações estatísticas de estimativas com agrupamentos de dados anuais e mensais e suas respectivas validações, para as componentes global, direta e difusa da radiação solar incidente em superfícies inclinadas a 12,85, 22,85 e 32,85º, com face para o Norte, nas condições climáticas e geográficas de Botucatu, SP. Empregou-se as frações das três componentes da radiação a do topo da atmosfera em correlação com o coeficiente de transmissividade atmosférica do plano horizontal, em uma base de dados de abril/1998 a dezembro/2007, cujas medidas nas três inclinações ocorreram em diferentes períodos, todavia concomitantes ao plano horizontal. O aumento do ângulo de inclinação da superfície propiciou aumento do espalhamento dos valores diários do índice de claridade para superfícies inclinada e horizontal. Nos agrupamentos anuais os piores desempenhos foram verificados na estimativa da radiação difusa diária para superfície inclinada, com valores máximos de espalhamentos iguais a 3,89 MJ m-2 d-1 (43,65% e ajustamento em torno de 62%. Na estimativa das componentes global e direta da radiação solar nos planos inclinados, podem ser aplicadas, tanto as equações anuais como as mensais, com desempenhos dependentes das condições climáticas.Statistics equations and validations with groups of annual and monthly data were evaluated for global, direct and diffuse solar radiation components incident on the tilted surface to 12.85, 22.85 and 32.85° with the face North, in climate and geographical conditions of Botucatu, SP. It was employed the fractions of three components of extraterrestrial radiation in correlation with the coefficient clearness index horizontal plane, in a database of April/1998 to December/2007, whose measures at different periods in three inclinations, however concomitant to the horizontal plane. Increasing the angle of the surface led to increased scattering of the daily values of

  13. Dependence of InGaN solar cell performance on polarization-induced electric field and carrier lifetime

    International Nuclear Information System (INIS)

    Yang Jing; Zhao De-Gang; Jiang De-Sheng; Liu Zong-Shun; Chen Ping; Li Liang; Wu Liang-Liang; Le Ling-Cong; Li Xiao-Jing; He Xiao-Guang; Yang Hui; Wang Hui; Zhu Jian-Jun; Zhang Shu-Ming; Zhang Bao-Shun

    2013-01-01

    The effects of Mg-induced net acceptor doping concentration and carrier lifetime on the performance of a p—i—n InGaN solar cell are investigated. It is found that the electric field induced by spontaneous and piezoelectric polarization in the i-region could be totally shielded when the Mg-induced net acceptor doping concentration is sufficiently high. The polarization-induced potential barriers are reduced and the short circuit current density is remarkably increased from 0.21 mA/cm 2 to 0.95 mA/cm 2 by elevating the Mg doping concentration. The carrier lifetime determined by defect density of i-InGaN also plays an important role in determining the photovoltaic properties of solar cell. The short circuit current density severely degrades, and the performance of InGaN solar cell becomes more sensitive to the polarization when carrier lifetime is lower than the transit time. This study demonstrates that the crystal quality of InGaN absorption layer is one of the most important challenges in realizing high efficiency InGaN solar cells. (interdisciplinary physics and related areas of science and technology)

  14. Tilting a Wobbly Chair

    Science.gov (United States)

    Cross, Rod

    2017-01-01

    If a small object is placed under the front leg of a chair, the chair tilts backwards. If the object is placed under a rear leg, the chair tilts sideways. The effect is surprising but can be analysed in terms of elementary physics.

  15. Measurements of size and composition of particles in polar stratospheric clouds from infrared solar absorption spectra

    International Nuclear Information System (INIS)

    Kinne, S.; Toon, O.B.; Toon, G.C.; Farmer, C.B.; Browell, E.V.; McCormick, M.P.

    1989-01-01

    The attenuation of solar radiation between 1.8- and 15-μm wavelength was measured with the airborne Jet Propulsion Laboratory Mark IV interferometer during the Airborne Antarctic Ozone Expedition in 1987. The measurements not only provide information about the abundance of stratospheric gases, but also about the optical depths of polar stratospheric clouds (PSCs) at wavelengths of negligible gas absorption. The spectral dependence of the PSC optical depth contains information about PSC particle size and particle composition. Thirty-three PSC cases were analyzed and categorized into two types. Type I clouds contain particles with radii of about 0.5 μm and nitric acid concentrations greater than 40%. Type II clouds contain particles composed of water ice with radii of 6 μm and larger. Cloud altitudes were determined from 1.064-μm backscattering observations of the airborne Langley DIAL lidar system. Based on the PSC geometrical thickness, both mass and particle density were estimated. Type I clouds typically had visible wavelength optical depths of about 0.008, mass densities of about 20 ppb, and about 2 particles/cm 3 . The observed type II clouds had optical depths of about 0.03, mass densities of about 400 ppb mass, and about 0.03 particles/cm 3 . The detected PSC type I clouds extended to altitudes of 21 km and were nearly in the ozone-depleted region of the polar stratosphere. The observed type II cases during September were predominantly found at altitudes below 15 km

  16. The polarization modulators based on liquid crystal variable retarders for the PHI and METIS instruments for the solar orbiter mission

    Science.gov (United States)

    Alvarez-Herrero, A.; García Parejo, P.; Laguna, H.; Villanueva, J.; Barandiarán, J.; Bastide, L.; Reina, M.; Royo, M.

    2017-11-01

    A technical development activity was carried out from 2009 to 2011 under ESA supervision to validate the Liquid Crystal Variable Retarders (LCVRs) as polarization modulators for the Solar Orbiter mission. After this, the technology achieved the Technology Readiness Level 5 (TRL5) corresponding to "Component Validation in Relevant Environment". Afterwards, additional tests and characterizations were performed in order to select the final specifications of the LCVRs cells to optimize their performances under the mission environmental conditions. The LCVRs will be used to measure the complete Stokes vector of the incoming light in PHI (The Polarimetric and Helioseismic Imager for Solar Orbiter) and the linear polarization in the case of METIS (Multi Element Telescope for Imaging and Spectroscopy). PHI is an imaging spectro-polarimeter that will acquire high resolution solar magnetograms. On the other hand, METIS is a solar coronagraph that will analyze the linear polarization for observations of the visible-light K-corona. The polarization modulators are described in this work including the optical, mechanical, thermal and electrical aspects. Both modulators will consist of two identical LCVRs with a relative azimuth orientation of 45° for PHI and parallel for the METIS modulator. In the first case, the configuration allows the analysis of the full Stockes vector with maximum polarimetric efficiencies. In the second setup, wide acceptance angles (stress produced by the mounts to the cells, but taking into account the vibration environment due to the launch loads that the device shall withstand. Additionally, the optical clear aperture has been maximized and the design avoids breaks due to thermo-elastic deformations produced during the thermal cycling. Finally, the electrical cables and connections have been designed to obtain a very compact, modular and robust device.

  17. Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence

    Science.gov (United States)

    Mironova, I. A.; Usoskin, I. G.; Kovaltsov, G. A.; Petelina, S. V.

    2012-01-01

    Energetic cosmic rays are the main source of ionization of the low-middle atmosphere, leading to associated changes in atmospheric properties. Via the hypothetical influence of ionization on aerosol growth and facilitated formation of clouds, this may be an important indirect link relating solar variability to climate. This effect is highly debated, however, since the proposed theoretical mechanisms still remain illusive and qualitative, and observational evidence is inconclusive and controversial. Therefore, important questions regarding the existence and magnitude of the effect, and particularly the fraction of aerosol particles that can form and grow, are still open. Here we present empirical evidence of the possible effect caused by cosmic rays upon polar stratospheric aerosols, based on a case study of an extreme solar energetic particle (SEP) event of 20 January 2005. Using aerosol data obtained over polar regions from different satellites with optical instruments that were operating during January 2005, such as the Stratospheric Aerosol and Gas Experiment III (SAGE III), and Optical Spectrograph and Infrared Imaging System (OSIRIS), we found a significant simultaneous change in aerosol properties in both the Southern and Northern Polar regions in temporal association with the SEP event. We speculate that ionization of the atmosphere, which was abnormally high in the lower stratosphere during the extreme SEP event, might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, a detailed interpretation of the effect is left for subsequent studies. This is the first time high vertical resolution measurements have been used to discuss possible production of stratospheric aerosols under the influence of cosmic ray induced ionization. The observed effect is marginally detectable for the analyzed severe SEP event and can be undetectable for the majority of weak-moderate events. The present

  18. A Comparative Study of Magnetic Fields in the Solar Photosphere and Chromosphere at Equatorial and Polar Latitudes

    Science.gov (United States)

    Petrie, G. J. D.; Patrikeeva, I.

    2009-07-01

    Besides their own intrinsic interest, correct interpretation of solar surface magnetic field observations is crucial to our ability to describe the global magnetic structure of the solar atmosphere. Photospheric magnetograms are often used as lower boundary conditions in models of the corona, but not data from the nearly force-free chromosphere. National Solar Observatory's (NSO) Synoptic Optical Long-term Investigations of the Sun VSM (Vector Spectromagnetograph) produces full-disk line-of-sight magnetic flux images deriving from both photospheric and chromospheric layers on a daily basis. In this paper, we investigate key properties of the magnetic field in these two layers using more than five years of VSM data. We find from near-equatorial measurements that the east-west inclination angle of most photospheric fields is less than about 12°, while chromospheric fields expand in all directions to a significant degree. Using a simple stereoscopic inversion, we find evidence that photospheric polar fields are also nearly radial but that during 2008 the chromospheric field in the south pole was expanding superradially. We obtain a spatially resolved polar photospheric flux distribution up to 80° latitude whose strength increases poleward approximately as cosine(colatitude) to the power 9-10. This distribution would give a polar field strength of 5-6 G. We briefly discuss implications for future synoptic map construction and modeling.

  19. Evaluating the Solar Slowly Varying Component at C-Band Using Dual- and Single-Polarization Weather Radars in Europe

    Directory of Open Access Journals (Sweden)

    M. Gabella

    2017-01-01

    Full Text Available Six C-band weather radars located in Europe (Finland, Netherlands, and Switzerland have been used to monitor the slowly varying solar emission, which is an oscillation with an amplitude of several decibels and a period of approximately 27 days. It is caused by the fact that the number of active regions that enhance the solar radio emission with respect to the quiet component, as seen from Earth, varies because of the Sun’s rotation about its axis. The analysis is based on solar signals contained in the polar volume data produced during the operational weather scan strategy. This paper presents hundreds of daily comparisons between radar estimates and the Sun’s reference signal, during the current active Sun period (year 2014. The Sun’s reference values are accurately measured by the Dominion Radio Astrophysical Observatory (DRAO at S-band and converted to C-band using a standard DRAO formula. Vertical and horizontal polarization receivers are able to capture the monthly oscillation of the solar microwave signal: the standard deviation of the log-transformed ratio between radars and the DRAO reference ranges from 0.26 to 0.4 dB. A larger coefficient (and a different value for the quiet Sun component in the standard formula improves the agreement.

  20. Eigenanalysis and Graph Theory Combined to Determine the Seasonal and Solar-Cycle Variations of Polar Magnetic Fields

    Science.gov (United States)

    Shore, R. M.; Freeman, M. P.; Gjerloev, J. W.

    2017-12-01

    We apply the meteorological analysis method of Empirical Orthogonal Functions (EOF) to ground magnetometer measurements, and subsequently use graph theory to classify the results. The EOF method is used to characterise and separate contributions to the variability of the Earth's external magnetic field (EMF) in the northern polar region. EOFs decompose the noisy EMF data into a small number of independent spatio-temporal basis functions, which collectively describe the majority of the magnetic field variance. We use these basis functions (computed monthly) to infill where data are missing, providing a self-consistent description of the EMF at 5-minute resolution spanning 1997-2009 (solar cycle 23). The EOF basis functions are calculated independently for each of the 144 months (i.e. 1997-2009) analysed. Since (by definition) the basis vectors are ranked by their contribution to the total variance, their rank will change from month to month. We use graph theory to find clusters of quantifiably-similar spatial basis functions, and thereby track similar patterns throughout the span of 144 months. We find that the discovered clusters can be associated with well-known individual Disturbance Polar (DP)-type equivalent current systems (e.g. DP2, DP1, DPY, NBZ), or with the motion of these systems. Via this method, we thus describe the varying behaviour of these current systems over solar cycle 23. We present their seasonal and solar cycle variations and examine the response of each current system to solar wind driving.

  1. Influence of Solar and Lunar Tides on the Mesopause Region as Observed in Polar Mesosphere Summer Echoes Characteristics

    Science.gov (United States)

    Dalin, P.; Kirkwood, S.; Pertsev, N.; Perminov, V.

    2017-10-01

    Long-term observations of polar mesosphere summer echoes (PMSE) from 2002 to 2012 are investigated with the aim to statistically study the effects of solar thermal migrating and lunar gravitational tides on aerosol layers and their environment at altitudes 80-90 km. The solar and lunar tidal periodicities are clearly present in PMSE data. For the first time, both amplitudes and phases of solar and lunar tides are estimated using PMSE data from the ESRAD radar located at Esrange (Sweden). The diurnal, semidiurnal, and terdiurnal solar migrating tides show pronounced periodicities in the PMSE strength and wind velocity components. Lunar tides demonstrate clear oscillations in the PMSE strength and wind velocities as well. "canonical" lunar gravitational tides, corresponding to the lunar gravitational potential, produce rather large amplitudes and are comparable to the solar thermal tides, whereas "noncanonical" lunar oscillations have minor effects on PMSE layers, but are still statistically significant. The influence of diurnal/semidiurnal tides and monthly/semimonthly tidal components is studied separately. Our estimations of solar thermal and lunar tidal amplitudes are in good agreement with those of previous model and experimental studies. A new mechanism of quadratic demodulation of the solar semidiurnal and lunar semidiurnal tides is shown to be valid at the summer mesopause and can explain periodical PMSE oscillations due to the lunar synodic semimonthly tide with period of 14.77 days. Two harmonics with periods of 27.0 and 13.5 days supposedly representing the solar rotation cycle are also clearly present in PMSE data.

  2. RADIATIVE TRANSFER MODELING OF THE ENIGMATIC SCATTERING POLARIZATION IN THE SOLAR Na i D{sub 1} LINE

    Energy Technology Data Exchange (ETDEWEB)

    Belluzzi, Luca [Istituto Ricerche Solari Locarno, CH-6605 Locarno Monti (Switzerland); Bueno, Javier Trujillo [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Degl’Innocenti, Egidio Landi [Dipartimento di Fisica e Astronomia, Università di Firenze, I-50125 Firenze (Italy)

    2015-12-01

    The modeling of the peculiar scattering polarization signals observed in some diagnostically important solar resonance lines requires the consideration of the detailed spectral structure of the incident radiation field as well as the possibility of ground level polarization, along with the atom's hyperfine structure and quantum interference between hyperfine F-levels pertaining either to the same fine structure J-level, or to different J-levels of the same term. Here we present a theoretical and numerical approach suitable for solving this complex non-LTE radiative transfer problem. This approach is based on the density-matrix metalevel theory (where each level is viewed as a continuous distribution of sublevels) and on accurate formal solvers of the transfer equations and efficient iterative methods. We show an application to the D-lines of Na i, with emphasis on the enigmatic D{sub 1} line, pointing out the observable signatures of the various physical mechanisms considered. We demonstrate that the linear polarization observed in the core of the D{sub 1} line may be explained by the effect that one gets when the detailed spectral structure of the anisotropic radiation responsible for the optical pumping is taken into account. This physical ingredient is capable of introducing significant scattering polarization in the core of the Na i D{sub 1} line without the need for ground-level polarization.

  3. An Empirical Orthogonal Function Reanalysis of the Northern Polar External and Induced Magnetic Field During Solar Cycle 23

    Science.gov (United States)

    Shore, R. M.; Freeman, M. P.; Gjerloev, J. W.

    2018-01-01

    We apply the method of data-interpolating empirical orthogonal functions (EOFs) to ground-based magnetic vector data from the SuperMAG archive to produce a series of month length reanalyses of the surface external and induced magnetic field (SEIMF) in 110,000 km2 equal-area bins over the entire northern polar region at 5 min cadence over solar cycle 23, from 1997.0 to 2009.0. Each EOF reanalysis also decomposes the measured SEIMF variation into a hierarchy of spatiotemporal patterns which are ordered by their contribution to the monthly magnetic field variance. We find that the leading EOF patterns can each be (subjectively) interpreted as well-known SEIMF systems or their equivalent current systems. The relationship of the equivalent currents to the true current flow is not investigated. We track the leading SEIMF or equivalent current systems of similar type by intermonthly spatial correlation and apply graph theory to (objectively) group their appearance and relative importance throughout a solar cycle, revealing seasonal and solar cycle variation. In this way, we identify the spatiotemporal patterns that maximally contribute to SEIMF variability over a solar cycle. We propose this combination of EOF and graph theory as a powerful method for objectively defining and investigating the structure and variability of the SEIMF or their equivalent ionospheric currents for use in both geomagnetism and space weather applications. It is demonstrated here on solar cycle 23 but is extendable to any epoch with sufficient data coverage.

  4. Polar solar wind and interstellar wind properties from interplanetary Lyman-alpha radiation measurements

    Science.gov (United States)

    Witt, N.; Blum, P. W.; Ajello, J. M.

    1981-01-01

    The analysis of Mariner 10 observations of Lyman-alpha resonance radiation shows an increase of interplanetary neutral hydrogen densities above the solar poles. This increase is caused by a latitudinal variation of the solar wind velocity and/or flux. Using both the Mariner 10 results and other solar wind observations, the values of the solar wind flux and velocity with latitude are determined for several cases of interest. The latitudinal variation of interplanetary hydrogen gas, arising from the solar wind latitudinal variation, is shown to be most pronounced in the inner solar system. From this result it is shown that spacecraft Lyman-alpha observations are more sensitive to the latitudinal anisotropy for a spacecraft location in the inner solar system near the downwind axis.

  5. Dynamical heating of the polar summer mesopause induced by solar proton events

    Science.gov (United States)

    Becker, Erich; von Savigny, Christian

    A solar proton event (SPE) causes enhanced ionization of water vapor and nitrogen in the lower mesosphere, leading to production of odd hydrogen and odd nitrogen and hence a temporary depletion of ozone. Therefore, the main direct effect on the large circulation in the summer mesosophere/lower thermosphere (MLT) is a diabatic cooling perturbation centered around the pole in the lower mesosphere. Satellite observations made with the MLS/Aura showed a maximum increase of ¿ 10 K in zonally averaged temperatures around the southern polar summer mesopause during the SPE in January 2005 (v. Savigny et al., 2007, GRL). We propose a mechanism that explains this warming as a dynamical consequence of the cooling below (Becker and v. Savigny, 2009, JGR). We employ the Kuehlungsborn Mechanistic general Circulation Model (KMCM), which is a spectral model with high spatial resolution and a sophisticated parameterization of turbulence, giving rise to explicit simulation of gravity-wave effects in the MLT (Becker, 2009, JAS). An SPE is mimicked in the following way: We start with a control simulation for permanent Jan-uary conditions, extract an arbitrary snapshot, and integrate the model with an additional lower mesospheric cooling. This cooling is switched off after 5 days and the model is integrated for another 10 days. The resulting 15 day time series constitutes an SPE-related perturbation simulation when compared to the corresponding 15-day time series of the control simulation. To improve the statistics, the procedure is repeated six times and composite time series are con-structed. The model response in the SPE case reproduces the warming around the mesopause, which can be explained as follows. The diabatic cooling in the lower summer mesosphere induces an anomalous eastward zonal wind component. As a result, eastward propagating gravity waves are Doppler-shifted to smaller intrinsic frequencies and hence are subject to turbulent damping at lower altitudes. Hence, the

  6. Myth polar light. Why sky bands, herring lightnings, and solar winds fascinate

    International Nuclear Information System (INIS)

    Hunnekuhl, Michael

    2014-01-01

    The actual state of knowledge of the polar-light research is in this illustrated volume as entertainingly as scientific-foundedly presented. The pecularities of pola lights beyond the polar-light zones as for instance in Germany are thematized and the conditions and periods, in which it there occurs, explained. Michael Hunnekuhl succeeds to mediate the fascination and emotion and simultaneously to explain the phenomena according to the latest state of science generally understandably. Which very old interpretations and descriptions are transmitted, which imaginations had men of polar lights long before the science could them explain? Hunnekuhl takes the reader along with into the world of legends and myths around the polar light. An experience report from the deeply snowed up wideness of Lapland lets everybody closely participate at a polar-light observation and feel the emotion, which it can fan. Above 70 polar-light pictures of high value and further explaining graphics show the continuously changing play of colors, supplement the explanations, and make the fascination comprehensible. Spectacular polar-light films from the international space station ISS, photographs from sun-observation satellites, as well as a polar-light film in real time are bound in the book via QR codes and make the time dimension and the dynamics of this fascinating natural spectacle alively comprehensible.

  7. Polar Gateways Arctic Circle Sunrise Conference 2008, Barrow, Alaska: IHY-IPY Outreach on Exploration of Polar and Icy Worlds in The Solar System

    Science.gov (United States)

    Cooper, John F.; Kauristie, K.; Weatherwax, A. T.; Sheehan, G. W.; Smith, R. W.; Sandahl, I.; Østgaard, N.; Chernouss, S.; Moore, M. H.; Peticolas, L. M.; Senske, D. A.; Thompson, B. J.; Tamppari, L. K.; Lewis, E. M.

    2008-09-01

    Polar, heliophysical, and planetary science topics related to the International Heliophysical and Polar Years 2007-2009 were addressed during this circumpolar video conference hosted January 23-29, 2008 at the new Barrow Arctic Research Center of the Barrow Arctic Science Consortium in Barrow, Alaska. This conference was planned as an IHY-IPY event science outreach event bringing together scientists and educational specialists for the first week of sunrise at subzero Arctic temperatures in Barrow. Science presentations spanned the solar system from the polar Sun to Earth, Moon, Mars, Jupiter, Saturn, and the Kuiper Belt. On-site participants experienced look and feel of icy worlds like Europa and Titan by being in the Barrow tundra and sea ice environment and by going "on the ice" during snowmobile expeditions to the near-shore sea ice environment and to Point Barrow, closest geographic point in the U.S. to the North Pole. Many science presentations were made remotely via video conference or teleconference from Sweden, Norway, Russia, Canada, Antarctica, and the United States, spanning up to thirteen time zones (Alaska to Russia) at various times. Extensive educational outreach activities were conducted with the local Barrow and Alaska North Slope communities and through the NASA Digital Learning Network live from the "top of the world" at Barrow. The Sun-Earth Day team from Goddard, and a videographer from the Passport to Knowledge project, carried out extensive educational interviews with many participants and native Inupiaq Eskimo residents of Barrow. Video and podcast recordings of selected interviews are available at http://sunearthday.nasa.gov/2008/multimedia/podcasts.php. Excerpts from these and other interviews will be included in a new high definition video documentary called "From the Sun to the Stars: The New Science of Heliophysics" from Passport to Knowledge that will later broadcast on NASA TV and other educational networks. Full conference

  8. Rigidity of tilting modules

    DEFF Research Database (Denmark)

    Haahr Andersen, Henning; Kaneda, Masaharu

    Let $U_q$ denote the quantum group associated with a finite dimensional semisimple Lie algebra. Assume that $q$ is a complex root of unity of odd order and that $U_q$ is %the quantum group version obtained via Lusztig's $q$-divided powers construction. We prove that all regular projective (tilting...

  9. Preliminary trajectory design for a solar polar observatory using SEP and multiple gravity assists

    NARCIS (Netherlands)

    Corpaccioli, L.; Noomen, R.; De Smet, S.; Parker, J.S.; Herman, J.F.C.

    2015-01-01

    Satellite solar observatories have always been of central importance to heliophysics; while there have been numerous such missions, the solar poles have been extremely under-observed. This paper proposes to use low-thrust as well as multiple gravity assists to reach the enormous energies required

  10. Photoelectric properties of ITO/p(+)-p(-)-InP solar cells in linearly polarized light

    NARCIS (Netherlands)

    Botnaryuk, VM; Gorchak, LV; Raevskii, SD; Sherban, DA; Rud, VY; Rud, YV

    Indium phosphide heterostructures and transparent conducting films of wide-gap oxides have previously been used in the development of highly efficient solar cells, making it possible to bring their efficiencies up to 18% [M, M. Koltun, Optics and Metrology of Solar Cells [in Russian], Nauka, Moscow

  11. Polar summer mesospheric extreme horizontal drift speeds during interplanetary corotating interaction regions (CIRs) and high-speed solar wind streams: Coupling between the solar wind and the mesosphere

    Science.gov (United States)

    Lee, Young-Sook; Kirkwood, Sheila; Kwak, Young-Sil; Kim, Kyung-Chan; Shepherd, Gordon G.

    2014-05-01

    We report the observation of echo extreme horizontal drift speed (EEHS, ≥ 300 m s-1) during polar mesospheric (80-90 km) summer echoes (PMSEs) by the VHF (52 MHz) radar at Esrange, Sweden, in years of 2006 and 2008. The EEHS occur in PMSEs as correlated with high-speed solar wind streams (HSSs), observed at least once in 12-17% of all hours of observation for the two summers. The EEHS rate peaks occur either during high solar wind speed in the early part of the PMSE season or during the arrival of interplanetary corotating interaction regions (CIRs) followed by peaks in PMSE occurrence rate after 1-4 days, in the latter part of the 2006 summer. The cause of EEHS rate peaks is likely under the competition between the interval of the CIR and HSS passage over the magnetosphere. A candidate process in producing EEHS is suggested to be localized strong electric field, which is caused by solar wind energy transfer from the interaction of CIR and HSS with the magnetosphere in a sequential manner. We suggest that EEHS are created by strong electric field, estimated as > 10-30 V m-1 at 85 km altitude, exceeding the mesospheric breakdown threshold field.

  12. 10Be and δ2H in polar ice cores as a probe of the solar variability's influence on climate

    International Nuclear Information System (INIS)

    Raisbeck, G.M.; Yiou, F.; Jouzel, J.; Domaine Univ., 38 - St-Martin-d'Heres; Petit, J.R.

    1990-01-01

    By using the technique of accelerator mass spectrometry, it is now possible to measure detailed profiles of cosmogenic (cosmic ray produced) 10 Be in polar ice cores. Recent work has demonstrated that these profiles contain information on solar activity, via its influence on the intensity of galactic cosmic rays arriving in the Earth's atmosphere. It has been known for some time that, as a result of temperature-dependent fractionation effects, the stable isotope profiles δ 2 O and δ 2 H in polar ice cores contain palaeoclimate information. Thus by comparing the 10 Be and stable isotope profiles in the same ice core, one can test the influence of solar variability on climate, and this independent of possible uncertainties in the absolute chronology of the records. We present here the results of such a comparison for two Antarctic ice cores; one from the South Pole, covering the past ca. 1000 years, and one from Dome C, covering the past ca. 3000 years. (author)

  13. The Great Solar Active Region NOAA 12192: Helicity Transport, Filament Formation, and Impact on the Polar Field

    Science.gov (United States)

    Petrie, Gordon; McMaken, Tyler C.

    2017-08-01

    The solar active region (AR), NOAA 12192, appeared in 2014 October as the largest AR in 24 years. Here we examine the counterintuitive nature of two diffusion-driven processes in the region: the role of helicity buildup in the formation of a major filament, and the relationship between the effects of supergranular diffusion and meridional flow on the AR and on the polar field. Quantitatively, calculations of current helicity and magnetic twist from Helioseismic and Magnetic Imager (HMI) vector magnetograms indicate that, though AR 12192 emerged with negative helicity, positive helicity from subsequent flux emergence, consistent with the hemispheric sign-preference of helicity, increased over time within large-scale, weak-field regions such as those near the polarity inversion line (PIL). Morphologically, Atmospheric Imaging Assembly observations of filament barbs, sigmoidal patterns, and bases of Fe xii stalks initially exhibited signatures of negative helicity, and the long filament that subsequently formed had a strong positive helicity consistent with the helicity buildup along the PIL. We find from full-disk HMI magnetograms that AR 12192's leading positive flux was initially closer to the equator but, owing either to the region’s magnetic surroundings or to its asymmetric flux density distribution, was transported poleward more quickly on average than its trailing negative flux, contrary to the canonical pattern of bipole flux transport. This behavior caused the AR to have a smaller effect on the polar fields than expected and enabled the formation of the very long neutral line where the filament formed.

  14. Distribution of the K-corona over the polar regions of the solar disk: 1965-1983. Technical note

    International Nuclear Information System (INIS)

    Fisher, R.; Seagraves, P.

    1984-01-01

    The goal of this technical note is to present a set of synoptic observations from the Mauna Loa series of K-coronameters in polar projection format. The initial motivation for the production of these plots was the desire to present data that would be useful in the study of the evolution of high-latitude coronal streamers over the solar cycles 20 and 21. It now seems likely that there will be other uses for these data. Possibly the variation of coronal hole area over sunspot cycle can be extracted from the data presented below, and it is anticipated that the POLES plots of the north and south polar regions will provide an interesting adjunct data set for the upcoming ISPM mission, now scheduled for the minimum of the present sunspot cycle. Only east limb data have been used for this project. This choice was dictated by the amount of disk space available at Mauna Loa for the Mk-I and Mk-II data. A synoptic record of both limbs is presently kept for Mk-III data, and the routine used for the polar plot may be applied to either the east limb or west limb data from this current version of the instrument

  15. A Comparative Study of Magnetic Fields in the Solar Photosphere and Chromosphere at Low and Polar Latitudes

    Science.gov (United States)

    Patrikeeva, Irina; Petrie, G.

    2009-05-01

    The SOLIS Vector-Spectromagnetograph produces full-disk line-of-sight (LOS) magnetic flux images deriving from both photospheric and chromospheric layers on a daily basis. We investigate key properties of the magnetic field in these two layers using more than five years of VSM data. We find from near-equatorial measurements that the East-West inclination angle of most photospheric fields is about 12°, while chromospheric fields expand in all directions to a significant degree. Using a simple stereoscopic inversion we find evidence that photospheric polar fields are also nearly radial, but that during 2008 the chromospheric field in the south pole was expanding super-radially. We obtain a spatially-resolved polar photospheric flux distribution up to 80° latitude whose strength increases poleward approximately as cosine(colatitude) to the power 9-10. This distribution would give a polar field strength of 5-6 G. These results have implications for future synoptic map construction and global modeling. This work is carried out through the National Solar Observatory Research Experiences for Undergraduate (REU) site program, which is co-funded by the Department of Defense in partnership with the National Science Foundation REU Program.

  16. Occurrence frequencies of polar mesosphere summer echoes observed at 69° N during a full solar cycle

    Science.gov (United States)

    Latteck, R.; Bremer, J.

    2013-07-01

    Polar mesosphere summer echoes (PMSE) are strong enhancements of received signal power at very high radar frequencies occurring at altitudes between about 80 and 95 km at polar latitudes during summer. PMSE are caused by inhomogeneities in the electron density of the radar Bragg scale within the plasma of the cold summer mesopause region in the presence of negatively charged ice particles. Thus the occurrence of PMSE contains information about mesospheric temperature and water vapour content but also depends on the ionisation due to solar wave radiation and precipitating high energetic particles. Continuous and homogeneous observations of PMSE have been done on the North-Norwegian island Andøya (69.3° N, 16.0° E) from 1999 until 2008 using the ALWIN VHF radar at 53.5 MHz. In 2009 the Leibniz-Institute of Atmospheric Physics in Kühlungsborn, Germany (IAP) started the installation of the Middle Atmosphere Alomar Radar System (MAARSY) at the same location. The observation of mesospheric echoes could be continued in spring 2010 starting with an initial stage of expansion of MAARSY and is carried out with the completed installation of the radar since May 2011. Since both the ALWIN radar and MAARSY are calibrated, the received echo strength of PMSE from 14 yr of mesospheric observations could be converted to absolute signal power. Occurrence frequencies based on different common thresholds of PMSE echo strength were used for investigations of the solar and geomagnetic control of the PMSE as well as of possible long-term changes. The PMSE are positively correlated with the solar Lyman α radiation and the geomagnetic activity. The occurrence frequencies of the PMSE show slightly positive trends but with marginal significance levels.

  17. Assessment of polarization correction impact on the calibration of Terra MODIS reflective solar bands

    Science.gov (United States)

    Wu, Aisheng; Angal, Amit; Geng, Xu; Xiong, Xiaoxiong

    2017-09-01

    The Moderate-Resolution Imaging Spectroradiometer (MODIS), launched in 1999 on Terra and 2002 on Aqua spacecraft respectively, is a scanning radiometer that covers a wavelength range from 0.4 μm to 14.4 μm and scans the Earth over an angular range from -55° to +55°. After a few years in the Terra mission, it became extremely challenging to characterize the changes in the sensor gain and response versus scan angle (RVS) at short wavelengths due to significant degradation and increased polarization sensitivity. To better characterize the system-level degradation, the MODIS Characterization Support Team (MCST) developed an enhanced approach in Collection-6 (C6) L1B algorithm by supplementing the on-board calibration data with the Earth-scene response trends at various scan angles obtained from the pseudo-invariant desert sites. However, the trends at short wavelengths experienced significant impact due to the increased polarization sensitivity, especially at the end of scan. In this study, a polarization correction algorithm developed by MCST is applied to the Terra MODIS RSB response trends obtained from the desert sites. The trends after polarization correction are used to derive the gain and RVS based on the existing MODIS C6 calibration algorithm. Impact of the polarization correction is examined for gain, RVS and their fitting uncertainties over the entire mission. The results of this study provide useful information on how to further improve accuracy and stability of the calibrated L1B product.

  18. The small satellite NINA-MITA to study galactic and solar cosmic rays in low-altitude polar orbit

    Science.gov (United States)

    Furano, G.; Bidoli, V.; Casolino, M.; de Pascale, M. P.; Iannucci, A.; Morselli, A.; Picozza, P.; Reali, E.; Sparvoli, R.; Bakaldin, A.; Galper, A.; Koldashov, M.; Korotkov, M.; Leonov, A.; Mikhailov, V.; Murashov, A.; Voronov, S.; Mazzenga, G.; Ricci, M.; Castellini, G.; Barbiellini, M.; Boezio, M.; Bonvicini, V.; Cirami, R.; Vacchi, A.; Zampa, N.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Circella, M.; de Marzo, C.; Adriani, O.; Papini, P.; Piccardi, S.; Spillantini, P.

    The satellite MITA, carrying on board the scientific payload NINA-2, was launched on July the 15th, 2000 from the cosmodrome of Plesetsk (Russia) with a Cosmos-3M rocket. The satellite and the payload are currently operating within nominal parameters. NINA-2 is the first scientific payload for the technological flight of the Italian small satellite MITA. The detector used in this mission is identical to the one already flying on the Russian satellite Resurs-O1 n.4 in a 840-km sun-synchronous orbit, but makes use of the extensive computer and telemetry capabilities of MITA bus to improve the active data acquisition time. NINA physics objectives are to study cosmic nuclei from hydrogen to iron in the energy range between 10 MeV/n and 1 GeV/n during the years 2000-2003, that is the solar maximum period. The device is capable of charge identification up to iron with isotope sensitivity up to oxigen. The 87.3 degrees, 460 km altitude polar orbit allows investigations of cosmic rays of solar and galactic origin, so to study long and short term solar transient phenomena, and the study of the trapped radiation at higher geomagnetic cutoff.

  19. A KEY PHYSICAL MECHANISM FOR UNDERSTANDING THE ENIGMATIC LINEAR POLARIZATION OF THE SOLAR Ba II AND Na I D{sub 1} LINES

    Energy Technology Data Exchange (ETDEWEB)

    Belluzzi, Luca; Trujillo Bueno, Javier [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2013-09-10

    The linearly polarized spectrum of the solar limb radiation produced by scattering processes is of great diagnostic potential for exploring the magnetism of the solar atmosphere. This spectrum shows an impressive richness of spectral details and enigmatic Q/I signals, whose physical origin must be clearly understood before they can be exploited for diagnostic purposes. The most enduring enigma is represented by the polarization signals observed in the D{sub 1} resonance lines of Na I (5896 A) and Ba II (4934 A), which were expected to be intrinsically unpolarizable. The totality of sodium and 18% of barium have hyperfine structure (HFS), and it has been argued that the only way to produce a scattering polarization signal in such lines is through the presence of a substantial amount of atomic polarization in their lower HFS levels. The strong sensitivity of these long-lived levels to depolarizing mechanisms led to the paradoxical conclusion that the observed D{sub 1}-line polarization is incompatible with the presence in the lower solar chromosphere of inclined magnetic fields sensibly stronger than 0.01 G. Here we show that by properly taking into account the fact that the solar D{sub 1}-line radiation has a non-negligible spectral structure over the short frequency interval spanned by the HFS transitions, it is possible to produce scattering polarization signals in the D{sub 1} lines of Na I and Ba II without the need of ground-level polarization. The resulting linear polarization is not so easily destroyed by elastic collisions and/or magnetic fields.

  20. Perturbations of gyrosynchrotron emission polarization from solar flares by sausage modes: forward modeling

    Science.gov (United States)

    Reznikova, V. E.; Van Doorsselaere, T.; Kuznetsov, A. A.

    2015-03-01

    We examined the polarization of the microwave flaring emission and its modulation by the fast sausage standing wave using a linear 3D magnetohydrodynamic model of a plasma cylinder. We analyzed the effects of the line-of-sight angle on the perturbations of the gyrosynchrotron intensity for two models: a base model with strong Razin suppression and a low-density model in which the Razin effect was negligible. The circular polarization (Stokes V) oscillation is in phase with the intensity oscillation, and the polarization degree (Stokes V/I) oscillates in phase with the magnetic field at the examined frequencies in both models. The two quantities experience a periodical reversal of their signs with a period equal to half of the sausage wave period when seen at a 90° viewing angle, in this case, their modulation depth reaches 100%.

  1. Photovoltaic Modules: Effect of Tilt Angle on Soiling

    Science.gov (United States)

    Cano, Jose

    2011-12-01

    Photovoltaic (PV) systems are one of the next generation's renewable energy sources for our world energy demand. PV modules are highly reliable. However, in polluted environments, over time, they will collect grime and dust. There are also limited field data studies about soiling losses on PV modules. The study showed how important it is to investigate the effect of tilt angle on soiling. The study includes two sets of mini-modules. Each set has 9 PV modules tilted at 0, 5, 10, 15, 20, 23, 30, 33 and 40°. The first set called "Cleaned" was cleaned every other day. The second set called "Soiled" was never cleaned after the first day. The short circuit current, a measure of irradiance, and module temperature was monitored and recorded every two minutes over three months (January-March 2011). The data were analyzed to investigate the effect of tilt angle on daily and monthly soiling, and hence transmitted solar insolation and energy production by PV modules. The study shows that during the period of January through March 2011 there was an average loss due to soiling of approximately 2.02% for 0° tilt angle. Modules at tilt angles 23° and 33° also have some insolation losses but do not come close to the module at 0° tilt angle. Tilt angle 23° has approximately 1.05% monthly insolation loss, and 33° tilt angle has an insolation loss of approximately 0.96%. The soiling effect is present at any tilt angle, but the magnitude is evident: the flatter the solar module is placed the more energy it will lose.

  2. Multiwavelength Analysis of the Impact Polarization of 2001 June 15 Solar Flare

    Czech Academy of Sciences Publication Activity Database

    Xu, Z.; Hénoux, J.C.; Chambe, G.; Karlický, Marian; Fang, C.

    2005-01-01

    Roč. 631, č. 1 (2005), s. 618-627 ISSN 0004-637X Institutional research plan: CEZ:AV0Z1003909 Keywords : Sun * polarization * flares Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 6.308, year: 2005

  3. PHOTOSPHERIC FLOW FIELD RELATED TO THE EVOLUTION OF THE SUN'S POLAR MAGNETIC PATCHES OBSERVED BY HINODE SOLAR OPTICAL TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Kaithakkal, Anjali John; Suematsu, Y.; Kubo, M. [Department of Astronomical Science, Graduate University for Advanced Studies (SOKENDAI), Mitaka, Tokyo 181-8588 (Japan); Iida, Y.; Tsuneta, S. [Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Shiota, D., E-mail: anjali.johnk@nao.ac.jp [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan)

    2015-02-01

    We investigated the role of photospheric plasma motions in the formation and evolution of polar magnetic patches using time-sequence observations with high spatial resolution. The observations were obtained with the spectropolarimeter on board the Hinode satellite. From the statistical analysis using 75 magnetic patches, we found that they are surrounded by strong converging, supergranulation associated flows during their apparent lifetime and that the converging flow around the patch boundary is better observed in the Doppler velocity profile in the deeper photosphere. Based on our analysis, we suggest that the like-polarity magnetic fragments in the polar region are advected and clustered by photospheric converging flows, thereby resulting in the formation of polar magnetic patches. Our observations show that, in addition to direct cancellation, magnetic patches decay by fragmentation followed by unipolar disappearance or unipolar disappearance without fragmentation. It is possible that the magnetic patches of existing polarity fragment or diffuse away into smaller elements and eventually cancel out with opposite polarity fragments that reach the polar region around the solar cycle maximum. This could be one of the possible mechanisms by which the existing polarity decays during the reversal of the polar magnetic field.

  4. The Hanle and Zeeman Polarization Signals of the Solar Ca II 8542 angstromLine

    Czech Academy of Sciences Publication Activity Database

    Štěpán, Jiří; Trujillo Bueno, J.

    2016-01-01

    Roč. 826, č. 1 (2016), L10/1-L10/6 ISSN 2041-8205 R&D Projects: GA ČR(CZ) GA16-16861S Grant - others:COST Action(XE) MP1104 Institutional support: RVO:67985815 Keywords : line profiles * polarization * radiative transfer Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.522, year: 2016

  5. The Great Solar Active Region NOAA 12192: Helicity Transport, Filament Formation, and Impact on the Polar Field

    Energy Technology Data Exchange (ETDEWEB)

    McMaken, Tyler C. [National Solar Observatory REU Program, 3665 Discovery Drive, 3rd Floor, Boulder, CO 80303 (United States); Petrie, Gordon J. D., E-mail: tmcmaken@gmail.com, E-mail: gpetrie@noao.edu [National Solar Observatory, 3665 Discovery Drive, 3rd Floor, Boulder, CO 80303 (United States)

    2017-05-10

    The solar active region (AR), NOAA 12192, appeared in 2014 October as the largest AR in 24 years. Here we examine the counterintuitive nature of two diffusion-driven processes in the region: the role of helicity buildup in the formation of a major filament, and the relationship between the effects of supergranular diffusion and meridional flow on the AR and on the polar field. Quantitatively, calculations of current helicity and magnetic twist from Helioseismic and Magnetic Imager (HMI) vector magnetograms indicate that, though AR 12192 emerged with negative helicity, positive helicity from subsequent flux emergence, consistent with the hemispheric sign-preference of helicity, increased over time within large-scale, weak-field regions such as those near the polarity inversion line (PIL). Morphologically, Atmospheric Imaging Assembly observations of filament barbs, sigmoidal patterns, and bases of Fe xii stalks initially exhibited signatures of negative helicity, and the long filament that subsequently formed had a strong positive helicity consistent with the helicity buildup along the PIL. We find from full-disk HMI magnetograms that AR 12192's leading positive flux was initially closer to the equator but, owing either to the region’s magnetic surroundings or to its asymmetric flux density distribution, was transported poleward more quickly on average than its trailing negative flux, contrary to the canonical pattern of bipole flux transport. This behavior caused the AR to have a smaller effect on the polar fields than expected and enabled the formation of the very long neutral line where the filament formed.

  6. Polar mesosphere summer echo strength in relation to solar variability and geomagnetic activity during 1997–2009

    Directory of Open Access Journals (Sweden)

    M. Smirnova

    2011-03-01

    Full Text Available This paper is based on measurements of Polar Mesosphere Summer Echoes (PMSE with the 52 MHz radar ESRAD, located near Kiruna, in Northern Sweden, during the summers of 1997–2009. Here, a new independent calibration method allowing estimation of possible changes in antenna feed losses and transmitter output is described and implemented for accurate calculation of year-to-year variations of PMSE strength (expressed in absolute units – radar volume reflectivity η. The method is based on radar-radiosonde comparisons in the upper troposphere/lower stratosphere region simultaneously with PMSE observations. Inter-annual variations of PMSE volume reflectivity are found to be strongly positively correlated with the local geomagnetic K-index, both when averaged over all times of the day, and when considering 3-h UT intervals separately. Increased electron density due to energetic particle precipitation from the magnetosphere is suggested as one of the possible reasons for such a correlation. Enhanced ionospheric electric field may be another reason but this requires further study. Multi-regression analysis of inter-annual variations of PMSE η shows also an anti-correlation with solar 10.7 cm flux and the absence of any statistically significant trend in PMSE strength over the interval considered (13-years. Variations related to solar flux and K-index account for 86% of the year-to-year variations in radar volume reflectivity.

  7. A statistical study of the polar mesosphere summer echoes overshoot effect with EISCAT VHF during the present solar cycle

    Science.gov (United States)

    Pinedo, H.; La Hoz, C.; Havnes, O.; Rietveld, M. T.

    2013-12-01

    We have conducted observational campaigns using EISCAT radars and the heater to modify the strength of the polar mesosphere summer echoes (PMSE). In 2003, Havnes et al. predicted and measured a PMSE overshoot effect. The overshoot effect was strong and frequently observed in the next years following its discovery, but afterwards it has become weaker and rarely observed. However, it seems that this effect has reappeared in our most recent summer campaign in 2013. We will show a statistical study of the occurrence and strength of the heating and the overshoot effect based on observations around the PMSE peak season in the years 2003-2013, this corresponds to approximately a solar cycle. It is know that a major factor controlling the electron heating at the PMSE layer is the electron density below it. It is plausible that the electron density has been unfavorable in the case when the PMSE overshoot was absent. The aim of this study is to verify if the occurrence of the PMSE overshoot and heating effects are correlated with changes in the electron density as determined by the phase of the solar cycle. However, we cannot exclude that other factors are at play.

  8. 3D Polarized Radiative Transfer for Solar System Applications Using the public-domain HYPERION Code

    Science.gov (United States)

    Wolff, M. J.; Robitaille, T.; Whitney, B. A.

    2012-12-01

    We present a public-domain radiative transfer tool that will allow researchers to examine a wide-range of interesting solar system applications. Hyperion is a new three-dimensional continuum Monte-Carlo radiative transfer code that is designed to be as general as possible, allowing radiative transfer to be computed through a variety of three-dimensional grids (Robitaille, 2011, Astronomy & Astrophysics 536 A79). The main part of the code is problem-independent, and only requires the user to define the three-dimensional density structure, and the opacity and the illumination properties (as well as a few parameters that control execution and output of the code). Hyperion is written in Fortran 90 and parallelized using the MPI-2 standard. It is bundled with Python libraries that enable very flexible pre- and post-processing options (arbitrary shapes, multiple aerosol components, etc.). These routines are very amenable to user-extensibility. The package is currently distributed at www.hyperion-rt.org. Our presentation will feature 1) a brief overview of the code, including a description of the solar system-specific modifications that we have made beyond the capabilities in the original release; 2) Several solar system applications (i.e., Deep Impact Plume, Martian atmosphere, etc.); 3) discussion of availability and distribution of code components via www.hyperion-rt.org.

  9. Efficiency enhancement using voltage biasing for ferroelectric polarization in dye-sensitized solar cells

    Science.gov (United States)

    Kim, Sangmo; Song, Myoung Geun; Bark, Chung Wung

    2018-01-01

    Dye-sensitized solar cells (DSSCs) are one of the most promising third generation solar cells that have been extensively researched over the past decade as alternative to silicon-based solar cells, due to their low production cost and high energy-conversion efficiency. In general, a DSSC consists of a transparent electrode, a counter electrode, and an electrolyte such as dye. To achieve high power-conversion efficiency in cells, many research groups have focused their efforts on developing efficient dyes for liquid electrolytes. In this work, we report on the photovoltaic properties of DSSCs fabricated using a mixture of TiO2 with nanosized Fe-doped bismuth lanthanum titanate (nFe-BLT) powder). Firstly, nFe-BLT powders were prepared using a high-energy ball milling process and then, TiO2 and nFe-BLT powders were stoichiometrically blended. Direct current (DC) bias of 20 MV/m was applied to lab-made DSSCs. With the optimal concentration of nFe-BLT doped in the electrode, their light-to-electricity conversion efficiency could be improved by ∼64% compared with DSSCs where no DC bias was applied.

  10. Direct solar wind proton access into permanently shadowed lunar polar craters

    Science.gov (United States)

    Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.

    2011-12-01

    Recent analyses of Lunar Prospector neutron spectrometer (LPNS) data have suggested that high abundances of hydrogen exist within cold traps at the lunar poles, and it has often been assumed that hydrogen-bearing volatiles sequestered in permanent shadow are topographically shielded from sputtering by solar wind protons. However, recent simulation results are presented showing that textbf{solar wind protons clearly access the floor of an idealized, shadowed lunar crater} through a combination of thermal and ambipolar processes, in effect creating a plasma "mini-wake". These simulations are the first to model the mini-wake environment in two spatial dimensions with a self-consistent lunar surface-plasma interaction. Progress is reported on constraining the nonzero particle fluxes and energies incident on kilometer-scale shadowed topography, such as a small crater embedded within a larger one. The importance of direct solar wind proton bombardment is discussed within the context of understanding the stability and inventory of hydrogen-bearing volatiles in shadow at the lunar poles. textit{The support of the National Lunar Science Institute, the DREAM Institute, LPROPS, and the NASA Postdoctoral Program at NASA Goddard Space Flight Center administered by ORAU are gratefully acknowledged.}

  11. Direct Solar Wind Proton Access into Permanently Shadowed Lunar Polar Craters

    Science.gov (United States)

    Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.

    2011-01-01

    Recent analyses of Lunar Prospector neutron spectrometer (LPNS) data have suggested that high abundances of hydrogen exist within cold traps at the lunar poles, and it has often been assumed that hydrogen-bearing volatiles sequestered in permanent shadow are topographically shielded from sputtering by solar wind protons. However, recent simulation results are presented showing that solar wind protons clearly access the floor of an idealized, shadowed lunar crater through a combination of thermal and ambipolar processes, in effect creating a plasma "miniwake". These simulations are the first to model the mini-wake environment in two spatial dimensions with a self-consistent lunar surface-plasma interaction. Progress is reported on constraining the nonzero particle fluxes and energies incident on kilometer-scale shadowed topography, such as a small crater embedded within a larger one. The importance of direct solar wind proton bombardment is discussed within the context of understanding the stability and inventory of hydrogen-bearing volatiles in shadow at the lunar poles. The support of the National Lunar Science institute, the DREAM institute, LPROPS, and the NASA Postdoctoral Program at NASA Goddard Space Flight Center administered by ORAU are gratefully acknowledged.

  12. Dual-Polarization Observations of Slowly Varying Solar Emissions from a Mobile X-Band Radar.

    Science.gov (United States)

    Gabella, Marco; Leuenberger, Andreas

    2017-05-22

    The radio noise that comes from the Sun has been reported in literature as a reference signal to check the quality of dual-polarization weather radar receivers for the S-band and C-band. In most cases, the focus was on relative calibration: horizontal and vertical polarizations were evaluated versus the reference signal mainly in terms of standard deviation of the difference. This means that the investigated radar receivers were able to reproduce the slowly varying component of the microwave signal emitted by the Sun. A novel method, aimed at the absolute calibration of dual-polarization receivers, has recently been presented and applied for the C-band. This method requires the antenna beam axis to be pointed towards the center of the Sun for less than a minute. Standard deviations of the difference as low as 0.1 dB have been found for the Swiss radars. As far as the absolute calibration is concerned, the average differences were of the order of -0.6 dB (after noise subtraction). The method has been implemented on a mobile, X-band radar, and this paper presents the successful results that were obtained during the 2016 field campaign in Payerne (Switzerland). Despite a relatively poor Sun-to-Noise ratio, the "small" (~0.4 dB) amplitude of the slowly varying emission was captured and reproduced; the standard deviation of the difference between the radar and the reference was ~0.2 dB. The absolute calibration of the vertical and horizontal receivers was satisfactory. After the noise subtraction and atmospheric correction a, the mean difference was close to 0 dB.

  13. Charge-Transfer States in Organic Solar Cells: Understanding the Impact of Polarization, Delocalization, and Disorder

    KAUST Repository

    Zheng, Zilong

    2017-05-08

    We investigate the impact of electronic polarization, charge delocalization, and energetic disorder on the charge-transfer (CT) states formed at a planar C60/pentacene interface. The ability to examine large complexes containing up to seven pentacene molecules and three C60 molecules allows us to take explicitly into account the electronic polarization effects. These complexes are extracted from a bilayer architecture modeled by molecular dynamics simulations and evaluated by means of electronic-structure calculations based on long-range-separated functionals (ωB97XD and BNL) with optimized range-separation parameters. The energies of the lowest charge-transfer states derived for the large complexes are in very good agreement with the experimentally reported values. The average singlet-triplet energy splittings of the lowest CT states are calculated not to exceed 10 meV. The rates of geminate recombination as well as of dissociation of the triplet excitons are also evaluated. In line with experiment, our results indicate that the pentacene triplet excitons generated through singlet fission can dissociate into separated charges on a picosecond time scale, despite the fact that their energy in C60/pentacene heterojunctions is slightly lower than the energies of the lowest CT triplet states.

  14. A planet in a polar orbit of 1.4 solar-mass star

    OpenAIRE

    Guenther, E.W.; Cusano, F.; Deeg, H.; Gandolfi, D.; Geier, S.; Grziwa, S.; Heber, U.; Tal-Or, L.; Sebastian, D.; Rodler, F.

    2015-01-01

    Although more than a thousand transiting extrasolar planets have been discovered, only very few of them orbit stars that are more massive than the Sun. The discovery of such planets is interesting, because they have formed in disks that are more massive but had a shorter life time than those of solar-like stars. Studies of planets more massive than the Sun thus tell us how the properties of the proto-planetary disks effect the formation of planets. Another aspect that makes these planets inte...

  15. Variation of Magnetic Field (By , Bz Polarity and Statistical Analysis of Solar Wind Parameters during the Magnetic Storm Period

    Directory of Open Access Journals (Sweden)

    Ga-Hee Moon

    2011-06-01

    Full Text Available It is generally believed that the occurrence of a magnetic storm depends upon the solar wind conditions, particularly the southward interplanetary magnetic field (IMF component. To understand the relationship between solar wind parameters and magnetic storms, variations in magnetic field polarity and solar wind parameters during magnetic storms are examined. A total of 156 storms during the period of 1997~2003 are used. According to the interplanetary driver, magnetic storms are divided into three types, which are coronal mass ejection (CME-driven storms, co-rotating interaction region (CIR-driven storms, and complicated type storms. Complicated types were not included in this study. For this purpose, the manner in which the direction change of IMF By and Bz components (in geocentric solar magnetospheric coordinate system coordinate during the main phase is related with the development of the storm is examined. The time-integrated solar wind parameters are compared with the time-integrated disturbance storm time (Dst index during the main phase of each magnetic storm. The time lag with the storm size is also investigated. Some results are worth noting: CME-driven storms, under steady conditions of Bz < 0, represent more than half of the storms in number. That is, it is found that the average number of storms for negative sign of IMF Bz (T1~T4 is high, at 56.4%, 53.0%, and 63.7% in each storm category, respectively. However, for the CIR-driven storms, the percentage of moderate storms is only 29.2%, while the number of intense storms is more than half (60.0% under the Bz < 0 condition. It is found that the correlation is highest between the time-integrated IMF Bz and the time-integrated Dst index for the CME-driven storms. On the other hand, for the CIR-driven storms, a high correlation is found, with the correlation coefficient being 0.93, between time-integrated Dst index and time-integrated solar wind speed, while a low correlation, 0.51, is

  16. determination of determination of optimal tilt angle for maximum

    African Journals Online (AJOL)

    eobe

    The analysis showed that the best tilt angle for PV energy production is 60 if the module is fixed module ... suitable solar technology at an efficiency of 1%. Also, ... it. Thus, achieving the maximum possible performance is critical in PV power generation [14]. Installing PV modules on either a single or dual-axis trackers is one.

  17. On the nature of IMF polarity dependent asymmetries in solar wind plasma properties during the minimum of sunspot cycles 23 and 24

    Science.gov (United States)

    Pereira, B. Felix; Philip, Bijoy John; Girish, T. E.

    2016-03-01

    The monthly solar wind speed and density observed near 1 AU in IMF sectors of opposite magnetic polarity are studied during the minimum of sunspot cycles 23 and 24. During sunspot minima, the IMF is pointing away from the sun (Away sector) in the north of the Heliospheric Current Sheet (HCS) and pointing towards the sun (Toward sector) in the south of HCS during odd sunspot cycles and the same process is reversed during the even cycles. During this period, the solar wind plasma parameters (number density and speed) show a systematic month to month variation with solar wind number density decreases and velocity increases from equator to poles (heliomagnetic latitudinal organization) only in 'Away' IMF sectors compared to 'Toward' IMF sectors. This feature is particularly more evident for low speed solar wind and happens in a helio-hemisphere with a larger polar coronal hole. The association of the above phenomena with north-south asymmetry in coronal and solar wind flow characteristics will be discussed.

  18. Evaluating Tilt for Wind Plants

    Energy Technology Data Exchange (ETDEWEB)

    Annoni, Jennifer [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Scholbrock, Andrew K. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Churchfield, Matthew J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fleming, Paul A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-03

    The objective of this work is to demonstrate the feasibility of tilt in a wind plant. Tilt control, much like other wind plant control strategies, has the potential to improve the performance of a wind plant. Tilt control uses the tilt angle of the turbine to direct the wake above or below the downstream turbines. This paper presents a study of tilt in two- and three-turbine arrays. Specifically, the authors show that the power production of a two-turbine array can be increased by tilting turbines in a specific orientation. When adding more turbines, as is shown with the three-turbine array, the overall percentage of power gain increases. This outcome deviates from some of the results seen in typical wind plant control strategies. Finally, we discuss the impact this type of control strategy has on the aerodynamics in a wind plant. This analysis demonstrates that a good understanding of wake characteristics is necessary to improve the plant's performance. A tilt strategy such as the one presented in this paper may have implications for future control/optimization studies including optimization of hub heights in a wind plant and analysis of deep array effects.

  19. The effect of the heliospheric current sheet on cosmic ray intensities at solar maximum: Two alternative hypotheses

    International Nuclear Information System (INIS)

    Thomas, B.T.; Goldstein, B.E.; Smith, E.J.

    1986-01-01

    There is now a growing awareness that solar cycle related changes in the large-scale structure of the heliospheric current sheet may play an important role in the modulation of galactic cosmic rays. To date, attention has been focused on the configuration of the current sheet at times near solar minimum when the current sheet structure is relatively simple. Previous analyses have explored the effect on cosmic ray intensities of a single current sheet which is tilted with respect to the heliographic equator under the assumption that the tilt of the current sheet is a minimum at solar minimum and increases as solar maximum approaches. This paper attempts to extend the previous analyses into the period near solar maximum. Two alternative hypotheses are explored: (1) that the tilt of the current sheet continues to increase as solar maximum approaches, finally becoming vertical and overturning, and (2) that the single sheet structure breaks down near solar maximum and the sun at this time sheds the poloidal flux of the previous cycle and develops a new field structure of the opposite polarity. It is found that both hypotheses lead to variations in cosmic ray intensity comparable to those actually observed over the solar cycle

  20. Extended high circular polarization in the Orion massive star forming region: implications for the origin of homochirality in the solar system.

    Science.gov (United States)

    Fukue, Tsubasa; Tamura, Motohide; Kandori, Ryo; Kusakabe, Nobuhiko; Hough, James H; Bailey, Jeremy; Whittet, Douglas C B; Lucas, Philip W; Nakajima, Yasushi; Hashimoto, Jun

    2010-06-01

    We present a wide-field (approximately 6' x 6') and deep near-infrared (K(s) band: 2.14 mum) circular polarization image in the Orion nebula, where massive stars and many low-mass stars are forming. Our results reveal that a high circular polarization region is spatially extended (approximately 0.4 pc) around the massive star-forming region, the BN/KL nebula. However, other regions, including the linearly polarized Orion bar, show no significant circular polarization. Most of the low-mass young stars do not show detectable extended structure in either linear or circular polarization, in contrast to the BN/KL nebula. If our solar system formed in a massive star-forming region and was irradiated by net circularly polarized radiation, then enantiomeric excesses could have been induced, through asymmetric photochemistry, in the parent bodies of the meteorites and subsequently delivered to Earth. These could then have played a role in the development of biological homochirality on Earth.

  1. Source to Accretion Disk Tilt

    OpenAIRE

    Montgomery, M. M.; Martin, E. L.

    2010-01-01

    Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source to cause and maintain disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through...

  2. Motion sickness on tilting trains.

    Science.gov (United States)

    Cohen, Bernard; Dai, Mingjia; Ogorodnikov, Dmitri; Laurens, Jean; Raphan, Theodore; Müller, Philippe; Athanasios, Alexiou; Edmaier, Jürgen; Grossenbacher, Thomas; Stadtmüller, Klaus; Brugger, Ueli; Hauser, Gerald; Straumann, Dominik

    2011-11-01

    Trains that tilt on curves can go faster, but passengers complain of motion sickness. We studied the control signals and tilts to determine why this occurs and how to maintain speed while eliminating motion sickness. Accelerometers and gyros monitored train and passenger yaw and roll, and a survey evaluated motion sickness. The experimental train had 3 control configurations: an untilted mode, a reactive mode that detected curves from sensors on the front wheel set, and a predictive mode that determined curves from the train's position on the tracks. No motion sickness was induced in the untilted mode, but the train ran 21% slower than when it tilted 8° in either the reactive or predictive modes (113 vs. 137 km/h). Roll velocities rose and fell faster in the predictive than the reactive mode when entering and leaving turns (0.4 vs. 0.8 s for a 4°/s roll tilt, P<0.001). Concurrently, motion sickness was greater (P<0.001) in the reactive mode. We conclude that the slower rise in roll velocity during yaw rotations on entering and leaving curves had induced the motion sickness. Adequate synchronization of roll tilt with yaw velocity on curves will reduce motion sickness and improve passenger comfort on tilting trains.

  3. Changes in the chemical composition of the atmosphere in the polar regions of the Earth after solar proton flares (3d modeling)

    Science.gov (United States)

    Krivolutsky, A. A.; Vyushkova, T. Yu.; Mironova, I. A.

    2017-03-01

    The paper presents the results of numerical photochemical simulations of the impact of the most powerful solar proton flares during the 23rd solar cycle on the ozonosphere in the polar regions of the Earth. A global 3D photochemical model, CHARM, developed at Central Aerological Observatory (CAO) was used in the simulations. The model introduces an additional source of nitrogen atoms and OH radicals. These components are formed due to the ionization effect of solar protons in the Earth's atmosphere. The ionization rate was determined from data on proton fluxes measured by GOES satellites. The production rate of additional NO x and HO x molecules per ion pair was based on published theoretical studies. It is shown that the most intense flares in the 23rd solar cycle (2000, 2001, and 2003) destroyed ozone in the mesosphere to a great extent (sometimes completely, for example, during the July 14, 2000, event). It is found that the response of ozone to solar proton events follows a seasonal pattern. For the first time, the long-term effect of solar proton events is identified; it is approximately one year.

  4. Tilted dipole model for bias-dependent photoluminescence pattern

    Science.gov (United States)

    Fujieda, Ichiro; Suzuki, Daisuke; Masuda, Taishi

    2014-12-01

    In a guest-host system containing elongated dyes and a nematic liquid crystal, both molecules are aligned to each other. An external bias tilts these molecules and the radiation pattern of the system is altered. A model is proposed to describe this bias-dependent photoluminescence patterns. It divides the liquid crystal/dye layer into sub-layers that contain electric dipoles with specific tilt angles. Each sub-layer emits linearly polarized light. Its radiation pattern is toroidal and is determined by the tilt angle. Its intensity is assumed to be proportional to the power of excitation light absorbed by the sub-layer. This is calculated by the Lambert-Beer's Law. The absorption coefficient is assumed to be proportional to the cross-section of the tilted dipole moment, in analogy to the ellipsoid of refractive index, to evaluate the cross-section for each polarized component of the excitation light. Contributions from all the sub-layers are added to give a final expression for the radiation pattern. Self-absorption is neglected. The model is simplified by reducing the number of sub-layers. Analytical expressions are derived for a simple case that consists of a single layer with tilted dipoles sandwiched by two layers with horizontally-aligned dipoles. All the parameters except for the tilt angle can be determined by measuring transmittance of the excitation light. The model roughly reproduces the bias-dependent photoluminescence patterns of a cell containing 0.5 wt. % coumarin 6. It breaks down at large emission angles. Measured spectral changes suggest that the discrepancy is due to self-absorption and re-emission.

  5. Tilted dipole model for bias-dependent photoluminescence pattern

    International Nuclear Information System (INIS)

    Fujieda, Ichiro; Suzuki, Daisuke; Masuda, Taishi

    2014-01-01

    In a guest-host system containing elongated dyes and a nematic liquid crystal, both molecules are aligned to each other. An external bias tilts these molecules and the radiation pattern of the system is altered. A model is proposed to describe this bias-dependent photoluminescence patterns. It divides the liquid crystal/dye layer into sub-layers that contain electric dipoles with specific tilt angles. Each sub-layer emits linearly polarized light. Its radiation pattern is toroidal and is determined by the tilt angle. Its intensity is assumed to be proportional to the power of excitation light absorbed by the sub-layer. This is calculated by the Lambert-Beer's Law. The absorption coefficient is assumed to be proportional to the cross-section of the tilted dipole moment, in analogy to the ellipsoid of refractive index, to evaluate the cross-section for each polarized component of the excitation light. Contributions from all the sub-layers are added to give a final expression for the radiation pattern. Self-absorption is neglected. The model is simplified by reducing the number of sub-layers. Analytical expressions are derived for a simple case that consists of a single layer with tilted dipoles sandwiched by two layers with horizontally-aligned dipoles. All the parameters except for the tilt angle can be determined by measuring transmittance of the excitation light. The model roughly reproduces the bias-dependent photoluminescence patterns of a cell containing 0.5 wt. % coumarin 6. It breaks down at large emission angles. Measured spectral changes suggest that the discrepancy is due to self-absorption and re-emission

  6. Octahedral tilt transitions in the relaxor ferroelectric Na1/2Bi1/2TiO3

    International Nuclear Information System (INIS)

    Meyer, Kai-Christian; Gröting, Melanie; Albe, Karsten

    2015-01-01

    The kinetics of octahedral tilt transitions in the lead-free relaxor material sodium bismuth titanate Na 1/2 Bi 1/2 TiO 3 (NBT) is investigated by electronic structure calculations within density functional theory. Energy barriers for transitions between tetragonal, rhombohedral and orthorhombic tilts in cation configurations with [001]- and [111]-order on the A-sites are determined by nudged elastic band calculations. By tilting entire layers of octahedra simultaneously we find that the activation energy is lower for structures with 001-order compared to such with 111-order. The energetic coupling between differently tilted layers is, however, negligibly small. By introducing a single octahedral defect we create local tilt disorder and find that the deformation energy of the neighboring octahedra is less in a rhombohedral than in a tetragonal structure. By successively increasing the size of clusters of orthorhombic defects in a rhombohedral matrix with 001-order, we determine a critical cluster size of about 40 Å . Thus groups of about ten octahedra can be considered as nuclei for polar nanoregions, which are the cause of the experimentally observed relaxor behavior of NBT. - Graphical abstract: Nine orthorhombic oxygen octahedral tilt defects in a rhombohedral tilt configuration. - Highlights: • Chemical order influences energy barriers of octahedral tilt transitions. • The octahedral deformation energy is lower in rhombohedral phases. • Tilt defect clusters are more likely in rhombohedral structures. • Tilt defect clusters can act as nuclei for polar nanoregions

  7. Coronal and heliospheric magnetic flux circulation and its relation to open solar flux evolution

    Science.gov (United States)

    Owens, Mathew J.; Imber, Suzanne M.; James, Matthew K.; Bunce, Emma J.; Yeoman, Timothy K.

    2017-01-01

    Abstract Solar cycle 24 is notable for three features that can be found in previous cycles but which have been unusually prominent: (1) sunspot activity was considerably greater in the northern/southern hemisphere during the rising/declining phase; (2) accumulation of open solar flux (OSF) during the rising phase was modest, but rapid in the early declining phase; (3) the heliospheric current sheet (HCS) tilt showed large fluctuations. We show that these features had a major influence on the progression of the cycle. All flux emergence causes a rise then a fall in OSF, but only OSF with foot points in opposing hemispheres progresses the solar cycle via the evolution of the polar fields. Emergence in one hemisphere, or symmetric emergence without some form of foot point exchange across the heliographic equator, causes poleward migrating fields of both polarities in one or both (respectively) hemispheres which temporarily enhance OSF but do not advance the polar field cycle. The heliospheric field observed near Mercury and Earth reflects the asymmetries in emergence. Using magnetograms, we find evidence that the poleward magnetic flux transport (of both polarities) is modulated by the HCS tilt, revealing an effect on OSF loss rate. The declining phase rise in OSF was caused by strong emergence in the southern hemisphere with an anomalously low HCS tilt. This implies the recent fall in the southern polar field will be sustained and that the peak OSF has limited implications for the polar field at the next sunspot minimum and hence for the amplitude of cycle 25. PMID:28781930

  8. Stratospheric warmings - The quasi-biennial oscillation Ozone Hole in the Antarctic but not the Arctic - Correlations between the Solar Cycle, Polar Temperatures, and an Equatorial Oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, Ulf-Peter

    2010-05-15

    This report is a tutorial and overview over some of the complex dynamic phenomena in the polar and equatorial stratosphere, and the unexpected correlation that exists between these and the solar cycle. Sudden stratospheric warmings (stratwarms) occur in the polar stratosphere in winter, but not equally distributed between the two hemispheres. As a result, the ozone hole in the springtime polar stratosphere is much more severe in the Southern Hemisphere than in the Northern Hemisphere. The Quasi-Biennial Oscillation (QBO) is a dynamic phenomenon of the equatorial stratosphere. Through processes not fully understood, the phase of the QBO (easterly or westerly) influences the onset of stratwarms. In addition, a correlation between the stratospheric winter temperature over the poles and the solar cycle has been found, but only if the datapoints are ordered by the phase of the QBO. - The best explanations and figures from four recent textbooks are selected, and abstracts of most relevant publications from the six last years are collected, with the most relevant portions for these subjects highlighted. - In addition to being basic science, the understanding of these phenomena is important in the context of the ozone hole, the greenhouse effect, as well as anthropogenic and natural climate change. (author)

  9. 27-day solar forcing of mesospheric temperature, water vapor and polar mesospheric clouds from the AIM SOFIE and CIPS satellite experiments

    Science.gov (United States)

    Thomas, Gary; Thurairajah, Brentha; von Savigny, Christian; Hervig, Mark; Snow, Martin

    2016-04-01

    Solar cycle variations of ultraviolet radiation have been implicated in the 11-year and 27-day variations of Polar Mesospheric Cloud (PMC) properties. Both of these variations have been attributed to variable solar ultraviolet heating and photolysis, but no definitive studies of the mechanisms are available. The solar forcing issue is critical toward answering the broader question of whether PMC's have undergone long-term changes, and if so, what is the nature of the responsible long-term climate forcings? One of the principal goals of the Aeronomy of Ice in the Mesosphere satellite mission was to answer the question: "How does changing solar irradiance affect PMCs and the environment in which they form?" We describe an eight-year data set from the AIM Solar Occultation for Ice Experiment (SOFIE) and the AIM Cloud Imaging and Particle Size (CIPS) experiment. Together, these instruments provide high-precision measurements of high-latitude summertime temperature (T), water vapor (H2O), and PMC ice properties for the period 2007-present. The complete temporal coverage of the summertime polar cap region for both the primary atmospheric forcings of PMC (T and H2O), together with a continually updated time series of Lyman-alpha solar irradiance, allows an in-depth study of the causes and effects of 27-day PMC variability. The small responses of these variables, relative to larger day-to-day changes from gravity waves, tides, inter-hemispheric coupling, etc. require a careful statistical analysis to isolate the solar influence. We present results for the 27-day responses of T, H2O and PMC for a total of 15 PMC seasons, (30 days before summer solstice to 60 days afterward, for both hemispheres). We find that the amplitudes and phase relationships are not consistent with the expected mechanisms of solar UV heating and photolysis - instead we postulate a primarily dynamical response, in which a periodic vertical wind heats/cools the upper mesosphere, and modulates PMC

  10. Using collisions and resonances to tilting Uranus

    Science.gov (United States)

    Rogoszinski, Zeeve; Hamilton, Douglas

    2018-01-01

    Uranus’ large obliquity (98°) is widely thought to have occurred from a polar strike with an Earth sized object. Morbidelli et al. (2012) argue that two or more collisions are required in order to explain the prograde motion of Uranus’ satellites. These impactors could have been less massive by about a factor of ten, but multiple polar strikes are still improbable as even larger mass impactors would be needed for more equatorial collisions. Here we explore an alternative non-collisional model inspired by the explanation to Saturn’s significant tilt (27°). Ward and Hamilton (2004) & Hamilton and Ward (2004) argue that a secular resonance currently between Saturn’s spin axis and Neptune’s orbital pole is responsible for Saturn’s large obliquity. Unfortunately, Uranus’ axial precession frequency today is too long to match any of the current planets’ fundamental frequencies. Boué and Laskar (2010) explain that Uranus may have harbored an improbably large moon in the past which could have sped up the planet’s axial precession frequency enough to resonate with the regression of its own orbital pole. We explore another scenario which requires only the interactions between the giant planets.Thommes et al. (1999, 2002, 2003) argue that at least the cores of Uranus and Neptune were formed in between Jupiter and Saturn, as the density of the protoplanetary disk was greater there. If Neptune was scattered outward before Uranus, then a secular spin-orbit resonance between the two planets is possible. However, driving Uranus’ obliquity to near 90° with a resonance capture requires a timescale on the order of 100 Myr. If Neptune migrated out quicker or its orbital inclination was initially larger, then we find that the resulting resonance kick can tilt Uranus more than 40° in a reasonable timespan. This could replace one of the impactors required in the collisional scenario described by Morbidelli et al. (2012), but in most situations the effect of such a

  11. Polarization optics of the Brewster's dark patch visible on water surfaces versus solar height and sky conditions: theory, computer modeling, photography, and painting.

    Science.gov (United States)

    Takács, Péter; Barta, András; Pye, David; Horváth, Gábor

    2017-10-20

    When the sun is near the horizon, a circular band with approximately vertically polarized skylight is formed at 90° from the sun, and this skylight is only weakly reflected from the region of the water surface around the Brewster's angle (53° from the nadir). Thus, at low solar heights under a clear sky, an extended dark patch is visible on the water surface when one looks toward the north or south quarter perpendicular to the solar vertical. In this work, we study the radiance distribution of this so-called Brewster's dark patch (BDP) in still water as functions of the solar height and sky conditions. We calculate the pattern of reflectivity R of a water surface for a clear sky and obtain from this idealized situation the shape of the BDP. From three full-sky polarimetric pictures taken about a clear, a partly cloudy, and an overcast sky, we determine the R pattern and compose from that synthetic color pictures showing how the radiance distribution of skylight reflected at the water surface and the BDPs would look under these sky conditions. We also present photographs taken without a linearly polarizing filter about the BDP. Finally, we show a 19th century painting on which a river is seen with a dark region of the water surface, which can be interpreted as an artistic illustration of the BDP.

  12. Myth polar light. Why sky bands, herring lightnings, and solar winds fascinate; Mythos Polarlicht. Warum Himmelsbaender, Heringsblitze und Sonnenwinde faszinieren

    Energy Technology Data Exchange (ETDEWEB)

    Hunnekuhl, Michael

    2014-07-01

    The actual state of knowledge of the polar-light research is in this illustrated volume as entertainingly as scientific-foundedly presented. The pecularities of pola lights beyond the polar-light zones as for instance in Germany are thematized and the conditions and periods, in which it there occurs, explained. Michael Hunnekuhl succeeds to mediate the fascination and emotion and simultaneously to explain the phenomena according to the latest state of science generally understandably. Which very old interpretations and descriptions are transmitted, which imaginations had men of polar lights long before the science could them explain? Hunnekuhl takes the reader along with into the world of legends and myths around the polar light. An experience report from the deeply snowed up wideness of Lapland lets everybody closely participate at a polar-light observation and feel the emotion, which it can fan. Above 70 polar-light pictures of high value and further explaining graphics show the continuously changing play of colors, supplement the explanations, and make the fascination comprehensible. Spectacular polar-light films from the international space station ISS, photographs from sun-observation satellites, as well as a polar-light film in real time are bound in the book via QR codes and make the time dimension and the dynamics of this fascinating natural spectacle alively comprehensible.

  13. Height and Tilt Geometric Texture

    DEFF Research Database (Denmark)

    Andersen, Vedrana; Desbrun, Mathieu; Bærentzen, Jakob Andreas

    2009-01-01

    compromise between functionality and simplicity: it can efficiently handle and process geometric texture too complex to be represented as a height field, without having recourse to full blown mesh editing algorithms. The height-and-tilt representation proposed here is fully intrinsic to the mesh, making...

  14. Nanoscale Tilt Measurement Using a Cyclic Interferometer with Phase Stepping and Multiple Reflections

    Science.gov (United States)

    Naderishahab, Tahereh

    High accuracy tilt or roll angle measurement is required for a variety of engineering and scientific applications. Optical interferometry is normally used because it is non-contact and can measure tilt with a very high degree of accuracy. In this thesis, a cyclic interferometer has been developed with four mirrors to measure tilt angles as small as a few nanoradians. To measure the phase, a novel and simple method of phase shift by polarization was developed to enhance measurement sensitivity and accuracy. Since the cyclic interferometer is insensitive to external vibrations and turbulences, polarization phase step was accomplished with relative ease. To introduce the phase shift, a quarter wave plate and a half wave plate were used with a polarized laser beam. Multiple reflections were also introduced in the cyclic interferometer to enhance tilt measurement capability. A new method was developed to evaluate phase and eventually measure the tilt even in the case of changing fringe visibility. The results of these studies show that the multiple reflection cyclic interferometer can be used to measure object tilts in the order of 0.2 nanoradians or 10. (-5) arc second.

  15. Experimental study of the distillation process in a tilted cavity

    Science.gov (United States)

    Wang, Xihui; Chen, Houtao; Wang, Zhijie; Xiao, Gang

    2017-05-01

    Heat and mass transfer correlations in a basin solar still are not applicable for brine-flowing type solar still. Thermal efficiency is hard to determine explicitly due to the varying temperature of brine along the flow direction. A simple method is proposed in the present work to evaluate the performance of the brine-flowing type still through the energy balance equation of brine. Experiments in a tilted cavity which is used to simulate a brine-flowing type solar still are conducted, and it is found that thermal efficiency of the simulated still is always less than 76.3%. An empirical equation is obtained, which may provide a clue for the development of an explicit theoretical model to predict fresh water production of the brine-flowing solar still.

  16. Enhanced horizontal extreme-echo speed occurrence leading to polar mesospheric summer echoes (PMSE) increase at solar-wind pressure enhancement during high-speed solar wind stream events

    Science.gov (United States)

    Lee, Y.; Kirkwood, S.; Kwak, Y.; Kim, K.; Shepherd, G. G.

    2013-12-01

    We report on horizontal extreme echo speeds (HEES, ≥ 300 ms^{-1}) observed in long-periodic polar mesospheric summer echoes (PMSE) correlated with solar-wind speed in high speed solar wind streams (HSS) events. The observations were made from VHF 52 MHz radar measurements at Esrange (67.8°N, 20.4°E) between June 1-August 8 in 2006 and 2008. The periodicities of PMSE counts and the volume reflectivity primarily occur at 7, 9 and 13.5 days possibly by the effects of HSS, while the periodicities at 4-6 days are competitively coherent between planetary waves appearing in temperature and solar-wind speed during HSS events. The peaks of both HEES occurrence rate relative to PMSE and turbulence dominantly occur at solar-wind pressure enhancement with minor peaks continued under the passage of HSS over the magnetopause, followed by PMSE peaks in 1-3 days later. This study gives the results that the precipitating high-energetic particles (> 30 keV) during HSS likely induce D-region ionization involved with the consecutive processes of HEES, turbulence and PMSE. The turbulence evolved from the HEES can be explained with the Kelvin-Helmholtz instability, which was observed in PMSE by Röttger et al. [11th International Workshop on technical and scientific aspects of MST Radar, 2006] and firstly simulated for PMSE generation by Hill et al. [Earth Planets Space, 1999]. The HEES is understood as the speed of fast moving ions, accelerated by strong electric field as Lee & Shepherd [JGR, 2010] suggested with the supersonic velocities persisting in polar mesospheric clouds (PMC) region observed at enhanced O(^1S) emission rate ( 10 kR) by WINDII/UARS satellite.

  17. Polarization Energies at Organic–Organic Interfaces: Impact on the Charge Separation Barrier at Donor–Acceptor Interfaces in Organic Solar Cells

    KAUST Repository

    Ryno, Sean

    2016-05-31

    We probe the energetic landscape at a model pentacene/fullerene-C60 interface to investigate the interactions between positive and negative charges, which are critical to the processes of charge separation and recombination in organic solar cells. Using a polarizable force field, we find that polarization energy, i.e. the stabilization a charge feels due to its environment, is larger at the interface than in the bulk for both a positive and a negative charge. The combination of the charge being more stabilized at the interface and the Coulomb attraction between the charges, results in a barrier to charge separation at the pentacene-C60 interface that can be in excess of 0.7 eV for static configurations of the donor and acceptor locations. However, the impact of molecular motions, i.e., the dynamics, at the interface at room temperature results in a distribution of polarization energies and in charge separation barriers that can be significantly reduced. The dynamic nature of the interface is thus critical, with the polarization energy distributions indicating that sites along the interface shift in time between favorable and unfavorable configurations for charge separation.

  18. Photovoltaic solar concentrator

    Science.gov (United States)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  19. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  20. Photovoltaic solar concentrator

    Science.gov (United States)

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  1. How can horseflies be captured by solar panels? A new concept of tabanid traps using light polarization and electricity produced by photovoltaics.

    Science.gov (United States)

    Blahó, Miklós; Egri, Ádám; Barta, András; Antoni, Györgyi; Kriska, György; Horváth, Gábor

    2012-10-26

    Horseflies (Diptera: Tabanidae) can cause severe problems for humans and livestock because of the continuous annoyance performed and the diseases vectored by the haematophagous females. Therefore, effective horsefly traps are in large demand, especially for stock-breeders. To catch horseflies, several kinds of traps have been developed, many of them attracting these insects visually with the aid of a black ball. The recently discovered positive polarotaxis (attraction to horizontally polarized light) in several horsefly species can be used to design traps that capture female and male horseflies. The aim of this work is to present the concept of such a trap based on two novel principles: (1) the visual target of the trap is a horizontal solar panel (photovoltaics) attracting polarotactic horseflies by means of the highly and horizontally polarized light reflected from the photovoltaic surface. (2) The horseflies trying to touch or land on the photovoltaic trap surface are perished by the mechanical hit of a wire rotated quickly with an electromotor supplied by the photovoltaics-produced electricity. Thus, the photovoltaics is bifunctional: its horizontally polarized reflected light signal attracts water-seeking, polarotactic horseflies, and it produces the electricity necessary to rotate the wire. We describe here the concept and design of this new horsefly trap, the effectiveness of which was demonstrated in field experiments. The advantages and disadvantages of the trap are discussed. Using imaging polarimetry, we measured the reflection-polarization characteristics of the photovoltaic trap surface demonstrating the optical reason for the polarotactic attractiveness to horseflies. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics.

    Science.gov (United States)

    Kayes, Md Imrul; Leu, Paul W

    2014-01-01

    Silicon nanowire arrays have been shown to demonstrate light trapping properties and promising potential for next-generation photovoltaics. In this paper, we show that the absorption enhancement in vertical nanowire arrays on a perfectly electric conductor can be further improved through tilting. Vertical nanowire arrays have a 66.2% improvement in ultimate efficiency over an ideal double-pass thin film of the equivalent amount of material. Tilted nanowire arrays, with the same amount of material, exhibit improved performance over vertical nanowire arrays across a broad range of tilt angles (from 38° to 72°). The optimum tilt of 53° has an improvement of 8.6% over that of vertical nanowire arrays and 80.4% over that of the ideal double-pass thin film. Tilted nanowire arrays exhibit improved absorption over the solar spectrum compared with vertical nanowires since the tilt allows for the excitation of additional modes besides the HE 1m modes that are excited at normal incidence. We also observed that tilted nanowire arrays have improved performance over vertical nanowire arrays for a large range of incidence angles (under about 60°).

  3. In Vitro Polarized Resonance Raman Study of N719 and N719-TBP in Dye Sensitized Solar Cells

    DEFF Research Database (Denmark)

    Hassing, Søren; Jernshøj, Kit Drescher; Nguyen, Phuong Tuyet

    2016-01-01

    Abstract: The working efficiency of dye-sensitized solar cells (DSCs) depends on the long-term stability of the dye itself and on the microscopic structure of the dye-semiconductor interface. Previous experimental studies of DSCs based on ruthenium dye with bipyridine ligands (N719) adsorbed...

  4. Understanding the Balance of Dayside and Nightside Reconnection Contributions to the Cross Polar Cap Potential During Solar Wind Disturbances

    Science.gov (United States)

    2014-05-15

    from left to right: the dynamic pressure ( Pdy =ρv 2 ), plasma pressure ( Pp= nkT ), Xgse component of plasma velocity (Vx), and Xgse component of...speeds intensify after solar wind dynamic pressure increases. Two cell convection patterns were observed for the first two events, as expected from

  5. The structure of strongly tilted current sheets in the Earth magnetotail

    Directory of Open Access Journals (Sweden)

    I. Y. Vasko

    2014-02-01

    Full Text Available We investigate strongly tilted (in the y–z GSM plane current sheets (CSs in the Earth magnetotail using data from the Cluster mission. We analyze 29 CS crossings observed in 2001–2004. The characteristic current density, magnetic field at the CS boundary and the CS thickness of strongly tilted CSs are similar to those reported previously for horizontal (not tilted CSs. We confirm that strongly tilted CSs are generally characterized by a rather large northward component of the magnetic field. The field-aligned current in strongly tilted CSs is on average two times larger than the transverse current. The proton adiabaticity parameter, κp, is larger than 0.5 in 85% of strongly tilted CSs due to the large northward magnetic field. Thus, the proton dynamics is stochastic for 18 current sheets with 0.5 p p > 3, whereas electrons are magnetized for all observed current sheets. Strongly tilted CSs provide a unique opportunity to measure the electric field component perpendicular to the CS plane. We find that most of the electric field perpendicular to the CS plane is due to the decoupling of electron and ion motions (plasma polarization. For 27 CSs we determine profiles of the electrostatic potential, which is due to the plasma polarization. Drops in the potential between the neutral plane and the CS boundary are within the range of 200 V to 12 kV, while maximal values of the electric field are within the range of 0.2 mV m−1 to 8 mV m−1. For 16 CSs the observed potentials are in accordance with Ohm's law, if the electron current density is assumed to be comparable to the total current density. In 15 of these CSs the profile of the polarization potential is approximately symmetric with respect to the neutral plane and has minimum therein.

  6. Solar Lyman-Alpha Polarization Observation of the Chromosphere and Transition Region by the Sounding Rocket Experiment CLASP

    Science.gov (United States)

    Narukage, Noriyuki; Kano, Ryohei; Bando, Takamasa; Ishikawa, Ryoko; Kubo, Masahito; Katsukawa, Yukio; Ishikawa, Shinnosuke; Hara, Hiroshi; Suematsu, Yoshinori; Giono, Gabriel; hide

    2015-01-01

    We are planning an international rocket experiment Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is (2015 planned) that Lyman a line (Ly(alpha) line) polarization spectroscopic observations from the sun. The purpose of this experiment, detected with high accuracy of the linear polarization of the Ly(alpha) lines to 0.1% by using a Hanle effect is to measure the magnetic field of the chromosphere-transition layer directly. For polarization photometric accuracy achieved that approx. 0.1% required for CLASP, it is necessary to realize the monitoring device with a high throughput. On the other hand, Ly(alpha) line (vacuum ultraviolet rays) have a sensitive characteristics that is absorbed by the material. We therefore set the optical system of the reflection system (transmission only the wavelength plate), each of the mirrors, subjected to high efficiency of the multilayer coating in accordance with the role. Primary mirror diameter of CLASP is about 30 cm, the amount of heat about 30,000 J is about 5 minutes of observation time is coming mainly in the visible light to the telescope. In addition, total flux of the sun visible light overwhelmingly large and about 200 000 times the Ly(alpha) line wavelength region. Therefore, in terms of thermal management and 0.1% of the photometric measurement accuracy achieved telescope, elimination of the visible light is essential. We therefore, has a high reflectivity (> 50%) in Lya line, visible light is a multilayer coating be kept to a low reflectance (<5%) (cold mirror coating) was applied to the primary mirror. On the other hand, the efficiency of the polarization analyzer required chromospheric magnetic field measurement (the amount of light) Conventional (magnesium fluoride has long been known as a material for vacuum ultraviolet (MgF2) manufactured ellipsometer; Rs = 22%) about increased to 2.5 times were high efficiency reflective polarizing element analysis. This device, Bridou et al. (2011) is proposed "that is

  7. Octahedral tilt transitions in the relaxor ferroelectric Na{sub 1/2}Bi{sub 1/2}TiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Kai-Christian, E-mail: meyer@mm.tu-darmstadt.de; Gröting, Melanie; Albe, Karsten

    2015-07-15

    The kinetics of octahedral tilt transitions in the lead-free relaxor material sodium bismuth titanate Na{sub 1/2}Bi{sub 1/2}TiO{sub 3} (NBT) is investigated by electronic structure calculations within density functional theory. Energy barriers for transitions between tetragonal, rhombohedral and orthorhombic tilts in cation configurations with [001]- and [111]-order on the A-sites are determined by nudged elastic band calculations. By tilting entire layers of octahedra simultaneously we find that the activation energy is lower for structures with 001-order compared to such with 111-order. The energetic coupling between differently tilted layers is, however, negligibly small. By introducing a single octahedral defect we create local tilt disorder and find that the deformation energy of the neighboring octahedra is less in a rhombohedral than in a tetragonal structure. By successively increasing the size of clusters of orthorhombic defects in a rhombohedral matrix with 001-order, we determine a critical cluster size of about 40 Å . Thus groups of about ten octahedra can be considered as nuclei for polar nanoregions, which are the cause of the experimentally observed relaxor behavior of NBT. - Graphical abstract: Nine orthorhombic oxygen octahedral tilt defects in a rhombohedral tilt configuration. - Highlights: • Chemical order influences energy barriers of octahedral tilt transitions. • The octahedral deformation energy is lower in rhombohedral phases. • Tilt defect clusters are more likely in rhombohedral structures. • Tilt defect clusters can act as nuclei for polar nanoregions.

  8. Molecular tilt on monolayer-protected nanoparticles

    KAUST Repository

    Giomi, L.

    2012-02-01

    The structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio ε between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small ε, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small ε characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials. Copyright © EPLA, 2012.

  9. Flow downstream of the heliospheric terminal shock: Magnetic field line topology and solar cycle imprint

    Science.gov (United States)

    Nerney, Steven; Suess, S. T.; Schmahl, E. J.

    1995-01-01

    The topology of the magnetic field in the heliosheath is illustrated using plots of the field lines. It is shown that the Archimedean spiral inside the terminal shock is rotated back in the heliosheath into nested spirals that are advected in the direction of the interstellar wind. The 22-year solar magnetic cycle is imprinted onto these field lines in the form of unipolar magnetic envelopes surrounded by volumes of strongly mixed polarity. Each envelope is defined by the changing tilt of the heliospheric current sheet, which is in turn defined by the boundary of unipolar high-latitude regions on the Sun that shrink to the pole at solar maximum and expand to the equator at solar minimum. The detailed shape of the envelopes is regulated by the solar wind velocity structure in the heliosheath.

  10. Solar-blind AlxGa1-xN/AlN/SiC photodiodes with a polarization-induced electron filter

    Science.gov (United States)

    Rodak, L. E.; Sampath, A. V.; Gallinat, C. S.; Chen, Y.; Zhou, Q.; Campbell, J. C.; Shen, H.; Wraback, M.

    2013-08-01

    Heterogeneous n-III-nitride/i-p silicon carbide (SiC) photodetectors have been demonstrated that enable the tailoring of the spectral response in the solar blind region below 280 nm. The negative polarization induced charge at the aluminum gallium nitride (AlxGa1-xN)/aluminum nitride (AlN) interface in conjunction with the positive polarization charge at the AlN/SiC interface creates a large barrier to carrier transport across the interface that results in the selective collection of electrons photoexcited to the Γ and L valleys of SiC while blocking the transport of electrons generated in the M valley. In addition, the AlxGa1-xN alloys act as transparent windows that enhance the collection of carriers generated by high energy photons in the fully depleted SiC absorption regions. These two factors combine to create a peak external quantum efficiency of 76% at 242 nm, along with a strong suppression of the long-wavelength response from 260 nm to 380 nm.

  11. Conservative treatment of excessive anterior pelvic tilt

    DEFF Research Database (Denmark)

    Brekke, Anders Falk

    , DK-5000 Odense C, Denmark ABSTRACT (1795 anslag) Background: Excessive anterior pelvic tilt has been linked to pain and dysfunction of the hip and pelvic region. Conservative treatment (e.g. manual therapy and physical training) is suggested in correcting the tilt and eventually related symptoms....... However, the effectiveness in reducing excessive anterior pelvic tilt in adults is unknown. Purpose: To systematically review studies investigating the effectiveness of conservative treatment in reducing anterior pelvic tilt in adults and evaluate the quality of evidence. Materials and methods: MEDLINE...

  12. Capacitive micromachined ultrasonic transducer based tilt sensing

    Science.gov (United States)

    Yu, Hongbin; Guo, Bin; Haridas, Kuruveettil; Lin, Tsu-Hui; Hao Cheong, Jia; Lin Tsai, Ming; Boon Yee, Tack

    2012-10-01

    In this paper, a tilt sensing mechanism based on the capacitive micromachined ultrasound transducers (CMUTs) is presented. By measuring the difference in the time of flight of various pulse-echo signals from different CMUT transmitting elements to one common receiving element in the oil bath, the tilt angle of the oil surface can be determined. With the proposed device, the maximum tilt angles of 20° and 28° have been measured in the clockwise and counterclockwise directions, respectively, and the difference between the measured and the theoretical values of the tilt angle was found to be within 0.05° during the whole test.

  13. Possible link of sudden onset and short-time periodic pulsation of polar mesosphere summer echoes to ULF Pc5 geomagnetic pulsations and solar wind dynamic pressure enhancement

    Science.gov (United States)

    Lee, Y.; Kirkwood, S.; Kwak, Y. S.

    2016-12-01

    The EISCAT VHF incoherent scatter radar in Tromsö, Norway, makes occasional observations of electron densities and Polar Mesosphere Summer Echoes, in the summer polar D-region ionosphere. In one of those datasets, pulsating polar mesospheric summer echoes (PMSE) are observed, with periodicities in the ultra-low frequency (ULF) Pc5 band (1.6-6.7 mHz), following an abrupt increase of the radar reflectivity when a geomagnetic field excursion is started, in turn linked to dynamic pressure (Pdyn) enhancement in the solar wind. At the excursion of the magnetic field, at auroral altitudes of 90 km and above, electron density is abruptly enhanced, followed by a series of short-lived peaks, superimposed on an enhanced level. The short-lived peaks are likely a signature of transient Pc5 geomagnetic pulsations and associated energetic electron precipitation from pitch-angle scattering into the loss cone in the magnetosphere. At the same time, at altitudes around 80-90 km, a sharp increase of PMSE reflectivity occurs, 100 times greater than the increase of electron density, and is followed by pulsating PMSE reflectivity with periodicities in the Pc5 band, increasing and decreasing in magnitude during the course of the next hour. The increase of the pulsation magnitude may be attributed to an increase of high-energy electron precipitation flux ( >30 keV) penetrating to at least the height of maximum PMSE reflectivity. This study suggests that Pc5 pulsation bursts in both magnetic field and high energy electron precipitation could play a crucial role in producing PMSE fluctuations on minute-to-minute time scales.

  14. Long-periodic strong radar echoes in the summer polar D region correlated with oscillations of high-speed solar wind streams

    Science.gov (United States)

    Lee, Young-Sook; Kirkwood, Sheila; Shepherd, Gordon G.; Kwak, Young-Sil; Kim, Kyung-Chan

    2013-08-01

    We report long-periodic oscillations of polar mesospheric summer echoes (PMSEs) correlated with high-speed solar wind streams (HSSs) as observed between 1 June and 8 August in the solar minimum years 2006 and 2008. PMSEs (80-90 km altitudes) were observed by 52 MHz VHF radar measurements at Esrange, Sweden (67.8°N, 20.4°E). Correlations between PMSE volume reflectivity/counts, HSSs, and AE index are primarily found at 7-day, 9-day, and 13-day periodicities as well as 9-day and 13.5-day periodicities in 2006 and 2008, respectively. The observations show that the effects of HSSs appear in PMSEs. During corotating interaction region (CIR)-induced HSSs, the long-lasting enhancement of PMSEs, geomagnetic disturbances, and D-region ionization suggests that a favorable condition in generating PMSEs can be provided by the precipitating energetic electrons (>30 keV), which are frequently multiplied in the magnetosphere during HSSs.

  15. RE-EXAMINING SUNSPOT TILT ANGLE TO INCLUDE ANTI-HALE STATISTICS

    Energy Technology Data Exchange (ETDEWEB)

    McClintock, B. H. [University of Southern Queensland, Toowoomba, 4350 (Australia); Norton, A. A. [HEPL, Stanford University, Palo Alto, CA 94305 (United States); Li, J., E-mail: u1049686@umail.usq.edu.au, E-mail: aanorton@stanford.edu, E-mail: jli@igpp.ucla.edu [Department of Earth, Planetary, and Space Sciences, University of California at Los Angeles, Los Angeles, CA 90095 (United States)

    2014-12-20

    Sunspot groups and bipolar magnetic regions (BMRs) serve as an observational diagnostic of the solar cycle. We use Debrecen Photohelographic Data (DPD) from 1974-2014 that determined sunspot tilt angles from daily white light observations, and data provided by Li and Ulrich that determined sunspot magnetic tilt angle using Mount Wilson magnetograms from 1974-2012. The magnetograms allowed for BMR tilt angles that were anti-Hale in configuration, so tilt values ranged from 0 to 360° rather than the more common ±90°. We explore the visual representation of magnetic tilt angles on a traditional butterfly diagram by plotting the mean area-weighted latitude of umbral activity in each bipolar sunspot group, including tilt information. The large scatter of tilt angles over the course of a single cycle and hemisphere prevents Joy's law from being visually identified in the tilt-butterfly diagram without further binning. The average latitude of anti-Hale regions does not differ from the average latitude of all regions in both hemispheres. The distribution of anti-Hale sunspot tilt angles are broadly distributed between 0 and 360° with a weak preference for east-west alignment 180° from their expected Joy's law angle. The anti-Hale sunspots display a log-normal size distribution similar to that of all sunspots, indicating no preferred size for anti-Hale sunspots. We report that 8.4% ± 0.8% of all bipolar sunspot regions are misclassified as Hale in traditional catalogs. This percentage is slightly higher for groups within 5° of the equator due to the misalignment of the magnetic and heliographic equators.

  16. RE-EXAMINING SUNSPOT TILT ANGLE TO INCLUDE ANTI-HALE STATISTICS

    International Nuclear Information System (INIS)

    McClintock, B. H.; Norton, A. A.; Li, J.

    2014-01-01

    Sunspot groups and bipolar magnetic regions (BMRs) serve as an observational diagnostic of the solar cycle. We use Debrecen Photohelographic Data (DPD) from 1974-2014 that determined sunspot tilt angles from daily white light observations, and data provided by Li and Ulrich that determined sunspot magnetic tilt angle using Mount Wilson magnetograms from 1974-2012. The magnetograms allowed for BMR tilt angles that were anti-Hale in configuration, so tilt values ranged from 0 to 360° rather than the more common ±90°. We explore the visual representation of magnetic tilt angles on a traditional butterfly diagram by plotting the mean area-weighted latitude of umbral activity in each bipolar sunspot group, including tilt information. The large scatter of tilt angles over the course of a single cycle and hemisphere prevents Joy's law from being visually identified in the tilt-butterfly diagram without further binning. The average latitude of anti-Hale regions does not differ from the average latitude of all regions in both hemispheres. The distribution of anti-Hale sunspot tilt angles are broadly distributed between 0 and 360° with a weak preference for east-west alignment 180° from their expected Joy's law angle. The anti-Hale sunspots display a log-normal size distribution similar to that of all sunspots, indicating no preferred size for anti-Hale sunspots. We report that 8.4% ± 0.8% of all bipolar sunspot regions are misclassified as Hale in traditional catalogs. This percentage is slightly higher for groups within 5° of the equator due to the misalignment of the magnetic and heliographic equators

  17. Lost of solar energy by not optimized guidance and inclination of the planes, in Galicia; Perdidas de energia solar por orientacion e inclinacion no optimizadas de los planos, en Galicia

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.; Pose, M.; Izquierdo, P.; Prado, T.

    2008-07-01

    Graphs of percentages of solar energy received in planes with different orientations and tilts, with respect to the maximum solar energy received on the plane with optimum orientation and tilt, are obtained for Galicia. The graphs are needed to calculate the losses because orientation and tilt that the Spanish Technical Building Code (TBC) limits. (Author)

  18. Optic flow induced self-tilt perception

    NARCIS (Netherlands)

    Bos, J.E.

    2008-01-01

    Roll optic flow induces illusory self-tilt in humans. As far as the mechanism underlying this visual-vestibular interaction is understood, larger angles of self-tilt are predicted than observed. It is hypothesized that the discrepancy can be explained by idiotropic (i.e., referring to a personal

  19. Lake-tilting investigations in southern Sweden

    International Nuclear Information System (INIS)

    Paasse, T.

    1996-04-01

    The main aim of lake-tilting investigations is to determine the course of the glacio-isostatic uplift, i.e. to find a formula for the uplift. Besides the lake-tilting graphs, knowledge of the recent relative uplift and the gradient of some marine shorelines are used for solving this problem. This paper summarizes four investigations. 23 refs, 10 figs

  20. Lake-tilting investigations in southern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Paasse, T. [Sveriges Geologiska Undersoekning, Goeteborg (Sweden)

    1996-04-01

    The main aim of lake-tilting investigations is to determine the course of the glacio-isostatic uplift, i.e. to find a formula for the uplift. Besides the lake-tilting graphs, knowledge of the recent relative uplift and the gradient of some marine shorelines are used for solving this problem. This paper summarizes four investigations. 23 refs, 10 figs.

  1. Large optics inspection, tilting, and washing stand

    Science.gov (United States)

    Ayers, Marion Jay [Brentwood, CA; Ayers, Shannon Lee [Brentwood, CA

    2010-08-24

    A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.

  2. Impacts of the January 2005 solar particle event on noctilucent clouds and water at the polar summer mesopause

    Directory of Open Access Journals (Sweden)

    H. Winkler

    2012-06-01

    Full Text Available The response of noctilucent clouds to the solar particle event in January 2005 is investigated by means of icy particle and ion chemistry simulations. It is shown that the decreasing occurrence rate of noctilucent clouds derived from measurements of the SCIAMACHY/Envisat instrument can be reproduced by one-dimensional model simulations if temperature data from the MLS/Aura instrument are used. The model calculations indicate that the sublimation of noctilucent clouds leads to significant changes of the water distribution in the mesopause region. These model results are compared with H2O measurements from the MLS and the MIPAS/Envisat satellite instruments. The pronounced modelled water enhancement below the icy particle layer and its decrease during the SPE are not observed by the satellite instruments. At altitudes >85 km the satellite measurements show an increase of H2O during the SPE in qualitative agreement with the model predictions. The discrepancies between model H2O and observations at lower altitudes might be attributed to the one-dimensional model approach which in particular neglects inhomogeneities and horizontal transport processes. Additionally, it is revealed that the water depletion due to reactions of proton hydrates during the considered solar particle event has only a minor impact on the icy particles.

  3. Analysis of fixed tilt and sun tracking photovoltaic–micro wind based hybrid power systems

    International Nuclear Information System (INIS)

    Sinha, Sunanda; Chandel, S.S.

    2016-01-01

    Graphical abstract: 6 kW p photovoltaic–micro wind based hybrid power system analysis in a Indian Western Himalayan location. - Highlights: • Power generation by a roof mounted photovoltaic–micro wind hybrid system is explored. • Optimum hybrid configurations using fixed and sun tracking photovoltaic systems are determined. • Analysis of hybrid systems with optimally tilted and different sun tracking systems is presented. • Two axis sun tracking systems are found to generate 4.88–26.29% more energy than fixed tilt system. • Hybrid system installed at optimum tilt angle is found to be cost effective than a sun tracking system. - Abstract: In this study fixed tilt and sun tracking photovoltaic based micro wind hybrid power systems are analyzed along with determining the optimum configurations for a 6 kW p roof mounted micro wind based hybrid system using fixed and tracking photovoltaic systems to enhance the power generation potential in a low windy Indian hilly terrain with good solar resource. The main objective of the study is to enhance power generation by focusing on photovoltaic component of the hybrid system. A comparative power generation analysis of different configurations of hybrid systems with fixed tilt, monthly optimum tilt, yearly optimum tilt and 6 different sun tracking photovoltaic systems is carried out using Hybrid Optimization Model for Electric Renewables. Monthly and seasonal optimum tilt angles determined for the location vary between 0° and 60° with annual optimum tilt angle as 29.25°. The optimum configurations for all sun tracking systems except for the two axis tracking system is found to be 7 kW p photovoltaic system, one 5 kW p wind turbine, 10 batteries and a 2 kW p inverter. The optimum configuration for two axis tracking system and two types of fixed tilt systems, is found to be a 8 kW p photovoltaic system, one 5 kW p wind turbine, 10 batteries and a 2 kW p inverter. The results show that horizontal axis with

  4. Vector mode conversion based on tilted fiber Bragg grating in ring-core fibers

    Science.gov (United States)

    Mi, Yuean; Ren, Guobin; Gao, Yixiao; Li, Haisu; Zhu, Bofeng; Liu, Yu

    2018-03-01

    We propose a vector mode conversion approach based on tilted fiber Bragg grating (TFBG) written in ring-core fiber with effective separation of eigenmodes. The mode coupling properties of TFBG are numerically investigated. It is shown that under the constraint of phase matching, the conversion of high-order vector modes could be achieved at specific wavelengths. Moreover, the polarization of incident light and tilt angle of TFBG play critical roles in mode coupling process. The proposed TFBG provides an efficient method to realize high-order vector mode conversion, and it shows great potential for fibers based OAM beam generation and fiber lasers with vortex beams output.

  5. Polarization as a tool to study dust in small solar system bodies, in the context of future space missions

    Science.gov (United States)

    Levasseur-Regourd, A. C.; Bagnulo, S.; Belskaya, I.; Berthier, J.; Fornasier, S.; Hadamcik, E.; Renard, J.-B.; Tozzi, G.-P.

    2012-04-01

    The analysis of linear polarization induced by the scattering of sunlight on low-density dust media is of great help to infer the properties of the dust layers forming a regolith, both on the surfaces of asteroids and comet nuclei, and in the dust clouds (cometary comae, zodiacal cloud) that may surround them. The way the observed linear polarization depends on phase angle and on wavelength allows us to classify the dust comae and the asteroidal surfaces [e.g. 1-3]. Complemented with numerical and experimental simulations on analogue particles (such as meteoritic powders), polarimetric observations provide a wealth of information on the albedo of some asteroids, on the size distribution, and on the porosity of the dust present on such surfaces and in their surrounding clouds [e.g. 4-6]. Compared to main-belt asteroids and other distant objects, near-Earth objects (NEOs) are specially interesting targets for polarimetric measurements, because they can be monitored in a much larger phase-angle range [7]. This allows us a to perform a refined classification, and to easily find out the (primitive) objects of major scientific interest. In this talk we present statistical estimates of the observations that are needed to classify all newly discovered NEOs in a given year. Future polarimetric observations with large telescopes will allow us to efficiently search for multiple or back-up targets of the anticipated space missions to primitive objects (e.g., NASA OSIRIS-Rex, JAXA Hayabusa II, or ESA MarcoPolo-R). We also discuss the scientific case for polarimetric instruments in space missions, which may for instance lead to a better understanding of different terrains before a landing is attempted. 1. Levasseur-Regourd et al., A&A 313, 327, 1996. 2. Pentillä et al., A&A 432, 1081, 2005. 3. Levasseur-Regourd, In Polarimetric detection, NATO Sciences series, Springer, 295, 2010 4. Fornasier et al., A&A449, L9, 2006. 5. Bagnulo et al., A&A, 514, 99, 2010 6. Hadamcik et al., A

  6. Evaluating Tilt for Wind Farms: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Annoni, Jennifer; Scholbrock, Andrew; Churchfield, Matthew; Fleming, Paul

    2017-06-29

    The objective of this work is to demonstrate the feasibility of tilt in a wind plant. Tilt control, much like other wind plant control strategies, has the potential to improve the performance of a wind plant. Tilt control uses the tilt angle of the turbine to direct the wake above or below the downstream turbines. This paper presents a study of tilt in two- and threeturbine arrays. Specifically, the authors show that the power production of a two-turbine array can be increased by tilting turbines in a specific orientation. When adding more turbines, as is shown with the three-turbine array, the overall percentage of power gain increases. This outcome deviates from some of the results seen in typical wind plant control strategies. Finally, we discuss the impact this type of control strategy has on the aerodynamics in a wind plant. This analysis demonstrates that a good understanding of wake characteristics is necessary to improve the plant's performance. A tilt strategy such as the one presented in this paper may have implications for future control/optimization studies including optimization of hub heights in a wind plant and analysis of deep array effects.

  7. Unilateral otolith centrifugation by head tilt.

    Science.gov (United States)

    Winters, Stephanie M; Bos, Jelte E; Klis, Sjaak F L

    2014-01-01

    To test for otolith asymmetries, several studies described horizontal translation of the body and head en bloc during fast vertical axis rotation. This stimulus causes one otolithic organ to rotate on-axis, and the other to experience centripetal acceleration. To test a new, more simple method of unilateral stimulation with head tilt and the body remaining on axis. During stationary and during 360 deg/s rotation, 12 healthy blindfolded subjects had their heads tilted 30 degrees sideways, positioning one otolithic organ on the axis of rotation after the other. The haptic subjective vertical (SV) was recorded several times by means of a manually adjustable rod. It was found that during stationary the SV tilted about 4 degrees on average in the direction of the head. During rotation, the SV tilted about 9 degrees on average. We therefore estimate the effect of eccentric otolith rotation to be 5 degrees on average. Tilt of the subjective vertical induced by head tilt during on-axis body rotation can provide a relatively uncomplicated alternative to test unilateral otolithic function as compared to body and head translation during rotation. Moreover, unlike eccentric rotation of the entire body, somatosensory cues are minimized by keeping the body fixed on axis and by subtracting the effect of head tilt per se.

  8. Experimental studies of octahedral tilting in perovskites

    International Nuclear Information System (INIS)

    Howard, C.J.; Kennedy, B.J.; Chakoumakos, B.C.

    1999-01-01

    Full text: Structures of the perovskite family, ABX 3 , have interested crystallographers over many years, and continue to attract attention on account of their fascinating electrical and magnetic properties, and their significance in the earth sciences. The ideal perovskite (cubic) is a particularly simple structure, but also a demanding one, since aside from the lattice parameter there are no variable parameters in the structure. Consequently, the majority of perovskite structures show departures from the ideal, the most common distortion being the comer-linked tilting of the practically rigid BX 6 octahedral units. Following a group theoretical study in 1997, a number of experimental investigations of octahedral tilting have been undertaken in 1998, and these are reported in this presentation. The studies are of the perovskites, SrZrO 3 , SrHfO 3 , CaTiO 3 , NaTaO 3 and LaGaO 3 . In each case, the crystal structures have been followed at high temperatures, with particular attention being paid to temperature regimes in which only the simplest octahedral tilt (only one tilt axis) pertains. Neutron powder diffraction patterns have been recorded on the medium/high resolution diffractometer installed at beam port HB4 at the High Flux Isotope Reactor, at the Oak Ridge National Laboratory. Crystal structures have been refined by the Rietveld method, and angles of tilt of the oxygen octahedra derived from the atomic position parameters. Each of the first four perovskites listed above transforms from tetragonal (with a single tilt axis) to cubic, and in each case, as far as can be determined from our measurements, the tilt angle in the tetragonal phase decreases continuously towards zero. There are interesting differences, however, in the functional form of this variation. The LaGaO 3 transforms at modest temperature to a rhombohedral phase, also characterised by a single tilt axis, but though the tilt angle decreases slowly with increasing temperature, the sample

  9. Sensor fusion for structural tilt estimation using an acceleration-based tilt sensor and a gyroscope

    Science.gov (United States)

    Liu, Cheng; Park, Jong-Woong; Spencer, B. F., Jr.; Moon, Do-Soo; Fan, Jiansheng

    2017-10-01

    A tilt sensor can provide useful information regarding the health of structural systems. Most existing tilt sensors are gravity/acceleration based and can provide accurate measurements of static responses. However, for dynamic tilt, acceleration can dramatically affect the measured responses due to crosstalk. Thus, dynamic tilt measurement is still a challenging problem. One option is to integrate the output of a gyroscope sensor, which measures the angular velocity, to obtain the tilt; however, problems arise because the low-frequency sensitivity of the gyroscope is poor. This paper proposes a new approach to dynamic tilt measurements, fusing together information from a MEMS-based gyroscope and an acceleration-based tilt sensor. The gyroscope provides good estimates of the tilt at higher frequencies, whereas the acceleration measurements are used to estimate the tilt at lower frequencies. The Tikhonov regularization approach is employed to fuse these measurements together and overcome the ill-posed nature of the problem. The solution is carried out in the frequency domain and then implemented in the time domain using FIR filters to ensure stability. The proposed method is validated numerically and experimentally to show that it performs well in estimating both the pseudo-static and dynamic tilt measurements.

  10. CT patellar cortex tilt angle: A radiological method to measure patellar tilt

    International Nuclear Information System (INIS)

    Mirza Toluei, F.; Afshar, A.; Salarilak, S.; Sina, A.

    2005-01-01

    Background/Objectives: the role of patellar tilt in the anterior knee pain is indisputable. Traditionally. the lateral patello-femoral angle of Laurin has been defined in both the axial view and CT images for measuring the tilt of patella. We present a new angle. which is independent of the morphology of patella and directly relates to clinical assessment of the tilt. which is appreciated from palpation of the edges of the patella. Patients and Methods: 38 patients with anterior knee pain and forty normal control subjects were examined using CT scan of patello-femoral joint in 15 degrees of knee flexion. The amount of lateral patellar tilt was quantitatively assessed using the lateral patello-femoral angle, as described by Laurin et al, and the newly defined patellar cortex tilt angle. This angle is subtended by the line drawn along the posterior femoral condyles and the one parallel to the subchondral bone of patellar cortex. The fifteen-degree tilt was taken as normal cut-off point for patellar cortex tilt angle in the control group. Results: in patients, the average tilt of patella. using the patellar cortex tilt angle was 15.26 versus 7.05 in the control group. Using Student's t test, the difference between the two means was significant (P<0.001). The sensitivity and specificity of patellar cortex tilt angle were 40 and 90 percent, respectively There was a moderate agreement between our presented test and the lateral tilt angle test (kappa=0.40. P<0.001). Conclusion: our results indicate that patellar tilt can also be detected using patellar cortex tilt angle. We need more specific studies ta determine the validity of the test

  11. [Review] Polarization and Polarimetry

    Science.gov (United States)

    Trippe, Sascha

    2014-02-01

    Polarization is a basic property of light and is fundamentally linked to the internal geometry of a source of radiation. Polarimetry complements photometric, spectroscopic, and imaging analyses of sources of radiation and has made possible multiple astrophysical discoveries. In this article I review (i) the physical basics of polarization: electromagnetic waves, photons, and parameterizations; (ii) astrophysical sources of polarization: scattering, synchrotron radiation, active media, and the Zeeman, Goldreich-Kylafis, and Hanle effects, as well as interactions between polarization and matter (like birefringence, Faraday rotation, or the Chandrasekhar-Fermi effect); (iii) observational methodology: on-sky geometry, influence of atmosphere and instrumental polarization, polarization statistics, and observational techniques for radio, optical, and X/γ wavelengths; and (iv) science cases for astronomical polarimetry: solar and stellar physics, planetary system bodies, interstellar matter, astrobiology, astronomical masers, pulsars, galactic magnetic fields, gamma-ray bursts, active galactic nuclei, and cosmic microwave background radiation.

  12. Conservative treatment of excessive anterior pelvic tilt

    DEFF Research Database (Denmark)

    Brekke, Anders Falk

    quality by two reviewers using Cochrane Collaboration’s tool for assessing risk of bias in RCT’s and the ROBINS-I tool (Risk Of Bias In Non-randomized Studies - of interventions). Data was synthesized qualitatively. The GRADE approach was used to determine the overall quality of the evidence. PROSPERO...... treatment may reduce anterior pelvis tilt and reduce symptoms in relation to faulty posture. Keywords: pelvis, anterior tilt, anteversion, posture...

  13. Kelvin-Helmholtz instability in a twisting solar polar coronal hole jet observed by SDO/AIA

    Science.gov (United States)

    Zhelyazkov, I.; Zaqarashvili, T. V.; Ofman, L.; Chandra, R.

    2018-01-01

    We investigate the conditions under which the fluting (m = 2), m = 3 , and m = 12 magnetohydrodynamic (MHD) modes in a uniformly twisted flux tube moving along its axis become unstable in order to model the Kelvin-Helmholtz (KH) instability in a twisting solar coronal hole jet near the northern pole of the Sun. We employed the dispersion relations of MHD modes derived from the linearized MHD equations. We assumed real wavenumbers and complex angular wave frequencies, namely complex wave phse velocities. The dispersion relations were solved numerically at fixed input parameters (taken from observational data) and varying degrees of torsion of the internal magnetic field. It is shown that the stability of the modes depends upon five parameters: the density contrast between the flux tube and its environment, the ratio of the external and internal axial magnetic fields, the twist of the magnetic field lines inside the tube, the ratio of transverse and axial jet's velocities, and the value of the Alfvén Mach number (the ratio of the tube axial velocity to Alfvén speed inside the flux tube). Using a twisting jet of 2010 August 21 by SDO/AIA and other observations of coronal jets we set the parameters of our theoretical model and have obtained that in a twisted magnetic flux tube of radius of 9.8 Mm, at a density contrast of 0.474 and fixed Alfvén Mach number of ≅ 0.76 , for the three MHD modes there exist instability windows whose width crucially depends upon the internal magnetic field twist. It is found that for the considered modes an azimuthal magnetic field of 1.3 - 1.4 G (computed at the tube boundary) makes the width of the instability windows equal to zero, that is, it suppress the KH instability onset. On the other hand, the times for developing KH instability of the m = 12 MHD mode at instability wavelengths between 15 and 12 Mm turn out to be in the range of 1.9 - 4.7 min that is in agreement with the growth rates estimated from the temporal evolution of

  14. SOLAR CYCLE PROPAGATION, MEMORY, AND PREDICTION: INSIGHTS FROM A CENTURY OF MAGNETIC PROXIES

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Jaramillo, Andres; DeLuca, Edward E. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Dasi-Espuig, Maria [Max-Planck-Institut fuer Sonnensystemforschung, D-37191 Katlenburg-Lindau (Germany); Balmaceda, Laura A., E-mail: amunoz@cfa.harvard.edu, E-mail: edeluca@cfa.harvard.edu, E-mail: dasi@mps.mpg.de, E-mail: lbalmaceda@icate-conicet.gob.ar [Institute for Astronomical, Terrestrial and Space Sciences (ICATE-CONICET), San Juan (Argentina)

    2013-04-20

    The solar cycle and its associated magnetic activity are the main drivers behind changes in the interplanetary environment and Earth's upper atmosphere (commonly referred to as space weather). These changes have a direct impact on the lifetime of space-based assets and can create hazards to astronauts in space. In recent years there has been an effort to develop accurate solar cycle predictions (with aims at predicting the long-term evolution of space weather), leading to nearly a hundred widely spread predictions for the amplitude of solar cycle 24. A major contributor to the disagreement is the lack of direct long-term databases covering different components of the solar magnetic field (toroidal versus poloidal). Here, we use sunspot area and polar faculae measurements spanning a full century (as our toroidal and poloidal field proxies) to study solar cycle propagation, memory, and prediction. Our results substantiate predictions based on the polar magnetic fields, whereas we find sunspot area to be uncorrelated with cycle amplitude unless multiplied by area-weighted average tilt. This suggests that the joint assimilation of tilt and sunspot area is a better choice (with aims to cycle prediction) than sunspot area alone, and adds to the evidence in favor of active region emergence and decay as the main mechanism of poloidal field generation (i.e., the Babcock-Leighton mechanism). Finally, by looking at the correlation between our poloidal and toroidal proxies across multiple cycles, we find solar cycle memory to be limited to only one cycle.

  15. Polarization Optics

    OpenAIRE

    Fressengeas, Nicolas

    2010-01-01

    The physics of polarization optics *Polarized light propagation *Partially polarized light; DEA; After a brief introduction to polarization optics, this lecture reviews the basic formalisms for dealing with it: Jones Calculus for totally polarized light and Stokes parameters associated to Mueller Calculus for partially polarized light.

  16. Lifting to cluster-tilting objects in higher cluster categories

    OpenAIRE

    Liu, Pin

    2008-01-01

    In this note, we consider the $d$-cluster-tilted algebras, the endomorphism algebras of $d$-cluster-tilting objects in $d$-cluster categories. We show that a tilting module over such an algebra lifts to a $d$-cluster-tilting object in this $d$-cluster category.

  17. Direct cone beam SPECT reconstruction with camera tilt

    International Nuclear Information System (INIS)

    Jianying Li; Jaszczak, R.J.; Greer, K.L.; Coleman, R.E.; Zongjian Cao; Tsui, B.M.W.

    1993-01-01

    A filtered backprojection (FBP) algorithm is derived to perform cone beam (CB) single-photon emission computed tomography (SPECT) reconstruction with camera tilt using circular orbits. This algorithm reconstructs the tilted angle CB projection data directly by incorporating the tilt angle into it. When the tilt angle becomes zero, this algorithm reduces to that of Feldkamp. Experimentally acquired phantom studies using both a two-point source and the three-dimensional Hoffman brain phantom have been performed. The transaxial tilted cone beam brain images and profiles obtained using the new algorithm are compared with those without camera tilt. For those slices which have approximately the same distance from the detector in both tilt and non-tilt set-ups, the two transaxial reconstructions have similar profiles. The two-point source images reconstructed from this new algorithm and the tilted cone beam brain images are also compared with those reconstructed from the existing tilted cone beam algorithm. (author)

  18. Ionization and NO production in the polar mesosphere during high-speed solar wind streams. Model validation and comparison with NO enhancements observed by Odin-SMR

    Energy Technology Data Exchange (ETDEWEB)

    Kirkwood, S.; Belova, E. [Swedish Institute of Space Physics, Kiruna (Sweden). Polar Atmospheric Research; Osepian, A. [Polar Geophysical Institute, Murmansk (Russian Federation); Urban, J.; Perot, K. [Chalmers Univ. of Technology, Gothenburg (Sweden). Dept. of Radio and Space Science; Sinha, A.K. [Indian Institute of Geomagnetism, Navi Mumbai (India)

    2015-09-01

    Precipitation of high-energy electrons (EEP) into the polar middle atmosphere is a potential source of significant production of odd nitrogen, which may play a role in stratospheric ozone destruction and in perturbing large-scale atmospheric circulation patterns. High-speed streams of solar wind (HSS) are a major source of energization and precipitation of electrons from the Earth's radiation belts, but it remains to be determined whether these electrons make a significant contribution to the odd-nitrogen budget in the middle atmosphere when compared to production by solar protons or by lower-energy (auroral) electrons at higher altitudes, with subsequent downward transport. Satellite observations of EEP are available, but their accuracy is not well established. Studies of the ionization of the atmosphere in response to EEP, in terms of cosmic-noise absorption (CNA), have indicated an unexplained seasonal variation in HSS-related effects and have suggested possible order-of-magnitude underestimates of the EEP fluxes by the satellite observations in some circumstances. Here we use a model of ionization by EEP coupled with an ion chemistry model to show that published average EEP fluxes, during HSS events, from satellite measurements (Meredith et al., 2011), are fully consistent with the published average CNA response (Kavanagh et al., 2012). The seasonal variation of CNA response can be explained by ion chemistry with no need for any seasonal variation in EEP. Average EEP fluxes are used to estimate production rate profiles of nitric oxide between 60 and 100 km heights over Antarctica for a series of unusually well separated HSS events in austral winter 2010. These are compared to observations of changes in nitric oxide during the events, made by the sub-millimetre microwave radiometer on the Odin spacecraft. The observations show strong increases of nitric oxide amounts between 75 and 90 km heights, at all latitudes poleward of 60 S, about 10 days after the

  19. Ionization and NO production in the polar mesosphere during high-speed solar wind streams: model validation and comparison with NO enhancements observed by Odin-SMR

    Directory of Open Access Journals (Sweden)

    S. Kirkwood

    2015-05-01

    Full Text Available Precipitation of high-energy electrons (EEP into the polar middle atmosphere is a potential source of significant production of odd nitrogen, which may play a role in stratospheric ozone destruction and in perturbing large-scale atmospheric circulation patterns. High-speed streams of solar wind (HSS are a major source of energization and precipitation of electrons from the Earth's radiation belts, but it remains to be determined whether these electrons make a significant contribution to the odd-nitrogen budget in the middle atmosphere when compared to production by solar protons or by lower-energy (auroral electrons at higher altitudes, with subsequent downward transport. Satellite observations of EEP are available, but their accuracy is not well established. Studies of the ionization of the atmosphere in response to EEP, in terms of cosmic-noise absorption (CNA, have indicated an unexplained seasonal variation in HSS-related effects and have suggested possible order-of-magnitude underestimates of the EEP fluxes by the satellite observations in some circumstances. Here we use a model of ionization by EEP coupled with an ion chemistry model to show that published average EEP fluxes, during HSS events, from satellite measurements (Meredith et al., 2011, are fully consistent with the published average CNA response (Kavanagh et al., 2012. The seasonal variation of CNA response can be explained by ion chemistry with no need for any seasonal variation in EEP. Average EEP fluxes are used to estimate production rate profiles of nitric oxide between 60 and 100 km heights over Antarctica for a series of unusually well separated HSS events in austral winter 2010. These are compared to observations of changes in nitric oxide during the events, made by the sub-millimetre microwave radiometer on the Odin spacecraft. The observations show strong increases of nitric oxide amounts between 75 and 90 km heights, at all latitudes poleward of 60° S, about 10 days

  20. TILT ANGLE AND FOOTPOINT SEPARATION OF SMALL AND LARGE BIPOLAR SUNSPOT REGIONS OBSERVED WITH HMI

    Energy Technology Data Exchange (ETDEWEB)

    McClintock, B. H. [University of Southern Queensland, Toowoomba, 4350 (Australia); Norton, A. A., E-mail: u1049686@umail.usq.edu.au, E-mail: aanorton@stanford.edu [HEPL, Stanford University, Palo Alto, CA 94305 (United States)

    2016-02-10

    We investigate bipolar sunspot regions and how tilt angle and footpoint separation vary during emergence and decay. The Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory collects data at a higher cadence than historical records and allows for a detailed analysis of regions over their lifetimes. We sample the umbral tilt angle, footpoint separation, and umbral area of 235 bipolar sunspot regions in Helioseismic and Magnetic Imager—Debrecen Data with an hourly cadence. We use the time when the umbral area peaks as time zero to distinguish between the emergence and decay periods of each region and we limit our analysis of tilt and separation behavior over time to within ±96 hr of time zero. Tilt angle evolution is distinctly different for regions with small (≈30 MSH), midsize (≈50 MSH), and large (≈110 MSH) maximum umbral areas, with 45 and 90 MSH being useful divisions for separating the groups. At the peak umbral area, we determine median tilt angles for small (7.°6), midsize (5.°9), and large (9.°3) regions. Within ±48 hr of the time of peak umbral area, large regions steadily increase in tilt angle, midsize regions are nearly constant, and small regions show evidence of negative tilt during emergence. A period of growth in footpoint separation occurs over a 72-hr period for all of the regions from roughly 40 to 70 Mm. The smallest bipoles (<9 MSH) are outliers in that they do not obey Joy's law and have a much smaller footpoint separation. We confirm the Muñoz-Jaramillo et al. results that the sunspots appear to be two distinct populations.

  1. Evaluation of lesion distortion at various CT system tilts in the development of a hybrid system for dedicated mammotomography

    Science.gov (United States)

    Madhav, Priti; Crotty, Dominic J.; McKinley, Randolph L.; Tornai, Martin P.

    2007-03-01

    A hybrid SPECT-CT system for dedicated 3D breast imaging (mammotomography) is currently under development. Each imaging system will be placed on top of a single rotation stage and moved in unison azimuthally, with the SPECT system additionally capable of polar and radial motions. In this initial prototype, the CT system will initially be positioned at a fixed polar tilt. Using a phantom with three tungsten wires, the MTF of the CT system was measured in 3D for different CT system tilts. A phantom with uniformly arranged 0.5cm diameter acrylic spheres was suspended in air in the CT field of view, and also placed at multiple locations and orientations inside an oil-filled breast phantom to evaluate the effect of CT system tilt on lesion visibility and distortion. Projection images were collected using various simple circular orbits with fixed polar tilts ranging between +/-15°, and complex 3D saddle trajectories including combined polar and azimuthal motions at maximum polar tilt angles. Reconstructions were performed using an iterative reconstruction algorithm on 4x4 binned projection images with 0.508mm3 voxels. There was minor variation in the MTF in the imaged volume for the CT system at all trajectories, potentially due to the use of an iterative reconstruction algorithm. Results from the spherical cross phantoms indicated that there was more reconstruction inaccuracy and geometric distortion in the reconstructed slices with simple circular orbits with fixed tilt in contrast to complex 3D trajectories. Line profiles further showed a cupping artifact in planes farther away from the flat plane of the x-ray cone beam placed at different tilts. However, this cupping artifact was not seen for images acquired with complex 3D trajectories. This indicated that cupping artifacts can also be caused by undersampled cone beam data. These findings generally indicate that despite insufficient sampling with the cone beam imaging geometry, it is possible to place the CT system

  2. Optimal Tilt Angle and Orientation of Photovoltaic Modules Using HS Algorithm in Different Climates of China

    Directory of Open Access Journals (Sweden)

    Mian Guo

    2017-10-01

    Full Text Available Solar energy technologies play an important role in shaping a sustainable energy future, and generating clean, renewable, and widely distributed energy sources. This paper determines the optimum tilt angle and optimum azimuth angle of photovoltaic (PV panels, employing the harmony search (HS meta-heuristic algorithm. In this study, the ergodic method is first conducted to obtain the optimum tilt angle and the optimum azimuth angle in several cities of China based on the model of Julian dating. Next, the HS algorithm is applied to search for the optimum solution. The purpose of this research is to maximize the extraterrestrial radiation on the collector surface for a specific period. The sun’s position is predicted by the proposed model at different times, and then solar radiation is obtained on various inclined planes with different orientations in each city. The performance of the HS method is compared with that of the ergodic method and other optimization algorithms. The results demonstrate that the tilt angle should be changed once a month, and the best orientation is usually due south in the selected cities. In addition, the HS algorithm is a practical and reliable alternative for estimating the optimum tilt angle and optimum azimuth angle of PV panels.

  3. Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings.

    Science.gov (United States)

    Bialiayeu, A; Bottomley, A; Prezgot, D; Ianoul, A; Albert, J

    2012-11-09

    A novel technique for increasing the sensitivity of tilted fibre Bragg grating (TFBG) based refractometers is presented. The TFBG sensor was coated with chemically synthesized silver nanowires ~100 nm in diameter and several micrometres in length. A 3.5-fold increase in sensor sensitivity was obtained relative to the uncoated TFBG sensor. This increase is associated with the excitation of surface plasmons by orthogonally polarized fibre cladding modes at wavelengths near 1.5 μm. Refractometric information is extracted from the sensor via the strong polarization dependence of the grating resonances using a Jones matrix analysis of the transmission spectrum of the fibre.

  4. Designing magnetic droplet soliton nucleation employing spin polarizer

    Science.gov (United States)

    Mohseni, Morteza; Mohseni, Majid

    2018-04-01

    We show by means of micromagnetic simulations that spin polarizer in nano-contact (NC) spin torque oscillators as the representative of the fixed layer in an orthogonal pseudo-spin valve can be employed to design and to control magnetic droplet soliton nucleation and dynamics. We found that using a tilted spin polarizer layer decreases the droplet nucleation time which is more suitable for high speed applications. However, a tilted spin polarizer increases the nucleation current and decreases the frequency stability of the droplet. Additionally, by driving the magnetization inhomogenously at the NC region, it is found that a tilted spin polarizer reduces the precession angle of the droplet and through an interplay with the Oersted field of the DC current, it breaks the spatial symmetry of the droplet profile. Our findings explore fundamental insight into nano-scale magnetic droplet soliton dynamics with potential tunability parameters for future microwave electronics.

  5. Polar Biomedical Research - An Assessment.

    Science.gov (United States)

    1982-10-01

    to grow more crops in subpolar Alaska. The severity of the polar conditions in Antarctica allow no practical method for providing volumes of plant food...for an expanded population. Any experiments in polar regions in food production involving geothermal heat, solar energy, hydroponics , or aquaculture

  6. Spatial coherence profilometry on tilted surfaces

    Czech Academy of Sciences Publication Activity Database

    Pavlíček, Pavel; Halouzka, M.; Duan, Z.; Takeda, M.

    2009-01-01

    Roč. 48, č. 34 (2009), H40-H47 ISSN 0003-6935 R&D Projects: GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : tilted surface * spatial coherence profilometry * spatial coherence * measurement error * shape measurement Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.410, year: 2009

  7. "Happiness and Education": Tilting at Windmills?

    Science.gov (United States)

    Verducci, Susan

    2013-01-01

    This essay explores the question: Is Nel Noddings a visionary who sees past the constraints of contemporary education or is she, like Don Quixote, madly tilting at windmills in her description and defense of happiness as an educational aim? Viewing the educational aim of happiness as an ideal raises substantial challenges for the practicality of…

  8. Remote sensing of a NTC radio source from a Cluster tilted spacecraft pair

    Directory of Open Access Journals (Sweden)

    P. M. E. Décréau

    2013-11-01

    Full Text Available The Cluster mission operated a "tilt campaign" during the month of May 2008. Two of the four identical Cluster spacecraft were placed at a close distance (~50 km from each other and the spin axis of one of the spacecraft pair was tilted by an angle of ~46°. This gave the opportunity, for the first time in space, to measure global characteristics of AC electric field, at the sensitivity available with long boom (88 m antennas, simultaneously from the specific configuration of the tilted pair of satellites and from the available base of three satellites placed at a large characteristic separation (~1 RE. This paper describes how global characteristics of radio waves, in this case the configuration of the electric field polarization ellipse in 3-D-space, are identified from in situ measurements of spin modulation features by the tilted pair, validating a novel experimental concept. In the event selected for analysis, non-thermal continuum (NTC waves in the 15–25 kHz frequency range are observed from the Cluster constellation placed above the polar cap. The observed intensity variations with spin angle are those of plane waves, with an electric field polarization close to circular, at an ellipticity ratio e = 0.87. We derive the source position in 3-D by two different methods. The first one uses ray path orientation (measured by the tilted pair combined with spectral signature of magnetic field magnitude at source. The second one is obtained via triangulation from the three spacecraft baseline, using estimation of directivity angles under assumption of circular polarization. The two results are not compatible, placing sources widely apart. We present a general study of the level of systematic errors due to the assumption of circular polarization, linked to the second approach, and show how this approach can lead to poor triangulation and wrong source positioning. The estimation derived from the first method places the NTC source region in the

  9. Polarization of Coronal Forbidden Lines

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao; Qu, Zhongquan [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China); Landi Degl’Innocenti, Egidio, E-mail: sayahoro@ynao.ac.cn [Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze, Largo E. Fermi 2, I-50125 Firenze (Italy)

    2017-03-20

    Since the magnetic field is responsible for most manifestations of solar activity, one of the most challenging problems in solar physics is the diagnostics of solar magnetic fields, particularly in the outer atmosphere. To this end, it is important to develop rigorous diagnostic tools to interpret polarimetric observations in suitable spectral lines. This paper is devoted to analyzing the diagnostic content of linear polarization imaging observations in coronal forbidden lines. Although this technique is restricted to off-limb observations, it represents a significant tool to diagnose the magnetic field structure in the solar corona, where the magnetic field is intrinsically weak and still poorly known. We adopt the quantum theory of polarized line formation developed in the framework of the density matrix formalism, and synthesize images of the emergent linear polarization signal in coronal forbidden lines using potential-field source-surface magnetic field models. The influence of electronic collisions, active regions, and Thomson scattering on the linear polarization of coronal forbidden lines is also examined. It is found that active regions and Thomson scattering are capable of conspicuously influencing the orientation of the linear polarization. These effects have to be carefully taken into account to increase the accuracy of the field diagnostics. We also found that linear polarization observation in suitable lines can give valuable information on the long-term evolution of the magnetic field in the solar corona.

  10. TWO NOVEL PARAMETERS TO EVALUATE THE GLOBAL COMPLEXITY OF THE SUN'S MAGNETIC FIELD AND TRACK THE SOLAR CYCLE

    International Nuclear Information System (INIS)

    Zhao, L.; Landi, E.; Gibson, S. E.

    2013-01-01

    Since the unusually prolonged and weak solar minimum between solar cycles 23 and 24 (2008-2010), the sunspot number is smaller and the overall morphology of the Sun's magnetic field is more complicated (i.e., less of a dipole component and more of a tilted current sheet) compared with the same minimum and ascending phases of the previous cycle. Nearly 13 yr after the last solar maximum (∼2000), the monthly sunspot number is currently only at half the highest value of the past cycle's maximum, whereas the polar magnetic field of the Sun is reversing (north pole first). These circumstances make it timely to consider alternatives to the sunspot number for tracking the Sun's magnetic cycle and measuring its complexity. In this study, we introduce two novel parameters, the standard deviation (SD) of the latitude of the heliospheric current sheet (HCS) and the integrated slope (SL) of the HCS, to evaluate the complexity of the Sun's magnetic field and track the solar cycle. SD and SL are obtained from the magnetic synoptic maps calculated by a potential field source surface model. We find that SD and SL are sensitive to the complexity of the HCS: (1) they have low values when the HCS is flat at solar minimum, and high values when the HCS is highly tilted at solar maximum; (2) they respond to the topology of the HCS differently, as a higher SD value indicates that a larger part of the HCS extends to higher latitude, while a higher SL value implies that the HCS is wavier; (3) they are good indicators of magnetically anomalous cycles. Based on the comparison between SD and SL with the normalized sunspot number in the most recent four solar cycles, we find that in 2011 the solar magnetic field had attained a similar complexity as compared to the previous maxima. In addition, in the ascending phase of cycle 24, SD and SL in the northern hemisphere were on the average much greater than in the southern hemisphere, indicating a more tilted and wavier HCS in the north than the

  11. Theoretical Analysis of Interferometer Wave Front Tilt and Fringe Radiant Flux on a Rectangular Photodetector

    Directory of Open Access Journals (Sweden)

    Franz Konstantin Fuss

    2013-09-01

    Full Text Available This paper is a theoretical analysis of mirror tilt in a Michelson interferometer and its effect on the radiant flux over the active area of a rectangular photodetector or image sensor pixel. It is relevant to sensor applications using homodyne interferometry where these opto-electronic devices are employed for partial fringe counting. Formulas are derived for radiant flux across the detector for variable location within the fringe pattern and with varying wave front angle. The results indicate that the flux is a damped sine function of the wave front angle, with a decay constant of the ratio of wavelength to detector width. The modulation amplitude of the dynamic fringe pattern reduces to zero at wave front angles that are an integer multiple of this ratio and the results show that the polarity of the radiant flux changes exclusively at these multiples. Varying tilt angle causes radiant flux oscillations under an envelope curve, the frequency of which is dependent on the location of the detector with the fringe pattern. It is also shown that a fringe count of zero can be obtained for specific photodetector locations and wave front angles where the combined effect of fringe contraction and fringe tilt can have equal and opposite effects. Fringe tilt as a result of a wave front angle of 0.05° can introduce a phase measurement difference of 16° between a photodetector/pixel located 20 mm and one located 100 mm from the optical origin.

  12. Development of tilted fibre Bragg gratings using highly coherent 255 ...

    Indian Academy of Sciences (India)

    2014-02-06

    Feb 6, 2014 ... This paper reports the study on development of tilted fibre Bragg gratings using highly coherent 255 nm radiation, obtained from the second harmonic generation (SHG) of copper vapour laser (CVL). The transmission and reflection spectra of the tilted fibre Bragg gratings (TFBG) were studied for the tilt ...

  13. Linearly Polarized Dual-Wavelength Vertical-External-Cavity Surface-Emitting Laser (Postprint)

    National Research Council Canada - National Science Library

    Fan, Li; Fallahi, Mahmoud; Hader, Joerg; Zakharian, Aramais R; Moloney, Jerome V; Stolz, Wolfgang; Koch, Stephan W; Bedford, Robert; Murray, James T

    2007-01-01

    The authors demonstrate the multiwatt linearly polarized dual-wavelength operation in an optically pumped vertical-external-cavity surface-emitting laser by means of an intracavity tilted Fabry-Perot...

  14. Design and Development of Tilting Rotary Furnace

    Science.gov (United States)

    Sai Varun, V.; Tejesh, P.; Prashanth, B. N.

    2018-02-01

    Casting is the best and effective technique used for manufacturing products. The important accessory for casting is furnace. Furnace is used to melt the metal. A perfect furnace is one that reduces the wastage of material, reduces the cost of manufacturing and there by reduces the cost of production. Of all the present day furnaces there may be wastage of material, and the chances of increasing the time of manufacturing as the is continuous need of tilting of the furnace for every mould and then changing the moulds. Considering these aspects, a simple and least expensive tilting rotary furnace is designed and developed. The Tilting and Rotary Furnace consists of mainly melting chamber and the base. The metal enters the melting chamber through the input door that is provided on the top of the melting chamber. Inside the melting chamber there is a graphite furnace. The metal is melted in the graphite crucible. An insulation of ceramic fibre cloth is provided inside the furnace. The metal is melted using Propane gas. The propane gas is easily available and economic. The gas is burned using a pilot burner. The pilot burner is more efficient that other burners. The pilot burner is lit with a push button igniter. The pilot burner is located at the bottom of the combustion chamber. This enables the uniform heating of the metal inside the crucible. The temperature inside the melting chamber is noted using a temperature sensor. The gas input is cut-off if the temperature is exceeding a specific temperature. After the melting of the metal is done the furnace is tilted and after the mould is filled it is rotated. The external gears are used to controlling the tilting. The results of studies carried out for the design & development of low cost, simple furnace that can be mounted anywhere on the shop floor and this can be very much useful for the education purposes and small scale manufacturing. The furnace can be rotated in 360 degrees and can help in reducing the time taken

  15. Determinants of Motion Sickness in Tilting Trains: Coriolis/Cross-Coupling Stimuli and Tilt Delay.

    Science.gov (United States)

    Bertolini, Giovanni; Durmaz, Meek Angela; Ferrari, Kim; Küffer, Alexander; Lambert, Charlotte; Straumann, Dominik

    2017-01-01

    Faster trains require tilting of the cars to counterbalance the centrifugal forces during curves. Motion sensitive passengers, however, complain of discomfort and overt motion sickness. A recent study comparing different control systems in a tilting train, suggested that the delay of car tilts relative to the curve of the track contributes to motion sickness. Other aspects of the motion stimuli, like the lateral accelerations and the car jitters, differed between the tested conditions and prevented a final conclusion on the role of tilt delay. Nineteen subjects were tested on a motorized 3D turntable that simulated the roll tilts during yaw rotations experienced on a tilting train, isolating them from other motion components. Each session was composed of two consecutive series of 12 ideal curves that were defined on the bases of recordings during an actual train ride. The simulated car tilts started either at the beginning of the curve acceleration phase (no-delay condition) or with 3 s of delay (delay condition). Motion sickness was self-assessed by each subject at the end of each series using an analog motion sickness scale. All subjects were tested in both conditions. Significant increases of motion sickness occurred after the first sequence of 12 curves in the delay condition, but not in the no-delay condition. This increase correlated with the sensitivity of motion sickness, which was self-assessed by each subject before the experiment. The second sequence of curve did not lead to a significant further increase of motion sickness in any condition. Our results demonstrate that, even if the speed and amplitude are as low as those experienced on tilting trains, a series of roll tilts with a delay relative to the horizontal rotations, isolated from other motion stimuli occurring during a travel, generate Coriolis/cross-coupling stimulations sufficient to rapidly induce motion sickness in sensitive individuals. The strength and the rapid onset of the motion

  16. Determinants of Motion Sickness in Tilting Trains: Coriolis/Cross-Coupling Stimuli and Tilt Delay

    Directory of Open Access Journals (Sweden)

    Giovanni Bertolini

    2017-05-01

    Full Text Available Faster trains require tilting of the cars to counterbalance the centrifugal forces during curves. Motion sensitive passengers, however, complain of discomfort and overt motion sickness. A recent study comparing different control systems in a tilting train, suggested that the delay of car tilts relative to the curve of the track contributes to motion sickness. Other aspects of the motion stimuli, like the lateral accelerations and the car jitters, differed between the tested conditions and prevented a final conclusion on the role of tilt delay. Nineteen subjects were tested on a motorized 3D turntable that simulated the roll tilts during yaw rotations experienced on a tilting train, isolating them from other motion components. Each session was composed of two consecutive series of 12 ideal curves that were defined on the bases of recordings during an actual train ride. The simulated car tilts started either at the beginning of the curve acceleration phase (no-delay condition or with 3 s of delay (delay condition. Motion sickness was self-assessed by each subject at the end of each series using an analog motion sickness scale. All subjects were tested in both conditions. Significant increases of motion sickness occurred after the first sequence of 12 curves in the delay condition, but not in the no-delay condition. This increase correlated with the sensitivity of motion sickness, which was self-assessed by each subject before the experiment. The second sequence of curve did not lead to a significant further increase of motion sickness in any condition. Our results demonstrate that, even if the speed and amplitude are as low as those experienced on tilting trains, a series of roll tilts with a delay relative to the horizontal rotations, isolated from other motion stimuli occurring during a travel, generate Coriolis/cross-coupling stimulations sufficient to rapidly induce motion sickness in sensitive individuals. The strength and the rapid onset

  17. Determination of the Optimum Collector Angle for Composite Solar ...

    African Journals Online (AJOL)

    A model for predicting solar radiation available at any given time in the inhabited area in Ilorin was developed. From the equation developed, the optimum tilt angle of the collector due south was carried out. The optimum angle of tilt of the collector and the orientation are dependent on the month of the year and the location ...

  18. Listening talkers produce great spectral tilt contrasts

    DEFF Research Database (Denmark)

    Christiansen, Thomas Ulrich; Heegård, Jan; Henrichsen, Peter Juel

    It is well known that the envelope of the long-term average speech spectrum flattens with vocal effort. A recent study [1] showed that content words had a flatter spectral envelope than content words at the same overall level for a specific Danish speech material. The present paper investigates...... of colored geometrical shapes taken from DanPASS [2]. The spectral tilt was gauged by calculating the band-level difference in dB between two frequency bands with pass-bands 150 to 803 Hz and 803 to 1358 Hz respectively in 5 ms intervals. This was done separately for intervals containing content words...... and function words and grouped by talker. The spectral tilt difference was then calculated as the average band-level difference for function words minus the average band-level difference for content words. This calculation was grouped per talker. For the monologues these differences ranged between 5 and 8 d...

  19. A tilted transversely isotropic slowness surface approximation

    KAUST Repository

    Stovas, A.

    2012-05-09

    The relation between vertical and horizontal slownesses, better known as the dispersion relation, for transversely isotropic media with a tilted symmetry axis (TTI) requires solving a quartic polynomial equation, which does not admit a practical explicit solution to be used, for example, in downward continuation. Using a combination of the perturbation theory with respect to the anelliptic parameter and Shanks transform to improve the accuracy of the expansion, we develop an explicit formula for the vertical slowness that is highly accurate for all practical purposes. It also reveals some insights into the anisotropy parameter dependency of the dispersion relation including the low impact that the anelliptic parameter has on the vertical placement of reflectors for a small tilt in the symmetry angle. © 2012 European Association of Geoscientists & Engineers.

  20. Inverse solutions for tilting orthogonal double prisms.

    Science.gov (United States)

    Li, Anhu; Ding, Ye; Bian, Yongming; Liu, Liren

    2014-06-10

    An analytical reverse solution and actual examples are given to show how to direct a laser beam from a pair of orthogonal prisms to given targets in free space. Considering the influences of double-prism structural parameters, a lookup table method to seek the numerical reverse solution of each prism's tilting angle is also proposed for steering the double-prism orientation to track a target position located in the near field. Some case studies, as well as a specified elliptical target trajectory scanned by the cam-based driving double prisms, exhibit the significant application values of the theoretical derivation. The analytic reverse and numerical solutions can be generalized to investigate the synthesis of scanning patterns and the controlling strategy of double-prism tilting motion, the potentials of which can be explored to perform the orientation and position tracking functions in applications of precision engineering fields.

  1. GAS MOVEMENT IN ROTARY TILTING FURNACES

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2016-01-01

    Full Text Available The article presents the results of studies of gas movement and heat and mass transfer processes in the rotary tilting furnace (RTF at the heat treatment of disperse materials. The study was performed through computer modeling using software packages ANSYS CFX and Solid Works Flow Simulation. The results were used to design RTF with different capacity and application and helped to improve their technical and economic characteristics.

  2. Temperature characteristics of tilted wave lasers

    Science.gov (United States)

    Maximov, Mikhail V.; Gordeev, Nikita Yu.; Shernyakov, Yuri M.; Payusov, Alexey S.; Kalyuzhnyy, Nikolay A.; Mintairov, Sergey A.; Kulagina, Marina M.; Zhukov, Alexey E.; Shchukin, Vitaly A.; Ledentsov, Nikolai N.

    2016-11-01

    We report on the temperature characteristics of edge-emitting tilted wave lasers (TWL) composed of a thin active waveguide (0.7 μm) optically coupled to a thick passive waveguide (26 μm). The active region is based on four 1040-nm InGaAs/GaAs quantum wells. The 2-mm-long and 50-μm-wide broad area lasers show characteristic temperature of 115 K and lasing up to 120°C in the continuous-wave mode. The maximal pulsed output power as high as 40 W was achieved being limited by the available current source. Vertical far-fields of the TWLs consist of two tilted narrow lobs (2.4 deg full width at half maximum each), which contain >70% of the total output power. The tilt angle of the lobes slightly increases with the temperature (by 1 deg/40°C) due to the transverse mode hopping caused by the temperature-induced changes of the waveguide refractive indices.

  3. A COMMON SOURCE OF ACCRETION DISK TILT

    International Nuclear Information System (INIS)

    Montgomery, M. M.; Martin, E. L.

    2010-01-01

    Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source that causes and maintains disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through the disk's center of mass. The disk responds to lift by pitching around the disk's line of nodes. If the gas stream flow ebbs, then lift also ebbs and the disk attempts to return to its original orientation. To first approximation, lift does not depend on magnetic fields or radiation sources but does depend on the mass and the surface area of the disk. Also, for disk tilt to be initiated, a minimum mass transfer rate must be exceeded. For example, a 10 -11 M sun disk around a 0.8 M sun compact central object requires a mass transfer rate greater than ∼ 8 x 10 -11 M sun yr -1 , a value well below the known mass transfer rates in cataclysmic variable dwarf novae systems that retrogradely precess and exhibit negative superhumps in their light curves and a value well below mass transfer rates in protostellar-forming systems.

  4. A THEORETICAL STUDY OF THE BUILD-UP OF THE SUN’S POLAR MAGNETIC FIELD BY USING A 3D KINEMATIC DYNAMO MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, Gopal; Choudhuri, Arnab Rai [Department of Physics, Indian Institute of Science, Bangalore, 560012 (India); Miesch, Mark S., E-mail: ghazra@physics.iisc.ernet.in, E-mail: arnab@physics.iisc.ernet.in, E-mail: miesch@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO 80301 (United States)

    2017-01-20

    We develop a three-dimensional kinematic self-sustaining model of the solar dynamo in which the poloidal field generation is from tilted bipolar sunspot pairs placed on the solar surface above regions of strong toroidal field by using the SpotMaker algorithm, and then the transport of this poloidal field to the tachocline is primarily caused by turbulent diffusion. We obtain a dipolar solution within a certain range of parameters. We use this model to study the build-up of the polar magnetic field and show that some insights obtained from surface flux transport models have to be revised. We present results obtained by putting a single bipolar sunspot pair in a hemisphere and two symmetrical sunspot pairs in two hemispheres. We find that the polar fields produced by them disappear due to the upward advection of poloidal flux at low latitudes, which emerges as oppositely signed radial flux and which is then advected poleward by the meridional flow. We also study the effect that a large sunspot pair, violating Hale’s polarity law, would have on the polar field. We find that there would be some effect—especially if the anti-Hale pair appears at high latitudes in the mid-phase of the cycle—though the effect is not very dramatic.

  5. ANGULAR SPACE – TIME RELATIONS IN SOLAR RADIATION

    African Journals Online (AJOL)

    ES Obe

    1979-03-01

    Mar 1, 1979 ... The analyses are educational adaptations of engineering mechanics to this growing field of heliotechnoloy. NOTATION [1] α = solar altitude angle β = surface tilt angle, towards Equator +β, away from Equator -β γ = solar azimuth angle, clockwise from. North δ. = solar declination angle θ, i = incidence angle ...

  6. Polarization Measurements in the Vacuum Ultraviolet

    Science.gov (United States)

    West, E. A.; Kobayashi, K.; Noble, M.

    2005-01-01

    This paper will describe the VUV polarization testing of the NSSTC Solar Ultraviolet Magnetograph (SUMI) optics. SUMI is being developed for a sounding rocket payload to prove the feasibility of making magnetic field measurements in the transition region. This paper will cover the polarization properties of the VUV calibration polarizers, the instrumental polarization of the VUV chamber, SUMI's toroidal varied-line-space gratings and the SUMI polarimeter.

  7. The northern edge of the band of solar wind variability: Ulysses at ∼4.5AU

    International Nuclear Information System (INIS)

    Gosling, J.T.; Bame, S.J.; Feldman, W.C.; McComas, D.J.; Riley, P.; Goldstein, B.E.; Neugebauer, M.

    1997-01-01

    Ulysses observations reveal that the northern edge of the low-latitude band of solar wind variability at ∼4.5AU was located at N30 degree in the latter part of 1996 when solar activity was at a minimum. This edge latitude is intermediate between edge latitudes found during previous encounters with the band edge along different portions of Ulysses close-quote polar orbit about the Sun. Corotating interaction regions, CIRs, near the northern edge of the band were tilted in such a manner that the forward and reverse shocks bounding the CIRs were propagating equatorward and poleward, respectively, providing definite confirmation that CIRs have opposed tilts in the opposite solar hemispheres. No shocks or coronal mass ejections, CMEs, were detected during the ∼1.5y traverse of the northern, high-latitude northern hemisphere; however, at the northern edge of the band of variability an expanding CME was observed that was driving a shock into the high-speed wind.copyright 1997 American Geophysical Union

  8. A lunar polar expedition

    Science.gov (United States)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-09-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  9. Thermal annealing of tilted fiber Bragg gratings

    Science.gov (United States)

    González-Vila, Á.; Rodríguez-Cobo, L.; Mégret, P.; Caucheteur, C.; López-Higuera, J. M.

    2016-05-01

    We report a practical study of the thermal decay of cladding mode resonances in tilted fiber Bragg gratings, establishing an analogy with the "power law" evolution previously observed on uniform gratings. We examine how this process contributes to a great thermal stability, even improving it by means of a second cycle slightly increasing the annealing temperature. In addition, we show an improvement of the grating spectrum after annealing, with respect to the one just after inscription, which suggests the application of this method to be employed to improve saturation issues during the photo-inscription process.

  10. Cyclonic circulation of Saturn's atmosphere due to tilted convection

    Science.gov (United States)

    Afanasyev, Y. D.; Zhang, Y.

    2018-02-01

    Saturn displays cyclonic vortices at its poles and the general atmospheric circulation at other latitudes is dominated by embedded zonal jets that display cyclonic circulation. The abundance of small-scale convective storms suggests that convection plays a role in producing and maintaining Saturn's atmospheric circulation. However, the dynamical influence of small-scale convection on Saturn's general circulation is not well understood. Here we present laboratory analogue experiments and propose that Saturn's cyclonic circulation can be explained by tilted convection in which buoyancy forces do not align with the planet's rotation axis. In our experiments—conducted with a cylindrical water tank that is heated at the bottom, cooled at the top and spun on a rotating table—warm rising plumes and cold sinking water generate small anticyclonic and cyclonic vortices that are qualitatively similar to Saturn's convective storms. Numerical simulations complement the experiments and show that this small-scale convection leads to large-scale cyclonic flow at the surface and anticyclonic circulation at the base of the fluid layer, with a polar vortex forming from the merging of smaller cyclonic storms that are driven polewards.

  11. Magnetic field and electric currents in the vicinity of polar cusps as inferred from Polar and Cluster data

    Directory of Open Access Journals (Sweden)

    N. A. Tsyganenko

    2009-04-01

    Full Text Available A detailed statistical study of the magnetic structure of the dayside polar cusps is presented, based on multi-year sets of magnetometer data of Polar and Cluster spacecraft, taken in 1996–2006 and 2001–2007, respectively. Thanks to the dense data coverage in both Northern and Southern Hemispheres, the analysis spanned nearly the entire length of the cusps, from low altitudes to the cusp "throat" and the magnetosheath. Subsets of data falling inside the polar cusp "funnels" were selected with the help of TS05 and IGRF magnetic field models, taking into account the dipole tilt and the solar wind/IMF conditions. The selection funnels were shifted within ±10° of SM latitude around the model cusp location, and linear regression parameters were calculated for each sliding subset, further divided into 10 bins of distance in the range 2≤R≤12 RE, with the following results. (1 Diamagnetic depression, caused by the penetrated magnetosheath plasma, becomes first visible at R~4–5 RE, rapidly deepens with growing R, peaks at R~6–9 RE, and then partially subsides and widens in latitude at the cusp's outer end. (2 The depression peak is systematically shifted poleward (by ~2° of the footpoint latitude with respect to the model cusp field line, passing through the min{|B|} point at the magnetopause. (3 At all radial distances, clear and distinct peaks of the correlation between the local By and By(IMF and of the corresponding proportionality coefficient are observed. A remarkably regular variation of that coefficient with R quantitatively confirms the field-aligned geometry of the cusp currents associated with the IMF By, found in earlier observations.

  12. An efficient eikonal solver for tilted transversely isotropic and tilted orthorhombic media

    KAUST Repository

    Waheed, Umair bin

    2014-01-01

    Computing first-arrival traveltimes in the presence of anisotropy is important for high-end near surface modeling, microseismic source localization, and fractured reservoir characterization. Anisotropy deviating from elliptical anisotropy introduces higher-order nonlinearity into the eikonal equation, which makes solving the equation a challenging task. We address this challenge by iteratively solving a sequence of simpler tilted elliptically anisotropic eikonal equations. At each iteration, the source function is updated to capture the effects due to the higher order nonlinear terms in the anisotropy. We use Aitken extrapolation to speed up the convergence rate of the iterative algorithm. The result is an efficient algorithm for firstarrival traveltime computations in tilted anisotropic media. We demonstrate the proposed method for the tilted transversely isotropic media and the tilted orthorhombic media. Numerical tests show that the proposed method is feasible and produces results that are comparable to wavefield extrapolation, even for strongly anisotropic and complex structures. Therefore, for the cases where one or two-point ray tracing fails, our method may be a potential substitute for computing traveltimes.

  13. Dual-frequency terahertz emission from splitting filaments induced by lens tilting in air

    International Nuclear Information System (INIS)

    Zhang, Zhelin; Chen, Yanping; Yang, Liu; Yuan, Xiaohui; Liu, Feng; Chen, Min; Xu, Jianqiu; Zhang, Jie; Sheng, Zhengming

    2014-01-01

    Dual-frequency terahertz radiation from air-plasma filaments produced with two-color lasers in air has been demonstrated experimentally. When a focusing lens is tilted for a few degrees, it is shown that the laser filament evolves from a single one to two sub-filaments. Two independent terahertz sources emitted from the sub-filaments with different frequencies and polarizations are identified, where the frequency of terahertz waves from the trailing sub-filament is higher than that from the leading sub-filament.

  14. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    OpenAIRE

    Luo Jun; Wang Zhiqian; Shen Chengwu; Wen Zhuoman; Liu Shaojin; Cai Sheng; Li Jianrong

    2015-01-01

    This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendic...

  15. Effect of tilting on oxygenation in newborn infants.

    Science.gov (United States)

    Thoresen, M; Cowan, F; Whitelaw, A

    1988-01-01

    Transcutaneous (tc) PO2 in newborn infants increased on head up tilting (median increase 0.5 kPa at term, 1.0 kPa preterm). Head down tilting was associated with an equivalent fall in tcPO2. There was no change in tcPCO2. Tilting of infants mechanically ventilated for respiratory distress syndrome or surgery produced no consistent change in PO2. PMID:3128187

  16. Numerical modelling of the tilt casting processes of titanium alumindes

    OpenAIRE

    Wang, Hong

    2008-01-01

    This research has investigated the modelling and optimisation of the tilt casting process of Titanium Aluminides (TiAl). This study is carried out in parallel with the experimental research undertaken in IRC at the University of Birmingham. They propose to use tilt casting inside a vacuum chamber and attempt to combine this tilt casting process with Induction Skull Melting (ISM). A totally novel process is developing for investment casting, which is suitable for casting gamma TiAl.\\ud \\ud As ...

  17. INVESTIGATIONS ON OPERATION OF ROTARY TILTING FURNACES

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2016-01-01

    Full Text Available Rotary tilting furnace (RTF is a new type of fuel furnaces, that provide the most efficient heating and recycling of polydisperse materials. The paper describes results of the investigations on thermal processes in the RTF, movement of materials and non-isothermal gas flow during kiln rotary process. The investigations have been carried out while using physical and computer simulations and under actual operating conditions applying the pilot plant. Results of the research have served as a basis for development of recommendations on the RTF calculations and designing and they have been also used for constructional design of a rotary tilting furnace for heating and melting of cast iron chips, reduction smelting of steel mill scale, melting of aluminum scrap, melting of lead from battery scrap. These furnaces have a high thermal efficiency (~50 %, technological flexibility, high productivity and profitability. Proven technical solutions for recycling of ferrous and non-ferrous metals develop the use of RTF in the foundry and metallurgical industry as the main technological unit for creation of cost-effective small-tonnage recycling of metal waste generated at the plants. The research results open prospects for organization of its own production for high-quality charging material in Belarus in lieu of imported primary metal. The proposed technology makes it possible to solve environmental challenge pertaining to liquidation of multi-tonnage heaps of metal-containing wastes.

  18. Mapping of moveout in tilted transversely isotropic media

    KAUST Repository

    Stovas, A.

    2013-09-09

    The computation of traveltimes in a transverse isotropic medium with a tilted symmetry axis tilted transversely isotropic is very important both for modelling and inversion. We develop a simple analytical procedure to map the traveltime function from a transverse isotropic medium with a vertical symmetry axis (vertical transversely isotropic) to a tilted transversely isotropic medium by applying point-by-point mapping of the traveltime function. This approach can be used for kinematic modelling and inversion in layered tilted transversely isotropic media. © 2013 European Association of Geoscientists & Engineers.

  19. Transient cardio-respiratory responses to visually induced tilt illusions

    Science.gov (United States)

    Wood, S. J.; Ramsdell, C. D.; Mullen, T. J.; Oman, C. M.; Harm, D. L.; Paloski, W. H.

    2000-01-01

    Although the orthostatic cardio-respiratory response is primarily mediated by the baroreflex, studies have shown that vestibular cues also contribute in both humans and animals. We have demonstrated a visually mediated response to illusory tilt in some human subjects. Blood pressure, heart and respiration rate, and lung volume were monitored in 16 supine human subjects during two types of visual stimulation, and compared with responses to real passive whole body tilt from supine to head 80 degrees upright. Visual tilt stimuli consisted of either a static scene from an overhead mirror or constant velocity scene motion along different body axes generated by an ultra-wide dome projection system. Visual vertical cues were initially aligned with the longitudinal body axis. Subjective tilt and self-motion were reported verbally. Although significant changes in cardio-respiratory parameters to illusory tilts could not be demonstrated for the entire group, several subjects showed significant transient decreases in mean blood pressure resembling their initial response to passive head-up tilt. Changes in pulse pressure and a slight elevation in heart rate were noted. These transient responses are consistent with the hypothesis that visual-vestibular input contributes to the initial cardiovascular adjustment to a change in posture in humans. On average the static scene elicited perceived tilt without rotation. Dome scene pitch and yaw elicited perceived tilt and rotation, and dome roll motion elicited perceived rotation without tilt. A significant correlation between the magnitude of physiological and subjective reports could not be demonstrated.

  20. Spirit Near 'Stapledon' on Sol 1802 (Polar)

    Science.gov (United States)

    2009-01-01

    NASA Mars Exploration Rover Spirit used its navigation camera for the images assembled into this full-circle view of the rover's surroundings during the 1,802nd Martian day, or sol, (January 26, 2009) of Spirit's mission on the surface of Mars. North is at the top. This view is presented as a polar projection with geometric seam correction. Spirit had driven down off the low plateau called 'Home Plate' on Sol 1782 (January 6, 2009) after spending 12 months on a north-facing slope on the northern edge of Home Plate. The position on the slope (at about the 9-o'clock position in this view) tilted Spirit's solar panels toward the sun, enabling the rover to generate enough electricity to survive its third Martian winter. Tracks at about the 11-o'clock position of this panorama can be seen leading back to that 'Winter Haven 3' site from the Sol 1802 position about 10 meters (33 feet) away. For scale, the distance between the parallel wheel tracks is about one meter (40 inches). Where the receding tracks bend to the left, a circular pattern resulted from Spirit turning in place at a soil target informally named 'Stapledon' after William Olaf Stapledon, a British philosopher and science-fiction author who lived from 1886 to 1950. Scientists on the rover team suspected that the soil in that area might have a high concentration of silica, resembling a high-silica soil patch discovered east of Home Plate in 2007. Bright material visible in the track furthest to the right was examined with Spirit's alpha partical X-ray spectrometer and found, indeed, to be rich in silica. The team laid plans to drive Spirit from this Sol 1802 location back up onto Home Plate, then southward for the rover's summer field season.

  1. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  2. Polar metals by geometric design

    Science.gov (United States)

    Kim, T. H.; Puggioni, D.; Yuan, Y.; Xie, L.; Zhou, H.; Campbell, N.; Ryan, P. J.; Choi, Y.; Kim, J.-W.; Patzner, J. R.; Ryu, S.; Podkaminer, J. P.; Irwin, J.; Ma, Y.; Fennie, C. J.; Rzchowski, M. S.; Pan, X. Q.; Gopalan, V.; Rondinelli, J. M.; Eom, C. B.

    2016-05-01

    Gauss’s law dictates that the net electric field inside a conductor in electrostatic equilibrium is zero by effective charge screening; free carriers within a metal eliminate internal dipoles that may arise owing to asymmetric charge distributions. Quantum physics supports this view, demonstrating that delocalized electrons make a static macroscopic polarization, an ill-defined quantity in metals—it is exceedingly unusual to find a polar metal that exhibits long-range ordered dipoles owing to cooperative atomic displacements aligned from dipolar interactions as in insulating phases. Here we describe the quantum mechanical design and experimental realization of room-temperature polar metals in thin-film ANiO3 perovskite nickelates using a strategy based on atomic-scale control of inversion-preserving (centric) displacements. We predict with ab initio calculations that cooperative polar A cation displacements are geometrically stabilized with a non-equilibrium amplitude and tilt pattern of the corner-connected NiO6 octahedra—the structural signatures of perovskites—owing to geometric constraints imposed by the underlying substrate. Heteroepitaxial thin-films grown on LaAlO3 (111) substrates fulfil the design principles. We achieve both a conducting polar monoclinic oxide that is inaccessible in compositionally identical films grown on (001) substrates, and observe a hidden, previously unreported, non-equilibrium structure in thin-film geometries. We expect that the geometric stabilization approach will provide novel avenues for realizing new multifunctional materials with unusual coexisting properties.

  3. Optical performance of inclined south-north single-axis tracked solar panels

    International Nuclear Information System (INIS)

    Li, Zhimin; Liu, Xinyue; Tang, Runsheng

    2010-01-01

    To investigate optical performance of the inclined south-north single-axis (ISN-axis, in short) tracked solar panels, a mathematical procedure to estimate the annual collectible radiation on fixed and tracked panels was suggested based on solar geometry and monthly horizontal radiation. For solar panels tracking about ISN-axis, the yearly optimal tilt-angle of ISN-axis for maximizing annual solar gain was about 3 o deviating from the site latitude in most of China except in areas with poor solar resources, and the maximum annual collectible radiation on ISN-axis tracked panels was about 97-98% of that on dual-axis tracked panels; whereas for ISN-axis tracked panels with the tilt-angle of ISN-axis being adjusted four times in a year at three fixed tilt-angles, the annual collectible radiation was almost close to that on dual-axis tracked panels, the optimum date of tilt-angle adjustment of ISN-axis was 23 days from the equinoxes, and the optimum tilt-angle adjustment value for each adjustment was about 22 o . Compared to fixed south-facing solar panels inclined at an optimal tilt-angle, the increase in the annual solar gain due to using ISN-axis sun tracking was above 30% in the areas with abundant solar resources and less than 20% in the areas with poor solar resources.

  4. Molecular photoelectron holography with circularly polarized laser pulses.

    Science.gov (United States)

    Yang, Weifeng; Sheng, Zhihao; Feng, Xingpan; Wu, Miaoli; Chen, Zhangjin; Song, Xiaohong

    2014-02-10

    We investigate the photoelectron momentum distribution of molecular-ion H2+driven by ultrashort intense circularly polarized laser pulses. Both numerical solutions of the time-dependent Schrödinger equation (TDSE) and a quasiclassical model indicate that the photoelectron holography (PH) with circularly polarized pulses can occur in molecule. It is demonstrated that the interference between the direct electron wave and rescattered electron wave from one core to its neighboring core induces the PH. Moreover, the results of the TDSE predict that there is a tilt angle between the interference pattern of the PH and the direction perpendicular to the molecular axis. Furthermore, the tilt angle is sensitively dependent on the wavelength of the driven circularly polarized pulse, which is confirmed by the quasiclassical calculations. The PH induced by circularly polarized laser pulses provides a tool to resolve the electron dynamics and explore the spatial information of molecular structures.

  5. Specificity of head-up tilt testing in adolescents: effect of various degrees of tilt challenge in normal control subjects.

    Science.gov (United States)

    Lewis, D A; Zlotocha, J; Henke, L; Dhala, A

    1997-10-01

    This study sought to determine the specificity of commonly used tilt protocols in children. Tilt table testing is commonly utilized in the evaluation of children and adolescents with syncope despite a lack of uniformity in tilt protocols and a lack of studies of specificity in normal control subjects. Sixty-nine normal control volunteers (12 to 18 years old, 38 male, 31 female) with no previous history of syncope, presyncope or arrhythmia underwent tilting to 80 degrees, 70 degrees or 60 degrees for a maximum of 30 min on a motorized table with a footboard support. Autonomic maneuvers, including deep breathing, carotid massage, Valsalva maneuver and diving reflex, were performed before tilt testing to determine whether the response to these maneuvers could identify subjects prone to fainting during tilt testing. Symptoms of presyncope and frank syncope were elicited in 24 of 69 subjects (13 male, 11 female): 6 (60%) of 10 were tilted at 80 degrees, 9 (29%) of 31 at 70 degrees and 9 (32%) of 28 at 60 degrees. Tilt testing at 80 degrees was terminated after the tenth subject by the institutional review board. The mean time to a positive test response was 10.5 min at 80 degrees, 14.2 min at 70 degrees and 13.2 min at 60 degrees. In the 80 degrees tilt, 4 of 10 subjects had a positive response within 10 minutes, whereas only 3 of 31 and 2 of 28 had a positive response within testing were similar with respect to age; gender; PR, QRS and QT intervals; and baseline heart rate and blood pressure. Likewise, responses to other autonomic function tests performed were similar in tilt-positive and tilt-negative patients. The power for detecting a significant difference between patients tilted at 80 degrees versus 60 degrees and 70 degrees was 0.45 and for detecting differences in autonomic tone between tilt-positive (n = 24) and tilt-negative (n = 45) subjects was 0.8. Children appear to be more susceptible to orthostatic stress than adults. Therefore, tilt protocols commonly

  6. A patient treated with tilt training and midodrine after 68 seconds asystole during head-up tilt table testing.

    Science.gov (United States)

    Oz, Fahrettin; Cizgici, Yaşar; Bilge, A Kaya

    2011-08-01

    Neurocardiogenic syncope is a relatively common cause of syncope and is diagnosed by head-up tilt testing. A 21-year-old man was examined for frequent syncope episodes which occurred after episodes of blood drawing and standing in queue. Syncope developed in tilt table testing. After about 68 seconds, sinus rhythm returned. Recent reports have shown that tilt training is a very effective therapy for recurrent neurocardiogenic syncope. In our case, the patient was treated with midodrine 2.5 mg once a day and a tilt training programme. Therapy resulted in improvement and during a follow-up of six months, no major events occurred.

  7. Oral rehabilitation with tilted dental implants: A metaanalysis

    Science.gov (United States)

    Peñarrocha-Oltra, David; Candel-Marti, Eugenia; Peñarrocha-Diago, Maria

    2012-01-01

    Objective: To compare the course of patients treated with tilted implants versus those treated conventionally with axial implants, analyzing the success rate and marginal bone loss. Material and Methods: A PubMed search was made using the key words “tilted implants”, “angled implants”, “angulated implants”, “inclined implants” and “maxillary atrophy.” A review was made of the articles published between 1999-2010. The inclusion criteria were the use of tilted implants, clinical series involving at least 10 patients, and a minimum follow-up of 12 months after prosthetic loading. The exclusion criteria were isolated clinical cases, studies with missing data, and publications in languages other than English or Spanish. The metaanalysis finally included 13 articles: 7 retrospective studies and 6 prospective studies. Results: On analyzing the success rate in the retrospective studies, two reported a higher success rate with tilted implants; one a higher success rate with axial implants; and two reported similar success rates with both implants. On analyzing the success rate in the prospective studies, two reported a higher success rate with tilted implants; two a higher success rate with axial implants; and two reported similar success rates with both implants. On examining marginal bone loss, three studies reported greater bone loss with axial implants and one with tilted implants. Conclusions: There was no evidence of differences in success rate between tilted and axial implants in either the prospective or retrospective studies subjected to review. The marginal bone loss observed with the tilted and axial implants likewise proved very similar. It thus can be deduced that tilted implants exhibit the same evolutive behavior as axial implants. Key words:Axial implants, tilted implants, maxillary atrophy, tilted implants. PMID:22322494

  8. Modulation of Jupiter's plasma flow, polar currents, and auroral precipitation by solar wind-induced compressions and expansions of the magnetosphere: a simple theoretical model

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2007-06-01

    Full Text Available We construct a simple model of the plasma flow, magnetosphere-ionosphere coupling currents, and auroral precipitation in Jupiter's magnetosphere, and examine how they respond to compressions and expansions of the system induced by changes in solar wind dynamic pressure. The main simplifying assumption is axi-symmetry, the system being modelled principally to reflect dayside conditions. The model thus describes three magnetospheric regions, namely the middle and outer magnetosphere on closed magnetic field lines bounded by the magnetopause, together with a region of open field lines mapping to the tail. The calculations assume that the system is initially in a state of steady diffusive outflow of iogenic plasma with a particular equatorial magnetopause radius, and that the magnetopause then moves rapidly in or out due to a change in the solar wind dynamic pressure. If the change is sufficiently rapid (~2–3 h or less the plasma angular momentum is conserved during the excursion, allowing the modified plasma angular velocity to be calculated from the radial displacement of the field lines, together with the modified magnetosphere-ionosphere coupling currents and auroral precipitation. The properties of these transient states are compared with those of the steady states to which they revert over intervals of ~1–2 days. Results are shown for rapid compressions of the system from an initially expanded state typical of a solar wind rarefaction region, illustrating the reduction in total precipitating electron power that occurs for modest compressions, followed by partial recovery in the emergent steady state. For major compressions, however, typical of the onset of a solar wind compression region, a brightened transient state occurs in which super-rotation is induced on closed field lines, resulting in a reversal in sense of the usual magnetosphere-ionosphere coupling current system. Current system reversal results in accelerated auroral electron

  9. Lens decenter and tilt measurement by interferogram

    Science.gov (United States)

    Hung, Min-Wei; Wu, Wen-Hong; Huang, Kuo-Cheng

    2009-11-01

    For the recent years, the vigorous development of the electro-optic industry, particularly the digital camera and the cellular phone camera, has placed a larger and larger demand for the optical devices. Among the optical lens, the aspherical optical lens plays the key component because the aspherical lens may provide better imaging quality then the spherical lens does. For the manufacturing reason, the aspherical lens is prone to a decenter or tilt issue with respect to the optical axes of its two surfaces. To measure decenter and tile error specifically would help to obviate the deficient lens, but most of the present measuring method can't provide this function. This paper proposed a new method to specifically measure the decenter and tile of lens by observing the interferogram of each surface. And the corresponding measuring instrument, which contains interferometer and motion stages, was introduced as well.

  10. Polarization, political

    NARCIS (Netherlands)

    Wojcieszak, M.; Mazzoleni, G.; Barnhurst, K.G.; Ikeda, K.; Maia, R.C.M.; Wessler, H.

    2015-01-01

    Polarization has been studied in three different forms: on a social, group, and individual level. This entry first focuses on the undisputed phenomenon of elite polarization (i.e., increasing adherence of policy positions among the elites) and also outlines different approaches to assessing mass

  11. Evaluation of the performance of three diffuse hourly irradiation models on tilted surfaces according to the utilizability concept

    International Nuclear Information System (INIS)

    Posadillo, R.; Lopez Luque, R.

    2009-01-01

    The performance of three diffuse hourly irradiation models on tilted surfaces was evaluated by making a database of hourly global and diffuse solar irradiation on a horizontal surface, as well as global solar irradiation on a tilted surface, recorded in a solar radiation station located at Cordoba University (Spain). The method for a comparison of the performance of these models was developed from a study of the 'utilizable energy' statistics, a value representing, for a specific period of time, the mean monthly radiation that exceeded a critical level of radiation. This model comparison method seemed to us to be highly suitable since it provides a way of comparing the capacity of these models to estimate, however, much energy is incident on a tilted surface above a critical radiation level. Estimated and measured values were compared using the normalized RMBE and RRMSE statistics. According to the results of the method let us verify that, of the three models evaluated, one isotropic and two anisotropic, the Reindl et al. anisotropic model was the one giving the best results.

  12. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  13. Tilted-ring modelling of disk galaxies : Anomalous gas

    NARCIS (Netherlands)

    Jozsa, G. I. G.; Niemczyk, C.; Klein, U.; Oosterloo, T. A.

    We report our ongoing work on kinematical modelling of HI in disk galaxies. We employ our new software TiRiFiC (Tilted-Ring-Fitting-Code) in order to derive tilted-ring models by fitting artificial HI data cubes to observed ones in an automated process. With this technique we derive very reliable

  14. Downward continuation and tilt derivative of magnetic data for ...

    Indian Academy of Sciences (India)

    S K Pal

    2017-06-12

    Jun 12, 2017 ... The present study deals with the characterization of subsurface coal fires of East Basuria colliery in. Jharia coal field, India using tilt derivative and downward continuation of magnetic data. Magnetic data processing methods such as diurnal correction, noise removal, reduction to pole, tilt derivative and.

  15. Ion kinetic effects on the tilt mode in FRCs

    International Nuclear Information System (INIS)

    Schwarzmeier, J.L.; Seyler, C.E.; Barnes, D.C.

    1981-01-01

    Theory and simulations have shown that field reversed configurations (FRG's) should be unstable magnetohydrodynamically to the tilting mode, yet tilting seldom is seen in the experiments. Profile effects (within MHD) and ion finite larmor radius (FLR) effects have been prosed to explain the observed stability of FRC's. The present work seeks to test both of these effects

  16. Angular momentum projection of tilted axis rotating states

    Energy Technology Data Exchange (ETDEWEB)

    Oi, M.; Onishi, N.; Tajima, N. [Tokyo Univ. (Japan); Horibata, T.

    1998-03-01

    We applied an exact angular momentum projection to three dimensional cranked HFB (3d-CHFB) states. Tilted axis rotating states (TAR) and principal axis rotating states (PAR) are compared. It is shown that TAR is more adequate than PAR for description of the back bending phenomena driven by tilted rotation or wobbling motion. (author)

  17. Orientation and alignment in beam tilted-foil spectroscopy

    International Nuclear Information System (INIS)

    Berry, H.G.

    1976-01-01

    The production of atomic orientation and alignment, by anisotropic excitation is analyzed. The stokes parameters of the light emitted from tilted-foil excited ions provide measurements of orientation and alignment, and some examples are given. The variations of the stokes parameters with foil tilt angle, excited state, ion velocity and foil material are compared with existing theories

  18. A tilting wind tunnel for fire behavior studies

    Science.gov (United States)

    David R. Weise

    1994-01-01

    The combined effects of wind velocity and slope on wildland fire behavior can be studied in the laboratory using a tilting wind tunnel. The tilting wind tunnel requires a commercially available fan to induce wind and can be positioned to simulate heading and backing fires spreading up and down slope. The tunnel is portable and can be disassembled for transport using a...

  19. Development of tilted fibre Bragg gratings using highly coherent 255 ...

    Indian Academy of Sciences (India)

    2014-02-06

    Feb 6, 2014 ... coupling of the guided modes shifts to the long wavelength as the tilt angle is increased. [3]. The central wavelength and the reflectivity of a TFBG are dependent on the angle. Due to the presence of tilt angle, the transmission spectra of TFBGs exposed in air con- sisted of multiple resonance peaks occurred ...

  20. Tilting of trucks: a driver education system and warning system

    NARCIS (Netherlands)

    Kleuskens, R.J.A.

    1996-01-01

    To reduce the risk of tilting, TNO has developed a tilt warning system for commercial vehicles. This system is able to monitor vehicle weight, lateral acceleration and velocity during normal operation. The system CPU is constantly comparing the measured lateral acceleration to a calculated limit

  1. Temperature and Solar Radiation Effects on Photovoltaic Panel Power

    OpenAIRE

    Karafil, Akif; Ozbay, Harun; Kesler, Metin

    2016-01-01

    Solar energy is converted to electrical energy directly by semi-conductors materials used in Photovoltaic (PV) panels. Although, there has been great advancements in semi-conductor material technology in recent years panel efficiency is very lower. There are many factors affecting the panel efficiency such as tilt angle, shading, dust, solar radiation level, temperature and wiring losses. Among these factors, solar radiation level and temperature are more prominent. The solar radiation level ...

  2. The Effect of "Rogue" Active Regions on the Solar Cycle

    Science.gov (United States)

    Nagy, Melinda; Lemerle, Alexandre; Labonville, François; Petrovay, Kristóf; Charbonneau, Paul

    2017-11-01

    The origin of cycle-to-cycle variations in solar activity is currently the focus of much interest. It has recently been pointed out that large individual active regions with atypical properties can have a significant impact on the long-term behavior of solar activity. We investigate this possibility in more detail using a recently developed 2×2D dynamo model of the solar magnetic cycle. We find that even a single "rogue" bipolar magnetic region (BMR) in the simulations can have a major effect on the further development of solar activity cycles, boosting or suppressing the amplitude of subsequent cycles. In extreme cases, an individual BMR can completely halt the dynamo, triggering a grand minimum. Rogue BMRs also have the potential to induce significant hemispheric asymmetries in the solar cycle. To study the effect of rogue BMRs in a more systematic manner, a series of dynamo simulations were conducted, in which a large test BMR was manually introduced in the model at various phases of cycles of different amplitudes. BMRs emerging in the rising phase of a cycle can modify the amplitude of the ongoing cycle, while BMRs emerging in later phases will only affect subsequent cycles. In this model, the strongest effect on the subsequent cycle occurs when the rogue BMR emerges around cycle maximum at low latitudes, but the BMR does not need to be strictly cross-equatorial. Active regions emerging as far as 20° from the equator can still have a significant effect. We demonstrate that the combined effect of the magnetic flux, tilt angle, and polarity separation of the BMR on the dynamo is via their contribution to the dipole moment, δ D_{BMR}. Our results indicate that prediction of the amplitude, starting epoch, and duration of a cycle requires an accurate accounting of a broad range of active regions emerging in the previous cycle.

  3. The Hemispheric Asymmetry of Polar Faculae

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... In this paper, the north–south (N–S) asymmetry of the polar faculae at relatively low (RLLs), relatively high (RHLs) as well as total latitudes (TLs) respectively, are investigated. It is found that. the polar faculae behave in a different asymmetrical way at different latitudinal bands;; the asymmetry of solar activity ...

  4. The solar wind in the third dimension

    International Nuclear Information System (INIS)

    Neugebauer, M.

    1996-01-01

    For many years, solar-wind physicists have been using plasma and field data acquired near the ecliptic plane together with data on the scintillation of radio sources and remote sensing of structures in the solar corona to estimate the properties of the high-latitude solar wind. Because of the highly successful Ulysses mission, the moment of truth is now here. This paper summarizes the principal agreements and differences between the Ulysses observations and expectations. The speed of the high-latitude solar wind was even greater than anticipated. The strength of the radial component of the interplanetary magnetic field was found to be independent of latitude. The tilt of the heliospheric current sheet caused reverse corotating shocks to be observed to higher latitudes than forward corotating shocks. The energetic particles accelerated in these shocks were detected well poleward of the latitudes at which Ulysses observed the interaction regions themselves. As anticipated, there was a strong flux of outward propagating Alfven waves throughout the polar flow. Those waves were probably largely responsible for the smaller-than-anticipated increase of galactic cosmic rays with increasing latitude. As expected, the charge state or ionization temperature of heavy ions was lower in the polar flow than in low-latitude interstream flows. What was not anticipated was the correlation of elemental abundances with ionization temperatures; the Ulysses data revealed a connection between the first ionization time in the upper chromosphere and the final ionization state in the corona. As expected, transient events were detected to ∼60 deg. latitude, but the properties of those high latitude transient flows held some surprises. At high latitudes, the speeds of the transient interplanetary plasma clouds were approximately the same as the speed of the ambient plasma and the expansion of the clouds drove forward and reverse shock pairs that had never been seen at low latitudes. At high

  5. Polar Bears

    Science.gov (United States)

    Amstrup, Steven C.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Polar bears (Ursus maritimus) are hunted throughout most of their range. In addition to hunting polar bears of the Beaufort Sea region are exposed to mineral and petroleum extraction and related human activities such as shipping road-building, and seismic testing (Stirling 1990).Little was known at the start of this project about how polar bears move about in their environment, and although it was understood that many bears travel across political borders, the boundaries of populations had not been delineated (Amstrup 1986, Amstrup et al. 1986, Amstrup and DeMaster 1988, Garner et al. 1994, Amstrup 1995, Amstrup et al. 1995, Amstrup 2000).As human populations increase and demands for polar bears and other arctic resources escalate, managers must know the sizes and distributions of the polar bear populations. Resource managers also need reliable estimates of breeding rates, reproductive intervals, litter sizes, and survival of young and adults.Our objectives for this research were 1) to determine the seasonal and annual movements of polar bears in the Beaufort Sea, 2) to define the boundaries of the population(s) using this region, 3) to determine the size and status of the Beaufort Sea polar bear population, and 4) to establish reproduction and survival rates (Amstrup 2000).

  6. Solar cycles in the last centuries in 10Be and delta18O in polar ice and in thermoluminescence signals of a sea sediment

    International Nuclear Information System (INIS)

    Cini Castagnoli, G.; Bonino, G.; Galli, M.; Beer, J.

    1984-01-01

    The cyclogram method of time series analysis has been used to analyse 10 Be data (1181-1800 AD) and delta 18 O data (1181-1960 AD) from an artic ice core and thermoluminescence data (1181-1960 AD) from a Mediterranean sediment core. The 10 Be concentrations were determined at the ETH Zurich. The delta 18 O values were measured at the University of Copenhagen. The TL measurements were performed at the Istituto di Cosmo-geofisica del C.N.R., Torino. Common mean periodicities of 10.75 y are found for the period 1505 to 1710 AD in TL and 10 Be and of 11.4 y for the period 1715 to 1880 in TL and delta 18 O. This periodicity was found in the solar sunspot (Rsub(z)) series analysed in the same way, from 1825 to 1905. This supports the argument that the common periodicities found in the long-running series are peculiar of the solar activity in the past

  7. Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics

    International Nuclear Information System (INIS)

    Prasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas; Conings, Bert

    2017-01-01

    Tin and lead iodide perovskite semiconductors of the composition AMX_3, where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX_6 octahedra or by simply contracting the lattice isotropically. The former effect tends to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. In conclusion, the mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.

  8. Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics.

    Science.gov (United States)

    Prasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas; Conings, Bert; Babayigit, Aslihan; Boyen, Hans-Gerd; Toney, Michael F; McGehee, Michael D

    2017-08-16

    Tin and lead iodide perovskite semiconductors of the composition AMX 3 , where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX 6 octahedra or by simply contracting the lattice isotropically. The former effect tends to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. The mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.

  9. Hysteresis loops of Cosmic Ray intensity decreases versus solar and interplanetary parameters

    Directory of Open Access Journals (Sweden)

    R. P. Kane

    2007-10-01

    Full Text Available The purpose of this study was to examine the correlation between CR (Cosmic Ray intensity and solar, interplanetary and terrestrial parameters. The hysteresis loops of (CR versus those of several solar parameters showed narrow loops in even cycles 20, 22 and broad loops in odd cycles 19, 21, as also in the recent odd cycle 23. Hysteresis plots for CR versus interplanetary number density N and speed V were erratic and uncertain (broad and narrow, all mixed up. Plots of CR versus Interplanetary magnetic field (IMF B seemed to be narrow for even as well as odd cycles. Hysteresis loops between CR and other interplanetary parameters were not clear-cut. The same was true for terrestrial parameters. During sunspot maximum years 2000–2003 of cycle 23, there is a double peak structure in all parameters. Whereas CR have a peak spacing of ~30 months, sunspots and Tilt angle have a spacing of only ~20 months. The solar open magnetic flux and the Voyager 1 magnetic field have a spacing of ~25 months. The solar polar magnetic field reverses later than the first peak of all parameters and hence, could not be a direct cause (as if effect started before the cause and lasted for several months more after the cause disappeared. It seems that CR modulation is mainly guided by magnetic configurations deep in the heliosphere, which may not have a simple relationship with parameters near Earth or near Sun.

  10. Motion perception during tilt and translation after space flight

    Science.gov (United States)

    Clément, Gilles; Wood, Scott J.

    2013-11-01

    Preliminary results of an ongoing study examining the effects of space flight on astronauts' motion perception induced by independent tilt and translation motions are presented. This experiment used a sled and a variable radius centrifuge that translated the subjects forward-backward or laterally, and simultaneously tilted them in pitch or roll, respectively. Tests were performed on the ground prior to and immediately after landing. The astronauts were asked to report about their perceived motion in response to different combinations of body tilt and translation in darkness. Their ability to manually control their own orientation was also evaluated using a joystick with which they nulled out the perceived tilt while the sled and centrifuge were in motion. Preliminary results confirm that the magnitude of perceived tilt increased during static tilt in roll after space flight. A deterioration in the crewmember to control tilt using non-visual inertial cues was also observed post-flight. However, the use of a tactile prosthesis indicating the direction of down on the subject's trunk improved manual control performance both before and after space flight.

  11. A Horizontal Tilt Correction Method for Ship License Numbers Recognition

    Science.gov (United States)

    Liu, Baolong; Zhang, Sanyuan; Hong, Zhenjie; Ye, Xiuzi

    2018-02-01

    An automatic ship license numbers (SLNs) recognition system plays a significant role in intelligent waterway transportation systems since it can be used to identify ships by recognizing the characters in SLNs. Tilt occurs frequently in many SLNs because the monitors and the ships usually have great vertical or horizontal angles, which decreases the accuracy and robustness of a SLNs recognition system significantly. In this paper, we present a horizontal tilt correction method for SLNs. For an input tilt SLN image, the proposed method accomplishes the correction task through three main steps. First, a MSER-based characters’ center-points computation algorithm is designed to compute the accurate center-points of the characters contained in the input SLN image. Second, a L 1- L 2 distance-based straight line is fitted to the computed center-points using M-estimator algorithm. The tilt angle is estimated at this stage. Finally, based on the computed tilt angle, an affine transformation rotation is conducted to rotate and to correct the input SLN horizontally. At last, the proposed method is tested on 200 tilt SLN images, the proposed method is proved to be effective with a tilt correction rate of 80.5%.

  12. Solar-geophysical data number 389. Part I. Prompt reports. Data for December 1976--November 1976

    International Nuclear Information System (INIS)

    Leighton, H.

    1977-01-01

    This prompt report provides December 1976 and November 1976 data on alert periods, daily solar indices, solar flares, solar radio waves, solar wind measurements, solar x-ray radiation, coronal holes, and inferred IP magnetic field polarities for December. It also provides data on daily solar activity center, sudden ionospheric disturbances, solar radio waves, cosmic rays, geomagnetic indices and radio propagation indices for November

  13. Pulse Front Tilt and Laser Plasma Acceleration

    Science.gov (United States)

    Mittelberger, Daniel; Thévenet, Maxence; Nakamura, Kei; Lehe, Remi; Gonsalves, Anthony; Benedetti, Carlo; Leemans, Wim

    2017-10-01

    Pulse front tilt (PFT) is potentially present in any CPA laser system, but its effects may be overlooked because spatiotemporal pulse characterization is considerably more involved than measuring only spatial or temporal profile. PFT is particularly important for laser plasma accelerators (LPA) because it influences electron beam injection and steering. In this work, experimental results from the BELLA Center will be presented that demonstrate the effect of optical grating misalignment and optical compression, resulting in PFT, on accelerator performance. Theoretical models of laser and electron beam steering will be introduced based on particle-in-cell simulations showing distortion of the plasma wake. Theoretical predictions will be compared with experiments and complimentary simulations, and tolerances on PFT and optical compressor alignment will be developed as a function of LPA performance requirements. This work was supported by the Office of High Energy Physics, Office of Science, US Department of Energy under Contract DE-AC02-05CH11231 and the National Science Foundation under Grant PHY-1415596.

  14. SOLAR RADIATION MAPS FOR EIIDOPIA Tesfaye Bayou and ...

    African Journals Online (AJOL)

    . 5. Duffie J.A., and Beckman W.A., Solar Energy. Thermal Preocesses, Wiley Interscience,. New York (1974). 6. Klein S.A., Calculation of Monthly Average. Insolation on Tilted Surfaces, Solar Energy,. Vol. 19, pp. 325-329, 1977. Journal of ...

  15. Flow tilt angles near forest edges - Part 1: Sonic anemometry

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Mann, Jakob; Larsen, Klaus Steenberg

    2010-01-01

    An analysis of flow tilt angles from a fetch-limited beech forest site with clearings is presented in the context of vertical advection of carbon dioxide. Flow angles and vertical velocities from two sonic anemometers by different manufacturers were analyzed. Instead of using rotations, where zero...... distortion and vertical alignment, it was only possible to a limited extent to relate sonic anemometer flow tilt angles to upwind forest edges, but the results by the lidar indicated that an internal boundary layer affect flow tilt angles at 21m above the forest. This is in accordance with earlier studies...

  16. Ocular tilt reaction due to a cerebellar hemorrhage.

    Science.gov (United States)

    Tsuda, Hiromasa; Tanaka, Kozue

    2014-01-01

    A 78-year-old man with essential hypertension abruptly developed complete ocular tilt reaction (OTR) which consisted of concomitant skew deviation with left hypertropia, extorsion of the right eye and intorsion of the left, and rightward head tilt. Cranial computed tomography demonstrated a localized cerebellar hemorrhage involving the left nodulus. The patient became asymptomatic within two weeks. This is a first reported case of complete OTR due to a cerebellar hemorrhage. Concomitant skew deviation is a common symptom of cerebellar lesions. Moreover, unilateral damage to the utricular pathway due to involvement of the left nodulus might cause rightward conjugate ocular torsion and rightward head tilt.

  17. 19 years of tilt data on Mt. Vesuvius: state of the art and future perspectives

    Directory of Open Access Journals (Sweden)

    Ciro Ricco

    2013-11-01

    areas subsidence, according with a spreading effect of Vesuvius, taking into account geological, structural, geophysical and geodetical (optical levelling, InSAR data. The SW tilting occurs therefore irregularly and shows some seasonalities, consistent with the solar thermal radiation whose removal by statistical procedure outlines a different but equally interesting deformation field as it shows interruptions with changes in both trend and amplitude during two periods of strong seismic activity that affected Mt. Vesuvius in the periods 1995-1996 and late 1999-2000, marked by an average rate of energy release of at least one order of magnitude greater than the previous and following periods. Another change in intensity and direction of the deformation detected by tiltmeters since 2000, connected with the variations of the phase shift between the tilt components and the temperature recorded, compared to previous years, occurs during a strong decrease of the energy released by Vesuvius earthquakes.

  18. A THREE-DIMENSIONAL BABCOCK-LEIGHTON SOLAR DYNAMO MODEL

    International Nuclear Information System (INIS)

    Miesch, Mark S.; Dikpati, Mausumi

    2014-01-01

    We present a three-dimensional (3D) kinematic solar dynamo model in which poloidal field is generated by the emergence and dispersal of tilted sunspot pairs (more generally bipolar magnetic regions, or BMRs). The axisymmetric component of this model functions similarly to previous 2.5 dimensional (2.5D, axisymmetric) Babcock-Leighton (BL) dynamo models that employ a double-ring prescription for poloidal field generation but we generalize this prescription into a 3D flux emergence algorithm that places BMRs on the surface in response to the dynamo-generated toroidal field. In this way, the model can be regarded as a unification of BL dynamo models (2.5D in radius/latitude) and surface flux transport models (2.5D in latitude/longitude) into a more self-consistent framework that builds on the successes of each while capturing the full 3D structure of the evolving magnetic field. The model reproduces some basic features of the solar cycle including an 11 yr periodicity, equatorward migration of toroidal flux in the deep convection zone, and poleward propagation of poloidal flux at the surface. The poleward-propagating surface flux originates as trailing flux in BMRs, migrates poleward in multiple non-axisymmetric streams (made axisymmetric by differential rotation and turbulent diffusion), and eventually reverses the polar field, thus sustaining the dynamo. In this Letter we briefly describe the model, initial results, and future plans

  19. Clean thermal decomposition of tertiary-alkyl metal thiolates to metal sulfides: environmentally-benign, non-polar inks for solution-processed chalcopyrite solar cells

    Science.gov (United States)

    Heo, Jungwoo; Kim, Gi-Hwan; Jeong, Jaeki; Yoon, Yung Jin; Seo, Jung Hwa; Walker, Bright; Kim, Jin Young

    2016-11-01

    We report the preparation of Cu2S, In2S3, CuInS2 and Cu(In,Ga)S2 semiconducting films via the spin coating and annealing of soluble tertiary-alkyl thiolate complexes. The thiolate compounds are readily prepared via the reaction of metal bases and tertiary-alkyl thiols. The thiolate complexes are soluble in common organic solvents and can be solution processed by spin coating to yield thin films. Upon thermal annealing in the range of 200-400 °C, the tertiary-alkyl thiolates decompose cleanly to yield volatile dialkyl sulfides and metal sulfide films which are free of organic residue. Analysis of the reaction byproducts strongly suggests that the decomposition proceeds via an SN1 mechanism. The composition of the films can be controlled by adjusting the amount of each metal thiolate used in the precursor solution yielding bandgaps in the range of 1.2 to 3.3 eV. The films form functioning p-n junctions when deposited in contact with CdS films prepared by the same method. Functioning solar cells are observed when such p-n junctions are prepared on transparent conducting substrates and finished by depositing electrodes with appropriate work functions. This method enables the fabrication of metal chalcogenide films on a large scale via a simple and chemically clear process.

  20. Characterizing crustal and uppermost mantle anisotropy with a depth-dependent tilted hexagonally symmetric elastic tensor: theory and examples

    Science.gov (United States)

    Feng, L.; Xie, J.; Ritzwoller, M. H.

    2017-12-01

    Two major types of surface wave anisotropy are commonly observed by seismologists but are only rarely interpreted jointly: apparent radial anisotropy, which is the difference in propagation speed between horizontally and vertically polarized waves inferred from Love and Rayleigh waves, and apparent azimuthal anisotropy, which is the directional dependence of surface wave speeds (usually Rayleigh waves). We describe a method of inversion that interprets simultaneous observations of radial and azimuthal anisotropy under the assumption of a hexagonally symmetric elastic tensor with a tilted symmetry axis defined by dip and strike angles. With a full-waveform numerical solver based on the spectral element method (SEM), we verify the validity of the forward theory used for the inversion. We also present two examples, in the US and Tibet, in which we have successfully applied the tomographic method to demonstrate that the two types of apparent anisotropy can be interpreted jointly as a tilted hexagonally symmetric medium.

  1. The effects of lateral head tilt on ocular astigmatic axis

    Directory of Open Access Journals (Sweden)

    Hamid Fesharaki

    2014-01-01

    Conclusion: Any minimal angle of head tilt may cause erroneous measurement of astigmatic axis and should be avoided during refraction. One cannot rely on the compensatory function of ocular counter-torsion during the refraction.

  2. Tilt Rotor Aeroacoustic Model (TRAM): A New Rotorcraft Research Facility

    National Research Council Canada - National Science Library

    Young, Larry A

    1998-01-01

    ...". These two test stands are inclusively called the Tilt Rotor Aeroacoustic Model "TRAM". The baseline proprotors and airframe of the TRAM test stands are nominally 1/4-scale representations of the V-22 Osprey aircraft...

  3. A tilting approach to ranking influence

    KAUST Repository

    Genton, Marc G.

    2014-12-01

    We suggest a new approach, which is applicable for general statistics computed from random samples of univariate or vector-valued or functional data, to assessing the influence that individual data have on the value of a statistic, and to ranking the data in terms of that influence. Our method is based on, first, perturbing the value of the statistic by ‘tilting’, or reweighting, each data value, where the total amount of tilt is constrained to be the least possible, subject to achieving a given small perturbation of the statistic, and, then, taking the ranking of the influence of data values to be that which corresponds to ranking the changes in data weights. It is shown, both theoretically and numerically, that this ranking does not depend on the size of the perturbation, provided that the perturbation is sufficiently small. That simple result leads directly to an elegant geometric interpretation of the ranks; they are the ranks of the lengths of projections of the weights onto a ‘line’ determined by the first empirical principal component function in a generalized measure of covariance. To illustrate the generality of the method we introduce and explore it in the case of functional data, where (for example) it leads to generalized boxplots. The method has the advantage of providing an interpretable ranking that depends on the statistic under consideration. For example, the ranking of data, in terms of their influence on the value of a statistic, is different for a measure of location and for a measure of scale. This is as it should be; a ranking of data in terms of their influence should depend on the manner in which the data are used. Additionally, the ranking recognizes, rather than ignores, sign, and in particular can identify left- and right-hand ‘tails’ of the distribution of a random function or vector.

  4. Lifetime and production rate of NOx in the upper stratosphere and lower mesosphere in the polar spring/summer after the solar proton event in October–November 2003

    Directory of Open Access Journals (Sweden)

    F. Friederich

    2013-03-01

    Full Text Available We present altitude-dependent lifetimes of NOx, determined with MIPAS/ENVISAT (the Michelson Interferometer for Passive Atmospheric Sounding/the European Environment Satellite, for the Southern polar region after the solar proton event in October–November 2003. Between 50° S and 90° S and decreasing in altitude they range from about two days at 64 km to about 20 days at 44 km. The lifetimes are controlled by transport, mixing and photochemistry. We infer estimates of dynamical lifetimes by comparison of the observed decay to photochemical lifetimes calculated with the SLIMCAT 3-D Model. Photochemical loss contributes to the observed NOx depletion by 0.1% at 44 km, increasing with altitude to 45% at 64 km. In addition, we show the correlation of modelled ionization rates and observed NOx densities under consideration of the determined lifetimes of NOx, and calculate altitude-dependent effective production rates of NOx due to ionization. For that we compare ionization rates of the AIMOS data base with the MIPAS measurements from 15 October–31 December 2003. We derive effective NOx-production rates to be applied to the AIMOS ionization rates which range from about 0.2 NOx-molecules per ion pair at 44 km to 0.7 NOx-molecules per ion pair at 62 km. These effective production rates are considerably lower than predicted by box model simulations which could hint at an overestimation of the modelled ionization rates.

  5. Atomic processes relevant to polarization plasma spectroscopy

    International Nuclear Information System (INIS)

    Fujimoto, T.; Koike, F.; Sakimoto, K.; Okasaka, R.; Kawasaki, K.; Takiyama, K.; Oda, T.; Kato, T.

    1992-04-01

    When atoms (ions) are excited anisotropically, polarized excited atoms are produced and the radiation emitted by these atoms is polarized. From the standpoint of plasma spectroscopy research, we review the existing data for various atomic processes that are related to the polarization phenomena. These processes are: electron impact excitation, excitation by atomic and ionic collisions, photoexcitation, radiative recombination and bremsstrahlung. Collisional and radiative relaxation processes of atomic polarization follow. Other topics included are: electric-field measurement, self alignment, Lyman doublet intensity ratio, and magnetic-field measurement of the solar prominence. (author)

  6. Political polarization

    OpenAIRE

    Dixit, Avinash K.; Weibull, Jörgen W.

    2007-01-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  7. Political polarization.

    Science.gov (United States)

    Dixit, Avinash K; Weibull, Jörgen W

    2007-05-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  8. Magnetic configurations of the tilted current sheets in magnetotail

    Directory of Open Access Journals (Sweden)

    C. Shen

    2008-11-01

    Full Text Available In this research, the geometrical structures of tilted current sheet and tail flapping waves have been analysed based on multiple spacecraft measurements and some features of the tilted current sheets have been made clear for the first time. The geometrical features of the tilted current sheet revealed in this investigation are as follows: (1 The magnetic field lines (MFLs in the tilted current sheet are generally plane curves and the osculating planes in which the MFLs lie are about vertical to the equatorial plane, while the normal of the tilted current sheet leans severely to the dawn or dusk side. (2 The tilted current sheet may become very thin, the half thickness of its neutral sheet is generally much less than the minimum radius of the curvature of the MFLs. (3 In the neutral sheet, the field-aligned current density becomes very large and has a maximum value at the center of the current sheet. (4 In some cases, the current density is a bifurcated one, and the two humps of the current density often superpose two peaks in the gradient of magnetic strength, indicating that the magnetic gradient drift current is possibly responsible for the formation of the two humps of the current density in some tilted current sheets. Tilted current sheets often appear along with tail current sheet flapping waves. It is found that, in the tail flapping current sheets, the minimum curvature radius of the MFLs in the current sheet is rather large with values around 1 RE, while the neutral sheet may be very thin, with its half thickness being several tenths of RE. During the flapping waves, the current sheet is tilted substantially, and the maximum tilt angle is generally larger than 45°. The phase velocities of these flapping waves are several tens km/s, while their periods and wavelengths are several tens of minutes, and several earth radii, respectively. These tail flapping events generally last several hours and occur during quiet periods or periods of

  9. Tilt Angle and the Temperature Shifts Calculated as a Function of Concentration for the AC* Phase Transition in a Binary Mixture of Liquid Crystals

    Science.gov (United States)

    Yurtseven, H.; Kurt, M.

    We study here the tilt angle and the temperature shifts as a function of concentration for the AC* phase transition in a binary mixture, using our mean field model with the biquadratic P2θ2 coupling — and also with the bilinear Pθ and P2θ2 couplings. By expanding the free energy in terms of the tilt angle and polarization, the tilt angle and the temperature shift are evaluated by using the coefficients given in the free energy expansion. By employing a concentration-dependent coefficient, the tilt angle and the temperature shift are calculated as a function of concentration of 10.O.4 for the SmAC* transition in a binary mixture of C7 and 10.O.4. Our calculated values of the tilt angle and the temperature shifts decrease as the concentration of 10.O.4 increases, as confirmed experimentally for the AC* transition in this binary mixture. This indicates that our mean field models studied here are satisfactory to explain the observed behavior of the AC* transition of the binary mixture of C7 and 10.O.4.

  10. Tilt Table Test: State of The Art

    Directory of Open Access Journals (Sweden)

    Gonzalo Barón-Esquivias

    2003-10-01

    Full Text Available The loss of consciousness has been a subject of wonder and uncertainty in humans, and for this reason it has been the object of medical investigation since the beginning of time. Even actually, it is certainly an unresolved clinical problem. Many centuries ago, complicated exorcisms and remedies were used on these unfortunate patients, who upon regaining consciousness would find themselves soaked in miraculous liquids, ingesting curative potions, and often on the way to be burned accused of being possessed. In the seventeen century, physicians began to relate loss of consciousness and haemodinamic changes. William Harvey was perhaps the first to describe a circulatory response (vasovagal reaction during a phlebotomy in the year 1628: “...Yet it fear or any other cause, or something do intervene through passion of the mind, so that the heart do beat more faintly, the blood will be no means pass through but drop after drop…”1. During the nineteenth century, loss of consciousness was the object of studies and research, and the vagally mediated cardioinhibition, as a primary cause, was noted by Foster who proposed that profound bradycardia diminished cerebral perfusion to a level inadequate to maintain consciousness2. At this time, it was reported the first use of the tilt-table test3. Commonly referred to as fainting or loss of consciousness, from last century the preferred medical term is syncope, which itself is derived from the Greek term “syncoptein” meaning “to cut short”. Syncope is defined as the sudden loss of consciousness and postural tone with spontaneous recovery. In 1907, Gowers was the first person to use the term vasovagal syncope4. In 1918 was published the work in which Cotton and Lewis described for the first time the clinical characteristics that are still used today to recognize the syncopal reaction5. However, it was not till 1932 when Lewis described this reaction as being characterized by a combination of bradycardia

  11. Solar Coronal Plumes and the Fast Solar Wind

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Before the spectroscopic peculiarities in IPRs and plumes in Polar Coronal Holes (PCHs) can be further investigated with the instrument Solar Ultraviolet Measurements of Emitted Radiation (SUMER) aboard the Solar and Heliospheric Observatory (SOHO), it is mandatory to summarize the results of the ...

  12. Tilted-foil polarisation and magnetic moments of mirror nuclei at ISOLDE

    CERN Multimedia

    Bordeanu, C; Thundiyamkulathu Baby, L; Lindroos, M

    2002-01-01

    We report here on the first measurement in an experimental program initiated at the ISOLDE facility at CERN for the measurement of magnetic moments of short-lived radionuclides. The 60~keV ISOLDE beam from the GPS separator is boosted in energy by a 200~kV high-voltage platform, on which the whole experiment is mounted, in order to achieve sufficiently high energy for transmission through the foils of a tilted-foil setup. The 520~keV $^{23}$Mg(2$^+$) nuclei are polarized by the tilted foil technique and the resulting 0$^o$ - 180$^o$ $\\beta$- asymmetry is monitored as a function of the frequency of an rf-applied perturbing magnetic field in an NMR setup.\\\\ In this experiment, earlier asymmetry measurements were confirmed and an NMR resonance was observed, corresponding to a preliminary value of the magnetic moment of 0.533(6) n.m., in agreement with a previous measurement. The measured asymmetry as function of NMR frequency and the fitted resonance curve are presented in the figure. During the e...

  13. Determination of solar proton fluxes and energies at high solar latitudes by UV radiation measurements

    Science.gov (United States)

    Witt, N.; Blum, P. W.; Ajello, J. M.

    1981-01-01

    The latitudinal variation of the solar proton flux and energy causes a density increase at high solar latitudes of the neutral gas penetrating the heliosphere. Measurements of the neutral density by UV resonance radiation observations from interplanetary spacecraft thus permit deductions on the dependence of the solar proton flux on heliographic latitude. Using both the results of Mariner 10 measurements and of other off-ecliptic solar wind observations, the values of the solar proton fluxes and energies at polar heliographic latitudes are determined for several cases of interest. The Mariner 10 analysis, together with IPS results, indicate a significant decrease of the solar proton flux at polar latitudes.

  14. Influences of surface and flexoelectric polarization on the effective anchoring energy in nematic liquid crystal

    International Nuclear Information System (INIS)

    Guan Rong-Hua; Ye Wen-Jiang; Xing Hong-Yu

    2015-01-01

    The physical effects on surface and flexoelectric polarization in a weak anchoring nematic liquid crystal cell are investigated systematically. We derive the analytic expressions of two effective anchoring energies for lower and upper substrates respectively as well as their effective anchoring strengths and corresponding tilt angles of effective easy direction. All of these quantities are relevant to the magnitudes of both two polarizations and the applied voltage U. Based on these expressions, the variations of effective anchoring strength and the tilt angle with the applied voltage are calculated for the fixed values of two polarizations. For an original weak anchoring hybrid aligned nematic cell, it may be equivalent to a planar cell for a small value of U and has a threshold voltage. The variation of reduced threshold voltage with reduced surface polarization strength is also calculated. The role of surface polarization is important without the adsorptive ions considered. (paper)

  15. Influence of Vibrotactile Feedback on Controlling Tilt Motion After Spaceflight

    Science.gov (United States)

    Wood, S. J.; Rupert, A. H.; Vanya, R. D.; Esteves, J. T.; Clement, G.

    2011-01-01

    We hypothesize that adaptive changes in how inertial cues from the vestibular system are integrated with other sensory information leads to perceptual disturbances and impaired manual control following transitions between gravity environments. The primary goals of this ongoing post-flight investigation are to quantify decrements in manual control of tilt motion following short-duration spaceflight and to evaluate vibrotactile feedback of tilt as a sensorimotor countermeasure. METHODS. Data is currently being collected on 9 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s, body axis, thereby eliciting canal reflexes without concordant otolith or visual cues. A simple 4 tactor system was implemented to provide feedback when tilt position exceeded predetermined levels in either device. Closed-loop nulling tasks are performed during random tilt steps or sum-of-sines (TTS only) with and without vibrotactile feedback of chair position. RESULTS. On landing day the manual control performance without vibrotactile feedback was reduced by >30% based on the gain or the amount of tilt disturbance successfully nulled. Manual control performance tended to return to baseline levels within 1-2 days following landing. Root-mean-square position error and tilt velocity were significantly reduced with vibrotactile feedback. CONCLUSIONS. These preliminary results are consistent with our hypothesis that adaptive changes in vestibular processing corresponds to reduced manual control performance following G-transitions. A simple vibrotactile prosthesis improves the ability to null out tilt motion within a limited range of motion disturbances.

  16. Group theoretical analysis of octahedral tilting in perovskites

    International Nuclear Information System (INIS)

    Howard, C.J.; Stokes, H.T.

    1998-01-01

    Full text: Structures of the perovskite family, ABX 3 , have interested crystallographers over many years, and continue to attract attention on account of their fascinating electrical and magnetic properties, for example the giant magnetoresistive effects exhibited by certain perovskite materials. The ideal perovskite (cubic, space group Pm -/3 m) is a particularly simple structure, but also a demanding one, since aside from the lattice parameter there are no variable parameters in the structure. Consequently, the majority of perovskite structures are distorted perovskites (hettotypes), the most common distortion being the corner-linked tilting of the practically rigid BX 6 octahedral units. In this work, group theoretical methods have been applied to the study of octahedral tilting in perovskites. The only irreducible representations of the parent group (Pm -/3 m) which produce octahedral tilting subject to corner-linking constraints are M + / 3 and R 4 ' + . A six-dimensional order parameter in the reducible representation space of M + / 3 + R + / 4 describes the different possible tilting patterns. The space groups for the different perovskites are then simply the isotropy subgroups, comprising those operations which leave the order parameter invariant. The isotropy subgroups are obtained from a computer program or tabulations. The analysis yields a list of fifteen possible space groups for perovskites derived through octahedral tilting. A connection is made to the (twenty-three) tilt systems given previously by Glazer. The group-subgroup relationships have been derived and displayed. It is interesting to note that all known perovskites based on octahedral tilting conform with the fifteen space groups on our list, with the exception of one perovskite at high temperature, the structure of which seems poorly determined

  17. Retinal Nerve Fiber Layer Protrusion Associated with Tilted Optic Discs.

    Science.gov (United States)

    Chiang, Jaclyn; Yapp, Michael; Ly, Angelica; Hennessy, Michael P; Kalloniatis, Michael; Zangerl, Barbara

    2018-03-01

    This study resulted in the identification of an optic nerve head (ONH) feature associated with tilted optic discs, which might potentially contribute to ONH pathologies. Knowledge of such findings will enhance clinical insights and drive future opportunities to understand disease processes related to tilted optic discs. The aim of this study was to identify novel retinal nerve fiber layer (RNFL) anomalies by evaluating tilted optic discs using optical coherence tomography. An observed retinal nerve fiber protrusion was further investigated for association with other morphological or functional parameters. A retrospective review of 400 randomly selected adult patients with ONH examinations was conducted in a referral-only, diagnostic imaging center. After excluding other ONH pathologies, 215 patients were enrolled and evaluated for optic disc tilt and/or torsion. Gross anatomical ONH features, including size and rim or parapapillary region elevation, were assessed with stereoscopic fundus photography. Optical coherence tomography provided detailed morphological information of individual retinal layers. Statistical analysis was applied to identify significant changes between individual patient cohorts. A dome-shaped hyperreflective RNFL bulge, protruding into the neurosensory retina at the optic disc margins, was identified in 17 eyes with tilted optic discs. Available follow-up data were inconclusive regarding natural changes with this ONH feature. This RNFL herniation was significantly correlated with smaller than average optic disc size (P = .005), congenital disc tilt (P optic discs, which has not previously been assessed as an independent ONH structure. The feature is predominantly related to congenital crowded, small optic discs and variable between patients. This study is an important first step to elucidate diagnostic capabilities of tilted disc morphological changes and understanding associated functional deficits.

  18. Solar Heating in Uppsala : A case study of the solar heating system in the neighbourhood Haubitsen in Uppsala

    OpenAIRE

    Blomqvist, Emelie; Häger, Klara; Wiborgh, Malin

    2012-01-01

    The housing corporation Uppsalahem has installed asolar heating system in the neighbourhood Haubitsen,which was renovated in 2011. This report examineshow much energy the solar heating system is expectedto generate and which factors could improve theefficiency. Simulations suggest that the solar heatingsystem can to cover about 22 per cent of the domestichot water demand in Haubitsen, which corresponds to50 MWh for a year. If some factors, such as the tilt ofthe solar collectors would have be...

  19. Solar chameleons

    International Nuclear Information System (INIS)

    Brax, Philippe; Zioutas, Konstantin

    2010-01-01

    We analyze the creation of chameleons deep inside the Sun (R∼0.7R sun ) and their subsequent conversion to photons near the magnetized surface of the Sun. We find that the spectrum of the regenerated photons lies in the soft x-ray region, hence addressing the solar corona problem. Moreover, these back-converted photons originating from chameleons have an intrinsic difference with regenerated photons from axions: their relative polarizations are mutually orthogonal before Compton interacting with the surrounding plasma. Depending on the photon-chameleon coupling and working in the strong coupling regime of the chameleons to matter, we find that the induced photon flux, when regenerated resonantly with the surrounding plasma, coincides with the solar flux within the soft x-ray energy range. Moreover, using the soft x-ray solar flux as a prior, we find that with a strong enough photon-chameleon coupling, the chameleons emitted by the Sun could lead to a regenerated photon flux in the CAST magnetic pipes, which could be within the reach of CAST with upgraded detector performance. Then, axion helioscopes have thus the potential to detect and identify particle candidates for the ubiquitous dark energy in the Universe.

  20. Recording Tilt with Broadband Seismic Sensors at Erupting Volcanoes

    Science.gov (United States)

    Young, B. E.; Lees, J. M.; Lyons, J. J.

    2011-12-01

    The horizontal components of broadband seismometers are known to be susceptible to gravitational acceleration due to slow tilting, and this has been successfully exploited to assess ground deformation at many volcanoes, including Anatahan (Mariana Islands), Meakan-dake (Japan), Santiaguito (Guatemala) and Stromboli (Italy). Tilt can be estimated from seismic velocity by differentiating, scaling to remove gravity, and applying an instrument correction. The fundamental assumption in estimating tilt from broadband data is that the signal recorded is the result of tilt and not translation, thus analysis of tilt require filtering below corner frequencies of seismic instruments, where the response to tilt should be flat. However, processing techniques for deriving tilt are not uniform among researchers. Filter type and passband allowance for the processing of data sets differs from case to case, and the dominant periods of tilt signals may vary from tens to hundreds of seconds. For instance, data from Santiaguito was filtered in the 600-30s passband, while at Anatahan filters spanned 13 hours to 8 minutes. In our study, we investigate tilt from seismic data sets at Karymsky (Kamchatka, Russia), Fuego (Guatemala), Yasur (Vanuatu), and Tungurahua (Ecuador) to understand implementation and limitations of this tool. We examine the importance of filter-type distortion related to filtering on the seismic signal. For example, a comparison of time domain versus frequency domain implementation is explored using a variety of lowpass and bandpass filters. We also investigate the advantages and drawbacks of causal versus acausal filters. In a few cases tiltmeters have been co-located with broadband seismic sensors for direct comparison. Signals at Mt. St. Helens, Stromboli, Sakurajima, and Semeru show a correlation of tilt and seismic records, although records at Karymsky volcano suggest that no tilt is recorded on either instrument. We speculate that strong vent explosions exhibit

  1. Solar-geophysical data number 408, August 1978, Part I. (Prompt reports). Data for July 1978, June 1978

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1978-08-01

    This prompt report provides data for July 1978 on: alert period, daily solar indices, solar flares, solar radio waves, solar x-ray radiation, coronal holes, solar wind measurements, inferred IP magnetic field polarities, mean solar magnetic field, spacecraft observations, Boulder geomagnetic substorm log, and energetic solar particles. It also provides data for June 1978 on: daily solar activity center, sudden ionospheric disturbances, solar x-ray radiation, solar radio waves, cosmic rays, geomagnetic indices, and radio propagation indices

  2. Solar--geophysical data number 406, June 1978, Part I. (prompt reports). Data for May 1978, April 1978

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1978-06-01

    This prompt report provides data for May 1978 on: alert period, daily solar indices, solar flares, solar radio waves, solar x-ray radiation, coronal holes, inferred IP Magnetic field polarities, mean solar magnetic field, solar wind measurements, geomagnetic substorms, magnetograms of geomagnetic storm 30 April - 4 May, and energetic solar particles. It also provides data for April 1978 on: daily solar activity center, sudden ionospheric disturbances, solar x-ray radiation, solar radio waves, cosmic rays, geomagnetic indices, and radio propagation

  3. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    Science.gov (United States)

    Luo, Jun; Wang, Zhiqian; Shen, Chengwu; Wen, Zhuoman; Liu, Shaojin; Cai, Sheng; Li, Jianrong

    2015-10-01

    This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.

  4. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    Directory of Open Access Journals (Sweden)

    Luo Jun

    2015-10-01

    Full Text Available This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.

  5. Solar Indices - Solar Irradiance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  6. Solar Indices - Solar Ultraviolet

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  7. Solar Indices - Solar Corona

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  8. Solar Indices - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  9. New tilted-poles Wien filter with enhanced performance

    Science.gov (United States)

    Leal-Quiros, E.; Prelas, M. A.

    1989-03-01

    The Wien filter is an E×B deflecting analyzer with the electrostatic field perpendicular to the magnetostatic field. The twofold functions of the Wien filter are as an energy analyzer as well as a mass analyzer. It has very high resolution for paraxial charged-particle beams with V=E/B, the Wien velocity. Two Wien filters, a tilted-poles Wien filter, and a classical parallel-rectangular-poles Wien filter were built and tested for electrons up to 3.5 keV and protons beams of 200 eV. (The tilted-poles Wien filter is a new diagnostic developed by the authors.) The performance of the two is compared, and the tilted-poles Wien filter has superior resolution to the classical Wien filter. Both Wien filters appear to have features useful for high-temperature plasma diagnostics, including simultaneous measurement of energy and mass spectra, and high resolution.

  10. New tilted-poles Wien filter with enhanced performance

    Energy Technology Data Exchange (ETDEWEB)

    Leal-Quiros, E.; Prelas, M.A.

    1989-03-01

    The Wien filter is an E x B deflecting analyzer with the electrostatic field perpendicular to the magnetostatic field. The twofold functions of the Wien filter are as an energy analyzer as well as a mass analyzer. It has very high resolution for paraxial charged-particle beams with V = E/B, the Wien velocity. Two Wien filters, a tilted-poles Wien filter, and a classical parallel-rectangular-poles Wien filter were built and tested for electrons up to 3.5 keV and protons beams of 200 eV. (The tilted-poles Wien filter is a new diagnostic developed by the authors.) The performance of the two is compared, and the tilted-poles Wien filter has superior resolution to the classical Wien filter. Both Wien filters appear to have features useful for high-temperature plasma diagnostics, including simultaneous measurement of energy and mass spectra, and high resolution.

  11. Quantum well electronic states in a tilted magnetic field.

    Science.gov (United States)

    Trallero-Giner, C; Padilha, J X; Lopez-Richard, V; Marques, G E; Castelano, L K

    2017-08-16

    We report the energy spectrum and the eigenstates of conduction and uncoupled valence bands of a quantum well under the influence of a tilted magnetic field. In the framework of the envelope approximation, we implement two analytical approaches to obtain the nontrivial solutions of the tilted magnetic field: (a) the Bubnov-Galerkin spectral method and b) the perturbation theory. We discuss the validity of each method for a broad range of magnetic field intensity and orientation as well as quantum well thickness. By estimating the accuracy of the perturbation method, we provide explicit analytical solutions for quantum wells in a tilted magnetic field configuration that can be employed to study several quantitative phenomena.

  12. Method to fabricate a tilted logpile photonic crystal

    Science.gov (United States)

    Williams, John D.; Sweatt, William C.

    2010-10-26

    A method to fabricate a tilted logpile photonic crystal requires only two lithographic exposures and does not require mask repositioning between exposures. The mask and photoresist-coated substrate are spaced a fixed and constant distance apart using a spacer and the stack is clamped together. The stack is then tilted at a crystallographic symmetry angle (e.g., 45 degrees) relative to the X-ray beam and rotated about the surface normal until the mask is aligned with the X-ray beam. The stack is then rotated in plane by a small stitching angle and exposed to the X-ray beam to pattern the first half of the structure. The stack is then rotated by 180.degree. about the normal and a second exposure patterns the remaining half of the structure. The method can use commercially available DXRL scanner technology and LIGA processes to fabricate large-area, high-quality tilted logpile photonic crystals.

  13. Flow tilt angles near forest edges - Part 2: Lidar anemometry

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Mann, Jakob; Bingöl, Ferhat

    2010-01-01

    A novel way of estimating near-surface mean flow tilt angles from ground based Doppler lidar measurements is presented. The results are compared with traditional mast based in-situ sonic anemometry. The tilt angle assessed with the lidar is based on 10 or 30 min mean values of the velocity field......) a fetch-limited beech forest site taken at 48–175 m a.g.l. (above ground level), (2) a reference site in flat agricultural terrain and (3) a second reference site in complex terrain are presented. The method to derive flow tilt angles and mean vertical velocities from lidar has several advantages compared...... alignment error at a multitude of heights. Disadvantages with estimating vertical velocities from a lidar compared to mast-based measurements are potentially slightly increased levels of statistical errors due to limited sampling time, because the sampling is disjunct, and a requirement for homogeneous flow...

  14. Ground tilt monitoring at Phlegraean Fields (Italy: a methodological approach

    Directory of Open Access Journals (Sweden)

    C. Del Gaudio

    2003-06-01

    Full Text Available Among geodetic methods used for monitoring ground deformation in volcanic areas, tiltmetry represents the most rapid technique and therefore it is used by almost all the volcanological observatories in the world. The deformation of volcanic building is not only the result of endogenous causes (i.e. dykes injection or magma rising, but also non-tectonic environmental factors. Such troubles cannot be removed completely but they can be reduce. This article outlines the main source of errors affecting the signals recorded by Phlegraean tilt, network, such as the dependence of the tilt response on temperature and to the thermoelastic effect on ground deformation. The analytical procedure used to evaluate about such errors and their reduction is explained. An application to data acquired from the tilt network during two distinct phases of ground uplift and subsidence of the Phlegraean Fields is reported.

  15. Coulomb interaction effect in tilted Weyl fermion in two dimensions

    Science.gov (United States)

    Isobe, Hiroki; Nagaosa, Naoto

    Weyl fermions with tilted linear dispersions characterized by several different velocities appear in some systems including the quasi-two-dimensional organic semiconductor α-(BEDT-TTF)2I3 and three-dimensional WTe2. The Coulomb interaction between electrons modifies the velocities in an essential way in the low energy limit, where the logarithmic corrections dominate. Taking into account the coupling to both the transverse and longitudinal electromagnetic fields, we derive the renormalization group equations for the velocities of the tilted Weyl fermions in two dimensions, and found that they increase as the energy decreases and eventually hit the velocity of light c to result in the Cherenkov radiation. Especially, the system restores the isotropic Weyl cone even when the bare Weyl cone is strongly tilted and the velocity of electrons becomes negative in certain directions.

  16. Absolute Measurement of Tilts via Fourier Analysis of Interferograms

    Science.gov (United States)

    Toland, Ronald W.

    2004-01-01

    The Fourier method of interferogram analysis requires the introduction of a constant tilt into the interferogram to serve as a carrier signal for information on the figure of the surface under test. This tilt is usually removed in the first steps of analysis and ignored thereafter. However, in the problem of aligning optical components and systems, knowledge of part orientation is crucial to proper instrument performance. This paper outlines an algorithm which uses the normally ignored carrier signal in Fourier analysis to compute an absolute tilt (orientation) of the test surface. We also provide a brief outline of how this technique, incorporated in a rotating Twyman-Green interferometer, can be used in alignment and metrology of optical systems.

  17. The semiology of tilt-induced psychogenic pseudosyncope.

    Science.gov (United States)

    Tannemaat, Martijn R; van Niekerk, Julius; Reijntjes, Robert H; Thijs, Roland D; Sutton, Richard; van Dijk, J Gert

    2013-08-20

    To provide a detailed semiology to aid the clinical recognition of psychogenic pseudosyncope (PPS), which concerns episodes of apparent transient loss of consciousness (TLOC) that mimic syncope. We analyzed all consecutive tilt-table tests from 2006 to 2012 showing proven PPS, i.e., apparent TLOC had occurred without EEG changes or a decrease in heart rate (HR) or blood pressure (BP). We analyzed baseline characteristics, video data, EEG, ECG, and continuous BP measurements on a 1-second time scale. Data were compared with those of 69 cases of tilt-induced vasovagal syncope (VVS). Of 800 tilt-table tests, 43 (5.4%) resulted in PPS. The majority (74%) were women. The median duration of apparent TLOC was longer in PPS (44 seconds) than in VVS (20 seconds, p semiology of PPS as a clinical entity is vital to ensure accurate diagnosis.

  18. Tilt Precursors before Earthquakes on the San Andreas Fault, California.

    Science.gov (United States)

    Johnston, M J; Mortensen, C E

    1974-12-13

    An array of 14 biaxial shallow-borehole tiltmeters (at 1O(-7) radian sensitivity) has been installed along 85 kilometers of the San Andreas fault during the past year. Earthquake-related changes in tilt have been simultaneously observed on up to four independent instruments. At earthquake distances greater than 10 earthquake source dimensions, there are few clear indications of tilt change. For the four instruments with the longest records (> 10 months), 26 earthquakes have occurred since July 1973 with at least one instrument closer than 10 source dimensions and 8 earthquakes with more than one instrument within that distance. Precursors in tilt direction have been observed before more than 10 earthquakes or groups of earthquakes, and no similar effect has yet been seen without the occurrence of an earthquake.

  19. Robust tilt and lock mechanism for hopping actuator

    Energy Technology Data Exchange (ETDEWEB)

    Salton, Jonathan R.; Buerger, Stephen; Dullea, Kevin J.; Marron, Lisa C.; Salisbury, Curt Michael; Spletzer, Barry Louis

    2017-02-07

    A tilt and lock apparatus that includes a tilt servomechanism, a spiral torsion spring, a lock wheel, and a lock hook is described herein. The spiral torsion spring is mechanically coupled to the tilt servomechanism and the lock wheel (which includes an opening). When a shaft is positioned through the opening, rotation of the lock wheel is in unison with rotation of the shaft. An external surface of the lock wheel includes one or more grooves. The lock hook includes a head that engages and disengages the grooves. The lock wheel is stationary when the head engages one of the grooves and is rotatable when the head disengages the grooves. The head and the grooves are geometrically aligned when engaged to prevent creation of a force that acts to disengage the head responsive to an applied force acting on the shaft.

  20. Reverse time migration in tilted transversely isotropic media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Linbing; Rector III, James W.; Hoversten, G. Michael

    2004-07-01

    This paper presents a reverse time migration (RTM) method for the migration of shot records in tilted transversely isotropic (TTI) media. It is based on the tilted TI acoustic wave equation that was derived from the dispersion relation. The RTM is a full depth migration allowing for velocity to vary laterally as well as vertically and has no dip limitations. The wave equation is solved by a tenth-order finite difference scheme. Using 2D numerical models, we demonstrate that ignoring the tilt angle will introduce both lateral and vertical shifts in imaging. The shifts can be larger than 0.5 wavelength in the vertical direction and 1.5 wavelength in the lateral direction.

  1. Stability of multi orifice active tilting-pad journal bearings

    DEFF Research Database (Denmark)

    Haugaard, Asger M.; Santos, Ilmar

    2010-01-01

    The stability properties of actively lubricated tilting-pad journal bearings are investigated theoretically. The bearing preload factor and control system gains are varied, and stable and unstable regions are identified. It is seen, that the control system influences bearing stability, and that t......The stability properties of actively lubricated tilting-pad journal bearings are investigated theoretically. The bearing preload factor and control system gains are varied, and stable and unstable regions are identified. It is seen, that the control system influences bearing stability...

  2. Tilt table standing for reducing spasticity after spinal cord injury.

    Science.gov (United States)

    Bohannon, R W

    1993-10-01

    A patient with a T12 spinal cord injury and intractable extensor spasms of the lower extremities participated in tilt table standing trial on 5 nonconsecutive days to determine if the intervention would affect his spasticity and spasms. Each day's standing trial was followed by an immediate reduction in lower extremity spasticity (measured using the modified Ashworth scale and pendulum testing). Standing was also accompanied by a reduction in spasms that lasted until the following morning. The reduction of spasms was particularly advantageous to the performance of car transfers. Tilt table standing merits further examination as a physical treatment of spasms that accompany central nervous system lesions.

  3. Sedimentary basins reconnaissance using the magnetic Tilt-Depth method

    Science.gov (United States)

    Salem, A.; Williams, S.; Samson, E.; Fairhead, D.; Ravat, D.; Blakely, R.J.

    2010-01-01

    We compute the depth to the top of magnetic basement using the Tilt-Depth method from the best available magnetic anomaly grids covering the continental USA and Australia. For the USA, the Tilt-Depth estimates were compared with sediment thicknesses based on drilling data and show a correlation of 0.86 between the datasets. If random data were used then the correlation value goes to virtually zero. There is little to no lateral offset of the depth of basinal features although there is a tendency for the Tilt-Depth results to be slightly shallower than the drill depths. We also applied the Tilt-Depth method to a local-scale, relatively high-resolution aeromagnetic survey over the Olympic Peninsula of Washington State. The Tilt-Depth method successfully identified a variety of important tectonic elements known from geological mapping. Of particular interest, the Tilt-Depth method illuminated deep (3km) contacts within the non-magnetic sedimentary core of the Olympic Mountains, where magnetic anomalies are subdued and low in amplitude. For Australia, the Tilt-Depth estimates also give a good correlation with known areas of shallow basement and sedimentary basins. Our estimates of basement depth are not restricted to regional analysis but work equally well at the micro scale (basin scale) with depth estimates agreeing well with drill hole and seismic data. We focus on the eastern Officer Basin as an example of basin scale studies and find a good level of agreement between previously-derived basin models. However, our study potentially reveals depocentres not previously mapped due to the sparse distribution of well data. This example thus shows the potential additional advantage of the method in geological interpretation. The success of this study suggests that the Tilt-Depth method is useful in estimating the depth to crystalline basement when appropriate quality aeromagnetic anomaly data are used (i.e. line spacing on the order of or less than the expected depth to

  4. Polarization Measurements on SUMI's TVLS Gratings

    Science.gov (United States)

    Kobayashi, K.; West, E. A.; Davis, J. M.; Gary, G. A.

    2007-01-01

    We present measurements of toroidal variable-line-space (TVLS) gratings for the Solar Ultraviolet Magnetograph Investigation (SUMI), currently being developed at the National Space Science and Technology Center (NSSTC). SUMI is a spectro-polarimeter designed to measure magnetic fields in the solar chromosphere by observing two UV emission lines sensitive to magnetic fields, the CIY line at 155nm and the MgII line at 280nm. The instrument uses a pair of TVLS gratings, to observe both linear polarizations simultaneously. Efficiency measurements were done on bare aluminum gratings and aluminum/MgF2 coated gratings, at both linear polarizations.

  5. Polarization Measurements on SUMI's TVLS Gratings

    Science.gov (United States)

    Kobayashi, K.; West, E. A.; Davis, J. M.; Gary, G. A.

    2007-01-01

    We present measurements of toroidal variable-line-space (TVLS) gratings for the Solar Ultraviolet Magnetograph Investigation (SUMI), currently being developed an the National Space Science and Technology Center (NSSTC). SUMI zs a spectro-polarimeter designed no measure magnetic fields in the solar chromosphere by observing two UV emission lines sensitive to magnetic fields, the C-IV line at 155nm and the Mg-II line at 280nm. The instrument uses a pair of TVLS gratings, to observe both linear polarizations simultaneously. Efficiency measurements were done on bare aluminum gratings and MgF2 coated gratings, at both linear polarizations.

  6. A Preliminary Analysis of Solar Irradiance Measurements at TNB Solar Research Centre for Optimal Orientation of Fixed Solar Panels installed in Selangor Malaysia

    International Nuclear Information System (INIS)

    Hashim, A M; Ahmad, B; Shafie, R M; Rusli, R; Aziz, M A; Hassan, J; Wanik, M Z C; Ali, M A M

    2013-01-01

    The well established rule for orienting fixed solar devices is to face south for places in the northern hemisphere and northwards for the southern hemisphere. However for regions near the equator such as in Selangor Malaysia, the position of the sun at solar noon is always near zenith both to the north and south depending on location and month of year. This paper reports an analysis of global solar radiation data taken at TNB Solar Research Centre, Malaysia. The solar radiation is measured using both shaded and exposed pyranometers together with a pyrheliometer which is mounted on a sun-tracker. The analysis on the solar measurements show that a near regular solar irradiation pattern had occurred often enough during the year to recommend an optimum azimuth orientation of installing the fixed solar panels tilted facing towards east. Even though all the solar measurements were done at a single location in TNBR Solar Research Centre at Bangi, for locations near the equator with similar weather pattern, the recommended azimuth direction of installing fixed solar panels and collectors tilted eastward will also be generally valid.

  7. Strategic Polarization.

    Science.gov (United States)

    Kalai, Adam; Kalai, Ehud

    2001-08-01

    In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.

  8. Downward continuation and tilt derivative of magnetic data for ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 4. Downward continuation and tilt derivative of magnetic data for delineation of concealed coal fire in East Basuria Colliery, Jharia coal field, India. S K Pal Jitendra Vaish Sahadev Kumar Piyush Priyam Abhay Kumar Bharti Rajwardhan Kumar. Volume ...

  9. Downward continuation and tilt derivative of magnetic data for ...

    Indian Academy of Sciences (India)

    S K Pal

    2017-06-12

    Jun 12, 2017 ... are corroborated with multi-seam occurrences, mine working levels and surface manifestation which are also correlated well with 3D model of downward continued anomaly distribution. Keywords. Downward continuation; tilt derivative; magnetic data; coal fire mapping; Jharia coal field;. India. 1.

  10. Development of tilted fibre Bragg gratings using highly coherent 255 ...

    Indian Academy of Sciences (India)

    E-mail: oprakash@rrcat.gov.in. DOI: 10.1007/s12043-013-0672-7; ePublication: 6 February 2014. Abstract. This paper reports the study on development of tilted fibre Bragg gratings using highly coherent 255 nm radiation, obtained from the second harmonic generation (SHG) of copper vapour laser (CVL). The transmission ...

  11. Modelling and Simulations of a Narrow Track Tilting Vehicle

    Directory of Open Access Journals (Sweden)

    JJ Chong

    2016-10-01

    Full Text Available Narrow track tilting vehicle is a new category of vehicle that combines the dynamical abilities of a passenger car with a motorcycle. In the presence of overturning moments during cornering, an accurate assessment of the lateral dynamics plays an important role to improve their stability and handling. In order to stabilise or control the narrow tilting vehicle, the demand tilt angle can be calculated from the vehicle’s lateral acceleration and controlled by either steering input of the vehicle or using additional titling actuator to reach this desired angle. The aim of this article is to present a new approach for developing the lateral dynamics model of a narrow track tilting vehicle. First, this approach utilises the well-known geometry ‘bicycle model’ and parameter estimation methods. Second, by using a tuning method, the unknown and uncertainties are taken into account and regulated through an optimisation procedure to minimise the model biases in order to improve the modelling accuracy. Therefore, the optimised model can be used as a platform to develop the vehicle control strategy. Numerical simulations have been performed in a comparison with the experimental data to validate the model accuracy.

  12. Analysis of a ferrofluid core differential transformer tilt measurement sensor

    Energy Technology Data Exchange (ETDEWEB)

    Medvegy, T.; Molnár, Á.; Molnár, G.; Gugolya, Z.

    2017-04-15

    In our work, we developed a ferrofluid core differential transformer sensor, which can be used to measure tilt and acceleration. The proposed sensor consisted of three coils, from which the primary was excited with an alternating current. In the space surrounded by the coils was a cell half-filled with ferrofluid, therefore in the horizontal state of the sensor the fluid distributes equally in the three sections of the cell surrounded by the three coils. Nevertheless when the cell is being tilted or accelerated (in the direction of the axis of the coils), there is a different amount of ferrofluid in the three sections. The voltage induced in the secondary coils strongly depends on the amount of ferrofluid found in the core surrounded by them, so the tilt or the acceleration of the cell becomes measurable. We constructed the sensor in several layouts. The linearly coiled sensor had an excellent resolution. Another version with a toroidal cell had almost perfect linearity and a virtually infinite measuring range. - Highlights: • A ferrofluid core differential transformer can be used to measure tilt. • The theoretical description of two different type of the sensor is introduced. • The measuring range, and the sensitivity depends on the dimensions of the sensor.

  13. Tilt Train Technology : A State of the Art Survey

    Science.gov (United States)

    1992-05-01

    This report presents an overview of the state-of-the-art in tilt-train technology. It is intended to give the reader a better understanding of the unique features of this approach to train design and the variations that exist. Briefly described is th...

  14. Manipulation of enhanced absorption with tilted hexagonal boron nitride slabs

    Science.gov (United States)

    Wu, Xiaohu; Fu, Ceji

    2018-04-01

    The wavevector of electromagnetic wave propagation in a hexagonal boron nitride (hBN) slab can be controlled by tilting its optical axis. This property can be used to manipulate the absorption in a hBN slab. By carefully analyzing the dependence of the absorptivity of a thin hBN slab on the tilted angle of its optical axis, we propose a structure that can realize great absorptivity enhancement in a band by stacking hBN slabs of different tilted angles. Our numerical results show that the absorptivity of a structure made of 91 stacked hBN slabs can be achieved higher than 0.94 in the wavenumber range from 1367 to 1580 cm-1 when the tilted angles of the slabs are properly arranged. The strong absorption is attributed to the combination of impedance matching at the slab interfaces and enlarged wavevectors in the slabs. This work reveals a novel way to realize strong absorption with anisotropic materials for applications in areas such as thermal radiative energy harvesting and conversion.

  15. Dynamic tilt illusion induced by continuous contextual orientation alternations.

    Science.gov (United States)

    Yuan, Xiangyong; Zhang, Xilei; Jiang, Yi

    2017-11-01

    In the classic tilt illusion, the perceived orientation of a center patch is shifted away from its oriented context. Additionally, a stronger illusion effect is yielded when the center patch is simultaneously rather than asynchronously presented with a constant context for a shorter duration. However, little is known about the temporal characteristic of the tilt illusion in a reverse situation in which a constant center patch is presented throughout while the contexts change. Therefore, we continuously alternated two opposite-oriented contexts and manipulated alternate speeds to examine how the tilt illusion would build up as a function of dynamic contextual alternation. Our results revealed that dynamic alternations between leftward- and rightward-oriented contexts caused a static vertical grating at the center to apparently sway from side to side. More importantly, the apparent sway illusion was modulated by the alternate speed of the oriented contexts (up to 8-10 Hz); the quicker the alternation is, the faster and weaker the apparent sway is. Intriguingly, the temporal characteristic of the "dynamic tilt illusion" suggests that, under a varying environment, the suppressions from temporally adjacent surrounds would be chunked into discrete epochs before affecting our percept.

  16. Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media

    Science.gov (United States)

    Chen, Zhen; Dorfman, Kevin D.

    2013-01-01

    Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such “tilted” post arrays is superior to the standard “un-tilted” approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the “free path”, i.e., the average distance of ballistic trajectories of point sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device. PMID:23868490

  17. Modelling of LEG tilting pad journal bearings with active lubrication

    DEFF Research Database (Denmark)

    Cerda Varela, Alejandro Javier; García, Asier Bengoechea; Santos, Ilmar

    2017-01-01

    This work constitutes the first step in a research effort aimed at studying the feasibility of introducing an active lubrication concept in tilting pad journal bearings (TPJBs) that feature the leading edge groove (LEG) lubrication system. The modification of the oil flow into each pad supply gro...

  18. Cellular structures using U_q-tilting modules

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Stroppel, Catharina; Tubbenhauer, Daniel

    We use the theory of Uq-tilting modules to construct cellular bases for centralizer algebras. Our methods are quite general and work for any quantum group Uq attached to a Cartan matrix and include the non semi-simple cases for q being a root of unity and ground fields of positive characteristic...

  19. Simulations of Micropumps Based on Tilted Flexible Fibers

    Science.gov (United States)

    Hancock, Matthew; Elabbasi, Nagi; Demirel, Melik

    2015-11-01

    Pumping liquids at low Reynolds numbers is challenging because of the principle of reversibility. We report here a class of microfluidic pump designs based on tilted flexible structures that combines the concepts of cilia (flexible elastic elements) and rectifiers (e.g., Tesla valves, check valves). We demonstrate proof-of-concept with 2D and 3D fluid-structure interaction (FSI) simulations in COMSOL Multiphysics®of micropumps consisting of a source for oscillatory fluidic motion, e.g. a piston, and a channel lined with tilted flexible rods or sheets to provide rectification. When flow is against the rod tilt direction, the rods bend backward, narrowing the channel and increasing flow resistance; when flow is in the direction of rod tilt, the rods bend forward, widening the channel and decreasing flow resistance. The 2D and 3D simulations involve moving meshes whose quality is maintained by prescribing the mesh displacement on guide surfaces positioned on either side of each flexible structure. The prescribed displacement depends on structure bending and maintains mesh quality even for large deformations. Simulations demonstrate effective pumping even at Reynolds numbers as low as 0.001. Because rod rigidity may be specified independently of Reynolds number, in principle, rod rigidity may be reduced to enable pumping at arbitrarily low Reynolds numbers.

  20. Abnormal Tilt Perception During Centrifugation in Patients with Vestibular Migraine.

    Science.gov (United States)

    Wang, Joanne; Lewis, Richard F

    2016-06-01

    Vestibular migraine (VM), defined as vestibular symptoms caused by migraine mechanisms, is very common but poorly understood. Because dizziness is often provoked in VM patients when the semicircular canals and otolith organs are stimulated concurrently (e.g., tilting the head relative to gravity), we measured tilt perception and eye movements in patients with VM and in migraine and normal control subjects during fixed-radius centrifugation, a paradigm that simultaneously modulates afferent signals from the semicircular canals and otoliths organs. Twenty-four patients (8 in each category) were tested with a motion paradigm that generated an inter-aural centrifugal force of 0.36 G, resulting in a 20° tilt of the gravito-inertial force in the roll plane. We found that percepts of roll tilt developed slower in VM patients than in the two control groups, but that eye movement responses, including the shift in the eye's rotational axis, were equivalent in all three groups. These results demonstrate a change in vestibular perception in VM that is unaccompanied by changes in vestibular-mediated eye movements and suggest that either the brain's integration of canal and otolith signals or the dynamics of otolith responses are aberrant in patients with VM.

  1. The impact of gravity during head-up tilt

    DEFF Research Database (Denmark)

    Ottesen, Johnny T.; Olufsen, Mette; Smith, Brittany

    The impact of gravity during head-up tilt, a test often used in the clinic to diagnose patients who suffer from dizziness or frequent episodes of syncope, is not well described. This study uses mathematical modeling to analyze experimental blood pressure data measured at the level of the aorta...

  2. Impaired perception of surface tilt in progressive supranuclear palsy.

    Directory of Open Access Journals (Sweden)

    Marian L Dale

    Full Text Available Progressive supranuclear palsy (PSP is characterized by early postural instability and backward falls. The mechanisms underlying backward postural instability in PSP are not understood. The aim of this study was to test the hypothesis that postural instability in PSP is a result of dysfunction in the perception of postural verticality.We gathered posturography data on 12 subjects with PSP to compare with 12 subjects with idiopathic Parkinson's Disease (PD and 12 healthy subjects. Objective tests of postural impairment included: dynamic sensory perception tests of gravity and of surface oscillations, postural responses to surface perturbations, the sensory organization test of postural sway under altered sensory conditions and limits of stability in stance.Perception of toes up (but not toes down surface tilt was reduced in subjects with PSP compared to both control subjects (p≤0.001 standing, p≤0.007 seated and subjects with PD (p≤0.03 standing, p≤0.04 seated. Subjects with PSP, PD and normal controls accurately perceived the direction of gravity when standing on a tilting surface. Unlike PD and control subjects, subjects with PSP exerted less postural corrective torque in response to toes up surface tilts.Difficulty perceiving backward tilt of the surface or body may account for backward falls and postural impairments in patients with PSP. These observations suggest that abnormal central integration of sensory inputs for perception of body and surface orientation contributes to the pathophysiology of postural instability in PSP.

  3. Hybrid fluorescent layer emitting polarized light

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadimasoudi

    2017-07-01

    Full Text Available Semiconductor nanorods have anisotropic absorption and emission properties. In this work a hybrid luminescent layer is produced based on a mixture of CdSe/CdS nanorods dispersed in a liquid crystal that is aligned by an electric field and polymerized by UV illumination. The film emits light with polarization ratio 0.6 (polarization contrast 4:1. Clusters of nanorods in liquid crystal can be avoided by applying an AC electric field with sufficient amplitude. This method can be made compatible with large-scale processing on flexible transparent substrates. Thin polarized light emitters can be used in LCD backlights or solar concentrators to increase the efficiency.

  4. Piezoelectricity and rotostriction through polar and non-polar coupled instabilities in bismuth-based piezoceramics.

    Science.gov (United States)

    Acosta, Matias; Schmitt, Ljubomira A; Cazorla, Claudio; Studer, Andrew; Zintler, Alexander; Glaum, Julia; Kleebe, Hans-Joachim; Donner, Wolfgang; Hoffman, Mark; Rödel, Jürgen; Hinterstein, Manuel

    2016-07-01

    Coupling of order parameters provides a means to tune functionality in advanced materials including multiferroics, superconductors, and ionic conductors. We demonstrate that the response of a frustrated ferroelectric state leads to coupling between order parameters under electric field depending on grain orientation. The strain of grains oriented along a specific crystallographic direction, 〈h00〉, is caused by converse piezoelectricity originating from a ferrodistortive tetragonal phase. For 〈hhh〉 oriented grains, the strain results from converse piezoelectricity and rotostriction, as indicated by an antiferrodistortive instability that promotes octahedral tilting in a rhombohedral phase. Both strain mechanisms combined lead to a colossal local strain of (2.4 ± 0.1) % and indicate coupling between oxygen octahedral tilting and polarization, here termed "rotopolarization". These findings were confirmed with electromechanical experiments, in situ neutron diffraction, and in situ transmission electron microscopy in 0.75Bi1/2Na1/2TiO3-0.25SrTiO3. This work demonstrates that polar and non-polar instabilities can cooperate to provide colossal functional responses.

  5. Piezoelectricity and rotostriction through polar and non-polar coupled instabilities in bismuth-based piezoceramics

    Science.gov (United States)

    Acosta, Matias; Schmitt, Ljubomira A.; Cazorla, Claudio; Studer, Andrew; Zintler, Alexander; Glaum, Julia; Kleebe, Hans-Joachim; Donner, Wolfgang; Hoffman, Mark; Rödel, Jürgen; Hinterstein, Manuel

    2016-07-01

    Coupling of order parameters provides a means to tune functionality in advanced materials including multiferroics, superconductors, and ionic conductors. We demonstrate that the response of a frustrated ferroelectric state leads to coupling between order parameters under electric field depending on grain orientation. The strain of grains oriented along a specific crystallographic direction, , is caused by converse piezoelectricity originating from a ferrodistortive tetragonal phase. For oriented grains, the strain results from converse piezoelectricity and rotostriction, as indicated by an antiferrodistortive instability that promotes octahedral tilting in a rhombohedral phase. Both strain mechanisms combined lead to a colossal local strain of (2.4 ± 0.1) % and indicate coupling between oxygen octahedral tilting and polarization, here termed “rotopolarization”. These findings were confirmed with electromechanical experiments, in situ neutron diffraction, and in situ transmission electron microscopy in 0.75Bi1/2Na1/2TiO3-0.25SrTiO3. This work demonstrates that polar and non-polar instabilities can cooperate to provide colossal functional responses.

  6. Novel tilt-curvature coupling in lipid membranes

    Science.gov (United States)

    Terzi, M. Mert; Deserno, Markus

    2017-08-01

    On mesoscopic scales, lipid membranes are well described by continuum theories whose main ingredients are the curvature of a membrane's reference surface and the tilt of its lipid constituents. In particular, Hamm and Kozlov [Eur. Phys. J. E 3, 323 (2000)] have shown how to systematically derive such a tilt-curvature Hamiltonian based on the elementary assumption of a thin fluid elastic sheet experiencing internal lateral pre-stress. Performing a dimensional reduction, they not only derive the basic form of the effective surface Hamiltonian but also express its emergent elastic couplings as trans-membrane moments of lower-level material parameters. In the present paper, we argue, though, that their derivation unfortunately missed a coupling term between curvature and tilt. This term arises because, as one moves along the membrane, the curvature-induced change of transverse distances contributes to the area strain—an effect that was believed to be small but nevertheless ends up contributing at the same (quadratic) order as all other terms in their Hamiltonian. We illustrate the consequences of this amendment by deriving the monolayer and bilayer Euler-Lagrange equations for the tilt, as well as the power spectra of shape, tilt, and director fluctuations. A particularly curious aspect of our new term is that its associated coupling constant is the second moment of the lipid monolayer's lateral stress profile—which within this framework is equal to the monolayer Gaussian curvature modulus, κ¯ m. On the one hand, this implies that many theoretical predictions now contain a parameter that is poorly known (because the Gauss-Bonnet theorem limits access to the integrated Gaussian curvature); on the other hand, the appearance of κ¯ m outside of its Gaussian curvature provenance opens opportunities for measuring it by more conventional means, for instance by monitoring a membrane's undulation spectrum at short scales.

  7. Modeling Flow Past a Tilted Vena Cava Filter

    Energy Technology Data Exchange (ETDEWEB)

    Singer, M A; Wang, S L

    2009-06-29

    Inferior vena cava filters are medical devices used to prevent pulmonary embolism (PE) from deep vein thrombosis. In particular, retrievable filters are well-suited for patients who are unresponsive to anticoagulation therapy and whose risk of PE decreased with time. The goal of this work is to use computational fluid dynamics to evaluate the flow past an unoccluded and partially occluded Celect inferior vena cava filter. In particular, the hemodynamic response to thrombus volume and filter tilt is examined, and the results are compared with flow conditions that are known to be thrombogenic. A computer model of the filter inside a model vena cava is constructed using high resolution digital photographs and methods of computer aided design. The models are parameterized using the Overture software framework, and a collection of overlapping grids is constructed to discretize the flow domain. The incompressible Navier-Stokes equations are solved, and the characteristics of the flow (i.e., velocity contours and wall shear stresses) are computed. The volume of stagnant and recirculating flow increases with thrombus volume. In addition, as the filter increases tilt, the cava wall adjacent to the tilted filter is subjected to low velocity flow that gives rise to regions of low wall shear stress. The results demonstrate the ease of IVC filter modeling with the Overture software framework. Flow conditions caused by the tilted Celect filter may elevate the risk of intrafilter thrombosis and facilitate vascular remodeling. This latter condition also increases the risk of penetration and potential incorporation of the hook of the filter into the vena caval wall, thereby complicating filter retrieval. Consequently, severe tilt at the time of filter deployment may warrant early clinical intervention.

  8. Slant-tilt: the visual encoding of surface orientation.

    Science.gov (United States)

    Stevens, K A

    1983-01-01

    A specific form for the internal representation of local surface orientation is proposed, which is similar to Gibson's (1950) "amount and direction of slant". Slant amount is usually quantified by the angle sigma between the surface normal and the line of sight (0 degrees less than or equal to sigma less than or equal to 90 degrees). Slant direction corresponds to the direction of the gradient of distance from the viewer to the surface, and may be defined by the image direction tau to which the surface normal would project (0 degrees less than or equal to tau less than or equal to 360 degrees). Since the direction of slant is specified by the tilt of the projected surface normal, it is referred to as surface tilt (Stevens, 1979; Marr, 1982). The two degrees of freedom of orientation are therefore quantified by slant, an angle measured perpendicular to the image plane, and tilt, an angle measured in the image plane. The slant-tilt form provides several computational advantages relative to some other proposals and is consistent with various psychological phenomena. Slant might be encoded by various means, e.g. by the cosine of the angle, by the tangent, or linearly by the angle itself. Experimental results are reported that suggest that slant is encoded by an internal parameter that varies linearly with slant angle, with resolution of roughly one part in 100. Thus we propose that surface orientation is encoded in human vision by two quantities, one varying linearly with slant angle, the other varying linearly with tilt angle.

  9. What causes Mars' annular polar vortices?

    Science.gov (United States)

    Toigo, A. D.; Waugh, D. W.; Guzewich, S. D.

    2017-01-01

    A distinctive feature of the Martian atmosphere is that the winter polar vortices exhibit annuli of high potential vorticity (PV) with a local minimum near the pole. These annuli are seen in observations, reanalyses, and free-running general circulation model simulations of Mars, but are not generally a feature of Earth's polar vortices, where there is a monotonic increase in magnitude of PV with latitude. The creation and maintenance of the annular polar vortices on Mars are not well understood. Here we use simulations with a Martian general circulation model to the show that annular vortices are related to another distinctive, and possibly unique in the solar system, feature of the Martian atmosphere: the condensation of the predominant atmospheric gas species (CO2) in polar winter regions. The latent heat associated with CO2 condensation leads to destruction of PV in the polar lower atmosphere, inducing the formation of an annular PV structure.

  10. Solar-geophysical data number 407, Jyul 1978, Part I. (Prompt reports). data for June 1978, May 1978

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1978-07-01

    This prompt report provides data for June 1978 on alert period, daily solar indices, solar flares, solar radio waves, solar x-ray radiation, solar wind measurements, coronal holes, inferred IP magnetic field polarities, mean solar magnetic field, and Boulder geomagnetic substorm log. It also provides data for May 1978 on daily solar activity center, sudden ionospheric disturbances, solar x-ray radiation, solar radio waves, cosmic rays, geomagnetic indices, and radio propagation indices

  11. Solar--geophysical data number 403, March 1978. Part I. Prompt reports. Data for February 1978--January 1978

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1978-03-01

    This prompt report provides data for February 1978 on alert period, daily solar indices, solar flares, solar radio waves, solar x-ray radiation, coronal holes, solar wind measurements, inferred IP magnetic field polarities, and mean solar magnetic field. It also provides data for January 1978 on daily solar activity center, sudden ionospheric disturbances, solar x-ray radiation, solar radio waves, cosmic rays, geomagnetic indices, and radio propagation indices

  12. Solar--geophysical data number 398, October 1977. Part I. (Prompt reports). Data for September 1977--August 1977

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1977-10-01

    This prompt report provides data for September 1977 on alert period, daily solar indices, solar flares, solar radio waves, coronal holes, solar x-ray radiation, solar wind measurements, inferred IP magnetic field polarities, mean solar magnetic field, and solar proton event (Provisional). It also provides data for August 1977 on daily solar activity centers, sudden ionospheric disturbances, solar radio waves, cosmic rays, geomagnetic indices and radio propagation indices

  13. Solar-geophysical data number 410, October 1978, Part I (Prompt reports). Data for September 1978, August 1978

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1978-10-01

    This prompt report provides data for September 1978 on alert period, daily solar indices, solar flares, solar radio waves, solar x-ray radiation, coronal holes, solar wind measurements, inferred IP magnetic field polarities, mean solar magnetic field and Boulder geomagnetic substorm log. It also provides data for August 1978 on daily solar activity center, sudden ionospheric disturbances, solar x-ray radiation, solar radio waves, cosmic rays, geomagnetic indices and radio propagation indices

  14. Solar building

    OpenAIRE

    Zhang, Luxin

    2014-01-01

    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  15. Motion sickness and tilts of the inertial force environment : Active suspension systems vs. active passengers

    NARCIS (Netherlands)

    Golding, J. F.; van der Bles, W.; Bos, J. E.; Haynes, T.; Gresty, M. A.

    2003-01-01

    Background: Maneuvering in vehicles exposes occupants to low frequency forces (<1 Hz) which can provoke motion sickness. Hypothesis: Aligning with the tilting inertial resultant (gravity + imposed horizontal acceleration: gravito-inertial force (GIF)) may reduce motion sickness when tilting is

  16. Solar energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role solar energy may have in the energy future of the US. The topics discussed in the chapter include the solar resource, solar architecture including passive solar design and solar collectors, solar-thermal concentrating systems including parabolic troughs and dishes and central receivers, photovoltaic cells including photovoltaic systems for home use, and environmental, health and safety issues

  17. Precessing deuteron polarization

    International Nuclear Information System (INIS)

    Sitnik, I.M.; Volkov, V.I.; Kirillov, D.A.; Piskunov, N.M.; Plis, Yu.A.

    2002-01-01

    The feasibility of the acceleration in the Nuclotron of deuterons polarized in the horizontal plane is considered. This horizontal polarization is named precessing polarization. The effects of the main magnetic field and synchrotron oscillations are included. The precessing polarization is supposed to be used in studying the polarization parameters of the elastic dp back-scattering and other experiments

  18. Intrinsic stability of ferroelectric and piezoelectric properties of epitaxial PbZr0.45Ti0.55O3 thin films on silicon in relation to grain tilt

    Directory of Open Access Journals (Sweden)

    Evert P Houwman, Minh D Nguyen, Matthijn Dekkers and Guus Rijnders

    2013-01-01

    Full Text Available Piezoelectric thin films of PbZr0.45Ti0.55O3 were grown on Si substrates in four different ways, resulting in different crystalline structures, as determined by x-ray analysis. The crystalline structures were different in the spread in tilt angle and the in-plane alignment of the crystal planes between different grains. It is found that the deviations of the ferroelectric polarization loop from that of the ideal rectangular loop (reduction of the remanent polarization with respect to the saturation polarization, dielectric constant of the film, slanting of the loop, coercive field value all scale with the average tilt angle. A model is derived based on the assumption that the tilted grain boundaries between grains affect the film properties locally. This model describes the observed trends. The effective piezoelectric coefficient d33,eff shows also a weak dependence on the average tilt angle for films grown in a single layer, whereas it is strongly reduced for the films deposited in multiple layers. The least affected properties are obtained for the most epitaxial films, i.e. grown on a SrTiO3 epitaxial seed layer, by pulsed laser deposition. These films are intrinsically stable and do not require poling to acquire these stable properties.

  19. RETRIEVAL OF AEROSOL PHASE FUNCTION AND POLARIZED PHASE FUNCTION FROM POLARIZATION OF SKYLIGHT FOR DIFFERENT OBSERVATION GEOMETRIES

    Directory of Open Access Journals (Sweden)

    L. Li

    2018-04-01

    Full Text Available The phase function and polarized phase function are important optical parameters, which describe scattering properties of atmospheric aerosol particles. Polarization of skylight induced by the scattering processes is sensitive to the scattering properties of aerosols. The Stokes parameters I, Q, U and the polarized radiance Lp of skylight measured by the CIMEL dual-polar sun-sky radiometer CE318- DP can be use to retrieve the phase function and polarized phase function, respectively. Two different observation geometries (i.e., the principal plane and almucantar are preformed by the CE318-DP to detect skylight polarization. Polarization of skylight depends on the illumination and observation geometries. For the same solar zenith angle, retrievals of the phase function and the polarized phase function are still affected by the observation geometry. The performance of the retrieval algorithm for the principal plane and almucantar observation geometries was assessed by the numerical experiments at two typical high and low sun’s positions (i.e. solar zenith angles are equal to 45° and 65°. Comparing the results for the principal plane and almucantar geometries, it is recommended to utilize the principal plane observations to retrieve the phase function when the solar zenith angle is small. The Stokes parameter U and the polarized radiance Lp from the almucantar observations are suggested to retrieve the polarized phase function, especially for short wavelength channels (e.g., 440 and 500 nm.

  20. Effect of tilting on cerebral hemodynamics in preterm and term infants

    NARCIS (Netherlands)

    Pichler, G; van Boetzelar, MC; Muller, W; Urlesberger, B

    2001-01-01

    Tilting is known to cause changes in hemodynamics due to hydrostatic pressure. The present study is an analysis of changes in cerebral hemodynamics measured by near infrared spectroscopy (NIRS) following tilting up and down in preterm and term infants. A significantly different effect of tilting up

  1. Role of Baroreflex Sensitivity in Predicting Tilt Training Response in Patients with Neurally Mediated Syncope.

    Science.gov (United States)

    Chun, Kwang Jin; Yim, Hye Ran; Park, Jungwae; Park, Seung Jung; Park, Kyoung Min; On, Young Keun; Kim, June Soo

    2016-03-01

    An association between baroreflex sensitivity (BRS) and the response to tilt training has not been reported in patients with neurally mediated syncope (NMS). This study sought to investigate the role of BRS in predicting the response to tilt training in patients with NMS. We analyzed 57 patients who underwent tilt training at our hospital. A responder to tilt training was defined as a patient with three consecutive negative responses to the head-up tilt test (HUT) during tilt training. After tilt training, 52 patients (91.2%) achieved three consecutive negative responses to the HUT. In the supine position before upright posture during the first session of tilt training for responders and non-responders, the mean BRS was 18.17 ± 10.09 ms/mm Hg and 7.99 ± 5.84 ms/mm Hg (p=0.008), respectively, and the frequency of BRS ≥ 8.945 ms/mm Hg was 45 (86.5%) and 1 (20.0%; p=0.004), respectively. Age, male gender, frequency of syncopal events before HUT, type of NMS, phase of positive HUT, total number of tilt training sessions, and mean time of tilt training did not differ between the study groups. In the multivariate analysis, BRS training. The BRS value in the supine position could be a predictor for determining the response to tilt training in patients with NMS who are being considered for inpatient tilt training.

  2. Energy conversion evolution at lunar polar sites

    Indian Academy of Sciences (India)

    cating the use of polar regions, with or without the putative ice resource, as preferred base locations. (Burke 1978, 1995) primarily because of their more favorable thermal environments. Now this prospect. Keywords. Energy generation; solar energy; electric power; lunar environment. J. Earth Syst. Sci. 114, No. 6, December ...

  3. A Statistical Study of Solar Filament Eruptions

    Science.gov (United States)

    Schanche, Nicole; Aggarwal, Ashna; Reeves, Kathy; Kempton, Dustin James; Angryk, Rafal

    2016-05-01

    Solar filaments are cool, dark channels of partially-ionized plasma that lie above the chromosphere. Their structure follows the neutral line between local regions of opposite magnetic polarity. Previous research (e.g. Schmieder et al. 2013, McCauley et al. 2015) has shown a positive correlation (70-80%) between the occurrence of filament eruptions and coronal mass ejections (CME’s). In this study, we attempt to use properties of the filament in order to predict whether or not a given filament will erupt. This prediction would help to better predict the occurrence of an oncoming CME. To track the evolution of a filament over time, a spatio-temporal algorithm that groups separate filament instances from the Heliophysics Event Knowledgebase (HEK) into filament tracks was developed. Filament features from the HEK metadata, such as length, chirality, and tilt are then combined with other physical features, such as the overlying decay index for two sets of filaments tracks - those that erupt and those that remain bound. Using statistical methods such as the Kolmogrov-Smirnov test and a Random Forest Classifier, we determine the effectiveness of the combined features in prediction. We conclude that there is significant overlap between the properties of filaments that erupt and those that do not, leading to predictions only ~5-10% above chance. However, the changes in features, such as a change in the filament's length over time, were determined to have the highest predictive power. We discuss the possible physical connections with the change in these features."This project has been supported by funding from the Division of Advanced Cyberinfrastructure within the Directorate for Computer and Information Science and Engineering, the Division of Astronomical Sciences within the Directorate for Mathematical and Physical Sciences, and the Division of Atmospheric and Geospace Sciences within the Directorate for Geosciences, under NSF award #1443061.”

  4. Polare maskuliniteter

    Directory of Open Access Journals (Sweden)

    Marit Anne Hauan

    2012-05-01

    Full Text Available In this paper my aim is to read and understand the journal of Gerrit de Veer from the last journey of William Barents to the Arctic Regions in 1596 and the journal of captain Junge on his hunting trip from Tromsø to Svalbard in 1834.It is nearly 240 years between this to voyages. The first journal is known as the earliest report from the arctic era. Gerrit de Veer adds instructive copper engravings to his text and give us insight in the crews meeting with this new land. Captain Junges journal is found together with his dead crew in a house in a fjord nearby Ny-Ålesund and has no drawings, but word. Both of these journals may be read as sources of the knowledge and understanding of the polar region. They might also unveil the ideas of how to deal with and survive under the challenges that is given. In addition one can ask if the sources can tell us more about how men describe their challenges. Can the way they expressed themselves in the journals give us an understanding of masculinity? And not least help us to create good questions of the change in the ideas of masculinities which is said to follow the change in understanding of the wilderness.

  5. Electrical tuning of the polarization state of light using graphene-integrated anisotropic metasurfaces

    Science.gov (United States)

    Dutta-Gupta, Shourya; Dabidian, Nima; Kholmanov, Iskandar; Belkin, Mikhail A.; Shvets, Gennady

    2017-03-01

    Plasmonic metasurfaces have been employed for moulding the flow of transmitted and reflected light, thereby enabling numerous applications that benefit from their ultra-thin sub-wavelength format. Their appeal is further enhanced by the incorporation of active electro-optic elements, paving the way for dynamic control of light's properties. In this paper, we realize a dynamic polarization state generator using a graphene-integrated anisotropic metasurface (GIAM) that converts the linear polarization of the incident light into an elliptical one. This is accomplished by using an anisotropic metasurface with two principal polarization axes, one of which possesses a Fano-type resonance. A gate-controlled single-layer graphene integrated with the metasurface was employed as an electro-optic element controlling the phase and intensity of light polarized along the resonant axis of the GIAM. When the incident light is polarized at an angle to the resonant axis of the metasurface, the ellipticity of the reflected light can be dynamically controlled by the application of a gate voltage. Thus accomplished dynamic polarization control is experimentally demonstrated and characterized by measuring the Stokes polarization parameters. Large changes of the ellipticity and the tilt angle of the polarization ellipse are observed. Our measurements show that the tilt angle can be changed from positive values through zero to negative values while keeping the ellipticity constant, potentially paving the way to rapid ellipsometry and other characterization techniques requiring fast polarization shifting. This article is part of the themed issue 'New horizons for nanophotonics'.

  6. Samba Solar; Samba Solar

    Energy Technology Data Exchange (ETDEWEB)

    Thurston, Charles W.

    2012-07-01

    Brazil, the biggest country of the South American subcontinent, has discovered the power of solar energy. Brazil recently introduced net metering of solar power plants and started to open the power supply grid to PV systems. The market has great potential as Brazil is the world's sixth biggest national economy.

  7. Soft antiphase tilt of oxygen octahedra in the hybrid improper multiferroic Ca3Mn1.9Ti0.1O7

    Science.gov (United States)

    Ye, Feng; Wang, Jinchen; Sheng, Jieming; Hoffmann, C.; Gu, T.; Xiang, H. J.; Tian, Wei; Molaison, J. J.; dos Santos, A. M.; Matsuda, M.; Chakoumakos, B. C.; Fernandez-Baca, J. A.; Tong, X.; Gao, Bin; Kim, Jae Wook; Cheong, S.-W.

    2018-01-01

    We report a single crystal neutron and x-ray diffraction study of the hybrid improper multiferroic Ca3Mn1.9Ti0.1O7 (CMTO), a prototypical system where the electric polarization arises from the condensation of two lattice distortion modes. With increasing temperature (T ), the out-of-plane, antiphase tilt of MnO6 decreases in amplitude while the in-plane, in-phase rotation remains robust and experiences abrupt changes across the first-order structural transition. Application of hydrostatic pressure (P ) to CMTO at room temperature shows a similar effect. The consistent behavior under both T and P reveals the softness of antiphase tilt and highlights the role of the partially occupied d orbital of the transition-metal ions in determining the stability of the octahedral distortion. Polarized neutron analysis indicates the symmetry-allowed canted ferromagnetic moment is less than the 0.04 μB/Mn site, despite a substantial out-of-plane tilt of the MnO6 octahedra.

  8. Space Environmental Erosion of Polar Icy Regolith

    Science.gov (United States)

    Farrell, William M.; Killen, R. M.; Vondrak, R. R.; Hurley, D. M.; Stubbs, T. J.; Delory, G. T.; Halekas, J. S.; Zimmerman, M. I.

    2011-01-01

    While regions at the floors of permanently shadowed polar craters are isolated from direct sunlight, these regions are still exposed to the harsh space environment, including the interplanetary Lyman-a background, meteoric impacts, and obstacle-affected solar wind. We demonstrate that each of these processes can act to erode the polar icy regolith located at or near the surface along the crater floor. The Lyman-a background can remove/erode the icy-regolith via photon stimulated desorption [1], meteoric impacts can vaporize the regolith [2], and redirected solar wind ions can sputter the ice-regolith mix [3]. As an example we shall examine in detail the inflow of solar wind ions and electrons into polar craters, One might expect such ions to flow horizontally over the crater top (see Figure). However, we find that plasma ambipolar processes act to deflect passing ions into the craters [3]. We examine this plasma process and determine the ion flux as a function of position across a notional crater floor. We demonstrate that inflowing solar wind ions can indeed create sputtering along the crater floor, effectively eroding the surface. Erosion time scales rrom sputtering will be presented. We shall also consider the effect of impact vaporization on buried icy-regolith regions. There will also be a discussion of solar wind electrons that enter into the PSR, demonstrating that these also have the ability rree surface-bound atoms via electron stimulated desorption processes [l].

  9. Tilted-axis wobbling in odd-mass nuclei

    Science.gov (United States)

    Budaca, R.

    2018-02-01

    A triaxial rotor Hamiltonian with a rigidly aligned high-j quasiparticle is treated by a time-dependent variational principle, using angular momentum coherent states. The resulting classical energy function has three unique critical points in a space of generalized conjugate coordinates, which can minimize the energy for specific ordering of the inertial parameters and a fixed angular momentum state. Because of the symmetry of the problem, there are only two unique solutions, corresponding to wobbling motion around a principal axis and, respectively, a tilted axis. The wobbling frequencies are obtained after a quantization procedure and then used to calculate E 2 and M 1 transition probabilities. The analytical results are employed in the study of the wobbling excitations of 135Pr nucleus, which is found to undergo a transition from low angular momentum transverse wobbling around a principal axis toward a tilted-axis wobbling at higher angular momentum.

  10. Profile stabilization of tilt mode in a Field Reversed Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.W.; Tajima, T. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies; Barnes, D.C. [Los Alamos National Lab., NM (United States)

    1993-06-01

    The possibility of stabilizing the tilt mode in Field Reversed Configurations without resorting to explicit kinetic effects such as large ion orbits is investigated. Various pressure profiles, P({Psi}), are chosen, including ``hollow`` profiles where current is strongly peaked near the separatrix. Numerical equilibria are used as input for an initial value simulation which uses an extended Magnetohydrodynamic (MHD) model that includes viscous and Hall terms. Tilt stability is found for specific hollow profiles when accompanied by high values of separatrix beta, {beta}{sub sep}. The stable profiles also have moderate to large elongation, racetrack separatrix shape, and lower values of 3, average ratio of Larmor radius to device radius. The stability is unaffected by changes in viscosity, but the neglect of the Hall term does cause stable results to become marginal or unstable. Implications for interpretation of recent experiments are discussed.

  11. On the Design of Tilting-Pad Thrust Bearings

    DEFF Research Database (Denmark)

    Heinrichson, Niels

    2007-01-01

    Pockets are often machined in the surfaces of tilting-pad thrust bearings to allow for hydrostatic jacking in the start-up phase. Pockets and other recesses in the surfaces of bearing pads influence the pressure distribution and thereby the position of the pivot resulting in the most advantageous...... friction and a small pressure build-up. As in parallel-step bearings the recesses may also have a depth of the same order of magnitude as the oil film thickness. Such recesses are characterized by a strong pressure build-up caused by the reduction of the flow area at the end of the recess. Numerical models...... based on the Reynolds equation are used. They include the effects of variations of viscosity with temperature and the deformation of the bearing pads due to pressure and thermal gradients. The models are validated using measurements. Tilting-pad bearings of standard design are studied and the influences...

  12. Tilting-Pad Guide Bearing in Large Hydro-unit

    Directory of Open Access Journals (Sweden)

    Li-Feng Ma

    2000-01-01

    Full Text Available A new numerical method is proposed for predicting the nonlinearity of tilting-pad guide bearing oilfilm force in the rotor-bearing system in a large hydro-unit. Nonlinear displacement and velocity of the journal center, as well as nonlinear tilting angles and angular velocities of the pads in non-stationary Reynolds equation are taken into account. This method is also suited for other small rotor-bearing system. As an example, the response due to a momentarily created unbalance is Calculated. The nonlinear motion patterns of the pad and journal whirling orbit are obtained. Finally, the nonlinear orbit is compared to the linear one that could be calculated from linear stiffness and damping coefficients. It is shown that there are important differences between those two orbits and that the nonlinear simulation is more accurate.

  13. TILT-BASED PREDICTIVE TEXT INPUT CONCEPT FOR MOBILE DEVICES

    Directory of Open Access Journals (Sweden)

    Marcin Badurowicz

    2017-06-01

    Full Text Available In the paper authors are introducing the concept of usage of physical orientation of a mobile device, calculated using built-in environmental sensors like accelerometer, gyroscope and magnetometer for detection of tilting gesture. This gesture is used as an acceptance factor for the two next probable word solutions suggested to the user during text input. By performing the device tilt, the first or second word is being automatically put into the desired text field and new prediction is performed. The text predictions are calculated and stored directly on the device to maintain privacy protection. The founding concept of the software is being presented, as well as initial considerations and further plans. This solution is recommended especially to smartphone manufacturers like Microsoft, Samsung and Apple to deploy in their latest models.

  14. Source tilting within the difference formulation for radiation transport

    Energy Technology Data Exchange (ETDEWEB)

    Luu, T; Brooks, E; Szoke, A

    2006-09-27

    We apply a heuristic technique known as 'source tilting' to a Monte Carlo solution for radiation transport, in the difference formulation, that otherwise employs a piecewise-constant treatment of the material temperature. Source tilting improves the accuracy of the piecewise-constant treatment, reducing the excessive energy flow that occurs in the thick limit. An analysis of the cause of excessive energy flow suggests an interpolation scheme that removes this defect, obtaining the correct diffusion limit flux between zones. The results obtained with our interpolation scheme agree almost identically to those of a self-consistent piecewise-linear treatment of the difference formulation while avoiding its additional costs. The resulting method is capable of providing robust and accurate calculations for problems involving optically thick zones. We comment on the monotonicity issues that arise when employing this transport method.

  15. Solar noise storms

    CERN Document Server

    Elgaroy, E O

    2013-01-01

    Solar Noise Storms examines the properties and features of solar noise storm phenomenon. The book also presents some theories that can be used to gain a better understanding of the phenomenon. The coverage of the text includes topics that cover the features and behavior of noise storms, such as the observable features of noise storms; the relationship between noise storms and the observable features on the sun; and ordered behavior of storm bursts in the time-frequency plane. The book also covers the spectrum, polarization, and directivity of noise storms. The text will be of great use to astr

  16. Simulation of effusion from targets of tilted foils

    International Nuclear Information System (INIS)

    Mustapha, B.; Nolen, J.A.; Gomes, I.C.

    2004-01-01

    Replacing a target transverse to the beam by a 10 times thinner one tilted at about 6 o from the beam direction reduces the thickness for heat transfer and diffusion by a factor of 10 while keeping the same production thickness. This concept makes the target cool faster and therefore supports higher beam power. Monte-Carlo effusion simulations of targets based on this concept were carried out to find optimum target geometries for both fast and slow diffusion materials

  17. Can pelvic tilting be ignored in total hip arthroplasty?

    Directory of Open Access Journals (Sweden)

    Won Yong Shon

    2014-01-01

    CONCLUSION: The sagittal position of pelvis is a key factor in impingement and dislocation after total hip arthroplasty. Pelvic tilting affects the position of acetabular component in the sagittal plane of the body as compared with its anatomic position in the pelvis. We suggest a preoperative lateral view of spine-pelvis, in upright and supine position for evaluation of a corrective adaptation of the acetabular cup accordingly with pelvic balance.

  18. Conformally flat tilted Bianchi Type-V cosmological models in ...

    Indian Academy of Sciences (India)

    The model starts expanding with a big-bang at М = 0 and the expansion in the model stops at М = ∞ and = -2(Т + 2)¬. The model in general represents shearing, non-rotating and tilted universe. The expansion in the model decreases as time increases. For = 1 Т = 1, we have heat conduction vector Х1 = 0 Х4 = 0. When М ...

  19. Dynamic characteristics of polymer faced tilting pad journal bearings

    DEFF Research Database (Denmark)

    Simmons, Gregory F.; Cerda Varela, Alejandro Javier; Santos, Ilmar

    2014-01-01

    Dynamic characteristics of polymer faced tilting pad journal bearings are presented. Investigations are conducted using a single pad, load on pad configuration over a range of shaft speeds and loads. Two polyether ether ketone (PEEK) faced pads, one polytetrafluoroethylene (PTFE) faced pad and two...... for entirely PEEK pads compared to pads with a PEEK lining and steel backing. Similar effects were observed by using a softer (PTFE) pad liner with a steel backing....

  20. Discontinuity effects in dynamically loaded tilting pad journal bearings

    DEFF Research Database (Denmark)

    Thomsen, Kim; Klit, Peder; Vølund, Anders

    2011-01-01

    This paper describes two discontinuity effects that can occur when modelling radial tilting pad bearings subjected to high dynamic loads. The first effect to be treated is a pressure build-up discontinuity effect. The second effect is a contact-related discontinuity that disappears when a contact...... force is included in the theoretical model. Methods for avoiding the pressure build-up discontinuity effect are proposed....

  1. Tilt stability of rotating current rings with passive conductors

    International Nuclear Information System (INIS)

    Zweibel, E.G.; Pomphrey, N.

    1984-12-01

    We study the combined effects of rotation and resistive passive conductors on the stability of a rigid current in an external magnetic field. We present numerical and approximate analytical solutions to the equations of motion, which show that the ring is always tilt unstable on the resistive decay timescale of the conductors, although rotation and eddy currents may stabilize it over short times. Possible applications of our model include spheromaks which rotate or which are encircled by energetic particle rings

  2. Modeling of Tilting-Pad Journal Bearings with Transfer Functions

    Directory of Open Access Journals (Sweden)

    J. A. Vázquez

    2001-01-01

    Full Text Available Tilting-pad journal bearings are widely used to promote stability in modern rotating machinery. However, the dynamics associated with pad motion alters this stabilizing capacity depending on the operating speed of the machine and the bearing geometric parameters, particularly the bearing preload. In modeling the dynamics of the entire rotor-bearing system, the rotor is augmented with a model of the bearings. This model may explicitly include the pad degrees of freedom or may implicitly include them by using dynamic matrix reduction methods. The dynamic reduction models may be represented as a set of polynomials in the eigenvalues of the system used to determine stability. All tilting-pad bearings can then be represented by a fixed size matrix with polynomial elements interacting with the rotor. This paper presents a procedure to calculate the coefficients of polynomials for implicit bearing models. The order of the polynomials changes to reflect the number of pads in the bearings. This results in a very compact and computationally efficient method for fully including the dynamics of tilting-pad bearings or other multiple degrees of freedom components that interact with rotors. The fixed size of the dynamic reduction matrices permits the method to be easily incorporated into rotor dynamic stability codes. A recursive algorithm is developed and presented for calculating the coefficients of the polynomials. The method is applied to stability calculations for a model of a typical industrial compressor.

  3. Anomalous DC Hall response in noncentrosymmetric tilted Weyl semimetals

    Science.gov (United States)

    Mukherjee, S. P.; Carbotte, J. P.

    2018-03-01

    Weyl nodes come in pairs of opposite chirality. For broken time reversal symmetry (TR) they are displaced in momentum space by {Q} and the anomalous DC Hall conductivity σxy is proportional to {Q} at charge neutrality. For finite doping there are additive corrections to σxy which depend on the chemical potential as well as on the tilt (C ) of the Dirac cones and on their relative orientation. If inversion symmetry (I) is also broken the Weyl nodes are shifted in energy by an amount Q0 . This introduces further changes in σxy and we provide simple analytic formulas for these modifications for both type I (Ctype II (C>1 , overtilted) Weyl. For type I when the Weyl nodes have equal magnitude but oppositely directed tilts, the correction to σxy is proportional to the chemical potential μ and completely independent of the energy shift Q0 . When instead the tilts are parallel, the correction is linear in Q0 and μ drops out. For type II the corrections involve both μ and Q0 , are nonlinear and also involve a momentum cut off. We discuss the implied changes to the Nernst coefficient and to the thermal Hall effect of a finite Q0 .

  4. Numerical tilting compensation in microscopy based on wavefront sensing using transport of intensity equation method

    Science.gov (United States)

    Hu, Junbao; Meng, Xin; Wei, Qi; Kong, Yan; Jiang, Zhilong; Xue, Liang; Liu, Fei; Liu, Cheng; Wang, Shouyu

    2018-03-01

    Wide-field microscopy is commonly used for sample observations in biological research and medical diagnosis. However, the tilting error induced by the oblique location of the image recorder or the sample, as well as the inclination of the optical path often deteriorates the imaging quality. In order to eliminate the tilting in microscopy, a numerical tilting compensation technique based on wavefront sensing using transport of intensity equation method is proposed in this paper. Both the provided numerical simulations and practical experiments prove that the proposed technique not only accurately determines the tilting angle with simple setup and procedures, but also compensates the tilting error for imaging quality improvement even in the large tilting cases. Considering its simple systems and operations, as well as image quality improvement capability, it is believed the proposed method can be applied for tilting compensation in the optical microscopy.

  5. Optical performance of vertical axis three azimuth angles tracked solar panels

    International Nuclear Information System (INIS)

    Ma, Yi; Li, Guihua; Tang, Runsheng

    2011-01-01

    In this work, a new sun-tracking concept was proposed, and the optical performance of solar panels with such sun-tracking system was theoretically investigated based on the developed mathematical method and monthly horizontal radiation. The mechanism of the proposed sun-tracking technique is that the azimuth angle of solar panels is daily adjusted three times at three fixed positions: eastward, southward and westward in the morning, noon, and afternoon, respectively, by rotating solar panels about the vertical axis (3A sun-tracking, in short). The analysis indicated that the tilt-angle of solar panels, β 3A , azimuth angle of solar panels in the morning and afternoon from due south, φ a , and solar hour angle when the azimuth angle adjustment was made in the morning and afternoon, ω a , were three key parameters affecting the optical performance of such tracked solar panels. Calculation results showed that, for 3A tracked solar panels with a yearly fixed tilt-angle, the maximum annual collectible radiation was above 92% of that on a solar panel with full 2-axis sun-tracking; whereas for those with the tilt-angle being seasonally adjusted, it was above 95%. Results also showed that yearly or seasonally optimal values of β 3A , φ a and ω a for maximizing annual solar gain were related to site latitudes, and empirical correlations for a quick estimation of optimal values of these parameters were proposed based on climatic data of 32 sites in China.

  6. Solar Features - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A solar flare is a short-lived sudden increase in the intensity of radiation emitted in the neighborhood of sunspots. For many years it was best monitored in the...

  7. Solar--geophysical data number 402, February 1978. Part I. Prompt reports. Data for January 1978--December 1977

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1978-02-01

    This prompt report provides data for January 1978 on alert period, daily solar indices, solar flares, solar radio waves, solar x-ray radiation, coronal holes, spacecraft observations, inferred IP magnetic field polarities, mean solar magnetic field and solar wind measurements. It also provides data for December 1977 on daily solar activity center, sudden ionospheric disturbances, solar radio waves, cosmic rays, geomagnetic indices, and radio propagation indices

  8. Solar Cookers.

    Science.gov (United States)

    King, Richard C.

    1981-01-01

    Describes the use of solar cookers in the science classroom. Includes instructions for construction of a solar cooker, an explanation of how solar cookers work, and a number of suggested activities. (DS)

  9. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  10. Reducing the maladaptive attractiveness of solar panels to polarotactic insects.

    Science.gov (United States)

    Horváth, Gábor; Blahó, Miklós; Egri, Adám; Kriska, György; Seres, István; Robertson, Bruce

    2010-12-01

    Human-made objects (e.g., buildings with glass surfaces) can reflect horizontally polarized light so strongly that they appear to aquatic insects to be bodies of water. Insects that lay eggs in water are especially attracted to such structures because these insects use horizontal polarization of light off bodies of water to find egg-laying sites. Thus, these sources of polarized light can become ecological traps associated with reproductive failure and mortality in organisms that are attracted to them and by extension with rapid population declines or collapse. Solar panels are a new source of polarized light pollution. Using imaging polarimetry, we measured the reflection-polarization characteristics of different solar panels and in multiple-choice experiments in the field we tested their attractiveness to mayflies, caddis flies, dolichopodids, and tabanids. At the Brewster angle, solar panels polarized reflected light almost completely (degree of polarization d ≈ 100%) and substantially exceeded typical polarization values for water (d ≈ 30-70%). Mayflies (Ephemeroptera), stoneflies (Trichoptera), dolichopodid dipterans, and tabanid flies (Tabanidae) were the most attracted to solar panels and exhibited oviposition behavior above solar panels more often than above surfaces with lower degrees of polarization (including water), but in general they avoided solar cells with nonpolarizing white borders and white grates. The highly and horizontally polarizing surfaces that had nonpolarizing, white cell borders were 10- to 26-fold less attractive to insects than the same panels without white partitions. Although solar panels can act as ecological traps, fragmenting their solar-active area does lessen their attractiveness to polarotactic insects. The design of solar panels and collectors and their placement relative to aquatic habitats will likely affect populations of aquatic insects that use polarized light as a behavioral cue. © 2010 Society for Conservation

  11. Study of a Car Body Tilting System Using a Variable Link Mechanism: Fundamental Characteristics of Pendulum Motion and Strategy for Perfect Tilting

    Science.gov (United States)

    Yoshida, Hidehisa; Nagai, Masao

    This paper analyzes the fundamental dynamic characteristics of a tilting railway vehicle using a variable link mechanism for compensating both the lateral acceleration experienced by passengers and the wheel load imbalance between the inner and outer rails. The geometric relations between the center of rotation, the center of gravity, and the positions of all four links of the tilting system are analyzed. Then, equations of the pendulum motions of the railway vehicle body with a four-link mechanism are derived. A theoretically discussion is given on the geometrical shapes employed in the link mechanism that can simultaneously provide zero lateral acceleration and zero wheel load fluctuation. Then, the perfect tilting condition, which is the control target of the feedforward tilting control, is derived from the linear equation of tilting motion.

  12. Proposed National Large Solar Telescope Jagdev Singh

    Indian Academy of Sciences (India)

    The 65-cm telescope at Big Bear Solar Observatory has been used to take images and make polarization measurements in 1565nm line recently. (Cao et al. 2006a, 2006b). They could achieve a spatial resolution of 0.3arcsec using adaptive optics. Kiepenheuer Institute of Solar Physics, Germany is planning. Gregorian ...

  13. Development and testing of a pelvic goniometer designed to measure pelvic tilt and hip flexion.

    Science.gov (United States)

    Sprigle, Stephen; Flinn, Nannette; Wootten, Mary; McCorry, Stephanie

    2003-06-01

    To determine the reliability and validity of a pelvic goniometer designed to measure the pelvic tilt and hip flexion during seated posture. Assessment of the seated posture requires measurement of the pelvis and hip. Determining accurate pelvic tilt and hip flexion angles during sitting is often difficult using standard techniques. A pelvic goniometer has been designed to measure pelvic tilt and hip flexion angle of persons in a seated posture. VALIDATION of the pelvic goniometer was done radiographically. Ten male volunteers sat in three postures--erect, forward or anterior tilt, and posterior tilt. Pelvic tilt and hip angle were recorded using radiographs and the pelvic goniometer. Reliability of pelvic and conventional goniometers was done using seated nondisabled subjects with physical therapists performing measurements. the average differences and correlation between the pelvic goniometer and radiographic measures were as follows--pelvic tilt: -4.9 degrees, 0.93; hip angle 1.2 degrees, 0.81. Reliability: average range of hip angle across three measures was about 3 degrees for both goniometers. The data indicate that the pelvic goniometer has utility in measuring pelvic tilt and hip angle, especially within the seated posture. Because it measures both pelvic tilt and hip angle, the pelvic goniometer has an advantage over conventional goniometers that only measure the latter. A valid and reliable tool that measures pelvic tilt and hip angle of persons in a seated posture is needed for clinical research and practice. Its applications include wheelchair seating evaluations and ergonomic assessments of seated workers.

  14. A study of north-south asymmetry of interplanetary magnetic field plasma and some solar indices throughout four solar cycles

    Science.gov (United States)

    El-Borie, M. A.; Abdel-halim, A. A.; El-Monier, S. Y.; Bishara, A. A.

    2017-06-01

    We provide a long epoch study of a set of solar and plasma parameters (sunspot number Rz, total solar irradiance TSI, solar radio flux SF, solar wind speed V, ion density n, dynamic pressure nV 2, and ion temperature T) covering a temporal range of several decades corresponding to almost four solar cycles. Such data have been organized accordingly with the interplanetary magnetic field (IMF) polarity, i.e. away (A) if the azimuthal component of the IMF points away from the Sun and T if it points towards, to examine the N-S asymmetries between the northern and southern hemispheres. Our results displayed the sign of the N-S asymmetry in solar activity depends on the solar magnetic polarity state (qA>0 or qA<0). The solar flux component of toward field vector was larger in magnitude than those of away field vector during the negative polarity epochs (1986-88 and 2001-08). In addition, the solar wind speeds (SWS) are faster by about 22.11±4.5 km/s for away polarity days than for toward polarity days during the qA<0 epoch (2001-08), where the IMF points away from the Sun. Moreover, during solar cycles 21st and 24th the solar plasma is more dense, hotter, and faster south of the HCS.

  15. Solar Coronal Plumes

    Directory of Open Access Journals (Sweden)

    Giannina Poletto

    2015-12-01

    Full Text Available Polar plumes are thin long ray-like structures that project beyond the limb of the Sun polar regions, maintaining their identity over distances of several solar radii. Plumes have been first observed in white-light (WL images of the Sun, but, with the advent of the space era, they have been identified also in X-ray and UV wavelengths (XUV and, possibly, even in in situ data. This review traces the history of plumes, from the time they have been first imaged, to the complex means by which nowadays we attempt to reconstruct their 3-D structure. Spectroscopic techniques allowed us also to infer the physical parameters of plumes and estimate their electron and kinetic temperatures and their densities. However, perhaps the most interesting problem we need to solve is the role they cover in the solar wind origin and acceleration: Does the solar wind emanate from plumes or from the ambient coronal hole wherein they are embedded? Do plumes have a role in solar wind acceleration and mass loading? Answers to these questions are still somewhat ambiguous and theoretical modeling does not provide definite answers either. Recent data, with an unprecedented high spatial and temporal resolution, provide new information on the fine structure of plumes, their temporal evolution and relationship with other transient phenomena that may shed further light on these elusive features.

  16. Nuclear-moment studies in the odd-mass In isotopes up to N=82 using the Tilted Foils technique

    CERN Multimedia

    We propose to study the magnetic moments of the neutron-rich odd-even In isotopes up to N=82 using the Tilted Foils technique and the recently installed $\\beta$-NMR setup at REX -ISOLDE. With only one proton hole in Z=50 and a neutron number approaching N=82, the indium isotopes should be a very good test ground for the extreme single-particle approximation and could provide essential data for tuning the nuclear interaction in the vicinity of the doubly-magic $^{132}$ Sn. Moments of single-particle states adjacent to closed shells are also crucial to determine the corrections to the M1 operator from core polarization and meson exchange effects. In addition to the 9/2$^{+}$, presumed to be of pure single proton hole configuration, the ½$^{-}$ isomeric states should shed light on a recent hypothesis of low-energy vibration/collectivity in the region. The detailed study of the Tilted Foils technique at higher masses is of crucial importance for its application for further g-factor studies and for the production...

  17. Dynamic kirigami structures for integrated solar tracking

    Science.gov (United States)

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-01-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820

  18. Feasibility Study of Solar Photovoltaics on Landfills in Puerto Rico (Second Study)

    Energy Technology Data Exchange (ETDEWEB)

    Salasovich, J.; Mosey, G.

    2011-08-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a solar photovoltaics (PV) system on landfill sites in Puerto Rico. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). The report outlines financing options that could assist in the implementation of a system. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system. The landfills and sites considered in this report were all determined feasible areas in which to implement solar PV systems.

  19. Tilt table testing in patients with suspected epilepsy1

    DEFF Research Database (Denmark)

    Edfors, R.; Erdal, J.; Rogvi-Hansen, B.

    2008-01-01

    BACKGROUND: Approximately 20-30% of patients with epilepsy are misdiagnosed and syncope often seems to be the mistaken cause. We re-evaluated patients referred to an epilepsy clinic where suspicion of neurally mediated (reflex) syncope were raised using tilt table testing (HUT). METHODS: HUT...... laboratory results and medical records of 120 consecutive patients were reviewed retrospectively over a period of 27 months. RESULTS: HUT was positive in 59 (49%) patients. Seventeen of 38 (45%) patients previously diagnosed with epilepsy and taking antiepileptic drugs were found to be misdiagnosed. Four...

  20. A computer simulation study of tilted smectic mesophases

    International Nuclear Information System (INIS)

    Withers, I.M.

    2000-05-01

    Results are presented from a series of simulations undertaken to determine the effect of a novel form of molecular biaxiality upon the phase behaviour of the well established Gay-Berne (GB) liquid crystal model. Firstly, the simulation of a bulk system interacting via the Internally-Rotated Gay Berne (IRGB) potential, which offers a single-site representation of a molecule rigidly constrained into a zig-zag conformation, is presented. The results of simulations performed for systems of IRGB particles with an aspect ratio of 3:1 confirm that the introduction of biaxiality into the model results in the destabilisation of the orientationally ordered phases. For particles with a sufficiently pronounced zig-zag conformation, this results in the complete destabilisation of the smectic A phase and the smectic B phase being replaced by the tilted smectic J phase. Following these observations, the effect upon the phase behaviour of increasing molecular elongation is also considered, with an increase in the aspect ratio from 3:1 to 4:1 resulting in the nematic and smectic J phases being replaced by smectic A and smectic G phases respectively. Secondly, a version of the IRGB potential modified to include a degree of molecular flexibility is considered. Results obtained from bulk systems interacting via the flexible IRGB for 3:1 and 4:1 molecules show that the introduction of flexibility results in the destabilisation of the smectic A phase and the stabilisation of the nematic and tilted hexatic phases. Finally, the effect upon the phase behaviour of the rigid IRGB model of the inclusion of a longitudinal linear quadrupole is examined. These results show that increasing quadrupole moment results in the destabilisation of the tilted hexatic phase, although the biaxial order parameter is increased with increasing quadrupole moment. There is no clear correlation between quadrupole magnitude and the other observed phase transitions, with the nematic and smectic A phases being

  1. The impact of gravity during head-up tilt

    DEFF Research Database (Denmark)

    Ottesen, Johnny T.; Olufsen, Mette; Smith, Brittany

    2011-01-01

    and the carotid sinuses in a healthy volunteer. During head-up tilt the head is lifted above the heart stimulating gravitational pooling of blood in the lower extremities. This shift in volume is followed by an increase in blood pressure in the lower body, while the pressure in the head decreases, while...... a model predicting hydrostatic height between the two locations. Results from this model were compared with measurements. Furthermore, we show, using a differential equations model predicting blood pressure, that it is possible to predict blood pressure measured at the level of the carotid sinuses using...

  2. Performance of a Tilt Current Meter in the Surf Zone

    DEFF Research Database (Denmark)

    Hansen, Asger Bendix; Carstensen, Stefan; Christensen, Drude Fritzbøger

    2017-01-01

    Tilt Current Meters (TCM’s) are relatively simple and inexpensive instruments for measuring currents in rivers and inthe sea. Their low cost and easy deployment means that a relatively large number of TCM’s can be deployed comparedto more conventional current meters such as Acoustic Doppler...... a number ofimportant challenges to the measurements as the hydrodynamic forcing changes and the oscillations of the TCM cannotnecessarily be averaged out as for a steady current. This study addresses some of these challenges by analyzing theperformance of a TCM in the surf zone where wave orbital motion...

  3. Edge Waves and Localization in Lattices Containing Tilted Resonators

    Directory of Open Access Journals (Sweden)

    Domenico Tallarico

    2017-06-01

    Full Text Available The paper presents the study of waves in a structured geometrically chiral solid. A special attention is given to the analysis of the Bloch-Floquet waves in a doubly periodic high-contrast lattice containing tilted resonators. Dirac-like dispersion of Bloch waves in the structure is identified, studied, and applied to wave-guiding and wave-defect interaction problems. The work is extended to the transmission problems and models of fracture, where localization and edge waves occur. The theoretical derivations are accompanied with numerical simulations and illustrations.

  4. Tilt table testing in patients with suspected epilepsy1

    DEFF Research Database (Denmark)

    Edfors, R.; Erdal, J.; Rogvi-Hansen, B.

    2008-01-01

    BACKGROUND: Approximately 20-30% of patients with epilepsy are misdiagnosed and syncope often seems to be the mistaken cause. We re-evaluated patients referred to an epilepsy clinic where suspicion of neurally mediated (reflex) syncope were raised using tilt table testing (HUT). METHODS: HUT...... of 21 patients with epilepsy (19%) had dual diagnoses of reflex syncope and epilepsy. CONCLUSION: HUT is an informative investigation when suspicions of reflex syncope are raised in patients referred to an epilepsy clinic. Reflex syncope is an important and common differential diagnosis of epilepsy...

  5. Optical power-based interrogation of plasmonic tilted fiber Bragg grating biosensors

    Science.gov (United States)

    González-Vila, Á.; Lopez-Aldaba, A.; Kinet, D.; Mégret, P.; Lopez-Amo, M.; Caucheteur, C.

    2017-04-01

    Two interrogation techniques for plasmonic tilted fiber Bragg grating sensors are reported and experimentally tested. Typical interrogation methods are usually based on tracking the wavelength shift of the most sensitive cladding mode, but for biosensing applications, spectrometer-based methods can be replaced by more efficient solutions. The proposed techniques thus rely on the measurement of the induced changes in optical power. The first one consists of a properly polarized tunable laser source set to emit at the wavelength of the sensor most sensitive mode and an optical power meter to measure the transmitted response. For the second method, a uniform fiber Bragg grating is photo-inscribed beyond the sensor in such a way that its central wavelength matches the sensor most sensitive mode, acting as an optical filter. Using a LED source, light reflected backwards by this grating is partially attenuated when passing through the sensor due to plasmon wave excitation and the power changes are quantified once again with an optical power meter. A performance analysis of the techniques is carried out and they both result competitive interrogation solutions. The work thus focuses on the development of cost-effective alternatives for monitoring this kind of biosensors in practical situations.

  6. A polarized view on DNA under tension

    Science.gov (United States)

    van Mameren, Joost; Vermeulen, Karen; Wuite, Gijs J. L.; Peterman, Erwin J. G.

    2018-03-01

    In the past decades, sensitive fluorescence microscopy techniques have contributed significantly to our understanding of the dynamics of DNA. The specific labeling of DNA using intercalating dyes has allowed for quantitative measurement of the thermal fluctuations the polymers undergo. On the other hand, recent advances in single-molecule manipulation techniques have unraveled the mechanical and elastic properties of this intricate polymer. Here, we have combined these two approaches to study the conformational dynamics of DNA under a wide range of tensions. Using polarized fluorescence microscopy in conjunction with optical-tweezers-based manipulation of YOYO-intercalated DNA, we controllably align the YOYO dyes using DNA tension, enabling us to disentangle the rapid dynamics of the dyes from that of the DNA itself. With unprecedented control of the DNA alignment, we resolve an inconsistency in reports about the tilted orientation of intercalated dyes. We find that intercalated dyes are on average oriented perpendicular to the long axis of the DNA, yet undergo fast dynamics on the time scale of absorption and fluorescence emission. In the overstretching transition of double-stranded DNA, we do not observe changes in orientation or orientational dynamics of the dyes. Only beyond the overstretching transition, a considerable depolarization is observed, presumably caused by an average tilting of the DNA base pairs. Our combined approach thus contributes to the elucidation of unique features of the molecular dynamics of DNA.

  7. Solar Cycle Variability and Grand Minima Induced by Joy's Law Scatter

    Science.gov (United States)

    Karak, Bidya Binay; Miesch, Mark S.

    2017-08-01

    The strength of the solar cycle varies from one cycle to another in an irregular manner and the extreme example of this irregularity is the Maunder minimum when Sun produced only a few spots for several years. We explore the cause of these variabilities using a 3D Babcock--Leighton dynamo. In this model, based on the toroidal flux at the base of the convection zone, bipolar magnetic regions (BMRs) are produced with flux, tilt angle, and time of emergence all obtain from their observed distributions. The dynamo growth is limited by a tilt quenching.The randomnesses in the BMR emergences make the poloidal field unequal and eventually cause an unequal solar cycle. When observed fluctuations of BMR tilts around Joy's law, i.e., a standard deviation of 15 degrees, are considered, our model produces a variation in the solar cycle comparable to the observed solar cycle variability. Tilt scatter also causes occasional Maunder-like grand minima, although the observed scatter does not reproduce correct statistics of grand minima. However, when we double the tilt scatter, we find grand minima consistent with observations. Importantly, our dynamo model can operate even during grand minima with only a few BMRs, without requiring any additional alpha effect.

  8. Surface meteorology and Solar Energy

    Science.gov (United States)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  9. Emission of ultrashort electromagnetic pulses from electron bunches formed and accelerated by laser beams with tilted amplitude fronts

    International Nuclear Information System (INIS)

    Galkin, A.L.; Korobkin, V.V.; Romanovsky, M.Yu.; Shiryaev, O.B.; Trofimov, V.A.

    2013-01-01

    The dynamics of an electron in a standing wave generated by a pair of counterpropagating linearly polarized relativistically intense laser pulses and the emission of electromagnetic radiation by the electron are analyzed. The pulses are assumed to have tilted amplitude fronts and asymmetric focal spots. The analysis of the dynamics is performed by solving numerically the Newton equation with the corresponding Lorentz force, and the emission of radiation is simulated based on the Lienard-Wiechert potentials. The electrons are accelerated by the direct action of the standing wave field and are shown to form a small short bunch. For relativistic intensities, the energies gained by the electrons reach several GeV. It is demonstrated that the radiation emitted by the electrons in the bunch is a single electromagnetic pulse confined to a narrow solid angle and having an attosecond duration. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Estimating solar resources in Mexico using cloud cover data

    Energy Technology Data Exchange (ETDEWEB)

    Renne, David; George, Ray; Brady, Liz; Marion, Bill [National Renewable Energy Laboratory, Colorado (United States); Estrada Cajigal, Vicente [Cuernavaca, Morelos (Mexico)

    2000-07-01

    This paper presents the results of applying the National Renewable Energy Laboratory's (NREL) Climatological Solar Radiation (CSR) model to Mexico to develop solar resource data. A major input to the CSR model is a worldwide surface and satellite-derived cloud cover database, called the Real Time Nephanalysis (RTNEPH). The RTNEPH is developed by the U.S. Air Force and distributed by the U.S. National Climatic Data Center. The RTNEPH combines routine ground-based cloud cover observations made every three hours at national weather centers throughout the world with satellite-derived cloud cover information developed from polar orbiting weather satellites. The data are geospatially digitized so that multilayerd cloud cover information is available on a grid of approximately 40-km to a side. The development of this database is an ongoing project that now covers more than twenty years of observations. For the North America analysis (including Mexico) we used an 8-year summarized histogram of the RTNEPH that provides monthly average cloud cover information for the period 1985-1992. The CSR model also accounts for attenuation of the solar beam due to aerosols, atmospheric trace gases, and water vapor. The CSR model outputs monthly average direct normal, global horizontal and diffuse solar information for each of the 40-km grid cells. From this information it is also possible to produce solar resource estimates for various solar collector types and orientations, such as flat plate collectors oriented at latitude tilt, or concentrating solar power collectors. Model results are displayed using Geographic Information System software. CSR model results for Mexico are presented here, along with a discussion of earlier solar resource assessment studies for Mexico, where both modeling approaches and measurement analyses have been used. [Spanish] Este articulo presenta los resultados de aplicar el modelo Radiacion Solar Climatologica CSR del NREL (National Renewable Energy

  11. Geographical Income Polarization

    DEFF Research Database (Denmark)

    Azhar, Hussain; Jonassen, Anders Bruun

    inter municipal income inequality. Counter factual simulations show that rising property prices to a large part explain the rise in polarization. One side-effect of polarization is tendencies towards a parallel polarization of residence location patterns, where low skilled individuals tend to live......In this paper we estimate the degree, composition and development of geographical income polarization based on data at the individual and municipal level in Denmark from 1984 to 2002. Rising income polarization is reconfirmed when applying new polarization measures, the driving force being greater...

  12. Solar Energy.

    Science.gov (United States)

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  13. Solar Combisystems

    DEFF Research Database (Denmark)

    Thür, Alexander

    2006-01-01

    This note first introduces what is a solar combisystem, the structure how a solar combisystem is build up and what are criteria’s to evaluate a solar combisystem concept. Further on the main components of a solar combisystem, the main characteristics and possible advantages and disadvantages...... compared to each other are described. It is not the goal of this note to explain the technical details how to design all components of a solar combisystem. This is done during other lectures of the solar course and in other basic courses as well. This note tries to explain how a solar combisystem...

  14. A hydrodynamic treatment of the tilted cold dark matter cosmological scenario

    Science.gov (United States)

    Cen, Renyue; Ostriker, Jeremiah P.

    1993-01-01

    A standard hydrodynamic code coupled with a particle-mesh code is used to compute the evolution of a tilted cold dark matter (TCDM) model containing both baryonic matter and dark matter. Six baryonic species are followed, with allowance for both collisional and radiative ionization in every cell. The mean final Zel'dovich-Sunyaev y parameter is estimated to be (5.4 +/- 2.7) x 10 exp -7, below currently attainable observations, with an rms fluctuation of about (6.0 +/- 3.0) x 10 exp -7 on arcmin scales. The rate of galaxy formation peaks at a relatively late epoch (z is about 0.5). In the case of mass function, the smallest objects are stabilized against collapse by thermal energy: the mass-weighted mass spectrum peaks in the vicinity of 10 exp 9.1 solar masses, with a reasonable fit to the Schechter luminosity function if the baryon mass to blue light ratio is about 4. It is shown that a bias factor of 2 required for the model to be consistent with COBE DMR signals is probably a natural outcome in the present multiple component simulations.

  15. Tilted seat position for non-ambulant individuals with neurological and neuromuscular impairment: a systematic review

    OpenAIRE

    Michael, SM; Porter, D; Pountney, TE

    2008-01-01

    Objective: To determine the effects of tilt-in-space seating on outcomes for people with neurological or neuromuscular impairment who cannot walk. Data sources: Search through electronic databases (MEDLINE, Embase, CINAHL, AMED). Discussions with researchers who are active in field. Review methods: Selection criteria included interventional studies that investigated the effects of seat tilt on outcome or observational studies that identified outcomes for those who had used tilt-in-space seati...

  16. Research on Calculation of the IOL Tilt and Decentration Based on Surface Fitting

    OpenAIRE

    Li, Lin; Wang, Ke; Yan, Yan; Song, Xudong; Liu, Zhicheng

    2013-01-01

    The tilt and decentration of intraocular lens (IOL) result in defocussing, astigmatism, and wavefront aberration after operation. The objective is to give a method to estimate the tilt and decentration of IOL more accurately. Based on AS-OCT images of twelve eyes from eight cases with subluxation lens after operation, we fitted spherical equation to the data obtained from the images of the anterior and posterior surfaces of the IOL. By the established relationship between IOL tilt (decentrati...

  17. Spontaneous tilting after placement of the gunther-tulip inferior vena caval filter: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Tae Seok; Cha, In Ho; Seol, Hae Young; Park, Cheol Min [Guro Hospital, Korea University College of Medicine, Seoul (Korea, Republic of)

    2006-10-15

    Tilting of a deployed filter in the inferior vena cava (IVC) is a particular kind of periprocedural complication and this can reduce the filter's clot-trapping ability and increase the occlusion of the IVC at a later period. The authors report here on a case of spontaneous tilting of an inferior vena caval filter that was associated with thrombosis in the IVC within 2 weeks of the initially successful placement of the filter without tilting.

  18. Spontaneous tilting after placement of the gunther-tulip inferior vena caval filter: a case report

    International Nuclear Information System (INIS)

    Seo, Tae Seok; Cha, In Ho; Seol, Hae Young; Park, Cheol Min

    2006-01-01

    Tilting of a deployed filter in the inferior vena cava (IVC) is a particular kind of periprocedural complication and this can reduce the filter's clot-trapping ability and increase the occlusion of the IVC at a later period. The authors report here on a case of spontaneous tilting of an inferior vena caval filter that was associated with thrombosis in the IVC within 2 weeks of the initially successful placement of the filter without tilting

  19. Tidal tilts observations in the Gran Sasso underground laboratory

    International Nuclear Information System (INIS)

    Iafolla, V.; Nozzoli, S.; Milyukov, V.

    2001-01-01

    A new tilt meter, based on the technology for building a space-borne high-sensitivity accelerometer and manufactured at IFSI/CNR, has a been operating during several years in the INFN Gran Sasso underground laboratory. The results of the analysis of a three-year data set, processed with the program package ETERNA, to estimate earth tidal parameters are reported. For the best series of data (1998) tide measurement accuracies are: 0.5-1% for the M 2 (lunar principal) amplitude and 3-4% for the O 1 (lunar declination) amplitude. The tilt meter installed at a depth of 1400 m shows no clear evidence of meteorological effects. Observed tidal parameters are compared with theoretical tidal parameters predicted for a non-hydrostatic inelastic Earth model and demonstrate good agreement for the M 2 component. Due to the high accuracy of the tidal components prediction (better than 1%) tidal measurements were used to estimate the long-term stability of the instrument response

  20. An efficient wave extrapolation method for anisotropic media with tilt

    KAUST Repository

    Waheed, Umair bin

    2015-03-23

    Wavefield extrapolation operators for elliptically anisotropic media offer significant cost reduction compared with that for the transversely isotropic case, particularly when the axis of symmetry exhibits tilt (from the vertical). However, elliptical anisotropy does not provide accurate wavefield representation or imaging for transversely isotropic media. Therefore, we propose effective elliptically anisotropic models that correctly capture the kinematic behaviour of wavefields for transversely isotropic media. Specifically, we compute source-dependent effective velocities for the elliptic medium using kinematic high-frequency representation of the transversely isotropic wavefield. The effective model allows us to use cheaper elliptic wave extrapolation operators. Despite the fact that the effective models are obtained by matching kinematics using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy trade-off for wavefield computations in transversely isotropic media, particularly for media of low to moderate complexity. In addition, the wavefield solution is free from shear-wave artefacts as opposed to the conventional finite-difference-based transversely isotropic wave extrapolation scheme. We demonstrate these assertions through numerical tests on synthetic tilted transversely isotropic models.

  1. Effective ellipsoidal models for wavefield extrapolation in tilted orthorhombic media

    KAUST Repository

    Waheed, Umair Bin

    2016-04-22

    Wavefield computations using the ellipsoidally anisotropic extrapolation operator offer significant cost reduction compared to that for the orthorhombic case, especially when the symmetry planes are tilted and/or rotated. However, ellipsoidal anisotropy does not provide accurate wavefield representation or imaging for media of orthorhombic symmetry. Therefore, we propose the use of ‘effective ellipsoidally anisotropic’ models that correctly capture the kinematic behaviour of wavefields for tilted orthorhombic (TOR) media. We compute effective velocities for the ellipsoidally anisotropic medium using kinematic high-frequency representation of the TOR wavefield, obtained by solving the TOR eikonal equation. The effective model allows us to use the cheaper ellipsoidally anisotropic wave extrapolation operators. Although the effective models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The proposed methodology offers a much better cost versus accuracy trade-off for wavefield computations in TOR media, particularly for media of low to moderate anisotropic strength. Furthermore, the computed wavefield solution is free from shear-wave artefacts as opposed to the conventional finite-difference based TOR wave extrapolation scheme. We demonstrate applicability and usefulness of our formulation through numerical tests on synthetic TOR models. © 2016 Institute of Geophysics of the ASCR, v.v.i

  2. Evaluation of the Thermal Effects in Tilting Pad Bearing

    Directory of Open Access Journals (Sweden)

    G. B. Daniel

    2013-01-01

    Full Text Available The analysis of thermal effects is of expressive importance in the context of rotordynamics to evaluate the behavior of hydrodynamic bearings because these effects can influence their dynamic characteristics under specific operational conditions. For this reason, a thermohydrodynamic model is developed in this work, in which the pressure distribution in the oil film and the temperature distribution are calculated together. From the pressure distribution, the velocity distribution field is determined, as well as the viscous dissipation, and consequently, the temperature distribution. The finite volume method is applied to solve the Reynolds equation and the energy equation in the thermohydrodynamic model (THD. The results show that the temperature is higher as the rotational speed increases due to the shear rate of the oil film. The maximum temperature in the bearing occurs in the overloaded pad, near the outlet boundary. The experimental tests were performed in a tilting pad journal bearing operating in a steam turbine to validate the model. The comparison between the experimental and numerical results provides a good correlation. The thermohydrodynamic lubrication developed in this assignment is promising to consistently evaluate the behavior of the tilting pad journal bearing operating in relatively high rotational speeds.

  3. Direct experimental measurement of SRS-induced spectral tilt in multichannel multispan communication systems

    Energy Technology Data Exchange (ETDEWEB)

    Kapin, Yu A; Nanii, Oleg E; Novikov, A G; Pavlov, V N; Plotskii, A Yu; Treshchikov, V N

    2012-09-30

    Nonlinear SRS-induced tilt of the spectrum of a multichannel DWDM signal is studied experimentally in standard singlemode fibreoptic communication lines. It is found that at a fixed spectral bandwidth and total power the nonlinear SRS tilt is independent of the number of channels, radiation source type, and the initial tilt (positive or negative). In a multispan line consisting of identical spans the total nonlinear tilt of the spectrum (in dB) is proportional to the number of spans, spectral width and total power. (optical fibres, lasers and amplifiers. properties and applications)

  4. Research on calculation of the IOL tilt and decentration based on surface fitting.

    Science.gov (United States)

    Li, Lin; Wang, Ke; Yan, Yan; Song, Xudong; Liu, Zhicheng

    2013-01-01

    The tilt and decentration of intraocular lens (IOL) result in defocussing, astigmatism, and wavefront aberration after operation. The objective is to give a method to estimate the tilt and decentration of IOL more accurately. Based on AS-OCT images of twelve eyes from eight cases with subluxation lens after operation, we fitted spherical equation to the data obtained from the images of the anterior and posterior surfaces of the IOL. By the established relationship between IOL tilt (decentration) and the scanned angle, at which a piece of AS-OCT image was taken by the instrument, the IOL tilt and decentration were calculated. IOL tilt angle and decentration of each subject were given. Moreover, the horizontal and vertical tilt was also obtained. Accordingly, the possible errors of IOL tilt and decentration existed in the method employed by AS-OCT instrument. Based on 6-12 pieces of AS-OCT images at different directions, the tilt angle and decentration values were shown, respectively. The method of the surface fitting to the IOL surface can accurately analyze the IOL's location, and six pieces of AS-OCT images at three pairs symmetrical directions are enough to get tilt angle and decentration value of IOL more precisely.

  5. Research on Calculation of the IOL Tilt and Decentration Based on Surface Fitting

    Directory of Open Access Journals (Sweden)

    Lin Li

    2013-01-01

    Full Text Available The tilt and decentration of intraocular lens (IOL result in defocussing, astigmatism, and wavefront aberration after operation. The objective is to give a method to estimate the tilt and decentration of IOL more accurately. Based on AS-OCT images of twelve eyes from eight cases with subluxation lens after operation, we fitted spherical equation to the data obtained from the images of the anterior and posterior surfaces of the IOL. By the established relationship between IOL tilt (decentration and the scanned angle, at which a piece of AS-OCT image was taken by the instrument, the IOL tilt and decentration were calculated. IOL tilt angle and decentration of each subject were given. Moreover, the horizontal and vertical tilt was also obtained. Accordingly, the possible errors of IOL tilt and decentration existed in the method employed by AS-OCT instrument. Based on 6–12 pieces of AS-OCT images at different directions, the tilt angle and decentration values were shown, respectively. The method of the surface fitting to the IOL surface can accurately analyze the IOL’s location, and six pieces of AS-OCT images at three pairs symmetrical directions are enough to get tilt angle and decentration value of IOL more precisely.

  6. NUMERICAL SIMULATIONS OF NATURALLY TILTED, RETROGRADELY PRECESSING, NODAL SUPERHUMPING ACCRETION DISKS

    International Nuclear Information System (INIS)

    Montgomery, M. M.

    2012-01-01

    Accretion disks around black hole, neutron star, and white dwarf systems are thought to sometimes tilt, retrogradely precess, and produce hump-shaped modulations in light curves that have a period shorter than the orbital period. Although artificially rotating numerically simulated accretion disks out of the orbital plane and around the line of nodes generate these short-period superhumps and retrograde precession of the disk, no numerical code to date has been shown to produce a disk tilt naturally. In this work, we report the first naturally tilted disk in non-magnetic cataclysmic variables using three-dimensional smoothed particle hydrodynamics. Our simulations show that after many hundreds of orbital periods, the disk has tilted on its own and this disk tilt is without the aid of radiation sources or magnetic fields. As the system orbits, the accretion stream strikes the bright spot (which is on the rim of the tilted disk) and flows over and under the disk on different flow paths. These different flow paths suggest the lift force as a source to disk tilt. Our results confirm the disk shape, disk structure, and negative superhump period and support the source to disk tilt, source to retrograde precession, and location associated with X-ray and He II emission from the disk as suggested in previous works. Our results identify the fundamental negative superhump frequency as the indicator of disk tilt around the line of nodes.

  7. Polarized Light Corridor Demonstrations.

    Science.gov (United States)

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  8. Design and Status of Solar Vector Magnetograph (SVM-I) at Udaipur ...

    Indian Academy of Sciences (India)

    2016-01-27

    -I (SVM-I) currently being developed at Udaipur Solar Observatory. SVM-I is an instrument which aims to determine the magnetic field vector in the solar atmosphere by measuring Zeeman induced polarization across the ...

  9. Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite Polarization Sensitivity Analysis

    Science.gov (United States)

    Sun, Junqiang; Xiong, Xiaoxiong; Waluschka, Eugene; Wang, Menghua

    2016-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of five instruments onboard the Suomi National Polar-Orbiting Partnership (SNPP) satellite that launched from Vandenberg Air Force Base, California, on October 28, 2011. It is a whiskbroom radiometer that provides +/-56.28deg scans of the Earth view. It has 22 bands, among which 14 are reflective solar bands (RSBs). The RSBs cover a wavelength range from 410 to 2250 nm. The RSBs of a remote sensor are usually sensitive to the polarization of incident light. For VIIRS, it is specified that the polarization factor should be smaller than 3% for 410 and 862 nm bands and 2.5% for other RSBs for the scan angle within +/-45deg. Several polarization sensitivity tests were performed prelaunch for SNPP VIIRS. The first few tests either had large uncertainty or were less reliable, while the last one was believed to provide the more accurate information about the polarization property of the instrument. In this paper, the measured data in the last polarization sensitivity test are analyzed, and the polarization factors and phase angles are derived from the measurements for all the RSBs. The derived polarization factors and phase angles are band, detector, and scan angle dependent. For near-infrared bands, they also depend on the half-angle mirror side. Nevertheless, the derived polarization factors are all within the specification, although the strong detector dependence of the polarization parameters was not expected. Compared to the Moderate Resolution Imaging Spectroradiometer on both Aqua and Terra satellites, the polarization effect on VIIRS RSB is much smaller.

  10. An Integrated Imaging Detector of Polarization and Spectral Content

    Science.gov (United States)

    Rust, D. M.; Thompson, K. E.

    1993-01-01

    A new type of image detector has been designed to simultaneously analyze the polarization of light at all picture elements in a scene. The Integrated Dual Imaging Detector (IDID) consists of a polarizing beamsplitter bonded to a charge-coupled device (CCD), with signal-analysis circuitry and analog-to-digital converters, all integrated on a silicon chip. It should be capable of 1:10(exp 4) polarization discrimination. The IDID should simplify the design and operation of imaging polarimeters and spectroscopic imagers used, for example, in atmospheric and solar research. Innovations in the IDID include (1) two interleaved 512 x 1024-pixel imaging arrays (one for each polarization plane); (2) large dynamic range (well depth of 10(exp 6) electrons per pixel); (3) simultaneous readout of both images at 10 million pixels per second each; (4) on-chip analog signal processing to produce polarization maps in real time; (5) on-chip 10-bit A/D conversion. When used with a lithium-niobate Fabry-Perot etalon or other color filter that can encode spectral information as polarization, the IDID can collect and analyze simultaneous images at two wavelengths. Precise photometric analysis of molecular or atomic concentrations in the atmosphere is one suggested application. When used in a solar telescope, the IDID will charge the polarization, which can then be converted to maps of the vector magnetic fields on the solar surface.

  11. Polarized Moessbauer transitions

    International Nuclear Information System (INIS)

    Barb, D.

    1975-01-01

    Theoretical aspects of the emission, absorption and scattering of polarized gamma rays are reviewed for a general case of combined magnetic and electric hyperfine interactions; various possibilities of obtaining polarized gamma sources are described and examples are given of the applications of Moessbauer spectroscopy with polarized gamma rays in solving problems of solid state physics. (A.K.)

  12. Solar origins of solar wind properties during the cycle 23 solar minimum and rising phase of cycle 24

    Science.gov (United States)

    Luhmann, Janet G.; Petrie, Gordon; Riley, Pete

    2012-01-01

    The solar wind was originally envisioned using a simple dipolar corona/polar coronal hole sources picture, but modern observations and models, together with the recent unusual solar cycle minimum, have demonstrated the limitations of this picture. The solar surface fields in both polar and low-to-mid-latitude active region zones routinely produce coronal magnetic fields and related solar wind sources much more complex than a dipole. This makes low-to-mid latitude coronal holes and their associated streamer boundaries major contributors to what is observed in the ecliptic and affects the Earth. In this paper we use magnetogram-based coronal field models to describe the conditions that prevailed in the corona from the decline of cycle 23 into the rising phase of cycle 24. The results emphasize the need for adopting new views of what is ‘typical’ solar wind, even when the Sun is relatively inactive. PMID:25685422

  13. Diurnal and seasonal occurrence of polar patches

    Directory of Open Access Journals (Sweden)

    A. S. Rodger

    1996-05-01

    Full Text Available Analysis of the diurnal and seasonal variation of polar patches, as identified in two years of HF-radar data from Halley, Antarctica during a period near sunspot maximum, shows that there is a broad maximum in occurrence centred about magnetic noon, not local noon. There are minima in occurrence near midsummer and midwinter, with maxima in occurrence between equinox and winter. There are no significant correlations between the occurrence of polar patches and the corresponding hourly averages of the solar wind and IMF parameters, except that patches usually occur when the interplanetary magnetic field has a southward component. The results can be understood in terms of UT and seasonal differences in the plasma concentration being convected from the dayside ionosphere into the polar cap. In summer and winter the electron concentrations in the polar cap are high and low, respectively, but relatively unstructured. About equinox, a tongue of enhanced ionisation is convected into the polar cap; this tongue is then structured by the effects of the interplanetary magnetic field, but these Halley data cannot be used to separate the various competing mechanisms for patch formation. The observed diurnal and seasonal variation in the occurrence of polar patches are largely consistent with predictions of Sojka et al. (1994 when their results are translated into the southern hemisphere. However, the ionospheric effects of flux transfer events are still considered essential in their formation, a feature not yet included in the Sojka et al. model.

  14. Assessment of solar and wind energy potentials for three free economic and industrial zones of Iran

    International Nuclear Information System (INIS)

    Mohammadi, Kasra; Mostafaeipour, Ali; Sabzpooshani, Majid

    2014-01-01

    This paper aims to evaluate the potential of renewable energy sources of solar and wind in three free economic and industrial zones of Chabahar, Kish and Salafchegan in Iran. Feasibility of harnessing solar energy was investigated by using key solar parameters like monthly mean global, beam and diffuse solar radiation as well as clearness index. It was found that all locations had great potentials for utilizing different solar energy systems. Additionally, the monthly, seasonal, semi-yearly and yearly optimum tilt angles of south-facing solar surfaces were determined. For all zones, adjusting the tilt angle twice a year or in other words, the semi-yearly tilt adjustment for two periods of warm (April–September) and cold (October–March) were highly recommended, since it offers almost the same level of annual solar energy gain (SEG) as those of monthly and seasonal adjustments. Weibull Distribution Function (WDF) was performed for analyzing the wind potentials at different heights. It was found that Chabahar was not suitable for wind energy development, but Kish and Salafchegan with yearly wind powers of 111.28 W/m 2 and 114.34 W/m 2 , respectively ranked in class 2 which are considered marginal for wind power development. Three different wind turbine models were proposed for Kish and Salafchegan. - Highlights: • Feasibility of solar and wind energy for three locations of Iran was investigated. • All locations were suitable for solar energy utilization. • The optimum tilt angles of solar surfaces were determined. • Chabahar was unsuitable, but Kish and Salafchegan were marginal for wind purpose

  15. SPECT imaging: Experimental determination of the effect of camera head tilt and appropriate quality control protocol

    International Nuclear Information System (INIS)

    Farrell, T.J.; Cradduck, T.D.

    1985-01-01

    Although it is recognized in SPECT imaging that the camera face shall remain parallel to the axis of rotation there is no evidence of the limits that must be imposed on this parameter for acceptable reconstruction of the data. This study was made with the purpose of establishing limits of camera head tilt based on experiments designed to measure degradation of the image with increasing camera head tilt. The effect of camera head tilt is to place off-axis data in the wrong plane for reconstruction. Points off axis exhibit a pseudomotion along a line parallel to the axis of rotation so that data from one plane are ''seen'' by the reconstruction algorithm to be in different planes, depending on the angle of rotation. The changes in system resolution due to camera head tilt were assessed using the cold spheres in a Jaszczak phantom. The contrast of the spheres was measured for increasing angles of head tilt. Significant degradation occurred at tilt angles as low as one degree. Based on these observations a quality control procedure for camera head tilt was developed. A point source is imaged off-axis and a computer program has been written that is able to give the angle of head tilt based on the pseudomotion of the point source throughout the rotation of the camera head. This method can be used to calibrate the head tilt angle. It is evident that the camera head tilt must be checked for every patient study. Unlike center of rotation offsets, it is not possible to correct the raw data for camera head tilt during reconstruction

  16. A three-dimensional polarization domain retrieval method from electron diffraction data

    International Nuclear Information System (INIS)

    Pennington, Robert S.; Koch, Christoph T.

    2015-01-01

    We present an algorithm for retrieving three-dimensional domains of picometer-scale shifts in atomic positions from electron diffraction data, and apply it to simulations of ferroelectric polarization in BaTiO 3 . Our algorithm successfully and correctly retrieves polarization domains in which the Ti atom positions differ by less than 3 pm (0.4% of the unit cell diagonal distance) with 5 and 10 nm depth resolution along the beam direction, and we also retrieve unit cell strain, corresponding to tetragonal-to-cubic unit cell distortions, for 10 nm domains. Experimental applicability is also discussed. - Highlights: • We show a retrieval method for ferroelectric polarization from TEM diffraction data. • Simulated strain and polarization variations along the beam direction are retrieved. • This method can be used for 3D strain and polarization mapping without specimen tilt

  17. High Frequency Backscatter from the Polar and Auroral E-Region Ionosphere

    Science.gov (United States)

    Forsythe, Victoriya V.

    The Earth's ionosphere contains collisional and partially-ionized plasma. The electric field, produced by the interaction between the Earth's magnetosphere and the solar wind, drives the plasma bulk motion, also known as convection, in the F-region of the ionosphere. It can also destabilize the plasma in the E-region, producing irregularities or waves. Intermediate-scale waves with wavelengths of hundreds of meters can cause scintillation and fading of the Global Navigation Satellite System (GNSS) signals, whereas the small-scale waves (lambda processes that generate small-scale plasma waves, and experimentally, by analyzing data collected with the newly-deployed high-southern-latitude radars within the Super Dual Auroral Radar Network (SuperDARN). The theoretical part of this work focuses on symmetry properties of the general dispersion relation that describes wave propagation in the collisional plasma in the two-stream and gradient-drift instability regimes. The instability growth rate and phase velocity are examined under the presence of a background parallel electric field, whose influence is demonstrated to break the spatial symmetry of the wave propagation patterns. In the observational part of this thesis, a novel dual radar setup is used to examine E-region irregularities in the magnetic polar cap by probing the E-region along the same line from opposite directions. The phase velocity analysis together with raytracing simulations demonstrated that, in the polar cap, the radar backscatter is primarily controlled by the plasma density conditions. In particular, when the E-region layer is strong and stratified, the radar backscatter properties are controlled by the convection velocity, whereas for a tilted E-layer, the height and aspect angle conditions are more important. Finally, the fundamental dependence of the E-region irregularity phase velocity on the component of the plasma convection is investigated using two new SuperDARN radars at high southern

  18. Solar--geophysical data number 378. Part I. (Prompt reports). Data for January 1976--December 1975. Explanation of data reports issued as number 366 (supplement) February 1975

    International Nuclear Information System (INIS)

    Leighton, H.I.

    1976-02-01

    The January 1976 data for Solar--Geophysical Data, prompt reports for January 1976--December 1975, Part 1, include sections on alert period, daily solar indices, solar flares, solar radio waves, solar wind measurement, spacecraft observations, solar x radiation, coronal holes, and inferred IP magnetic field polarities. The December 1975 data include daily solar activity centers, sudden ionospheric disturbances, solar radio waves, cosmic rays, geomagnetic indices, and radio propagation indices

  19. Solar--geophysical data number 375. Part I (prompt reports). Data for October 1975--September 1975. Explanation of data reports issued as number 366 (supplement) February 1975

    International Nuclear Information System (INIS)

    Leighton, H.I.

    1975-11-01

    This is Part I, Prompt reports, of Solar--Geophysical Data for October 1975 and September 1975. The October 1975 data includes sections on alert period, daily solar indices, solar flares, solar radio waves, solar wind measurements, spacecraft observations, solar x-ray radiation, and inferred IP magnetic polarities. The September 1975 data includes sections on daily solar activity centers, sudden ionospheric disturbances, solar radio waves, cosmic rays, geomagnetic indices, and radio propagation indices

  20. Solar--geophysical data number 372. Part I (prompt reports). Data for June 1975--July 1975. Explanation of data reports issued as number 366 (supplement) February 1975

    International Nuclear Information System (INIS)

    Leighton, H.I.

    1975-08-01

    This is Part 1 (Prompt reports) of Solar--Geophysical Data for July 1975 and June 1975. The July 1975 Data include sections on Alert Period, Daily Solar Indices, Solar Flares, Solar Radio Waves, Solar Wind Measurements, Spacecraft Observations, Solar X-ray Radiation, and Inferred IP Magnetic Field Polarities. The June 1975 Data includes sections on Daily Solar Activity Centers, Sudden Ionospheric Disturbances, Solar Radio Waves, Cosmic Waves, Geomagnetic Indices, and Radio Propagation Indices

  1. OSIRIS (Observing System Including PolaRisation in the Solar Infrared Spectrum) instrument: a multi-directional, polarized radiometer in the visible and shortwave infrared, airborne prototype of 3MI / EPS-SG Eumetsat - ESA mission

    Science.gov (United States)

    Matar, C.; Auriol, F.; Nicolas, J. M.; Parol, F.; Riedi, J.; Djellali, M. S.; Cornet, C.; Waquet, F.; Catalfamo, M.; Delegove, C.; Loisil, R.

    2017-12-01

    OSIRIS instrument largely inherits from the POLDER concept developed and operated between 1991 (first airborne prototype) and 2013 (end of the POLDER-3/PARASOL space-borne mission). It consists in two optical systems, one covering the visible to near infrared range (440, 490, 670, 763, 765, 870, 910 and 940 nm) and a second one for the shortwave infrared (940, 1020, 1240, 1360, 1620 and 2200 nm). Each optical system is composed of a wide field-of-view optics (114° and 105° respectively) associated to two rotating wheels with interferential filters (spectral) and analyzers filters (polarization) respectively, and a 2D array of detectors. For each channel, radiance is measured once without analyzer, followed by sequential measurements with the three analyzers shifted by an angle of 60° to reconstruct the total and polarized radiances. The complete acquisition sequence for all spectral channels last a couple of seconds according to the chosen measurement protocol. Thanks to the large field of view of the optics, any target is seen under several viewing angles during the aircraft motion. In a first step we will present the new ground characterization of the instrument based on laboratory measurements (linearity, flat-field, absolute calibration, induced polarization, polarizers efficiency and position), the radiometric model and the Radiometric Inverted Model (RIM) used to develop the Level 1 processing chain that is used to produce level 1 products (normalized radiances, polarized or not, with viewing geometries) from the instrument generated level 0 files (Digital Counts) and attitude information from inertial system. The stray light issues will be specifically discussed. In a second step we will present in-flight radiometric and geometric methods applied to OSIRIS data in order to control and validate ground-based calibrated products: molecular scattering method and sun-glint cross-band method for radiometric calibration, glories, rainbows and sun-glint targets

  2. The Physics of Polarization

    Science.gov (United States)

    Landi Degl'Innocenti, Egidio

    2015-10-01

    The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.

  3. 'Sit and tilt' preparation for subscapular system free flaps.

    Science.gov (United States)

    Mark, J; Patwa, H; Costello, M S; Patil, Y

    2018-02-01

    The ablation of advanced head and neck cancer often results in large three-dimensional defects that require free tissue transfer to optimally address functional and cosmetic issues. The subscapular system is a highly versatile donor site for flaps used for head and neck reconstruction. Traditional methods of harvesting subscapular flaps require repositioning and re-preparing, which significantly increases the operative time and prevents simultaneous harvesting of the flap. This paper presents our experience of a single-stage 'sit and tilt' technique, which provides a convenient method for harvesting subscapular system free flaps without significant repositioning. This technique was used for a variety of head and neck defects, and body habitus did not seem to affect free tissue harvesting. It is hoped that utilisation of this preparation and harvesting technique will make head and neck surgeons more willing to take advantage of the subscapular system.

  4. Rain Sensor with Stacked Light Waveguide Having Tilted Air Gap

    Directory of Open Access Journals (Sweden)

    Kyoo Nam Choi

    2014-01-01

    Full Text Available Vehicle sensor to detect rain drop on and above waveguide utilizing light deflection and scattering was realized, keeping wide sensing coverage and sensitivity to detect mist accumulation. Proposed sensor structure under stacked light wave guide consisted of light blocking fixture surrounding photodetector and adjacent light source. Tilted air gap between stacked light waveguide and light blocking fixture played major role to increase sensitivity and to enhance linearity. This sensor structure eliminated complex collimating optics, while keeping wide sensing coverage using simple geometry. Detection algorithm based on time-to-intensity transformation process was used to convert raining intensity into countable raining process. Experimental result inside simulated rain chamber showed distinct different response between light rain and normal rain. Application as automobile rain sensor is expected.

  5. Patient Specific Modeling of Head-Up Tilt

    DEFF Research Database (Denmark)

    Williams, Nakeya; Wright, Andrew; Mehlsen, Jesper

    2014-01-01

    blood pressure. The model contains five compartments representing arteries and veins in the upper and lower body of the systemic circulation, as well as the left ventricle facilitating pumping of the heart. A physiologically based sub-model describes gravitational effects on pooling of blood during......Short term cardiovascular responses to head-up tilt (HUT) experiments involve complex cardiovascular regulation in order to maintain blood pressure at homeostatic levels. This manuscript presents a patient specific compartmental model developed to predict dynamic changes in heart rate and arterial...... that it is possible to estimate a subset of model parameters that allows prediction of observed changes in arterial blood pressure. Furthermore, the model adequately predicts arterial and venous blood pressures, as well as cardiac output in compartments for which data are not available....

  6. Comparison of scapular posterior tilting exercise alone and scapular posterior tilting exercise after pectoralis minor stretching on scapular alignment and scapular upward rotators activity in subjects with short pectoralis minor.

    Science.gov (United States)

    Lee, Ji-Hyun; Cynn, Heon-Seock; Yoon, Tae-Lim; Choi, Sil-Ah; Choi, Woo-Jeong; Choi, Bong-Sam; Ko, Chang-Hee

    2015-08-01

    To compare scapular posterior tilting exercise alone and scapular posterior tilting exercise after pectoralis minor (PM) stretching on the PM index (PMI), scapular anterior tilting index, scapular upward rotation angle, and scapular upward rotators' activity in subjects with a short PM. Fifteen subjects with a short PM participated in this study. The PMI, scapular anterior tilting index, and scapular upward rotation angle were measured after scapular posterior tilting exercise alone and scapular posterior tilting exercise after PM stretches. Scapular upward rotators' activities were collected during scapular posterior tilting exercise alone and scapular posterior tilting exercise after PM stretches. The PMI and scapular upward rotation angle, as well as the activity of the upper trapezius, lower trapezius, and serratus anterior muscles, were significantly greater for scapular posterior tilting exercise after PM stretching and the scapular anterior tilting index was significantly lower for scapular posterior tilting exercise after PM stretching than the scapular posterior tilting exercise alone. Scapular posterior tilting exercise after PM stretching in subjects with a short PM could be an effective method of modifying scapular alignment and scapular upward rotator activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Evaluation of different models to estimate the global solar radiation on inclined surface

    Science.gov (United States)

    Demain, C.; Journée, M.; Bertrand, C.

    2012-04-01

    Global and diffuse solar radiation intensities are, in general, measured on horizontal surfaces, whereas stationary solar conversion systems (both flat plate solar collector and solar photovoltaic) are mounted on inclined surface to maximize the amount of solar radiation incident on the collector surface. Consequently, the solar radiation incident measured on a tilted surface has to be determined by converting solar radiation from horizontal surface to tilted surface of interest. This study evaluates the performance of 14 models transposing 10 minutes, hourly and daily diffuse solar irradiation from horizontal to inclined surface. Solar radiation data from 8 months (April to November 2011) which include diverse atmospheric conditions and solar altitudes, measured on the roof of the radiation tower of the Royal Meteorological Institute of Belgium in Uccle (Longitude 4.35°, Latitude 50.79°) were used for validation purposes. The individual model performance is assessed by an inter-comparison between the calculated and measured solar global radiation on the south-oriented surface tilted at 50.79° using statistical methods. The relative performance of the different models under different sky conditions has been studied. Comparison of the statistical errors between the different radiation models in function of the clearness index shows that some models perform better under one type of sky condition. Putting together different models acting under different sky conditions can lead to a diminution of the statistical error between global measured solar radiation and global estimated solar radiation. As models described in this paper have been developed for hourly data inputs, statistical error indexes are minimum for hourly data and increase for 10 minutes and one day frequency data.

  8. A Psychometric Investigation of Gender-Tilted Families: Implications for Family Therapy.

    Science.gov (United States)

    Falconer, Clark W.; And Others

    1990-01-01

    Obtained self-reports from 40 couples from gender-tilted families, families which have several children of same sex. Parents of boys reported higher levels of family conflict and lower satisfaction with their families than did parents of girls. Parents of male-tilted families expressed more masculine sex-role orientations, greater personal…

  9. Patients with severe acquired brain injury show increased arousal in tilt-table training

    DEFF Research Database (Denmark)

    Riberholt, Christian G; Thorlund, Jonas Bloch; Mehlsen, Jesper

    2013-01-01

    Patients with severe acquired brain injury (ABI) are often mobilised using a tilt-table. Complications such as orthostatic intolerance have been reported. The primary objective of this study was to investigate if using a tilt-table was feasible for mobilising patients with severe ABI admitted...

  10. The Application of Normal Stress Reduction Function in Tilt Tests for Different Block Shapes

    Science.gov (United States)

    Kim, Dong Hyun; Gratchev, Ivan; Hein, Maw; Balasubramaniam, Arumugam

    2016-08-01

    This paper focuses on the influence of the shapes of rock cores, which control the sliding or toppling behaviours in tilt tests for the estimation of rock joint roughness coefficients (JRC). When the JRC values are estimated by performing tilt tests, the values are directly proportional to the basic friction of the rock material and the applied normal stress on the sliding planes. Normal stress obviously varies with the shape of the sliding block, and the basic friction angle is also affected by the sample shapes in tilt tests. In this study, the shapes of core blocks are classified into three representative shapes and those are created using plaster. Using the various shaped artificial cores, a set of tilt tests is carried out to identify the shape influences on the normal stress and the basic friction angle in tilt tests. The test results propose a normal stress reduction function to estimate the normal stress for tilt tests according to the sample shapes based on Barton's empirical equation. The proposed normal stress reduction functions are verified by tilt tests using artificial plaster joints and real rock joint sets. The plaster joint sets are well matched and cast in detailed printed moulds using a 3D printing technique. With the application of the functions, the obtained JRC values from the tilt tests using the plaster samples and the natural rock samples are distributed within a reasonable JRC range when compared with the measured values.

  11. Switching PD-based sliding mode control for hovering of a tilting-thruster underwater robot.

    Science.gov (United States)

    Jin, Sangrok; Bak, Jeongae; Kim, Jongwon; Seo, TaeWon; Kim, Hwa Soo

    2018-01-01

    This paper presents a switching PD-based sliding mode control (PD-SMC) method for the 6-degree-of-freedom (DOF) hovering motion of the underwater robot with tilting thrusters. Four thrusters of robot can be tilted simultaneously in the horizontal and vertical directions, and the 6-DOF motion is achieved by switching between two thruster configurations. Therefore, the tilting speed of thruster becomes the most essential parameter to determine the stability of hovering motion. Even though the previous PD control ensures stable hovering motion within a certain ranges of tilting speed, a PD-SMC is suggested in this paper by combining PD control with sliding mode control in order to achieve acceptable hovering performance even at the much lower tilting speeds. Also, the sign function in the sliding mode control is replaced by a sigmoid function to reduce undesired chattering. Simulations show that while PD control is effective only for tilting duration of 600 ms, the PD-based sliding mode control can guarantee the stable hovering motion of underwater robot even for the tilting duration of up to 1500 ms. Extensive experimental results confirm the hovering performance of the proposed PD-SMC method is much superior to that of PD method for much larger tilting durations.

  12. On the simplifications for the thermal modeling of tilting-pad journal bearings under thermoelastohydrodynamic regime

    DEFF Research Database (Denmark)

    Cerda Varela, Alejandro Javier; Fillon, Michel; Santos, Ilmar

    2012-01-01

    The relevance of calculating accurately the oil film temperature build up when modeling tilting-pad journal bearings is well established within the literature on the subject. This work studies the feasibility of using a thermal model for the tilting-pad journal bearing which includes a simplified...

  13. Modified mathematical model for evaluating the performance of water-in-glass evacuated tube solar collector considering tube shading effect

    International Nuclear Information System (INIS)

    Kabeel, A.E.; Khalil, A.; Elsayed, S.S.; Alatyar, A.M.

    2015-01-01

    The aim of this paper is to introduce a procedure for simulating the absorbed solar radiation and heat transfer process in water-in-glass evacuated tube solar collectors. The procedure is developed to calculate the daily utilized solar energy and outlet collector temperature for different tilt angles, collector azimuth angles and geometric parameters without requirement for any experimental factor determination. Total absorbed solar radiation is evaluated by integrating the flat-plate solar collector performance equations over the tube circumference taking into account the shading of the adjacent tubes and variance of transmissivity–absorptivity product with the incidence angle of radiation. The heat transfer into the collector fluid is evaluated by subtracting the heat loss from the total absorbed solar radiation. Comparison between calculated and measured tank temperature shows a good agreement between them under different heating loads. Performance of solar collector at different tilt angles, collector Azimuth angles, tubes spacing and collector mass flow rate is investigated theoretically. In Egypt (30° Latitude angle), the results show that 10°, 30° and 45° are the optimum solar collector tilt angles during the summer, vernal and autumnal equinox and winter operation respectively. Also, the utilized solar energy increases about 2.8% when the mass flow rate increases 100%, and the solar collector with south-facing has the best performance except for vertical tube solar collector. The simulation results also show that solar collector with wide tube spacing reduce the shading effect and hence increase the absorbed radiation. The final tank temperature as a function of collector's mass flow rate for three different days; 21 March, 21 June and 21 December is also investigated. The total incidence radiation, absorbed solar radiation and utilized heat per tube are presented for the three optimum tilt angles 10°, 30° and 45°. Efficiency curve of water

  14. Solar Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar photographic and illustrated datasets contributed by a number of national and private solar observatories located worldwide....

  15. Solar Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar feature datasets contributed by a number of national and private solar observatories located worldwide.

  16. Solar Indices

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  17. Evaluation of a tracking flat-plate solar collector in Brazil

    International Nuclear Information System (INIS)

    Maia, Cristiana B.; Ferreira, André G.; Hanriot, Sérgio M.

    2014-01-01

    The continuing research for an alternative power source due to the perceived scarcity of fuel fossils has, in recent years, given solar energy a remarkable edge. Nevertheless, the Earth's daily and seasonal movement affects the intensity of the incident solar radiation. Devices can track the sun in order to ensure optimum positions with regard to incident solar radiation, maximizing the absorbed solar energy, and the useful energy gain. In this paper, a mathematical model is developed to estimate the solar radiation absorbed, the useful energy gain, and the efficiency of a flat-plate solar collector in Brazil. The results for a sun tracking flat-plate solar collector were compared to fixed devices. The full tracking system with rotation about two axes presented higher absorbed energy, when compared to the rotation about a single axe and to a fixed collector. Also, it was shown that the tilt angle for a fixed solar collector does not cause significant variations in the useful energy gain or in the absorbed solar radiation, for the same azimuth angle. - Highlights: • A model was developed for solar radiation based on experimental data for K T . • Useful energy gain and efficiency of a flat-plate solar collector were evaluated for a one-year period. • Several sun tracking systems were compared to fixed devices. • Tilt angle for a fixed device does not significantly affect the useful energy gain

  18. Gravito-Inertial Force Resolution in Perception of Synchronized Tilt and Translation

    Science.gov (United States)

    Wood, Scott J.; Holly, Jan; Zhang, Guen-Lu

    2011-01-01

    Natural movements in the sagittal plane involve pitch tilt relative to gravity combined with translation motion. The Gravito-Inertial Force (GIF) resolution hypothesis states that the resultant force on the body is perceptually resolved into tilt and translation consistently with the laws of physics. The purpose of this study was to test this hypothesis for human perception during combined tilt and translation motion. EXPERIMENTAL METHODS: Twelve subjects provided verbal reports during 0.3 Hz motion in the dark with 4 types of tilt and/or translation motion: 1) pitch tilt about an interaural axis at +/-10deg or +/-20deg, 2) fore-aft translation with acceleration equivalent to +/-10deg or +/-20deg, 3) combined "in phase" tilt and translation motion resulting in acceleration equivalent to +/-20deg, and 4) "out of phase" tilt and translation motion that maintained the resultant gravito-inertial force aligned with the longitudinal body axis. The amplitude of perceived pitch tilt and translation at the head were obtained during separate trials. MODELING METHODS: Three-dimensional mathematical modeling was performed to test the GIF-resolution hypothesis using a dynamical model. The model encoded GIF-resolution using the standard vector equation, and used an internal model of motion parameters, including gravity. Differential equations conveyed time-varying predictions. The six motion profiles were tested, resulting in predicted perceived amplitude of tilt and translation for each. RESULTS: The modeling results exhibited the same pattern as the experimental results. Most importantly, both modeling and experimental results showed greater perceived tilt during the "in phase" profile than the "out of phase" profile, and greater perceived tilt during combined "in phase" motion than during pure tilt of the same amplitude. However, the model did not predict as much perceived translation as reported by subjects during pure tilt. CONCLUSION: Human perception is consistent with

  19. Solar Neutrinos

    OpenAIRE

    Antonelli, V.; Miramonti, L.; Peña Garay, Carlos; Serenelli, A.

    2013-01-01

    The study of solar neutrinos has given since ever a fundamental contribution both to astroparticle and to elementary particle physics, offering an ideal test of solar models and offering at the same time relevant indications on the fundamental interactions among particles. After reviewing the striking results of the last two decades, which were determinant to solve the long standing solar neutrino puzzle and refine the Standard Solar Model, we focus our attention on the more recent results in...

  20. Solar holography

    Science.gov (United States)

    Ludman, Jacques E.; Riccobono, Juanita R.; Caulfield, H. John; Upton, Timothy D.

    2002-07-01

    A solar photovoltaic energy collection system using a reflection hologram is described herein. The system uses a single-axis tracking system in conjunction with a spectral- splitting holographic element. The hologram accurately focuses the desired regions of the solar spectrum to match the bandgaps of two ro more different solar cells, while diverting unused IR wavelengths away. Other applications for solar holography include daylighting and greenhouses.

  1. Performance verification of focus variation and confocal microscopes measuring tilted ultra-fine surfaces

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Baruffi, Federico; Tosello, Guido

    2016-01-01

    The behaviour of two optical instruments, scilicet a laser scanning confocal microscope and a focus-variation microscope, was investigated considering measurements of tilted surfaces. The measured samples were twelve steel artefacts for mould surface finish reference, covering Sa roughness...... parameter in the range (101—103) nm. The 3D surface texture parameters considered were Sa, Sq and Sdq. The small working distance of the confocal microscope objectives influenced the measurement setup, preventing from selecting a high tilting angle. The investigation was carried out comparing measurements...... of flat surfaces (0° tilt) with measurements of 12.5° tilted surfaces. The confocal microscope results showed a high sensitivity to tilting due to the laser beam reflection on the metal surfaces. The focus variation microscope results were more robust with respect to the considered angular variation...

  2. Validation of Tilt Gain under Realistic Path Loss Model and Network Scenario

    DEFF Research Database (Denmark)

    Nguyen, Huan Cong; Rodriguez, Ignacio; Sørensen, Troels Bundgaard

    2013-01-01

    Despite being a simple and commonly-applied radio optimization technique, the impact on practical network performance from base station antenna downtilt is not well understood. Most published studies based on empirical path loss models report tilt angles and performance gains that are far higher...... than practical experience suggests. We motivate in this paper, based on a practical LTE scenario, that the discrepancy partly lies in the path loss model, and shows that a more detailed semi-deterministic model leads to both lower gains in terms of SINR, outage probability and downlink throughput...... and lower optimum tilt settings. Furthermore, we show that a simple geometrically based tilt optimization algorithm can outperform other tilt profiles, including the setting applied by the cellular operator in the specific case. In general, the network performance is not highly sensitive to the tilt...

  3. North-South asymmetry of interplanetary plasma and solar parameters

    International Nuclear Information System (INIS)

    El-Borie, M. A.

    2001-01-01

    Data of interplanetary plasma (field magnitude, solar wind speed, ion plasma density and temperature) and solar parameters (sunspot number, solar radio flux, and geomagnetic index) over the period 1965-1991, have been used to examine the asymmetry between the solar field north and south of the heliospheric current sheet (HCS). The dependence of N-S asymmetry of field magnitude (B) upon the interplanetary solar polarities is statistically insignificant. There is no clear indication for the presence of N-S asymmetry in the grand-average field magnitude over the solar cycles. During the period 1981-89 (qA<0; negative solar polarity state), the solar plasma was more dense and cooler south of the HCS than north of it. The solar flux component of toward field vector is larger in magnitude than those of away field vector during the qA<0 epoch, and no asymmetry observed in the qA<0 epoch. Furthermore, the sign of the N-S asymmetry in the solar activity depends positively upon the solar polarity state. In addition, it was studied the N-S asymmetry of solar parameters near the HCS, throughout the periods of northern and southern hemispheres were more active than the other. Some asymmetries (with respect to the HCS) in plasma parameters existed during the periods of southern hemisphere predominance

  4. Buying Solar.

    Science.gov (United States)

    Dawson, Joe

    Presented are guidelines for buying solar systems for the individual consumer. This is intended to help the consumer reduce many of the risks associated with the purchase of solar systems, particularly the risks of fraud and deception. Engineering terms associated with solar technology are presented and described to enable the consumer to discuss…

  5. Solar Special

    International Nuclear Information System (INIS)

    Van Roekel, A.; Osborne, J.; Schroeter, S.; De Jong, R.; De Saint Jacob, Y.

    2009-01-01

    Solar power is growing much faster than most policymakers and analysts realise. As costs come down and feed-in tariffs go up across Europe, a number of countries have started in pursuit of market leader Germany. But in Germany criticism is growing of the multi-billion-euro support schemes that keep the solar industry booming. In this section of the magazine several articles are dedicated to developments in solar energy in Europe. The first article is an overview story on the strong growing global market for solar cells, mainly thanks to subsidy schemes. The second article is on the position of foreign companies in the solar market in Italy. Article number three is dedicated to the conditions for solar technology companies to establish themselves in the German state of Saxony. Also the fifth article deals with the development of solar cells in Saxony: scientists, plant manufacturers and module producers in Saxony are working on new technologies that can be used to produce solar electricity cost-effectively. The goal is to bring the price down to match that of conventionally generated electricity within the next few years. The sixth article deals with the the solar power market in Belgium, which may be overheated or 'oversubsidized'. Article seven is on France, which used to be a pioneer in solar technology, but now produces only a fraction of the solar output of market leader Germany. However, new attractive feed-in-tariffs are changing the solar landscape drastically

  6. Solar urticaria

    Directory of Open Access Journals (Sweden)

    Srinivas C

    1995-01-01

    Full Text Available A 35-year-old female and a 41-year-old male presented with clinical features suggestive of solar urticaria. The diagnosis of solar urticaria and the effectiveness of a combination of H1 and H2 blocking antihistamines were confirmed by phototesting with a solar simulator

  7. In-vitro hemodynamics of stented bioprosthetic heart valves in the tilted implantation position.

    Science.gov (United States)

    Babin-Ebell, Joerg; Sievers, Hans H; Misfeld, Martin; Runge, Maike; Vogt, Paul Robert; Scharfschwerdt, Michael

    2008-09-01

    Although, in small aortic annulus or aortic annulus calcification, it is recommended that valves are implanted in a tilted position, mechanical valves show impaired hemodynamic performance when positioned in this way. To date, no investigations have been conducted with biological valves implanted in a tilted position. Measurements were performed in a pulsatile flow simulator. The aortic roots were mounted in a fluid reservoir and tested with bioprosthetic valves implanted in the regular position (21 mm; n = 7) or at a 200 tilt (23 mm; n = 7). Additional 21 mm valves were implanted in both positions with a systemic pressure of 120/80 mmHg. Subsequently, the valves were implanted into a glass model and flow visualization monitored by adding air bubbles illuminated with a laser diode. The 21 mm valves showed a slightly higher transvalvular gradient in the tilted than in the regular position, while 23 mm valves in a tilted position showed a lower gradient than 21 mm valves in the regular position. Flow in the regular position was seen to be straight and central, but in the tilted position was diverted and impacted on the aortic wall. Vortex formation in the tilted position was more pronounced than in the regular position, with certain low-flow areas being observed. The implantation of a one size-larger bioprosthetic valve at a 20 degree tilt in a small aortic root resulted in a slight reduction in transvalvular gradient compared to a smaller valve implanted in the regular position. Whilst mechanical valve performance is markedly compromised in the tilted position, the bioprosthetic valve showed only minor impairment of transvalvular pressure gradient due to tilting, and this was overcompensated by the larger valve size. However, the advantage of a greater orifice area must be traded against the consequences of the observed flow disturbances.

  8. Modeling Solar Energetic Particle Transport near a Wavy Heliospheric Current Sheet

    Science.gov (United States)

    Battarbee, Markus; Dalla, Silvia; Marsh, Mike S.

    2018-02-01

    Understanding the transport of solar energetic particles (SEPs) from acceleration sites at the Sun into interplanetary space and to the Earth is an important question for forecasting space weather. The interplanetary magnetic field (IMF), with two distinct polarities and a complex structure, governs energetic particle transport and drifts. We analyze for the first time the effect of a wavy heliospheric current sheet (HCS) on the propagation of SEPs. We inject protons close to the Sun and propagate them by integrating fully 3D trajectories within the inner heliosphere in the presence of weak scattering. We model the HCS position using fits based on neutral lines of magnetic field source surface maps (SSMs). We map 1 au proton crossings, which show efficient transport in longitude via HCS, depending on the location of the injection region with respect to the HCS. For HCS tilt angles around 30°–40°, we find significant qualitative differences between A+ and A‑ configurations of the IMF, with stronger fluences along the HCS in the former case but with a distribution of particles across a wider range of longitudes and latitudes in the latter. We show how a wavy current sheet leads to longitudinally periodic enhancements in particle fluence. We show that for an A+ IMF configuration, a wavy HCS allows for more proton deceleration than a flat HCS. We find that A‑ IMF configurations result in larger average fluences than A+ IMF configurations, due to a radial drift component at the current sheet.

  9. Solar Indices - Solar Radio Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  10. Turbulent Transport in a Three-dimensional Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Zank, G. P.; Adhikari, L.; Hunana, P. [Center for Space Plasma and Aeronomic Research (CSPAR), Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Telloni, D. [INAF—Astrophysical Observatory of Torino, Via Osservatorio 20, I-10025 Pino Torinese (Italy); Bruno, R., E-mail: shiota@isee.nagoya-u.ac.jp [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2017-03-01

    Turbulence in the solar wind can play essential roles in the heating of coronal and solar wind plasma and the acceleration of the solar wind and energetic particles. Turbulence sources are not well understood and thought to be partly enhanced by interaction with the large-scale inhomogeneity of the solar wind and the interplanetary magnetic field and/or transported from the solar corona. To investigate the interaction with background inhomogeneity and the turbulence sources, we have developed a new 3D MHD model that includes the transport and dissipation of turbulence using the theoretical model of Zank et al. We solve for the temporal and spatial evolution of three moments or variables, the energy in the forward and backward fluctuating modes and the residual energy and their three corresponding correlation lengths. The transport model is coupled to our 3D model of the inhomogeneous solar wind. We present results of the coupled solar wind-turbulence model assuming a simple tilted dipole magnetic configuration that mimics solar minimum conditions, together with several comparative intermediate cases. By considering eight possible solar wind and turbulence source configurations, we show that the large-scale solar wind and IMF inhomogeneity and the strength of the turbulence sources significantly affect the distribution of turbulence in the heliosphere within 6 au. We compare the predicted turbulence distribution results from a complete solar minimum model with in situ measurements made by the Helios and Ulysses spacecraft, finding that the synthetic profiles of the turbulence intensities show reasonable agreement with observations.

  11. Bound Chains of Tilted Dipoles in Layered Systems

    DEFF Research Database (Denmark)

    G. Volosniev, A.; R. Armstrong, J.; V. Fedorov, D.

    2012-01-01

    Ultracold polar molecules in multilayered systems have been experimentally realized very recently. While experiments study these systems almost exclusively through their chemical reactivity, the outlook for creating and manipulating exotic few- and many-body physics in dipolar systems is fascinat...

  12. Polarization feedback laser stabilization

    Science.gov (United States)

    Esherick, P.; Owyoung, A.

    1987-09-28

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other. 4 figs.

  13. Polarization in Sagittarius A*

    OpenAIRE

    Bower, Geoffrey C.

    2000-01-01

    We summarize the current state of polarization observations of Sagittarius A*, the compact radio source and supermassive black hole candidate in the Galactic Center. These observations are providing new tools for understanding accretion disks, jets and their environments. Linear polarization observations have shown that Sgr A* is unpolarized at frequencies as high as 86 GHz. However, recent single-dish observations indicate that Sgr A* may have strong linear polarization at frequencies higher...

  14. STELLAR NUCLEI AND INNER POLAR DISKS IN LENTICULAR GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Sil’chenko, Olga K., E-mail: olga@sai.msu.su [Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, Moscow, 119992 (Russian Federation); Isaac Newton Institute, Chile, Moscow Branch (Chile)

    2016-09-01

    I analyze statistics of the stellar population properties for stellar nuclei and bulges of nearby lenticular galaxies in different environments by using panoramic spectral data of the integral-field spectrograph SAURON retrieved from the open archive of the Isaac Newton Group. I also estimate the fraction of nearby lenticular galaxies having inner polar gaseous disks by exploring the volume-limited sample of early-type galaxies of the ATLAS-3D survey. By inspecting the two-dimensional velocity fields of the stellar and gaseous components with the running tilted-ring technique, I have found seven new cases of inner polar disks. Together with those, the frequency of inner polar disks in nearby S0 galaxies reaches 10%, which is much higher than the frequency of large-scale polar rings. Interestingly, the properties of the nuclear stellar populations in the inner polar ring hosts are statistically the same as those in the whole S0 sample, implying similar histories of multiple gas-accretion events from various directions.

  15. STELLAR NUCLEI AND INNER POLAR DISKS IN LENTICULAR GALAXIES

    International Nuclear Information System (INIS)

    Sil’chenko, Olga K.

    2016-01-01

    I analyze statistics of the stellar population properties for stellar nuclei and bulges of nearby lenticular galaxies in different environments by using panoramic spectral data of the integral-field spectrograph SAURON retrieved from the open archive of the Isaac Newton Group. I also estimate the fraction of nearby lenticular galaxies having inner polar gaseous disks by exploring the volume-limited sample of early-type galaxies of the ATLAS-3D survey. By inspecting the two-dimensional velocity fields of the stellar and gaseous components with the running tilted-ring technique, I have found seven new cases of inner polar disks. Together with those, the frequency of inner polar disks in nearby S0 galaxies reaches 10%, which is much higher than the frequency of large-scale polar rings. Interestingly, the properties of the nuclear stellar populations in the inner polar ring hosts are statistically the same as those in the whole S0 sample, implying similar histories of multiple gas-accretion events from various directions.

  16. Airborne Laser Polarization Sensor

    Science.gov (United States)

    Kalshoven, James, Jr.; Dabney, Philip

    1991-01-01

    Instrument measures polarization characteristics of Earth at three wavelengths. Airborne Laser Polarization Sensor (ALPS) measures optical polarization characteristics of land surface. Designed to be flown at altitudes of approximately 300 m to minimize any polarizing or depolarizing effects of intervening atmosphere and to look along nadir to minimize any effects depending on look angle. Data from measurements used in conjunction with data from ground surveys and aircraft-mounted video recorders to refine mathematical models used in interpretation of higher-altitude polarimetric measurements of reflected sunlight.

  17. Polarization at SLC

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-07-01

    The SLAC Linear Collider has been designed to readily accommodate polarized electron beams. Considerable effort has been made to implement a polarized source, a spin rotation system, and a system to monitor the beam polarization. Nearly all major components have been fabricated. At the current time, several source and polarimeter components have been installed. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. It is expected that a beam polarization of 45% will be achieved with no loss in luminosity. 13 refs., 15 figs

  18. Study of an active wall solar heating system

    International Nuclear Information System (INIS)

    Kassem, Talal

    2006-01-01

    An active wall solar heating system was built and tested. In the same time a compatible computer program has been according to set the recommended dimensions for the solar collectors where (F-Chart) method used to set the ratio of monthly solar sharing average for the examined heating system. Some parameters, such as collectors' areas, its tilt angle and near earth reflecting were experimentally investigated, affecting the executed active solar heating system performance. The study explain the ability of using this system which is simple, Low coast and high performance in heating residential and public buildings and heating water with ratio of yearly solar sharing achieves the needed saving of using this system.(Author)

  19. Optimum solar flat-plate collector slope: Case study for Helwan, Egypt

    International Nuclear Information System (INIS)

    Elminir, Hamdy K.; Ghitas, Ahmed E.; El-Hussainy, F.; Hamid, R.; Beheary, M.M.; Abdel-Moneim, Khaled M.

    2006-01-01

    This article examines the theoretical aspects of choosing a tilt angle for the solar flat-plate collectors used in Egypt and make recommendations on how the collected energy can be increased by varying the tilt angle. The first objective in this investigation is to perform a statistical comparison of three specific anisotropic models (Tamps-Coulson, Perez and Bugler) to recommend one that is general and is most accurate for estimating the solar radiation arriving on an inclined surface. Then, the anisotropic model that provides the most accurate estimation of the total solar radiation has been used to determine the optimum collector slope based on the maximum solar energy availability. This result has been compared with the results provided by other models that use declination, daily clearness index and ground reflectivity. The study revealed that Perez's model shows the best overall calculated performance, followed by the Tamps-Coulson then Bugler models

  20. Solar energy powering up aerial misting systems for cooling surroundings in Saudi Arabia

    International Nuclear Information System (INIS)

    Atieh, Ahmad; Al Shariff, Samir

    2013-01-01

    Highlights: ► Demonstrate solar energy misting system for the first time to our knowledge. ► Return on investment for such a system is recovered within two and half years. ► Solar panel tilt position is 25° due south in Medina Munawarah. ► The misting system is capable of lowering ambient temperature over 10 °C. - Abstract: We demonstrated for the first time to our knowledge a misting system that is powered by solar energy. The system was used to cool down an open area in Medina, Saudi Arabia. The ambient and surrounding temperatures were measured and compared for different timing signals that were applied to the misting system. The used solar panel performance is evaluated for different loads, and tilting settings. The return on investment for the misting system is found to be about two years and half.

  1. Manifestation of solar activity in solar wind particle flux density

    International Nuclear Information System (INIS)

    Kovalenko, V.A.

    1988-01-01

    An analysis has been made of the origin of long-term variations in flux density of solar wind particles (nv) for different velocity regimes. The study revealed a relationship of these variations to the area of the polar coronal holes (CH). It is shown that within the framework of the model under development, the main longterm variations of nv are a result of the latitude redistribution of the solar wind mass flux in the heliosphere and are due to changes in the large-scale geometry of the solar plasma flow in the corona. A study has been made of the variations of nv for high speed solar wind streams. It is found that nv in high speed streams which are formed in CH, decreases from minimum to maximum solar activity. The analysis indicates that this decrease is attributable to the magnetic field strength increase in coronal holes. It has been found that periods of rapid global changes of background magnetic fields on the Sun are accompanied by a reconfiguration of coronal magnetic fields, rapid changes in the length of quiescent filaments, and by an increase in the density of the particle flux of a high speed solar wind. It has been established that these periods precede the formation of CH, corresponding to the increase in solar wind velocity near the Earth and to enhancement of the level of geomagnetic disturbance. (author)

  2. Weakest solar wind of the space age and the current 'MINI' solar maximum

    International Nuclear Information System (INIS)

    McComas, D. J.; Angold, N.; Elliott, H. A.; Livadiotis, G.; Schwadron, N. A.; Smith, C. W.; Skoug, R. M.

    2013-01-01

    The last solar minimum, which extended into 2009, was especially deep and prolonged. Since then, sunspot activity has gone through a very small peak while the heliospheric current sheet achieved large tilt angles similar to prior solar maxima. The solar wind fluid properties and interplanetary magnetic field (IMF) have declined through the prolonged solar minimum and continued to be low through the current mini solar maximum. Compared to values typically observed from the mid-1970s through the mid-1990s, the following proton parameters are lower on average from 2009 through day 79 of 2013: solar wind speed and beta (∼11%), temperature (∼40%), thermal pressure (∼55%), mass flux (∼34%), momentum flux or dynamic pressure (∼41%), energy flux (∼48%), IMF magnitude (∼31%), and radial component of the IMF (∼38%). These results have important implications for the solar wind's interaction with planetary magnetospheres and the heliosphere's interaction with the local interstellar medium, with the proton dynamic pressure remaining near the lowest values observed in the space age: ∼1.4 nPa, compared to ∼2.4 nPa typically observed from the mid-1970s through the mid-1990s. The combination of lower magnetic flux emergence from the Sun (carried out in the solar wind as the IMF) and associated low power in the solar wind points to the causal relationship between them. Our results indicate that the low solar wind output is driven by an internal trend in the Sun that is longer than the ∼11 yr solar cycle, and they suggest that this current weak solar maximum is driven by the same trend.

  3. Energy savings for solar heating systems; Solvarmeanlaegs energibesparelser

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Fan, J.

    2011-01-15

    Energy savings for a number of new solar heating systems in one family houses have been determined by means of information on the energy consumption of the houses before and after installation of the solar heating systems. The investigated solar heating systems are marketed by Velux Danmark A/S, Sonnnenkraft Scandinavia A/S and Batec Solvarme A/S. Solar domestic hot water systems as well as solar combi systems are included in the investigations The houses have different auxiliary energy supply systems: Natural gas boilers, oil fired burners, electrical heating and district heating. Some of the houses have a second auxiliary energy supply system. The collector areas vary from 1.83 m{sup 2} to 9.28 m{sup 2}. Some of the solar heating systems are based on energy units with a new integrated natural gas boiler and a heat storage for the solar heating system. The existing energy systems in the houses are for most of the houses used as the auxiliary energy systems for the solar heating systems. The yearly energy savings for the houses where the only change is the installation of the solar heating system vary from 300 kWh per m{sup 2} solar collector to 1300 kWh per m{sup 2} solar collector. The average yearly energy savings is about 670 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector are not influenced by the solar heating system type, the company marketing the system, the auxiliary energy supply system, the collector area, the collector tilt, the collector azimuth, the energy consumption of the house or the location of the house. The yearly energy savings for the houses with solar heating systems based on energy units including a new natural gas boiler vary from 790 kWh per m{sup 2} solar collector to 2090 kWh per m{sup 2} solar collector. The average yearly energy savings is about 1520 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector for

  4. Applying measured reflection from the ground to simulations of thermal perfromance of solar collectors

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon

    2009-01-01

    Solar radiation on tilted and vertical surfaces in the Arctic is, in large parts of the year, strongly influenced by reflection from snow. In connection with planning and optimization of energy efficient buildings and solar energy systems in the Arctic, it is important to have an accurate...... and the azimuth of the surface in question. The paper will present an analysis of simulations of the thermal performance of solar collectors using the standard description of the albedo and using the albedo determined by the measurements. It will be elucidated how important an accurate description...... of the reflection from the ground is for the thermal performance of solar collectors....

  5. Crosbyton Solar Power Project. Volume 8: Preliminary design of 55-MWe solar-fossil hybrid electric power plant at Crosbyton, Texas

    Science.gov (United States)

    1982-02-01

    This report presents the preliminary design and the construction cost for a 5 MWe Solar Hybrid Electric Energy Plant (SHEEP) to be built at Crosbyton, Texas. The plant has been designed to serve as a small size, commercially operable power plant which fully demonstrates the function, performance, and cost of this solar technology and integrated steam management concept. Good lifetime performance at minimum cost were the critical design objectives. The major solar components of this plant are ten 203 foot diameter stationary tilted quartersphere solar bowls. Each with a slender 58 foot solar receiver which tracks the solar focus produced by the bowl. At peak insolation the ten bowls will produce sufficient steam to generate 5 MWe. This plant has only a few minutes of thermal storage capability. The plant has a fossil boiler (oil or gas fired) which is integrated into the solar-turbine steam loop to provide supplemental steam for electric generation at night or during periods of low insolation.

  6. Evaluation of tilted cone-beam CT orbits in the development of a dedicated hybrid mammotomograph

    Energy Technology Data Exchange (ETDEWEB)

    Madhav, P; Crotty, D J; Tornai, M P [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States); McKinley, R L [Zumatek Incorporated, Chapel Hill, NC 27519 (United States)], E-mail: priti.madhav@duke.edu

    2009-06-21

    A compact dedicated 3D breast SPECT-CT (mammotomography) system is currently under development. In its initial prototype, the cone-beam CT sub-system is restricted to a fixed-tilt circular rotation around the patient's pendant breast. This study evaluated stationary-tilt angles for the CT sub-system that will enable maximal volumetric sampling and viewing of the breast and chest wall. Images of geometric/anthropomorphic phantoms were acquired using various fixed-tilt circular and 3D sinusoidal trajectories. The iteratively reconstructed images showed more distortion and attenuation coefficient inaccuracy from tilted cone-beam orbits than from the complex trajectory. Additionally, line profiles illustrated cupping artifacts in planes distal to the central plane of the tilted cone-beam, otherwise not apparent for images acquired with complex trajectories. This indicates that undersampled cone-beam data may be an additional cause of cupping artifacts. High-frequency objects could be distinguished for all trajectories, but their shapes and locations were corrupted by out-of-plane frequency information. Although more acrylic balls were visualized with a fixed-tilt and nearly flat cone-beam at the posterior of the breast, 3D complex trajectories have less distortion and more complete sampling throughout the reconstruction volume. While complex trajectories would ideally be preferred, negatively fixed-tilt source-detector configuration demonstrates minimally distorted patient images.

  7. Tilted microstrip phased arrays with improved electromagnetic decoupling for ultrahigh-field magnetic resonance imaging.

    Science.gov (United States)

    Pang, Yong; Wu, Bing; Jiang, Xiaohua; Vigneron, Daniel B; Zhang, Xiaoliang

    2014-12-01

    One of the technical challenges in designing a dedicated transceiver radio frequency (RF) array for MR imaging in humans at ultrahigh magnetic fields is how to effectively decouple the resonant elements of the array. In this work, we propose a new approach using tilted microstrip array elements for improving the decoupling performance and potentially parallel imaging capability. To investigate and validate the proposed design technique, an 8-channel volume array with tilted straight-type microstrip elements was designed, capable for human imaging at the ultrahigh field of 7 Tesla. In this volume transceiver array, its electromagnetic decoupling behavior among resonant elements, RF field penetration to biological samples, and parallel imaging performance were studied through bench tests and in vivo MR imaging experiments. In this specific tilted element array design, decoupling among array elements changes with the tilted angle of the elements and the best decoupling can be achieved at certain tilted angle. In vivo human knee MR images were acquired using the tilted volume array at 7 Tesla for method validation. Results of this study demonstrated that the electromagnetic decoupling between array elements and the B1 field strength can be improved by using the tilted element method in microstrip RF coil array designs at the ultrahigh field of 7T.

  8. Marginal bone loss around tilted implants in comparison to straight implants: a meta-analysis.

    Science.gov (United States)

    Monje, Alberto; Chan, Hsun-Liang; Suarez, Fernando; Galindo-Moreno, Pablo; Wang, Hom-Lay

    2012-01-01

    The primary aim of this systematic review was to compare the amount of marginal bone loss around tilted and straight implants. As the secondary aim, the incidence of biomechanic complications was compared. An electronic literature search from five databases, for the years 2000 to 2011, and a hand search in implant-related journals were conducted. Clinical human studies in the English language that had reported marginal bone loss in tilted and straight implants at 12-months follow-up or longer were included. Mean marginal bone loss and the number of implants that were available for analysis were extracted from original articles for meta-analyses. Eight (six prospective and two retrospective) studies were included. One-year data were available in seven articles, which included 1,015 (451 tilted) implants. Three articles provided 3- to 5-year data from 302 (164 tilted) implants. No significant difference in weighted mean marginal bone loss was found between the tilted and straight implants in the short and medium terms. Three articles reported the incidence of biomechanic complications. There was not enough information to make a comparison. This meta-analysis failed to support the hypothesis that tilted implants that were splinted for the support of fixed prostheses had more marginal bone loss. Additionally, there was not enough evidence to claim a higher incidence of biomechanic complications in tilted implants. However, due to the nature of the study design of the included articles, caution should be exercised when interpreting the results of this review.

  9. Twenty-degree-tilt radiography for evaluation of lateral humeral condylar fracture in children

    International Nuclear Information System (INIS)

    Imada, Hideaki; Tanaka, Ryuji; Itoh, Yohei; Kishi, Kazuhiko

    2010-01-01

    To investigate the efficacy of '20 -tilt anteroposterior (A-P) radiography' in the assessment of lateral condylar fractures of the distal humerus. Eighteen children with lateral humeral condylar fractures were studied. Every child underwent conventional A-P and lateral radiography, and six children underwent multi-detector computed tomography (MDCT). For the investigation of 20 -tilt radiography, ten children with lateral humeral condylar fractures had conventional and 20 -tilt A-P and lateral radiography both preoperatively and postoperatively. Fragment dislocation was measured at the lateral and medial margins of the fracture on both the conventional A-P and 20 -tilt A-P radiographs. The lateral condylar fragment was triangular and was most prominent posteriorly. The fracture line was typically tilted approximately 20 to a reference line perpendicular to the long axis of the humerus in the lateral view. The extent of dislocation at the lateral and medial margins of the fracture site by 20 -tilt A-P radiography (9.3 ± 3.6 mm and 5.6 ± 2.5 mm) was significantly wider than that measured by the conventional method (6.8 ± 4.1 mm and 2.0 ± 1.5 mm), which may influence treatment. Twenty-degree-tilt A-P radiography may more precisely demonstrate fragment dislocation than standard radiographs and may influence patient treatment. (orig.)

  10. Evaluation of tilted cone-beam CT orbits in the development of a dedicated hybrid mammotomograph

    International Nuclear Information System (INIS)

    Madhav, P; Crotty, D J; Tornai, M P; McKinley, R L

    2009-01-01

    A compact dedicated 3D breast SPECT-CT (mammotomography) system is currently under development. In its initial prototype, the cone-beam CT sub-system is restricted to a fixed-tilt circular rotation around the patient's pendant breast. This study evaluated stationary-tilt angles for the CT sub-system that will enable maximal volumetric sampling and viewing of the breast and chest wall. Images of geometric/anthropomorphic phantoms were acquired using various fixed-tilt circular and 3D sinusoidal trajectories. The iteratively reconstructed images showed more distortion and attenuation coefficient inaccuracy from tilted cone-beam orbits than from the complex trajectory. Additionally, line profiles illustrated cupping artifacts in planes distal to the central plane of the tilted cone-beam, otherwise not apparent for images acquired with complex trajectories. This indicates that undersampled cone-beam data may be an additional cause of cupping artifacts. High-frequency objects could be distinguished for all trajectories, but their shapes and locations were corrupted by out-of-plane frequency information. Although more acrylic balls were visualized with a fixed-tilt and nearly flat cone-beam at the posterior of the breast, 3D complex trajectories have less distortion and more complete sampling throughout the reconstruction volume. While complex trajectories would ideally be preferred, negatively fixed-tilt source-detector configuration demonstrates minimally distorted patient images.

  11. Do tilt-in-space wheelchairs increase occupational engagement: a critical literature review.

    Science.gov (United States)

    Harrand, Jenny; Bannigan, Katrina

    2016-01-01

    A wheelchair can enhance the quality of life of an individual with limited mobility, poor trunk control and stability, by enabling activity and participation and so occupational engagement. High specification wheelchairs which can tilt-in-space enable the position of users to be altered to suit activity and context. Despite tilt-in-space wheelchairs being expensive little is known about their therapeutic value. A critical literature review of the evidence was undertaken to evaluate whether the use of tilt-in-space increases occupational engagement. A wide ranging search strategy identified 170 articles which were screened using inclusion criteria. The eligible literature (n = 6) was analysed thematically using open coding. The majority of the participants used tilt-in-space but the data was too heterogeneous to combine. Measures of occupational engagement were not used so the therapeutic value could not be assessed. There is a lack of high quality evidence about the therapeutic benefits of tilt-in-space wheelchairs. Given the expense associated with providing these wheelchairs, and the increase in their provision, research is needed to justify provision of high specification wheelchairs to meet the occupational needs of users within the limited resources of health and social care. Implications for Rehabilitation Tilt-in-space wheelchairs. Wheelchairs are an important and essential assistive device for promoting independence and function. Suggests there are benefits for tilt-in-space wheelchairs. Identifies the need for additional large scale research.

  12. Research on Method of Photoelectric Measurement for Tilt Angle of Scanning Mirror of Infrared Earth Sensor

    International Nuclear Information System (INIS)

    Xu, X P; Zhang, G Y; Zhang, N; Wang, L Y

    2006-01-01

    Tilt angle of scanning mirror is one of the important qualifications of performance measurement on the earth surface for swing scanning mode infrared the earth sensor. In order to settle the problem of measuring the tilt angle of scanning mirror in dynamic, real-time and non-contact, based on laser inspecting technology and CCD probing technology, a method of laser dynamical measurement for tilt angle of scanning mirror of the infrared earth sensor is presented. The measurement system developed in this paper can accomplish the dynamic and static laser non-contact measurement for the parameters of scanning mirror such as tilt angle, swing frequency, etc. In this paper the composition and overall structure of system are introduced. Emphasis on analyzing and discussing the theory of dynamically measuring tilt angle of scanning mirror, the problems of data processing and error correction are settled by established mathematic model of system. The accuracy of measurement system is verified by experiment, the results indicated that measurement range of system for tilt angle is 0∼±12 0 , accuracy of dynamic and static measurement is less than ±0.05 0 , this method of dynamically measuring tilt angle is suitable

  13. Design, Construction and Testing of a Parabolic Solar Steam Generator

    Directory of Open Access Journals (Sweden)

    Joshua FOLARANMI

    2009-07-01

    Full Text Available This paper reports the design, construction and testing of a parabolic dish solar steam generator. Using concentrating collector, heat from the sun is concentrated on a black absorber located at the focus point of the reflector in which water is heated to a very high temperature to form steam. It also describes the sun tracking system unit by manual tilting of the lever at the base of the parabolic dish to capture solar energy. The whole arrangement is mounted on a hinged frame supported with a slotted lever for tilting the parabolic dish reflector to different angles so that the sun is always directed to the collector at different period of the day. On the average sunny and cloud free days, the test results gave high temperature above 200°C.

  14. Recalibration of the Viyager PRA antenna for polarization sense measurement

    Science.gov (United States)

    Wang, L.; Carr, T. D.

    1994-01-01

    The Voyager Planetary Radio Astronomy (PRA) antenna and receiver system provides an indication of the sense of elliptical or circular polarization of radiation that is not correct for all directions of incidence. The true sense could be determined for all directions if accurate calibration data were available. It was not feasible to make the calibration before the Voyagers were launched. Lecacheux & Ortega-Molina (1987), however, were able to derive such calibration data from planetary radio observations made in flight. They expressed their results in terms of the tilt of a plane (the E-plane) that divides the incident ray directions for which the indicated polarization sense is correct from those directions for which the indicated sense is reversed. We demonstrate that there are certain directions for which this calibration is itself in error, and that the surface dividing the two sets of incident rays is more complex than a tilted plane. We are able to make a crude approximation to the true surface from the limited data available.

  15. Combined Influence of Visual Scene and Body Tilt on Arm Pointing Movements: Gravity Matters!

    Science.gov (United States)

    Scotto Di Cesare, Cécile; Sarlegna, Fabrice R.; Bourdin, Christophe; Mestre, Daniel R.; Bringoux, Lionel

    2014-01-01

    Performing accurate actions such as goal-directed arm movements requires taking into account visual and body orientation cues to localize the target in space and produce appropriate reaching motor commands. We experimentally tilted the body and/or the visual scene to investigate how visual and body orientation cues are combined for the control of unseen arm movements. Subjects were asked to point toward a visual target using an upward movement during slow body and/or visual scene tilts. When the scene was tilted, final pointing errors varied as a function of the direction of the scene tilt (forward or backward). Actual forward body tilt resulted in systematic target undershoots, suggesting that the brain may have overcompensated for the biomechanical movement facilitation arising from body tilt. Combined body and visual scene tilts also affected final pointing errors according to the orientation of the visual scene. The data were further analysed using either a body-centered or a gravity-centered reference frame to encode visual scene orientation with simple additive models (i.e., ‘combined’ tilts equal to the sum of ‘single’ tilts). We found that the body-centered model could account only for some of the data regarding kinematic parameters and final errors. In contrast, the gravity-centered modeling in which the body and visual scene orientations were referred to vertical could explain all of these data. Therefore, our findings suggest that the brain uses gravity, thanks to its invariant properties, as a reference for the combination of visual and non-visual cues. PMID:24925371

  16. Effects of Frequency and Motion Paradigm on Perception of Tilt and Translation During Periodic Linear Acceleration

    Science.gov (United States)

    Beaton, K. H.; Holly, J. E.; Clement, G. R.; Wood, Scott J.

    2009-01-01

    Previous studies have demonstrated an effect of frequency on the gain of tilt and translation perception. Results from different motion paradigms are often combined to extend the stimulus frequency range. For example, Off-Vertical Axis Rotation (OVAR) and Variable Radius Centrifugation (VRC) are useful to test low frequencies of linear acceleration at amplitudes that would require impractical sled lengths. The purpose of this study was to compare roll-tilt and lateral translation motion perception in 12 healthy subjects across four paradigms: OVAR, VRC, sled translation and rotation about an earth-horizontal axis. Subjects were oscillated in darkness at six frequencies from 0.01875 to 0.6 Hz (peak acceleration equivalent to 10 deg, less for sled motion below 0.15 Hz). Subjects verbally described the amplitude of perceived tilt and translation, and used a joystick to indicate the direction of motion. Consistent with previous reports, tilt perception gain decreased as a function of stimulus frequency in the motion paradigms without concordant canal tilt cues (OVAR, VRC and Sled). Translation perception gain was negligible at low stimulus frequencies and increased at higher frequencies. There were no significant differences between the phase of tilt and translation, nor did the phase significantly vary across stimulus frequency. There were differences in perception gain across the different paradigms. Paradigms that included actual tilt stimuli had the larger tilt gains, and paradigms that included actual translation stimuli had larger translation gains. In addition, the frequency at which there was a crossover of tilt and translation gains appeared to vary across motion paradigm between 0.15 and 0.3 Hz. Since the linear acceleration in the head lateral plane was equivalent across paradigms, differences in gain may be attributable to the presence of linear accelerations in orthogonal directions and/or cognitive aspects based on the expected motion paths.

  17. Effects of Vestibular Loss on Orthostatic Responses to Tilts in the Pitch Plane

    Science.gov (United States)

    Wood, Scott J.; Serrador, Jorge M.; Black, F. Owen; Rupert,Angus H.; Schlegel, Todd T.

    2004-01-01

    The purpose of this study was to determine the extent to which vestibular loss might impair orthostatic responses to passive tilts in the pitch plane in human subjects. Data were obtained from six subjects having chronic bilateral vestibular loss and six healthy individuals matched for age, gender, and body mass index. Vestibular loss was assessed with a comprehensive battery including dynamic posturography, vestibulo-ocular and optokinetic reflexes, vestibular evoked myogenic potentials, and ocular counterrolling. Head up tilt tests were conducted using a motorized two-axis table that allowed subjects to be tilted in the pitch plane from either a supine or prone body orientation at a slow rate (8 deg/s). The sessions consisted of three tilts, each consisting of20 min rest in a horizontal position, tilt to 80 deg upright for 10 min, and then return to the horizontal position for 5 min. The tilts were performed in darkness (supine and prone) or in light (supine only). Background music was used to mask auditory orientation cues. Autonomic measurements included beat-to-beat recordings of blood pressure (Finapres), heart rate (ECG), cerebral blood flow velocity in the middle cerebral artery (transcranial Doppler), end tidal CO2, respiratory rate and volume (Respritrace), and stroke volume (impedance cardiography). For both patients and control subjects, cerebral blood flow appeared to exhibit the most rapid adjustment following transient changes in posture. Outside of a greater cerebral hypoperfusion in patients during the later stages of tilt, responses did not differ dramatically between the vestibular loss and control subjects, or between tilts performed in light and dark room conditions. Thus, with the 'exception of cerebrovascular regulation, we conclude that orthostatic responses during slow postural tilts are not substantially impaired in humans following chronic loss of vestibular function, a result that might reflect compensation by nonvisual graviceptor

  18. RHIC Polarized proton operation

    International Nuclear Information System (INIS)

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D'Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.E.; Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-01-01

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP 4 . A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above

  19. RHIC Polarized proton operation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D' Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R,; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; J.; Severino, F.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J. Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP{sup 4}. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above

  20. Quantum carpets in a one-dimensional tilted optical lattices

    Science.gov (United States)

    Parra Murillo, Carlos Alberto; Muã+/-Oz Arias, Manuel Humberto; Madroã+/-Ero, Javier

    A unit filling Bose-Hubbard Hamiltonian embedded in a strong Stark field is studied in the off-resonant regime inhibiting single- and many-particle first-order tunneling resonances. We investigate the occurrence of coherent dipole wavelike propagation along an optical lattice by means of an effective Hamiltonian accounting for second-order tunneling processes. It is shown that dipole wave function evolution in the short-time limit is ballistic and that finite-size effects induce dynamical self-interference patterns known as quantum carpets. We also present the effects of the border right after the first reflection, showing that the wave function diffuses normally with the variance changing linearly in time. This work extends the rich physical phenomenology of tilted one-dimensional lattice systems in a scenario of many interacting quantum particles, the so-called many-body Wannier-Stark system. The authors acknownledge the finantial support of the Universidad del Valle (project CI 7996). C. A. Parra-Murillo greatfully acknowledges the financial support of COLCIENCIAS (Grant 656).