WorldWideScience

Sample records for polar terrestrial arthropods

  1. Traumatic insemination in terrestrial arthropods.

    Science.gov (United States)

    Tatarnic, Nikolai J; Cassis, Gerasimos; Siva-Jothy, Michael T

    2014-01-01

    Traumatic insemination is a bizarre form of mating practiced by some invertebrates in which males use hypodermic genitalia to penetrate their partner's body wall during copulation, frequently bypassing the female genital tract and ejaculating into their blood system. The requirements for traumatic insemination to evolve are stringent, yet surprisingly it has arisen multiple times within invertebrates. In terrestrial arthropods traumatic insemination is most prevalent in the true bug infraorder Cimicomorpha, where it has evolved independently at least three times. Traumatic insemination is thought to occur in the Strepsiptera and has recently been recorded in fruit fly and spider lineages. We review the putative selective pressures that may have led to the evolution of traumatic insemination across these lineages, as well as the pressures that continue to drive divergence in male and female reproductive morphology and behavior. Traumatic insemination mechanisms and attributes are compared across independent lineages.

  2. A molecular palaeobiological exploration of arthropod terrestrialization

    Science.gov (United States)

    Carton, Robert; Edgecombe, Gregory D.

    2016-01-01

    Understanding animal terrestrialization, the process through which animals colonized the land, is crucial to clarify extant biodiversity and biological adaptation. Arthropoda (insects, spiders, centipedes and their allies) represent the largest majority of terrestrial biodiversity. Here we implemented a molecular palaeobiological approach, merging molecular and fossil evidence, to elucidate the deepest history of the terrestrial arthropods. We focused on the three independent, Palaeozoic arthropod terrestrialization events (those of Myriapoda, Hexapoda and Arachnida) and showed that a marine route to the colonization of land is the most likely scenario. Molecular clock analyses confirmed an origin for the three terrestrial lineages bracketed between the Cambrian and the Silurian. While molecular divergence times for Arachnida are consistent with the fossil record, Myriapoda are inferred to have colonized land earlier, substantially predating trace or body fossil evidence. An estimated origin of myriapods by the Early Cambrian precedes the appearance of embryophytes and perhaps even terrestrial fungi, raising the possibility that terrestrialization had independent origins in crown-group myriapod lineages, consistent with morphological arguments for convergence in tracheal systems. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325830

  3. The incidence of bacterial endosymbionts in terrestrial arthropods

    Science.gov (United States)

    Weinert, Lucy A.; Araujo-Jnr, Eli V.; Ahmed, Muhammad Z.; Welch, John J.

    2015-01-01

    Intracellular endosymbiotic bacteria are found in many terrestrial arthropods and have a profound influence on host biology. A basic question about these symbionts is why they infect the hosts that they do, but estimating symbiont incidence (the proportion of potential host species that are actually infected) is complicated by dynamic or low prevalence infections. We develop a maximum-likelihood approach to estimating incidence, and testing hypotheses about its variation. We apply our method to a database of screens for bacterial symbionts, containing more than 3600 distinct arthropod species and more than 150 000 individual arthropods. After accounting for sampling bias, we estimate that 52% (CIs: 48–57) of arthropod species are infected with Wolbachia, 24% (CIs: 20–42) with Rickettsia and 13% (CIs: 13–55) with Cardinium. We then show that these differences stem from the significantly reduced incidence of Rickettsia and Cardinium in most hexapod orders, which might be explained by evolutionary differences in the arthropod immune response. Finally, we test the prediction that symbiont incidence should be higher in speciose host clades. But while some groups do show a trend for more infection in species-rich families, the correlations are generally weak and inconsistent. These results argue against a major role for parasitic symbionts in driving arthropod diversification. PMID:25904667

  4. The incidence of bacterial endosymbionts in terrestrial arthropods.

    Science.gov (United States)

    Weinert, Lucy A; Araujo-Jnr, Eli V; Ahmed, Muhammad Z; Welch, John J

    2015-05-22

    Intracellular endosymbiotic bacteria are found in many terrestrial arthropods and have a profound influence on host biology. A basic question about these symbionts is why they infect the hosts that they do, but estimating symbiont incidence (the proportion of potential host species that are actually infected) is complicated by dynamic or low prevalence infections. We develop a maximum-likelihood approach to estimating incidence, and testing hypotheses about its variation. We apply our method to a database of screens for bacterial symbionts, containing more than 3600 distinct arthropod species and more than 150 000 individual arthropods. After accounting for sampling bias, we estimate that 52% (CIs: 48-57) of arthropod species are infected with Wolbachia, 24% (CIs: 20-42) with Rickettsia and 13% (CIs: 13-55) with Cardinium. We then show that these differences stem from the significantly reduced incidence of Rickettsia and Cardinium in most hexapod orders, which might be explained by evolutionary differences in the arthropod immune response. Finally, we test the prediction that symbiont incidence should be higher in speciose host clades. But while some groups do show a trend for more infection in species-rich families, the correlations are generally weak and inconsistent. These results argue against a major role for parasitic symbionts in driving arthropod diversification. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. A molecular palaeobiological exploration of arthropod terrestrialization

    DEFF Research Database (Denmark)

    Lozano-Fernandez, Jesus; Carton, Robert; Tanner, Alastair R.

    2016-01-01

    to the colonization of land is the most likely scenario.Molecular clock analyses confirmed an origin for the three terrestrial lineages bracketed between the Cambrian and the Silurian. While molecular divergence times for Arachnida are consistent with the fossil record,Myriapoda are inferred to have colonized land...... earlier, substantially predating trace or body fossil evidence. An estimated origin of myriapods by the Early Cambrian precedes the appearance of embryophytes and perhaps even terrestrial fungi, raising the possibility that terrestrialization had independent origins in crown-group myriapod lineages......, consistent with morphological arguments for convergence in tracheal systems. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’....

  6. Non-volant modes of migration in terrestrial arthropods

    Directory of Open Access Journals (Sweden)

    Reynolds Don R.

    2014-01-01

    Full Text Available Animal migration is often defined in terms appropriate only to the ‘to-and-fro’ movements of large, charismatic (and often vertebrate species. However, like other important biological processes, the definition should apply over as broad a taxonomic range as possible in order to be intellectually satisfying. Here we illustrate the process of migration in insects and other terrestrial arthropods (e.g. arachnids, myriapods, and non-insect hexapods but provide a different perspective by excluding the ‘typical’ mode of migration in insects, i.e. flapping flight. Instead, we review non-volant migratory movements, including: aerial migration by wingless species, pedestrian and waterborne migration, and phoresy. This reveals some fascinating and sometimes bizarre morphological and behavioural adaptations to facilitate movement. We also outline some innovative modelling approaches exploring the interactions between atmospheric transport processes and biological factors affecting the ‘dispersal kernels’ of wingless arthropods

  7. Importance of terrestrial arthropods as subsidies in lowland Neotropical rain forest stream ecosystems

    Science.gov (United States)

    Small, Gaston E.; Torres, Pedro J.; Schwizer, Lauren M.; Duff, John H.; Pringle, Catherine M.

    2013-01-01

    The importance of terrestrial arthropods has been documented in temperate stream ecosystems, but little is known about the magnitude of these inputs in tropical streams. Terrestrial arthropods falling from the canopy of tropical forests may be an important subsidy to tropical stream food webs and could also represent an important flux of nitrogen (N) and phosphorus (P) in nutrient-poor headwater streams. We quantified input rates of terrestrial insects in eight streams draining lowland tropical wet forest in Costa Rica. In two focal headwater streams, we also measured capture efficiency by the fish assemblage and quantified terrestrially derived N- and P-excretion relative to stream nutrient uptake rates. Average input rates of terrestrial insects ranged from 5 to 41 mg dry mass/m2/d, exceeding previous measurements of aquatic invertebrate secondary production in these study streams, and were relatively consistent year-round, in contrast to values reported in temperate streams. Terrestrial insects accounted for half of the diet of the dominant fish species, Priapicthys annectens. Although terrestrially derived fish excretion was found to be a small flux relative to measured nutrient uptake rates in the focal streams, the efficient capture and processing of terrestrial arthropods by fish made these nutrients available to the local stream ecosystem. This aquatic-terrestrial linkage is likely being decoupled by deforestation in many tropical regions, with largely unknown but potentially important ecological consequences.

  8. Determinants of terrestrial arthropod community composition at Cape Hallett, Antarctica

    CSIR Research Space (South Africa)

    Sinclair, BJ

    2006-09-01

    Full Text Available in 2002 (http://www.cep.aq/apa/aspa/sites/aspa106/index.html), such that the entire penguin colony and algal flats areas and a significant proportion of the scree slope habitats are now protected as ASPA 106. Site mapping All distributions and maps... will not necessarily protect the arthropod fauna. However, recent changes to the protected area at Cape Hallett have moved the emphasis to protection of breeding birds at the site (http://www.cep.aq/apa/aspa/sites/ aspa106/index.html). The revized management plan has...

  9. High spatial variation in terrestrial arthropod species diversity and composition near the Greenland ice cap

    DEFF Research Database (Denmark)

    Hansen, Rikke Reisner; Hansen, Oskar Liset Pryds; Bowden, Joseph James

    2016-01-01

    conclude that Arctic arthropod species assemblages vary substantially over short distances due to local soil characteristics, while regional variation in the species pool is likely influenced by geographic barriers, i.e., inland ice sheet, glaciers, mountains and large water bodies. In order to predict......Arthropods form a major part of the terrestrial species diversity in the Arctic, and are particularly sensitive to temporal changes in the abiotic environment. It is assumed that most Arctic arthropods are habitat generalists and that their diversity patterns exhibit low spatial variation....... The empirical basis for this assumption, however, is weak. We examine the degree of spatial variation in species diversity and assemblage structure among five habitat types at two sites of similar abiotic conditions and plant species composition in southwest Greenland, using standardized field collection...

  10. Extreme Arthropods: Exploring Evolutionary Adaptations to Polar and Temperate Deserts

    Science.gov (United States)

    Sandro, Luke; Constible, Juanita M.; Lee, Richard E., Jr.

    2007-01-01

    In this activity, Namib and Antarctic arthropods are used to illustrate several important biological principles. Among these are the key ideas that form follows function and that the environment drives evolution. In addition, students will discover that the climates of the Namib Desert and the Antarctic Peninsula are similar in several ways, and…

  11. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods.

    Science.gov (United States)

    Stork, Nigel E; McBroom, James; Gely, Claire; Hamilton, Andrew J

    2015-06-16

    It has been suggested that we do not know within an order of magnitude the number of all species on Earth [May RM (1988) Science 241(4872):1441-1449]. Roughly 1.5 million valid species of all organisms have been named and described [Costello MJ, Wilson S, Houlding B (2012) Syst Biol 61(5):871-883]. Given Kingdom Animalia numerically dominates this list and virtually all terrestrial vertebrates have been described, the question of how many terrestrial species exist is all but reduced to one of how many arthropod species there are. With beetles alone accounting for about 40% of all described arthropod species, the truly pertinent question is how many beetle species exist. Here we present four new and independent estimates of beetle species richness, which produce a mean estimate of 1.5 million beetle species. We argue that the surprisingly narrow range (0.9-2.1 million) of these four autonomous estimates--derived from host-specificity relationships, ratios with other taxa, plant:beetle ratios, and a completely novel body-size approach--represents a major advance in honing in on the richness of this most significant taxon, and is thus of considerable importance to the debate on how many species exist. Using analogous approaches, we also produce independent estimates for all insects, mean: 5.5 million species (range 2.6-7.8 million), and for terrestrial arthropods, mean: 6.8 million species (range 5.9-7.8 million), which suggest that estimates for the world's insects and their relatives are narrowing considerably.

  12. Uptake of Cadmium, Copper, Lead, and Zinc from Sediments by an Aquatic Macrophyte and by Terrestrial Arthropods in a Freshwater Wetland Ecosystem.

    Science.gov (United States)

    Kim, Heung-Tae; Kim, Jae Geun

    2016-08-01

    The objective of this study was to investigate trace-metal [cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn)] biotransference and biomagnification in terrestrial biota at different trophic levels (primary producer-top predator) of a wetland ecosystem. We investigated whether metal concentrations in the sediment are reflected in terrestrial arthropods and aquatic plants. We sampled the floating-leaved plant Trapa japonica; its species-specific primary consumer, the leaf beetle Galerucella nipponensis; and two predatory arthropods (the water strider Gerris sp. and the wolf spider Arctosa sp.) from three wetlands with different sedimentary metal concentrations. The δ(13)C and δ(15)N signatures in the trophic link between the plants and the leaf beetles supported the specificity of their feeding relationship. The stable isotope signatures indicate that the leaf beetle could be an important link in the trophic transfer of the metals. Transference factors (TFs) were 1 for all biota, and the concentrations were positively correlated with the trophic levels. Thus, there may be Cu and Zn biomagnification in the arthropods. We noted TF 1 among the arthropods. Therefore, Cd is probably not biomagnified between T. japonica and G. nipponensis, but it might be biomagnified in the arthropods. The metal burden in terrestrial arthropods may also be influenced by uptake from the sediment by aquatic plants.

  13. Monitoring and modeling terrestrial arthropod diversity on the Kenai National Wildlife Refuge

    Science.gov (United States)

    Matthew L. Bowser; John M. Morton

    2009-01-01

    The primary purpose of the Kenai National Wildlife Refuge (KENWR) is to "conserve fish and wildlife populations in their natural diversity," where "fish and wildlife" explicitly includes arthropods. To this end, we developed a Long Term Ecological Monitoring Program (LTEMP), a collaborative effort with the USDA Forest Inventory and Analysis (FIA)...

  14. Mercury Concentration in the Tissue of Terrestrial Arthropods from the Central California Coast

    Science.gov (United States)

    Ortiz, C.; Weiss-Penzias, P. S.; Flegal, A. R.

    2012-12-01

    The primary goal of this project was to obtain a baseline understanding and investigate the concentration of mercury (Hg) in the tissue of arthropods in coastal California. This region receives significant input of fog which may contain enhanced levels of Hg. Currently there is a lack of data on Hg concentration in the tissue of arthropods (Insecta, Malacostraca, and Arachnida). The sample collection sites were Elkhorn Slough Estuarine Reserve in Moss Landing, and the University of California Santa Cruz (UCSC) campus. Samples collected between February and March, 2012 had total Hg (HgT) concentrations in dry weight that ranged from 27 - 39 ng/g in the Jerusalem cricket (Orthoptera Stenopelmatidae); 80 - 110 ng/g in the camel cricket (Orthoptera Rhaphidophoridae); 21 - 219 ng/g in the ground beetle (Coleoptera Carabidae); 100 - 228 ng/g in the pill bug (Isopoda Armadillidiidae); and 285 - 423 ng/g in the wolf spider (Araneae Lycosidae). Monomethyl mercury (MMHg) concentrations in dry weight were determine to be 4.3 -28.2 ng/g for the ground beetle; 45.5 - 87.8 ng/g for the pill bug, and 252.3 - 293.7 ng/g for the wolf spider. Samples collected in July, 2012 had HgT concentrations in dry weight that ranged from 110 - 168 ng/g in the camel cricket; 337 - 562 ng/g in the ground beetle; 25 - 227 ng/g in the pill bug; and 228 - 501 ng/g in the wolf spider. The preliminary data revealed an 18% increase in the concentration of HgT for wolf spiders, and a 146% increase for ground beetles in the summer when compared to those concentrations measured in the spring. It is hypothesized that coastal fog may be a contributor to this increase of Hg concentration in coastal California arthropods.

  15. Factors influencing aquatic-to-terrestrial contaminant transport to terrestrial arthropod consumers in a multiuse river system.

    Science.gov (United States)

    Alberts, Jeremy M; Sullivan, S Mažeika P

    2016-06-01

    Emerging aquatic insects are important vectors of contaminant transfer from aquatic to terrestrial food webs. However, the environmental factors that regulate contaminant body burdens in nearshore terrestrial consumers remain largely unexplored. We investigated the relative influences of riparian landscape composition (i.e., land use and nearshore vegetation structure) and contaminant flux via the emergent aquatic insect subsidy on selenium (Se) and mercury (Hg) body burdens of riparian ants (Formica subsericea) and spiders of the family Tetragnathidae along 11 river reaches spanning an urban-rural land-use gradient in Ohio, USA. Model-selection results indicated that fine-scale land cover (e.g., riparian zone width, shrub cover) in the riparian zone was positively associated with reach-wide body burdens of Se and Hg in both riparian F. subsericea and tetragnathid spiders (i.e., total magnitude of Hg and Se concentrations in ant and spider populations, respectively, for each reach). River distance downstream of Columbus, Ohio - where study reaches were impounded and flow through a large urban center - was also implicated as an important factor. Although stable-isotope analysis suggested that emergent aquatic insects were likely vectors of Se and Hg to tetragnathid spiders (but not to F. subsericea), emergent insect contaminant flux did not emerge as a significant predictor for either reach-wide body burdens of spider Hg or Se. Improved understanding of the pathways and influences that control aquatic-to-terrestrial contaminant transport will be critical for effective risk management and remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Trophic disruption: a meta-analysis of how habitat fragmentation affects resource consumption in terrestrial arthropod systems.

    Science.gov (United States)

    Martinson, Holly M; Fagan, William F

    2014-09-01

    Habitat fragmentation is a complex process that affects ecological systems in diverse ways, altering everything from population persistence to ecosystem function. Despite widespread recognition that habitat fragmentation can influence food web interactions, consensus on the factors underlying variation in the impacts of fragmentation across systems remains elusive. In this study, we conduct a systematic review and meta-analysis to quantify the effects of habitat fragmentation and spatial habitat structure on resource consumption in terrestrial arthropod food webs. Across 419 studies, we found a negative overall effect of fragmentation on resource consumption. Variation in effect size was extensive but predictable. Specifically, resource consumption was reduced on small, isolated habitat fragments, higher at patch edges, and neutral with respect to landscape-scale spatial variables. In general, resource consumption increased in fragmented settings for habitat generalist consumers but decreased for specialist consumers. Our study demonstrates widespread disruption of trophic interactions in fragmented habitats and describes variation among studies that is largely predictable based on the ecological traits of the interacting species. We highlight future prospects for understanding how changes in spatial habitat structure may influence trophic modules and food webs. © 2014 John Wiley & Sons Ltd/CNRS.

  17. Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities?

    Science.gov (United States)

    Rode, Karyn D.; Robbins, Charles T.; Nelson, Lynne; Amstrup, Steven C.

    2015-01-01

    Increased land use by polar bears (Ursus maritimus) due to climate-change-induced reduction of their sea-ice habitat illustrates the impact of climate change on species distributions and the difficulty of conserving a large, highly specialized carnivore in the face of this global threat. Some authors have suggested that terrestrial food consumption by polar bears will help them withstand sea-ice loss as they are forced to spend increasing amounts of time on land. Here, we evaluate the nutritional needs of polar bears as well as the physiological and environmental constraints that shape their use of terrestrial ecosystems. Only small numbers of polar bears have been documented consuming terrestrial foods even in modest quantities. Over much of the polar bear's range, limited terrestrial food availability supports only low densities of much smaller, resident brown bears (Ursus arctos), which use low-quality resources more efficiently and may compete with polar bears in these areas. Where consumption of terrestrial foods has been documented, polar bear body condition and survival rates have declined even as land use has increased. Thus far, observed consumption of terrestrial food by polar bears has been insufficient to offset lost ice-based hunting opportunities but can have ecological consequences for other species. Warming-induced loss of sea ice remains the primary threat faced by polar bears.

  18. Segment polarity gene expression in a myriapod reveals conserved and diverged aspects of early head patterning in arthropods.

    Science.gov (United States)

    Janssen, Ralf

    2012-09-01

    Arthropods show two kinds of developmental mode. In the so-called long germ developmental mode (as exemplified by the fly Drosophila), all segments are formed almost simultaneously from a preexisting field of cells. In contrast, in the so-called short germ developmental mode (as exemplified by the vast majority of arthropods), only the anterior segments are patterned similarly as in Drosophila, and posterior segments are added in a single or double segmental periodicity from a posterior segment addition zone (SAZ). The addition of segments from the SAZ is controlled by dynamic waves of gene activity. Recent studies on a spider have revealed that a similar dynamic process, involving expression of the segment polarity gene (SPG) hedgehog (hh), is involved in the formation of the anterior head segments. The present study shows that in the myriapod Glomeris marginata the early expression of hh is also in a broad anterior domain, but this domain corresponds only to the ocular and antennal segment. It does not, like in spiders, represent expression in the posterior adjacent segment. In contrast, the anterior hh pattern is conserved in Glomeris and insects. All investigated myriapod SPGs and associated factors are expressed with delay in the premandibular (tritocerebral) segment. This delay is exclusively found in insects and myriapods, but not in chelicerates, crustaceans and onychophorans. Therefore, it may represent a synapomorphy uniting insects and myriapods (Atelocerata hypothesis), contradicting the leading opinion that suggests a sister relationship of crustaceans and insects (Pancrustacea hypothesis). In Glomeris embryos, the SPG engrailed is first expressed in the mandibular segment. This feature is conserved in representatives of all arthropod classes suggesting that the mandibular segment may have a special function in anterior patterning.

  19. Arthropod Genetics.

    Science.gov (United States)

    Zumwalde, Sharon

    2000-01-01

    Introduces an activity on arthropod genetics that involves phenotype and genotype identification of the creature and the construction process. Includes a list of required materials and directions to build a model arthropod. (YDS)

  20. Plants and arthropods: friends or foes ?

    NARCIS (Netherlands)

    Kant, M.; Williams, M.

    2011-01-01

    Plants are the most abundant terrestrial food sources, and arthropods (insects and arachnids) their most abundant consumers. For this reason plants are heavily defended by thorns, thick impervious coverings, and extraordinary toxins. However, plant fitness also depends upon alliances with arthropods

  1. Arthropod diversity in a tropical forest

    DEFF Research Database (Denmark)

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe

    2012-01-01

    Most eukaryotic organisms are arthropods. Yet, their diversity in rich terrestrial ecosystems is still unknown. Here we produce tangible estimates of the total species richness of arthropods in a tropical rainforest. Using a comprehensive range of structured protocols, we sampled the phylogenetic......,000 arthropod species. Notably, just 1 hectare of rainforest yields >60% of the arthropod biodiversity held in the wider landscape. Models based on plant diversity fitted the accumulated species richness of both herbivore and nonherbivore taxa exceptionally well. This lends credence to global estimates...

  2. Costs of locomotion in polar bears: when do the costs outweigh the benefits of chasing down terrestrial prey?

    Science.gov (United States)

    Gormezano, Linda J; McWilliams, Scott R; Iles, David T; Rockwell, Robert F

    2016-01-01

    Trade-offs between locomotory costs and foraging gains are key elements in determining constraints on predator-prey interactions. One intriguing example involves polar bears pursuing snow geese on land. As climate change forces polar bears to spend more time ashore, they may need to expend more energy to obtain land-based food. Given that polar bears are inefficient at terrestrial locomotion, any extra energy expended to pursue prey could negatively impact survival. However, polar bears have been regularly observed engaging in long pursuits of geese and other land animals, and the energetic worth of such behaviour has been repeatedly questioned. We use data-driven energetic models to examine how energy expenditures vary across polar bear mass and speed. For the first time, we show that polar bears in the 125-235 kg size range can profitably pursue geese, especially at slower speeds. We caution, however, that heat build-up may be the ultimate limiting factor in terrestrial chases, especially for larger bears, and this limit would be reached more quickly with warmer environmental temperatures.

  3. Anthropogenic noise changes arthropod abundances.

    Science.gov (United States)

    Bunkley, Jessie P; McClure, Christopher J W; Kawahara, Akito Y; Francis, Clinton D; Barber, Jesse R

    2017-05-01

    Anthropogenic noise is a widespread and growing form of sensory pollution associated with the expansion of human infrastructure. One specific source of constant and intense noise is that produced by compressors used for the extraction and transportation of natural gas. Terrestrial arthropods play a central role in many ecosystems, and given that numerous species rely upon airborne sounds and substrate-borne vibrations in their life histories, we predicted that increased background sound levels or the presence of compressor noise would influence their distributions. In the second largest natural gas field in the United States (San Juan Basin, New Mexico, USA), we assessed differences in the abundances of terrestrial arthropod families and community structure as a function of compressor noise and background sound level. Using pitfall traps, we simultaneously sampled five sites adjacent to well pads that possessed operating compressors, and five alternate, quieter well pad sites that lacked compressors, but were otherwise similar. We found a negative association between sites with compressor noise or higher levels of background sound and the abundance of five arthropod families and one genus, a positive relationship between loud sites and the abundance of one family, and no relationship between noise level or compressor presence and abundance for six families and two genera. Despite these changes, we found no evidence of community turnover as a function of background sound level or site type (compressor and noncompressor). Our results indicate that anthropogenic noise differentially affects the abundances of some arthropod families. These preliminary findings point to a need to determine the direct and indirect mechanisms driving these observed responses. Given the diverse and important ecological functions provided by arthropods, changes in abundances could have ecological implications. Therefore, we recommend the consideration of arthropods in the environmental

  4. Arthropods (http://www.iaees.org/publications/journals/arthropods/online-version.asp

    Directory of Open Access Journals (Sweden)

    arthropods@iaees.org

    Full Text Available Arthropods ISSN 2224-4255 URL: http://www.iaees.org/publications/journals/arthropods/online-version.asp RSS: http://www.iaees.org/publications/journals/arthropods/rss.xml E-mail: arthropods@iaees.org Editor-in-Chief: WenJun Zhang Aims and Scope ARTHROPODS (ISSN 2224-4255 is an international journal devoted to the publication of articles on various aspects of arthropods, e.g., ecology, biogeography, systematics, biodiversity (species diversity, genetic diversity, et al., conservation, control, etc. The journal provides a forum for examining the importance of arthropods in biosphere (both terrestrial and marine ecosystems and human life in such fields as agriculture, forestry, fishery, environmental management and human health. The scope of Arthropods is wide and embraces all arthropods-insects, arachnids, crustaceans, centipedes, millipedes, and other arthropods. Articles/short communications on new taxa (species, genus, families, orders, etc. and new records of arthropods are particularly welcome. Authors can submit their works to the email box of this journal, arthropods@iaees.org. All manuscripts submitted to this journal must be previously unpublished and may not be considered for publication elsewhere at any time during review period of this journal. Authors are asked to read Author Guidelines before submitting manuscripts. In addition to free submissions from authors around the world, special issues are also accepted. The organizer of a special issue can collect submissions (yielded from a research project, a research group, etc. on a specific research topic, or submissions of a scientific conference for publication of special issue.

  5. The functional microbiome of arthropods.

    Science.gov (United States)

    Degli Esposti, Mauro; Martinez Romero, Esperanza

    2017-01-01

    Many studies on the microbiome of animals have been reported but a comprehensive analysis is lacking. Here we present a meta-analysis on the microbiomes of arthropods and their terrestrial habitat, focusing on the functional profile of bacterial communities derived from metabolic traits that are essential for microbial life. We report a detailed analysis of probably the largest set of biochemically defined functional traits ever examined in microbiome studies. This work deals with the phylum proteobacteria, which is usually dominant in marine and terrestrial environments and covers all functions associated with microbiomes. The considerable variation in the distribution and abundance of proteobacteria in microbiomes has remained fundamentally unexplained. This analysis reveals discrete functional groups characteristic for adaptation to anaerobic conditions, which appear to be defined by environmental filtering of taxonomically related taxa. The biochemical diversification of the functional groups suggests an evolutionary trajectory in the structure of arthropods' microbiome, from metabolically versatile to specialized proteobacterial organisms that are adapted to complex environments such as the gut of social insects. Bacterial distribution in arthropods' microbiomes also shows taxonomic clusters that do not correspond to functional groups and may derive from other factors, including common contaminants of soil and reagents.

  6. Diversity and dispersal capacities of a terrestrial algal genus Klebsormidium (Streptophyta) in polar regions

    Czech Academy of Sciences Publication Activity Database

    Ryšánek, D.; Elster, Josef; Kováčik, L.; Škaloud, P.

    2016-01-01

    Roč. 92, č. 4 (2016), s. 1-9, č. článku fiw039. ISSN 0168-6496 Institutional support: RVO:67985939 Keywords : gene tic diversity * Klebsormidium * phylogeography * polar regions Subject RIV: EH - Ecology, Behaviour Impact factor: 3.720, year: 2016

  7. Comparative Exploration of the Structure-Activity Space of Clonedα-Like Octopamine Receptors from a Marine and a Terrestrial Arthropod.

    Science.gov (United States)

    Dalwadi, Dhwanil A; Schetz, John A

    2017-09-01

    The α -like octopamine receptors (OctR) are believed to be the evolutionary precursor to the vertebrate α 2 -adrenergic receptors ( α 2 -ARs) based upon sequence similarity and the ability to interact with norepinephrine and a number of compounds that bind with high affinity to α 2 -ARs. Barnacles and fruit flies are two prominent model marine and terrestrial representatives of the Arthropoda phylum, and although α -like OctRs have been cloned from Balanus improvisus (BiOctR) and Drosophila melanogaster (DmOctR), little is known about the structure-activity space for these important species. A diverse panel of 22 probes spanning different structural classes were employed to interrogate the structure-activity of the BiOctR and DmOctR. While BiOctR and DmOctR exhibited similar functional profiles for mammalian biogenic amine G protein-coupled receptor agonists and antagonists, some ligands had dramatically different mechanisms of action. For instance, significant differences in the efficacy for some agonists were observed, including that vertebrate biogenic amines structurally related to octopamine acted as superagonists at the DmOctR but partial agonists at the BiOctR, and the two species diverged in their sensitivities to the α 2 -AR antagonist [ 3 H]rauwolscine. Furthermore, sodium enhanced [ 3 H]rauwolscine's interactions with the BiOctR, but not at a vertebrate α 2 -AR. Molecular mechanistic studies indicate that rauwolscine interacts with the BiOctR, DmOctR, and α 2C -adrenergic receptor at an allosteric site. In addition, compounds that acted as agonists at a cloned α -like BiOctR also induced a hyperactivity response in Balanus cyprids mediated by the α -like OctR, suggesting that the receptor may serve as a higher throughput proxy for discovering compounds with potential cyprid deterrent properties. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Polarized radiative transfer through terrestrial atmosphere accounting for rotational Raman scattering

    Science.gov (United States)

    Lelli, Luca; Rozanov, Vladimir V.; Vountas, Marco; Burrows, John P.

    2017-10-01

    This paper is devoted to the phenomenological derivation of the vector radiative transfer equation (VRTE) accounting for first-order source terms of rotational Raman scattering (RRS), which is responsible for the in-filling of Fraunhofer and telluric lines by inelastic scattered photons. The implementation of the solution of the VRTE within the framework of the forward-adjoint method is given. For the Ca II and the oxygen A-band (O2 A) spectral windows, values of reflectance, degree of linear polarization (DOLP) and in-filling, in zenith and nadir geometry, are compared with results given in literature. Moreover, the dependence of these quantities on the columnar loading and vertical layering of non-spherical dust aerosols is investigated, together with their changes as function of two habits of ice crystals, modeled as regular icosahedra and severely rough aggregated columns. Bi-directional effects of an underlying polarizing surface are accounted for. The forward simulations are performed for one selected wavelength in the continuum and one in the strong absorption of the O2 A, as their combination can be exploited for the spaceborne retrieval of aerosol and cloud properties. For this reason, we also mimic seasonal maps of reflectance, DOLP and in-filling, that are prototypical measurements of the Ultraviolet-Visible-Near Infrared (UVN) sensor, at a nominal spectral resolution of 0.12 nm. UVN is the core payload of the upcoming European Sentinel-4 mission, that will observe Europe in geostationary orbit for air quality monitoring purposes. In general, in the core of O2 A, depending on the optical thickness and altitude of the scatterers, we find RRS-induced in-filling values ranging from 1.3% to 1.8%, while DOLP decreases by 1%. Conversely, while negligible differences of RRS in-filling are calculated with different ice crystal habits, the severely rough aggregated column model can reduce DOLP by a factor up to 10%. The UVN maps of in-filling show values varying

  9. Food sources of selected terrestrial cave arthropods

    Czech Academy of Sciences Publication Activity Database

    Smrž, J.; Kováč, L.; Mikeš, J.; Šustr, Vladimír; Lukešová, Alena; Tajovský, Karel; Nováková, Alena; Režňáková, P.

    2015-01-01

    Roč. 16, č. 1 (2015), s. 37-46 ISSN 1768-1448 Grant - others:Vega(SK) 1/0139/09 Institutional research plan: CEZ:AV0Z60660521 Institutional support: RVO:60077344 Keywords : Acari * caves * Collembola * Diplopoda * feeding habits * Isopoda Subject RIV: EG - Zoology

  10. Monitoring selected arthropods

    Science.gov (United States)

    R. Chris Stanton; David J. Horn; Foster F. Purrington; John W. Peacock; Eric H. Metzler

    2003-01-01

    Arthropod populations were sampled in four study areas in southern Ohio in 1995 to document patterns of arthropod diversity and establish a baseline dataset for long-term monitoring in mixed-oak forests. Pitfall, Malaise, and blacklight traps were operated in 12 treatment units from May through September. Several insect groups were selected for detailed study due to...

  11. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima

    NARCIS (Netherlands)

    Chipman, Ariel D; Ferrier, David E K; Brena, Carlo; Qu, Jiaxin; Hughes, Daniel S T; Schröder, Reinhard; Torres-Oliva, Montserrat; Znassi, Nadia; Jiang, Huaiyang; Almeida, Francisca C; Alonso, Claudio R; Apostolou, Zivkos; Aqrawi, Peshtewani; Arthur, Wallace; Barna, Jennifer C J; Blankenburg, Kerstin P; Brites, Daniela; Capella-Gutiérrez, Salvador; Coyle, Marcus; Dearden, Peter K; Du Pasquier, Louis; Duncan, Elizabeth J; Ebert, Dieter; Eibner, Cornelius; Erikson, Galina; Evans, Peter D; Extavour, Cassandra G; Francisco, Liezl; Gabaldón, Toni; Gillis, William J; Goodwin-Horn, Elizabeth A; Green, Jack E; Griffiths-Jones, Sam; Grimmelikhuijzen, Cornelis J P; Gubbala, Sai; Guigó, Roderic; Han, Yi; Hauser, Frank; Havlak, Paul; Hayden, Luke; Helbing, Sophie; Holder, Michael; Hui, Jerome H L; Hunn, Julia P; Hunnekuhl, Vera S; Jackson, LaRonda; Javaid, Mehwish; Jhangiani, Shalini N; Jiggins, Francis M; Jones, Tamsin E; Kaiser, Tobias S; Kalra, Divya; Kenny, Nathan J; Korchina, Viktoriya; Kovar, Christie L; Kraus, F Bernhard; Lapraz, François; Lee, Sandra L; Lv, Jie; Mandapat, Christigale; Manning, Gerard; Mariotti, Marco; Mata, Robert; Mathew, Tittu; Neumann, Tobias; Newsham, Irene; Ngo, Dinh N; Ninova, Maria; Okwuonu, Geoffrey; Ongeri, Fiona; Palmer, William J; Patil, Shobha; Patraquim, Pedro; Pham, Christopher; Pu, Ling-Ling; Putman, Nicholas H; Rabouille, Catherine; Ramos, Olivia Mendivil; Rhodes, Adelaide C; Robertson, Helen E; Robertson, Hugh M; Ronshaugen, Matthew; Rozas, Julio; Saada, Nehad; Sánchez-Gracia, Alejandro; Scherer, Steven E; Schurko, Andrew M; Siggens, Kenneth W; Simmons, DeNard; Stief, Anna; Stolle, Eckart; Telford, Maximilian J; Tessmar-Raible, Kristin; Thornton, Rebecca; van der Zee, Maurijn; von Haeseler, Arndt; Williams, James M; Willis, Judith H; Wu, Yuanqing; Zou, Xiaoyan; Lawson, Daniel; Muzny, Donna M; Worley, Kim C; Gibbs, Richard A; Akam, Michael; Richards, Stephen

    2014-01-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present

  12. Depletion of stratospheric ozone over the Antarctic and Arctic: Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview

    International Nuclear Information System (INIS)

    Rozema, Jelte; Boelen, Peter; Blokker, Peter

    2005-01-01

    Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to experimentally varied UV-B through supplementation or exclusion. In supplementation studies comparing ambient and above ambient UV-B, no effect on growth occurred. UV-B-induced DNA damage, as measured in polar bryophytes, is repaired overnight by photoreactivation. With UV exclusion, growth at near ambient may be less than at below ambient UV-B levels, which relates to the UV response curve of polar plants. UV-B screening foils also alter PAR, humidity, and temperature and interactions of UV with environmental factors may occur. Plant phenolics induced by solar UV-B, as in pollen, spores and lignin, may serve as a climate proxy for past UV. Since the Antarctic and Arctic terrestrial ecosystems differ essentially (e.g. higher species diversity and more trophic interactions in the Arctic), generalization of polar plant responses to UV-B needs caution. - Polar plant responses to UV-B may be different in the Arctic than Antarctic regions

  13. Depletion of stratospheric ozone over the Antarctic and Arctic: Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview

    Energy Technology Data Exchange (ETDEWEB)

    Rozema, Jelte [Department of Systems Ecology, Institute of Ecological Science, Climate Centre, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam (Netherlands)]. E-mail: jelte.rozema@ecology.falw.vu.nl; Boelen, Peter [Department of Systems Ecology, Institute of Ecological Science, Climate Centre, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam (Netherlands); Blokker, Peter [Department of Systems Ecology, Institute of Ecological Science, Climate Centre, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam (Netherlands)

    2005-10-15

    Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to experimentally varied UV-B through supplementation or exclusion. In supplementation studies comparing ambient and above ambient UV-B, no effect on growth occurred. UV-B-induced DNA damage, as measured in polar bryophytes, is repaired overnight by photoreactivation. With UV exclusion, growth at near ambient may be less than at below ambient UV-B levels, which relates to the UV response curve of polar plants. UV-B screening foils also alter PAR, humidity, and temperature and interactions of UV with environmental factors may occur. Plant phenolics induced by solar UV-B, as in pollen, spores and lignin, may serve as a climate proxy for past UV. Since the Antarctic and Arctic terrestrial ecosystems differ essentially (e.g. higher species diversity and more trophic interactions in the Arctic), generalization of polar plant responses to UV-B needs caution. - Polar plant responses to UV-B may be different in the Arctic than Antarctic regions.

  14. The functional microbiome of arthropods

    Science.gov (United States)

    Martinez Romero, Esperanza

    2017-01-01

    Many studies on the microbiome of animals have been reported but a comprehensive analysis is lacking. Here we present a meta-analysis on the microbiomes of arthropods and their terrestrial habitat, focusing on the functional profile of bacterial communities derived from metabolic traits that are essential for microbial life. We report a detailed analysis of probably the largest set of biochemically defined functional traits ever examined in microbiome studies. This work deals with the phylum proteobacteria, which is usually dominant in marine and terrestrial environments and covers all functions associated with microbiomes. The considerable variation in the distribution and abundance of proteobacteria in microbiomes has remained fundamentally unexplained. This analysis reveals discrete functional groups characteristic for adaptation to anaerobic conditions, which appear to be defined by environmental filtering of taxonomically related taxa. The biochemical diversification of the functional groups suggests an evolutionary trajectory in the structure of arthropods’ microbiome, from metabolically versatile to specialized proteobacterial organisms that are adapted to complex environments such as the gut of social insects. Bacterial distribution in arthropods’ microbiomes also shows taxonomic clusters that do not correspond to functional groups and may derive from other factors, including common contaminants of soil and reagents. PMID:28475624

  15. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima

    DEFF Research Database (Denmark)

    Chipman, Ariel D.; Ferrier, David E.K.; Brena, Carlo

    2014-01-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We pres...

  16. How Did Arthropod Sesquiterpenoids and Ecdysteroids Arise? Comparison of Hormonal Pathway Genes in Noninsect Arthropod Genomes

    Science.gov (United States)

    Qu, Zhe; Kenny, Nathan James; Lam, Hon Ming; Chan, Ting Fung; Chu, Ka Hou; Bendena, William G.; Tobe, Stephen S.; Hui, Jerome Ho Lam

    2015-01-01

    The phylum Arthropoda contains the largest number of described living animal species, with insects and crustaceans dominating the terrestrial and aquatic environments, respectively. Their successful radiations have long been linked to their rigid exoskeleton in conjunction with their specialized endocrine systems. In order to understand how hormones can contribute to the evolution of these animals, here, we have categorized the sesquiterpenoid and ecdysteroid pathway genes in the noninsect arthropod genomes, which are known to play important roles in the regulation of molting and metamorphosis in insects. In our analyses, the majority of gene homologs involved in the biosynthetic, degradative, and signaling pathways of sesquiterpenoids and ecdysteroids can be identified, implying these two hormonal systems were present in the last common ancestor of arthropods. Moreover, we found that the “Broad-Complex” was specifically gained in the Pancrustacea, and the innovation of juvenile hormone (JH) in the insect linage correlates with the gain of the JH epoxidase (CYP15A1/C1) and the key residue changes in the binding domain of JH receptor (“Methoprene-tolerant”). Furthermore, the gain of “Phantom” differentiates chelicerates from the other arthropods in using ponasterone A rather than 20-hydroxyecdysone as molting hormone. This study establishes a comprehensive framework for interpreting the evolution of these vital hormonal pathways in these most successful animals, the arthropods, for the first time. PMID:26112967

  17. Terrestrial magnetosphere

    International Nuclear Information System (INIS)

    Pande, D.C.; Agarwal, D.C.

    1982-01-01

    This paper presents a review about terrestrial magnetosphere. During the last few years considerable investigation have been carried out about the properties of Solar Wind and its interaction with planetary magnetic fields. It is therefore of high importance to accumulate all the investigations in a comprehensive form. The paper reviews the property of earth's magnetosphere, magnetosheath, magneto pause, polar cusps, bow shook and plasma sheath. (author)

  18. Teaching Students about Biodiversity by Studying the Correlation between Plants & Arthropods

    Science.gov (United States)

    Richardson, Matthew L.; Hari, Janice

    2008-01-01

    On Earth there is a huge diversity of arthropods, many of which are highly adaptive and able to exploit virtually every terrestrial habitat. Because of their prevalence even in urban environments, they make an excellent model system for any life science class. Since plants also exploit virtually every terrestrial habitat, studying the relationship…

  19. RSS (http://www.iaees.org/publications/journals/arthropods/rss.xml

    Directory of Open Access Journals (Sweden)

    Arthropods (ISSN 2224-4255

    Full Text Available Arthropods ISSN 2224-4255 URL: http://www.iaees.org/publications/journals/arthropods/online-version.asp RSS: http://www.iaees.org/publications/journals/arthropods/rss.xml E-mail: arthropods@iaees.org Editor-in-Chief: WenJun Zhang Aims and Scope ARTHROPODS (ISSN 2224-4255 is an international journal devoted to the publication of articles on various aspects of arthropods, e.g., ecology, biogeography, systematics, biodiversity (species diversity, genetic diversity, et al., conservation, control, etc. The journal provides a forum for examining the importance of arthropods in biosphere (both terrestrial and marine ecosystems and human life in such fields as agriculture, forestry, fishery, environmental management and human health. The scope of Arthropods is wide and embraces all arthropods-insects, arachnids, crustaceans, centipedes, millipedes, and other arthropods. Articles/short communications on new taxa (species, genus, families, orders, etc. and new records of arthropods are particularly welcome. Authors can submit their works to the email box of this journal, arthropods@iaees.org. All manuscripts submitted to this journal must be previously unpublished and may not be considered for publication elsewhere at any time during review period of this journal. Authors are asked to read Author Guidelines before submitting manuscripts. In addition to free submissions from authors around the world, special issues are also accepted. The organizer of a special issue can collect submissions (yielded from a research project, a research group, etc. on a specific research topic, or submissions of a scientific conference for publication of special issue.

  20. Mineral cycling in soil and litter arthropod food chains. Progress report, November 1, 1980-October 31, 1981

    International Nuclear Information System (INIS)

    Crossley, D.A. Jr.

    1980-01-01

    Progress and current status are reported for research projects concerned with mineral element and nutrient dynamics in soil arthropod food chains. Research is performed within the larger context of terrestrial decomposition, in which soil arthropods may act as regulators of nutrient dynamics during decomposition. Research is measuring rates of nutrient accumulation and excretion by using radioactive tracer analogs of nutrients. This year, emphasis has been placed on field work in which soil arthropod population size and nutrients inputs were varied experimentally. The presence of microarthropods in field microcosms increased the mineralization of N and P in each case, but rates were not correlated with arthropod densities. Experiments recently started are using both arthropod and microfloral inhibitors, in open systems on the forest floor, with the objective of quantifying arthropod enhancement of microbial immobilization of nutrients

  1. Household Arthropod Allergens in Korea

    Science.gov (United States)

    Jeong, Kyoung Yong

    2009-01-01

    Arthropods are important in human health, which can transmit pathogens to humans, parasitize, or produce important allergens. Allergy prevalence becomes higher in Korea recently as well as other developed countries in contrast to a decrease of infectious diseases. Allergic diseases caused by household arthropods have increased dramatically during the last few decades since human beings spend more their time for indoor activities in modernized life style. Household arthropods are one of the most common causes of allergic diseases. Biological characterization of household arthropods and researches on their allergens will provide better understanding of the pathogenesis of allergic diseases and suggest new therapeutic ways. Therefore, studies on arthropods of allergenic importance can be considered one of the major research areas in medical arthropodology and parasitology. Here, the biology of several household arthropods, including house dust mites and cockroaches, the 2 most well known arthropods living indoor together with humans worldwide, and characteristics of their allergens, especially the research activities on these allergens performed in Korea, are summarized. PMID:19885330

  2. From the sun's corona to the polar cusp aurora above Svalbard. Interplanetary and terrestrial effects of a coronal transient

    International Nuclear Information System (INIS)

    Sandholt, P.E.

    1986-08-01

    The report presents a study of the flare-related coronal transient of Nov. 27, 1979, with the resulting interplanetary (IP) shock, and the associated auroral and magnetic effects that were observed from the ground 72 hours after the initial coronal brightening. The observed disturbance of the interplanetary magnetic field (IMF) resulting from the coronal mass ejection is discussed in relation to a model discription of flare-related perturbations of the solar current sheet. The power transfer from the solar wind to the magnetosphere did not rise above the treshold value for magnetospheric strom triggering in this case. thus, the IP shock was not followed by a major storm. However, distinct signatures related to the IP disturbance were observed in the polar cusp aurorae above Svaldbard and in the local magnetic field. The dynamical behaviour of the cusp aurora is discussed in relation to different models of plasma transfer across the dayside magnetopause, from the shocked solar wind to the magnetosphere. A detailed analysis of the available information from interplanetary space and the ground indicates that the main auroral dynamics observed in this case are related to localized, impulsive plasma injections associated with flux transfer events

  3. Polar ionic conductivity profile in fair weather conditions. Terrestrial test of the Huygens/Hasi-PWA instrument aboard the Comas Sola balloon

    Science.gov (United States)

    López-Moreno, J. J.; Molina-Cuberos, G. J.; Rodrigo, R.; Hamelin, M.; Schwingenschuh, K.

    2001-12-01

    The permittivity wave and altimetry (PWA) instrument is a part of the CASSINI/HUYGENS HASI experiment and was designed to determine the electrical parameters of the atmosphere of Titan in 2004. In December 1995, a balloon campaign was conducted in León, Spain, to test the HASI onboard hardware and software using a HUYGENS probe mock-up in an electromagnetic-disturbance-free environment (mainly from power emission lines at 50Hz). This work is concerned with the measurements of small ion polar conductivities and DC fields using the PWA relaxation probes (RP). The two RP electrodes were periodically set to +/-5V relative to the conductive surface of the mock-up and allowed to discharge in the surrounding atmosphere. The polar components of conductivity are calculated from the discharge time, and the DC field from the floating potential differences once the electrodes reach equilibrium. In spite of some observed effects, such as mock-up charging or oscillations in the measurement of potential, the conductivity measurements are coherent and in good agreement with the obtained results in other experiments. The conductivity data were collected in `fair-weather' conditions, up to 30km during a 4-h flight, every 72s, giving an altitude resolution better than 400m. We also discuss the DC field data that do not lead, in presence of charging effects, to a straightforward measurement of the natural DC field. The Comas Solá balloon flight, first real test of the PWA experiment in the terrestrial atmosphere, confirmed the validity of the ionic conductivity measurements but raised the problem of a reliable interpretation of the DC field.

  4. Horizontal Gene Transfer Contributes to the Evolution of Arthropod Herbivory.

    Science.gov (United States)

    Wybouw, Nicky; Pauchet, Yannick; Heckel, David G; Van Leeuwen, Thomas

    2016-06-27

    Within animals, evolutionary transition toward herbivory is severely limited by the hostile characteristics of plants. Arthropods have nonetheless counteracted many nutritional and defensive barriers imposed by plants and are currently considered as the most successful animal herbivores in terrestrial ecosystems. We gather a body of evidence showing that genomes of various plant feeding insects and mites possess genes whose presence can only be explained by horizontal gene transfer (HGT). HGT is the asexual transmission of genetic information between reproductively isolated species. Although HGT is known to have great adaptive significance in prokaryotes, its impact on eukaryotic evolution remains obscure. Here, we show that laterally transferred genes into arthropods underpin many adaptations to phytophagy, including efficient assimilation and detoxification of plant produced metabolites. Horizontally acquired genes and the traits they encode often functionally diversify within arthropod recipients, enabling the colonization of more host plant species and organs. We demonstrate that HGT can drive metazoan evolution by uncovering its prominent role in the adaptations of arthropods to exploit plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Diet-consumer nitrogen isotope fractionation for prolonged fasting arthropods.

    Science.gov (United States)

    Mizota, Chitoshi; Yamanaka, Toshiro

    2011-12-01

    Nitrogen acquisition for cellular metabolism during diapause is a primary concern for herbivorous arthropods. Analyses of naturally occurring stable isotopes of nitrogen help elucidate the mechanism. Relevant articles have cited (58 times up to mid-June 2011) anomalously elevated δ(15)N (per mil deviation of (15)N/(14)N, relative to atmospheric nitrogen=0 ‰) values (diet-consumer nitrogen isotope fractionation; up to 12 ‰) for a prolonged fasting raspberry beetle (Byturus tomentosus Degeer (Coleoptera: Byturidae)), which feeds on red raspberries (Rubus idaeus: δ(15)N= ~ +2 ‰). Biologists have hypothesised that extensive recycling of amino acid nitrogen is responsible for the prolonged fasting. Since this hypothesis was proposed in 1995, scientists have integrated biochemical and molecular knowledge to support the mechanism of prolonged diapausing of animals. To test the validity of the recycling hypothesis, we analysed tissue nitrogen isotope ratios for four Japanese arthropods: the shield bug Parastrachia japonensis Scott (Hemiptera: Cydnidae), the burrower bug Canthophorus niveimarginatus Scott (Hemiptera: Cydnidae), leaf beetle Gastrophysa atrocyanea Motschulsky (Coleoptera: Chrysomelidae) and the Japanese oak silkworm Antheraea yamamai (Lepidoptera: Saturniidae), all of which fast for more than 6 months as part of their life-history strategy. Resulting diet-consumer nitrogen isotope discrimination during fasting ranged from 0 to 7‰, as in many commonly known terrestrial arthropods. We conclude that prolonged fasting of arthropods does not always result in anomalous diet-consumer nitrogen isotope fractionation, since the recycling process is closed or nearly closed with respect to nitrogen isotopes.

  6. Arthropod prey for riparian associated birds in headwater forests of the Oregon Coast Range

    Science.gov (United States)

    Hagar, Joan C.; Li, Judith; Sobota, Janel; Jenkins, Stephanie

    2012-01-01

    Headwater riparian areas occupy a large proportion of the land base in Pacific Northwest forests, and thus are ecologically and economically important. Although a primary goal of management along small headwater streams is the protection of aquatic resources, streamside habitat also is important for many terrestrial wildlife species. However, mechanisms underlying the riparian associations of some terrestrial species have not been well studied, particularly for headwater drainages. We investigated the diets of and food availability for four bird species associated with riparian habitats in montane coastal forests of western Oregon, USA. We examined variation in the availability of arthropod prey as a function of distance from stream. Specifically, we tested the hypotheses that (1) emergent aquatic insects were a food source for insectivorous birds in headwater riparian areas, and (2) the abundances of aquatic and terrestrial arthropod prey did not differ between streamside and upland areas during the bird breeding season. We found that although adult aquatic insects were available for consumption throughout the study period, they represented a relatively small proportion of available prey abundance and biomass and were present in only 1% of the diet samples from only one of the four riparian-associated bird species. Nonetheless, arthropod prey, comprised primarily of insects of terrestrial origin, was more abundant in streamside than upland samples. We conclude that food resources for birds in headwater riparian areas are primarily associated with terrestrial vegetation, and that bird distributions along the gradient from streamside to upland may be related to variation in arthropod prey availability. Because distinct vegetation may distinguish riparian from upland habitats for riparian-associated birds and their terrestrial arthropod prey, we suggest that understory communities be considered when defining management zones for riparian habitat.

  7. Mineral cycling in soil and litter arthropod food chains. Progress report, November 1, 1981-January 31, 1983

    International Nuclear Information System (INIS)

    Crossley, D.A. Jr.

    1982-01-01

    Progress is reported for research projects on nutrient dynamics during terrestrial decomposition, as influenced by soil arthropods. Radioactive tracers are used as analogs of nutrients, to measure material movement along food chains and dynamics of processes during decomposition. Forest floor systems from which arthropods were excluded, or in which microfloral activity was depressed, trapped incoming nutrients from canopy throughfall at different rates. Faunal stimulation of microfloral activities could not be demonstrated, but drought conditions disturbed the experiment. Turnover measurements for radionuclides in collembolans are also reported, and compared with information on mites and other arthropods

  8. Watershed clearcutting and canopy arthropods

    Science.gov (United States)

    Barbara C. Reynolds; Timothy D. Schowalter; D.A. Crossley

    2014-01-01

    The southern Appalachian forests are home to myriad species of insects, spiders, and other arthropods. There are more than 4,000 invertebrate species know in the Great Smoky Mountains National Park , and easily a thousand insect species in the Coweeta basin alone. The forest environment, with its favorable microclimates and structural diversity, offers a large variety...

  9. Disturbance and recovery of salt marsh arthropod communities following BP Deepwater Horizon oil spill.

    Directory of Open Access Journals (Sweden)

    Brittany D McCall

    Full Text Available Oil spills represent a major environmental threat to coastal wetlands, which provide a variety of critical ecosystem services to humanity. The U.S. Gulf of Mexico is a hub of oil and gas exploration activities that historically have impacted intertidal habitats such as salt marsh. Following the BP Deepwater Horizon oil spill, we sampled the terrestrial arthropod community and marine invertebrates found in stands of Spartina alterniflora, the most abundant plant in coastal salt marshes. Sampling occurred in 2010 as oil was washing ashore and a year later in 2011. In 2010, intertidal crabs and terrestrial arthropods (insects and spiders were suppressed by oil exposure even in seemingly unaffected stands of plants; however, Littoraria snails were unaffected. One year later, crab and arthropods had largely recovered. Our work is the first attempt that we know of assessing vulnerability of the salt marsh arthropod community to oil exposure, and it suggests that arthropods are both quite vulnerable to oil exposure and quite resilient, able to recover from exposure within a year if host plants remain healthy.

  10. Cadmium and mercury effects on cellular immunity in terrestrial arthropods

    Energy Technology Data Exchange (ETDEWEB)

    Warren, J.E.; Klaine, S.J. [Inst. of Wildlife and Environmental Toxicology, Pendleton, SC (United States). Dept. of Environmental Toxicology

    1995-12-31

    The field cricket, Acheta domesticus, was used as a test organism to determine the effects of heavy metal exposure on cellular immunity. Insects were separated by sex and exposed to cadmium chloride or mercuric chloride at concentrations of 0, 2.5, and 5.0 ug/g. Exposures consisted of injecting the chemicals into the hemocoel of each insect on days 0, 2, and 4. Hemolymph was collected on day 7 of the study to determine total hemocyte counts, protein levels, and phenoloxidase activity in individual insects. Cadmium chloride decreased the total number of hemocytes in male crickets at 2.5 and 5.0 ug/g and in female crickets at 5.0 ug/g. Protein levels increased in a dose dependent manner in the males but only slightly increased in the females. Mercuric chloride caused a dose-dependent increase in total hemocytes in both male and female crickets. In addition, mercuric chloride caused a dose-dependent increase in protein levels in males but not females.

  11. Quantitative phase imaging of arthropods

    Science.gov (United States)

    Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel

    2015-01-01

    Abstract. Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy. PMID:26334858

  12. Quantitative phase imaging of arthropods

    Science.gov (United States)

    Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel

    2015-11-01

    Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy.

  13. Arthropods: Vectors of Disease Agents

    Science.gov (United States)

    1994-07-01

    African trypanosomiasis (sleep- Relationships between pathogens and a cycle of development or multipli- ing sickness) and American try- their vectors are...introduced cases of arthropods directly affect human of malaria. This is just a small per- this and other exotic diseases con- health. This article...diseases that are occasionally education credits, earned by complet- transmitted to humans . Tick-borne ing the Laboratory Medicine CE From the

  14. Arthropods of Rose Atoll with special reference to ants and Pulvinaria Urbicola Scales (Hempitera Coccidae) on Pisonia Grandis trees

    Science.gov (United States)

    Banko, Paul C.; Peck, Robert W.; Pendleton, Frank; Schmaedick, Mark; Ernsberger, Kelsie

    2014-01-01

    Rose Atoll, at the eastern end of the Samoan Archipelago, is a small but important refuge for seabirds, shorebirds, and sea turtles. While the vertebrate community is relatively well-studied, the terrestrial arthropod fauna, and its role in ecosystem function, are poorly known. Arthropods may be influencing the decline of Pisonia grandis, an ecologically important tree that once dominated the 6.6 ha of land on Rose Atoll. Reasons for the decline are not fully understood but a facultative relationship between two invasive arthropods, the soft scale Pulvinaria urbicola and ants, likely has contributed to tree death. The primary objectives of this study were to systematically survey the terrestrial arthropod fauna and identify ant species that tend scales on Pisonia. Using an array of standard arthropod collecting techniques, at least 73 species from 20 orders were identified, including nine ant species. Of the ants collected, only Tetramorium bicarinatum and T. simillimum were observed tending scales on Pisonia. No known natural enemies of Pulvinaria scales were found, suggesting little predation on scale populations. Treatment of Pisonia with the systemic insecticide imidacloprid failed to eliminate Pulvinaria scales, although short-term suppression apparently occurred. The arthropod fauna of Rose Atoll is dominated by exotic species that likely have a significant impact on the structure and function of the island’s ecosystem.

  15. Factors Influencing Arthropod Diversity on Green Roofs

    Directory of Open Access Journals (Sweden)

    Bracha Y. Schindler

    2011-01-01

    Full Text Available Green roofs have potential for providing substantial habitat to plants, birds, and arthropod species that are not well supported by other urban habitats. Whereas the plants on a typical green roof are chosen and planted by people, the arthropods that colonize it can serve as an indicator of the ability of this novel habitat to support a diverse community of organisms. The goal of this observational study was to determine which physical characteristics of a roof or characteristics of its vegetation correlate with arthropod diversity on the roof. We intensively sampled the number of insect families on one roof with pitfall traps and also measured the soil arthropod species richness on six green roofs in the Boston, MA area. We found that the number of arthropod species in soil, and arthropod families in pitfall traps, was positively correlated with living vegetation cover. The number of arthropod species was not significantly correlated with plant diversity, green roof size, distance from the ground, or distance to the nearest vegetated habitat from the roof. Our results suggest that vegetation cover may be more important than vegetation diversity for roof arthropod diversity, at least for the first few years after establishment. Additionally, we found that even green roofs that are small and isolated can support a community of arthropods that include important functional groups of the soil food web.

  16. Knowledge of Arthropod Carnivory and Herbivory: Factors Influencing Preservice Elementary Teacher's Attitudes and Beliefs toward Arthropods

    Science.gov (United States)

    Wagler, Ron; Wagler, Amy

    2013-01-01

    Human negativity toward arthropods has been well documented but the factors that contribute to this negativity have been elusive. This study explored knowledge of arthropod carnivory and herbivory as possible casual factors that contribute to the negative tendencies preservice elementary teachers have toward most arthropods. Specifically, this…

  17. Mineral cycling in soil and litter arthropod food chains. Progress report, November 1, 1979-October 31, 1980

    International Nuclear Information System (INIS)

    Crossley, D.A. Jr.

    1980-01-01

    Recent progress and current status are reported for research concerned with mineral element dynamics in soil arthropod food chains. Research is performed within the larger context of terrestrial decomposition systems, in which soil arthropods may act as regulators of nutrient dynamics during decomposition. Research is measuring rates of nutrient accumulation and excretion by using radioactive tracer techniques with radioactive analogs of nutrients. Experimental measurement of radioactive tracer excretion and nutrient element pools are reported for soil microarthropods, using new methods of counting and microprobe elemental analysis. Research on arthropod-fungal relations is utilizing high-efficiency extraction followed by dissection of 13 x 13 cm soil blocks. A two-component excretion model is reported for Cobalt-60 in earthworms (Eisenia foetida), demonstrating that no assimilation of cobalt occurs from the mineral soil fraction but is entirely from organic matter. Collection of data sets on soil arthropod communities and abundances is completed

  18. Mineral cycling in soil and litter arthropod food chains. Progress report, November 1, 1979-October 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Crossley, Jr, D A

    1980-08-01

    Recent progress and current status are reported for research concerned with mineral element dynamics in soil arthropod food chains. Research is performed within the larger context of terrestrial decomposition systems, in which soil arthropods may act as regulators of nutrient dynamics during decomposition. Research is measuring rates of nutrient accumulation and excretion by using radioactive tracer techniques with radioactive analogs of nutrients. Experimental measurement of radioactive tracer excretion and nutrient element pools are reported for soil microarthropods, using new methods of counting and microprobe elemental analysis. Research on arthropod-fungal relations is utilizing high-efficiency extraction followed by dissection of 13 x 13 cm soil blocks. A two-component excretion model is reported for Cobalt-60 in earthworms (Eisenia foetida), demonstrating that no assimilation of cobalt occurs from the mineral soil fraction but is entirely from organic matter. Collection of data sets on soil arthropod communities and abundances is completed.

  19. Building a DNA barcode library of Alaska's non-marine arthropods.

    Science.gov (United States)

    Sikes, Derek S; Bowser, Matthew; Morton, John M; Bickford, Casey; Meierotto, Sarah; Hildebrandt, Kyndall

    2017-03-01

    Climate change may result in ecological futures with novel species assemblages, trophic mismatch, and mass extinction. Alaska has a limited taxonomic workforce to address these changes. We are building a DNA barcode library to facilitate a metabarcoding approach to monitoring non-marine arthropods. Working with the Canadian Centre for DNA Barcoding, we obtained DNA barcodes from recently collected and authoritatively identified specimens in the University of Alaska Museum (UAM) Insect Collection and the Kenai National Wildlife Refuge collection. We submitted tissues from 4776 specimens, of which 81% yielded DNA barcodes representing 1662 species and 1788 Barcode Index Numbers (BINs), of primarily terrestrial, large-bodied arthropods. This represents 84% of the species available for DNA barcoding in the UAM Insect Collection. There are now 4020 Alaskan arthropod species represented by DNA barcodes, after including all records in Barcode of Life Data Systems (BOLD) of species that occur in Alaska - i.e., 48.5% of the 8277 Alaskan, non-marine-arthropod, named species have associated DNA barcodes. An assessment of the identification power of the library in its current state yielded fewer species-level identifications than expected, but the results were not discouraging. We believe we are the first to deliberately begin development of a DNA barcode library of the entire arthropod fauna for a North American state or province. Although far from complete, this library will become increasingly valuable as more species are added and costs to obtain DNA sequences fall.

  20. Arthropods affecting the human eye.

    Science.gov (United States)

    Panadero-Fontán, Rosario; Otranto, Domenico

    2015-02-28

    Ocular infestations by arthropods consist in the parasitization of the human eye, either directly (e.g., some insect larvae causing ophthalmomyiasis) or via arthropods feeding on lachrymal/conjunctival secretions (e.g., some eye-seeking insects, which also act as vectors of eye pathogens). In addition, demodicosis and phthiriasis may also cause eye discomfort in humans. Ophthalmomyiasis by larvae of the families Oestridae, Calliphoridae and Sarcophagidae, are frequent causative agents of human ocular infestations. Over the last decades, the extensive use of macrocyclic lactones in cattle has reduced the frequency of infestations by Hypoderma bovis and Hypoderma lineatum (family Oestridae), and consequently, human infestations by these species. A prompt diagnosis of ocular myiasis (e.g., by serological tests) is pivotal for positive prognoses, particularly when the larvae are not detectable during the ophthalmologic examination. Molecular diagnoses may also assist physicians and parasitologists in achieving time-efficient diagnoses of infestations by Oestridae causing myiasis. Finally, due to widespread international travel to exotic destinations, cases of myiasis are increasing in non-endemic areas, therefore requiring physicians to acquire a profound knowledge of the clinical symptoms linked to these infestations to prevent costly, inappropriate treatments or severe complications. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Immunological responses to parasitic arthropods.

    Science.gov (United States)

    Baron, R W; Weintraub, J

    1987-03-01

    Parasitic arthropods are responsible for enormous economic losses to livestock producers throughout the world. These production losses may range from simple irritation caused by biting and non-biting flies to deaths and/or damage to carcass, fleece, or skin resulting from attack by myiasis flies. The estimated costs of these losses are colossal but even these usually include only direct losses and ignore those associated with pesticide application. In the USA alone (in 1976), these losses were conservatively estimated at more than 650 million US dollars. The long term use of chemical control measures for these pests has resulted in many serious problems including residues in meat and milk products, rapid development of insecticide resistance, the destruction of non-target organisms, environmental pollution, and mortality and morbidity of livestock. These concerns have prompted researchers to seek alternative methods of arthropod control, including the artificial induction of immunity. In this review, R. W. Baron and J. Weintraub discuss several examples of ectoparasites that can induce immunological resistance in the host, including Sarcoptes and Demodex mites, the sheep ked (Melophagus ovinus), Anopluran lice and myiasis-causing flies such as Hypoderma.

  2. Taking the trophic bypass: aquatic-terrestrial linkage reduces methylmercury in a terrestrial food web.

    Science.gov (United States)

    Bartrons, Mireia; Gratton, Claudio; Spiesman, Brian J; Vander Zanden, M Jake

    2015-01-01

    Ecosystems can be linked by the movement of matter and nutrients across habitat boundaries via aquatic insect emergence. Aquatic organisms tend to have higher concentrations of certain toxic contaminants such as methylmercury (MeHg) compared to their terrestrial counterparts. If aquatic organisms come to land, terrestrial organisms that consume them are expected to have elevated MeHg concentrations. But emergent aquatic insects could have other impacts as well, such as altering consumer trophic position or increasing ecosystem productivity as a result of nutrient inputs from insect carcasses. We measure MeHg in terrestrial arthropods at two lakes in northeastern Iceland and use carbon and nitrogen stable isotopes to quantify aquatic reliance and trophic position. Across all terrestrial focal arthropod taxa (Lycosidae, Linyphiidae, Acari, Opiliones), aquatic reliance had significant direct and indirect (via changes in trophic position) effects on terrestrial consumer MeHg. However, contrary to our expectations, terrestrial consumers that consumed aquatic prey had lower MeHg concentrations than consumers that ate mostly terrestrial prey. We hypothesize that this is due to the lower trophic position of consumers feeding directly on midges relative to those that fed mostly on terrestrial prey and that had, on average, higher trophic positions. Thus, direct consumption of aquatic inputs results in a trophic bypass that creates a shorter terrestrial food web and reduced biomagnification of MeHg across the food web. Our finding that MeHg was lower at terrestrial sites with aquatic inputs runs counter to the conventional wisdom that aquatic systems are a source of MeHg contamination to surrounding terrestrial ecosystems.

  3. Depletion of stratospheric ozone over the Antarctic and Arctic : Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview

    NARCIS (Netherlands)

    Rozema, Jelte; Boelen, Peter; Blokker, Peter

    2005-01-01

    Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to

  4. Depletion of stratospheric ozone over the Antarctic and Arctic: Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview.

    NARCIS (Netherlands)

    Rozema, J.; Boelen, P.; Blokker, P.

    2005-01-01

    Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to

  5. Early land animals in north america: evidence from devonian age arthropods from gilboa, new york.

    Science.gov (United States)

    Shear, W A; Bonamo, P M; Grierson, J D; Rolfe, W D; Smith, E L; Norton, R A

    1984-05-04

    A new fossil site near Gilboa, New York, is one of only three where fossils of terrestrial arthropods of Devonian age have been found. The new Gilboan fauna is younger than the other two but richer in taxa. Fragmentary remains and nearly whole specimens assigned to Eurypterida, Arachnida (Trigonotarbida, Araneae, Amblypygi, and Acari), Chilopoda [Craterostigmatomorpha(?) and Scuterigeromorpha(?)], and tentatively to Insecta (Archaeognatha) have been found. The centipedes and possible insects may represent the earliest records known for these groups.

  6. Terrestrial-aquatic trophic linkages support fish production in a tropical oligotrophic river.

    Science.gov (United States)

    Correa, Sandra Bibiana; Winemiller, Kirk

    2018-04-01

    Despite low in situ primary productivity, tropical oligotrophic rivers support highly diverse fish assemblages and productive fisheries. This raises the question, what energy sources support fish production in these ecosystems? We sampled fish and food resources in the floodplain of a nearly pristine, large, oligotrophic river in western Amazonia. We combined data from stomach contents and stable isotopes to test the hypothesis that floodplain forests sustain fisheries in tropical oligotrophic rivers. Analysis of stomach contents from > 800 specimens of 12 omnivorous fish species demonstrated that during the annual flood, forest plant matter dominated diets. Yet, our isotope mixing models estimated that arthropods from the forest canopy made a greater proportional contribution to fish biomass. Most of these arthropods are entirely terrestrial and, therefore, serve as trophic links between forests and fishes. Our results suggest that forest vegetation, particularly fruits, may provide much of the energy supporting metabolism and arthropods contribute significant amounts of protein for somatic growth. Moreover, the importance of terrestrial arthropods in support of fish biomass in oligotrophic rivers depends on interactions between riparian vegetation, terrestrial arthropods and flood pulse dynamics affecting accessibility of arthropods to fishes. The apparent paradox of high fish diversity in an oligotrophic river with low primary productivity may be explained, at least partially, by dynamic terrestrial-aquatic trophic linkages. This study further emphasizes the importance of seasonally flooded forests for sustaining fisheries in the Amazon.

  7. Effects of invasive plants on arthropods.

    Science.gov (United States)

    Litt, Andrea R; Cord, Erin E; Fulbright, Timothy E; Schuster, Greta L

    2014-12-01

    Non-native plants have invaded nearly all ecosystems and represent a major component of global ecological change. Plant invasions frequently change the composition and structure of vegetation communities, which can alter animal communities and ecosystem processes. We reviewed 87 articles published in the peer-reviewed literature to evaluate responses of arthropod communities and functional groups to non-native invasive plants. Total abundance of arthropods decreased in 62% of studies and increased in 15%. Taxonomic richness decreased in 48% of studies and increased in 13%. Herbivorous arthropods decreased in response to plant invasions in 48% of studies and increased in 17%, likely due to direct effects of decreased plant diversity. Predaceous arthropods decreased in response to invasive plants in 44% of studies, which may reflect indirect effects due to reductions in prey. Twenty-two percent of studies documented increases in predators, which may reflect changes in vegetation structure that improved mobility, survival, or web-building for these species. Detritivores increased in 67% of studies, likely in response to increased litter and decaying vegetation; no studies documented decreased abundance in this functional group. Although many researchers have examined effects of plant invasions on arthropods, sizeable information gaps remain, specifically regarding how invasive plants influence habitat and dietary requirements. Beyond this, the ability to predict changes in arthropod populations and communities associated with plant invasions could be improved by adopting a more functional and mechanistic approach. Understanding responses of arthropods to invasive plants will critically inform conservation of virtually all biodiversity and ecological processes because so many organisms depend on arthropods as prey or for their functional roles, including pollination, seed dispersal, and decomposition. Given their short generation times and ability to respond rapidly to

  8. Early History of Arthropod and Vascular Plant Associations

    Science.gov (United States)

    Labandeira, Conrad C.

    Although research on modern plant-arthropod associations is one of the cornerstones of biodiversity studies, very little of that interest has percolated down to the fossil record. Much of this neglect is attributable to dismissal of Paleozoic plant-arthropod interactions as being dominated by detritivory, with substantive herbivory not emerging until the Mesozoic. Recent examination of associations from some of the earliest terrestrial communities indicates that herbivory probably extends to the Early Devonian, in the form of spore feeding and piercing-and-sucking. External feeding on pinnule margins and the intimate and intricate association of galling are documented from the Middle and Late Pennsylvanian, respectively. During the Early Permian, the range of external foliage feeding extended to hole feeding and skeletonization and was characterized by the preferential targeting of certain seed plants. At the close of the Paleozoic, surface fluid feeding was established, but there is inconclusive evidence for mutualistic relationships between insect pollinivores and seed plants. These data are gleaned from the largely separate trace-fossil records of gut contents, coprolites, and plant damage and the body-fossil records of plant reproductive and vegetative structures, insect mouthparts, and ovipositors. While these discoveries accentuate the potential for identifying particular associations, the greatest theoretical demand is to establish the spectrum and level of intensity for the emergence of insect herbivory in a range of environments during the Pennsylvanian and Permian.

  9. Mineral cycling in soil and litter arthropod food chains. Annual progress report, February 1, 1983-January 31, 1984

    International Nuclear Information System (INIS)

    Crossley, D.A. Jr.

    1983-01-01

    This annual report describes progress in research on the influence of soil fauna on the general process of terrestrial decomposition. The major goal is to investigate the regulation of decomposition by soil arthropods. Methods have included radioactive tracer measurements of food chain dynamics, rates of nutrient or mineral element flow during decomposition, and simulation modeling. This year's report describes significant progress in defining the influence of soil arthropods in stimulating microbial immobilization of nutrients. Preliminary efforts to define the importance of the soil-litter macroarthropods are also reported

  10. Diet shift of lentic dragonfly larvae in response to reduced terrestrial prey subsidies

    Science.gov (United States)

    Kraus, Johanna M.

    2010-01-01

    Inputs of terrestrial plant detritus and nutrients play an important role in aquatic food webs, but the importance of terrestrial prey inputs in determining aquatic predator distribution and abundance has been appreciated only recently. I examined the numerical, biomass, and diet responses of a common predator, dragonfly larvae, to experimental reduction of terrestrial arthropod input into ponds. I distributed paired enclosures (n  =  7), one with a screen between the land and water (reduced subsidy) and one without a screen (ambient subsidy), near the shoreline of 2 small fishless ponds and sampled each month during the growing season in the southern Appalachian Mountains, Virginia (USA). Screens between water and land reduced the number of terrestrial arthropods that fell into screened enclosures relative to the number that fell into unscreened enclosures and open reference plots by 36%. The δ13C isotopic signatures of dragonfly larvae shifted towards those of aquatic prey in reduced-subsidy enclosures, a result suggesting that dragonflies consumed fewer terrestrial prey when fewer were available (ambient subsidy: 30%, reduced subsidy: 19% of diet). Overall abundance and biomass of dragonfly larvae did not change in response to reduced terrestrial arthropod inputs, despite the fact that enclosures permitted immigration/emigration. These results suggest that terrestrial arthropods can provide resources to aquatic predators in lentic systems, but that their effects on abundance and distribution might be subtle and confounded by in situ factors.

  11. Cambrian bivalved arthropod reveals origin of arthrodization

    Science.gov (United States)

    Legg, David A.; Sutton, Mark D.; Edgecombe, Gregory D.; Caron, Jean-Bernard

    2012-01-01

    Extant arthropods are diverse and ubiquitous, forming a major constituent of most modern ecosystems. Evidence from early Palaeozoic Konservat Lagerstätten indicates that this has been the case since the Cambrian. Despite this, the details of arthropod origins remain obscure, although most hypotheses regard the first arthropods as benthic predators or scavengers such as the fuxianhuiids or megacheirans (‘great-appendage’ arthropods). Here, we describe a new arthropod from the Tulip Beds locality of the Burgess Shale Formation (Cambrian, series 3, stage 5) that possesses a weakly sclerotized thorax with filamentous appendages, encased in a bivalved carapace, and a strongly sclerotized, elongate abdomen and telson. A cladistic analysis resolved this taxon as the basal-most member of a paraphyletic grade of nekto-benthic forms with bivalved carapaces. This grade occurs at the base of Arthropoda (panarthropods with arthropodized trunk limbs) and suggests that arthrodization (sclerotization and jointing of the exoskeleton) evolved to facilitate swimming. Predatory and fully benthic habits evolved later in the euarthropod stem-lineage and are plesiomorphically retained in pycnogonids (sea spiders) and euchelicerates (horseshoe crabs and arachnids). PMID:23055069

  12. The colonization of land by animals: molecular phylogeny and divergence times among arthropods

    Directory of Open Access Journals (Sweden)

    Lyons-Weiler Maureen

    2004-01-01

    Full Text Available Abstract Background The earliest fossil evidence of terrestrial animal activity is from the Ordovician, ~450 million years ago (Ma. However, there are earlier animal fossils, and most molecular clocks suggest a deep origin of animal phyla in the Precambrian, leaving open the possibility that animals colonized land much earlier than the Ordovician. To further investigate the time of colonization of land by animals, we sequenced two nuclear genes, glyceraldehyde-3-phosphate dehydrogenase and enolase, in representative arthropods and conducted phylogenetic and molecular clock analyses of those and other available DNA and protein sequence data. To assess the robustness of animal molecular clocks, we estimated the deuterostome-arthropod divergence using the arthropod fossil record for calibration and tunicate instead of vertebrate sequences to represent Deuterostomia. Nine nuclear and 15 mitochondrial genes were used in phylogenetic analyses and 61 genes were used in molecular clock analyses. Results Significant support was found for the unconventional pairing of myriapods (millipedes and centipedes with chelicerates (spiders, scorpions, horseshoe crabs, etc. using nuclear and mitochondrial genes. Our estimated time for the divergence of millipedes (Diplopoda and centipedes (Chilopoda was 442 ± 50 Ma, and the divergence of insects and crustaceans was estimated as 666 ± 58 Ma. Our results also agree with previous studies suggesting a deep divergence (~1100 – 900 Ma for arthropods and deuterostomes, considerably predating the Cambrian Explosion seen in the animal fossil record. Conclusions The consistent support for a close relationship between myriapods and chelicerates, using mitochondrial and nuclear genes and different methods of analysis, suggests that this unexpected result is not an artefact of analysis. We propose the name Myriochelata for this group of animals, which includes many that immobilize prey with venom. Our molecular clock

  13. Key to marine arthropod larvae

    Directory of Open Access Journals (Sweden)

    John A. Fornshell

    2012-03-01

    Full Text Available The scope of this key is restricted to the larvae of marine arthropods. The key is based solely on their morphology, patterns of body segmentation, numbers of appendages, and mode of locomotion. An effort has been made to treat all traditionally named larval forms, both planktonic and benthic. It is intended that this key be useful for a researcher working with archived museum specimens and therefore, does not include habitat information as a identifying trait, even though this information is usually available in the archived records. Within the phylum Arthropoda there are two sub-phyla and eleven classes having larval stages in the marineenvironment. Where feasible the original names of the various larval types have been used. Because this nomenclature is less commonly used today compared to the past, the more recent taxonomic affinities are included in parentheses after the original larval name. The key includes the following thirty-four larvae: Branchhiopoda nauplii; Cephalocarida nauplii; Mystacocarida nauplii; trilobite larva; protonymphon; hexapod larvae; Remipedia nauplii; nauplius - Y larvae; Cirripedia nauplii; Ascothoracida nauplii; Ostracoda nauplii; Euphausiacea nauplii; Penaeidea nauplii; Cyclopoida nauplii; Calanoida nauplii; Harpacticoida nauplii;Polyarthra nauplii; cypris larva; eryonecius larva; cypris-Y larva; elapthocaris larvae; mysis larvae; lucifer zoea; acetes zoea; acanthosoma larva; phyllosoma; antizoea larva; anomuran zoea; brachyuran zoea; calyptopis larvae; furcilia larva; crytopia larva; puerulus larva; alima larva.

  14. Opportunity to Improve Public Perceptions of Arthropods and Arthropod-Related Benefits

    Science.gov (United States)

    Harris, Bethany A.; Braman, S. Kristine

    2016-01-01

    The general public may not recognize the value of conserving insects and spiders in home landscapes. We surveyed individuals to assess public perceptions of 10 arthropods--nine common insects and one common spider species--and to determine whether arthropod-related attitudes could be altered. Additionally, we collected data on survey respondent…

  15. Micro-managing arthropod invasions: eradication and control of invasive arthropods with microbes

    Science.gov (United States)

    Ann E. Hajek; Patrick C. Tobin

    2010-01-01

    Non-indigenous arthropods are increasingly being introduced into new areas worldwide and occasionally they cause considerable ecological and economic harm. Many invasive arthropods particularly pose problems to areas of human habitation and native ecosystems. In these cases, the use of environmentally benign materials, such as host-specific entomopathogens, can be more...

  16. Radioactive tracer studies of soil and litter arthropod food chains. Progress report, November 1, 1977--October 31, 1978

    International Nuclear Information System (INIS)

    Crossley, D.A. Jr.

    1978-01-01

    Progress is reported in projects dealing with radioisotope measurement of nutrient flow in soil arthropod food chains, the role of soil arthropods as regulators of the terrestrial decomposition process, and field projects investigating the response to perturbation by island ecosystems on granitic outcrops. Radioisotopes in combination with system modeling techniques are being used to estimate nutrient flow rates in food chains of soil arthropods, and help to evaluate their impact on the decomposition process. Field work on granitic outcrop ecosystems has been completed. Evaluations of input-output budgets showed that the ecosystems are essentially in balance. They showed a strong resistance component of stability, as opposed to resilience, as far as chemical perturbations and drought are concerned

  17. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima.

    Directory of Open Access Journals (Sweden)

    Ariel D Chipman

    2014-11-01

    Full Text Available Myriapods (e.g., centipedes and millipedes display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations

  18. The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima

    Science.gov (United States)

    Chipman, Ariel D.; Ferrier, David E. K.; Brena, Carlo; Qu, Jiaxin; Hughes, Daniel S. T.; Schröder, Reinhard; Torres-Oliva, Montserrat; Znassi, Nadia; Jiang, Huaiyang; Almeida, Francisca C.; Alonso, Claudio R.; Apostolou, Zivkos; Aqrawi, Peshtewani; Arthur, Wallace; Barna, Jennifer C. J.; Blankenburg, Kerstin P.; Brites, Daniela; Capella-Gutiérrez, Salvador; Coyle, Marcus; Dearden, Peter K.; Du Pasquier, Louis; Duncan, Elizabeth J.; Ebert, Dieter; Eibner, Cornelius; Erikson, Galina; Evans, Peter D.; Extavour, Cassandra G.; Francisco, Liezl; Gabaldón, Toni; Gillis, William J.; Goodwin-Horn, Elizabeth A.; Green, Jack E.; Griffiths-Jones, Sam; Grimmelikhuijzen, Cornelis J. P.; Gubbala, Sai; Guigó, Roderic; Han, Yi; Hauser, Frank; Havlak, Paul; Hayden, Luke; Helbing, Sophie; Holder, Michael; Hui, Jerome H. L.; Hunn, Julia P.; Hunnekuhl, Vera S.; Jackson, LaRonda; Javaid, Mehwish; Jhangiani, Shalini N.; Jiggins, Francis M.; Jones, Tamsin E.; Kaiser, Tobias S.; Kalra, Divya; Kenny, Nathan J.; Korchina, Viktoriya; Kovar, Christie L.; Kraus, F. Bernhard; Lapraz, François; Lee, Sandra L.; Lv, Jie; Mandapat, Christigale; Manning, Gerard; Mariotti, Marco; Mata, Robert; Mathew, Tittu; Neumann, Tobias; Newsham, Irene; Ngo, Dinh N.; Ninova, Maria; Okwuonu, Geoffrey; Ongeri, Fiona; Palmer, William J.; Patil, Shobha; Patraquim, Pedro; Pham, Christopher; Pu, Ling-Ling; Putman, Nicholas H.; Rabouille, Catherine; Ramos, Olivia Mendivil; Rhodes, Adelaide C.; Robertson, Helen E.; Robertson, Hugh M.; Ronshaugen, Matthew; Rozas, Julio; Saada, Nehad; Sánchez-Gracia, Alejandro; Scherer, Steven E.; Schurko, Andrew M.; Siggens, Kenneth W.; Simmons, DeNard; Stief, Anna; Stolle, Eckart; Telford, Maximilian J.; Tessmar-Raible, Kristin; Thornton, Rebecca; van der Zee, Maurijn; von Haeseler, Arndt; Williams, James M.; Willis, Judith H.; Wu, Yuanqing; Zou, Xiaoyan; Lawson, Daniel; Muzny, Donna M.; Worley, Kim C.; Gibbs, Richard A.; Akam, Michael; Richards, Stephen

    2014-01-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific

  19. Sophisticated digestive systems in early arthropods.

    Science.gov (United States)

    Vannier, Jean; Liu, Jianni; Lerosey-Aubril, Rudy; Vinther, Jakob; Daley, Allison C

    2014-05-02

    Understanding the way in which animals diversified and radiated during their early evolutionary history remains one of the most captivating of scientific challenges. Integral to this is the 'Cambrian explosion', which records the rapid emergence of most animal phyla, and for which the triggering and accelerating factors, whether environmental or biological, are still unclear. Here we describe exceptionally well-preserved complex digestive organs in early arthropods from the early Cambrian of China and Greenland with functional similarities to certain modern crustaceans and trace these structures through the early evolutionary lineage of fossil arthropods. These digestive structures are assumed to have allowed for more efficient digestion and metabolism, promoting carnivory and macrophagy in early arthropods via predation or scavenging. This key innovation may have been of critical importance in the radiation and ecological success of Arthropoda, which has been the most diverse and abundant invertebrate phylum since the Cambrian.

  20. Equine Grazing in Managed Subalpine Wetlands: Effects on Arthropods and Plant Structure as a Function of Habitat

    Science.gov (United States)

    Holmquist, Jeffrey G.; Schmidt-Gengenbach, Jutta; Haultain, Sylvia A.

    2013-12-01

    Grazing management necessarily emphasizes the most spatially extensive vegetation assemblages, but landscapes are mosaics, often with more mesic vegetation types embedded within a matrix of drier vegetation. Our primary objective was to contrast effects of equine grazing on both subalpine vegetation structure and associated arthropods in a drier reed grass ( Calamagrostis muiriana) dominated habitat versus a wetter, more productive sedge habitat ( Carex utriculata). A second objective was to compare reed grass and sedge as habitats for fauna, irrespective of grazing. All work was done in Sequoia National Park (CA, USA), where detailed, long-term records of stock management were available. We sampled paired grazed and control wet meadows that contained both habitats. There were moderate negative effects of grazing on vegetation, and effects were greater in sedge than in reed grass. Conversely, negative grazing effects on arthropods, albeit limited, were greater in the drier reed grass, possibly due to microhabitat differences. The differing effects on plants and animals as a function of habitat emphasize the importance of considering both flora and fauna, as well as multiple habitat types, when making management decisions. Sedge supported twice the overall arthropod abundance of reed grass as well as greater diversity; hemipteran and dipteran taxa were particularly abundant in sedge. Given the greater grazing effects on sedge vegetation, greater habitat provision for terrestrial arthropods, and value as aquatic arthropod habitat, the wetter sedge assemblage is worthy of additional consideration by managers when planning for grazing and other aspects of land usage.

  1. A checklist of subterranean arthropods of Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Malek-Hosseini

    2017-01-01

    Full Text Available Understanding subterranean biodiversity is important, yet vast regions of the world remain poorly explored. Here, we provide the first step towards cataloguing the subterranean arthropods of Iran. After review and analysis of the available literature and the examination of samples collected by us from Iranian caves, we listed 89 cavernicolous species (from 42 caves and 5 karstic springs belonging to four arthropod subphyla: Chelicerata (1 class, 4 orders, 36 species, Crustacea (2 classes, 3 orders, 15 species, Hexapoda (2 classes, 5 orders, 34 species and Myriapoda (2 classes, 3 orders, 4 species.

  2. Arthropods in Decomposing Wood of the Atchafalaya River Basin

    Science.gov (United States)

    B.G. Lockaby; B.D. Keeland; John A. Stanturf; M.D. Rice; G. Hodges; R.M. Governo

    2002-01-01

    Changes in arthropod populations (numbers of individuals identified to the family level in most cases) were studied during the decomposition of coarse woody debris (CWD) in the Atchafalaya River Basin of Louisiana. The arthropod study was linked with a CWD decomposition study installed after disturbance by Hurricane Andrew. Arthropod numbers were compared between two...

  3. Evaluation of Arthropod Diversity and Abundance in Contrasting ...

    African Journals Online (AJOL)

    This study was conducted to determine the abundance and diversity of soil arthropods in Anua and Ekpri Nsukara farmland communities, Uyo, Nigeria from September to November, 2012. Soil arthropods were sampled using pitfall trap. A total of 707 Individuals of soil arthropods were encountered during the study period.

  4. Arthropod pattern theory and Cambrian trilobites

    NARCIS (Netherlands)

    Sundberg, Frederick A.

    1995-01-01

    An analysis of duplomere (= segment) distribution within the cephalon, thorax, and pygidium of Cambrian trilobites was undertaken to determine if the Arthropod Pattern Theory (APT) proposed by Schram & Emerson (1991) applies to Cambrian trilobites. The boundary of the cephalon/thorax occurs within

  5. Physical conditions affecting pyrethroid toxicity in arthropods

    NARCIS (Netherlands)

    Jagers op Akkerhuis, G.

    1993-01-01

    The aim of this thesis was to obtain mechanistic information about how the toxicity of pesticides in the field is affected by physical factors, pesticide bioavailability and arthropod behaviour. The pyrethroid insecticide deltamethrin and linyphiid spiders were selected as pesticide-effect

  6. Determinants of successful arthropod eradication programs

    Science.gov (United States)

    Patrick C. ​Tobin; John M. Kean; David Maxwell Suckling; Deborah G. McCullough; Daniel A. Herms; Lloyd D. Stringer

    2014-01-01

    Despite substantial increases in public awareness and biosecurity systems, introductions of non-native arthropods remain an unwelcomed consequence of escalating rates of international trade and travel. Detection of an established but unwanted nonnative organism can elicit a range of responses, including implementation of an eradication program. Previous studies have...

  7. Comparative phylogeography of endemic Azorean arthropods

    DEFF Research Database (Denmark)

    Parmakelis, Aristeidis; Rigal, François; Mourikis, Thanos

    2015-01-01

    Background: For a remote oceanic archipelago of up to 8 Myr age, the Azores have a comparatively low level of endemism. We present an analysis of phylogeographic patterns of endemic Azorean island arthropods aimed at testing patterns of diversification in relation to the ontogeny of the archipelago...

  8. Arthropods vector grapevine trunk disease pathogens.

    Science.gov (United States)

    Moyo, P; Allsopp, E; Roets, F; Mostert, L; Halleen, F

    2014-10-01

    Arthropod-mediated dispersal of pathogens is known in many cropping systems but has never been demonstrated for grapevine trunk disease pathogens. Arthropods from vineyards were screened for the presence of pathogens associated with Petri disease and esca using cultural and molecular techniques. The ability of the most abundant pathogen-carrying species to inoculate healthy grapevine vascular tissues was also determined. Millipedes and ants were allowed to associate with a DsRed- Express-transformed Phaeomoniella chlamydospora, after which they were exposed to freshly pruned healthy grapevines under controlled conditions and wounds were monitored for subsequent infection. In addition, the possibility of millipede excreta, commonly found on pruning wounds in the field, to act as inoculum source was determined. A diverse arthropod fauna was associated with declining grapevines and many of these carried trunk disease pathogens. However, spiders, the ant Crematogaster peringueyi, and the millipede Ommattoiulus moreleti were the most abundant pathogen carriers. The ant and millipede species fed on pruning wound sap and effectively transmitted trunk disease pathogens. Millipede excreta contained viable spores of Phaeomoniella chlamydospora and may serve as an inoculum source. Numerous arthropods, including beneficial predators, are potential vectors of grapevine trunk disease pathogens. Our results highlight the need for an integrated approach, including targeted management of ants and millipedes at the time of pruning, to limit the spread of grapevine trunk diseases.

  9. Short notes and reviews Phosphatocopine arthropods

    NARCIS (Netherlands)

    Schram, Frederick R.

    2004-01-01

    For anyone interested in the early history and evolution of arthropods, one simply cannot get along without reference to the series of works that have been appearing since the 1970s by Dieter Waloszek and Klaus Müller on the Cambrian Orsten fossils. Of particular importance in this regard is the

  10. Evolutionary origin of type IV classical cadherins in arthropods.

    Science.gov (United States)

    Sasaki, Mizuki; Akiyama-Oda, Yasuko; Oda, Hiroki

    2017-06-17

    , and suggest that following the divergence of early arthropods, the precursor of the insect type IV cadherin evolved through stepwise reductive changes from the ancestral type III state. In addition, the complementary distributions of polarized genomic characters related to type IVa/IVb cadherins may have implications for our interpretations of pancrustacean phylogeny.

  11. Simultaneous assessment of the macrobiome and microbiome in a bulk sample of tropical arthropods through DNA metasystematics

    Science.gov (United States)

    Gibson, Joel; Shokralla, Shadi; Porter, Teresita M.; King, Ian; van Konynenburg, Steven; Janzen, Daniel H.; Hallwachs, Winnie; Hajibabaei, Mehrdad

    2014-01-01

    Conventional assessments of ecosystem sample composition are based on morphology-based or DNA barcode identification of individuals. Both approaches are costly and time-consuming, especially when applied to the large number of specimens and taxa commonly included in ecological investigations. Next-generation sequencing approaches can overcome the bottleneck of individual specimen isolation and identification by simultaneously sequencing specimens of all taxa in a bulk mixture. Here we apply multiple parallel amplification primers, multiple DNA barcode markers, 454-pyrosequencing, and Illumina MiSeq sequencing to the same sample to maximize recovery of the arthropod macrobiome and the bacterial and other microbial microbiome of a bulk arthropod sample. We validate this method with a complex sample containing 1,066 morphologically distinguishable arthropods from a tropical terrestrial ecosystem with high taxonomic diversity. Multiamplicon next-generation DNA barcoding was able to recover sequences corresponding to 91% of the distinguishable individuals in a bulk environmental sample, as well as many species present as undistinguishable tissue. 454-pyrosequencing was able to recover 10 more families of arthropods and 30 more species than did conventional Sanger sequencing of each individual specimen. The use of other loci (16S and 18S ribosomal DNA gene regions) also added the detection of species of microbes associated with these terrestrial arthropods. This method greatly decreases the time and money necessary to perform DNA-based comparisons of biodiversity among ecosystem samples. This methodology opens the door to much cheaper and increased capacity for ecological and evolutionary studies applicable to a wide range of socio-economic issues, as well as a basic understanding of how the world works. PMID:24808136

  12. Simultaneous assessment of the macrobiome and microbiome in a bulk sample of tropical arthropods through DNA metasystematics.

    Science.gov (United States)

    Gibson, Joel; Shokralla, Shadi; Porter, Teresita M; King, Ian; van Konynenburg, Steven; Janzen, Daniel H; Hallwachs, Winnie; Hajibabaei, Mehrdad

    2014-06-03

    Conventional assessments of ecosystem sample composition are based on morphology-based or DNA barcode identification of individuals. Both approaches are costly and time-consuming, especially when applied to the large number of specimens and taxa commonly included in ecological investigations. Next-generation sequencing approaches can overcome the bottleneck of individual specimen isolation and identification by simultaneously sequencing specimens of all taxa in a bulk mixture. Here we apply multiple parallel amplification primers, multiple DNA barcode markers, 454-pyrosequencing, and Illumina MiSeq sequencing to the same sample to maximize recovery of the arthropod macrobiome and the bacterial and other microbial microbiome of a bulk arthropod sample. We validate this method with a complex sample containing 1,066 morphologically distinguishable arthropods from a tropical terrestrial ecosystem with high taxonomic diversity. Multiamplicon next-generation DNA barcoding was able to recover sequences corresponding to 91% of the distinguishable individuals in a bulk environmental sample, as well as many species present as undistinguishable tissue. 454-pyrosequencing was able to recover 10 more families of arthropods and 30 more species than did conventional Sanger sequencing of each individual specimen. The use of other loci (16S and 18S ribosomal DNA gene regions) also added the detection of species of microbes associated with these terrestrial arthropods. This method greatly decreases the time and money necessary to perform DNA-based comparisons of biodiversity among ecosystem samples. This methodology opens the door to much cheaper and increased capacity for ecological and evolutionary studies applicable to a wide range of socio-economic issues, as well as a basic understanding of how the world works.

  13. Terrestrial radioecology

    International Nuclear Information System (INIS)

    Ohmomo, Yoichiro

    1992-01-01

    Environmental radioecology is a science of studying radionuclide transfer and distribution in the environmental ecosystem and the effects of radiation of the ecosystem. This review highlights radionuclide transfer to crops. There is, however, limited data available on this field in Japan. Therefore, a history of environmental radioecological study in Japan is briefly mentioned: radioecological study has been reflected by social backgrounds, including nuclear explosion and peaceful application of radionuclides. In view of the relationship between siting of nuclear installations and dietary habits for Japanese, research on hydrological radioecology has actually preceded that of terrestrial radioecology. Transfer parameters are discussed in terms of deposition velosity, interception fraction, environmental halftimes, and transfer coefficients from soils to crops. (N.K.) 50 refs

  14. Role of Arthropods in Maintaining Soil Fertility

    Directory of Open Access Journals (Sweden)

    Thomas W. Culliney

    2013-09-01

    Full Text Available In terms of species richness, arthropods may represent as much as 85% of the soil fauna. They comprise a large proportion of the meso- and macrofauna of the soil. Within the litter/soil system, five groups are chiefly represented: Isopoda, Myriapoda, Insecta, Acari, and Collembola, the latter two being by far the most abundant and diverse. Arthropods function on two of the three broad levels of organization of the soil food web: they are plant litter transformers or ecosystem engineers. Litter transformers fragment, or comminute, and humidify ingested plant debris, which is deposited in feces for further decomposition by micro-organisms, and foster the growth and dispersal of microbial populations. Large quantities of annual litter input may be processed (e.g., up to 60% by termites. The comminuted plant matter in feces presents an increased surface area to attack by micro-organisms, which, through the process of mineralization, convert its organic nutrients into simpler, inorganic compounds available to plants. Ecosystem engineers alter soil structure, mineral and organic matter composition, and hydrology. The burrowing by arthropods, particularly the subterranean network of tunnels and galleries that comprise termite and ant nests, improves soil porosity to provide adequate aeration and water-holding capacity below ground, facilitate root penetration, and prevent surface crusting and erosion of topsoil. Also, the movement of particles from lower horizons to the surface by ants and termites aids in mixing the organic and mineral fractions of the soil. The feces of arthropods are the basis for the formation of soil aggregates and humus, which physically stabilize the soil and increase its capacity to store nutrients.

  15. Investigating the effect of forestry on leaf-litter arthropods (Algonquin Park, Ontario, Canada).

    Science.gov (United States)

    Smith, M Alex; Boyd, Amanda; Chan, Amelia; Clout, Simonne; des Brisay, Paulson; Dolson, Sarah; Eagalle, Thanushi; Espinola, Sean; Fairweather, Aaron; Frank, Sydney; Fruetel, Christopher; Garrido Cortes, Cristina; Hall, James; Ho, Chris; Matczak, Eryk; McCubbin, Sandra; McPhee, Megan; Pare, Kate A; Paris, Kelsie; Richard, Ellen; Roblin, Morgan; Russell, Cassandra; Snyder, Ryan; Trombley, Carolyn; Schmitt, Tyler; Vandermeer, Caitlin; Warne, Connor; Welch, Natasha; Xavier-Blower, Chelsie

    2017-01-01

    Arthropods are the most diverse taxonomic group of terrestrial eukaryotes and are sensitive to physical alterations in their environment such as those caused by forestry. With their enormous diversity and physical omnipresence, arthropods could be powerful indicators of the effects of disturbance following forestry. When arthropods have been used to measure the effects of disturbance, the total diversity of some groups is often found to increase following forestry. However, these findings are frequently derived using a coarse taxonomic grain (family or order) to accommodate for various taxonomic impediments (including cryptic diversity and poorly resourced taxonomists). Our intent with this work was to determine the diversity of arthropods in and around Algonquin Park, and how this diversity was influenced by disturbance (in this case, forestry within the past 25 years). We used DNA barcode-derived diversity estimates (Barcode Index Number (BIN) richness) to avoid taxonomic impediments and as a source of genetic information with which we could conduct phylogenetic estimates of diversity (PD). Diversity patterns elucidated with PD are often, but not always congruent with taxonomic estimates-and departures from these expectations can help clarify disturbance effects that are hidden from richness studies alone. We found that BIN richness and PD were greater in disturbed (forested) areas, however when we controlled for the expected relationship between PD and BIN richness, we found that cut sites contained less PD than expected and that this diversity was more phylogenetically clustered than would be predicted by taxonomic richness. While disturbance may cause an evident increase in diversity, this diversity may not reflect the full evolutionary history of the assemblage within that area and thus a subtle effect of disturbance can be found decades following forestry.

  16. Meeting the challenges of on-host and off-host water balance in blood-feeding arthropods

    Science.gov (United States)

    Benoit, Joshua B.; Denlinger, David L.

    2010-01-01

    In this review, we describe water balance requirements of blood-feeding arthropods, particularly contrasting dehydration tolerance during the unfed, off-host state and the challenges of excess water that accompany receipt of the bloodmeal. Most basic water balance characteristics during the off-host stage are applicable to other terrestrial arthropods, as well. A well-coordinated suite of responses enable arthropods to conserve water resources, enhance their desiccation tolerance, and increase their water supplies by employing a diverse array of molecular, structural and behavioral responses. Water loss rates during the off-host phase are particularly useful for generating a scheme to classify vectors according to their habitat requirements for water, thus providing a convenient tool with potential predictive power for defining suitable current and future vector habitats. Blood feeding elicits an entirely different set of challenges as the vector responds to overhydration by quickly increasing its rate of cuticular water loss and elevating the rate of diuresis to void excess water and condense the bloodmeal. Immature stages that feed on blood normally have a net increase in water content at the end of a blood-feeding cycle, but in adults the water content reverts to the prefeeding level when the cycle is completed. Common themes are evident in diverse arthropods that feed on blood, particularly the physiological mechanisms used to respond to the sudden influx of water as well as the mechanisms used to counter water shortfalls that are encountered during the nonfeeding, off-host state. PMID:20206630

  17. Terrestrial ecology

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The main effort of the Terrestrial Ecology Division has been redirected to a comprehensive study of the Espiritu Santo Drainage Basin located in northeastern Puerto Rico. The general objective are to provide baseline ecological data for future environmental assessment studies at the local and regional levels, and to provide through an ecosystem approach data for the development of management alternatives for the wise utilization of energy, water, and land resources. The interrelationships among climate, vegetation, soils, and man, and their combined influence upon the hydrologic cycle will be described and evaluated. Environmental management involves planning and decision making, and both require an adequate data base. At present, little is known about the interworkings of a complete, integrated system such as a drainage basin. A literature survey of the main research areas confirmed that, although many individual ecologically oriented studies have been carried out in a tropical environment, few if any provide the data base required for environmental management. In view of rapidly changing socio-economic conditions and natural resources limitations, management urgently requires data from these systems: physical (climatological), biological, and cultural. This integrated drainage basin study has been designed to provide such data. The scope of this program covers the hydrologic cycle as it is affected by the interactions of the physical, biological, and cultural systems

  18. The Spider and the Sea : Effects of marine subsidies on the role of spiders in terrestrial food webs

    OpenAIRE

    Mellbrand, Kajsa

    2009-01-01

    The purpose of this study was to identify if terrestrial arthropod predators on Baltic Sea shores vary in their use of marine versus terrestrial food items, and to construct a bottom-up food web for Baltic Sea shores. The inflow of marine nutrients in the area consists mainly of marine algal detritus and emerging aquatic insects (e.g. phantom midges, Chironomidae). Diets of coastal arthropods were examined using carbon and nitrogen stable isotope analysis, and a two source mixing model was us...

  19. DIVERSITY OF SOIL ARTHROPOD IN GREEN BARRIER AREA PT. PUSRI

    Directory of Open Access Journals (Sweden)

    Arif Hidayat

    2016-05-01

    Full Text Available The research was conducted to inventory and identify as well as acknowledge the correlation between vegetation type with soil arthropods in the Green Barrier area of PT Pusri. PT. Pusri green Barrier area is 28 hectares and dominated by 10 types of vegetation, such as, the Angsana (Pterocarpus indicus Wild, Bambu (Bambusa Sp, Beringin (Ficus benyamina, Buah Roda (Hura crepitans L, Jati (Tectona grandis L, Kelampayan (Neolamarckia cadamba , Ketapang (Terminalia catappa L, Mahony (Swietenia macrophylla King, Pulai (Alstonia scholaris, and Sengon (Paraserianthes falcataria L. Soil arthropods were collected by using pit fall traps and funnel barlese-tullgren in every type of vegetation, between July-August 2015. Identification of arthropod genera Identification has been done in Entomology Laboratory of the Agriculture Plant Disease Faculty Sriwijaya University, and analysis of soil organic in the Laboratory of Soil Faculty of Agriculture Sriwijaya University. The results were obtained into 3 classes of soil arthropods belonging to the 10 orders, 28 families and 35 genera. The diversity index value of soil arthropods in various types of vegetation is classified moderately (H= 1-3, and no type of soil arthropods were dominant, mean that soil arthropods with different types spread over in the various types of vegetation in the area of Green Barrier PT. Pusri. Light intensity abiotic factors play an important role in the life of the soil arthropod communities in vegetation Sengon (Paraserianthes falcataria L with a correlation coefficient 1.00 Keywords: soil arthropods, community structure, a biotic factors, Green Barrier PT. Pusri

  20. Polarization Optics

    OpenAIRE

    Fressengeas, Nicolas

    2010-01-01

    The physics of polarization optics *Polarized light propagation *Partially polarized light; DEA; After a brief introduction to polarization optics, this lecture reviews the basic formalisms for dealing with it: Jones Calculus for totally polarized light and Stokes parameters associated to Mueller Calculus for partially polarized light.

  1. Arthropod fauna of the University of Nigeria, Nsukka, Sewage pond ...

    African Journals Online (AJOL)

    The arthropod faunal study was gotten through sample collections of shoreline zone with the use of insect net and scoop net, the mid benthic zone with the use of Eckman grab. The arthropods found were of the class insecta and class arachnida. The sewage pond had a high accumulation of organic waste with mean ...

  2. Micro-arthropods associated with Welwitschia mirabilis in the Namib ...

    African Journals Online (AJOL)

    1986-07-21

    Jul 21, 1986 ... Significanlly more micro-arthropods were found under Welwltschia plant~ than in unvegetated areas. ... The structure of the micro-arthropod community varied considerably with locality and sex of the plant. Tarsonemld mites were numerically dominant at some ...... In: Evolution of the flora and fauna of arid.

  3. Effects of large herbivores on grassland arthropod diversity

    NARCIS (Netherlands)

    van Klink, R.; van der Plas, F.; van Noordwijk, C. G. E. (Toos); WallisDeVries, M. F.; Olff, H.

    Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141

  4. Seasonality and structure of the arthropod community in a forested ...

    African Journals Online (AJOL)

    Eight groups (Araneae, Hymenoptera, Heteroptera, Homoptera, Diptera, Coleoptera, Orthoptera and Lepidoptera) made up over 95 % of all the arthropod individuals caught. There were seasonal peaks in the abundances. The highest numbers of arthropods per sample were found during the late rainy season and early dry ...

  5. Effects of large herbivores on grassland arthropod diversity

    NARCIS (Netherlands)

    Klink, van R.; Plas, van der F.; Noordwijk, C.G.E.; Wallis de Vries, M.F.; Olff, H.

    2015-01-01

    Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141

  6. Arthropod Borne Diseases in Imposed War during 1980-88

    Directory of Open Access Journals (Sweden)

    M Khoobdel

    2008-06-01

    Full Text Available Background: Personnel of military forces have close contact with natural habitat and usually encounter with bite of arthropods and prone to be infected with arthropod borne diseases. The imposed war against Iran was one of the most important and the longest war in the Middle East and even in the world and military people faced various diseases. The aim of this study was to review prevalence of arthropod borne diseases and to collect relevant information and valuable experiences during the imposed war.Methods: The present survey is a historical research and cross-sectional study, focused on arthropod fauna, situation of different arthropod borne diseases and also the ways which military personnel used to protect themselves against them. The information was adopted from valid military health files and also interviewing people who participated in the war.Results: Scabies, cutaneous leishmaniasis, sandfly fever and pediculosis were more prevalent among other arthropod -borne diseases in Iran-Iraq war. Measures to control arthropods and diseases at wartime mainly included: scheduled spraying of pesticides, leishmanization and treatment of patients.Conclusion: Although measures used during the war to control arthropods were proper, however, due to needs and importance of military forces to new equipment and technologies, it is recommended to use deltamethrin-impreg­nated bed net, permethrin treated military uniforms and various insect repellents in future.

  7. Plutonium concentrations in arthropods at a nuclear facility

    International Nuclear Information System (INIS)

    Bly, J.A.; Whicker, F.W.

    1979-01-01

    Arthropods were collected for 239 240 Pu ( 239 Pu) and 238 Pu analysis from three study plots in close proximity to the Rocky Flats nuclear weapons plant and from a site 110 km N-NE of the plant. Mean 239 Pu concentrations in arthropods were 265, 16, 0.7 and 0.5 dis/min g -1 at the three Rocky Flats study plots and at the control site, respectively. Arthropod 239 Pu concentration data were statistically analyzed by season of collection, taxonomic group, and sampling site. Only the collection site differences were significant (α = 0.01) and these were correlated with 239 Pu concentrations in soil. The mean activity ratio of 239 Pu to 238 Pu in arthropods was 52, similar to the value of 51 obtained for soil. The mean ratio of 239 Pu in arthropods to 239 Pu in 0-3 cm soil at Rocky Flats was 9 x 10 -3 . Arthropod biomass and Pu concentration data indicated that only about 10 -8 of the total plutonium inventory is in the arthropod component of the ecosystem. Leafhoppers, grasshoppers and spiders accounted for roughly 80% of the arthropod inventory of 239 Pu. (author)

  8. Preliminary sampling of arthropod fauna of transgenic cassava in ...

    African Journals Online (AJOL)

    COLLINS-NRCRI, UMUDIKE

    2012-03-13

    Mar 13, 2012 ... arthropod fauna of transgenic cassava in a confined field trial (CFT) at National Root Crops Research. Institute (NRCRI), Umudike, Nigeria. The trial took place from August to November, in 2009 and. February to July, in 2010 to identify the major arthropods associated with the crop and to monitor changes ...

  9. Early Cretaceous arthropods from plattenkalk facies in Mexico

    NARCIS (Netherlands)

    Vega, Francisco J.; Garcia-Barrera, P.; Coutiño, M.; Nyborg, T.; Cifuentes-Ruiz, P.; González-Rodríguez, K.; Martens, A.; Delgado, C.R.; Carbot, G.

    2003-01-01

    Several well-preserved arthropod faunas have been studied in Mexico during the past few years. The purpose of the present note is to outline advances in the study of these arthropods and of their paleoenvironmental implications, from four localities. The age for these localities ranges from the

  10. Biodiversity of Soil Arthropods in Nigerian Institute for oil Palm ...

    African Journals Online (AJOL)

    A survey of soil arthropod fauna inhabiting Nigeria Institute for Oil Palm Research (NIFOR) was carried out from July-September 2012, with a view to determine the diversity and distribution of soil arthropods of the area. Two study stations were identified at the area, namely; Station one (Plantation site) and Station two ...

  11. Pinyon pine mortality alters communities of ground-dwelling arthropods

    Science.gov (United States)

    Robert J. Delph; Michael J. Clifford; Neil S. Cobb; Paulette L. Ford; Sandra L. Brantley

    2014-01-01

    We documented the effect of drought-induced mortality of pinyon pine (Pinus edulis Engelm.) on communities of ground-dwelling arthropods. Tree mortality alters microhabitats utilized by ground-dwelling arthropods by increasing solar radiation, dead woody debris, and understory vegetation. Our major objectives were to determine (1) whether there were changes in...

  12. Survey of Ground Dwelling Arthropods Associated with Two Habitat ...

    African Journals Online (AJOL)

    Little is known about the species composition and ecology of ground dwelling arthropods of Zoological Gardens. Thus, this study was aimed to investigate the species abundance and diversity of ground dwelling arthropods associated with Gallery forest and Rocky outcrop of the Jos Museum Zoological Garden Jos Plateau ...

  13. Effects of large herbivores on grassland arthropod diversity

    Science.gov (United States)

    van Klink, R; van der Plas, F; van Noordwijk, C G E (Toos); WallisDeVries, M F; Olff, H

    2015-01-01

    Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141 studies on this topic of which 24 simultaneously investigated plant and arthropod diversity. Using the data from these 24 studies, we compared the responses of plant and arthropod diversity to an increase in grazing intensity. This quantitative assessment showed no overall significant effect of increasing grazing intensity on plant diversity, while arthropod diversity was generally negatively affected. To understand these negative effects, we explored the mechanisms by which large herbivores affect arthropod communities: direct effects, changes in vegetation structure, changes in plant community composition, changes in soil conditions, and cascading effects within the arthropod interaction web. We identify three main factors determining the effects of large herbivores on arthropod diversity: (i) unintentional predation and increased disturbance, (ii) decreases in total resource abundance for arthropods (biomass) and (iii) changes in plant diversity, vegetation structure and abiotic conditions. In general, heterogeneity in vegetation structure and abiotic conditions increases at intermediate grazing intensity, but declines at both low and high grazing intensity. We conclude that large herbivores can only increase arthropod diversity if they cause an increase in (a)biotic heterogeneity, and then only if this increase is large enough to compensate for the loss of total resource abundance and the increased mortality rate. This is expected to occur only at low herbivore densities or with spatio-temporal variation in herbivore densities. As we demonstrate that arthropod diversity is often more negatively affected by grazing than plant diversity, we strongly recommend considering the

  14. Arthropod diversity (Arthropoda on abandoned apple trees

    Directory of Open Access Journals (Sweden)

    Pavla Šťastná

    2013-01-01

    Full Text Available In 2010 and 2011, the occurrence of arthropods on apple trees without management was monitored near the village of Velké Bílovice, South Moravia, in two selected localities (an abandoned apple tree orchard and a road apple tree alley. Arthropods in tree tops were killed using deltamehtrin applied with a fogger (Puls Fog. Each collection always contained the material from 5 trees in each site. In 2010, three collections were performed (28/4, 20/5, and 9/7, two in 2011 (11/5 and 23/6. Representatives of eleven orders were captured. Of all the orders trapped, Coleoptera was represented most frequently, the Hymenoptera and Diptera followed. In the alley, individuals of the Coleoptera (34% were caught most frequently, the Hymenoptera (19.6% and Hemiptera (17.4% followed. In the orchard, the Coleoptera (41.4% was represented most frequently, followed by the Hymenoptera (21.9% and Diptera (15%. In both the environments, species with negative economic impact were recorded (e.g. Anthonomus pyri, Tatianaerhynchites aequatus, Cydia pomonella, Rhynchites bacchus. However, a greater number of pest antagonists were also found (Scambus pomorum, Coccinella septempunctata, Episyrphus balteatus, Pentatoma rufipes, Orius spp.. Some species were important in faunistic terms, as some critically endangered species were recorded (e.g. Dipoena erythropus, Cryptocephalus schaefferi, and the Plectochorus iwatensis species was recorded for the first time in the Czech Republic.

  15. Hematopoiesis and Hematopoietic Organs in Arthropods

    Science.gov (United States)

    Grigorian, Melina; Hartenstein, Volker

    2013-01-01

    Hemocytes (blood cells) are motile cells moving throughout the extracellular space and exist in all clades of the animal kingdom. Hemocytes play an important role in shaping the extracellular environment and in the immune response. Developmentally, hemocytes are closely related to the epithelial cells lining the vascular system (endothelia) and body cavity (mesothelia). In vertebrates and insects, common progenitors, called hemangioblasts, give rise to the endothelia and blood cells. In the adult animal, many differentiated hemocytes seem to retain the ability to proliferate; however, in most cases investigated closely, the bulk of hemocyte proliferation takes place in specialized hematopoietic organs. Hematopoietic organs provide an environment where undifferentiated blood stem cells are able to self renew, and at the same time generate offspring that differentiate into different blood cell types. Hematopoiesis in vertebrates, taking place in the bone marrow, has been subject to intensive research by immunologists and stem cell biologists. Much less is known about blood cell formation in invertebrate animals. In this review we will survey structural and functional properties of invertebrate hematopoietic organs, with a main focus on insects and other arthropod taxa. We will then discuss similarities, at the molecular and structural level, that are apparent when comparing the development of blood cells in hematopoietic organs of vertebrates and arthropods. Our comparative review is intended to elucidate aspects of the biology of blood stem cells that are more easily missed when focusing on one or a few model species. PMID:23319182

  16. Hematopoiesis and hematopoietic organs in arthropods.

    Science.gov (United States)

    Grigorian, Melina; Hartenstein, Volker

    2013-03-01

    Hemocytes (blood cells) are motile cells that move throughout the extracellular space and that exist in all clades of the animal kingdom. Hemocytes play an important role in shaping the extracellular environment and in the immune response. Developmentally, hemocytes are closely related to the epithelial cells lining the vascular system (endothelia) and the body cavity (mesothelia). In vertebrates and insects, common progenitors, called hemangioblasts, give rise to the endothelia and blood cells. In the adult animal, many differentiated hemocytes seem to retain the ability to proliferate; however, in most cases investigated closely, the bulk of hemocyte proliferation takes place in specialized hematopoietic organs. Hematopoietic organs provide an environment where undifferentiated blood stem cells are able to self-renew, and at the same time generate offspring that differentiate into different blood cell types. Hematopoiesis in vertebrates, taking place in the bone marrow, has been subject to intensive research by immunologists and stem cell biologists. Much less is known about blood cell formation in invertebrate animals. In this review, we will survey structural and functional properties of invertebrate hematopoietic organs, with a main focus on insects and other arthropod taxa. We will then discuss similarities, at the molecular and structural level, that are apparent when comparing the development of blood cells in hematopoietic organs of vertebrates and arthropods. Our comparative review is intended to elucidate aspects of the biology of blood stem cells that are more easily missed when focusing on one or a few model species.

  17. An exceptionally preserved arthropod cardiovascular system from the early Cambrian.

    Science.gov (United States)

    Ma, Xiaoya; Cong, Peiyun; Hou, Xianguang; Edgecombe, Gregory D; Strausfeld, Nicholas J

    2014-04-07

    The assumption that amongst internal organs of early arthropods only the digestive system withstands fossilization is challenged by the identification of brain and ganglia in early Cambrian fuxianhuiids and megacheirans from southwest China. Here we document in the 520-million-year-old Chengjiang arthropod Fuxianhuia protensa an exceptionally preserved bilaterally symmetrical organ system corresponding to the vascular system of extant arthropods. Preserved primarily as carbon, this system includes a broad dorsal vessel extending through the thorax to the brain where anastomosing branches overlap brain segments and supply the eyes and antennae. The dorsal vessel provides segmentally paired branches to lateral vessels, an arthropod ground pattern character, and extends into the anterior part of the abdomen. The addition of its vascular system to documented digestive and nervous systems resolves the internal organization of F. protensa as the most completely understood of any Cambrian arthropod, emphasizing complexity that had evolved by the early Cambrian.

  18. Selenium hyperaccumulation reduces plant arthropod loads in the field.

    Science.gov (United States)

    Galeas, Miriam L; Klamper, Erin M; Bennett, Lindsay E; Freeman, John L; Kondratieff, Boris C; Quinn, Colin F; Pilon-Smits, Elizabeth A H

    2008-01-01

    The elemental defense hypothesis proposes that some plants hyperaccumulate toxic elements as a defense mechanism. In this study the effectiveness of selenium (Se) as an arthropod deterrent was investigated under field conditions. Arthropod loads were measured over two growing seasons in Se hyperaccumulator habitats in Colorado, USA, comparing Se hyperaccumulator species (Astragalus bisulcatus and Stanleya pinnata) with nonhyperaccumulators (Camelina microcarpa, Astragalus americanus, Descurainia pinnata, Medicago sativa, and Helianthus pumilus). The Se hyperaccumulating plant species, which contained 1000-14 000 microg Se g(-1) DW, harbored significantly fewer arthropods (c. twofold) and fewer arthropod species (c. 1.5-fold) compared with nonhyperaccumulator species that contained 10-fold lower Se concentrations than their hyperaccumulator hosts. Several arthropod species contained > 100 microg Se g(-1) DW, indicating Se tolerance and perhaps feeding specialization. These results support the elemental defense hypothesis and suggest that invertebrate herbivory may have contributed to the evolution of Se hyperaccumulation.

  19. Ecotoxicological Study of Insecticide Effects on Arthropods in Common Bean

    Science.gov (United States)

    de Barros, Emerson Cristi; Ventura, Hudson Vaner; Gontijo, Pablo Costa; Pereira, Renata Ramos; Picanço, Marcelo Coutinho

    2015-01-01

    Arthropods are an important group of macroorganisms that work to maintain ecosystem health. Despite the agricultural benefits of chemical control against arthropod pests, insecticides can cause environmental damage. We examined the effects of one and two applications of the insecticides chlorfenapyr (0.18 liters a.i. ha-1) and methamidophos (0.45 liters a.i. ha-1), both independently and in combination, on arthropods in plots of common bean. The experiment was repeated for two growing seasons. Principal response curve, richness estimator, and Shannon–Wiener diversity index analyses were performed. The insecticides generally affected the frequency, richness, diversity, and relative abundance of the arthropods. In addition, the arthropods did not experience recovery after the insecticide applications. The results suggest that the insecticide impacts were sufficiently drastic to eliminate many taxa from the studied common bean plots. PMID:25700537

  20. Ecotoxicological study of insecticide effects on arthropods in common bean.

    Science.gov (United States)

    de Barros, Emerson Cristi; Ventura, Hudson Vaner; Gontijo, Pablo Costa; Pereira, Renata Ramos; Picanço, Marcelo Coutinho

    2015-01-01

    Arthropods are an important group of macroorganisms that work to maintain ecosystem health. Despite the agricultural benefits of chemical control against arthropod pests, insecticides can cause environmental damage. We examined the effects of one and two applications of the insecticides chlorfenapyr (0.18 liters a.i. ha-1) and methamidophos (0.45 liters a.i. ha-1), both independently and in combination, on arthropods in plots of common bean. The experiment was repeated for two growing seasons. Principal response curve, richness estimator, and Shannon-Wiener diversity index analyses were performed. The insecticides generally affected the frequency, richness, diversity, and relative abundance of the arthropods. In addition, the arthropods did not experience recovery after the insecticide applications. The results suggest that the insecticide impacts were sufficiently drastic to eliminate many taxa from the studied common bean plots. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  1. Differential spatial distribution of arthropods under epiphytic lichens on trees

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Itzhak Martinez

    2014-08-01

    Full Text Available Epiphytic lichen thalli on trees may protect arthropods - herbivores or their natural enemies. Although the relationships between lichens on the forest floor to arthropods have been widely studied in boreal regions, those between epiphytic lichens and the arboreal arthropod fauna in temperate and Mediterranean climates are poorly investigated. In particular it is unknown if the animals use lichens differently located on different part of the trees. Our results indicate that numerous arthropods, herbivores and predators, may live in epiphytic lichen cover, and that more of them are found on the trunk than on old or young branches: an average of 2000 individuals were found under each meter square of the thallus covering the trunk of 20 trees, but fewer on branches. In particular more insects from more Orders were detected on trunks than on branches. We propose that this issue should be investigated further to clarify the exact status of epiphytic lichens in arthropod biodiversity conservation.

  2. Comparative analyses of olfactory systems in terrestrial crabs (Brachyura: evidence for aerial olfaction?

    Directory of Open Access Journals (Sweden)

    Jakob Krieger

    2015-12-01

    Full Text Available Adaptations to a terrestrial lifestyle occurred convergently multiple times during the evolution of the arthropods. This holds also true for the “true crabs” (Brachyura, a taxon that includes several lineages that invaded land independently. During an evolutionary transition from sea to land, animals have to develop a variety of physiological and anatomical adaptations to a terrestrial life style related to respiration, reproduction, development, circulation, ion and water balance. In addition, sensory systems that function in air instead of in water are essential for an animal’s life on land. Besides vision and mechanosensory systems, on land, the chemical senses have to be modified substantially in comparison to their function in water. Among arthropods, insects are the most successful ones to evolve aerial olfaction. Various aspects of terrestrial adaptation have also been analyzed in those crustacean lineages that evolved terrestrial representatives including the taxa Anomala, Brachyura, Amphipoda, and Isopoda. We are interested in how the chemical senses of terrestrial crustaceans are modified to function in air. Therefore, in this study, we analyzed the brains and more specifically the structure of the olfactory system of representatives of brachyuran crabs that display different degrees of terrestriality, from exclusively marine to mainly terrestrial. The methods we used included immunohistochemistry, detection of autofluorescence- and confocal microscopy, as well as three-dimensional reconstruction and morphometry. Our comparative approach shows that both the peripheral and central olfactory pathways are reduced in terrestrial members in comparison to their marine relatives, suggesting a limited function of their olfactory system on land. We conclude that for arthropod lineages that invaded land, evolving aerial olfaction is no trivial task.

  3. The evolution of the mitochondrial genetic code in arthropods revisited.

    Science.gov (United States)

    Abascal, Federico; Posada, David; Zardoya, Rafael

    2012-04-01

    A variant of the invertebrate mitochondrial genetic code was previously identified in arthropods (Abascal et al. 2006a, PLoS Biol 4:e127) in which, instead of translating the AGG codon as serine, as in other invertebrates, some arthropods translate AGG as lysine. Here, we revisit the evolution of the genetic code in arthropods taking into account that (1) the number of arthropod mitochondrial genomes sequenced has triplicated since the original findings were published; (2) the phylogeny of arthropods has been recently resolved with confidence for many groups; and (3) sophisticated probabilistic methods can be applied to analyze the evolution of the genetic code in arthropod mitochondria. According to our analyses, evolutionary shifts in the genetic code have been more common than previously inferred, with many taxonomic groups displaying two alternative codes. Ancestral character-state reconstruction using probabilistic methods confirmed that the arthropod ancestor most likely translated AGG as lysine. Point mutations at tRNA-Lys and tRNA-Ser correlated with the meaning of the AGG codon. In addition, we identified three variables (GC content, number of AGG codons, and taxonomic information) that best explain the use of each of the two alternative genetic codes.

  4. Arthropod diversity in a tropical forest

    Czech Academy of Sciences Publication Activity Database

    Basset, Y.; Čížek, Lukáš; Cuénoud, P.; Didham, R. K.; Guilhaumon, F.; Missa, O.; Novotný, Vojtěch; Odegaard, F.; Roslin, T.; Schmidl, J.; Tishechkin, A. K.; Winchester, N. N.; Roubik, D. W.; Aberlenc, H.-P.; Bail, J.; Barrios, H.; Bridle, J. R.; Castano-Meneses, G.; Corbara, B.; Curletti, G.; Duarte da Rocha, W.; De Bakker, D.; Delabie, J. H. C.; Dejean, A.; Fagan, L. L.; Florean, A.; Kitching, R. L.; Medianero, E.; Miller, S. E.; Gama de Oliveira, E.; Orivel, J.; Pollet, M.; Rapp, M.; Riberio, S. P.; Roisin, Y.; Schmidt, J. B.; Sorensen, L.; Leponce, M.

    2012-01-01

    Roč. 338, č. 6113 (2012), s. 1481-1484 ISSN 0036-8075 R&D Projects: GA ČR GA206/09/0115; GA ČR GAP504/12/1952 Grant - others:European Social Fund(CZ) CZ.1.07/2.3.00/20.0064; U.S. National Science Foundation(US) DEB-0841885; University of Canterbury and Royal Scoiety of New Zealand(NZ) PNX0011-2009; Australian Research Council Future Fellowship(AU) FT100100040; Ciencia e a Tecnologia (PT) PTDC/AAC-AMB/098163/2008; U.S. National Science Foundation(US) DEB-0516311; U.S. National Science Foundation(US) DEB-0949790 Institutional support: RVO:60077344 Keywords : arthropod diversity Subject RIV: EH - Ecology, Behaviour Impact factor: 31.027, year: 2012 http://www.sciencemag.org/content/338/6113/1481.full

  5. Determinants of the detrital arthropod community structure

    DEFF Research Database (Denmark)

    Lessard, J.P.; Sackett, Tara E.; Reynolds, William N.

    2011-01-01

    in the determinants of community structure. In this study, we first examined the relative importance of environmental gradients, microclimate, and food resources in driving spatial variation in the structure of detrital communities in forests of the southeastern USA. Then, in order to assess whether the determinants...... of detrital community structure varied along a climatic gradient, we manipulated resource availability and microclimatic conditions at 15 sites along a well-studied elevational gradient. We found that arthropod abundance and richness generally declined with increasing elevation, though the shape...... manipulative experiments along environmental gradients can help tease apart the relative importance and detect the interactive effects of local-scale factors and broad-scale climatic variation in shaping communities...

  6. Diversity of arthropod community in transgenic poplar-cotton ecosystems.

    Science.gov (United States)

    Zhang, D J; Lu, Z Y; Liu, J X; Li, C L; Yang, M S

    2015-12-02

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of plain cotton fields in China. Here, we performed a systematic survey of the diversity and population of arthropod communities in four different combination of poplar-cotton eco-systems, including I) non-transgenic poplar and non-transgenic cotton fields; II) non-transgenic poplar and transgenic cotton fields [Bacillus thuringiensis (Bt) cotton]; III) Bt transgenic poplar (high insect resistant strain Pb29) and non-transgenic cotton; and IV) transgenic poplar and transgenic cotton fields, over a period of 3 years. Based on the statistical methods used to investigate community ecology, the effects of transgenic ecosystems on the whole structure of the arthropod community, on the structure of arthropods in the nutritive layer, and on the similarity of arthropod communities were evaluated. The main results were as follows: the transgenic poplar-cotton ecosystem has a stronger inhibitory effect on insect pests and has no impact on the structure of the arthropod community, and therefore, maintains the diversity of the arthropod community. The character index of the community indicated that the structure of the arthropod community of the transgenic poplar-cotton ecosystem was better than that of the poplar-cotton ecosystem, and that system IV had the best structure. As for the abundance of nutritional classes, the transgenic poplar-cotton ecosystem was also better than that of the non-transgenic poplar-cotton ecosystem. The cluster analysis and similarity of arthropod communities between the four different transgenic poplar-cotton ecosystems illustrated that the structure of the arthropod community excelled in the small sample of the transgenic poplar-cotton ecosystems.

  7. Application of Terrestrial Ecosystem Monitoring under the CAFF Circumpolar Biodiversity Monitoring Program: Designing and Implementing Terrestrial Monitoring to Establish the Canadian High Arctic Research Station as a Flagship Arctic Environmental Monitoring Site

    Science.gov (United States)

    McLennan, D.; Kehler, D.

    2016-12-01

    The Canadian High Arctic Research Station (CHARS) is scheduled for completion in July 2017 and is the northern science component of Polar Knowledge Canada (POLAR). A mandated goal for POLAR is to establish the adjacent Experimental and Reference Area (ERA) as an Arctic Flagship monitoring site that will track change in Arctic terrestrial, freshwater and marine ecosystems. Situated in the community of Cambridge Bay, CHARS provides the opportunity to draw on the Indigenous Knowledge of local residents to help design and conduct the monitoring, and to operate 12 months a year. Monitoring at CHARS will be linked to networks nationally and internationally, and is being designed so that change in key indicators can be understood in terms of drivers and processes, modeled and scaled up regionally, and used to predict important changes in critical indicators. As a partner in the Circumpolar Biodiversity Monitoring Program (CBMP), the monitoring design for terrestrial ecosystems follows approaches outlined by the CBMP Terrestrial Expert Monitoring Group, who have listed key monitoring questions and identified a list of important Focal Ecosystem Components (FECs). To link drivers to FECs we are proposing a multi-scaled approach: 1) an Intensive Monitoring Area to establish replicated monitoring plots that track change in snow depth and condition, active layer depth, soil temperature, soil moisture, and soil solution chemistry that are spatially and temporally linked to changes in microbiological activity, CO2/CH4 net ecosystem flux, vegetation relative frequency, species composition, growth and foliar nutrient concentration, arthropod abundance, lemming abundance and health, and shorebird/songbird abundance and productivity. 2) These intensive observations are supported by watershed scale measures that will monitor, during the growing season, lemming winter nest abundance, songbird, shorebird and waterfowl staging and nesting, and other observations; in the winter we will

  8. Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain.

    Science.gov (United States)

    Spagna, J C; Goldman, D I; Lin, P-C; Koditschek, D E; Full, R J

    2007-03-01

    Terrestrial arthropods negotiate demanding terrain more effectively than any search-and-rescue robot. Slow, precise stepping using distributed neural feedback is one strategy for dealing with challenging terrain. Alternatively, arthropods could simplify control on demanding surfaces by rapid running that uses kinetic energy to bridge gaps between footholds. We demonstrate that this is achieved using distributed mechanical feedback, resulting from passive contacts along legs positioned by pre-programmed trajectories favorable to their attachment mechanisms. We used wire-mesh experimental surfaces to determine how a decrease in foothold probability affects speed and stability. Spiders and insects attained high running speeds on simulated terrain with 90% of the surface contact area removed. Cockroaches maintained high speeds even with their tarsi ablated, by generating horizontally oriented leg trajectories. Spiders with more vertically directed leg placement used leg spines, which resulted in more effective distributed contact by interlocking with asperities during leg extension, but collapsing during flexion, preventing entanglement. Ghost crabs, which naturally lack leg spines, showed increased mobility on wire mesh after the addition of artificial, collapsible spines. A bioinspired robot, RHex, was redesigned to maximize effective distributed leg contact, by changing leg orientation and adding directional spines. These changes improved RHex's agility on challenging surfaces without adding sensors or changing the control system.

  9. Trichomycetes (Zygomycota in the digestive tract of arthropods in Amazonas, Brazil

    Directory of Open Access Journals (Sweden)

    Alencar Yamile B

    2003-01-01

    Full Text Available Eight species of Harpellales and three species of Eccrinales (Zygomycota: Trichomycetes were found associated with the digestive tract of arthropods from terrestrial and aquatic environments in the central Amazon region of Brazil. New species of Harpellales include: Harpella amazonica, Smittium brasiliense, Genistellospora tropicalis in Simuliidae larvae and Stachylina paucispora in Chironomidae larvae. Axenic cultures of S. brasiliense were obtained. Probable new species of Enterobryus (Eccrinales, Harpella, and Stachylina (Harpellales are described but not named. Also reported are the previously known species of Eccrinales, Passalomyces compressus and Leidyomyces attenuatus in adult Coleoptera (Passalidae, and Smittium culisetae and Smittium aciculare (Harpellales in Culicidae and Simuliidae larvae, respectively. Comments on the distribution of some of these fungi and their hosts in the Neotropics are provided.

  10. Grandeur Alliances: Symbiont Metabolic Integration and Obligate Arthropod Hematophagy.

    Science.gov (United States)

    Rio, Rita V M; Attardo, Geoffrey M; Weiss, Brian L

    2016-09-01

    Several arthropod taxa live exclusively on vertebrate blood. This food source lacks essential metabolites required for the maintenance of metabolic homeostasis, and as such, these arthropods have formed symbioses with nutrient-supplementing microbes that facilitate their host's 'hematophagous' feeding ecology. Herein we highlight metabolic contributions of bacterial symbionts that reside within tsetse flies, bed bugs, lice, reduviid bugs, and ticks, with specific emphasis on B vitamin and cofactor biosynthesis. Importantly, these arthropods can transmit pathogens of medical and veterinary relevance and/or cause infestations that induce psychological and dermatological distress. Microbial metabolites, and the biochemical pathways that generate them, can serve as specific targets of novel control mechanisms aimed at disrupting the metabolism of hematophagous arthropods, thus combatting pest invasion and vector-borne pathogen transmission. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Arthropod fauna recorded in flowers of apomictic Taraxacum section Ruderalia

    Czech Academy of Sciences Publication Activity Database

    Honěk, A.; Martínková, Z.; Skuhrovec, J.; Barták, M.; Bezděk, J.; Bogusch, P.; Hadrava, J.; Hájek, J.; Janšta, P.; Jelínek, J.; Kirschner, Jan; Kubáň, V.; Pekár, S.; Průdek, P.; Štys, P.; Šumpich, J.

    2016-01-01

    Roč. 113, č. 1 (2016), s. 173-183 E-ISSN 1802-8829 Institutional support: RVO:67985939 Keywords : plant-herbivore interactions * arthropods * Taraxacum Subject RIV: EF - Botanics Impact factor: 1.167, year: 2016

  12. Horizontal Gene Transfer Contributes to the Evolution of Arthropod Herbivory

    NARCIS (Netherlands)

    Wybouw, N.; Pauchet, Y.; Heckel, D.G.; Van Leeuwen, T.

    Within animals, evolutionary transition toward herbivory is severely limited by the hostile characteristics of plants. Arthropods have nonetheless counteracted many nutritional and defensive barriers imposed by plants and are currently considered as the most successful animal herbivores in

  13. Responses of arthropod populations to warming depend on latitude

    DEFF Research Database (Denmark)

    Youngsteadt, Elsa; Ernst, Andrew F.; Dunn, Robert Roberdeau

    2017-01-01

    and an organism's fitness. Here we ask whether these documented latitudinal patterns can be generalized to predict arthropod responses to warming across mid and high temperate latitudes, for taxa whose thermal physiology has not been measured. To address this question, we used a novel natural experiment...... consisting of a series of urban warming gradients at different latitudes. Specifically, we sampled arthropods from a single common street tree species across temperature gradients in 4 US cities, located from 35.8 to 42.4° latitude. We captured 6746 arthropods in 34 families from 111 sites that varied...... in summer average temperature by 1.7 to 3.4 °C within each city. Arthropod responses to warming within each city were characterized as Poisson regression coefficients describing change in abundance per °C for each family. Family responses in the two mid latitude cities were heterogeneous, including...

  14. Preliminary sampling of arthropod fauna of transgenic cassava in ...

    African Journals Online (AJOL)

    COLLINS-NRCRI, UMUDIKE

    2012-03-13

    HCN) content and because it is generally grown in association with maize, beans and vegetables (Hahn et. al., 1979). Some arthropods associated with cassava and their damage. The variegated grasshopper. (Orthoptera:.

  15. Simple landscape modifications for pollinator and arthropod natural enemy enhancement

    Science.gov (United States)

    Beneficial arthropods which play an important role in providing ecosystem services (pollination and pest control) have come under threat as a result of intensive agricultural practices and simplification of habitats. Ecological intensification in agricultural landscapes by diversifying the habitat r...

  16. Antiviral responses of arthropod vectors: an update on recent advances.

    Science.gov (United States)

    Rückert, Claudia; Bell-Sakyi, Lesley; Fazakerley, John K; Fragkoudis, Rennos

    2014-01-01

    Arthropod vectors, such as mosquitoes, ticks, biting midges and sand flies, transmit many viruses that can cause outbreaks of disease in humans and animals around the world. Arthropod vector species are invading new areas due to globalisation and environmental changes, and contact between exotic animal species, humans and arthropod vectors is increasing, bringing with it the regular emergence of new arboviruses. For future strategies to control arbovirus transmission, it is important to improve our understanding of virus-vector interactions. In the last decade knowledge of arthropod antiviral immunity has increased rapidly. RNAi has been proposed as the most important antiviral response in mosquitoes and it is likely to be the most important antiviral response in all arthropods. However, other newly-discovered antiviral strategies such as melanisation and the link between RNAi and the JAK/STAT pathway via the cytokine Vago have been characterised in the last few years. This review aims to summarise the most important and most recent advances made in arthropod antiviral immunity.

  17. Insights into the molecular evolution of peptidase inhibitors in arthropods

    Science.gov (United States)

    Alonso, Joaquin

    2017-01-01

    Peptidase inhibitors are key proteins involved in the control of peptidases. In arthropods, peptidase inhibitors modulate the activity of peptidases involved in endogenous physiological processes and peptidases of the organisms with which they interact. Exploring available arthropod genomic sequences is a powerful way to obtain the repertoire of peptidase inhibitors in every arthropod species and to understand the evolutionary mechanisms involved in the diversification of this kind of proteins. A genomic comparative analysis of peptidase inhibitors in species belonging to different arthropod taxonomic groups was performed. The results point out: i) species or clade-specific presence is shown for several families of peptidase inhibitors; ii) multidomain peptidase inhibitors are commonly found in many peptidase inhibitor families; iii) several families have a wide range of members in different arthropod species; iv) several peptidase inhibitor families show species-specific (or clade-specific) gene family expansions; v) functional divergence may be assumed for particular clades; vi) passive expansions may be used by natural selection to fix adaptations. In conclusion, conservation and divergence of duplicated genes and the potential recruitment as peptidase inhibitors of proteins from other families are the main mechanisms used by arthropods to fix diversity. This diversity would be associated to the control of target peptidases and, as consequence, to adapt to specific environments. PMID:29108008

  18. Insights into the molecular evolution of peptidase inhibitors in arthropods.

    Science.gov (United States)

    Alonso, Joaquin; Martinez, Manuel

    2017-01-01

    Peptidase inhibitors are key proteins involved in the control of peptidases. In arthropods, peptidase inhibitors modulate the activity of peptidases involved in endogenous physiological processes and peptidases of the organisms with which they interact. Exploring available arthropod genomic sequences is a powerful way to obtain the repertoire of peptidase inhibitors in every arthropod species and to understand the evolutionary mechanisms involved in the diversification of this kind of proteins. A genomic comparative analysis of peptidase inhibitors in species belonging to different arthropod taxonomic groups was performed. The results point out: i) species or clade-specific presence is shown for several families of peptidase inhibitors; ii) multidomain peptidase inhibitors are commonly found in many peptidase inhibitor families; iii) several families have a wide range of members in different arthropod species; iv) several peptidase inhibitor families show species-specific (or clade-specific) gene family expansions; v) functional divergence may be assumed for particular clades; vi) passive expansions may be used by natural selection to fix adaptations. In conclusion, conservation and divergence of duplicated genes and the potential recruitment as peptidase inhibitors of proteins from other families are the main mechanisms used by arthropods to fix diversity. This diversity would be associated to the control of target peptidases and, as consequence, to adapt to specific environments.

  19. Mortality of nontarget arthropods from an aerial application of pyrethrins.

    Science.gov (United States)

    Kwan, Jonathan A; Novak, Mark G; Hyles, Timothy S; Niemela, Michael K

    2009-06-01

    Mortality of nontarget organisms from an ultra-low volume (ULV) aerial application of pyrethrins (Evergreen EC 60-6) was monitored by collecting arthropods from ground tarps placed at the interface of open and canopy areas. A larger number and greater diversity of arthropods were recovered from tarps in the ULV spray area. The observed mortality was approximately 10-fold greater than in the control area. Kruskal-Wallis tests revealed a significant difference in the abundance and diversity of arthropods collected at treatment and control sites at 1 and 12 h postspray. Arthropods, primarily insects, from the treatment area included representatives from 12 orders and > or = 34 families, as compared to 7 orders and 12 families in the control area. Chironomidae (midges) and Formicidae (ants) were the most commonly represented families, accounting for 61% of the arthropods collected from the treatment area; no large-bodied insects (>8 mm) were recovered. Mortality of sentinel mosquitoes in the treatment and control areas averaged 96% and arthropods.

  20. Administering and Detecting Protein Marks on Arthropods for Dispersal Research.

    Science.gov (United States)

    Hagler, James R; Machtley, Scott A

    2016-01-28

    Monitoring arthropod movement is often required to better understand associated population dynamics, dispersal patterns, host plant preferences, and other ecological interactions. Arthropods are usually tracked in nature by tagging them with a unique mark and then re-collecting them over time and space to determine their dispersal capabilities. In addition to actual physical tags, such as colored dust or paint, various types of proteins have proven very effective for marking arthropods for ecological research. Proteins can be administered internally and/or externally. The proteins can then be detected on recaptured arthropods with a protein-specific enzyme-linked immunosorbent assay (ELISA). Here we describe protocols for externally and internally tagging arthropods with protein. Two simple experimental examples are demonstrated: (1) an internal protein mark introduced to an insect by providing a protein-enriched diet and (2) an external protein mark topically applied to an insect using a medical nebulizer. We then relate a step-by-step guide of the sandwich and indirect ELISA methods used to detect protein marks on the insects. In this demonstration, various aspects of the acquisition and detection of protein markers on arthropods for mark-release-recapture, mark-capture, and self-mark-capture types of research are discussed, along with the various ways that the immunomarking procedure has been adapted to suit a wide variety of research objectives.

  1. Meeting the challenges of on-host and off-host water balance in blood-feeding arthropods.

    Science.gov (United States)

    Benoit, Joshua B; Denlinger, David L

    2010-10-01

    In this review, we describe water balance requirements of blood-feeding arthropods, particularly contrasting dehydration tolerance during the unfed, off-host state and the challenges of excess water that accompany receipt of the bloodmeal. Most basic water balance characteristics during the off-host stage are applicable to other terrestrial arthropods, as well. A well-coordinated suite of responses enable arthropods to conserve water resources, enhance their desiccation tolerance, and increase their water supplies by employing a diverse array of molecular, structural and behavioral responses. Water loss rates during the off-host phase are particularly useful for generating a scheme to classify vectors according to their habitat requirements for water, thus providing a convenient tool with potential predictive power for defining suitable current and future vector habitats. Blood-feeding elicits an entirely different set of challenges as the vector responds to overhydration by quickly increasing its rate of cuticular water loss and elevating the rate of diuresis to void excess water and condense the bloodmeal. Immature stages that feed on blood normally have a net increase in water content at the end of a blood-feeding cycle, but in adults the water content reverts to the pre-feeding level when the cycle is completed. Common themes are evident in diverse arthropods that feed on blood, particularly the physiological mechanisms used to respond to the sudden influx of water as well as the mechanisms used to counter water shortfalls that are encountered during the non-feeding, off-host state. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Introduction to the Arizona Sky Island Arthropod Project (ASAP): Systematics, biogeography, ecology, and population genetics of arthropods of the Madrean Sky Islands

    Science.gov (United States)

    Wendy Moore; Wallace M. Meyer; Jeffrey A. Eble; Kimberly Franklin; John F. Wiens; Richard C. Brusca

    2013-01-01

    The Arizona Sky Island Arthropod Project (ASAP) is a new multi-disciplinary research program at the University of Arizona that combines systematics, biogeography, ecology, and population genetics to study origins and patterns of arthropod diversity along elevation gradients and among mountain ranges in the Madrean Sky Island Region. Arthropods represent taxonomically...

  3. Can periodically drained ponds have any potential for terrestrial arthropods conservation? A pilot survey of spiders

    Czech Academy of Sciences Publication Activity Database

    Tropek, Robert

    2012-01-01

    Roč. 60, č. 3 (2012), s. 635-639 ISSN 1505-2249 R&D Projects: GA ČR GAP504/12/2525; GA ČR GD206/08/H044; GA MŠk LC06073 Institutional support: RVO:60077344 Keywords : anthropogenic sites * Araneae * colonisation Subject RIV: EH - Ecology , Behaviour Impact factor: 0.503, year: 2012

  4. Restoration management of fly ash deposits crucially influence their conservation potential for terrestrial arthropods

    Czech Academy of Sciences Publication Activity Database

    Tropek, Robert; Černá, Ilona; Straka, J.; Kadlec, T.; Pech, P.; Tichánek, P.; Šebek, Pavel

    2014-01-01

    Roč. 73, Dec 1 (2014), s. 45-52 ISSN 0925-8574 R&D Projects: GA ČR GAP504/12/2525 Grant - others:GA JU(CZ) 160/2010/P; GA JU(CZ) 144/2010/P; GA JU(CZ) 168/2013/P Institutional support: RVO:60077344 Keywords : biodiversity conservation * energy industry * restoration ecology Subject RIV: EH - Ecology, Behaviour Impact factor: 2.580, year: 2014 http://www.sciencedirect.com/science/article/pii/S092585741400408X

  5. The role of ecological infrastructure on beneficial arthropods in vineyards

    Directory of Open Access Journals (Sweden)

    Gabrijela Kuštera

    2016-03-01

    Full Text Available Weeds and non-cultivated plants have a great impact on abundance and diversity of beneficial arthropods in agriculture. The main aim of this work was to study the influence of the ecological infrastructure (meadows and weedy margins on the arthropod composition in vineyard surrounding landscape. Research was carried out from May to October during three years. Sampling took place in the ecological infrastructure of three differently managed vineyards (organic, integrated and extensive. Three zones were chosen in each vineyard (3 m, 10 m, and 30 m from the edge of the vineyard. Samples were taken using a standardised sweep net method. In total, we captured 6032 spiders and 1309 insects belonging to 4 orders and 10 families. Arthropod fauna was numerically dominated by Aranea (82.1%; among insects, Coleoptera was the most abundant taxonomic group (10.6%; Neuroptera showed the lowest value (0.88%. Significant differences were found between sites and zones. Organic vineyard showed the highest abundance of arthropods (92.41% were spiders and in the integrated vineyard there was a 23% of insects. Both the highest abundance of arthropods and the highest Shannon Index value (2.46 was found 3 m away from the edge of the vineyard. Results showed that spiders were the dominant arthropods and ladybugs the dominant insects. Weedy strips near the edge of the vineyard contained a high number of insects and spiders. Our results support the importance of weedy margins in enhancing the population of arthropods as well as in biodiversity promotion. Well-managed field margins could play important role in biological control of vineyard pests.

  6. The role of ecological infrastructure on beneficial arthropods in vineyards

    Energy Technology Data Exchange (ETDEWEB)

    Franin, K.; Barić, B.; Kuštera, G.

    2016-11-01

    Weeds and non-cultivated plants have a great impact on abundance and diversity of beneficial arthropods in agriculture. The main aim of this work was to study the influence of the ecological infrastructure (meadows and weedy margins) on the arthropod composition in vineyard surrounding landscape. Research was carried out from May to October during three years. Sampling took place in the ecological infrastructure of three differently managed vineyards (organic, integrated and extensive). Three zones were chosen in each vineyard (3 m, 10 m, and 30 m from the edge of the vineyard). Samples were taken using a standardised sweep net method. In total, we captured 6032 spiders and 1309 insects belonging to 4 orders and 10 families. Arthropod fauna was numerically dominated by Aranea (82.1%); among insects, Coleoptera was the most abundant taxonomic group (10.6%); Neuroptera showed the lowest value (0.88%). Significant differences were found between sites and zones. Organic vineyard showed the highest abundance of arthropods (92.41% were spiders) and in the integrated vineyard there was a 23% of insects. Both the highest abundance of arthropods and the highest Shannon Index value (2.46) was found 3 m away from the edge of the vineyard. Results showed that spiders were the dominant arthropods and ladybugs the dominant insects. Weedy strips near the edge of the vineyard contained a high number of insects and spiders. Our results support the importance of weedy margins in enhancing the population of arthropods as well as in biodiversity promotion. Well-managed field margins could play important role in biological control of vineyard pests. (Author)

  7. Comparative phylogeography of endemic Azorean arthropods.

    Science.gov (United States)

    Parmakelis, Aristeidis; Rigal, François; Mourikis, Thanos; Balanika, Katerina; Terzopoulou, Sofia; Rego, Carla; Amorim, Isabel R; Crespo, Luís; Pereira, Fernando; Triantis, Kostas A; Whittaker, Robert J; Borges, Paulo A V

    2015-11-11

    For a remote oceanic archipelago of up to 8 Myr age, the Azores have a comparatively low level of endemism. We present an analysis of phylogeographic patterns of endemic Azorean island arthropods aimed at testing patterns of diversification in relation to the ontogeny of the archipelago, in order to distinguish between alternative models of evolutionary dynamics on islands. We collected individuals of six species (representing Araneae, Hemiptera and Coleoptera) from 16 forest fragments from 7 islands. Using three mtDNA markers, we analysed the distribution of genetic diversity within and between islands, inferred the differentiation time-frames and investigated the inter-island migration routes and colonization patterns. Each species exhibited very low levels of mtDNA divergence, both within and between islands. The two oldest islands were not strongly involved in the diffusion of genetic diversity within the archipelago. The most haplotype-rich islands varied according to species but the younger, central islands contributed the most to haplotype diversity. Colonization events both in concordance with and in contradiction to an inter-island progression rule were inferred, while a non-intuitive pattern of colonization from western to eastern islands was also inferred. The geological development of the Azores has followed a less tidy progression compared to classic hotspot archipelagos, and this is reflected in our findings. The study species appear to have been differentiating within the Azores for <2 Myr, a fraction of the apparent life span of the archipelago, which may indicate that extinction events linked to active volcanism have played an important role. Assuming that after each extinction event, colonization was initiated from a nearby island hosting derived haplotypes, the apparent age of species diversification in the archipelago would be moved closer to the present after each extinction-recolonization cycle. Exploiting these ideas, we propose a general

  8. Epigeic soil arthropod abundance under different agricultural land uses

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Bote, J. L.; Romero, A. J.

    2012-11-01

    The study of soil arthropods can provide valuable information how ecosystems respond to different management practices. The objective was to assess the total abundance, richness, and composition of epiedaphic arthropods in different agrosystems from southwestern Spain. Six sites with different agricultural uses were selected: olive grove, vineyards, olive grove with vineyards, wheat fields, fallows (150-300 m long), and abandoned vineyards. Crops were managed in extensive. Field margins were used as reference habitats. At the seven sites a total of 30 pitfall traps were arranged in a 10 × 3 grid. Traps were arranged to short (SD, 1 m), medium (MD, 6 m) and large (LD, 11 m) distance to the field margins in the middle of selected plots. Pitfall traps captured a total of 11,992 edaphic arthropods belonging to 11 different taxa. Soil fauna was numerically dominated by Formicidae (26.60%), Coleoptera (19.77%), and Aranae (16.76%). The higher number of soil arthropods were captured in the field margins followed by the abandoned vineyard. Significant differences were found between sites for total abundance, and zones. However, no significant differences for total abundance were found between months (April-July). Richness and diversity was highest in field margins and abandoned vineyards. Significant differences were found for these variables between sites. Our results suggest that agricultural intensification affects soil arthropods in Tierra de Barros area, a taxonomic group with an important role in the functioning of agricultural ecosystems. (Author) 32 refs.

  9. Skimming the surface with Burgess Shale arthropod locomotion.

    Science.gov (United States)

    Minter, Nicholas J; Mángano, M Gabriela; Caron, Jean-Bernard

    2012-04-22

    The first arthropod trackways are described from the Middle Cambrian Burgess Shale Formation of Canada. Trace fossils, including trackways, provide a rich source of biological and ecological information, including direct evidence of behaviour not commonly available from body fossils alone. The discovery of large arthropod trackways is unique for Burgess Shale-type deposits. Trackway dimensions and the requisite number of limbs are matched with the body plan of a tegopeltid arthropod. Tegopelte, one of the rarest Burgess Shale animals, is over twice the size of all other benthic arthropods known from this locality, and only its sister taxon, Saperion, from the Lower Cambrian Chengjiang biota of China, approaches a similar size. Biomechanical trackway analysis demonstrates that tegopeltids were capable of rapidly skimming across the seafloor and, in conjunction with the identification of gut diverticulae in Tegopelte, supports previous hypotheses on the locomotory capabilities and carnivorous mode of life of such arthropods. The trackways occur in the oldest part (Kicking Horse Shale Member) of the Burgess Shale Formation, which is also known for its scarce assemblage of soft-bodied organisms, and indicate at least intermittent oxygenated bottom waters and low sedimentation rates.

  10. The non-target impact of spinosyns on beneficial arthropods.

    Science.gov (United States)

    Biondi, Antonio; Mommaerts, Veerle; Smagghe, Guy; Viñuela, Elisa; Zappalà, Lucia; Desneux, Nicolas

    2012-12-01

    Spinosyn-based products, mostly spinosad, have been widely recommended by extension specialists and agribusiness companies; consequently, they have been used to control various pests in many different cropping systems. Following the worldwide adoption of spinosad-based products for integrated and organic farming, an increasing number of ecotoxicological studies have been published in the past 10 years. These studies are primarily related to the risk assessment of spinosad towards beneficial arthropods. This review takes into account recent data with the aim of (i) highlighting potentially adverse effects of spinosyns on beneficial arthropods (and hence on ecosystem services that they provide in agroecosystems), (ii) clarifying the range of methods used to address spinosyn side effects on biocontrol agents and pollinators in order to provide new insights for the development of more accurate bioassays, (iii) identifying pitfalls when analysing laboratory results to assess field risks and (iv) gaining increasing knowledge on side effects when using spinosad for integrated pest management (IPM) programmes and organic farming. For the first time, a thorough review of possible risks of spinosad and novel spinosyns (such as spinetoram) to beneficial arthropods (notably natural enemies and pollinators) is provided. The acute lethal effect and multiple sublethal effects have been identified in almost all arthropod groups studied. This review will help to optimise the future use of spinosad and new spinosyns in IPM programmes and for organic farming, notably by preventing the possible side effects of spinosyns on beneficial arthropods. Copyright © 2012 Society of Chemical Industry.

  11. Combined effects of arthropod herbivores and phytopathogens on plant performance

    DEFF Research Database (Denmark)

    Hauser, Thure Pavlo; Christensen, Stina; Heimes, Christine

    2013-01-01

    1. Many plants are simultaneously attacked by arthropod herbivores and phytopathogens. These may affect each other directly and indirectly, enhancing or reducing the amount of plant resources they each consume. Ultimately, this may reduce or enhance plant performance relative to what should be ex....... However, as interactive impacts also differed among environments and parasite manipulation methods, this suggests that the ability of plants to compensate such losses may depend on environmental conditions and probably also overall infection load.......1. Many plants are simultaneously attacked by arthropod herbivores and phytopathogens. These may affect each other directly and indirectly, enhancing or reducing the amount of plant resources they each consume. Ultimately, this may reduce or enhance plant performance relative to what should...... be expected from the added impacts of herbivore and pathogen when they attack alone. 2. Previous studies have suggested synergistic and antagonistic impacts on plant performance from certain combinations of arthropods and pathogens, for example, synergistic impacts from necrotrophic pathogens together...

  12. Inbreeding and the evolution of sociality in arthropods.

    Science.gov (United States)

    Tabadkani, Seyed Mohammad; Nozari, Jamasb; Lihoreau, Mathieu

    2012-10-01

    Animals have evolved strategies to optimally balance costs and benefits of inbreeding. In social species, these adaptations can have a considerable impact on the structure, the organization, and the functioning of groups. Here, we consider how selection for inbreeding avoidance fashions the social behavior of arthropods, a phylum exhibiting an unparalleled richness of social lifestyles. We first examine life histories and parental investment patterns determining whether individuals should actively avoid or prefer inbreeding. Next, we illustrate the diversity of inbreeding avoidance mechanisms in arthropods, from the dispersal of individuals to the rejection of kin during mate choice and the production of unisexual broods by females. Then, we address the particular case of haplodiploid insects. Finally, we discuss how inbreeding may drive and shape the evolution of arthropods societies along two theoretical pathways.

  13. Arthropods and their products as aphrodisiacs--review of literature.

    Science.gov (United States)

    Pajovic, B; Radosavljevic, M; Radunovic, M; Radojevic, N; Bjelogrlic, B

    2012-04-01

    After a short review of impotence, the definitions of erectants and aphrodisiacs are presented. The Authors propose division of arthropods according to the places of effect. The description of particular arthropods with their pictures and nomenclature, is followed by certain or probable mechanisms of achieving the aphrodisiac and sometimes toxic effect, that were available in the literature since 1929 till nowadays. We mention the most usual locations, mainly in Asia, where they are found and consumed, but also, we describe the manner of preparing and intake. The review includes the following arthropods: lobster, Arizona bark scorpion, deathstalker, banana spider, Mediterranean black widow, Burmeister's triatoma, giant water bug, diving-beetle, Korean bug, diaclina, flannel moth, Spanish fly, migratory locust, red wood ant and honeybee.

  14. Disturbance In Dry Coastal Dunes Promotes Diversity Of Plants And Arthropods

    DEFF Research Database (Denmark)

    Brunbjerg, Ane Kirstine; Jørgensen, Gorm Pilgaard; Nielsen, Kristian Mandsberg

    2015-01-01

    of three disturbance types (burning, trampling and blowouts) on plant and arthropod species richness and composition in dry coastal dunes in Jutland, Denmark. Environmental variables, plant presence–absence and arthropod abundance were measured in 150 1 × 2 m plots along transects in blowouts, burned areas...... on plant and arthropod composition. Indicator species analysis revealed plant and arthropod species indicative for different disturbances. Plant and arthropod species richness and the number of annual plant species generally increased with disturbance, and plant and arthropod richness and composition...... responded differently to different disturbances. Arthropod communities were more diverse in disturbed plots and hosted species often found in early successional habitats of potential conservation value. Disturbance promoted β-diversity, but affected plants more than arthropods, likely because...

  15. Predator localization by sensory hairs in free-swimming arthropods

    Science.gov (United States)

    Takagi, Daisuke; Hartline, Daniel K.

    2016-11-01

    Free-swimming arthropods such as copepods rely on minute deflections of cuticular hairs (or "setae") for local flow sensing that is needed to detect food and escape from predators. We present a simple hydrodynamic model to analyze how the location, speed, and size of an approaching distant predator can be inferred from local flow deformation alone. The model informs suitable strategies of escape from an imminent predatory attack. The sensory capabilities of aquatic arthropods could inspire the design of flow sensors in technological applications.

  16. Evolutionary adaptation in three-way interactions between plants, microbes and arthropods

    OpenAIRE

    Biere, A.; Tack, A.J.M.

    2013-01-01

    Evolutionary adaptations in interactions between plants, microbes and arthropods are generally studied in interactions that involve only two of these groups, that is, plants and microbes, plants and arthropods or arthropods and microbes. We review the accumulating evidence from a wide variety of systems, including plant- and arthropod-associated microbes, and symbionts as well as antagonists, that selection and adaptation in seemingly two-way interactions between plants and microbes, plants a...

  17. Do arthropod assemblages fit the grassland and savanna biomes of South Africa?

    OpenAIRE

    Monique Botha; Stefan J. Siebert; Johnnie van den Berg

    2016-01-01

    The long-standing tradition of classifying South Africa's biogeographical area into biomes is commonly linked to vegetation structure and climate. Because arthropod communities are often governed by both these factors, it can be expected that arthropod communities would fit the biomes. To test this hypothesis, we considered how well arthropod species assemblages fit South Africa's grassy biomes. Arthropod assemblages were sampled from six localities across the grassland and savanna biomes by ...

  18. Sensitivity and tolerance of Riparian arthropod communities to altered water resources along a drying river.

    Directory of Open Access Journals (Sweden)

    Kevin E McCluney

    Full Text Available Rivers around the world are drying with increasing frequency, but little is known about effects on terrestrial animal communities. Previous research along the San Pedro River in southeastern AZ, USA, suggests that changes in the availability of water resources associated with river drying lead to changes in predator abundance, community composition, diversity, and abundance of particular taxa of arthropods, but these observations have not yet been tested manipulatively.In this study, we constructed artificial pools in the stream bed adjacent to a drying section of the San Pedro River and maintained them as the river dried. We compared pitfall trapped arthropods near artificial pools to adjacent control sites where surface waters temporarily dried. Assemblage composition changed differentially at multiple taxonomic levels, resulting in different assemblages at pools than at control sites, with multiple taxa and richness of carabid beetle genera increasing at pools but not at controls that dried. On the other hand, predator biomass, particularly wolf spiders, and diversity of orders and families were consistently higher at control sites that dried. These results suggest an important role for colonization dynamics of pools, as well as the ability of certain taxa, particularly burrowing wolf spiders, to withstand periods of temporary drying.Overall, we found some agreement between this manipulative study of water resources and a previous analysis of river drying that showed shifts in composition, changes in diversity, and declines in abundance of certain taxa (e.g. carabid beetles. However, colonization dynamics of pools, as well as compensatory strategies of predatory wolf spiders seem to have led to patterns that do not match previous research, with control sites maintaining high diversity, despite drying. Tolerance of river drying by some species may allow persistence of substantial diversity in the face of short-term drying. The long

  19. Evolutionary adaptation in three-way interactions between plants, microbes and arthropods

    NARCIS (Netherlands)

    Biere, A.; Tack, A.J.M.

    2013-01-01

    Evolutionary adaptations in interactions between plants, microbes and arthropods are generally studied in interactions that involve only two of these groups, that is, plants and microbes, plants and arthropods or arthropods and microbes. We review the accumulating evidence from a wide variety of

  20. 40 CFR 180.1124 - Arthropod pheromones; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Arthropod pheromones; exemption from... FOOD Exemptions From Tolerances § 180.1124 Arthropod pheromones; exemption from the requirement of a tolerance. Arthropod pheromones, as described in § 152.25(b) of this chapter, when used in retrievably sized...

  1. Introduced Terrestrial Species (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — These data represent predicted future potential distributions of terrestrial plants, animals, and pathogens non-native to the Middle-Atlantic region. These data are...

  2. Solar-Terrestrial Interactions

    National Research Council Canada - National Science Library

    Kahler, Stephen W

    2008-01-01

    This report covers a basic research (6.1 level) task on solar-terrestrial interactions carried out in the Space Weather Center of Excellence over an 11-year period for the Air Force Office of Scientific Research...

  3. Arthropod diversity and abundance along the Kihansi Gorge ...

    African Journals Online (AJOL)

    Arthropod diversity and abundance at the order level was investigated along the Kihansi Gorge in the southern Udzungwa Mountains between June and August 1997 by using sweep netting, timed Lepidoptera counts, malaise-traps, solar powered light-¬traps, baited pitfall-traps, sticky-traps and baited butterfly traps.

  4. Attempts to transmit hepatitis B virus to chimpanzees by arthropods

    African Journals Online (AJOL)

    P. G. JUPP, R. H. PURCELL, J. M. PHILLlPS, M. SHAPIRO, J. L. GERIN. Attempts to transmit hepatitis B virus to chimpanzees by arthropods. S AIr Med J 1991; 79: 320-322. 321. SAMJ VOL 79 16 MAR 1991. Discussion feed (adult females and mature nymphs), at the second feed it fell to 32 out of 149 adult females (21%).

  5. Effect of Dimethoate Residues on Soil Micro-arthropods Population ...

    African Journals Online (AJOL)

    Devika

    its ecotoxicological effects on the soil micro- arthropods population. There are no baseline data available about the soil contamination with pesticides and the soil fauna of the study area . MATERIALS AND METHODS. The study area: The valley of Zendan is located in. Arhab Destrict, Sana'a Governorate. This valley is.

  6. Arthropod richness in roadside verges in the Netherlands

    NARCIS (Netherlands)

    Noordijk, J.; Raemakers, I.P.; Schaffers, A.P.; Sykora, K.V.

    2009-01-01

    Urbanisation and intensifi cation of agriculture has led to large scale destruction of natural and seminatural areas in Western Europe. Consequentially, the conservation of biodiversity in small landscape units has become a matter of increasing urgency. In this paper, we inventoried the arthropod

  7. Book Review: Bioassays with Arthropods: 2nd Edition

    Science.gov (United States)

    The technical book "Bioassays with Arthropods: 2nd Edition" (2007. Jacqueline L. Robertson, Robert M. Russell, Haiganoush K, Preisler and N. E. Nevin, Eds. CRC Press, Boca Raton, FL, 224 pp.) was reviewed for the scientific readership of the peer-reviewed publication Journal of Economic Entomology. ...

  8. An Approach to Mark Arthropods for Mark Capture Type Research

    Science.gov (United States)

    A series of studies were conducted to validate methods for marking a wide variety of arthropods with inexpensive proteins for mark-capture dispersal research. The markers tested included egg albumin protein in chicken egg whites and casein protein in bovine milk. The first study qualified the effec...

  9. Fossils and the Evolution of the Arthropod Brain.

    Science.gov (United States)

    Strausfeld, Nicholas J; Ma, Xiaoya; Edgecombe, Gregory D

    2016-10-24

    The discovery of fossilized brains and ventral nerve cords in lower and mid-Cambrian arthropods has led to crucial insights about the evolution of their central nervous system, the segmental identity of head appendages and the early evolution of eyes and their underlying visual systems. Fundamental ground patterns of lower Cambrian arthropod brains and nervous systems correspond to the ground patterns of brains and nervous systems belonging to three of four major extant panarthropod lineages. These findings demonstrate the evolutionary stability of early neural arrangements over an immense time span. Here, we put these fossil discoveries in the context of evidence from cladistics, as well as developmental and comparative neuroanatomy, which together suggest that despite many evolved modifications of neuropil centers within arthropod brains and ganglia, highly conserved arrangements have been retained. Recent phylogenies of the arthropods, based on fossil and molecular evidence, and estimates of divergence dates, suggest that neural ground patterns characterizing onychophorans, chelicerates and mandibulates are likely to have diverged between the terminal Ediacaran and earliest Cambrian, heralding the exuberant diversification of body forms that account for the Cambrian Explosion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Fire and biodiversity: studies of vegetation and arthropods

    Science.gov (United States)

    S.M. Hermann; T. Van Hook; R.W. Flowers; [and others

    1998-01-01

    The authors summarize and update the state of knowledge for some components of prescribed fire in the southeastern Coastal Plain, with a primary focus on effects of season of burn on plants and arthropods. Specifically, the authors: 1) briefly explain season of fire terminology; 2) present a short synopsis of how fire regimes affect trees and groundcover vegetation in...

  11. Inventory of arthropods on Sesbania acuelata in the Algerian ...

    African Journals Online (AJOL)

    During the summer of 2016, each month, arthropods are collected using three methods: pitful traps, yellow water traps and direct hunting. The survey resulted in the retrieval of 685 ... For a better qualitative and quantitative analysis of the numerous ecological indices were used. The extract obtained was analyzed, under ...

  12. Environmental Impacts of Arthropod Biological Control: An Ecological Perspective

    Science.gov (United States)

    Arthropod biological control has long been used against insect and mite pests in agriculture production systems, forests, and other natural ecosystems. Depending on the methods of deploying natural enemies and the type of control agents (herbivores, parasitoids, and/or predators), potential environ...

  13. A portable vacuum for collecting arthropods from drop cloths.

    Science.gov (United States)

    H.G. Paul; R.R. Mason

    1985-01-01

    A hand-held vacuum modified for collecting insects and spiders in the field is described. The vacuum with battery is mounted on a lightweight pack-frame and is portable and versatile. It is especially useful for collecting arthropods that are dislodged from foliage samples and drop onto cloths.

  14. Climate change and arthropods: Pollinators, herbivores, and others (Chapter 3)

    Science.gov (United States)

    Sandra L. Brantley; Paulette L. Ford

    2012-01-01

    The Interior West is rich in arthropod diversity because of its varied topography, which provides a wide range of elevations and levels of isolation for these small animals (Parmenter and others 1995). Some taxa are known rather well, such as butterflies and tiger beetles, but we have little information on many groups, which are known only from a few locations although...

  15. Effects of a Major Tree Invader on Urban Woodland Arthropods

    Science.gov (United States)

    2015-01-01

    Biological invasions are a major threat to biodiversity; however, the degree of impact can vary depending on the ecosystem and taxa. Here, we test whether a top invader at a global scale, the tree Robinia pseudoacacia (black locust or false acacia), which is known to profoundly change site conditions, significantly affects urban animal diversity. As a first multi-taxon study of this kind, we analyzed the effects of Robinia dominance on 18 arthropod taxa by pairwise comparisons of woodlands in Berlin, Germany, that were dominated by R. pseudoacacia or the native pioneer tree Betula pendula. As a negative effect, abundances of five arthropod taxa decreased (Chilopoda, Formicidae, Diptera, Heteroptera, Hymenoptera); 13 others were not affected. Woodland type affected species composition of carabids and functional groups in spiders, but surprisingly did not decrease alpha and beta diversity of carabid and spider assemblages or the number of endangered species. Tree invasion thus did not induce biotic homogenization at the habitat scale. We detected no positive effects of alien dominance. Our results illustrate that invasions by a major tree invader can induce species turnover in ground-dwelling arthropods, but do not necessarily reduce arthropod species abundances or diversity and might thus contribute to the conservation of epigeal invertebrates in urban settings. Considering the context of invasion impacts thus helps to set priorities in managing biological invasions and can illustrate the potential of novel ecosystems to maintain urban biodiversity. PMID:26359665

  16. types and abundance of arthropod fauna in relation to physico ...

    African Journals Online (AJOL)

    DJFLEX

    The occurrence of arthropods associated with the bottom sediment of Warri River was investigated, and samples were collected from January 2002 to May 2003. The values of pH, alkalinity, magnesium and total hardness were significantly different (P < 0.01) between the study stations, while organic matter recorded for the ...

  17. Evolution of the salivary apyrases of blood-feeding arthropods.

    Science.gov (United States)

    Hughes, Austin L

    2013-09-15

    Phylogenetic analyses of three families of arthropod apyrases were used to reconstruct the evolutionary relationships of salivary-expressed apyrases, which have an anti-coagulant function in blood-feeding arthropods. Members of the 5'nucleotidase family were recruited for salivary expression in blood-feeding species at least five separate times in the history of arthropods, while members of the Cimex-type apyrase family have been recruited at least twice. In spite of these independent events of recruitment for salivary function, neither of these families showed evidence of convergent amino acid sequence evolution in salivary-expressed members. On the contrary, in the 5'-nucleotide family, salivary-expressed proteins conserved ancestral amino acid residues to a significantly greater extent than related proteins without salivary function, implying parallel evolution by conservation of ancestral characters. This unusual pattern of sequence evolution suggests the hypothesis that purifying selection favoring conservation of ancestral residues is particularly strong in salivary-expressed members of the 5'-nucleotidase family of arthropods because of constraints arising from expression within the vertebrate host. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. The function and evolution of Wnt genes in arthropods.

    Science.gov (United States)

    Murat, Sophie; Hopfen, Corinna; McGregor, Alistair P

    2010-11-01

    Wnt signalling is required for a wide range of developmental processes, from cleavage to patterning and cell migration. There are 13 subfamilies of Wnt ligand genes and this diverse repertoire appeared very early in metazoan evolution. In this review, we first summarise the known Wnt gene repertoire in various arthropods. Insects appear to have lost several Wnt subfamilies, either generally, such as Wnt3, or in lineage specific patterns, for example, the loss of Wnt7 in Anopheles. In Drosophila and Acyrthosiphon, only seven and six Wnt subfamilies are represented, respectively; however, the finding of nine Wnt genes in Tribolium suggests that arthropods had a larger repertoire ancestrally. We then discuss what is currently known about the expression and developmental function of Wnt ligands in Drosophila and other insects in comparison to other arthropods, such as the spiders Achaearanea and Cupiennius. We conclude that studies of Wnt genes have given us much insight into the developmental roles of some of these ligands. However, given the frequent loss of Wnt genes in insects and the derived development of Drosophila, further studies of these important genes are required in a broader range of arthropods to fully understand their developmental function and evolution. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Stable isotope methods in biological and ecological studies of arthropods

    NARCIS (Netherlands)

    Hood-Nowotny, R.C.; Knols, B.G.J.

    2007-01-01

    This is an eclectic review and analysis of contemporary and promising stable isotope methodologies to study the biology and ecology of arthropods. It is augmented with literature from other disciplines, indicative of the potential for knowledge transfer. It is demonstrated that stable isotopes can

  20. [Arthropods as a cause of leisure sickness: ectoparasites].

    Science.gov (United States)

    Kekker, Thecla A M

    2014-01-01

    Ectoparasites are a type of arthropod parasites that live on the body surface of their host. Many ectoparasitic infestations are associated with travel and leisure. Recognition of the specific symptoms of ectoparasitic infestations is important because of the hygienic and therapeutic consequences.

  1. Soluble proteins of chemical communication: an overview across arthropods

    Directory of Open Access Journals (Sweden)

    Paolo ePelosi

    2014-08-01

    Full Text Available Detection of chemical signals both in insects and in vertebrates is mediated by soluble proteins, highly concentrated in olfactory organs, which bind semiochemicals and activate, with still largely unknown mechanisms, specific chemoreceptors. The same proteins are often found in structures where pheromones are synthesised and released, where they likely perform a second role in solubilising and delivering chemical messengers in the environment.A single class of soluble polypeptides, called Odorant-Binding Proteins (OBPs is known in vertebrates, while two have been identified in insects, OBPs and CSPs (Chemosensory Proteins. Despite their common name, OBPs of vertebrates bear no structural similarity with those of insects. We observed that in arthropods OBPs are strictly limited to insects, while a few members of the CSP family have been found in crustacean and other arthropods, where however, based on their very limited numbers, a function in chemical communication seems unlikely.The question we address in this review is whether another class of soluble proteins may have been adopted by other arthropods to perform the role of OBPs and CSPs in insects. We propose that lipid-transporter proteins of the Niemann-Pick type C2 family could represent likely candidates and report the results of an analysis of their sequences in representative species of different arthropods.

  2. Interactions between cassava and arthropod pests | Lerü | African ...

    African Journals Online (AJOL)

    Study of the interactions between plants and arthropods and especially of the resistance of plants is an essential component of integrated pest management. ... farineuse), on contaste que l'état des connaissances dans ce domaine est globalement peu avancée à l' exception toutefois du modèle manioccochenille farineuse.

  3. Measurement of the terrestrial magnetic field and its anomalies

    International Nuclear Information System (INIS)

    Duret, D.

    1994-01-01

    After a presentation of the terrestrial magnetic field and its various anomalies, the different types of magnetometers commonly used are reviewed with their characteristics and performances: scalar magnetometers (free precession and continuous polarization proton magnetometers, dynamic polarization proton magnetometers, optical pumping magnetometers, electronic resonance scalar magnetometers (without pumping)); vectorial magnetometers (flux gate magnetometers, induction magnetometers, suspended magnet magnetometers, superconducting magnetometers, integrated magnetometers, resonance directional magnetometers). The magnetometry market and applications are discussed. 20 figs., 9 tabs., 72 refs

  4. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  5. Leaf litter arthropod responses to tropical forest restoration.

    Science.gov (United States)

    Cole, Rebecca J; Holl, Karen D; Zahawi, Rakan A; Wickey, Philipp; Townsend, Alan R

    2016-08-01

    Soil and litter arthropods represent a large proportion of tropical biodiversity and perform important ecosystem functions, but little is known about the efficacy of different tropical forest restoration strategies in facilitating their recovery in degraded habitats. We sampled arthropods in four 7- to 8-year-old restoration treatments and in nearby reference forests. Sampling was conducted during the wet and dry seasons using extractions from litter and pitfall samples. Restoration treatments were replicated in 50 × 50-m plots in four former pasture sites in southern Costa Rica: plantation - trees planted throughout the plot; applied nucleation/islands - trees planted in patches of different sizes; and natural regeneration - no tree planting. Arthropod abundance, measures of richness and diversity, and a number of functional groups were greater in the island treatment than in natural regeneration or plantation treatments and, in many cases, were similar to reference forest. Litter and pitfall morphospecies and functional group composition in all three restoration treatments were significantly different than reference sites, but island and plantation treatments showed more recovery than natural regeneration. Abundance and functional group diversity showed a much greater degree of recovery than community composition. Synthesis and applications: The less resource-intensive restoration strategy of planting tree islands was more effective than tree plantations in restoring arthropod abundance, richness, and functional diversity. None of the restoration strategies, however, resulted in similar community composition as reference forest after 8 years of recovery, highlighting the slow rate of recovery of arthropod communities after disturbance, and underscoring the importance of conservation of remnant forests in fragmented landscapes.

  6. Influence of crop management practices on bean foliage arthropods.

    Science.gov (United States)

    Pereira, J L; Picanço, M C; Pereira, E J G; Silva, A A; Jakelaitis, A; Pereira, R R; Xavier, V M

    2010-12-01

    Crop management practices can affect the population of phytophagous pest species and beneficial arthropods with consequences for integrated pest management. In this study, we determined the effect of no-tillage and crop residue management on the arthropod community associated with the canopy of common beans (Phaseolus vulgaris L.). Abundance and species composition of herbivorous, detritivorous, predaceous and parasitoid arthropods were recorded during the growing seasons of 2003 and 2004 in Coimbra County, Minas Gerais State, Brazil. Arthropod diversity and guild composition were similar among crop management systems, but their abundance was higher under no-tillage relative to conventional cultivation and where residues from the preceding crop were maintained in the field. Thirty-four arthropod species were recorded, and those most representative of the impact of the crop management practices were Hypogastrura springtails, Empoasca kraemeri and Circulifer leafhoppers, and Solenopsis ants. The infestation levels of major insect-pests, especially leafhoppers (Hemiptera: Cicadellidae), was on average seven-fold lower under no-tillage with retention of crop residues relative to the conventional system with removal of residues, whereas the abundance of predatory ants (Hymenoptera: Formicidae) and springtails (Collembola: Hypogastruridae) were, respectively, about seven- and 15-fold higher in that treatment. Importantly, a significant trophic interaction among crop residues, detritivores, predators and herbivores was observed. Plots managed with no-tillage and retention of crop residues had the highest bean yield, while those with conventional cultivation and removal of the crop residues yielded significantly less beans. This research shows that cropping systems that include zero tillage and crop residue retention can reduce infestation by foliar insect-pests and increase abundance of predators and detritivores, thus having direct consequences for insect pest management.

  7. [Exposure degree of important non-target arthropods to Cry2Aa in Bt rice fields].

    Science.gov (United States)

    Zhang, Qing-Ling; Li, Yun-He; Hua, Hong-Xia; Yang, Chang-Ju; Wu, Hong-Jin; Peng, Yu-Fa

    2013-06-01

    Based on the principle of "risk = hazard x exposure", the selected representative nontarget organisms in the assessment of the potential effects of insect-resistant genetically modified (GM) crops on non-target arthropods in laboratory are generally the arthropod species highly exposed to the insecticidal proteins expressed by the GM crops in farmland ecosystem. In order to understand the exposure degree of the important arthropod species to Cry proteins in Bt rice fields, and to select the appropriate non-target arthropods in the risk assessment of insect-resistant GM crops, the enzyme-linked immunosorbent assay (ELISA) was conducted to measure the Cry2Aa protein concentration in the arthropods collected from the cry2Aa rice fields at different rice growth stages. The results showed that there was a significant difference in the Cry2Aa content protein concentration in different arthropod species. Some species did not contain Cry2Aa protein, while some species contained larger amounts of Cry2Aa protein. Relative to the arthropods colleted after rice anthesis, the arthropods colleted in rice anthesis contained relative higher concentrations of Cry2Aa protein, especially for the predacious arthropods. No Cry proteins were detected in parasitic arthropods. This study provided references for the laboratory assessment of the effects of GM rice on nontarget arthropods.

  8. Polarization, political

    NARCIS (Netherlands)

    Wojcieszak, M.; Mazzoleni, G.; Barnhurst, K.G.; Ikeda, K.; Maia, R.C.M.; Wessler, H.

    2015-01-01

    Polarization has been studied in three different forms: on a social, group, and individual level. This entry first focuses on the undisputed phenomenon of elite polarization (i.e., increasing adherence of policy positions among the elites) and also outlines different approaches to assessing mass

  9. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  10. Terrestrial Analogs to Mars

    Science.gov (United States)

    Farr, T. G.; Arcone, S.; Arvidson, R. W.; Baker, V.; Barlow, N. G.; Beaty, D.; Bell, M. S.; Blankenship, D. D.; Bridges, N.; Briggs, G.; Bulmer, M.; Carsey, F.; Clifford, S. M.; Craddock, R. A.; Dickerson, P. W.; Duxbury, N.; Galford, G. L.; Garvin, J.; Grant, J.; Green, J. R.; Gregg, T. K. P.; Guinness, E.; Hansen, V. L.; Hecht, M. H.; Holt, J.; Howard, A.; Keszthelyi, L. P.; Lee, P.; Lanagan, P. D.; Lentz, R. C. F.; Leverington, D. W.; Marinangeli, L.; Moersch, J. E.; Morris-Smith, P. A.; Mouginis-Mark, P.; Olhoeft, G. R.; Ori, G. G.; Paillou, P.; Reilly, J. F., II; Rice, J. W., Jr.; Robinson, C. A.; Sheridan, M.; Snook, K.; Thomson, B. J.; Watson, K.; Williams, K.; Yoshikawa, K.

    2002-08-01

    It is well recognized that interpretations of Mars must begin with the Earth as a reference. The most successful comparisons have focused on understanding geologic processes on the Earth well enough to extrapolate to Mars' environment. Several facets of terrestrial analog studies have been pursued and are continuing. These studies include field workshops, characterization of terrestrial analog sites, instrument tests, laboratory measurements (including analysis of Martian meteorites), and computer and laboratory modeling. The combination of all these activities allows scientists to constrain the processes operating in specific terrestrial environments and extrapolate how similar processes could affect Mars. The Terrestrial Analogs for Mars Community Panel has considered the following two key questions: (1) How do terrestrial analog studies tie in to the Mars Exploration Payload Assessment Group science questions about life, past climate, and geologic evolution of Mars, and (2) How can future instrumentation be used to address these questions. The panel has considered the issues of data collection, value of field workshops, data archiving, laboratory measurements and modeling, human exploration issues, association with other areas of solar system exploration, and education and public outreach activities.

  11. Feeding strategies in arthropods from the Rhynie and Windyfield cherts: ecological diversification in an early non-marine biota.

    Science.gov (United States)

    Haug, Carolin

    2018-02-05

    The key to understanding fossil ecosystems is to understand the life habits of long extinct organisms. Yet, as direct observations are no longer possible, morphological details are usually the only available data source. One important aspect of lifestyle is feeding strategies, which can be inferred from morphological structures in comparison with those of extant relatives. The Lower Devonian Rhynie and Windyfield cherts preserve even minute structures to a high degree of detail, which allows investigation of the functional morphology of structures possibly involved in feeding. In this contribution, the feeding structures of different arthropods from the Rhynie and Windyfield cherts are described and the corresponding feeding strategies of the animals are discussed. This overview illustrates that in this early non-marine biota, a wide range of feeding strategies already existed.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'. © 2017 The Author(s).

  12. Polar Bears

    Science.gov (United States)

    Amstrup, Steven C.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Polar bears (Ursus maritimus) are hunted throughout most of their range. In addition to hunting polar bears of the Beaufort Sea region are exposed to mineral and petroleum extraction and related human activities such as shipping road-building, and seismic testing (Stirling 1990).Little was known at the start of this project about how polar bears move about in their environment, and although it was understood that many bears travel across political borders, the boundaries of populations had not been delineated (Amstrup 1986, Amstrup et al. 1986, Amstrup and DeMaster 1988, Garner et al. 1994, Amstrup 1995, Amstrup et al. 1995, Amstrup 2000).As human populations increase and demands for polar bears and other arctic resources escalate, managers must know the sizes and distributions of the polar bear populations. Resource managers also need reliable estimates of breeding rates, reproductive intervals, litter sizes, and survival of young and adults.Our objectives for this research were 1) to determine the seasonal and annual movements of polar bears in the Beaufort Sea, 2) to define the boundaries of the population(s) using this region, 3) to determine the size and status of the Beaufort Sea polar bear population, and 4) to establish reproduction and survival rates (Amstrup 2000).

  13. Terrestrial Gravity Fluctuations

    Directory of Open Access Journals (Sweden)

    Jan Harms

    2015-12-01

    Full Text Available Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10^–23 Hz^–1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our

  14. Terrestrial Gravity Fluctuations

    Science.gov (United States)

    Harms, Jan

    2015-12-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10-23 Hz-1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  15. Terrestrial and extraterrestrial fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Heymann, D.; Jenneskens, L.W.; Jehlicka, J; Koper, C.; Vlietstra, E. [Rice Univ, Houston, TX (United States). Dept. of Earth Science

    2003-07-01

    This paper reviews reports of occurrences of fullerenes in circumstellar media, interstellar media, meteorites, interplanetary dust particles (IDPs), lunar rocks, hard terrestrial rocks from Shunga (Russia), Sudbury (Canada) and Mitov (Czech Republic), coal, terrestrial sediments from the Cretaceous-Tertiary-Boundary and Pennian-Triassic-Boundary, fulgurite, ink sticks, dinosaur eggs, and a tree char. The occurrences are discussed in the context of known and postulated processes of fullerene formation, including the suggestion that some natural fullerenes might have formed from biological (algal) remains.

  16. Haematological Changes in Cattle associated with arthropods Infestation

    Directory of Open Access Journals (Sweden)

    L.A.Khan

    Full Text Available A total of 847 animals inspected from Jan.2007 to Dec.2007 for the assessment of prevalence of ticks infestation of cattles. Out of 847 animals examined, 612 were positive (72.26% for arthropods infestation at Nagpur and around villages. Among arthropods infestation, ticks (52.78%, lice (19.93% , flies (9.48% and mixed (17.81% were observed. Out of these observations ticks sp. were Rhipicephalus Sp. (60.99%, Hyolomma sp. (20.74% and Boophilus sp. (18.27%, Lice sp were Linognathus sp. (44.26% and Haematopinus sp. (55.74% and flies sp. Hippobosca sp. (67.24% and Stomoxys sp.(32.76% were identified.Haematological findings shows decrease in Hb,PCV,TEC and TLC where as Lymphocyte and Eosinophyl count was higher than normal . [Veterinary World 2008; 1(11.000: 338-339

  17. Arthropod-borne diseases associated with political and social disorder.

    Science.gov (United States)

    Brouqui, Philippe

    2011-01-01

    The living conditions and the crowded situations of the homeless, war refugees, or victims of a natural disaster provide ideal conditions for the spread of lice, fleas, ticks, flies and mites. The consequence of arthropod infestation in these situations is underestimated. Along with louse-borne infections such as typhus, trench fever, and relapsing fever, the relationship between Acinetobacter spp.-infected lice and bacteremia in the homeless is not clear. Murine typhus, tungiasis, and myiasis are likely underestimated, and there has been a reemergence of bed bugs. Attempted eradication of the body louse, despite specific measures, has been disappointing, and infections with Bartonella quintana continue to be reported. The efficacy of ivermectin in eradicating the human body louse, although the effect is not sustained, might provide new therapeutic approaches. Arthropod-borne diseases continue to emerge within the deprived population. Public health programs should be engaged rapidly to control these pests and reduce the incidence of these transmissible diseases.

  18. Passive aerial dispersal of insects and other arthropods

    Science.gov (United States)

    Miller, Laura

    2016-11-01

    One of the defining features of the aerial dispersal of tiny organisms is the ability to overcome negative buoyancy. This can be accomplished by dispersing in the right wind conditions (e.g. an updraft) or by active flight or active release. Once in the air, draggy structures, such as the draglines of spiders or bristled wings of tiny insects, can reduce the settling velocity and extend the time of transport. Purely passive mechanisms allow spiders and other arthropods to drift on strands of silk to heights of 14,000 m and distances of hundreds of miles. Similarly, tiny insects like thrips and parasitoid wasps can travel distances of thousands to tens of thousands of meters, possibly using a combination of periods of active and passive flight. In this presentation, we used the immersed boundary method to quantify settling velocities and transport dynamics of parachuting insects and other arthropods within a quiescent fluid, a uniform updraft, and eddies.

  19. [Arthropod diversity in leafy vegetable field and sampling technology].

    Science.gov (United States)

    Hou, Y; You, M; Pang, X; Liang, G

    2000-10-01

    Two sampling units (plant and quadrat) and two sampling methods (random and fixed) were adopted to compare the variation degree of the diversity of arthropod communities in different chinese cabbage fields. The results show that a lower variation degree was found when the random sampling method was adopted with quadrat (0.11 m2) as sampling unit at seedling stage and with plant as sampling unit from growing to mature stage. The community diversity was relatively steady, when the critical number of samples was more than 12 quatrats (0.11 m2) at seedling stage, 30 plants in growing period, and 20 plants at mature stage. The optimum sampling unit, sampling method and sampling number of arthropod diversity in leafy vegetable field were also determined.

  20. An arthropod survival strategy in a frequently burned forest

    Science.gov (United States)

    Jane Dell; Joseph O' Brien; Lydia Doan; Lora Richards; Lee Dyer

    2017-01-01

    The sound of burning stems and leaves filled our ears and smoke swirled as we marched into the longleaf pine forest to assess the experimental burn. As we walked over the ash of burned vegetation, seedbanks and plant parts lay beneath our feet waiting to grow. But what we couldn’t see were the arthropods fleeing the fire. How are these invertebrates adapted to fire?...

  1. A Trap For Capturing Arthropods Crawling up Tree Boles

    Science.gov (United States)

    James L. Hanula; Kirsten C.P. New

    1996-01-01

    A simple trap is described that captures arthropods as they crawl up tree boles. Constructed from metal funnels, plastic sandwich containers, and specimen cups, the traps can be assembled by one person at a rate of 5 to 6 per hour and installed in 2 to 3 minutes. Specimen collection required 15 to 20 seconds per trap. In 1993, three traps were placed on each tree. In...

  2. Impacts of Rotation Schemes on Ground-Dwelling Beneficial Arthropods.

    Science.gov (United States)

    Dunbar, Mike W; Gassmann, Aaron J; O'Neal, Matthew E

    2016-10-01

    Crop rotation alters agroecosystem diversity temporally, and increasing the number of crops in rotation schemes can increase crop yields and reduce reliance on pesticides. We hypothesized that increasing the number of crops in annual rotation schemes would positively affect ground-dwelling beneficial arthropod communities. During 2012 and 2013, pitfall traps were used to measure activity-density and diversity of ground-dwelling communities within three previously established, long-term crop rotation studies located in Wisconsin and Illinois. Rotation schemes sampled included continuous corn, a 2-yr annual rotation of corn and soybean, and a 3-yr annual rotation of corn, soybean, and wheat. Insects captured were identified to family, and non-insect arthropods were identified to class, order, or family, depending upon the taxa. Beneficial arthropods captured included natural enemies, granivores, and detritivores. The beneficial community from continuous corn plots was significantly more diverse compared with the community in the 2-yr rotation, whereas the community in the 3-yr rotation did not differ from either rotation scheme. The activity-density of the total community and any individual taxa did not differ among rotation schemes in either corn or soybean. Crop species within all three rotation schemes were annual crops, and are associated with agricultural practices that make infield habitat subject to anthropogenic disturbances and temporally unstable. Habitat instability and disturbance can limit the effectiveness and retention of beneficial arthropods, including natural enemies, granivores, and detritivores. Increasing non-crop and perennial species within landscapes in conjunction with more diverse rotation schemes may increase the effect of biological control of pests by natural enemies. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. The terrestrial silica pump.

    Directory of Open Access Journals (Sweden)

    Joanna C Carey

    Full Text Available Silicon (Si cycling controls atmospheric CO(2 concentrations and thus, the global climate, through three well-recognized means: chemical weathering of mineral silicates, occlusion of carbon (C to soil phytoliths, and the oceanic biological Si pump. In the latter, oceanic diatoms directly sequester 25.8 Gton C yr(-1, accounting for 43% of the total oceanic net primary production (NPP. However, another important link between C and Si cycling remains largely ignored, specifically the role of Si in terrestrial NPP. Here we show that 55% of terrestrial NPP (33 Gton C yr(-1 is due to active Si-accumulating vegetation, on par with the amount of C sequestered annually via marine diatoms. Our results suggest that similar to oceanic diatoms, the biological Si cycle of land plants also controls atmospheric CO(2 levels. In addition, we provide the first estimates of Si fixed in terrestrial vegetation by major global biome type, highlighting the ecosystems of most dynamic Si fixation. Projected global land use change will convert forests to agricultural lands, increasing the fixation of Si by land plants, and the magnitude of the terrestrial Si pump.

  4. Radionuclides in terrestrial ecosystems

    International Nuclear Information System (INIS)

    Bocock, K.L.

    1981-01-01

    This report summarizes information on the distribution and movement of radionuclides in semi-natural terrestrial ecosystems in north-west England with particular emphasis on inputs to, and outputs from ecosystems; on plant and soil aspects; and on radionuclides in fallout and in discharges by the nuclear industry. (author)

  5. Histories of terrestrial planets

    International Nuclear Information System (INIS)

    Benes, K.

    1981-01-01

    The uneven historical development of terrestrial planets - Mercury, Venus, Earth, Moon and Mars - is probably due to the differences in their size, weight and rotational dynamics in association with the internal planet structure, their distance from the Sun, etc. A systematic study of extraterrestrial planets showed that the time span of internal activity was not the same for all bodies. It is assumed that the initial history of all terrestrial planets was marked with catastrophic events connected with the overall dynamic development of the solar system. In view of the fact that the cores of small terrestrial bodies cooled quicker, their geological development almost stagnated after two or three thousand million years. This is what probably happened to the Mercury and the Moon as well as the Mars. Therefore, traces of previous catastrophic events were preserved on the surface of the planets. On the other hand, the Earth is the most metamorphosed terrestrial planet and compared to the other planets appears to be atypical. Its biosphere is significantly developed as well as the other shell components, its hydrosphere and atmosphere, and its crust is considerably differentiated. (J.P.)

  6. Terrestrial planet formation.

    Science.gov (United States)

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids.

  7. Arthropods on Abandoned Apple Trees: Comparison of Orchard Versus Alley

    Directory of Open Access Journals (Sweden)

    Václav Psota

    2016-01-01

    Full Text Available Occurrence of arthropods on abandoned apple trees was studied in 2010 and 2011. The research was carried out in South Moravia (Czech Republic. Two sites were selected within this area – apple trees (Malus domestica in an alley along a road and an abandoned apple orchard. At each location, arthropods were collected from 5 separate trees. Deltamethrin was applied into the treetops using a fogger. The killed arthropods were collected 15 minutes after the application. From among the collected data, 48 families were determined in accordance with a generalized linear model with a logarithmic-link function and Poisson distribution. As a result it was found that 33 families have significantly higher abundance in the abandoned orchard and 9 families in the alley. According to the Shannon-Wiener index, diversity of families was higher in the alley in both years (2010: H’ = 3.016, 2011: H’ = 3.177 compared to the abandoned orchard (2010: H’ = 2.413, 2011: H’ = 3.007.

  8. Preliminary observations of arthropods associated with buried carrion on Oahu.

    Science.gov (United States)

    Rysavy, Noel M; Goff, M Lee

    2015-03-01

    Several studies in Hawaii have focused on arthropod succession and decomposition patterns of surface remains, but the current research presents the first study to focus on shallow burials in this context. Three domestic pig carcasses (Sus scrofa L.) were buried at the depths of 20-40 cm in silty clay loam soil on an exposed ridge on the leeward side of the volcanically formed Koolau Mountain Range. One carcass was exhumed after 3 weeks, another after 6 weeks, and the last carcass was exhumed after 9 weeks. An inventory of arthropod taxa present on the carrion and in the surrounding soil and observations pertaining to decomposition were recorded at each exhumation. The longer the carrion was buried, the greater the diversity of arthropod species that were recovered from the remains. Biomass loss was calculated to be 49% at the 3-week interval, 56% at the 6-week interval, and 59% at the 9-week interval. © 2014 American Academy of Forensic Sciences.

  9. Genetic diversity in aspen and its relation to arthropod abundance

    Science.gov (United States)

    Zhang, Chunxia; Vornam, Barbara; Volmer, Katharina; Prinz, Kathleen; Kleemann, Frauke; Köhler, Lars; Polle, Andrea; Finkeldey, Reiner

    2015-01-01

    The ecological consequences of biodiversity have become a prominent public issue. Little is known on the effect of genetic diversity on ecosystem services. Here, a diversity experiment was established with European and North American aspen (Populus tremula, P. tremuloides) planted in plots representing either a single deme only or combinations of two, four and eight demes. The goals of this study were to explore the complex inter- and intraspecific genetic diversity of aspen and to then relate three measures for diversity (deme diversity, genetic diversity determined as Shannon index or as expected heterozygosity) to arthropod abundance. Microsatellite and AFLP markers were used to analyze the genetic variation patterns within and between the aspen demes and deme mixtures. Large differences were observed regarding the genetic diversity within demes. An analysis of molecular variance revealed that most of the total genetic diversity was found within demes, but the genetic differentiation among demes was also high. The complex patterns of genetic diversity and differentiation resulted in large differences of the genetic variation within plots. The average diversity increased from plots with only one deme to plots with two, four, and eight demes, respectively and separated plots with and without American aspen. To test whether intra- and interspecific diversity impacts on ecosystem services, arthropod abundance was determined. Increasing genetic diversity of aspen was related to increasing abundance of arthropods. However, the relationship was mainly driven by the presence of American aspen suggesting that species identity overrode the effect of intraspecific variation of European aspen. PMID:25674097

  10. Bioactive alkaloids of frog skin: combinatorial bioprospecting reveals that pumiliotoxins have an arthropod source.

    Science.gov (United States)

    Daly, John W; Kaneko, Tetsuo; Wilham, Jason; Garraffo, H Martin; Spande, Thomas F; Espinosa, Alex; Donnelly, Maureen A

    2002-10-29

    Nearly 500 alkaloids have been detected in skin extracts from frogs of the family Dendrobatidae. All seem to have been sequestered unchanged into skin glands from alkaloid-containing arthropods. Ants, beetles, and millipedes seem to be the source of decahydroquinolines, certain izidines, coccinellines, and spiropyrrolizidine oximes. But the dietary source for a major group of frog-skin alkaloids, namely the pumiliotoxins (PTXs), alloPTXs, and homoPTXs, remained a mystery. In hopes of revealing an arthropod source for the PTX group, small arthropods were collected from eight different sites on a Panamanian island, where the dendrobatid frog (Dendrobates pumilio) was known to contain high levels of two PTXs. The mixed arthropod collections from several sites, each representing up to 20 arthropod taxa, contained PTX 307A and/or alloPTX 323B. In addition, the mixed arthropod collections from several sites contained a 5,8-disubstituted indolizidine (205A or 235B), representing another class of alkaloids previously unknown from an arthropod. An ant alkaloid, decahydroquinoline 195A, was detected in the mixed arthropod collections from several sites. Thus, "combinatorial bioprospecting" demonstrates that further collection and analysis of individual taxa of leaf-litter arthropods should reveal the taxa from which PTXs, alloPTXs, and 5,8-disubstituted indolizidines are derived.

  11. Arthropods of the great indoors: characterizing diversity inside urban and suburban homes

    Science.gov (United States)

    Leong, Misha; Bayless, Keith M.; Malow, Tara L.F.; Dunn, Robert R.; Trautwein, Michelle D.

    2016-01-01

    Although humans and arthropods have been living and evolving together for all of our history, we know very little about the arthropods we share our homes with apart from major pest groups. Here we surveyed, for the first time, the complete arthropod fauna of the indoor biome in 50 houses (located in and around Raleigh, North Carolina, USA). We discovered high diversity, with a conservative estimate range of 32–211 morphospecies, and 24–128 distinct arthropod families per house. The majority of this indoor diversity (73%) was made up of true flies (Diptera), spiders (Araneae), beetles (Coleoptera), and wasps and kin (Hymenoptera, especially ants: Formicidae). Much of the arthropod diversity within houses did not consist of synanthropic species, but instead included arthropods that were filtered from the surrounding landscape. As such, common pest species were found less frequently than benign species. Some of the most frequently found arthropods in houses, such as gall midges (Cecidomyiidae) and book lice (Liposcelididae), are unfamiliar to the general public despite their ubiquity. These findings present a new understanding of the diversity, prevalence, and distribution of the arthropods in our daily lives. Considering their impact as household pests, disease vectors, generators of allergens, and facilitators of the indoor microbiome, advancing our knowledge of the ecology and evolution of arthropods in homes has major economic and human health implications. PMID:26819844

  12. Geographic patterns of ground-dwelling arthropods across an ecoregional transition in the north American Southwest

    Science.gov (United States)

    Lightfoot, D.C.; Brantley, S.L.; Allen, Craig D.

    2008-01-01

    We examined the biogeographic patterns of ground-dwelling arthropod communities across a heterogeneous semiarid region of the Southern Rio Grande Rift Valley of New Mexico. Our 3 sites included portions of 5 ecoregions, with the middle site a transition area where all ecoregions converged. We addressed the following 3 questions: (1) Do the species assemblage patterns for ground arthropods across habitats and sites conform to recognized ecoregions? (2) Are arthropod assemblages in distinct vegetation-defined habitats within an ecoregion more similar to each other or to assemblages in similar vegetation-defined habitats in other ecoregions? (3) Is there a detectable edge effect with increased arthropod diversity in the area of converging ecoregions? We encountered 442 target arthropod species from pitfall traps operating continuously for 7 years over a series of different habitats at each of the 3 sites. We examined geographic distributions of spider and cricket/grasshopper species in detail, and they showed affinities for different ecoregions, respectively. Each habitat within a study site supported a unique overall arthropod assemblage; nevertheless, different habitats at the same site were more similar to each other than they were to similar habitats at other sites. Overall arthropod species richness was greatest in the area where all 5 ecoregions converged. Arthropod species and their geographic distributions are poorly known relative to vascular plants and vertebrate animals. Findings from this research indicate that ecoregional classification is a useful tool for understanding biogeographic patterns among arthropods.

  13. Ectomycota Associated with Arthropods from Bat Hibernacula in Eastern Canada, with Particular Reference to Pseudogymnoascus destructans

    Science.gov (United States)

    Vanderwolf, Karen J.; Malloch, David; McAlpine, Donald F.

    2016-01-01

    The introduction of Pseudogymnoascus destructans (Pd) to North America, agent of white-nose syndrome in hibernating bats, has increased interest in fungi from underground habitats. While bats are assumed to be the main vector transmitting Pd cave-to-cave, the role of other fauna is unexplored. We documented the fungi associated with over-wintering arthropods in Pd-positive hibernacula, including sites where bats had been recently extirpated or near-extirpated, to determine if arthropods carried Pd, and to compare fungal assemblages on arthropods to bats. We isolated 87 fungal taxa in 64 genera from arthropods. Viable Pd was cultured from 15.3% of arthropods, most frequently from harvestmen (Nelima elegans). Fungal assemblages on arthropods were similar to those on bats. The different fungal assemblages documented among arthropods may be due to divergent patterns of movement, aggregation, feeding, or other factors. While it is unlikely that arthropods play a major role in the transmission dynamics of Pd, we demonstrate that arthropods may carry viable Pd spores and therefore have the potential to transport Pd, either naturally or anthropogenically, within or among hibernacula. This underlines the need for those entering hibernacula to observe decontamination procedures and for such procedures to evolve as our understanding of potential mechanisms of Pd dispersal improve. PMID:27110827

  14. The diversity of arthropods in homes across the United States as determined by environmental DNA analyses.

    Science.gov (United States)

    Madden, Anne A; Barberán, Albert; Bertone, Matthew A; Menninger, Holly L; Dunn, Robert R; Fierer, Noah

    2016-12-01

    We spend most of our lives inside homes, surrounded by arthropods that impact our property as pests and our health as disease vectors and producers of sensitizing allergens. Despite their relevance to human health and well-being, we know relatively little about the arthropods that exist in our homes and the factors structuring their diversity. As previous work has been limited in scale by the costs and time associated with collecting arthropods and the subsequent morphological identification, we used a DNA-based method for investigating the arthropod diversity in homes via high-throughput marker gene sequencing of home dust. Settled dust samples were collected by citizen scientists from both inside and outside more than 700 homes across the United States, yielding the first continental-scale estimates of arthropod diversity associated with our residences. We were able to document food webs and previously unknown geographic distributions of diverse arthropods - from allergen producers to invasive species and nuisance pests. Home characteristics, including the presence of basements, home occupants and surrounding land use, were more useful than climate parameters in predicting arthropod diversity in homes. These noninvasive, scalable tools and resultant findings not only provide the first continental-scale maps of household arthropod diversity, but our analyses also provide valuable baseline information on arthropod allergen exposures and the distributions of invasive pests inside homes. © 2016 John Wiley & Sons Ltd.

  15. Effects of weed harrowing frequency on beneficial arthropods, plants and crop yield

    DEFF Research Database (Denmark)

    Navntoft, Søren; Kristensen, Kristian; Johnsen, Ib

    2016-01-01

    * Weed harrowing is an alternative to herbicides but it may have negative effects on epigaeic arthropods. We assessed the effects of frequent (four) versus two harrowings during the growing season on the density and diversity of generalist arthropods and the weed flora. Collection by flooding...... compared with four times. Furthermore, a marginally significant decrease in arthropod diversity was found after four harrowings. The negative effect of frequent harrowing on arthropods was probably caused by a combination of direct lethal effects and habitat disruption. Additional harrowings reduced weeds...

  16. Working group 4: Terrestrial

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    A working group at a Canada/USA symposium on climate change and the Arctic identified major concerns and issues related to terrestrial resources. The group examined the need for, and the means of, involving resource managers and users at local and territorial levels in the process of identifying and examining the impacts and consequences of climatic change. Climatic change will be important to the Arctic because of the magnitude of the change projected for northern latitudes; the apparent sensitivity of its terrestrial ecosystems, natural resources, and human support systems; and the dependence of the social, cultural, and economic welfare of Arctic communities, businesses, and industries on the health and quality of their environment. Impacts of climatic change on the physical, biological, and associated socio-economic environment are outlined. Gaps in knowledge needed to quantify these impacts are listed along with their relationships with resource management. Finally, potential actions for response and adaptation are presented

  17. Phytopharmacology of Tribulus terrestris.

    Science.gov (United States)

    Shahid, M; Riaz, M; Talpur, M M A; Pirzada, T

    2016-01-01

    Tribulus terrestris is an annual herb which belongs to the Zygophyllaceae family. This plant has been used in traditional medicine for the treatment of various diseases for hundreds of decades. The main active phytoconstituents of this plant include flavonoids, alkaloids, saponins, lignin, amides, and glycosides. The plant parts have different pharmacological activities including aphrodisiac, antiinflammatory, antimicrobial and antioxidant potential. T. terrestris is most often used for infertility and loss of libido. It has potential application as immunomodulatory, hepatoprotective, hypolipidemic, anthelmintic and anticarcinogenic activities. The aim of the present article is to create a database for further investigation of the phytopharmacological properties of this plant to promote research. This study will definitely help to confirm its traditional use along with its value-added utility, eventually leading to higher revenues from the plant.

  18. Terrestrial plant methane production

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Møller, Ian M.

    We evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants. We conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH4 production, i.e. cutting injuries, increasing temperature...... the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material....

  19. Political polarization

    OpenAIRE

    Dixit, Avinash K.; Weibull, Jörgen W.

    2007-01-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  20. Political polarization.

    Science.gov (United States)

    Dixit, Avinash K; Weibull, Jörgen W

    2007-05-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  1. cuticleDB: a relational database of Arthropod cuticular proteins

    Directory of Open Access Journals (Sweden)

    Willis Judith H

    2004-09-01

    Full Text Available Abstract Background The insect exoskeleton or cuticle is a bi-partite composite of proteins and chitin that provides protective, skeletal and structural functions. Little information is available about the molecular structure of this important complex that exhibits a helicoidal architecture. Scores of sequences of cuticular proteins have been obtained from direct protein sequencing, from cDNAs, and from genomic analyses. Most of these cuticular protein sequences contain motifs found only in arthropod proteins. Description cuticleDB is a relational database containing all structural proteins of Arthropod cuticle identified to date. Many come from direct sequencing of proteins isolated from cuticle and from sequences from cDNAs that share common features with these authentic cuticular proteins. It also includes proteins from the Drosophila melanogaster and the Anopheles gambiae genomes, that have been predicted to be cuticular proteins, based on a Pfam motif (PF00379 responsible for chitin binding in Arthropod cuticle. The total number of the database entries is 445: 370 derive from insects, 60 from Crustacea and 15 from Chelicerata. The database can be accessed from our web server at http://bioinformatics.biol.uoa.gr/cuticleDB. Conclusions CuticleDB was primarily designed to contain correct and full annotation of cuticular protein data. The database will be of help to future genome annotators. Users will be able to test hypotheses for the existence of known and also of yet unknown motifs in cuticular proteins. An analysis of motifs may contribute to understanding how proteins contribute to the physical properties of cuticle as well as to the precise nature of their interaction with chitin.

  2. Waptia and the Diversification of Brood Care in Early Arthropods.

    Science.gov (United States)

    Caron, Jean-Bernard; Vannier, Jean

    2016-01-11

    Brood care, including the carrying of eggs or juveniles, is a form of parental care, which, like other parental traits [1], enhances offspring fitness with variable costs and benefits to the parents [2]. Attempts to understand why and how parental care evolved independently in numerous animal groups often emphasize the role of environmental pressures such as predation, ephemeral resources, and, more generally, the harshness of environment. The fossil record can, in principle, provide minimum age constraints on the evolution of life-history traits, including brood care and key information on the reproductive strategies of extinct organisms. New, exceptionally preserved specimens of the weakly sclerotized arthropod Waptia fieldensis from the middle Cambrian (ca. 508 million years ago) Burgess Shale, Canada, provide the oldest example of in situ eggs with preserved embryos in the fossil record. The relatively small clutch size, up to 24 eggs, and the relatively large diameter of individual eggs, some over 2 mm, contrast with the high number of small eggs-found without preserved embryos-in the bivalved bradoriid arthropod Kunmingella douvillei from the Chengjiang biota (ca. 515 million years ago). The presence of these two different parental strategies suggests a rapid evolution of a variety of modern-type life-history traits, including extended investment in offspring survivorship, soon after the Cambrian emergence of animals. Together with previously described brooded eggs in ostracods from the Upper Ordovician (ca. 450 million years ago), these new findings suggest that the presence of a bivalved carapace played a key role in the early evolution of parental care in arthropods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Pesticides and Arthropods: Sublethal Effects and Demographic Toxicology

    Directory of Open Access Journals (Sweden)

    Dejan Marčić

    2007-01-01

    Full Text Available Insecticides and acaricides designed to control primary harmful insects and mites may also variously affect some other arthopods present in an (agroecosystem (e.g. secondary pests, predators, parasitoids, saprophytes, bioindicators, pollinators. Apart from insecticides and acaricides, arthropods may also be affected by the activity of other pesticides (fungicides, herbicides, etc.. Regardless of whether they are deemed desirable or not, the effects that pesticides have on arthopods need to be quantified as closely as possible through appropriate experimental procedures. Data acquired in tests designed to determined LD50/LC50 values are inadequate for evaluation of pesticide effectiveness in the field as pesticidesalso cause various sublethal effects, generally disregarded in such investigations. The sublethal effects of pesticides refer to any altered behaviour and/or physiology of individuals that have survived exposure to pesticides at doses/concentrations that can be lethal(within range causing mortality in an experimental population that exceeds mortality in an untreated population or sublethal (below that range. Pesticides affect locomotion and mobility, stimulate dispersion of arthropods from treated areas, complicate or prevent their navigation, orientation and ability to locate hosts, and cause changes in their feeding, mating and egg-laying patterns. Sublethal pesticide effects on arthropod physiology reflect on the life span, rate of development, fecundity and/or fertility, sex ratio and immunity of surviving individuals. Different parameters are being used in arthropod bioassays to determine sublethal effects (ED50/EC50, LOEC, NOEC, total effect index. Compared to acute toxicity tests, these parameters improve the quality of evaluation and create a more accurate view of the effects of a pesticide. However, such approach covers mainly fecundity/fertility alone, while all other sublethal effects remain unaccounted for. Besides, it

  4. Identification of a Plant Phytosterol with Toxicity against Arthropod Pests

    Directory of Open Access Journals (Sweden)

    J.R.M. Thacker

    1999-06-01

    Full Text Available A crude plant extract that was toxic to spider mites in a leaf dip bioassay was subjected to detailed chemical analysis using chromatographic and spectroscopic techniques, The analyses revealed that the major active chemical was probably fl-sitosterol-3-glucostdc, a known phytosterol. The literature indicates that this chemical has been identified in a number of plant species and that it has been tested for utility in a number of medical therapies. It has not so far been assayed for the control of arthropod posts, the data indicate that this compound may be of use in the control of pest species, especially spider mites.

  5. Comparison of Caenorhabditis elegans NLP peptides with arthropod neuropeptides.

    Science.gov (United States)

    Husson, Steven J; Lindemans, Marleen; Janssen, Tom; Schoofs, Liliane

    2009-04-01

    Neuropeptides are small messenger molecules that can be found in all metazoans, where they govern a diverse array of physiological processes. Because neuropeptides seem to be conserved among pest species, selected peptides can be considered as attractive targets for drug discovery. Much can be learned from the model system Caenorhabditis elegans because of the availability of a sequenced genome and state-of-the-art postgenomic technologies that enable characterization of endogenous peptides derived from neuropeptide-like protein (NLP) precursors. Here, we provide an overview of the NLP peptide family in C. elegans and discuss their resemblance with arthropod neuropeptides and their relevance for anthelmintic discovery.

  6. Terrestrial Steering Group. 2014. Arctic Terrestrial Biodiversity Monitoring Plan

    DEFF Research Database (Denmark)

    Aastrup, Peter; Aronsson, Mora; Barry, Tom

    implementation of the Arctic Terrestrial Biodiversity Monitoring Plan for the next two years. Identify expert networks required for successful implementation of the plan. Identify key gaps and opportunities for the TSG related to plan implementation and identify near-term next steps to address gaps.......The Terrestrial Steering Group (TSG), has initiated the implementation phase of the CBMP Terrestrial Plan. The CBMP Terrestrial Steering Group, along with a set of invited experts (see Appendix A for a participants list), met in Iceland from February 25-27th to develop a three year work plan...... to guide implementation of the CBMP-Terrestrial Plan. This report describes the outcome of that workshop. The aim of the workshop was to develop a three year work plan to guide implementation of the CBMP-Terrestrial Plan. The participants were tasked with devising an approach to both (a) determine what...

  7. "Bugs on Bugs": An Inquiry-Based, Collaborative Activity to Learn Arthropod & Microbial Biodiversity

    Science.gov (United States)

    Lampert, Evan C.; Morgan, Jeanelle M.

    2015-01-01

    Diverse communities of arthropods and microbes provide humans with essential ecosystem goods and services. Arthropods are the most diverse and abundant macroscopic animals on the planet, and many remain to be discovered. Much less is known about microbial diversity, despite their importance as free-living species and as symbionts. We created…

  8. Composition and Diversity of Soil Arthropods of Rajegwesi Meru Betiri National Park

    Directory of Open Access Journals (Sweden)

    Hasan Zayadi

    2013-09-01

    Full Text Available Meru Betiri National Park (MBNP is one of the nature conservation area that has the potential of flora, fauna, and ecosystems that could develop as a nature-based tourism attraction. The existence of certain indicator species was related to estimation of stress level and disturbance on ecosystem stability for making strategic decisions about the restoration in this area. One of the important indicator species at forest ecosystem were soil arthropods. Aim this research were analyzed composition and diversity of soil arthropods at Rajegwesi, MBNP areas. The methods in this research used pitfall trap, measurement of distribution structure and soil arthropods composition based on the Shannon - Wiener index, Morisita similarity index and Importance Value Index (IVI. The number of families and individuals of soil arthropods found in the coastal area of Rajegwesi consists of 10 order with 21 families (702 individual. The number of individuals of the order Hymenoptera, Coleoptera, Collembola and Araneida was more widely found. Soil arthropods diversity index on each land use indicated that soil arthropod diversity in these areas were moderate. Soil arthropod community of orchards and forest had a similarity of species composition, whereas soil arthropod community of savanna had a similarity of species composition with paddy fields.

  9. Taxonomic and functional composition of arthropod assemblages across contrasting Amazonian forests.

    Science.gov (United States)

    Lamarre, Greg P A; Hérault, Bruno; Fine, Paul V A; Vedel, Vincent; Lupoli, Roland; Mesones, Italo; Baraloto, Christopher

    2016-01-01

    Arthropods represent most of global biodiversity, with the highest diversity found in tropical rain forests. Nevertheless, we have a very incomplete understanding of how tropical arthropod communities are assembled. We conducted a comprehensive mass sampling of arthropod communities within three major habitat types of lowland Amazonian rain forest, including terra firme clay, white-sand and seasonally flooded forests in Peru and French Guiana. We examined how taxonomic and functional composition (at the family level) differed across these habitat types in the two regions. The overall arthropod community composition exhibited strong turnover among habitats and between regions. In particular, seasonally flooded forest habitats of both regions comprised unique assemblages. Overall, 17·7% (26 of 147) of arthropod families showed significant preferences for a particular habitat type. We present a first reproducible arthropod functional classification among the 147 taxa based on similarity among 21 functional traits describing feeding source, major mouthparts and microhabitats inhabited by each taxon. We identified seven distinct functional groups whose relative abundance contrasted strongly across the three habitats, with sap and leaf feeders showing higher abundances in terra firme clay forest. Our novel arthropod functional classification provides an important complement to link these contrasting patterns of composition to differences in forest functioning across geographical and environmental gradients. This study underlines that both environment and biogeographical processes are responsible for driving arthropod taxonomic composition while environmental filtering is the main driver of the variance in functional composition. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  10. Food choice of Antarctic soil arthropods clarified by stable isotope signatures

    NARCIS (Netherlands)

    Bokhorst, S.F.; Ronfort, C.; Huiskes, A.H.L.; Convey, P.; Aerts, R.A.M.

    2007-01-01

    Antarctic soil ecosystems are amongst the most simplified on Earth and include only few soil arthropod species, generally believed to be opportunistic omnivorous feeders. Using stable isotopic analyses, we investigated the food choice of two common and widely distributed Antarctic soil arthropod

  11. Increased grassland arthropod production with mammalian herbivory and eutrophication: a test of mediation pathways.

    Science.gov (United States)

    Lind, Eric M; La Pierre, Kimberly J; Seabloom, Eric W; Alberti, Juan; Iribarne, Oscar; Firn, Jennifer; Gruner, Daniel S; Kay, Adam D; Pascal, Jesus; Wright, Justin P; Yang, Louie; Borer, Elizabeth T

    2017-12-01

    Increases in nutrient availability and alterations to mammalian herbivore communities are a hallmark of the Anthropocene, with consequences for the primary producer communities in many ecosystems. While progress has advanced understanding of plant community responses to these perturbations, the consequences for energy flow to higher trophic levels in the form of secondary production are less well understood. We quantified arthropod biomass after manipulating soil nutrient availability and wild mammalian herbivory, using identical methods across 13 temperate grasslands. Of experimental increases in nitrogen, phosphorus, and potassium, only treatments including nitrogen resulted in significantly increased arthropod biomass. Wild mammalian herbivore removal had a marginal, negative effect on arthropod biomass, with no interaction with nutrient availability. Path analysis including all sites implicated nutrient content of the primary producers as a driver of increased arthropod mean size, which we confirmed using 10 sites for which we had foliar nutrient data. Plant biomass and physical structure mediated the increase in arthropod abundance, while the nitrogen treatments accounted for additional variation not explained by our measured plant variables. The mean size of arthropod individuals was 2.5 times more influential on the plot-level total arthropod biomass than was the number of individuals. The eutrophication of grasslands through human activity, especially nitrogen deposition, thus may contribute to higher production of arthropod consumers through increases in nutrient availability across trophic levels. © 2017 by the Ecological Society of America.

  12. Arthropod pests of dried fish and fish by product in a tropical urban ...

    African Journals Online (AJOL)

    Animal Research International ... A four months research survey of arthropod pests infesting dried fish sold in a tropical urban community market (Ogige), Nsukka, Ngeria showed that 10 genera o dried freshwater fish ... Keywords: Arthropod pests, Visiting pest, Resident pest, Dried fish, Cod, Fish bone, Urban market ...

  13. The Habitats Humans Provide: Factors affecting the diversity and composition of arthropods in houses.

    Science.gov (United States)

    Leong, Misha; Bertone, Matthew A; Savage, Amy M; Bayless, Keith M; Dunn, Robert R; Trautwein, Michelle D

    2017-11-10

    The indoor biome is a novel habitat which recent studies have shown exhibit not only high microbial diversity, but also high arthropod diversity. Here, we analyze findings from a survey of 50 houses (southeastern USA) within the context of additional survey data concerning house and room features, along with resident behavior, to explore how arthropod diversity and community composition are influenced by physical aspects of rooms and their usage, as well as the lifestyles of human residents. We found that indoor arthropod diversity is strongly influenced by access to the outdoors and carpeted rooms hosted more types of arthropods than non-carpeted rooms. Arthropod communities were similar across most room types, but basements exhibited more unique community compositions. Resident behavior such as house tidiness, pesticide usage, and pet ownership showed no significant influence on arthropod community composition. Arthropod communities across all rooms in houses exhibit trophic structure-with both generalized predators and scavengers included in the most frequently found groups. These findings suggest that indoor arthropods serve as a connection to the outdoors, and that there is still much yet to be discovered about their impact on indoor health and the unique ecological dynamics within our homes.

  14. Genetic variation in functional traits influences arthropod community composition in aspen (Populus tremula L..

    Directory of Open Access Journals (Sweden)

    Kathryn M Robinson

    Full Text Available We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significant broad-sense heritability of plant functional traits, basic plant defence chemistry, and arthropod community traits. The majority of arthropods were specialists, those coevolved with P. tremula to tolerate and even utilize leaf defence compounds. Arthropod abundance and richness were more closely related to plant growth rates than general chemical defences and relationships were identified between the arthropod community and stem growth, leaf and petiole morphology, anthocyanins, and condensed tannins. Heritable genetic variation in plant traits in young aspen was found to structure arthropod community; however no single trait drives the preferences of arthropod folivores among young aspen genotypes. The influence of natural variation in plant traits on the arthropod community indicates the importance of maintaining genetic variation in wild trees as keystone species for biodiversity. It further suggests that aspen can be a resource for the study of mechanisms of natural resistance to herbivores.

  15. Arthropods associated with fungal galls: do large galls support more abundant and diverse inhabitants?

    Science.gov (United States)

    Funamoto, Daichi; Sugiura, Shinji

    2017-02-01

    Fungus-induced galls can attract spore-feeding arthropods as well as gall-feeding ones, resulting in diverse communities. Do large fungal galls support more abundant and diverse arthropod communities than small fungal galls? To address this question, we investigated the structure of the arthropod community associated with bud galls induced by the fungus Melanopsichium onumae on the tree species Cinnamomum yabunikkei (Lauraceae) in central Japan. Thirteen species of arthropods were associated with M. onumae galls. Dominant arthropod species were represented by the larvae of a salpingid beetle (a spore feeder), a nitidulid beetle (a spore feeder), a cosmopterigid moth (a spore feeder), an unidentified moth (a gall tissue feeder), and a drosophilid species (a gall tissue feeder). Arthropod abundance and species richness were positively correlated with gall diameter. The majority of the most abundant species were more frequently found in large galls than in small ones, indicating that large fungal galls, which have more food and/or space for arthropods, could support a more abundant and diverse arthropod community.

  16. Influence of hardwood midstory and pine species on pine bole arthropods

    Science.gov (United States)

    Christopher S. Collins; Richard N. Conner; Daniel Saenz

    2002-01-01

    Arthropod density on the boles of loblolly pines (Pinus taeda) was compared between a stand with and stand without hardwood midstory and between a stand of loblolly and shortleaf pines (P. echinata) in the Stephen E Austin Experimental Forest, Nacogdoches Co., Texas, USA from September 1993 through July 1994. Arthropod density was...

  17. Phoretic Arthropods of the Red Imported Fire Ant in Central Louisiana.

    Science.gov (United States)

    John Moser; Stacy Blomquist

    2011-01-01

    More than 4,665 phoretic arthropods comprising29species were collected from alates of the red imported fire ant, Solenopsis inoicta Buren, preparing to fly from nests in Pineville, LA. A wide variety of taxonomic groups were represented, including two insect and 17 mite families. Most arthropods fell into two classes: 1) those that may be truly phoretic with more than...

  18. Effects of green-tree retention on abundance and guild composition of corticolous arthropods

    Science.gov (United States)

    Juraj Halaj; Charles B. Halpern; Hoonbok Yi

    2009-01-01

    We studied the effects of varying levels and patterns of green-tree retention on the community composition of bark-dwelling arthropods. Arthropods were sampled with crawl traps installed on 280 live trees and 260 snags (all Douglas-fir) at three locations (experimental blocks) in the western Cascade Range of Oregon and Washington. Sampling coincided with the breeding...

  19. Post-Hurricane Successional Dynamics in Abundance and Diversity of Canopy Arthropods in a Tropical Rainforest

    Science.gov (United States)

    T. D. Schowalter; M. R. Willig; S. J. Presley

    2017-01-01

    We quantified long-term successional trajectories of canopy arthropods on six tree species in a tropical rainforest ecosystem in the Luquillo Mountains of Puerto Rico that experienced repeated hurricane-induced disturbances during the 19-yr study (1991–2009). We expected: 1) differential performances of arthropod species to result in taxon- or guild-specific responses...

  20. Arthropods of native and exotic vegetation and their association with willow flycatchers and Wilson's warblers

    Science.gov (United States)

    Linda S. DeLay; Deborah M. Finch; Sandra Brantley; Richard Fagerlund; Michael D. Means; Jeffrey F. Kelly

    1999-01-01

    We compared abundance of migrating Willow Flycatchers and Wilson's Warblers to the abundance of arthropods in exotic and native vegetation at Bosque del Apache National Wildlife Refuge. We trapped arthropods using glue-boards in 1996 and 1997 in the same cottonwood, saltcedar, and willow habitats where we mist-netted birds during spring and fall migration. There...

  1. [Community structure and diversity of soil arthropods in naturally restored sandy grasslands after grazing].

    Science.gov (United States)

    Liu, Ren-tao; Zhao, Ha-lin; Zhao, Xue-yong

    2010-11-01

    Taking the Naiman Desertification Research Station under Chinese Academy of Sciences as a base, an investigation was conducted on the community structure of soil arthropods in the naturally restored sandy grasslands after different intensity grazing disturbance, with the effects of vegetation and soil on this community structure approached. In the non-grazing grassland, soil arthropods were rich in species and more in individuals, and had the highest diversity. In the restored grassland after light grazing, soil arthropods had the lowest evenness and diversity. In the restored grassland after moderate grazing, the individuals of soil arthropods were lesser but the major groups were more, and the evenness and diversity were higher. In the restored grassland after heavy grazing, the individuals of soil arthropods were more but the major groups were lesser, and the diversity was higher. Plant individuals' number, vegetation height and coverage, and soil alkalinity were the main factors affecting the soil arthropod community in naturally restored grasslands after different intensity grazing disturbance. It was implied that after 12-year exclosure of grassland, soil arthropod community could be recovered to some degree, while grazing disturbance had long-term negative effects on the arthropod community.

  2. Intra-annual variation of arthropod–plant interactions and arthropod ...

    African Journals Online (AJOL)

    Arthropods are valuable biological indicators owing to strong relationships with primary producers. The supposition that arthropod–plant interactions are constant over seasons was tested using Mantel tests on correlations between these groups. A total of 78 plant species and 108 arthropod families were sampled monthly ...

  3. Chelicerate Hox genes and the homology of arthropod segments.

    Science.gov (United States)

    Abzhanov, A; Popadic, A; Kaufman, T C

    1999-01-01

    Genes of the homeotic complex (HOM-C) in insects and vertebrates are required for the specification of segments along the antero-posterior axis. Multiple paralogues of the Hox genes in the horseshoe crab Limulus poliphemus have been used as evidence for HOM-C duplications in the Chelicerata. We addressed this possibility through a limited PCR survey to sample the homeoboxes of two spider species, Steatoda triangulosa and Achaearanea tepidariorum. The survey did not provide evidence for multiple Hox clusters although we have found apparent duplicate copies of proboscipedia (pb) and Deformed (Dfd). In addition, we have cloned larger cDNA fragments of pb, zerknullt (zen/Hox3) and Dfd. These fragments allowed the determination of mRNA distribution by in situ hybridization. Our results are similar to the previously published expression patterns of Hox genes from another spider and an oribatid mite. Previous studies compared spider/mite Hox gene expression patterns with those of insects and argued for a pattern of segmental homology based on the assumption that the co-linear anterior boundaries of the Hox domains can be used as markers. To test this assumption we performed a comparative analysis of the expression patterns for UBX/ABD-A in chelicerates, myriapods, crustaceans, and insects. We conclude that the anterior boundary can be and is changed considerably during arthropod evolution and, therefore, Hox expression patterns should not be used as the sole criterion for identifying homology in different classes of arthropods.

  4. Arthropods as a source of new RNA viruses.

    Science.gov (United States)

    Bichaud, L; de Lamballerie, X; Alkan, C; Izri, A; Gould, E A; Charrel, R N

    2014-12-01

    The discovery and development of methods for isolation, characterisation and taxonomy of viruses represents an important milestone in the study, treatment and control of virus diseases during the 20th century. Indeed, by the late-1950s, it was becoming common belief that most human and veterinary pathogenic viruses had been discovered. However, at that time, knowledge of the impact of improved commercial transportation, urbanisation and deforestation, on disease emergence, was in its infancy. From the late 1960s onwards viruses, such as hepatitis virus (A, B and C) hantavirus, HIV, Marburg virus, Ebola virus and many others began to emerge and it became apparent that the world was changing, at least in terms of virus epidemiology, largely due to the influence of anthropological activities. Subsequently, with the improvement of molecular biotechnologies, for amplification of viral RNA, genome sequencing and proteomic analysis the arsenal of available tools for virus discovery and genetic characterization opened up new and exciting possibilities for virological discovery. Many recently identified but "unclassified" viruses are now being allocated to existing genera or families based on whole genome sequencing, bioinformatic and phylogenetic analysis. New species, genera and families are also being created following the guidelines of the International Committee for the Taxonomy of Viruses. Many of these newly discovered viruses are vectored by arthropods (arboviruses) and possess an RNA genome. This brief review will focus largely on the discovery of new arthropod-borne viruses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Emerging arthropod-borne diseases of companion animals in Europe.

    Science.gov (United States)

    Beugnet, Frederic; Marié, Jean-Lou

    2009-08-26

    Vector-borne diseases are caused by parasites, bacteria or viruses transmitted by the bite of hematophagous arthropods (mainly ticks and mosquitoes). The past few years have seen the emergence of new diseases, or re-emergence of existing ones, usually with changes in their epidemiology (i.e. geographical distribution, prevalence, and pathogenicity). The frequency of some vector-borne diseases of pets is increasing in Europe, i.e. canine babesiosis, granulocytic anaplasmosis, canine monocytic ehrlichiosis, thrombocytic anaplasmosis, and leishmaniosis. Except for the last, these diseases are transmitted by ticks. Both the distribution and abundance of the three main tick species, Rhipicephalus sanguineus, Dermacentor reticulatus and Ixodes ricinus are changing. The conditions for such changes involve primarily human factors, such as travel with pets, changes in human habitats, social and leisure activities, but climate changes also have a direct impact on arthropod vectors (abundance, geographical distribution, and vectorial capacity). Besides the most known diseases, attention should be kept on tick-borne encephalitis, which seems to be increasing in western Europe, as well as flea-borne diseases like the flea-transmitted rickettsiosis. Here, after consideration of the main reasons for changes in tick vector ecology, an overview of each "emerging" vector-borne diseases of pets is presented.

  6. Arctic Terrestrial Biodiversity Monitoring Plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    The Conservation of Arctic Flora and Fauna (CAFF), the biodiversity working group of the Arctic Council, established the Circumpolar Biodiversity Monitoring Program (CBMP) to address the need for coordinated and standardized monitoring of Arctic environments. The CBMP includes an international...... on developing and implementing long-term plans for monitoring the integrity of Arctic biomes: terrestrial, marine, freshwater, and coastal (under development) environments. The CBMP Terrestrial Expert Monitoring Group (CBMP-TEMG) has developed the Arctic Terrestrial Biodiversity Monitoring Plan (CBMP......-Terrestrial Plan/the Plan) as the framework for coordinated, long-term Arctic terrestrial biodiversity monitoring. The goal of the CBMP-Terrestrial Plan is to improve the collective ability of Arctic traditional knowledge (TK) holders, northern communities, and scientists to detect, understand and report on long...

  7. Arthropod succession on pig carcasses in southeastern Nigeria

    Directory of Open Access Journals (Sweden)

    M.S. Ekanem

    2010-01-01

    Full Text Available The domestic pig (Sus scrofa was used as a model to study arthropod succession on carcasses under tree shade and out of shade in southern Nigeria. Carcass decomposition took longer periods under tree shade than in exposed sites, at 24.5 and 16.5 days, respectively. Four decomposition stages - fresh, bloated, decay, and dry - were observed. No significant variabilities were recorded in the types and patterns of infestation of the carcasses by arthropods in both locations. Four classes of arthropods - Insecta, Arachnida, Diplopoda and Crustacea - were recorded. The class Insecta dominated the total arthropods collected with 24 families, and formed 94% of the catches. The other three classes each had one family represented, and contributed only 2% of the total catches. The calliphorids, a phorid, and sarcophagids arrived and bred on the carcasses only a few hours after death of the pigs. Families of coleopterans came during the bloated stage, and fed on the immature dipterous maggots and carrion materials. The ants (Hymenoptera came in large numbers to eat the carcasses, and also preyed on all other fauna of the food resource. A muscid and a stratiomyiid, bred on the carcass as to the decay stage. Other insects and arthropods arrived mostly during the decay stage to feed on the carcasses. Species richness on the carcasses peaked during the decay stage.O porco branco (Sus scrofa foi usado como modelo para o estudo da sucessão de Artrópodes em cadáveres em zonas sombreadas e não sombreadas por árvores no sul da Nigéria. Nos cadáveres em decomposição em zonas sombreadas observou-se um processo de decomposição mais lento que nos expostos ao sol; 24,5 e 16,5 dias, respectivamente. Foram observadas quatro etapas de decomposição; fresco (autólise, intumescido (putrefação, deteriorado e seco (diagênese. Não foram observadas diferenças significativas de tipo e padrão nas infestações dos cadáveres por Artrópodes em ambas as condi

  8. Effects of diversity and identity of the neighbouring plant community on the abundance of arthropods onindividual ragwort (Jacobaea vulgaris) plants

    NARCIS (Netherlands)

    Kostenko, O.; Grootemaat, S.; Putten, van der W.H.; Bezemer, T.M.

    2012-01-01

    The diversity of plant community can greatly affect the abundance and diversity of arthropods associated to that community, but can also influence the composition or abundance of arthropods on individual plants growing in that community. We sampled arthropods and recorded plant size of individual

  9. Future rainfall variations reduce abundances of aboveground arthropods in model agroecosystems with different soil types

    Directory of Open Access Journals (Sweden)

    Johann G. Zaller

    2014-10-01

    Full Text Available Climate change scenarios for Central Europe predict less frequent but heavier rainfalls and longer drought periods during the growing season. This is expected to alter arthropods in agroecosystems that are important as biocontrol agents, herbivores or food for predators (e.g. farmland birds. In a lysimeter facility (totally 18 3-m2-plots, we experimentally tested the effects of long-term past vs. prognosticated future rainfall variations (15% increased rainfall per event, 25% more dry days according to regionalized climate change models from the Intergovernmental Panel on Climate Change (IPCC on aboveground arthropods in winter wheat (Triticum aestivum L. cultivated at three different soil types (calcaric phaeozem, calcic chernozem and gleyic phaeozem. Soil types were established 17 years and rainfall treatments one month before arthropod sampling; treatments were fully crossed and replicated three times. Aboveground arthropods were assessed by suction sampling, their mean abundances (± SD differed between April, May and June with 20 ± 3 m-2, 90 ± 35 m-2 and 289 ± 93 individuals m-2, respectively. Averaged across sampling dates, future rainfall reduced the abundance of spiders (Araneae, -47%, cicadas and leafhoppers (Auchenorrhyncha, -39%, beetles (Coleoptera, -52%, ground beetles (Carabidae, -41%, leaf beetles (Chrysomelidae, -64%, spring tails (Collembola, -58%, flies (Diptera, -73% and lacewings (Neuroptera, -73% but increased the abundance of snails (Gastropoda, +69%. Across sampling dates, soil types had no effects on arthropod abundances. Arthropod diversity was neither affected by rainfall nor soil types. Arthropod abundance was positively correlated with weed biomass for almost all taxa; abundance of Hemiptera and of total arthropods was positively correlated with weed density. These detrimental effects of future rainfall varieties on arthropod taxa in wheat fields can potentially alter arthropod-associated agroecosystem services.

  10. Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle

    Science.gov (United States)

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe; Didham, Raphael K.; Novotny, Vojtech; Ødegaard, Frode; Roslin, Tomas; Tishechkin, Alexey K.; Schmidl, Jürgen; Winchester, Neville N.; Roubik, David W.; Aberlenc, Henri-Pierre; Bail, Johannes; Barrios, Héctor; Bridle, Jonathan R.; Castaño-Meneses, Gabriela; Corbara, Bruno; Curletti, Gianfranco; Duarte da Rocha, Wesley; De Bakker, Domir; Delabie, Jacques H. C.; Dejean, Alain; Fagan, Laura L.; Floren, Andreas; Kitching, Roger L.; Medianero, Enrique; Gama de Oliveira, Evandro; Orivel, Jérôme; Pollet, Marc; Rapp, Mathieu; Ribeiro, Sérvio P.; Roisin, Yves; Schmidt, Jesper B.; Sørensen, Line; Lewinsohn, Thomas M.; Leponce, Maurice

    2015-01-01

    Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2km of distance, 40m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods. PMID:26633187

  11. Contaminant exposure in terrestrial vertebrates

    International Nuclear Information System (INIS)

    Smith, Philip N.; Cobb, George P.; Godard-Codding, Celine; Hoff, Dale; McMurry, Scott T.; Rainwater, Thomas R.; Reynolds, Kevin D.

    2007-01-01

    Here we review mechanisms and factors influencing contaminant exposure among terrestrial vertebrate wildlife. There exists a complex mixture of biotic and abiotic factors that dictate potential for contaminant exposure among terrestrial and semi-terrestrial vertebrates. Chemical fate and transport in the environment determine contaminant bioaccessibility. Species-specific natural history characteristics and behavioral traits then play significant roles in the likelihood that exposure pathways, from source to receptor, are complete. Detailed knowledge of natural history traits of receptors considered in conjunction with the knowledge of contaminant behavior and distribution on a site are critical when assessing and quantifying exposure. We review limitations in our understanding of elements of exposure and the unique aspects of exposure associated with terrestrial and semi-terrestrial taxa. We provide insight on taxa-specific traits that contribute, or limit exposure to, transport phenomenon that influence exposure throughout terrestrial systems, novel contaminants, bioavailability, exposure data analysis, and uncertainty associated with exposure in wildlife risk assessments. Lastly, we identify areas related to exposure among terrestrial and semi-terrestrial organisms that warrant additional research. - Both biotic and abiotic factors determine chemical exposure for terrestrial vertebrates

  12. Terrestrial Plume Impingement Testbed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Masten Space Systems proposes to create a terrestrial plume impingement testbed for generating novel datasets for extraterrestrial robotic missions. This testbed...

  13. Terrestrial Carbon Cycle Variability.

    Science.gov (United States)

    Baldocchi, Dennis; Ryu, Youngryel; Keenan, Trevor

    2016-01-01

    A growing literature is reporting on how the terrestrial carbon cycle is experiencing year-to-year variability because of climate anomalies and trends caused by global change. As CO 2 concentration records in the atmosphere exceed 50 years and as satellite records reach over 30 years in length, we are becoming better able to address carbon cycle variability and trends. Here we review how variable the carbon cycle is, how large the trends in its gross and net fluxes are, and how well the signal can be separated from noise. We explore mechanisms that explain year-to-year variability and trends by deconstructing the global carbon budget. The CO 2 concentration record is detecting a significant increase in the seasonal amplitude between 1958 and now. Inferential methods provide a variety of explanations for this result, but a conclusive attribution remains elusive. Scientists have reported that this trend is a consequence of the greening of the biosphere, stronger northern latitude photosynthesis, more photosynthesis by semi-arid ecosystems, agriculture and the green revolution, tropical temperature anomalies, or increased winter respiration. At the global scale, variability in the terrestrial carbon cycle can be due to changes in constituent fluxes, gross primary productivity, plant respiration and heterotrophic (microbial) respiration, and losses due to fire, land use change, soil erosion, or harvesting. It remains controversial whether or not there is a significant trend in global primary productivity (due to rising CO 2 , temperature, nitrogen deposition, changing land use, and preponderance of wet and dry regions). The degree to which year-to-year variability in temperature and precipitation anomalies affect global primary productivity also remains uncertain. For perspective, interannual variability in global gross primary productivity is relatively small (on the order of 2 Pg-C y -1 ) with respect to a large and uncertain background (123 +/- 4 Pg-C y -1 ), and

  14. Brain architecture of the largest living land arthropod, the Giant Robber Crab Birgus latro (Crustacea, Anomura, Coenobitidae: evidence for a prominent central olfactory pathway?

    Directory of Open Access Journals (Sweden)

    Krieger Jakob

    2010-09-01

    Full Text Available Abstract Background Several lineages within the Crustacea conquered land independently during evolution, thereby requiring physiological adaptations for a semi-terrestrial or even a fully terrestrial lifestyle. Birgus latro Linnaeus, 1767, the giant robber crab or coconut crab (Anomura, Coenobitidae, is the largest land-living arthropod and inhabits Indo-Pacific islands such as Christmas Island. B. latro has served as a model in numerous studies of physiological aspects related to the conquest of land by crustaceans. From an olfactory point of view, a transition from sea to land means that molecules need to be detected in gas phase instead of in water solution. Previous studies have provided physiological evidence that terrestrial hermit crabs (Coenobitidae such as B. latro have a sensitive and well differentiated sense of smell. Here we analyze the brain, in particular the olfactory processing areas of B. latro, by morphological analysis followed by 3 D reconstruction and immunocytochemical studies of synaptic proteins and a neuropeptide. Results The primary and secondary olfactory centers dominate the brain of B. latro and together account for ca. 40% of the neuropil volume in its brain. The paired olfactory neuropils are tripartite and composed of more than 1,000 columnar olfactory glomeruli, which are radially arranged around the periphery of the olfactory neuropils. The glomeruli are innervated ca. 90,000 local interneurons and ca. 160,000 projection neurons per side. The secondary olfactory centers, the paired hemiellipsoid neuropils, are targeted by the axons of these olfactory projection neurons. The projection neuron axonal branches make contact to ca. 250.000 interneurons (per side associated with the hemiellipsoid neuropils. The hemiellipsoid body neuropil is organized into parallel neuropil lamellae, a design that is quite unusual for decapod crustaceans. The architecture of the optic neuropils and areas associated with antenna two

  15. Brain architecture of the largest living land arthropod, the Giant Robber Crab Birgus latro (Crustacea, Anomura, Coenobitidae): evidence for a prominent central olfactory pathway?

    Science.gov (United States)

    2010-01-01

    Background Several lineages within the Crustacea conquered land independently during evolution, thereby requiring physiological adaptations for a semi-terrestrial or even a fully terrestrial lifestyle. Birgus latro Linnaeus, 1767, the giant robber crab or coconut crab (Anomura, Coenobitidae), is the largest land-living arthropod and inhabits Indo-Pacific islands such as Christmas Island. B. latro has served as a model in numerous studies of physiological aspects related to the conquest of land by crustaceans. From an olfactory point of view, a transition from sea to land means that molecules need to be detected in gas phase instead of in water solution. Previous studies have provided physiological evidence that terrestrial hermit crabs (Coenobitidae) such as B. latro have a sensitive and well differentiated sense of smell. Here we analyze the brain, in particular the olfactory processing areas of B. latro, by morphological analysis followed by 3 D reconstruction and immunocytochemical studies of synaptic proteins and a neuropeptide. Results The primary and secondary olfactory centers dominate the brain of B. latro and together account for ca. 40% of the neuropil volume in its brain. The paired olfactory neuropils are tripartite and composed of more than 1,000 columnar olfactory glomeruli, which are radially arranged around the periphery of the olfactory neuropils. The glomeruli are innervated ca. 90,000 local interneurons and ca. 160,000 projection neurons per side. The secondary olfactory centers, the paired hemiellipsoid neuropils, are targeted by the axons of these olfactory projection neurons. The projection neuron axonal branches make contact to ca. 250.000 interneurons (per side) associated with the hemiellipsoid neuropils. The hemiellipsoid body neuropil is organized into parallel neuropil lamellae, a design that is quite unusual for decapod crustaceans. The architecture of the optic neuropils and areas associated with antenna two suggest that B. latro has

  16. Brain architecture of the largest living land arthropod, the Giant Robber Crab Birgus latro (Crustacea, Anomura, Coenobitidae): evidence for a prominent central olfactory pathway?

    Science.gov (United States)

    Krieger, Jakob; Sandeman, Renate E; Sandeman, David C; Hansson, Bill S; Harzsch, Steffen

    2010-09-10

    Several lineages within the Crustacea conquered land independently during evolution, thereby requiring physiological adaptations for a semi-terrestrial or even a fully terrestrial lifestyle. Birgus latro Linnaeus, 1767, the giant robber crab or coconut crab (Anomura, Coenobitidae), is the largest land-living arthropod and inhabits Indo-Pacific islands such as Christmas Island. B. latro has served as a model in numerous studies of physiological aspects related to the conquest of land by crustaceans. From an olfactory point of view, a transition from sea to land means that molecules need to be detected in gas phase instead of in water solution. Previous studies have provided physiological evidence that terrestrial hermit crabs (Coenobitidae) such as B. latro have a sensitive and well differentiated sense of smell. Here we analyze the brain, in particular the olfactory processing areas of B. latro, by morphological analysis followed by 3 D reconstruction and immunocytochemical studies of synaptic proteins and a neuropeptide. The primary and secondary olfactory centers dominate the brain of B. latro and together account for ca. 40% of the neuropil volume in its brain. The paired olfactory neuropils are tripartite and composed of more than 1,000 columnar olfactory glomeruli, which are radially arranged around the periphery of the olfactory neuropils. The glomeruli are innervated ca. 90,000 local interneurons and ca. 160,000 projection neurons per side. The secondary olfactory centers, the paired hemiellipsoid neuropils, are targeted by the axons of these olfactory projection neurons. The projection neuron axonal branches make contact to ca. 250.000 interneurons (per side) associated with the hemiellipsoid neuropils. The hemiellipsoid body neuropil is organized into parallel neuropil lamellae, a design that is quite unusual for decapod crustaceans. The architecture of the optic neuropils and areas associated with antenna two suggest that B. latro has visual and

  17. Strategic Polarization.

    Science.gov (United States)

    Kalai, Adam; Kalai, Ehud

    2001-08-01

    In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.

  18. Aerial arthropod communities of native and invaded forests, Robinson Crusoe Island, Chile.

    Science.gov (United States)

    Hagen, Erin N; Bakker, Jonathan D; Gara, Robert I

    2010-08-01

    Invasive species significantly contribute to biological change and threaten biodiversity, with a growing body of evidence that plant invasions affect higher trophic levels. We explored the relative importance of plant invasion and forest structure on aerial arthropod abundance, diversity, and composition on Robinson Crusoe Island, Chile. We used flight intercept traps to sample aerial arthropods within distinct canopy strata of native and invaded forests over 3-mo periods in 2006 and 2007. Arthropod abundance and diversity were higher in native than invaded forest, and arthropod communities were distinct between forest types. In both forest types, arthropod abundance was highest in the lower canopy, and canopy strata exhibited some differences in arthropod community composition. Several morphospecies were distinctly associated with each forest type. The strong differences in aerial arthropod communities associated with the invasion of native forest by non-native plants may affect other trophic levels, such as insectivorous birds. Steps to stop invasive plant spread and to restore native forest composition and structure are needed to safeguard the integrity of native communities, from plants to higher-level consumers.

  19. Acquisition of Cry1Ac protein by non-target arthropods in Bt soybean fields.

    Directory of Open Access Journals (Sweden)

    Huilin Yu

    Full Text Available Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA. Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults and sampling dates (before, during, and after flowering. Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean.

  20. Ironing out the Details: Exploring the Role of Iron and Heme in Blood-Sucking Arthropods

    Science.gov (United States)

    Whiten, Shavonn R.; Eggleston, Heather; Adelman, Zach N.

    2018-01-01

    Heme and iron are essential molecules for many physiological processes and yet have the ability to cause oxidative damage such as lipid peroxidation, protein degradation, and ultimately cell death if not controlled. Blood-sucking arthropods have evolved diverse methods to protect themselves against iron/heme-related damage, as the act of bloodfeeding itself is high risk, high reward process. Protective mechanisms in medically important arthropods include the midgut peritrophic matrix in mosquitoes, heme aggregation into the crystalline structure hemozoin in kissing bugs and hemosomes in ticks. Once heme and iron pass these protective mechanisms they are presumed to enter the midgut epithelial cells via membrane-bound transporters, though relatively few iron or heme transporters have been identified in bloodsucking arthropods. Upon iron entry into midgut epithelial cells, ferritin serves as the universal storage protein and transport for dietary iron in many organisms including arthropods. In addition to its role as a nutrient, heme is also an important signaling molecule in the midgut epithelial cells for many physiological processes including vitellogenesis. This review article will summarize recent advancements in heme/iron uptake, detoxification and exportation in bloodfeeding arthropods. While initial strides have been made at ironing out the role of dietary iron and heme in arthropods, much still remains to be discovered as these molecules may serve as novel targets for the control of many arthropod pests. PMID:29387018

  1. Acquisition of Cry1Ac Protein by Non-Target Arthropods in Bt Soybean Fields

    Science.gov (United States)

    Yu, Huilin; Romeis, Jörg; Li, Yunhe; Li, Xiangju; Wu, Kongming

    2014-01-01

    Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA). Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults) and sampling dates (before, during, and after flowering). Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean. PMID:25110881

  2. Evolution of Ecdysis and Metamorphosis in Arthropods: The Rise of Regulation of Juvenile Hormone.

    Science.gov (United States)

    Cheong, Sam P S; Huang, Juan; Bendena, William G; Tobe, Stephen S; Hui, Jerome H L

    2015-11-01

    Arthropods are the most successful group of animals, and are found in diverse habitats; they account for more than 80% of described animal species. A rigid exoskeleton is a common feature that is shared across the different groups of arthropods. The exoskeleton offers protection and is shed between developmental stages via a unique evolutionarily conserved process known as molting/ecdysis. Molting is triggered by steroid hormones, the ecdysteroids, and the regulation of their biosynthesis has long been proposed as a contributor to the success of arthropods during evolution. Nevertheless, how novelties arose that contributed to the diversifications of arthropods remain unclear. Juvenile hormones (JHs) are sequiterpenoids that were thought to be unique to insects, modulating the timing of metamorphosis in conjunction with the actions of ecdysteroids. Here, we revisit the old question of "the role that the sesquiterpenoids play in arthropod evolution" with a focus on the neglected non-insect arthropods. We hypothesize that the sesquiterpenoid, methyl farnesoate (MF), had already established regulatory functions in the last common ancestor of arthropods, and the difference in the regulation of biosynthesis and degradation of sesquiterpenoids, such as MF and JH, was another major driving force in the successful radiation of insects. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  3. [Population structure of soil arthropod in different age Pinus massoniana plantations].

    Science.gov (United States)

    Tan, Bo; Wu, Fu-zhong; Yang, Wan-qin; Zhang, Jian; Xu, Zhen-feng; Liu, Yang; Gou, Xiao-lin

    2013-04-01

    An investigation was conducted on the population structure of soil arthropod community in the 3-, 8-, 14-, 31-, and 40-years old Pinus massoniana plantations in the upper reaches of the Yangtze River in spring (May) and autumn (October), 2011, aimed to search for the scientific management of the plantation. A total of 4045 soil arthropods were collected, belonging to 57 families. Both the individual density and the taxonomic group number of the soil arthropod community decreased obviously with increasing soil depth, and this trend increased with increasing stand age. The dominant groups and ordinary groups of the soil arthropod community varied greatly with the stand age of P. massoniana plantation, and a significant difference (P<0.05) was observed in the individual density and taxonomic group number among different age P. massoniana plantations. In comparison with other stand age P. massoniana plantations, 3years old P. massoniana plantation had a significant difference in the structure and diversity of soil arthropod community, and the similarity index of the soil arthropod community was lower. The individual density, taxonomic group number, and diversity of soil arthropod community were the highest in 8-years old P. massoniana plantation, and then, decreased obviously with increasing stand age. It was suggested that the land fertility of the P. massoniana plantations could be degraded with increasing stand age, and it would be appropriate to make artificial regulation and restoration in 8-years old P. massoniana plantation.

  4. Arthropod abundance and seasonal bird use of bottomland forest harvest gaps.

    Energy Technology Data Exchange (ETDEWEB)

    Moorman, Christopher, E.; Bowen, Liessa T.; Kilgo, John, C.; Hanula, James, L.; Horn, Scott; Ulyshen, Michael, D.

    2012-03-01

    We investigated the influence of arthropod abundance and vegetation structure on shifts in avian use of canopy gap, gap edge, and surrounding forest understory in a bottomland hardwood forest in the Upper Coastal Plain of South Carolina. We compared captures of foliage-gleaning birds among locations during four periods (spring migration, breeding, post-breeding, and fall migration). Foliage arthropod densities were greatest in the forest understory in all four seasons, but understory vegetation density was greatest in gaps. Foliage-gleaning bird abundance was positively associated with foliage-dwelling arthropods during the breeding (F = 18.5, P < 0.001) and post-breeding periods (F = 9.4, P = 0.004), and negatively associated with foliage-dwelling arthropods during fall migration (F = 5.4, P = 0.03). Relationships between birds and arthropods were inconsistent, but the arthropod prey base seemed to be least important during migratory periods. Conversely, bird captures were positively correlated with understory vegetation density during all four periods (P < 0.001). Our study suggests high bird abundance associated with canopy gaps during the non-breeding period resulted less from high arthropod food resource availability than from complex understory and midstory vegetation structure.

  5. Effects of persistent insecticides on beneficial soil arthropod in conventional fields compared to organic fields, puducherry.

    Science.gov (United States)

    Anbarashan, Padmavathy; Gopalswamy, Poyyamoli

    2013-07-15

    The usage of synthetic fertilizers/insecticides in conventional farming has dramatically increased over the past decades. The aim of the study was to compare the effects of bio-pesticides and insecticides/pesticides on selected beneficial non targeted arthropods. Orders Collembola, Arachinida/Opiliones, Oribatida and Coleoptera were the main groups of arthropods found in the organic fields and Coleoptera, Oribatida, Gamasida and Collembola in conventional fields. Pesticides/insecticides had a significant effect on non-targeted arthropods order- Collembola, Arachinida/Opiliones, Hymenoptera and Thysonoptera were suppressed after pesticides/insecticides spraying. Bio-insecticides in organic fields had a non-significant effect on non targeted species and they started to increase in abundance after 7 days of spraying, whereas insecticide treatment in conventional fields had a significant long-term effect on non targeted arthropods and short term effect on pests/insects, it started to increase after 21 days of the spraying. These results indicate that insecticide treatment kept non targeted arthropods at low abundance. In conclusion, organic farming does not significantly affected the beneficial-non targeted arthropods biodiversity, whereas preventive insecticide application in conventional fields had significant negative effects on beneficial non targeted arthropods. Therefore, conventional farmers should restrict insecticide applications, unless pest densities reach the thresholds and more desirably can switch to organic farming practices.

  6. Identification of a Flavivirus Sequence in a Marine Arthropod.

    Directory of Open Access Journals (Sweden)

    Michael J Conway

    Full Text Available Phylogenetic analysis has yet to uncover the early origins of flaviviruses. In this study, I mined a database of expressed sequence tags in order to discover novel flavivirus sequences. Flavivirus sequences were identified in a pool of mRNA extracted from the sea spider Endeis spinosa (Pycnogonida, Pantopoda. Reconstruction of the translated sequences and BLAST analysis matched the sequence to the flavivirus NS5 gene. Additional sequences corresponding to envelope and the NS5 MTase domain were also identified. Phylogenetic analysis of homologous NS5 sequences revealed that Endeis spinosa NS5 (ESNS5 is likely related to classical insect-specific flaviviruses. It is unclear if ESNS5 represents genetic material from an active viral infection or an integrated viral genome. These data raise the possibility that classical insect-specific flaviviruses and perhaps medically relevant flaviviruses, evolved from progenitors that infected marine arthropods.

  7. Bacteria, fungi and arthropod pests collected on modern human mummies

    Directory of Open Access Journals (Sweden)

    F. Palla

    2011-08-01

    Full Text Available A survey of opportunistic biocenosis (macro and micro organisms associated with a rest of human mummy samples was carried out to characterise the biocenosis and to detect the potential of biodeteriogens. The rests of the human modern mummies come from a hypogeic site. Since mummies are relevant from a historic-artistic-scientific point of view, an aspect of this study was the identification and characterization of the biological systems related with biodeterioration of organic matter. In a first step, different sampling methods, according to the taxa, were applied. Technological procedures were combined in order to have an interdisciplinary approach to the conservation actions for testing future restoration protocols. Specimens were collected, identified and characterized by Microscopy (light, SEM, CLSM and molecular analyses (DNA extraction, in vitro target sequence amplification, sequencing, sequence analysis. The results highlight a rather complex biocenonsis consisting of fungi, cyanobacteria, several insects and other arthropods.

  8. Transient behavior of cadmium in a grassland arthropod food chain

    International Nuclear Information System (INIS)

    Van Hook, R.I.; Yates, A.J.

    1975-01-01

    Biological assimilation and transport of cadmium were determined for an arthropod food chain in an east Tennessee grassland community. Laboratory experiments demonstrated that there were no significant differences (P greater than 0.05) in assimilation rates (17 percent assimilation per day) or biological half-lives (7 days) of 109 Cd either as soluble nitrate or insoluble oxide in crickets under identical conditions. Field experiments demonstrated that primary consumers (crickets) accumulated 109 Cd much more rapidly (uptake rate = 0.55 day -1 ) than did the spider predators (uptake rate = 0.08 day -1 ). Equilibrium concentrations in crickets were obtained in 9 days (0.04 ppM cadmium), while equilibrium was not reached in spiders during the 30-day study. Food-chain concentration of cadmium did not occur as crickets accumulated levels of cadmium 60 percent of that in their vegetation food sources and spiders accumulated only 70 percent of the cadmium present in the cricket tissues

  9. Phenoptosis in arthropods and immortality of social insects.

    Science.gov (United States)

    Kartsev, V M

    2014-10-01

    In general, there are no drastic differences in phenoptosis patterns in plant and animal organisms. However, there are some specific features characteristic for insects and other arthropods: 1) their development includes metamorphosis with different biochemical laws at consecutive developmental stages; 2) arthropods can reduce or stop development and aging when in a state of diapause or temporal cold immobility; 3) their life cycle often correlates with seasonal changes of surroundings; 4) polymorphism is widespread - conspecifics differ by their lifespans and phenoptosis features; 5) lifespan-related sexual dimorphism is common; 6) significant situational plasticity of life cycle organization is an important feature; for example, the German wasp (Paravespula germanica) is obligatorily univoltine in the temperate zone, while in tropical regions its lifespan increases and leads to repeated reproduction; 7) life cycles of closely related species may differ significantly, for example, in contrast to German wasp, some tropical hornets (Vespa) have only one reproduction period. Surprisingly, many insect species have been shown to be subjected to gradual aging and phenoptosis, like the highest mammals. However, queens of social insects and some long-lived arachnids can apparently be considered non-aging organisms. In some species, lifespan is limited to one season, while others live much longer or shorter. Cases of one-time reproduction are rather rare. Aphagia is common in insects (over 10,000 species). Cannibalism is an important mortality factor in insects as well as in spiders. In social insects, which exist only in colonies (families), the lifetime of a colony can be virtually unlimited. However, in case of some species the developmental cycle and death of a colony after its completion are predetermined. Most likely, natural selection in insects does not lengthen individual lifespan, but favors increase in reproduction efficiency based on fast succession of

  10. Grassland Arthropods Are Controlled by Direct and Indirect Interactions with Cattle but Are Largely Unaffected by Plant Provenance.

    Directory of Open Access Journals (Sweden)

    Kelly Anne Farrell

    Full Text Available Cattle grazing and invasion by non-native plant species are globally-ubiquitous changes occurring to plant communities that are likely to reverberate through whole food webs. We used a manipulative field experiment to quantify how arthropod community structure differed in native and non-native California grassland communities in the presence and absence of grazing. The arthropod community was strongly affected by cattle grazing: the biovolume of herbivorous arthropods was 79% higher in grazed than ungrazed plots, whereas the biovolume of predatory arthropods was 13% higher in ungrazed plots. In plots where non-native grasses were grazed, arthropod biovolume increased, possibly in response to increased plant productivity or increased nutritional quality of rapidly-growing annual plants. Grazing may thus affect plant biomass both through the direct removal of biomass, and through arthropod-mediated impacts. We also expected the arthropod community to differ between native and non-native plant communities; surprisingly, arthropod richness and diversity did not vary consistently between these grass community types, although arthropod abundance was slightly higher in plots with native and ungrazed grasses. These results suggest that whereas cattle grazing affects the arthropod community via direct and indirect pathways, arthropod community changes commonly associated with non-native plant invasions may not be due to the identity or dominance of the invasive species in those systems, but to accompanying changes in plant traits or functional group composition, not seen in this experiment because of the similarity of the plant communities.

  11. Grassland Arthropods Are Controlled by Direct and Indirect Interactions with Cattle but Are Largely Unaffected by Plant Provenance

    Science.gov (United States)

    Farrell, Kelly Anne; Harpole, W. Stanley; Stein, Claudia; Suding, Katharine N.; Borer, Elizabeth T.

    2015-01-01

    Cattle grazing and invasion by non-native plant species are globally-ubiquitous changes occurring to plant communities that are likely to reverberate through whole food webs. We used a manipulative field experiment to quantify how arthropod community structure differed in native and non-native California grassland communities in the presence and absence of grazing. The arthropod community was strongly affected by cattle grazing: the biovolume of herbivorous arthropods was 79% higher in grazed than ungrazed plots, whereas the biovolume of predatory arthropods was 13% higher in ungrazed plots. In plots where non-native grasses were grazed, arthropod biovolume increased, possibly in response to increased plant productivity or increased nutritional quality of rapidly-growing annual plants. Grazing may thus affect plant biomass both through the direct removal of biomass, and through arthropod-mediated impacts. We also expected the arthropod community to differ between native and non-native plant communities; surprisingly, arthropod richness and diversity did not vary consistently between these grass community types, although arthropod abundance was slightly higher in plots with native and ungrazed grasses. These results suggest that whereas cattle grazing affects the arthropod community via direct and indirect pathways, arthropod community changes commonly associated with non-native plant invasions may not be due to the identity or dominance of the invasive species in those systems, but to accompanying changes in plant traits or functional group composition, not seen in this experiment because of the similarity of the plant communities. PMID:26158494

  12. Grassland Arthropods Are Controlled by Direct and Indirect Interactions with Cattle but Are Largely Unaffected by Plant Provenance.

    Science.gov (United States)

    Farrell, Kelly Anne; Harpole, W Stanley; Stein, Claudia; Suding, Katharine N; Borer, Elizabeth T

    2015-01-01

    Cattle grazing and invasion by non-native plant species are globally-ubiquitous changes occurring to plant communities that are likely to reverberate through whole food webs. We used a manipulative field experiment to quantify how arthropod community structure differed in native and non-native California grassland communities in the presence and absence of grazing. The arthropod community was strongly affected by cattle grazing: the biovolume of herbivorous arthropods was 79% higher in grazed than ungrazed plots, whereas the biovolume of predatory arthropods was 13% higher in ungrazed plots. In plots where non-native grasses were grazed, arthropod biovolume increased, possibly in response to increased plant productivity or increased nutritional quality of rapidly-growing annual plants. Grazing may thus affect plant biomass both through the direct removal of biomass, and through arthropod-mediated impacts. We also expected the arthropod community to differ between native and non-native plant communities; surprisingly, arthropod richness and diversity did not vary consistently between these grass community types, although arthropod abundance was slightly higher in plots with native and ungrazed grasses. These results suggest that whereas cattle grazing affects the arthropod community via direct and indirect pathways, arthropod community changes commonly associated with non-native plant invasions may not be due to the identity or dominance of the invasive species in those systems, but to accompanying changes in plant traits or functional group composition, not seen in this experiment because of the similarity of the plant communities.

  13. International collaboration in Arctic terrestrial research

    Science.gov (United States)

    Walsh, J. E.

    2008-12-01

    The Arctic terrestrial region spans international borders in both North America and Eurasia, making internal collaboration essential to the monitoring and understanding of system-scale changes. Permafrost and hydrologic research in the Arctic are both benefiting from international coordination during the period of the International Polar Year. The Thermal State of Permafrost (TSP) is an IPY program that has mobilized researchers from more than 20 countries to make standardized temperature measurements in existing and new boreholes throughout the permafrost regions of both hemispheres. TSP builds on the Global Terrestrial Network on Permafrost (GTP-N), which includes the Circumarctic Active Layer Monitoring (CALM) project. This synoptic snapshot will provide a baseline for diagnoses of ongoing changes and assessments of future change on a pan-Arctic scale. Because permafrost changes affect hydrology, a relevant program is Arctic- HYDRA, for which the objectives include a characterization of the variability in the Arctic Hydrological Cycle (AHC), an examination of the linkages between atmospheric forcing and continental discharge to the ocean; and incorporation of hydrologic information into the attribution of recent variability of the Arctic system. Results presented here will focus on an assessment of the permafrost-hydrologic linkages as presently understood, with an emphasis on the key research needs to which programs such as TSP and Arctic-HYDRA can be brought to bear.

  14. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses

    Science.gov (United States)

    Li, Ci-Xiu; Shi, Mang; Tian, Jun-Hua; Lin, Xian-Dan; Kang, Yan-Jun; Chen, Liang-Jun; Qin, Xin-Cheng; Xu, Jianguo; Holmes, Edward C; Zhang, Yong-Zhen

    2015-01-01

    Although arthropods are important viral vectors, the biodiversity of arthropod viruses, as well as the role that arthropods have played in viral origins and evolution, is unclear. Through RNA sequencing of 70 arthropod species we discovered 112 novel viruses that appear to be ancestral to much of the documented genetic diversity of negative-sense RNA viruses, a number of which are also present as endogenous genomic copies. With this greatly enriched diversity we revealed that arthropods contain viruses that fall basal to major virus groups, including the vertebrate-specific arenaviruses, filoviruses, hantaviruses, influenza viruses, lyssaviruses, and paramyxoviruses. We similarly documented a remarkable diversity of genome structures in arthropod viruses, including a putative circular form, that sheds new light on the evolution of genome organization. Hence, arthropods are a major reservoir of viral genetic diversity and have likely been central to viral evolution. DOI: http://dx.doi.org/10.7554/eLife.05378.001 PMID:25633976

  15. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses.

    Science.gov (United States)

    Li, Ci-Xiu; Shi, Mang; Tian, Jun-Hua; Lin, Xian-Dan; Kang, Yan-Jun; Chen, Liang-Jun; Qin, Xin-Cheng; Xu, Jianguo; Holmes, Edward C; Zhang, Yong-Zhen

    2015-01-29

    Although arthropods are important viral vectors, the biodiversity of arthropod viruses, as well as the role that arthropods have played in viral origins and evolution, is unclear. Through RNA sequencing of 70 arthropod species we discovered 112 novel viruses that appear to be ancestral to much of the documented genetic diversity of negative-sense RNA viruses, a number of which are also present as endogenous genomic copies. With this greatly enriched diversity we revealed that arthropods contain viruses that fall basal to major virus groups, including the vertebrate-specific arenaviruses, filoviruses, hantaviruses, influenza viruses, lyssaviruses, and paramyxoviruses. We similarly documented a remarkable diversity of genome structures in arthropod viruses, including a putative circular form, that sheds new light on the evolution of genome organization. Hence, arthropods are a major reservoir of viral genetic diversity and have likely been central to viral evolution.

  16. Temperature-size responses match latitudinal-size clines in arthropods, revealing critical differences between aquatic and terrestrial species

    DEFF Research Database (Denmark)

    Horne, C.R.; Hirst, Andrew G.; Atkinson, D.

    2015-01-01

    Two major intraspecific patterns of adult size variation are plastic temperature-size (T-S) responses and latitude-size (L-S) clines. Yet, the degree to which these co-vary and share explanatory mechanisms has not been systematically evaluated. We present the largest quantitative comparison...

  17. Changes in soil temperature during prescribed burns impact local arthropod communities

    Science.gov (United States)

    Verble-Pearson, Robin; Perry, Gad

    2016-04-01

    As wildfires increase in severity and intensity globally, the development of methods to assess their effects on soils is of increasing importance. We examined soil arthropod communities in the southern United States and estimated their abundance, species richness, and composition in areas recently impacted by prescribed burns. In addition, we placed thermal probes in soils and correlated soil temperatures to arthropod responses. Longer fire residence times resulted in greater soil heating which resulted in decreases in arthropod abundance and species richness and shifts in species composition. We believe that these results may be useful in developing tools to assess fire effects on soil systems.

  18. Is the risk for soil arthropods covered by new data requirements under the EU PPP Regulation No. 1107/2009?

    Science.gov (United States)

    Kohlschmid, E; Ruf, D

    2016-12-01

    Testing of effects on earthworms and non-target foliar arthropods is an integral part of the ecotoxicological risk assessment for the authorization of plant protection products. According to the new data requirements, which came into force in 2014 for active substances and in 2016 for plant protection products, the chronic earthworm toxicity test with Eisenia fetida based on reproductive, growth, and behavioral effects instead of the acute earthworm toxicity test based on mortality, has to be conducted routinely. Additional testing of effects on soil arthropods (Folsomia candida, Hyposaspis aculeifer) is required if the risk assessment of foliar applications raises concerns regarding non-target foliar arthropods (Aphidius rhopalosiphi, Typhlodromus pyri) or if the product is applied directly on or into the soil. Thus, it was investigated whether the sublethal earthworm endpoint is more sensitive than the sublethal soil arthropod endpoint for different types of pesticides and whether the risk assessment for non-target arthropods would trigger the testing of effects on soil arthropods in the cases where soil arthropods are more sensitive than earthworms. Toxicity data were obtained from Swiss ecotoxicological database, EFSA Conclusions and scientific literature. For insecticides and herbicides, no general conclusion regarding differences in sensitivity of either earthworms or soil arthropods based on sublethal endpoints were possible. For fungicides, the data indicated that in general, earthworms seemed to be more sensitive than soil arthropods. In total, the sublethal F. candida or H. aculeifer endpoint was lower than the sublethal E. fetida endpoint for 23 (34 %) out of 68 active substances. For 26 % of these 23 active substances, testing of soil arthropods would not have been triggered due to the new data requirement. These results based on sublethal endpoints show that earthworms and soil arthropods differ in sensitivity toward certain active substances and

  19. Ecological transfer mechanisms - Terrestrial

    International Nuclear Information System (INIS)

    Martin, W.E.; Raines, Gilbert E.; Bloom, S.G.; Levin, A.A.

    1969-01-01

    Radionuclides produced by nuclear excavation detonations and released to the environment may enter a variety of biogeochemical cycles and follow essentially the same transfer pathways as their stable-element counterparts. Estimation of potential internal radiation doses to individuals and/or populations living in or near fallout-contaminated areas requires analysis of the food-chain and other ecological pathways by which radionuclides released to the environment may be returned to man. A generalized materials transfer diagram, applicable to the forest, agricultural, freshwater and marine ecosystems providing food and water to the indigenous population of Panama and Colombia in regions that could be affected by nuclear excavation of a sea-level canal between the Atlantic and Pacific Oceans, is presented. Transfer mechanisms effecting the movement of stable elements and radionuclides in terrestrial ecosystems are discussed, and methods used to simulate these processes by means of mathematical models are described to show how intake values are calculated for different radionuclides in the major ecological pathways leading to man. These data provide a basis for estimating potential internal radiation doses for comparison with the radiation protection criteria established by recognized authorities; and this, in turn, provides a basis for recommending measures to insure the radiological safety of the nuclear operation plan. (author)

  20. Precessing deuteron polarization

    International Nuclear Information System (INIS)

    Sitnik, I.M.; Volkov, V.I.; Kirillov, D.A.; Piskunov, N.M.; Plis, Yu.A.

    2002-01-01

    The feasibility of the acceleration in the Nuclotron of deuterons polarized in the horizontal plane is considered. This horizontal polarization is named precessing polarization. The effects of the main magnetic field and synchrotron oscillations are included. The precessing polarization is supposed to be used in studying the polarization parameters of the elastic dp back-scattering and other experiments

  1. Introduction to symposium: Arthropods and wildlife conservation: synergy in complex biological systems

    Science.gov (United States)

    The symposium will discuss the effects of arthropods and other stressors on wildlife conservation programs. Speakers with affiliations in wildlife biology, parasitology and entomology will be included in the program. Research of national and international interest will be presented....

  2. Clear Resin Casting of Arthropods of Medical Importance for Use in Educational and Outreach Activities

    Science.gov (United States)

    Bejcek, Justin R; Curtis-Robles, Rachel; Riley, Michael; Brundage, Adrienne; Hamer, Gabriel L

    2018-01-01

    Abstract Arthropod-related morbidity and mortality represent a major threat to human and animal health. An important component of reducing vector-borne diseases and injuries is training the next generation of medical entomologists and educating the public in proper identification of arthropods of medical importance. One challenge of student training and public outreach is achieving a safe mounting technique that allows observation of morphological characteristics, while minimizing damage to specimens that are often difficult to replace. Although resin-embedded specimens are available from commercial retailers, there is a need for a published protocol that allows entomologists to economically create high-quality resin-embedded arthropods for use in teaching and outreach activities. We developed a detailed protocol using readily obtained equipment and supplies for creating resin-embedded arthropods of many species for use in teaching and outreach activities. PMID:29718496

  3. The arthropod community of Scots pine (Pinus sylvestris L.) canopies in Norway

    Czech Academy of Sciences Publication Activity Database

    Thunes, K. H.; Skartveit, J.; Gjerde, I.; Starý, Josef; Solhoy, T.; Fjellberg, A.; Kobro, S.; Nakahara, S.; zur Strassen, R.; Vierbergen, G.; Szadziewski, R.; Hagan, D. V.; Grogan Jr., W. L.; Jonassen, T.; Aakra, K.; Anonby, J.; Greve, L.; Aukema, B.; Heller, K.; Michelsen, V.; Haenni, J.-P.; Emeljanov, A. F.; Douwes, P.; Berggren, K.; Franzen, J.; Disney, R. H. L.; Prescher, S.; Johanson, K. A.; Mamaev, B.; Podenas, S.; Andersen, S.; Gaimari, S. D.; Nartshuk, E.; Soli, G. E. E.; Papp, L.; Midtgaard, F.; Andersen, A.; von Tschirnhaus, M.; Bächli, G.; Olsen, K. M.; Olsvik, H.; Földvári, M.; Raastad, J. E.; Hansen, L. O.; Djursvoll, P.

    2004-01-01

    Roč. 15, - (2004), s. 65-90 ISSN 0785-8760 Institutional research plan: CEZ:AV0Z6066911 Keywords : arthropod community * Scots pine * canopies Subject RIV: EH - Ecology, Behaviour Impact factor: 0.298, year: 2004

  4. Exceptional preservation of eye structure in arthropod visual predators from the Middle Jurassic.

    Science.gov (United States)

    Vannier, Jean; Schoenemann, Brigitte; Gillot, Thomas; Charbonnier, Sylvain; Clarkson, Euan

    2016-01-19

    Vision has revolutionized the way animals explore their environment and interact with each other and rapidly became a major driving force in animal evolution. However, direct evidence of how ancient animals could perceive their environment is extremely difficult to obtain because internal eye structures are almost never fossilized. Here, we reconstruct with unprecedented resolution the three-dimensional structure of the huge compound eye of a 160-million-year-old thylacocephalan arthropod from the La Voulte exceptional fossil biota in SE France. This arthropod had about 18,000 lenses on each eye, which is a record among extinct and extant arthropods and is surpassed only by modern dragonflies. Combined information about its eyes, internal organs and gut contents obtained by X-ray microtomography lead to the conclusion that this thylacocephalan arthropod was a visual hunter probably adapted to illuminated environments, thus contradicting the hypothesis that La Voulte was a deep-water environment.

  5. Implication of haematophagous arthropod salivary proteins in host-vector interactions

    Science.gov (United States)

    2011-01-01

    The saliva of haematophagous arthropods contains an array of anti-haemostatic, anti-inflammatory and immunomodulatory molecules that contribute to the success of the blood meal. The saliva of haematophagous arthropods is also involved in the transmission and the establishment of pathogens in the host and in allergic responses. This survey provides a comprehensive overview of the pharmacological activity and immunogenic properties of the main salivary proteins characterised in various haematophagous arthropod species. The potential biological and epidemiological applications of these immunogenic salivary molecules will be discussed with an emphasis on their use as biomarkers of exposure to haematophagous arthropod bites or vaccine candidates that are liable to improve host protection against vector-borne diseases. PMID:21951834

  6. Ecdysone receptor agonism leading to lethal molting disruption in arthropods: Review and adverse outcome pathway development

    Science.gov (United States)

    Molting is a key biological process in growth, development, reproduction and survival in arthropods. Complex neuroendocrine pathways are involved in the regulation of molting and may potentially become targets of environmental endocrine disrupting compounds (EDCs). For example, s...

  7. Mineral cycling in soil and litter arthropod food chains. Progress report, 1985

    International Nuclear Information System (INIS)

    Crossley, D.A. Jr.

    1985-01-01

    Research progress in the following areas is briefly summarized: (1) microarthropod effects on microbial immobilization of nutrients during decomposition; and (2) effects of arthropods on decomposition rates of unconfined leaf litter

  8. Dynamics of the leaf-litter arthropod fauna following fire in a neotropical woodland savanna.

    Science.gov (United States)

    Vasconcelos, Heraldo L; Pacheco, Renata; Silva, Raphael C; Vasconcelos, Pedro B; Lopes, Cauê T; Costa, Alan N; Bruna, Emilio M

    2009-11-09

    Fire is an important agent of disturbance in tropical savannas, but relatively few studies have analyzed how soil-and-litter dwelling arthropods respond to fire disturbance despite the critical role these organisms play in nutrient cycling and other biogeochemical processes. Following the incursion of a fire into a woodland savanna ecological reserve in Central Brazil, we monitored the dynamics of litter-arthropod populations for nearly two years in one burned and one unburned area of the reserve. We also performed a reciprocal transplant experiment to determine the effects of fire and litter type on the dynamics of litter colonization by arthropods. Overall arthropod abundance, the abundance of individual taxa, the richness of taxonomic groups, and the species richness of individual taxa (Formiciade) were lower in the burned site. However, both the ordinal-level composition of the litter arthropod fauna and the species-level composition of the litter ant fauna were not dramatically different in the burned and unburned sites. There is evidence that seasonality of rainfall interacts with fire, as differences in arthropod abundance and diversity were more pronounced in the dry than in the wet season. For many taxa the differences in abundance between burned and unburned sites were maintained even when controlling for litter availability and quality. In contrast, differences in abundance for Collembola, Formicidae, and Thysanoptera were only detected in the unmanipulated samples, which had a lower amount of litter in the burned than in the unburned site throughout most of our study period. Together these results suggest that arthropod density declines in fire-disturbed areas as a result of direct mortality, diminished resources (i.e., reduced litter cover) and less favorable microclimate (i.e., increased litter desiccation due to reduction in tree cover). Although these effects were transitory, there is evidence that the increasingly prevalent fire return interval of

  9. Dynamics of the leaf-litter arthropod fauna following fire in a neotropical woodland savanna.

    Directory of Open Access Journals (Sweden)

    Heraldo L Vasconcelos

    Full Text Available Fire is an important agent of disturbance in tropical savannas, but relatively few studies have analyzed how soil-and-litter dwelling arthropods respond to fire disturbance despite the critical role these organisms play in nutrient cycling and other biogeochemical processes. Following the incursion of a fire into a woodland savanna ecological reserve in Central Brazil, we monitored the dynamics of litter-arthropod populations for nearly two years in one burned and one unburned area of the reserve. We also performed a reciprocal transplant experiment to determine the effects of fire and litter type on the dynamics of litter colonization by arthropods. Overall arthropod abundance, the abundance of individual taxa, the richness of taxonomic groups, and the species richness of individual taxa (Formiciade were lower in the burned site. However, both the ordinal-level composition of the litter arthropod fauna and the species-level composition of the litter ant fauna were not dramatically different in the burned and unburned sites. There is evidence that seasonality of rainfall interacts with fire, as differences in arthropod abundance and diversity were more pronounced in the dry than in the wet season. For many taxa the differences in abundance between burned and unburned sites were maintained even when controlling for litter availability and quality. In contrast, differences in abundance for Collembola, Formicidae, and Thysanoptera were only detected in the unmanipulated samples, which had a lower amount of litter in the burned than in the unburned site throughout most of our study period. Together these results suggest that arthropod density declines in fire-disturbed areas as a result of direct mortality, diminished resources (i.e., reduced litter cover and less favorable microclimate (i.e., increased litter desiccation due to reduction in tree cover. Although these effects were transitory, there is evidence that the increasingly prevalent fire

  10. LiDAR-based Prediction of Arthropod Abundance at the Southern Slopes of Mt. Kilimanjaro

    Science.gov (United States)

    Ziegler, Alice

    2017-04-01

    LiDAR (Light Detection And Ranging) is a remote sensing technology that offers high-resolution three-dimensional information about the covered area. These three-dimensional datasets were used in this work to derive structural parameters of the vegetation to predict the abundance of eight different arthropod assemblages with several models. For the model training of each arthropod assemblage, different versions (extent, filters) of the LiDAR datasets were provided and evaluated. Furthermore the importance of each of the LiDAR-derived structural parameters for each model was calculated. The best input dataset and structural parameters were used for the prediction of the abundance of arthropod assemblages. The analyses of the prediction results across seven different landuse types and the eight arthropod assemblages exposed, that for the arthropod assemblages, LiDAR-based predictions were in general best feasible for "Orthoptera" (average R2 (coefficient of determination) over all landuses: 0.14), even though the predictions for the other arthropod assemblages reached values of the same magnitude. It was also found that the landuse type "disturbed forest" showed the best results (average R2 over all assemblages: 0.20), whereas "home garden" was the least predictable (average R2 over all assemblages: 0.04). Differenciated by arthropod-landuse pairs, the results showed distinct differences and the R2 values diverged clearly. It was shown, that when model settings were optimized for only one arthropod taxa, values for R2 could reach values up to 0.55 ("Orthoptera" in "disturbed forest"). The analysis of the importance of each structural parameter for the prediction revealed that about one third of the 18 used parameters were always among the most important ones for the prediction of all assemblages. This strong ranking of parameters implied that focus for further research needs to be put on the selection of predictor variables.

  11. What the Clock Tells the Eye: Lessons from an Ancient Arthropod

    OpenAIRE

    Battelle, B.-A.

    2013-01-01

    Circadian changes in visual sensitivity have been observed in a wide range of species, vertebrates, and invertebrates, but the processes impacted and the underlying mechanisms largely are unexplored. Among arthropods, effects of circadian signals on vision have been examined in most detail in the lateral compound eye (LE) of the American horseshoe crab, Limulus polyphemus, a chelicerate arthropod. As a consequence of processes influenced by a central circadian clock, Limulus can see at night ...

  12. Polare maskuliniteter

    Directory of Open Access Journals (Sweden)

    Marit Anne Hauan

    2012-05-01

    Full Text Available In this paper my aim is to read and understand the journal of Gerrit de Veer from the last journey of William Barents to the Arctic Regions in 1596 and the journal of captain Junge on his hunting trip from Tromsø to Svalbard in 1834.It is nearly 240 years between this to voyages. The first journal is known as the earliest report from the arctic era. Gerrit de Veer adds instructive copper engravings to his text and give us insight in the crews meeting with this new land. Captain Junges journal is found together with his dead crew in a house in a fjord nearby Ny-Ålesund and has no drawings, but word. Both of these journals may be read as sources of the knowledge and understanding of the polar region. They might also unveil the ideas of how to deal with and survive under the challenges that is given. In addition one can ask if the sources can tell us more about how men describe their challenges. Can the way they expressed themselves in the journals give us an understanding of masculinity? And not least help us to create good questions of the change in the ideas of masculinities which is said to follow the change in understanding of the wilderness.

  13. The first complete mitochondrial genome sequences of Amblypygi (Chelicerata: Arachnida) reveal conservation of the ancestral arthropod gene order.

    Science.gov (United States)

    Fahrein, Kathrin; Masta, Susan E; Podsiadlowski, Lars

    2009-05-01

    Amblypygi (whip spiders) are terrestrial chelicerates inhabiting the subtropics and tropics. In morphological and rRNA-based phylogenetic analyses, Amblypygi cluster with Uropygi (whip scorpions) and Araneae (spiders) to form the taxon Tetrapulmonata, but there is controversy regarding the interrelationship of these three taxa. Mitochondrial genomes provide an additional large data set of phylogenetic information (sequences, gene order, RNA secondary structure), but in arachnids, mitochondrial genome data are missing for some of the major orders. In the course of an ongoing project concerning arachnid mitochondrial genomics, we present the first two complete mitochondrial genomes from Amblypygi. Both genomes were found to be typical circular duplex DNA molecules with all 37 genes usually present in bilaterian mitochondrial genomes. In both species, gene order is identical to that of Limulus polyphemus (Xiphosura), which is assumed to reflect the putative arthropod ground pattern. All tRNA gene sequences have the potential to fold into structures that are typical of metazoan mitochondrial tRNAs, except for tRNA-Ala, which lacks the D arm in both amblypygids, suggesting the loss of this feature early in amblypygid evolution. Phylogenetic analysis resulted in weak support for Uropygi being the sister group of Amblypygi.

  14. Management of arthropod vector data - Social and ecological dynamics facing the One Health perspective.

    Science.gov (United States)

    Benelli, Giovanni; Duggan, Mary Frances

    2018-06-01

    Emerging infectious diseases (EIDs) are spread by direct and/or indirect contacts between a pathogen or parasite and their hosts. Arthropod vectors have evolved as excellent bloodsuckers, providing an elegant transportation mode for a wide number of infectious agents. The nature of pathogen and parasite transfer and the models used to predict how a disease might spread are magnified in complexity when an arthropod vector is part of the disease cycle. One Health is a worldwide strategy for expanding interdisciplinary collaborations and communications in all aspects of health care for humans, animals and the environment. It would benefit from a structured analysis to address vectoring of arthropod-borne diseases as a dynamic transactional process. This review focused on how arthropod vector data can be used to better model and predict zoonotic disease outbreaks. With enhanced knowledge to describe arthropod vector disease transfer, researchers will have a better understanding about how to model disease outbreaks. As public health research evolves to include more social-ecological systems, the roles of society, ecology, epidemiology, pathogen/parasite evolution and animal behavior can be better captured in the research design. Overall, because of more collaborative data collection processes on arthropod vectors, disease modeling can better predict conditions where EIDs will occur. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Abundance and Diversity of Soil Arthropods in the Olive Grove Ecosystem

    Science.gov (United States)

    Gonçalves, Maria Fátima; Pereira, José Alberto

    2012-01-01

    Arthropods are part of important functional groups in soil food webs. Recognizing these arthropods and understanding their function in the ecosystem as well as when they are active is essential to understanding their roles. In the present work, the abundance and diversity of soil arthropods is examined in olive groves in the northeast region of Portugal during the spring. Five classes of arthropods were found: Chilopoda, Malacostraca, Entognatha, Insecta, and Arachnida. Captures were numerically dominated by Collembola within Entognatha, representing 70.9% of total captures. Arachnida and Insecta classes represented about 20.4 and 9.0%, respectively. Among the predatory arthropods, the most representative groups were Araneae and Opiliones from Arachnida, and Formicidae, Carabidae, and Staphylinidae from Insecta. From the Formicidae family, Tetramorium semilaeve (Andre 1883), Tapinoma nigerrimum (Nylander 1856), and Crematogaster scutellaris (Olivier 1792) were the most representative ant species. Arthropods demonstrated preference during the day, with 74% of the total individuals recovered in this period, although richness and similarity were analogous during the day and night. PMID:22943295

  16. The movement of the radioactive cesium in the food chain by the trophic levels of arthropod

    International Nuclear Information System (INIS)

    Tanaka, Sota; Takahashi, Sentaro; Adati, Taro; Takahashi, Tomoyuki

    2016-01-01

    The Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Plant accident occurred on March 11, 2011 and released large amounts of radioactive materials into the environment. Those radioactive materials were deposited on the soil surface and circulated in the ecosystem after the accident. The movement of Cs is highly affected by the food chain circulation in the ecosystem from a long-term perspective. Therefore, in order to observe the Cs movement in the food chain, we investigated the Cs concentration in arthropods, including insects. In this research, we collected three dominant arthropods in Fukushima: the Japanese grasshopper (Oxya yezoensis), the Emma mole cricket (Teleogryllus emma) and the Joro spider (Nephila clavata). These arthropods can be classified into three trophic levels in the food chain: herbivorous for the grasshopper, omnivorous for the field cricket, and carnivorous for the web spider. Then we observed the temporal changes of Cs concentrations in the trophic levels of the arthropods from 2012 to 2014. The results suggest that the arthropods in higher trophic levels accumulate Cs in higher concentrations than that of the arthropods in lower trophic levels. (author)

  17. Abundance and diversity of soil arthropods in the olive grove ecosystem.

    Science.gov (United States)

    Gonçalves, Maria Fátima; Pereira, José Alberto

    2012-01-01

    Arthropods are part of important functional groups in soil food webs. Recognizing these arthropods and understanding their function in the ecosystem as well as when they are active is essential to understanding their roles. In the present work, the abundance and diversity of soil arthropods is examined in olive groves in the northeast region of Portugal during the spring. Five classes of arthropods were found: Chilopoda, Malacostraca, Entognatha, Insecta, and Arachnida. Captures were numerically dominated by Collembola within Entognatha, representing 70.9% of total captures. Arachnida and Insecta classes represented about 20.4 and 9.0%, respectively. Among the predatory arthropods, the most representative groups were Araneae and Opiliones from Arachnida, and Formicidae, Carabidae, and Staphylinidae from Insecta. From the Formicidae family, Tetramorium semilaeve (Andre 1883), Tapinoma nigerrimum (Nylander 1856), and Crematogaster scutellaris (Olivier 1792) were the most representative ant species. Arthropods demonstrated preference during the day, with 74% of the total individuals recovered in this period, although richness and similarity were analogous during the day and night.

  18. Emerging roles of aquaporins in relation to the physiology of blood-feeding arthropods.

    Science.gov (United States)

    Benoit, Joshua B; Hansen, Immo A; Szuter, Elise M; Drake, Lisa L; Burnett, Denielle L; Attardo, Geoffrey M

    2014-10-01

    Aquaporins (AQPs) are proteins that span plasma membranes allowing the movement of water and small solutes into or out of cells. The type, expression levels and activity of AQPs play a major role in the relative permeability of each cell to water or other solutes. Research on arthropod AQPs has expanded in the last 10 years due to the completion of several arthropod genome projects and the increased availability of genetic information accessible through other resources such as de novo transcriptome assemblies. In particular, there has been significant advancement in elucidating the roles that AQPs serve in relation to the physiology of blood-feeding arthropods of medical importance. The focus of this review is upon the significance of AQPs in relation to hematophagy in arthropods. This will be accomplished via a narrative describing AQP functions during the life history of hematophagic arthropods that includes the following critical phases: (1) Saliva production necessary to blood feeding, (2) Intake and excretion of water during blood digestion, (3) Reproduction and egg development and (4) Off-host environmental stress tolerance. The concentration on these phases will highlight known vulnerabilities in the biology of hematophagic arthropods that could be used to develop novel control strategies as well as research topics that have yet to be examined.

  19. RNA interference, arthropod-borne viruses, and mosquitoes.

    Science.gov (United States)

    Sanchez-Vargas, Irma; Travanty, Emily A; Keene, Kimberly M; Franz, Alexander W E; Beaty, Barry J; Blair, Carol D; Olson, Ken E

    2004-06-01

    RNA interference (RNAi) probably functions as an antiviral mechanism in most eukaryotic organisms. Variations in the activity of this antiviral pathway in mosquitoes could explain, in part, why some mosquitoes are competent vectors of medically important, arthropod-borne viruses (arboviruses) and others are not. There are three lines of evidence that show the RNAi pathway exists in Aedes species that transmit arboviruses. The first is that recombinant Sindbis viruses expressing a RNA fragment from a genetically unrelated dengue-2 virus (DENV-2) interfere with DENV-2 replication in Aedes aegypti mosquitoes by a mechanism similar to virus-induced gene silencing described in plants. The second is that transfection of C6/36 (Aedes albopictus) cells with either double-stranded RNA or synthetic small interfering RNAs derived from an arbovirus genome interferes with replication of the homologous virus. The third is that a hairpin DENV-2-specific RNA transcribed from a plasmid can generate virus-resistant C6/36 cells. We hypothesize that genetically modified mosquitoes can be generated that transcribe a flavivirus-specific dsRNA, triggering the RNAi response soon after ingestion of a blood meal. This could induce the RNAi pathway in the midgut prior to establishment of virus infection and profoundly change vector competence. Towards this goal, we are developing transgenic A. aegypti lines that are refractory to DENV by exploiting the RNAi pathway.

  20. Spiroplasma – an emerging arthropod-borne pathogen?

    Directory of Open Access Journals (Sweden)

    Ewa Cisak

    2015-12-01

    Full Text Available Spiroplasma is a genus of wall-less, low-GC, small Gram-positive bacteria of the internal contractile cytoskeleton, with helical morphology and motility. The genus is classified within the class Mollicutes. Spiroplasma / host interactions can be classified as commensal, pathogenic or mutualist. The majority of spiroplasmas are found to be commensals of insects, arachnids, crustaceans or plants, whereas a small number of species are pathogens of plants, insects, and crustaceans. Insects are particularly rich sources of spiroplasmas. The bacteria are common in haematophagous arthropods: deerflies, horseflies, mosquitoes, and in ticks, where they may occur abundantly in salivary glands. The ability of spiroplasmas to propagate in rodents was experimentally proven, and Spiroplasma infections have been reported recently in humans. Some authors have purported an etiological role of Spiroplasma in causing transmissible spongiform encephalopathies (TSEs, but convincing proof is lacking. The possibility for humans and other vertebrates to be infected with Spiroplasma spp. in natural conditions is largely unknown, as well as the possibility of the transmission of these bacteria by ticks and haematophagous insects. Nevertheless, in the light of new data, such possibilities cannot be excluded.

  1. A survey for gregarines (Protozoa: Apicomplexa) in arthropods in Spain.

    Science.gov (United States)

    Criado-Fornelio, A; Verdú-Expósito, C; Martin-Pérez, T; Heredero-Bermejo, I; Pérez-Serrano, J; Guàrdia-Valle, L; Panisello-Panisello, M

    2017-01-01

    Gregarines thrive in the digestive tract of arthropods and may be deleterious to their hosts, especially when present in high densities. The impact of parasites on these invertebrates may affect both the ecosystem equilibrium and human economic activities. However, information available on gregarines in Spain is limited. Therefore, a microscopic study on prevalence of gregarine infection in 560 insects and crustaceans was undertaken in Madrid and Tarragona.Gregarina ormierei (78 % prevalence), Stylocephalus gigas (56 %), Oocephalus hispanus (13 %) and Actinocephalus permagnus (only one infected out of six beetles examined) were found in coleopteran hosts. Gregarina ovata and G. chelidurellae showed moderate frequency of infection (35 %) in dermapterans. An undescribed Gregarina sp. (76 % prevalence) was observed for the first time in freshwater decapod crustaceans. Interestingly, G. ormierei showed a noticeable phenotypic dimorphism, which justifies its redescription based on modern taxonomic criteria. Sequences of the 18S rRNA gene could be obtained only in the presence of highly prevalent gregarines. G. ormierei and Gregarina sp. were related (85 and 94 % identity by BLASTN, respectively) to G. basiconstrictonea and G. cloptoni, respectively, whereas S. gigas was closely related to both Xiphocephalus ellisi and S. giganteus (>97 % identity). Phylogenetic trees based on ribosomal sequences unequivocally grouped these new isolates either with the Gregarinidae (G. ormierei and Gregarina sp.) or the Stylocephalidae (S. gigas).

  2. Arthropod-borne infections in travelled dogs in Europe.

    Science.gov (United States)

    Hamel, Dietmar; Silaghi, Cornelia; Pfister, Kurt

    2013-01-01

    Pet animal movement is ever increasing within the European Union and in that context canine vectorborne infections gained a considerable importance. Information on these infections in travelled dogs is nevertheless limited. A first prospective study on vector-borne infections was conducted in 106 dogs travelling from Germany to countries in South and South-East Europe. The dogs were screened prior to and consecutively up to three times after travel by haematological (Giemsa-stained buffy coat smears, Knott's-Test), molecular biological (PCR) as well as serological (IFAT, DiroChek(®)-ELISA) methods for arthropod-borne infections. Seven animals were seropositive for antibodies against Babesia canis sspp., Leishmania spp. and/or Ehrlichia canis prior to travel to Italy, Spain, France, Croatia, Greece, or Hungary. In the consecutive screening after return there was no increase in the number of seropositive dogs. None was positive in direct methods. The mean duration of the stay was 17 days and 51% of the dogs were prophylactically treated with ectoparasiticidal formulations. Preliminary data from this study on canine vector-borne infections indicate a low risk for infection during a limited single stay in endemic countries. © D. Hamel et al., published by EDP Sciences, 2013.

  3. Temporal variation in the arthropod community of desert riparian habitats with varying amounts of saltcedar (Tamarix ramosissima)

    Science.gov (United States)

    Durst, S.L.; Theimer, T.C.; Paxton, E.H.; Sogge, M.K.

    2008-01-01

    We used Malaise traps to examine the aerial arthropod community in riparian habitats dominated by native willow, exotic saltcedar, or a mixture of these two tree species in central Arizona, USA. Over the course of three sampling periods per year in 2003 and 2004, native habitats had significantly greater diversity (Shannon-Wiener) and supported different arthropod communities compared to exotic habitats, while mixed habitats were intermediate in terms of diversity and supported an arthropod community statistically indistinguishable from the exotic site. The composition of arthropod communities varied significantly between the two years, and there was an approximately two-fold difference in richness and diversity. Overall, we documented complex interactions indicating that differences among the arthropod communities of riparian habitats may be driven not only by the composition of native and exotic tree species making up these habitats, but also by year and season of arthropod sampling.

  4. Can terrestrial diversity be predicted from soil morphology?

    Science.gov (United States)

    Fournier, Bertrand; Guenat, Claire; Mitchell, Edward

    2010-05-01

    equivalently for all taxonomic group. In this study, we explored the potential of soil morphology as a proxy for biodiversity. We used results of a previous research seeking at developing soil morphology based indicators for floodplain restoration assessment, as well as surveys of vegetation, bacteria, earthworms, and terrestrial arthropods from the same site (River Thur, CCES project RECORD: http://www.swiss-experiment.ch/index.php/Record:Home) to analyse the relationships among soil morphology and biodiversity variables and assess the efficiency of this river widening. Furthermore, we defined the best performing predictive soil variables for each taxa. Soil morphology indicators performed well in predicting terrestrial arthropod richness supporting the idea that this relatively simple indicator may represent a useful tool for the rapid assessment of floodplain restoration success. However, the indicators performed variously concerning other taxa highlighting the methods limitation and giving clues for future improvements. We conclude by discussing the potential of soil morphology in conservation biology and its possible applications for nature practitioners.

  5. Community Litter Arthropods Associated cerrado and gallery forest, in the Ecological Station Sierra Das Araras - Mato Grosso, Brazil

    OpenAIRE

    Daniela Cristina Zardo; Ângela Pinheiro Carneiro; Lígia Gonçalves de Lima; Manoel dos Santos Filho

    2015-01-01

    The litter arthropod fauna distinguishes itself by its importance in nutrient cycling and organic matter degradation. This invertebrate fauna has been emphasized as crucial for the processes that structure ecosystems. This study aims to evaluate and compare the arthropod fauna composition, richness and abundance in litter of two environments: the savanna and the gallery forest at Serra das Araras Ecological Station , Mato Grosso. To collect the arthropods a 120m transects for each habitat was...

  6. Habitat and species identity, not diversity, predict the extent of refuse consumption by urban arthropods.

    Science.gov (United States)

    Youngsteadt, Elsa; Henderson, Ryanna C; Savage, Amy M; Ernst, Andrew F; Dunn, Robert R; Frank, Steven D

    2015-03-01

    Urban green spaces provide ecosystem services to city residents, but their management is hindered by a poor understanding of their ecology. We examined a novel ecosystem service relevant to urban public health and esthetics: the consumption of littered food waste by arthropods. Theory and data from natural systems suggest that the magnitude and resilience of this service should increase with biological diversity. We measured food removal by presenting known quantities of cookies, potato chips, and hot dogs in street medians (24 sites) and parks (21 sites) in New York City, USA. At the same sites, we assessed ground-arthropod diversity and abiotic conditions, including history of flooding during Hurricane Sandy 7 months prior to the study. Arthropod diversity was greater in parks (on average 11 hexapod families and 4.7 ant species per site), than in medians (nine hexapod families and 2.7 ant species per site). However, counter to our diversity-based prediction, arthropods in medians removed 2-3 times more food per day than did those in parks. We detected no effect of flooding (at 19 sites) on this service. Instead, greater food removal was associated with the presence of the introduced pavement ant (Tetramorium sp. E) and with hotter, drier conditions that may have increased arthropod metabolism. When vertebrates also had access to food, more was removed, indicating that arthropods and vertebrates compete for littered food. We estimate that arthropods alone could remove 4-6.5 kg of food per year in a single street median, reducing its availability to less desirable fauna such as rats. Our results suggest that species identity and habitat may be more relevant than diversity for predicting urban ecosystem services. Even small green spaces such as street medians provide ecosystem services that may complement those of larger habitat patches across the urban landscape. © 2014 John Wiley & Sons Ltd.

  7. Reconstructing the phylogeny of 21 completely sequenced arthropod species based on their motor proteins

    Directory of Open Access Journals (Sweden)

    Kollmar Martin

    2009-04-01

    Full Text Available Abstract Background Motor proteins have extensively been studied in the past and consist of large superfamilies. They are involved in diverse processes like cell division, cellular transport, neuronal transport processes, or muscle contraction, to name a few. Vertebrates contain up to 60 myosins and about the same number of kinesins that are spread over more than a dozen distinct classes. Results Here, we present the comparative genomic analysis of the motor protein repertoire of 21 completely sequenced arthropod species using the owl limpet Lottia gigantea as outgroup. Arthropods contain up to 17 myosins grouped into 13 classes. The myosins are in almost all cases clear paralogs, and thus the evolution of the arthropod myosin inventory is mainly determined by gene losses. Arthropod species contain up to 29 kinesins spread over 13 classes. In contrast to the myosins, the evolution of the arthropod kinesin inventory is not only determined by gene losses but also by many subtaxon-specific and species-specific gene duplications. All arthropods contain each of the subunits of the cytoplasmic dynein/dynactin complex. Except for the dynein light chains and the p150 dynactin subunit they contain single gene copies of the other subunits. Especially the roadblock light chain repertoire is very species-specific. Conclusion All 21 completely sequenced arthropods, including the twelve sequenced Drosophila species, contain a species-specific set of motor proteins. The phylogenetic analysis of all genes as well as the protein repertoire placed Daphnia pulex closest to the root of the Arthropoda. The louse Pediculus humanus corporis is the closest relative to Daphnia followed by the group of the honeybee Apis mellifera and the jewel wasp Nasonia vitripennis. After this group the rust-red flour beetle Tribolium castaneum and the silkworm Bombyx mori diverged very closely from the lineage leading to the Drosophila species.

  8. Reconstructing the phylogeny of 21 completely sequenced arthropod species based on their motor proteins

    Science.gov (United States)

    Odronitz, Florian; Becker, Sebastian; Kollmar, Martin

    2009-01-01

    Background Motor proteins have extensively been studied in the past and consist of large superfamilies. They are involved in diverse processes like cell division, cellular transport, neuronal transport processes, or muscle contraction, to name a few. Vertebrates contain up to 60 myosins and about the same number of kinesins that are spread over more than a dozen distinct classes. Results Here, we present the comparative genomic analysis of the motor protein repertoire of 21 completely sequenced arthropod species using the owl limpet Lottia gigantea as outgroup. Arthropods contain up to 17 myosins grouped into 13 classes. The myosins are in almost all cases clear paralogs, and thus the evolution of the arthropod myosin inventory is mainly determined by gene losses. Arthropod species contain up to 29 kinesins spread over 13 classes. In contrast to the myosins, the evolution of the arthropod kinesin inventory is not only determined by gene losses but also by many subtaxon-specific and species-specific gene duplications. All arthropods contain each of the subunits of the cytoplasmic dynein/dynactin complex. Except for the dynein light chains and the p150 dynactin subunit they contain single gene copies of the other subunits. Especially the roadblock light chain repertoire is very species-specific. Conclusion All 21 completely sequenced arthropods, including the twelve sequenced Drosophila species, contain a species-specific set of motor proteins. The phylogenetic analysis of all genes as well as the protein repertoire placed Daphnia pulex closest to the root of the Arthropoda. The louse Pediculus humanus corporis is the closest relative to Daphnia followed by the group of the honeybee Apis mellifera and the jewel wasp Nasonia vitripennis. After this group the rust-red flour beetle Tribolium castaneum and the silkworm Bombyx mori diverged very closely from the lineage leading to the Drosophila species. PMID:19383156

  9. Large-scale experimental landscapes reveal distinctive effects of patch shape and connectivity on arthropod communities.

    Energy Technology Data Exchange (ETDEWEB)

    Orrock, John, L.; Curler, Gregory, R.; Danielson, Brent, J.; Coyle, David. R.

    2011-09-14

    The size, shape, and isolation of habitat patches can affect organism behavior and population dynamics, but little is known about the relative role of shape and connectivity in affecting ecological communities at large spatial scales. Using six sampling sessions from July 2001 until August 2002, we collected 33,685 arthropods throughout seven 12-ha experimental landscapes consisting of clear-cut patches surrounded by a matrix of mature pine forest. Patches were explicitly designed to manipulate connectivity (via habitat corridors) independently of area and edge effects. We found that patch shape, rather than connectivity, affected ground-dwelling arthropod richness and beta diversity (i.e. turnover of genera among patches). Arthropod communities contained fewer genera and exhibited less turnover in high-edge connected and high-edge unconnected patches relative to low-edge unconnected patches of similar area. Connectivity, rather than patch shape, affected the evenness of ground-dwelling arthropod communities; regardless of patch shape, high-edge connected patches had lower evenness than low- or high-edge unconnected patches. Among the most abundant arthropod orders, increased richness in low-edge unconnected patches was largely due to increased richness of Coleoptera, whereas Hymenoptera played an important role in the lower evenness in connected patches and patterns of turnover. These findings suggest that anthropogenic habitat alteration can have distinct effects on ground-dwelling arthropod communities that arise due to changes in shape and connectivity. Moreover, this work suggests that corridors, which are common conservation tools that change both patch shape and connectivity, can have multiple effects on arthropod communities via different mechanisms, and each effect may alter components of community structure.

  10. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  11. Antiparasitic peptides from arthropods and their application in drug therapy

    Directory of Open Access Journals (Sweden)

    Ariane Ferreira Lacerda

    2016-02-01

    Full Text Available Africa, Asia and Latin America are regions highly affected by endemic diseases, such as Leishmaniasis, Malaria and Chagas’ disease. They are responsible for the death of thousands of patients every year, as there is not yet a cure for them and the drugs used are inefficient against the pathogenic parasites. During the life cycle of some parasitic protozoa, insects become the most important host and disseminator of the diseases triggered by these microorganisms. As infected insects do not develop nocive symptoms, they can carry the parasites for long time inside their body, enabling their multiplication and life cycle completion. Eventually, parasites infect human beings after insects transmission through their saliva and/or feces. Hence, host insects and general arthropods, which developed a way to coexist with such parasites, are a promising source for the prospection of antiparasitic compounds, as alternative methods for the treatment of protozoa-related diseases. Among the molecules already isolated and investigated, there are proteins and peptides with high activity against parasites, able to inhibit parasite activity in different stages of development. Although studies are still taking their first steps, initial results show new perspectives on the treatment of parasitic diseases. Therefore, in this report, we describe about peptides from host insect sources with activity against the three most endemic parasites: Leishmania sp, Plasmodium sp. and Trypanosomes. Moreover, we discuss the future application insect peptides as anti-parasitic drugs and the use of non-hosts insect transcriptomes on the prospection of novel molecules for the treatment of parasitic neglected diseases.

  12. Transcriptional plasticity of a soil arthropod across different ecological conditions.

    Science.gov (United States)

    De Boer, Tjalf E; Birlutiu, Adriana; Bochdanovits, Zoltan; Timmermans, Martijn J T N; Dijkstra, Tjeerd M H; Van Straalen, Nico M; Ylstra, Bauke; Roelofs, Dick

    2011-03-01

    Ecological functional genomics, dealing with the responses of organisms to their natural environment is confronted with a complex pattern of variation and a large number of confounding environmental factors. For gene expression studies to provide meaningful information on conditions deviating from normal, a baseline or normal operating range (NOR) response needs to be established which indicates how an organism's transcriptome reacts to naturally varying ecological factors. Here we determine the transcriptional plasticity of a soil arthropod, Folsomia candida, exposed to various natural environments, as part of a first attempt in establishing such a NOR. Animals were exposed to 26 different field soils after which gene expression levels were measured. The main factor found to regulate gene expression was soil-type (sand or clay). Cell homeostasis and DNA replication were affected in collembolans exposed to sandy soil, indicating general stress. Multivariate analysis identified soil fertility as the main factor influencing gene expression. Regarding land-use, only forest soils showed an expression pattern deviating from the others. No significant effect of land-use, agricultural practice or soil type on fitness was observed, but arsenic concentration was negatively correlated with reproductive output. In conclusion, transcriptional responses remained within a limited range across the different land-uses but were significantly affected by soil-type. This may be caused by the contrasting soil physicochemical properties to which F. candida strongly responds. The broad range of conditions over which this soil-living detritivore is able to survive and reproduce, indicates a strategy of high plasticity, which comes with extensive gene expression regulation. © 2011 Blackwell Publishing Ltd.

  13. Soil and terrestrial biology studies

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Soil and terrestrial biology studies focused on developing an understanding of the uptake of gaseous substances from the atmosphere by plants, biodegradation of oil, and the movement of Pu in the terrestrial ecosystems of the southeastern United States. Mathematical models were developed for SO 2 and tritium uptake from the atmosphere by plants; the uptake of tritium by soil microorganisms was measured; and the relationships among the Pu content of soil, plants, and animals of the Savannah River Plant area were studied. Preliminary results are reported for studies on the biodegradation of waste oil on soil surfaces

  14. Priapism caused by 'Tribulus terrestris'.

    Science.gov (United States)

    Campanelli, M; De Thomasis, R; Tenaglia, R L

    2016-01-01

    A 36-year-old Caucasian man was diagnosed with a 72-h-lasting priapism that occurred after the assumption of a Herbal supplement based on Tribulus terrestris, which is becoming increasingly popular for the treatment of sexual dysfunction. The patient underwent a cavernoglandular shunt (Ebbehoj shunt) in order to obtain complete detumescence, from which derived negative post-episode outcomes on sexual function. All patients consuming non-FDA-approved alternative supplements such as Tribulus terrestris should be warned about the possible serious side effects.

  15. NDVI as a predictor of canopy arthropod biomass in the Alaskan arctic tundra.

    Science.gov (United States)

    Sweet, Shannan K; Asmus, Ashley; Rich, Matthew E; Wingfield, John; Gough, Laura; Boelman, Natalie T

    2015-04-01

    The physical and biological responses to rapid arctic warming are proving acute, and as such, there is a need to monitor, understand, and predict ecological responses over large spatial and temporal scales. The use of the normalized difference vegetation index (NDVI) acquired from airborne and satellite sensors addresses this need, as it is widely used as a tool for detecting and quantifying spatial and temporal dynamics of tundra vegetation cover, productivity, and phenology. Such extensive use of the NDVI to quantify vegetation characteristics suggests that it may be similarly applied to characterizing primary and secondary consumer communities. Here, we develop empirical models to predict canopy arthropod biomass with canopy-level measurements of the NDVI both across and within distinct tundra vegetation communities over four growing seasons in the Arctic Foothills region of the Brooks Range, Alaska, USA. When canopy arthropod biomass is predicted with the NDVI across all four growing seasons, our overall model that includes all four vegetation communities explains 63% of the variance in canopy arthropod biomass, whereas our models specific to each of the four vegetation communities explain 74% (moist tussock tundra), 82% (erect shrub tundra), 84% (riparian shrub tundra), and 87% (dwarf shrub tundra) of the observed variation in canopy arthropod biomass. Our field-based study suggests that measurements of the NDVI made from air- and spaceborne sensors may be able to quantify spatial and temporal variation in canopy arthropod biomass at landscape to regional scales.

  16. Abundance of epigaeic arthropods in a Brazilian savanna under different fire frequencies

    Directory of Open Access Journals (Sweden)

    Marcio Uehara-Prado

    2010-10-01

    Full Text Available Fire is a major determinant of structure and dynamics in savannas, and the rapid increase of human activities in this biome has changed the natural burning regime. The effects of fire on the fauna of the cerrado (Brazilian savanna are still poorly understood, and studies comparing sites frequently and infrequently burned are scarce. In this study, the abundance of epigaeic arthropod orders and trophic guilds was assessed in cerrado sites located in the Brazilian Central Plateau that were subjected to three burning frequencies: frequent (HighFi, intermediary (MidFi, and infrequent (LowFi. In general, we found a positive relationship between the abundance of epigaeic arthropods and fire frequency. When arthropods were analyzed by orders, the abundance of Collembola and Orthoptera was lower in the LowFi site, while for Hemiptera, it was higher in the MidFi site. No significant differences were found for Hymenoptera, Coleoptera, and Araneae. The abundance of detritivores and herbivores decreased from HighFi to LowFi, but did not change significantly for omnivores and predators. These results indicate that some arthropod groups may not only be resilient to fire effects, but actually might benefit from fire effects in the cerrado. Characterizing arthropod responses to burning frequency at high taxonomic or functional levels is important for applied studies. Based on the results of the current study, springtails and ants seem to be particularly appropriate focal groups for further exploratory studies on the effects of fire at the species level.

  17. Stability lies in flowers: Plant diversification mediating shifts in arthropod food webs.

    Directory of Open Access Journals (Sweden)

    Marcelo Mendes Haro

    Full Text Available Arthropod community composition in agricultural landscapes is dependent on habitat characteristics, such as plant composition, landscape homogeneity and the presence of key resources, which are usually absent in monocultures. Manipulating agroecosystems through the insertion of in-field floral resources is a useful technique to reduce the deleterious effects of habitat simplification. Food web analysis can clarify how the community reacts to the presence of floral resources which favour ecosystem services such as biological control of pest species. Here, we reported quantitative and qualitative alterations in arthropod food web complexity due to the presence of floral resources from the Mexican marigold (Tagetes erecta L. in a field scale lettuce community network. The presence of marigold flowers in the field successfully increased richness, body size, and the numerical and biomass abundance of natural enemies in the lettuce arthropod community, which affected the number of links, vulnerability, generality, omnivory rate and food chain length in the community, which are key factors for the stability of relationships between species. Our results reinforce the notion that diversification through insertion of floral resources may assist in preventing pest outbreaks in agroecosystems. This community approach to arthropod interactions in agricultural landscapes can be used in the future to predict the effect of different management practices in the food web to contribute with a more sustainable management of arthropod pest species.

  18. Arthropods dataset from different genetically modified maize events and associated controls

    Science.gov (United States)

    Pálinkás, Zoltán; Zalai, Mihály; Szénási, Ágnes; Dorner, Zita; Kiss, József; North, Samuel; Woodward, Guy; Balog, Adalbert

    2018-02-01

    Arthropods from four genetically modified (GM) maize hybrids (coleopteran resistant, coleopteran and lepidopteran resistant, lepidopteran resistant+herbicide tolerant and coleopteran resistant and herbicide tolerant) and non-GM varieties were sampled during a two-year field assessment. A total number of 363 555 arthropod individuals were collected. This represents the most comprehensive arthropod dataset from GM maize, and together with weed data, is reasonable to determine functional groups of arthropods and interactions between species. Trophic groups identified from both phytophagous and predatory arthropods were previously considered non-target organisms on which possible detrimental effects of Bacillus thuringiensis (Bt) toxins may have been directly (phytophagous species) or indirectly (predators) detected. The high number of individuals and species and their dynamics through the maize growing season can predict that interactions are highly correlational, and can thus be considered a useful tool to assess potential deleterious effects of Bt toxins on non-target organisms, serving to develop biosafety risk hypotheses for invertebrates exposed to GM maize plants.

  19. Tuning the white light spectrum of light emitting diode lamps to reduce attraction of nocturnal arthropods.

    Science.gov (United States)

    Longcore, Travis; Aldern, Hannah L; Eggers, John F; Flores, Steve; Franco, Lesly; Hirshfield-Yamanishi, Eric; Petrinec, Laina N; Yan, Wilson A; Barroso, André M

    2015-05-05

    Artificial lighting allows humans to be active at night, but has many unintended consequences, including interference with ecological processes, disruption of circadian rhythms and increased exposure to insect vectors of diseases. Although ultraviolet and blue light are usually most attractive to arthropods, degree of attraction varies among orders. With a focus on future indoor lighting applications, we manipulated the spectrum of white lamps to investigate the influence of spectral composition on number of arthropods attracted. We compared numbers of arthropods captured at three customizable light-emitting diode (LED) lamps (3510, 2704 and 2728 K), two commercial LED lamps (2700 K), two commercial compact fluorescent lamps (CFLs; 2700 K) and a control. We configured the three custom LEDs to minimize invertebrate attraction based on published attraction curves for honeybees and moths. Lamps were placed with pan traps at an urban and two rural study sites in Los Angeles, California. For all invertebrate orders combined, our custom LED configurations were less attractive than the commercial LED lamps or CFLs of similar colour temperatures. Thus, adjusting spectral composition of white light to minimize attracting nocturnal arthropods is feasible; not all lights with the same colour temperature are equally attractive to arthropods. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. Modification and Application of a Leaf Blower-vac for Field Sampling of Arthropods.

    Science.gov (United States)

    Zou, Yi; van Telgen, Mario D; Chen, Junhui; Xiao, Haijun; de Kraker, Joop; Bianchi, Felix J J A; van der Werf, Wopke

    2016-08-10

    Rice fields host a large diversity of arthropods, but investigating their population dynamics and interactions is challenging. Here we describe the modification and application of a leaf blower-vac for suction sampling of arthropod populations in rice. When used in combination with an enclosure, application of this sampling device provides absolute estimates of the populations of arthropods as numbers per standardized sampling area. The sampling efficiency depends critically on the sampling duration. In a mature rice crop, a two-minute sampling in an enclosure of 0.13 m(2) yields more than 90% of the arthropod population. The device also allows sampling of arthropods dwelling on the water surface or the soil in rice paddies, but it is not suitable for sampling fast flying insects, such as predatory Odonata or larger hymenopterous parasitoids. The modified blower-vac is simple to construct, and cheaper and easier to handle than traditional suction sampling devices, such as D-vac. The low cost makes the modified blower-vac also accessible to researchers in developing countries.

  1. A revision of brain composition in Onychophora (velvet worms) suggests that the tritocerebrum evolved in arthropods.

    Science.gov (United States)

    Mayer, Georg; Whitington, Paul M; Sunnucks, Paul; Pflüger, Hans-Joachim

    2010-08-21

    The composition of the arthropod head is one of the most contentious issues in animal evolution. In particular, controversy surrounds the homology and innervation of segmental cephalic appendages by the brain. Onychophora (velvet worms) play a crucial role in understanding the evolution of the arthropod brain, because they are close relatives of arthropods and have apparently changed little since the Early Cambrian. However, the segmental origins of their brain neuropils and the number of cephalic appendages innervated by the brain--key issues in clarifying brain composition in the last common ancestor of Onychophora and Arthropoda--remain unclear. Using immunolabelling and neuronal tracing techniques in the developing and adult onychophoran brain, we found that the major brain neuropils arise from only the anterior-most body segment, and that two pairs of segmental appendages are innervated by the brain. The region of the central nervous system corresponding to the arthropod tritocerebrum is not differentiated as part of the onychophoran brain but instead belongs to the ventral nerve cords. Our results contradict the assumptions of a tripartite (three-segmented) brain in Onychophora and instead confirm the hypothesis of bipartite (two-segmented) brain composition. They suggest that the last common ancestor of Onychophora and Arthropoda possessed a brain consisting of protocerebrum and deutocerebrum whereas the tritocerebrum evolved in arthropods.

  2. Modulation of UK lightning by heliospheric magnetic field polarity

    Science.gov (United States)

    Owens, M. J.; Scott, C. J.; Lockwood, M.; Barnard, L.; Harrison, R. G.; Nicoll, K.; Watt, C.; Bennett, A. J.

    2014-11-01

    Observational studies have reported solar magnetic modulation of terrestrial lightning on a range of time scales, from days to decades. The proposed mechanism is two-step: lightning rates vary with galactic cosmic ray (GCR) flux incident on Earth, either via changes in atmospheric conductivity and/or direct triggering of lightning. GCR flux is, in turn, primarily controlled by the heliospheric magnetic field (HMF) intensity. Consequently, global changes in lightning rates are expected. This study instead considers HMF polarity, which doesn't greatly affect total GCR flux. Opposing HMF polarities are, however, associated with a 40-60% difference in observed UK lightning and thunder rates. As HMF polarity skews the terrestrial magnetosphere from its nominal position, this perturbs local ionospheric potential at high latitudes and local exposure to energetic charged particles from the magnetosphere. We speculate as to the mechanism(s) by which this may, in turn, redistribute the global location and/or intensity of thunderstorm activity.

  3. Seasonal Distribution and Diversity of Ground Arthropods in Microhabitats Following a Shrub Plantation Age Sequence in Desertified Steppe

    Science.gov (United States)

    Liu, Rentao; Zhu, Fan; Song, Naiping; Yang, Xinguo; Chai, Yongqing

    2013-01-01

    In desertified regions, shrub-dominated patches are important microhabitats for ground arthropod assemblages. As shrub age increases, soil, vegetation and microbiological properties can change remarkably and spontaneously across seasons. However, relatively few studies have analyzed how ground arthropods respond to the microhabitats created by shrubs of different plantation ages across seasons. Using 6, 15, 24 and 36 year-old plantations of re-vegetated shrubs (Caragana koushinskii) in the desert steppe of northwestern China as a model system, we sampled ground arthropod communities using a pitfall trapping method in the microhabitats under shrubs and in the open areas between shrubs, during the spring, summer and autumn. The total ground arthropod assemblage was dominated by Carabidae, Melolonthidae, Curculionidae, Tenebrionidae and Formicidae that were affected by plantation age, seasonal changes, or the interaction between these factors, with the later two groups also influenced by microhabitat. Overall, a facilitative effect was observed, with more arthropods and a greater diversity found under shrubs as compared to open areas, but this was markedly affected by seasonal changes. There was a high degree of similarity in arthropod assemblages and diversity between microhabitats in summer and autumn. Shrub plantation age significantly influenced the distribution of the most abundant groups, and also the diversity indices of the ground arthropods. However, there was not an overall positive relationship between shrub age and arthropod abundance, richness or diversity index. The influence of plantation age on arthropod communities was also affected by seasonal changes. From spring through summer to autumn, community indices of ground arthropods tended to decline, and a high degree of similarity in these indices (with fluctuation) was observed among different ages of shrub plantation in autumn. Altogether the recovery of arthropod communities was markedly affected by

  4. Evolutionary Origin of Body Axis Segmentation in Annelids and Arthropods

    Science.gov (United States)

    Shankland, S. Martin

    2003-01-01

    During the period of this report, we have made a number of important discoveries. To date this work has led to 4 peer-reviewed publications in primary research journals plus 1 minireview and 1 chapter in the proceedings of a meeting. Publications resulting from this grant support are enumerated at the end of the report. Two additional, on-going studies also described. 1. Using laser cell ablation, we have obtained evidence that an annelid - the leech Helobdella robusta - patterns the anteroposterior (AP) polarity of its nascent segment primordia independent of cell interactions oriented along the AP axis. 2. We cloned a Helobdella homologue (hro-hh) of the Drosophila segment polarity gene hedgehog, and used in situ hybridization and northern blots to characterize its expression in the embryo. 3. We have used laser cell ablations to examine the possible role of cell interactions during the developmental patterning of the 4 rostralmost "head" segments of the leech Helobdella robusta.

  5. Terrestrial ecosystems and their change

    Science.gov (United States)

    Anatoly Z. Shvidenko; Eric Gustafson; A. David McGuire; Vjacheslav I. Kharuk; Dmitry G. Schepaschenko; Herman H. Shugart; Nadezhda M. Tchebakova; Natalia N. Vygodskaya; Alexander A. Onuchin; Daniel J. Hayes; Ian McCallum; Shamil Maksyutov; Ludmila V. Mukhortova; Amber J. Soja; Luca Belelli-Marchesini; Julia A. Kurbatova; Alexander V. Oltchev; Elena I. Parfenova; Jacquelyn K. Shuman

    2012-01-01

    This chapter considers the current state of Siberian terrestrial ecosystems, their spatial distribution, and major biometric characteristics. Ongoing climate change and the dramatic increase of accompanying anthropogenic pressure provide different but mostly negative impacts on Siberian ecosystems. Future climates of the region may lead to substantial drying on large...

  6. Provenance of the terrestrial planets.

    Science.gov (United States)

    Wetherill, G W

    1994-01-01

    Earlier work on the simultaneous accumulation of the asteroid belt and the terrestrial planets is extended to investigate the relative contribution to the final planets made by material from different heliocentric distances. As before, stochastic variations intrinsic to the accumulation processes lead to a variety of final planetary configurations, but include systems having a number of features similar to our solar system. Fifty-nine new simulations are presented, from which thirteen are selected as more similar to our solar system than the others. It is found that the concept of "local feeding zones" for each final terrestrial planet has no validity for this model. Instead, the final terrestrial planets receive major contributions from bodies ranging from 0.5 to at least 2.5 AU, and often to greater distances. Nevertheless, there is a correlation between the final heliocentric distance of a planet and its average provenance. Together with the effect of stochastic fluctuations, this permits variation in the composition of the terrestrial planets, such as the difference in the decompressed density of Earth and Mars. Biologically important light elements, derived from the asteroidal region, are likely to have been significant constituents of the Earth during its formation.

  7. Aquatic and Terrestrial Environment 2004

    DEFF Research Database (Denmark)

    Andersen, J. M.; Boutrup, S.; Bijl, L. van der

    , watercourses, lakes and marine waters and the pressures upon them and reviews the monitoring of terrestrial natural habitats and selected plants and animals. The report is based on the annual reports prepared for each subprogramme by the Topic Centres. The latter reports are mainly based on data collected...

  8. Movement of entomophagous arthropods in agricultural landscapes: links to pest suppression.

    Science.gov (United States)

    Schellhorn, N A; Bianchi, F J J A; Hsu, C L

    2014-01-01

    Entomophagous arthropods can provide valuable biological control services, but they need to fulfill their life cycle in agricultural landscapes often dominated by ephemeral and disturbed habitats. In this environment, movement is critical to escape from disturbances and to find resources scattered in space and time. Despite considerable research effort in documenting species movement and spatial distribution patterns, the quantification of arthropod movement has been hampered by their small size and the variety of modes of movement that can result in redistribution at different spatial scales. In addition, insight into how movement influences in-field population processes and the associated biocontrol services is limited because emigration and immigration are often confounded with local-scale population processes. More detailed measurements of the habitat functionality and movement processes are needed to better understand the interactions between species movement traits, disturbances, the landscape context, and the potential for entomophagous arthropods to suppress economically important pests.

  9. Preservation of three-dimensional anatomy in phosphatized fossil arthropods enriches evolutionary inference.

    Science.gov (United States)

    Schwermann, Achim H; Dos Santos Rolo, Tomy; Caterino, Michael S; Bechly, Günter; Schmied, Heiko; Baumbach, Tilo; van de Kamp, Thomas

    2016-02-05

    External and internal morphological characters of extant and fossil organisms are crucial to establishing their systematic position, ecological role and evolutionary trends. The lack of internal characters and soft-tissue preservation in many arthropod fossils, however, impedes comprehensive phylogenetic analyses and species descriptions according to taxonomic standards for Recent organisms. We found well-preserved three-dimensional anatomy in mineralized arthropods from Paleogene fissure fillings and demonstrate the value of these fossils by utilizing digitally reconstructed anatomical structure of a hister beetle. The new anatomical data facilitate a refinement of the species diagnosis and allowed us to reject a previous hypothesis of close phylogenetic relationship to an extant congeneric species. Our findings suggest that mineralized fossils, even those of macroscopically poor preservation, constitute a rich but yet largely unexploited source of anatomical data for fossil arthropods.

  10. Function and hydrostatics in the telson of the Burgess Shale arthropod Burgessia.

    Science.gov (United States)

    Lin, Jih-Pai

    2009-06-23

    Burgessia bella is a characteristic Burgess Shale arthropod (508 Ma), but the unusual preservation of its telson in both straight and bent modes leads to contradictory interpretations of its function. A reinvestigation of the fossil material, including burial attitudes, combined with a comparison with the decay sequence and mechanics of the telson in living Limulus, demonstrates that the telson of Burgessia was flexible in its relaxed state but could be stiffened in life. Evidence of fluid within the telson indicates that this manoeuvrability was achieved by changes in hydrostatic pressure and muscular control. The dual mode in the Burgessia telson is, to my knowledge, the first documented among fossil arthropods. It indicates that the requirement for a rigid telson, which is resolved by a thick sclerotized cuticle in most arthropods, may first have been achieved by hydrostatic means.

  11. Preservation of three-dimensional anatomy in phosphatized fossil arthropods enriches evolutionary inference

    Science.gov (United States)

    Schwermann, Achim H; dos Santos Rolo, Tomy; Caterino, Michael S; Bechly, Günter; Schmied, Heiko; Baumbach, Tilo; van de Kamp, Thomas

    2016-01-01

    External and internal morphological characters of extant and fossil organisms are crucial to establishing their systematic position, ecological role and evolutionary trends. The lack of internal characters and soft-tissue preservation in many arthropod fossils, however, impedes comprehensive phylogenetic analyses and species descriptions according to taxonomic standards for Recent organisms. We found well-preserved three-dimensional anatomy in mineralized arthropods from Paleogene fissure fillings and demonstrate the value of these fossils by utilizing digitally reconstructed anatomical structure of a hister beetle. The new anatomical data facilitate a refinement of the species diagnosis and allowed us to reject a previous hypothesis of close phylogenetic relationship to an extant congeneric species. Our findings suggest that mineralized fossils, even those of macroscopically poor preservation, constitute a rich but yet largely unexploited source of anatomical data for fossil arthropods. DOI: http://dx.doi.org/10.7554/eLife.12129.001 PMID:26854367

  12. Spatial dynamics of understorey insectivorous birds and arthropods in a southeastern Brazilian Atlantic woodlot

    Directory of Open Access Journals (Sweden)

    MA. Manhães

    Full Text Available Spatial distribution and spatial relationships in capture rates of understorey insectivorous birds and density of arthropods were investigated in a patch of upper montane rain forest in Minas Gerais state, southeastern Brazil, from January to December 2004. The composition of the arthropod fauna collected was similar to that reported for other tropical forests, with predominance of Araneae, Coleoptera, Hymenoptera and Hemiptera non-Heteroptera. A total of 26 bird species were captured, among which the more common were Dysithamnus mentalis, Conopophaga lineata, Platyrinchus mystaceus, Basileuterus culicivorus and Sclerurus scansor. Variation in the bird capture rates among sampling net lines were not correlated with arthropod density. Rather, individual analyses of some bird species suggest that spatial distribution of understorey insectivorous birds is better explained by habitat type.

  13. Geographical Income Polarization

    DEFF Research Database (Denmark)

    Azhar, Hussain; Jonassen, Anders Bruun

    inter municipal income inequality. Counter factual simulations show that rising property prices to a large part explain the rise in polarization. One side-effect of polarization is tendencies towards a parallel polarization of residence location patterns, where low skilled individuals tend to live......In this paper we estimate the degree, composition and development of geographical income polarization based on data at the individual and municipal level in Denmark from 1984 to 2002. Rising income polarization is reconfirmed when applying new polarization measures, the driving force being greater...

  14. Ventral polarization vision in tabanids: horseflies and deerflies (Diptera: Tabanidae) are attracted to horizontally polarized light

    Science.gov (United States)

    Horváth, Gábor; Majer, József; Horváth, Loránd; Szivák, Ildikó; Kriska, György

    2008-11-01

    Adult tabanid flies (horseflies and deerflies) are terrestrial and lay their eggs onto marsh plants near bodies of fresh water because the larvae develop in water or mud. To know how tabanids locate their host animals, terrestrial rendezvous sites and egg-laying places would be very useful for control measures against them, because the hematophagous females are primary/secondary vectors of some severe animal/human diseases/parasites. Thus, in choice experiments performed in the field we studied the behavior of tabanids governed by linearly polarized light. We present here evidence for positive polarotaxis, i.e., attraction to horizontally polarized light stimulating the ventral eye region, in both males and females of 27 tabanid species. The novelty of our findings is that positive polarotaxis has been described earlier only in connection with the water detection of some aquatic insects ovipositing directly into water. A further particularity of our discovery is that in the order Diptera and among blood-sucking insects the studied tabanids are the first known species possessing ventral polarization vision and definite polarization-sensitive behavior with known functions. The polarotaxis in tabanid flies makes it possible to develop new optically luring traps being more efficient than the existing ones based on the attraction of tabanids by the intensity and/or color of reflected light.

  15. Feeding and the rhodopsin family G-Protein Coupled Receptors (GPCRs in nematodes and arthropods

    Directory of Open Access Journals (Sweden)

    Joao Carlos dos Reis Cardoso

    2012-12-01

    Full Text Available In vertebrates, receptors of the rhodopsin G-protein coupled superfamily (GPCRs play an important role in the regulation of feeding and energy homeostasis and are activated by peptide hormones produced in the brain-gut axis. These peptides regulate appetite and energy expenditure by promoting or inhibiting food intake. Sequence and function homologues of human GPCRs involved in feeding exist in the nematode roundworm, Caenorhabditis elegans (C. elegans and the arthropod fruit fly, Drosophila melanogaster (D. melanogaster, suggesting that the mechanisms that regulate food intake emerged early and have been conserved during metazoan radiation. Nematodes and arthropods are the most diverse and successful animal phyla on Earth. They can survive in a vast diversity of environments and have acquired distinct life styles and feeding strategies. The aim of the present review is to investigate if this diversity has affected the evolution of invertebrate GPCRs. Homologues of the C. elegans and D. melanogaster rhodopsin receptors were characterized in the genome of other nematodes and arthropods and receptor evolution compared. With the exception of bombesin receptors (BBR that are absent from nematodes, a similar gene complement was found. In arthropods, rhodopsin GPCR evolution is characterized by species-specific gene duplications and deletions and in nematodes by gene expansions in species with a free-living stage and gene deletions in representatives of obligate parasitic taxa. Based upon variation in GPCR gene number and potentially divergent functions within phyla we hypothesize that life style and feeding diversity practiced by nematodes and arthropods was one factor that contributed to rhodopsin GPCR gene evolution. Understanding how the regulation of food intake has evolved in invertebrates will contribute to the development of novel drugs to control nematodes and arthropods and the pests and diseases that use them as vectors.

  16. Feeding and the rhodopsin family g-protein coupled receptors in nematodes and arthropods.

    Science.gov (United States)

    Cardoso, João C R; Félix, Rute C; Fonseca, Vera G; Power, Deborah M

    2012-01-01

    In vertebrates, receptors of the rhodopsin G-protein coupled superfamily (GPCRs) play an important role in the regulation of feeding and energy homeostasis and are activated by peptide hormones produced in the brain-gut axis. These peptides regulate appetite and energy expenditure by promoting or inhibiting food intake. Sequence and function homologs of human GPCRs involved in feeding exist in the nematode roundworm, Caenorhabditis elegans (C. elegans), and the arthropod fruit fly, Drosophila melanogaster (D. melanogaster), suggesting that the mechanisms that regulate food intake emerged early and have been conserved during metazoan radiation. Nematodes and arthropods are the most diverse and successful animal phyla on Earth. They can survive in a vast diversity of environments and have acquired distinct life styles and feeding strategies. The aim of the present review is to investigate if this diversity has affected the evolution of invertebrate GPCRs. Homologs of the C. elegans and D. melanogaster rhodopsin receptors were characterized in the genome of other nematodes and arthropods and receptor evolution compared. With the exception of bombesin receptors (BBR) that are absent from nematodes, a similar gene complement was found. In arthropods, rhodopsin GPCR evolution is characterized by species-specific gene duplications and deletions and in nematodes by gene expansions in species with a free-living stage and gene deletions in representatives of obligate parasitic taxa. Based upon variation in GPCR gene number and potentially divergent functions within phyla we hypothesize that life style and feeding diversity practiced by nematodes and arthropods was one factor that contributed to rhodopsin GPCR gene evolution. Understanding how the regulation of food intake has evolved in invertebrates will contribute to the development of novel drugs to control nematodes and arthropods and the pests and diseases that use them as vectors.

  17. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    Directory of Open Access Journals (Sweden)

    Eliana Martínez

    Full Text Available The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity.

  18. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields

    Science.gov (United States)

    Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo

    2015-01-01

    The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity. PMID:26197473

  19. Limited Impact of a Fall-Seeded, Spring-Terminated Rye Cover Crop on Beneficial Arthropods.

    Science.gov (United States)

    Dunbar, Mike W; Gassmann, Aaron J; O'Neal, Matthew E

    2017-04-01

    Cover crops are beneficial to agroecosystems because they decrease soil erosion and nutrient loss while increasing within-field plant diversity. Greater plant diversity within cropping systems can positively affect beneficial arthropod communities. We hypothesized that increasing plant diversity within annually rotated corn and soybean with the addition of a rye cover crop would positively affect the beneficial ground and canopy-dwelling communities compared with rotated corn and soybean grown without a cover crop. From 2011 through 2013, arthropod communities were measured at two locations in Iowa four times throughout each growing season. Pitfall traps were used to sample ground-dwelling arthropods within the corn and soybean plots and sweep nets were used to measure the beneficial arthropods in soybean canopies. Beneficial arthropods captured were identified to either class, order, or family. In both corn and soybean, community composition and total community activity density and abundance did not differ between plots that included the rye cover crop and plots without the rye cover crop. Most taxa did not significantly respond to the presence of the rye cover crop when analyzed individually, with the exceptions of Carabidae and Gryllidae sampled from soybean pitfall traps. Activity density of Carabidae was significantly greater in soybean plots that included a rye cover crop, while activity density of Gryllidae was significantly reduced in plots with the rye cover crop. Although a rye cover crop may be agronomically beneficial, there may be only limited effects on beneficial arthropods when added within an annual rotation of corn and soybean. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Tree diversity drives diversity of arthropod herbivores, but successional stage mediates detritivores.

    Science.gov (United States)

    O'Brien, Michael J; Brezzi, Matteo; Schuldt, Andreas; Zhang, Jia-Yong; Ma, Keping; Schmid, Bernhard; Niklaus, Pascal A

    2017-11-01

    The high tree diversity of subtropical forests is linked to the biodiversity of other trophic levels. Disentangling the effects of tree species richness and composition, forest age, and stand structure on higher trophic levels in a forest landscape is important for understanding the factors that promote biodiversity and ecosystem functioning. Using a plot network spanning gradients of tree diversity and secondary succession in subtropical forest, we tested the effects of tree community characteristics (species richness and composition) and forest succession (stand age) on arthropod community characteristics (morphotype diversity, abundance and composition) of four arthropod functional groups. We posit that these gradients differentially affect the arthropod functional groups, which mediates the diversity, composition, and abundance of arthropods in subtropical forests. We found that herbivore richness was positively related to tree species richness. Furthermore, the composition of herbivore communities was associated with tree species composition. In contrast, detritivore richness and composition was associated with stand age instead of tree diversity. Predator and pollinator richness and abundance were not strongly related to either gradient, although positive trends with tree species richness were found for predators. The weaker effect of tree diversity on predators suggests a cascading diversity effect from trees to herbivores to predators. Our results suggest that arthropod diversity in a subtropical forest reflects the net outcome of complex interactions among variables associated with tree diversity and stand age. Despite this complexity, there are clear linkages between the overall richness and composition of tree and arthropod communities, in particular herbivores, demonstrating that these trophic levels directly impact each other.

  1. Community structure of grassland ground-dwelling arthropods along increasing soil salinities.

    Science.gov (United States)

    Pan, Chengchen; Feng, Qi; Liu, Jiliang; Li, Yulin; Li, Yuqiang; Yu, Xiaoya

    2018-03-01

    Ground-dwelling arthropod communities are influenced by numerous biotic and abiotic factors. Little is known, however, about the relative importance of vegetation structure and abiotic environmental factors on the patterns of ground-dwelling arthropod community across a wide range of soil salinities. Here, a field survey was conducted to assess the driving forces controlling ground-dwelling arthropod community in the salinized grasslands in the Hexi Corridor, Gansu Province, China. The data were analyzed by variance partitioning with canonical correspondence analysis (CCA). We found that vegetation structure and edaphic factors were at least of similar importance to the pattern of the whole ground-dwelling arthropod community. However, when all collected ground-dwelling arthropods were categorized into three trophic guilds (predators, herbivores, and decomposers), as these groups use different food sources, their populations were controlled by different driving forces. Predators and decomposers were mainly determined by biotic factors such as vegetation cover and aboveground plant biomass and herbivores by plant density and vegetation cover. Abiotic factors were also major determinants for the variation occurring in these guilds, with predators strongly affected by soil electrical conductivity (EC) and the content of fine particles (silt + clay, CS), herbivores by soil N:P, EC, and CS, and decomposers by soil EC and organic matter content (SOM). Since plant cover, density, and aboveground biomass can indicate resource availability, which are mainly constrained by soil N:P, EC, CS, and SOM, we consider that the ground-dwelling arthropod community in the salinized grasslands was mainly influenced by resource availability.

  2. The Terrestrial Isopod Microbiome: An All-in-One Toolbox for Animal-Microbe Interactions of Ecological Relevance.

    Science.gov (United States)

    Bouchon, Didier; Zimmer, Martin; Dittmer, Jessica

    2016-01-01

    Bacterial symbionts represent essential drivers of arthropod ecology and evolution, influencing host traits such as nutrition, reproduction, immunity, and speciation. However, the majority of work on arthropod microbiota has been conducted in insects and more studies in non-model species across different ecological niches will be needed to complete our understanding of host-microbiota interactions. In this review, we present terrestrial isopod crustaceans as an emerging model organism to investigate symbiotic associations with potential relevance to ecosystem functioning. Terrestrial isopods comprise a group of crustaceans that have evolved a terrestrial lifestyle and represent keystone species in terrestrial ecosystems, contributing to the decomposition of organic matter and regulating the microbial food web. Since their nutrition is based on plant detritus, it has long been suspected that bacterial symbionts located in the digestive tissues might play an important role in host nutrition via the provisioning of digestive enzymes, thereby enabling the utilization of recalcitrant food compounds (e.g., cellulose or lignins). If this were the case, then (i) the acquisition of these bacteria might have been an important evolutionary prerequisite for the colonization of land by isopods, and (ii) these bacterial symbionts would directly mediate the role of their hosts in ecosystem functioning. Several bacterial symbionts have indeed been discovered in the midgut caeca of terrestrial isopods and some of them might be specific to this group of animals (i.e., Candidatus Hepatoplasma crinochetorum, Candidatus Hepatincola porcellionum, and Rhabdochlamydia porcellionis ), while others are well-known intracellular pathogens ( Rickettsiella spp.) or reproductive parasites ( Wolbachia sp.). Moreover, a recent investigation of the microbiota in Armadillidium vulgare has revealed that this species harbors a highly diverse bacterial community which varies between host populations

  3. The terrestrial isopod microbiome: An all-in-one toolbox for animal-microbe interactions of ecological relevance

    Directory of Open Access Journals (Sweden)

    Didier Bouchon

    2016-09-01

    Full Text Available Bacterial symbionts represent essential drivers of arthropod ecology and evolution, influencing host traits such as nutrition, reproduction, immunity and speciation. However, the majority of work on arthropod microbiota has been conducted in insects and more studies in non-model species across different ecological niches will be needed to complete our understanding of host-microbiota interactions. In this review, we present terrestrial isopod crustaceans as an emerging model organism to investigate symbiotic associations with potential relevance to ecosystem functioning. Terrestrial isopods comprise a group of crustaceans that have evolved a terrestrial lifestyle and represent keystone species in terrestrial ecosystems, contributing to the decomposition of organic matter and regulating the microbial food web. Since their nutrition is based on plant detritus, it has long been suspected that bacterial symbionts located in the digestive tissues might play an important role in host nutrition via the provisioning of digestive enzymes, thereby enabling the utilization of recalcitrant food compounds (e.g. cellulose or lignins. If this were the case, then (i the acquisition of these bacteria might have been an important evolutionary prerequisite for the colonization of land by isopods, and (ii these bacterial symbionts would directly mediate the role of their hosts in ecosystem functioning. Several bacterial symbionts have indeed been discovered in the midgut caeca of terrestrial isopods and some of them might be specific to this group of animals (i.e. Candidatus Hepatoplasma crinochetorum, Candidatus Hepatincola porcellionum and Rhabdochlamydia porcellionis, while others are well-known intracellular pathogens (Rickettsiella spp. or reproductive parasites (Wolbachia sp.. Moreover, a recent investigation of the microbiota in Armadillidium vulgare has revealed that this species harbors a highly diverse bacterial community which varies between host

  4. Relationship between land use pattern and the structure and diversity of soil meso-micro arthropod community.

    Science.gov (United States)

    Zhang, Limin; Zhang, Xueping; Cui, Wei

    2014-05-01

    Soil arthropod communities can provide valuable information regarding the impacts of human disturbances on ecosystem structure. Our study evaluated the structure, composition and diversity of soil meso-micro arthropod communities, in six different vegetation types and assessed the impacts of human activity. A completely randomized design, including 3 replicates from 6 sites (mowing steppe, natural grassland, severe degradation grassland, farmland, artificial shelter forest, and wetland) was used. Soil samples from the depth of 0 to 20 cm were collected during May, July, and September 2007. Soil meso-micro arthropod were separated using the Tullgren funnels method, and were identified and counted. Soil pH value, organic matter, and total nitrogen were measured in topsoil (0-20 cm) from each site. A total of 5,602 soil meso-micro arthropod individuals were collected, representing 4 classes, 14 orders, and 57 families. Most soil arthropods were widely distributed; however, some species appeared to be influenced by environment variables, and might serve as bioindicators of adverse human impacts. Canonical correspondence analysis indicated the soil arthropod distribution in the severely degraded grassland, mowing steppe, farmland, and shelter forest differed from the natural grassland. Arthropod density and diversity were greatest in May, and the forestland community was the most stable. Because of the vital role soil arthropods have in maintaining a healthy ecosystem, mechanisms to maintain their abundance and diversity should be further evaluated.

  5. The Multiple Impacts of Tropical Forest Fragmentation on Arthropod Biodiversity and on their Patterns of Interactions with Host Plants

    Science.gov (United States)

    Benítez-Malvido, Julieta; Dáttilo, Wesley; Martínez-Falcón, Ana Paola; Durán-Barrón, César; Valenzuela, Jorge; López, Sara; Lombera, Rafael

    2016-01-01

    Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators) and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages. PMID:26731271

  6. The Multiple Impacts of Tropical Forest Fragmentation on Arthropod Biodiversity and on their Patterns of Interactions with Host Plants.

    Directory of Open Access Journals (Sweden)

    Julieta Benítez-Malvido

    Full Text Available Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages.

  7. Characterizing movement of ground-dwelling arthropods with a novel mark-capture method using fluorescent powder

    Science.gov (United States)

    Kayla I. Perry; Kimberly F. Wallin; John W. Wenzel; Daniel A. Herms

    2017-01-01

    A major knowledge gap exists in understanding dispersal potential of ground-dwelling arthropods, especially in forest ecosystems. Movement of the ground-dwelling arthropod community was quantified using a novel markcapture technique in which three different colored fluorescent powders in two separate mixtures were applied to the floor of a deciduous forest in...

  8. The Diversity and Abundance of Small Arthropods in Onion, Allium cepa, Seed Crops, and their Potential Role in Pollination

    Science.gov (United States)

    Walker, M. K.; Howlett, B. G.; Wallace, A. R.; Mccallum, J. A.; Teulon, D. A. J.

    2011-01-01

    Onion, Allium cepa L. (Asparagales: Amaryllidaceae), crop fields grown for seed production require arthropod pollination for adequate seed yield. Although many arthropod species visit A. cepa flowers, for most there is little information on their role as pollinators. Small flower visiting arthropods (body width arthropods were highly abundant among all except one field. Insects belonging to the orders Diptera and Thysanoptera were the most abundant and Hymenoptera, Collembola, Psocoptera, Hemiptera, and Coleoptera were also present. To test whether small arthropods might contribute to pollination, seed sets from umbels caged within 3 mm diameter mesh cages were compared with similarly caged, hand-pollinated umbels and uncaged umbels. Caged umbels that were not hand-pollinated set significantly fewer seeds (average eight seeds/umbel, n = 10) than caged hand-pollinated umbels (average 146 seeds/umbel) and uncaged umbels (average 481 seeds/umbel). Moreover, sticky traps placed on umbels within cages captured similar numbers of small arthropods as sticky traps placed on uncaged umbels, suggesting cages did not inhibit the movement of small arthropods to umbels. Therefore, despite the high abundance of small arthropods within fields, evidence to support their role as significant pollinators of commercial A. cepa seed crops was not found. PMID:22208869

  9. The diversity and abundance of small arthropods in onion, Allium cepa, seed crops, and their potential role in pollination.

    Science.gov (United States)

    Walker, M K; Howlett, B G; Wallace, A R; McCallum, J A; Teulon, D A J

    2011-01-01

    Onion, Allium cepa L. (Asparagales: Amaryllidaceae), crop fields grown for seed production require arthropod pollination for adequate seed yield. Although many arthropod species visit A. cepa flowers, for most there is little information on their role as pollinators. Small flower visiting arthropods (body width arthropods were highly abundant among all except one field. Insects belonging to the orders Diptera and Thysanoptera were the most abundant and Hymenoptera, Collembola, Psocoptera, Hemiptera, and Coleoptera were also present. To test whether small arthropods might contribute to pollination, seed sets from umbels caged within 3 mm diameter mesh cages were compared with similarly caged, hand-pollinated umbels and uncaged umbels. Caged umbels that were not hand-pollinated set significantly fewer seeds (average eight seeds/umbel, n = 10) than caged hand-pollinated umbels (average 146 seeds/umbel) and uncaged umbels (average 481 seeds/umbel). Moreover, sticky traps placed on umbels within cages captured similar numbers of small arthropods as sticky traps placed on uncaged umbels, suggesting cages did not inhibit the movement of small arthropods to umbels. Therefore, despite the high abundance of small arthropods within fields, evidence to support their role as significant pollinators of commercial A. cepa seed crops was not found.

  10. [Effects of cutting and reseeding on the ground-dwelling arthropod community in Caragana intermedia forest in desert steppe].

    Science.gov (United States)

    Liu, Ren-Tao; Chai, Yong-Qing; Yang, Xin-Guo; Song, Nai-Ping; Wang, Xin-Yun; Wang, Lei

    2013-01-01

    Taking a 25-year-old Caragana intermedia forest in desert steppe as test object, an investigation was conducted on the ground-dwelling arthropod community in cutting and no-cutting stands with and without reseeding, aimed to understand the effects of cutting, reseeding and their interaction on the individual number and group richness of ground-dwelling arthropod in C. intermedia forest. There were significantly lower number and richness of ground-dwelling arthropod in the open spaces than under the shrubs in the no-cutting and no-reseeding stands. Cutting, reseeding and both of them could significantly increase the number and richness of ground-dwelling arthropod in the open spaces, but not under the shrubs, compared with no cutting or reseeding. Consequently, there were no significant differences in the distribution of ground-dwelling arthropod in the open spaces and under the shrubs in the cutting, reseeding, or cutting and reseeding stands. Further, there was a similar buffer effect between cutting and reseeding on the ground-dwelling arthropod. No significant differences were observed in the ground-dwelling arthropod distribution, between cutting stand and reseeding stand, between cutting stand and cutting and reseeding stand, and between reseeding stand and cutting and reseeding stand. It was suggested that cutting, reseeding, or both of them could significantly improve the ground-dwelling arthropod diversity especially in the open spaces, being beneficial for the restoration of degraded grassland ecosystem and the rational management on artificial C. intermedia forest in desert steppe.

  11. Equal temperature-size responses of the sexes are widespread within arthropod species

    DEFF Research Database (Denmark)

    Hirst, Andrew G.; Horne, Curtis; Atkinson, David

    2015-01-01

    Sexual size dimorphism (SSD) is often affected by environmental conditions, but the effect of temperature on SSD in ectotherms still requires rigorous investigation. We compared the plastic responses of size-at-maturity to temperature between males and females within 85 diverse arthropod species...... arthropod orders examined, five of which (Diptera, Orthoptera, Lepidoptera, Coleoptera and Calanoida) include more than six thermal responses. We suggest that the same proportional T-S response may generally have equivalent fitness costs and benefits in both sexes. This contrasts with effects of juvenile...... density, and food quantity/quality, which commonly result in greater size plasticity in females, suggesting these variables have different adaptive effects on SSD....

  12. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity.

    Directory of Open Access Journals (Sweden)

    Lionel R Hertzog

    Full Text Available Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution and dominance (relative abundance of the dominant species. Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species, we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i, or indirectly through increased productivity (ii. Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii. Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore

  13. Ebola virus and arthropods: a literature review and entomological consideration on the vector role.

    Science.gov (United States)

    Dutto, M; Bertero, M; Petrosillo, N; Pombi, M; Otranto, D

    2016-10-01

    Ebola virus is a pathogen responsible for a severe disease that affects humans and several animal species. To date, the natural reservoir of this virus is not known with certainty, although it is believed that fruit bats (Chiroptera: Pteropodidae) play an important role in maintaining the virus in nature. Although information on viral transmission from animals to humans is not clear, the role of arthropods has come under suspicion. In this article, we review the potential role of arthropods in spreading Ebola virus, acting as mechanical or biological vectors.

  14. [Alpha and beta arthropods diversity from the different environments of Parque Nacional Los Cardones, Salta, Argentina].

    Science.gov (United States)

    Belén Cava, Maria; Antonio Corronca, José; José Echeverría, Alejandro

    2013-12-01

    The essential role of the National Parks is to protect nature, in order to prevent the deterioration and loss of the ecosystem under protection. Very few records about the diversity of arthropods are known from Los Cardones National Park, where three eco-regions are protected: Puna and Monte eco-regions and the High Andean Grassland of the Yungas. Here, we aimed to compare the alpha and beta diversity of arthropods in these eco-regions, and to prove if sites from the same ecoregion, show greater similarity between them in their assemblages, than with sites of the other eco-regions. We also identified arthropod orders with higher species richness, and indicated the families that contribute the most to the registered beta diversity. Three sampling sites were established on each eco-region and the arthropods were sampled using pitfall traps and suction samples. We evaluated the obtained inventory through nonparametric estimators of species richness, and compared diversity among eco-regions through "diversity profiles" and "effective number of species". Beta diversity was assessed by different methods such as the Morisita Index, nonmetric multidimentional scaling analysis, a multiple permutation procedure, and a Similarity Percentage analysis. We recorded 469 spp/morphospecies and recognized three arthropod orders (spiders, dipterans and hymenopterans) that are diverse and abundant in the Park. Besides, the diversity in Los Cardones National Park was found to be high, but it was observed higher in the High Andean Grassland of the Yungas, and lower in the Puna. The inventory obtained was good, reached up to the 81% of the species richness estimated by nonparametric estimators. Each eco-region of the park showed a very particular arthropod community that was tested by a multi-response permutation procedure. The species turnover between eco-regions was high, so that the different environments of the protected area are contributing to the maintenance of the regional

  15. Onychophoran Hox genes and the evolution of arthropod Hox gene expression

    Science.gov (United States)

    2014-01-01

    Introduction Onychophora is a relatively small phylum within Ecdysozoa, and is considered to be the sister group to Arthropoda. Compared to the arthropods, that have radiated into countless divergent forms, the onychophoran body plan is overall comparably simple and does not display much in-phylum variation. An important component of arthropod morphological diversity consists of variation of tagmosis, i.e. the grouping of segments into functional units (tagmata), and this in turn is correlated with differences in expression patterns of the Hox genes. How these genes are expressed in the simpler onychophorans, the subject of this paper, would therefore be of interest in understanding their subsequent evolution in the arthropods, especially if an argument can be made for the onychophoran system broadly reflecting the ancestral state in the arthropods. Results The sequences and embryonic expression patterns of the complete set of ten Hox genes of an onychophoran (Euperipatoides kanangrensis) are described for the first time. We find that they are all expressed in characteristic patterns that suggest a function as classical Hox genes. The onychophoran Hox genes obey spatial colinearity, and with the exception of Ultrabithorax (Ubx), they all have different and distinct anterior expression borders. Notably, Ubx transcripts form a posterior to anterior gradient in the onychophoran trunk. Expression of all onychophoran Hox genes extends continuously from their anterior border to the rear end of the embryo. Conclusions The spatial expression pattern of the onychophoran Hox genes may contribute to a combinatorial Hox code that is involved in giving each segment its identity. This patterning of segments in the uniform trunk, however, apparently predates the evolution of distinct segmental differences in external morphology seen in arthropods. The gradient-like expression of Ubx may give posterior segments their specific identity, even though they otherwise express the same

  16. [Bases for control of arthropod vectors: I--Definitions, bioecology of vectors (author's transl)].

    Science.gov (United States)

    Picq, J J; Discamps, G; Albert, J P

    1978-01-01

    Arthropoda form the most diversified and multitudinous phyllum of the animal kingdom. In this "arthropod world", the authors give the respective position of the arthropoda: a) detrimental to crops, b) venomous and noxious for human being, but mainly those who are vectors of human diseases, say about a hundred species. Biological, ecological and environmental main features of the most important arthropod vectors of human tropical diseases are reviewed. Various factors acting on the relation between pathological agent and vector and between vector and man are considered. Importance and complexity of entomological surveys are emphasized with, as a consequence, the necessity of specialized medical entomologists to manage them.

  17. The response of sward-dwelling arthropod communities to reduced grassland management intensity in pastures

    Directory of Open Access Journals (Sweden)

    Helden Alvin J.

    2015-12-01

    Full Text Available We compared arthropod taxon richness, diversity and community structure of two replicated grassland husbandry experiments to investigate effects of reduced management intensity, as measured by nutrient input levels (390, 224 and 0 kg/ha per year N in one experiment, and 225 and 88 kg/ha per year N in another. Suction sampling was used to collect Araneae, Coleoptera, Hemiptera and Hymenoptera, with Araneae and Coleoptera also sampled with pitfall trapping. Univariate analyses found no significant differences in abundance and species density between treatments. However, with multivariate analysis, there were significant differences in arthropod community structure between treatments in both experiments.

  18. Background internal dose rates of earthworm and arthropod species in the forests of Aomori, Japan

    International Nuclear Information System (INIS)

    Yoshihito Ohtsuka; Yuichi Takaku; Shun'ichi Hisamatsu

    2015-01-01

    In this study, we measured the concentrations of several natural radionuclides in samples of one earthworm species and 11 arthropod species collected from four coniferous forests in Rokkasho, Aomori Prefecture, Japan, and we assessed the background internal radiation dose rate for each species. Dose rates were calculated by using the radionuclide concentrations in the samples and dose conversion coefficients obtained from the literature. The mean internal dose rate in the earthworm species was 0.28 μGy h -1 , and the mean internal dose rates in the arthropod species ranged between 0.036 and 0.69 μGy h -1 . (author)

  19. Community dynamics of carrion-attendant arthropods in tropical african woodland.

    Science.gov (United States)

    Braack, L E O

    1987-06-01

    Carcasses are temporary resources which are unbredictable and inconsistent in their availability and locality. A recognisable community of interacting user arthrocods comprising sarcophages, coprophages, dermatophages, keratophages, detritivores, predators and parasites has evolved to exploit the carcass habitat. The large number of arthropods, close confinement, and limited duration of resources necessitates aggressive utilisation. The trophic relations, competition and successionary pattern of these arthropods is discussed. Several pathways to reduce competitive conflict are described. Succession at carcasses is viewed as being inherently different from the traditional concept as the habitat is non-replenishing and does not lead to a climax community.

  20. [Effects of plant viruses on vector and non-vector herbivorous arthropods and their natural enemies: a mini review].

    Science.gov (United States)

    He, Xiao-Chan; Xu, Hong-Xing; Zhou, Xiao-Jun; Zheng, Xu-Song; Sun, Yu-Jian; Yang, Ya-Jun; Tian, Jun-Ce; Lü, Zhong-Xian

    2014-05-01

    Plant viruses transmitted by arthropods, as an important biotic factor, may not only directly affect the yield and quality of host plants, and development, physiological characteristics and ecological performances of their vector arthropods, but also directly or indirectly affect the non-vector herbivorous arthropods and their natural enemies in the same ecosystem, thereby causing influences to the whole agro-ecosystem. This paper reviewed the progress on the effects of plant viruses on herbivorous arthropods, including vector and non-vector, and their natural enemies, and on their ecological mechanisms to provide a reference for optimizing the management of vector and non-vector arthropod populations and sustainable control of plant viruses in agro-ecosystem.

  1. Polarized Light Corridor Demonstrations.

    Science.gov (United States)

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  2. Mass Loss Rates of Fasting Polar Bears.

    Science.gov (United States)

    Pilfold, Nicholas W; Hedman, Daryll; Stirling, Ian; Derocher, Andrew E; Lunn, Nicholas J; Richardson, Evan

    2016-01-01

    Polar bears (Ursus maritimus) have adapted to an annual cyclic regime of feeding and fasting, which is extreme in seasonal sea ice regions of the Arctic. As a consequence of climate change, sea ice breakup has become earlier and the duration of the open-water period through which polar bears must rely on fat reserves has increased. To date, there is limited empirical data with which to evaluate the potential energetic capacity of polar bears to withstand longer fasts. We measured the incoming and outgoing mass of inactive polar bears (n = 142) that were temporarily detained by Manitoba Conservation and Water Stewardship during the open-water period near the town of Churchill, Manitoba, Canada, in 2009-2014. Polar bears were given access to water but not food and held for a median length of 17 d. Median mass loss rates were 1.0 kg/d, while median mass-specific loss rates were 0.5%/d, similar to other species with high adiposity and prolonged fasting capacities. Mass loss by unfed captive adult males was identical to that lost by free-ranging individuals, suggesting that terrestrial feeding contributes little to offset mass loss. The inferred metabolic rate was comparable to a basal mammalian rate, suggesting that while on land, polar bears can maintain a depressed metabolic rate to conserve energy. Finally, we estimated time to starvation for subadults and adult males for the on-land period. Results suggest that at 180 d of fasting, 56%-63% of subadults and 18%-24% of adult males in this study would die of starvation. Results corroborate previous assessments on the limits of polar bear capacity to withstand lengthening ice-free seasons and emphasize the greater sensitivity of subadults to changes in sea ice phenology.

  3. Effects of diversity and identity of the neighbouring plant community on the abundance of arthropods on individual ragwort (Jacobaea vulgaris) plants

    NARCIS (Netherlands)

    Kostenko, O.; Grootemaat, Saskia S.; Van der Putten, W.H.; Bezemer, T.M.

    2012-01-01

    The diversity of plant community can greatly affect the abundance and diversity of arthropods associated to that community, but can also influence the composition or abundance of arthropods on individual plants growing in that community. We sampled arthropods and recorded plant size of individual

  4. Temporal Dynamics of Arthropods on Six Tree Species in Dry Woodlands on the Caribbean Island of Puerto Rico

    Science.gov (United States)

    Beltrán, William; Wunderle, Joseph M.

    2014-01-01

    Abstract The seasonal dynamics of foliage arthropod populations are poorly studied in tropical dry forests despite the importance of these studies for understanding arthropod population responses to environmental change. We monitored the abundance, temporal distributions, and body size of arthropods in five naturalized alien and one native tree species to characterize arthropod seasonality in dry novel Prosopis–Leucaena woodlands in Puerto Rico. A branch clipping method was used monthly to sample foliage arthropod abundance over 39 mo. Seasonal patterns of rainfall and abundance within various arthropod taxa were highly variable from year to year. Abundance for most taxa did not show significant seasonality over the 3 yr, although most taxa had abundance peaks each year. However, Homoptera displayed high seasonality with significant temporal aggregations in each year. Formicidae, Orthoptera, and Coleoptera showed high variation in abundance between wet and dry periods, whereas Hemiptera were consistently more abundant in the wet period. Seasonal differences in mean abundance were found only in a few taxa on Tamarindus indica L. , Bucida buceras L. , Pithecellobium dulce , and (Roxburgh) Benth. Mean arthropod abundance varied among tree species, with highest numbers on Prosopis juliflora , (Swartz) De Candolle, Pi. dulce , Leucaena leucocephala , and (Lamarck) de Wit. Abundance of Araneae, Orthoptera, Coleoptera, Lepidoptera larvae, and all arthropods showed weak relationships with one or more climatic variables (rainfall, maximum temperature, or relative humidity). Body size of arthropods was usually largest during the dry periods. Overall, total foliage arthropod abundance showed no consistent seasonality among years, which may become a more common trend in dry forests and woodlands in the Caribbean if seasonality of rainfall becomes less predictable. PMID:25502036

  5. Seasonal abundance of soil arthropods in relation to meteorological and edaphic factors in the agroecosystems of Faisalabad, Punjab, Pakistan.

    Science.gov (United States)

    Shakir, Muhammad Mussadiq; Ahmed, Sohail

    2015-05-01

    Soil arthropods are an important component of agroecosystems, contributing significantly to their biodiversity and functioning. However, seasonal patterns, population dynamics, and significant roles of these soil arthropods in improvement of soil structures and functions are influenced by many factors. The objective of the current study was to investigate soil arthropod abundance in relation to a blend of meteorological and edaphic factors and to find out the difference in abundance among various crops (sugarcane, cotton, wheat, alfalfa fodder, and citrus orchards). The arthropod sampling was done by pitfall traps and Tullgren extractions on fortnightly intervals. Soil temperature and relative humidity were noted on the field sites while analysis for soil pH, organic matter, and soil moisture contents were done in the laboratory. The rainfall data was obtained from an observatory. Results showed that significant differences were found in soil arthropod abundance across different sampling months and crops. Out of total 13,673 soil arthropods sampled, 38 % belonged to Collembola, followed by 15 % Hymenoptera, 15 % Acarina, 11 % Myriapods, 6 % Coleoptera, 5 % Orthoptera, and 5 % Araneae. Mean abundance per sample was highest in summer months as compared to winter. Overall abundance per sample was significantly different between all crops (p arthropods according to abundance, i.e., highly abundant (Collembola, Acarina, Myripoda, Hymenoptera), moderately abundant (Orthoptera, Aranae, Coleoptera), least abundant (Dermaptera, Hemiptera, Diptera), and rare (Blattaria, Isoptera, Diplura, Lepidoptera). Soil temperature and soil organic matter showed significant positive correlation with abundance, while relative humidity was significantly negatively correlated. Soil moisture and soil pH showed no significant correlations while no correlation was found with total rainfall. PCA analysis revealed that soil surface arthropods were the major contributors of variation in overall

  6. Temporal dynamics of arthropods on six tree species in dry woodlands on the Caribbean Island of Puerto Rico.

    Science.gov (United States)

    Beltrán, William; Wunderle, Joseph M

    2014-01-01

    The seasonal dynamics of foliage arthropod populations are poorly studied in tropical dry forests despite the importance of these studies for understanding arthropod population responses to environmental change. We monitored the abundance, temporal distributions, and body size of arthropods in five naturalized alien and one native tree species to characterize arthropod seasonality in dry novel Prosopis-Leucaena woodlands in Puerto Rico. A branch clipping method was used monthly to sample foliage arthropod abundance over 39 mo. Seasonal patterns of rainfall and abundance within various arthropod taxa were highly variable from year to year. Abundance for most taxa did not show significant seasonality over the 3 yr, although most taxa had abundance peaks each year. However, Homoptera displayed high seasonality with significant temporal aggregations in each year. Formicidae, Orthoptera, and Coleoptera showed high variation in abundance between wet and dry periods, whereas Hemiptera were consistently more abundant in the wet period. Seasonal differences in mean abundance were found only in a few taxa on Tamarindus indica L., Bucida buceras L., Pithecellobium dulce, and (Roxburgh) Benth. Mean arthropod abundance varied among tree species, with highest numbers on Prosopis juliflora, (Swartz) De Candolle, Pi. dulce, Leucaena leucocephala, and (Lamarck) de Wit. Abundance of Araneae, Orthoptera, Coleoptera, Lepidoptera larvae, and all arthropods showed weak relationships with one or more climatic variables (rainfall, maximum temperature, or relative humidity). Body size of arthropods was usually largest during the dry periods. Overall, total foliage arthropod abundance showed no consistent seasonality among years, which may become a more common trend in dry forests and woodlands in the Caribbean if seasonality of rainfall becomes less predictable. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  7. Polarized Moessbauer transitions

    International Nuclear Information System (INIS)

    Barb, D.

    1975-01-01

    Theoretical aspects of the emission, absorption and scattering of polarized gamma rays are reviewed for a general case of combined magnetic and electric hyperfine interactions; various possibilities of obtaining polarized gamma sources are described and examples are given of the applications of Moessbauer spectroscopy with polarized gamma rays in solving problems of solid state physics. (A.K.)

  8. Universal and blocking primer mismatches limit the use of high-throughput DNA sequencing for the quantitative metabarcoding of arthropods.

    Science.gov (United States)

    Piñol, J; Mir, G; Gomez-Polo, P; Agustí, N

    2015-07-01

    The quantification of the biological diversity in environmental samples using high-throughput DNA sequencing is hindered by the PCR bias caused by variable primer-template mismatches of the individual species. In some dietary studies, there is the added problem that samples are enriched with predator DNA, so often a predator-specific blocking oligonucleotide is used to alleviate the problem. However, specific blocking oligonucleotides could coblock nontarget species to some degree. Here, we accurately estimate the extent of the PCR biases induced by universal and blocking primers on a mock community prepared with DNA of twelve species of terrestrial arthropods. We also compare universal and blocking primer biases with those induced by variable annealing temperature and number of PCR cycles. The results show that reads of all species were recovered after PCR enrichment at our control conditions (no blocking oligonucleotide, 45 °C annealing temperature and 40 cycles) and high-throughput sequencing. They also show that the four factors considered biased the final proportions of the species to some degree. Among these factors, the number of primer-template mismatches of each species had a disproportionate effect (up to five orders of magnitude) on the amplification efficiency. In particular, the number of primer-template mismatches explained most of the variation (~3/4) in the amplification efficiency of the species. The effect of blocking oligonucleotide concentration on nontarget species relative abundance was also significant, but less important (below one order of magnitude). Considering the results reported here, the quantitative potential of the technique is limited, and only qualitative results (the species list) are reliable, at least when targeting the barcoding COI region. © 2014 John Wiley & Sons Ltd.

  9. Initial study of arthropods succession and pig carrion decomposition in two freshwater ecosystems in the Colombian Andes.

    Science.gov (United States)

    Barrios, Maria; Wolff, Marta

    2011-10-10

    Entomological succession and trophic roles of arthropods associated with different stages of carcass decomposition were studied to estimate the post-mortem submersion interval in two freshwater ecosystems in the Colombian Andes, at an altitude of 2614 m. Pig carcasses were employed as models placed 68 m apart, one in a stream (lotic) and another in an artificial lake (lentic). Decomposition time to skeletal remains was 74 days in the lake and 80 days in the stream. Six phases of decomposition were established: submerged fresh, early floating, floating decay, bloated deterioration, floating remains and sunken remains. A total of 18,832 organisms associated with the carcasses were collected: 11,487 in the lake (four orders, 19 families and 33 species) and 7345 in the stream (eight orders, 15 families and 25 species). Organisms were classified in the following ecological categories: shredders, collectors, predators, necrophagous, sarcosaprophagous and opportunists. Physical and chemical properties of the habitats, such as water temperature, CO(2) and conductivity, varied according to rainfall. In the lake, shredders (Coleoptera: Tropisternus sp. and Berosus sp.) and collectors (Diptera: Chironomus sp.) were found to be associated with submerged phases. Predators (Odonata) were only present during the first phases. Coleoptera (Dytiscidae) were found during floating decay and bloated deterioration stages. In the stream, shredders (Hyalella sp.) and collectors (Simulium sp.) were found during all stages, whereas the predator Oxelytrum discicolle was found exclusively during the floating stages, during which body temperature increased in a fashion similar to active decay in terrestrial environments. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Structural Analysis of Hand Drawn Bumblebee Bombus terrestris Silk

    Directory of Open Access Journals (Sweden)

    Andrea L. Woodhead

    2016-07-01

    Full Text Available Bombus terrestris, commonly known as the buff-tailed bumblebee, is native to Europe, parts of Africa and Asia. It is commercially bred for use as a pollinator of greenhouse crops. Larvae pupate within a silken cocoon that they construct from proteins produced in modified salivary glands. The amino acid composition and protein structure of hand drawn B. terrestris, silk fibres was investigated through the use of micro-Raman spectroscopy. Spectra were obtained from single fibres drawn from the larvae salivary gland at a rate of 0.14 cm/s. Raman spectroscopy enabled the identification of poly(alanine, poly(alanine-glycine, phenylalanine, tryptophan, and methionine, which is consistent with the results of amino acid analysis. The dominant protein conformation was found to be coiled coil (73% while the β-sheet content of 10% is, as expected, lower than those reported for hornets and ants. Polarized Raman spectra revealed that the coiled coils were highly aligned along the fibre axis while the β-sheet and random coil components had their peptide carbonyl groups roughly perpendicular to the fibre axis. The protein orientation distribution is compared to those of other natural and recombinant silks. A structural model for the B. terrestris silk fibre is proposed based on these results.

  11. Mars : a small terrestrial planet

    OpenAIRE

    Mangold, N.; Baratoux, David; Witasse, O.; Encrenaz, T.; Sotin, C.

    2016-01-01

    Mars is characterized by geological landforms familiar to terrestrial geologists. It has a tenuous atmosphere that evolved differently from that of Earth and Venus and a differentiated inner structure. Our knowledge of the structure and evolution of Mars has strongly improved thanks to a huge amount of data of various types (visible and infrared imagery, altimetry, radar, chemistry, etc) acquired by a dozen of missions over the last two decades. In situ data have provided ground truth for rem...

  12. Cephalic and appendage morphology of the Cambrian arthropod Sidneyia inexpectans Walcott, 1911

    DEFF Research Database (Denmark)

    Stein, Martin

    2013-01-01

    Sidneyia inexpectans Walcott, 1911 from the Cambrian Series 3 Burgess Shale of British Columbia is largely accepted as a representative of the artiopodans, an assemblage of Paleozoic arthropod taxa, including trilobites and their immediate relatives. Its appendage morphology was never fully...

  13. Ecology meets plant physiology: herbivore-induced plant responses and their indirect effects on arthropod communities

    NARCIS (Netherlands)

    Sabelis, M.W.; Takabayashi, J.; Janssen, A.; Kant, M.R.; van Wijk, M.; Sznajder, B.; Aratchige, N.S.; Lesna, I.; Belliure, B.; Schuurink, R.C.; Ohgushi, T.; Craig, T.P.; Price, P.W.

    2007-01-01

    Herbivory by arthropods induces a wealth of changes in the primary and secondary chemistry of plants (Karban and Baldwin 1997, Constabel 1999, Agrawal et al. 1999, Kessler and Baldwin 2002). These chemical changes in turn do not only affect the inducer, but also other herbivore species attacking the

  14. Disparate effects of plant genotypic diversity on foliage and litter arthropod communities

    Energy Technology Data Exchange (ETDEWEB)

    Crutsinger, Greg [University of Tennessee, Knoxville (UTK); Reynolds, Nicholas [University of Tennessee, Knoxville (UTK); Classen, Aimee T [ORNL; Sanders, Dr. Nathan James [University of Tennessee, Knoxville (UTK)

    2008-01-01

    Intraspecific diversity within plant species is increasingly recognized as an important influence on the structure of associated arthropod communities, though whether there are congruent responses of above- and belowground communities to intraspecific diversity remains unclear. In this study, we compare the effects of host-plant genotype and genotypic diversity of the perennial plant, Solidago altissima, on the arthropod community associated with living plant tissue (foliage-based community) and microarthropods associated with leaf litter (litter-based community). We found that variation among host-plant genotypes had strong effects on the diversity and composition of foliage-based arthropods, but only weak influence on litter-based microarthropods. Furthermore, host-plant genotypic diversity was positively related to the abundance and diversity of foliage-based arthropods, including herbivore and predator trophic levels. In contrast, there were minimal effects of genotypic diversity in litter on microarthropods. Our study illustrates that incorporating both above- and belowground perspective into community genetics studies leads to very different conclusions about the importance of intraspecific diversity, than when considering aboveground responses in isolation.

  15. Pheromone-mediated aggregation in nonsocial arthropods: an evolutionary ecological perspective

    NARCIS (Netherlands)

    Wertheim, B.; van Baalen, E-J.A.; Dicke, M.; Vet, L.E.M.

    2005-01-01

    Although the use of aggregation pheromones has been reported for hundreds of nonsocial arthropod species, the evolutionary ecological aspects of this behavior have received little attention. Despite the elaborate literature on mechanisms, robust data on costs and benefits of aggregation pheromones

  16. Plant pathogens structure arthropod communities across multiple spatial and temporal scales

    NARCIS (Netherlands)

    Tack, A.J.M.; Dicke, M.

    2013-01-01

    Plant pathogens and herbivores frequently co-occur on the same host plants. Despite this, little is known about the impact of their interactions on the structure of plant-based ecological communities. Here, we synthesize evidence that indicates that plant pathogens may profoundly impact arthropod

  17. Elemental marking of arthropod pests in agricultural systems: single and multigenerational marking

    Science.gov (United States)

    Jane Leslie Hayes

    1991-01-01

    Use of elemental markers to study movement of arthropod pests of field crops is reviewed. Trace elements, rubidium (Rb) and cesium (Cs), have provided a nondisruptive method of marking natural adult populations via developmental stage consumption of treated host plants. Multigenerational marking occurs with the transfer of elemental markers from marked adults to...

  18. Fauna of ground-dwelling arthropods in vineyards of Zadar County (Croatia

    Directory of Open Access Journals (Sweden)

    Kristijan Franin

    2016-12-01

    Full Text Available Farming practices as well as land-use management have a great impact on biodiversity and composition of ground-dwelling arthropods. In this study, abundance and diversity of spiders and epigeic soil insects in three vineyards in Zadar County (Croatia were researched. In each vineyard 16 pitfall traps were placed, 4 in one row at the distance of 3 m. Samples were taken every fifteen days from the beginning of May till the end of October in 2014. A total of 469 individuals belonging to 6 orders and 23 families were collected. Significant differences were found among arthropod orders. The most abundant taxonomic group was Hymenoptera (38.8%, followed by Coleoptera (31.98% and Araneae (27.93%. The highest number of specimens (232 was recorded in the integrated vineyard, whereas in the conventional vineyard on karst only 63 individuals were found. However, these results showed significant differences in arthropod assemblage between integrated and conventional vineyards. Richness and diversity (Shannon Diversity Index were highest in the integrated vineyard (2.36 as opposed to the conventional vineyard Zaton (2.23. Our results confirmed the importance of ground cover, in the particular weeds, on arthropod abundance and diversity.

  19. The Role of Dead Wood in Maintaining Arthropod Diversity on the Forest Floor

    Energy Technology Data Exchange (ETDEWEB)

    Hanula, James L. [Dept. of Agriculture Forest Service, Athens, GA (United States). Southern Research Station; Horn, Scott [Dept. of Agriculture Forest Service, Athens, GA (United States). Southern Research Station; Wade, Dale D. [Dept. of Agriculture Forest Service, Athens, GA (United States). Southern Research Station

    2006-08-01

    Dead wood is a major component of forests and contributes to overall diversity, primarily by supporting insects that feed directly on or in it. Further, a variety of organisms benefit by feeding on those insects. What is not well known is how or whether dead wood influences the composition of the arthropod community that is not solely dependent on it as a food resource, or whether woody debris influences prey available to generalist predators. One group likely to be affected by dead wood is ground-dwelling arthropods. We studied the effect of adding large dead wood to unburned and frequently burned pine stands to determine if dead wood was used more when the litter and understory plant community are removed. We also studied the effect of annual removal of dead wood from large (10-ha) plots over a 5-year period on ground-dwelling arthropods. In related studies, we examined the relationships among an endangered woodpecker that forages for prey on live trees, its prey, and dead wood in the forest. Finally, the results of these and other studies show that dead wood can influence the abundance and diversity of the ground-dwelling arthropod community and of prey available to generalist predators not foraging directly on dead trees.

  20. Arthropods, plants, and transmission lines in Arizona: secondary succession in a Sonoran Desert habitat

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.D.; Ditsworth, T.M.; Beley, J.R.

    1981-09-01

    Overall arthropod densities were low at this site, but the arthropod densities on the disturbed areas appeared to be enhanced after several years. No taxa were found to be statistically different in density between control and disturbed plots. Diversity decreased on the disturbed area after construction. Arthropod community similarity (C) was lower after construction, but C values appear to be related to presence or absence of annual herbs and grasses and not to total cover. Except for globe mallow, there were no pioneer plant species on the experimental plot. Effects of powerline construction on the experimental plant community were a brief reduction in total cover and a slight increase in cover of herbs and annual grasses. The 1976 and 1977 samples exhibit comparable cover values of these plants on both experimental and control plots. The dominant arthropod taxa on the experimental area (especially Thysanoptera, Cicadellidae, Coccinellidae, and Melyridae) appear to be responding numerically to the annual herbs and grasses which are becoming established on the plot.

  1. Formicine ants: An arthropod source for the pumiliotoxin alkaloids of dendrobatid poison frogs.

    Science.gov (United States)

    Saporito, Ralph A; Garraffo, H Martin; Donnelly, Maureen A; Edwards, Adam L; Longino, John T; Daly, John W

    2004-05-25

    A remarkable diversity of bioactive lipophilic alkaloids is present in the skin of poison frogs and toads worldwide. Originally discovered in neotropical dendrobatid frogs, these alkaloids are now known from mantellid frogs of Madagascar, certain myobatrachid frogs of Australia, and certain bufonid toads of South America. Presumably serving as a passive chemical defense, these alkaloids appear to be sequestered from a variety of alkaloid-containing arthropods. The pumiliotoxins represent a major, widespread, group of alkaloids that are found in virtually all anurans that are chemically defended by the presence of lipophilic alkaloids. Identifying an arthropod source for these alkaloids has been a considerable challenge for chemical ecologists. However, an extensive collection of neotropical forest arthropods has now revealed a putative arthropod source of the pumiliotoxins. Here we report on the presence of pumiliotoxins in formicine ants of the genera Brachymyrmex and Paratrechina, as well as the presence of these ants in the stomach contents of the microsympatric pumiliotoxin-containing dendrobatid frog, Dendrobates pumilio. These pumiliotoxins are major alkaloids in D. pumilio, and Brachymyrmex and Paratrechina ants now represent the only known dietary sources of these toxic alkaloids. These findings further support the significance of ant-specialization and alkaloid sequestration in the evolution of bright warning coloration in poison frogs and toads.

  2. Progress and Prospects of CRISPR/Cas Systems in Insects and Other Arthropods

    Directory of Open Access Journals (Sweden)

    Dan Sun

    2017-09-01

    Full Text Available Clustered regularly interspaced short palindromic repeats (CRISPR and the CRISPR-associated gene Cas9 represent an invaluable system for the precise editing of genes in diverse species. The CRISPR/Cas9 system is an adaptive mechanism that enables bacteria and archaeal species to resist invading viruses and phages or plasmids. Compared with zinc finger nucleases and transcription activator-like effector nucleases, the CRISPR/Cas9 system has the advantage of requiring less time and effort. This efficient technology has been used in many species, including diverse arthropods that are relevant to agriculture, forestry, fisheries, and public health; however, there is no review that systematically summarizes its successful application in the editing of both insect and non-insect arthropod genomes. Thus, this paper seeks to provide a comprehensive and impartial overview of the progress of the CRISPR/Cas9 system in different arthropods, reviewing not only fundamental studies related to gene function exploration and experimental optimization but also applied studies in areas such as insect modification and pest control. In addition, we also describe the latest research advances regarding two novel CRISPR/Cas systems (CRISPR/Cpf1 and CRISPR/C2c2 and discuss their future prospects for becoming crucial technologies in arthropods.

  3. The role of dead wood in maintaining arthropod diversity on the forest floor

    Science.gov (United States)

    James L. Hanula; Scott Horn; Dale D. Wade

    2006-01-01

    Dead wood is a major component of forests and contributes to overall diversity, primarily by supporting insects that feed directly on or in it. Further, a variety of organisms benefit by feeding on those insects. What is not well known is how or whether dead wood influences the composition of the arthropod community that is not solely dependent on it as a food...

  4. A Nod to disease vectors: mitigation of pathogen sensing by arthropod saliva

    Czech Academy of Sciences Publication Activity Database

    Sakhon, O. S.; Severo, M. S.; Kotsyfakis, Michalis; Pedra, J. H. F.

    2013-01-01

    Roč. 4, OCT 2013 (2013), a308 ISSN 1664-302X Institutional support: RVO:60077344 Keywords : nod-like receptors * inflammasome * vector-borne pathogens * vector-borne diseases * arthropod saliva * salivary proteins Subject RIV: EC - Immunology Impact factor: 3.941, year: 2013

  5. Strengthening the case for saproxylic arthropod conservation: a call for ecosystem services research

    Science.gov (United States)

    Michael Ulyshen

    2013-01-01

    While research on the ecosystem services provided by biodiversity is becoming widely embraced as an important tool in conservation, the services provided by saproxylic arthropods - an especially diverse and threatened assemblage dependent on dead or dying wood - remain unmeasured. A conceptual model depicting the reciprocal relationships between dead wood and...

  6. Removing external DNA decontamination from arthropod predators destined for molecular gut-content analysis

    Science.gov (United States)

    Molecular gut-content analysis enables detection of arthropod predation with minimal disruption of ecosystem processes. Field and laboratory experiments have demonstrated that mass-collection methods, such as sweep-netting, vacuum sampling, and foliage beating, can lead to contamination of fed pred...

  7. Gut content analysis of arthropod predators of codling moth in Washington apple orchards

    Science.gov (United States)

    More than 70% of pome fruits in the USA are produced in central Washington State. The codling moth, Cydia pomonella (L.) is consistently the most damaging pest. We used polymerase chain reaction (PCR) to amplify codling moth DNA in 2591 field-collected arthropod predators to estimate predation in s...

  8. A list of methods to detect arthropod quarantine pests in Europe

    NARCIS (Netherlands)

    Augustin, S.; Kogel, de W.J.; Donner, P.; Faccoli, M.; Lees, D.C.; Marini, L.; Mori, N.; Toffolo, E.P.; Quilici, S.; Roques, A.; Yart, A.; Battisti, A.

    2012-01-01

    A total of 177 species of quarantine arthropods in Europe have been analysed for detection methods that are used in surveillance. This paper provides a link to a list where the methods most frequently used, either alone or in combination, are given for each species. Inspection remains the most

  9. The value of urban vacant land to support arthropod biodiversity and ecosystem services.

    Science.gov (United States)

    Gardiner, Mary M; Burkman, Caitlin E; Prajzner, Scott P

    2013-12-01

    The expansion of urban areas is occurring globally, but not all city neighborhoods are gaining population. Because of economic decline and the recent foreclosure crisis, many U.S. cities are demolishing abandoned residential structures to create parcels of vacant land. In some cities, weak housing markets have, or will likely, recover in the near term, and these parcels will be redeveloped. However, in other cities, large numbers of abandoned parcels have no significant market value and no likelihood of near-term redevelopment. The creation of these vacated green spaces could offer opportunities to preserve declining species, restore ecosystem functions, and support diverse ecosystem services. Arthropods are an important indicator of the ability of urban vacant land to serve multiple functions, from conservation to food production. Across Europe, vacant lands have been found to support a diversity of rare species, and similar examinations of arthropods within this habitat are underway in the United States. In addition, using vacant land as a resource for local food production is growing rapidly worldwide. Arthropods play key roles in the sustainability of food production in cities, and land conversion to farming has been found to influence their community composition and function. A greater focus on quantifying the current ecological value of vacant land and further assessment of how changes in its ecosystem management affect biodiversity and ecosystem processes is clearly needed. Herein, we specifically focus on the role of arthropods in addressing these priorities to advance our ecological understanding of the functional role of vacant land habitats in cities.

  10. Selected examples of dispersal of arthropods associated with agricultural crop and animal production

    Science.gov (United States)

    Henneberry, T. J.

    1979-01-01

    The economic importance of arthropods in agricultural production systems and the possibilities of using dispersal behavior to develop and manipulate control are examined. Examples of long and short distance dispersal of economic insect pests and beneficial species from cool season host reservoirs and overwintering sites are presented. Significant dispersal of these species often occurring during crop and animal production is discussed.

  11. Arthropod abundance and seasonal bird use of bottomland forest harvest gaps

    Science.gov (United States)

    Christopher E. Moorman; Liessa T. Woen; John C. Kilgo; James L. Hanula; Scott Horn; Michael D. Ulyshen

    2012-01-01

    We investigated the influence of arthropod abundance and vegetation structure on shifts in avian use of canopy gap, gap edge, and surrounding forest understory in a bottomland hardwood forest in the Upper Coastal Plain of South Carolina. We compared captures of foliage-gleaning birds among locations during four periods (spring migration, breeding, post-breeding, and...

  12. Insects and related arthropods associated with greenleaf manzanita in montane chaparral communities of northeastern California

    Science.gov (United States)

    Michael A. Valenti; George T. Ferrell; Alan A. Berryman

    1997-01-01

    Specimens representing 19 orders and 169 arthropod families (mostly insects) were collected from greenleaf manzanita brushfields in northeastern California and identified to species whenever possible. More than500 taxa below the family level were inventoried, and each listing includes relative frequency of encounter, life stages collected, and dominant role in the...

  13. Arthropod vertical stratification in temperate deciduous forests: Implications for conservation oriented management

    Science.gov (United States)

    Ulyshen Michael

    2011-01-01

    Studies on the vertical distribution patterns of arthropods in temperate deciduous forests reveal highly stratified (i.e., unevenly vertically distributed) communities. These patterns are determined by multiple factors acting simultaneously, including: (1) time (forest age, season, time of day); (2) forest structure (height, vertical foliage complexity, plant surface...

  14. Somatic and Germline Diversification of a Putative Immunoreceptor within One Phylum: Dscam in Arthropods.

    Science.gov (United States)

    Brites, Daniela; Du Pasquier, Louis

    2015-01-01

    Arthropod Dscam, the homologue of the human Down Syndrome cell adhesion molecule, is a receptor used by the nervous and immune systems. Unlike in vertebrates, evolutionary pressure has selected and maintained a vast Dscam diversity of isoforms, known to specifying neuronal identity during the nervous system differentiation. This chapter examines the different modes of Dscam diversification in the context of arthropods' evolution and that of their immune system, where its role is controversial. In the single Dscam gene of insects and crustaceans, mutually exclusive alternative splicing affects three clusters of duplicated exons encoding the variable parts of the receptor. The Dscam gene produces over 10,000 isoforms. In the more basal arthropods such as centipedes, Dscam diversity results from a combination of many germline genes (over 80) with, in about half of those, the possibility of alternative splicing affecting only one exon cluster. In the even more basal arthropods, such as chelicerates, no splicing possibility is detected, but there exist dozens of germline Dscam genes. Compared to controlling the expression of multiple germline genes, the somatic mutually alternative splicing within a single gene may offer a simplified way of expressing a large Dscam repertoire. Expressed by hemocytes, Dscam is considered a phagocytic receptor but is also encountered in solution. More information is necessary about its binding to pathogens, its role in phagocytosis, its possible role in specifying hemocyte identity, its kinetics of expression, and the regulation of its RNA splicing to understand how its diversity is linked to immunity.

  15. Water vapor absorption in arthropods by accumulation of myoinositol and glucose

    DEFF Research Database (Denmark)

    Bayley, Mark; Holmstrup

    1999-01-01

    Hydrophilic soil arthropods have been thought to respond to soil desiccation exclusively by migrating to deeper soil layers. Numerous studies have shown that their survival below 90 percent relative humidity dry weight, is limited to hours. However, little attention has been paid to physiological...

  16. The Hunsrück biota: A unique window into the ecology of Lower Devonian arthropods.

    Science.gov (United States)

    Rust, Jes; Bergmann, Alexandra; Bartels, Christoph; Schoenemann, Brigitte; Sedlmeier, Stephanie; Kühl, Gabriele

    2016-03-01

    The approximately 400-million-year old Hunsrück biota provides a unique window into Devonian marine life. Fossil evidence suggests that this biota was dominated by echinoderms and various classes of arthropods, including Trilobita, stem lineage representatives of Euarthropoda, Chelicerata and Eucrustacea, as well as several crown group Chelicerata and Eucrustacea. The Hunsrück biota's exceptional preservation allows detailed reconstructions and description of key-aspects of its fauna's functional morphologies thereby revealing modes of locomotion, sensory perception, and feeding strategies. Morphological and stratigraphic data are used for a critical interpretation of the likely habitats, mode of life and nutritional characteristics of this diverse fauna. Potential predators include pycnogonids and other chelicerates, as well as the now extinct stem arthropods Schinderhannes bartelsi, Cambronatus brasseli and Wingertshellicus backesi. Mainly the deposit feeding Trilobita, Marrellomorpha and Megacheira, such as Bundenbachiellus giganteus, represents scavengers. Possibly, opportunistic scavenging was also performed by the afore-mentioned predators. Most of the studied arthropods appear to have been adapted to living in relatively well-illuminated conditions within the photic zone. Fossil evidence for associations amongst arthropods and other classes of metazoans is reported. These associations provide evidence of likely community structures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Personal Protective Measures Against Insects and Other Arthropods of Military Significance

    Science.gov (United States)

    2009-10-01

    Soft ticks Ornithodorus - Relapsing fever Tsetses Glossina - Trypanosomiasis ( African sleeping sickness...45 Figure 2-27. Skin lesions on the legs caused by human use of flea and tick collars ........................... 47 TG No. 36...Northeast, and upper Midwest; in addition, newly emerging infections such as the human ehrlichioses are now posing further hazards. Nuisance arthropod

  18. Landscape and host plant effects on reproduction by a mobile, polyphagous, multivoltine arthropod herbivore

    Science.gov (United States)

    Landscape factors can significantly influence arthropod natural enemy and herbivore pest populations. The economically important brown stink bug, Euschistus servus, is a native mobile, polyphagous and multivoltine pest of many crops in southeastern USA and understanding the relative influence of loc...

  19. Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods.

    Science.gov (United States)

    Ebeling, Anne; Meyer, Sebastian T; Abbas, Maike; Eisenhauer, Nico; Hillebrand, Helmut; Lange, Markus; Scherber, Christoph; Vogel, Anja; Weigelt, Alexandra; Weisser, Wolfgang W

    2014-01-01

    Loss of plant diversity influences essential ecosystem processes as aboveground productivity, and can have cascading effects on the arthropod communities in adjacent trophic levels. However, few studies have examined how those changes in arthropod communities can have additional impacts on ecosystem processes caused by them (e.g. pollination, bioturbation, predation, decomposition, herbivory). Therefore, including arthropod effects in predictions of the impact of plant diversity loss on such ecosystem processes is an important but little studied piece of information. In a grassland biodiversity experiment, we addressed this gap by assessing aboveground decomposer and herbivore communities and linking their abundance and diversity to rates of decomposition and herbivory. Path analyses showed that increasing plant diversity led to higher abundance and diversity of decomposing arthropods through higher plant biomass. Higher species richness of decomposers, in turn, enhanced decomposition. Similarly, species-rich plant communities hosted a higher abundance and diversity of herbivores through elevated plant biomass and C:N ratio, leading to higher herbivory rates. Integrating trophic interactions into the study of biodiversity effects is required to understand the multiple pathways by which biodiversity affects ecosystem functioning.

  20. Cross-species transmission of honey bee viruses in associated arthropods.

    Science.gov (United States)

    Levitt, Abby L; Singh, Rajwinder; Cox-Foster, Diana L; Rajotte, Edwin; Hoover, Kelli; Ostiguy, Nancy; Holmes, Edward C

    2013-09-01

    There are a number of RNA virus pathogens that represent a serious threat to the health of managed honey bees (Apis mellifera). That some of these viruses are also found in the broader pollinator community suggests the wider environmental spread of these viruses, with the potential for a broader impact on ecosystems. Studies on the ecology and evolution of these viruses in the arthropod community as a whole may therefore provide important insights into these potential impacts. We examined managed A. mellifera colonies, nearby non-Apis hymenopteran pollinators, and other associated arthropods for the presence of five commonly occurring picorna-like RNA viruses of honey bees - black queen cell virus, deformed wing virus, Israeli acute paralysis virus, Kashmir bee virus and sacbrood virus. Notably, we observed their presence in several arthropod species. Additionally, detection of negative-strand RNA using strand-specific RT-PCR assays for deformed wing virus and Israeli acute paralysis virus suggests active replication of deformed wing virus in at least six non-Apis species and active replication of Israeli acute paralysis virus in one non-Apis species. Phylogenetic analysis of deformed wing virus also revealed that this virus is freely disseminating across the species sampled in this study. In sum, our study indicates that these viruses are not specific to the pollinator community and that other arthropod species have the potential to be involved in disease transmission in pollinator populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Charge movement and depolarization-contraction coupling in arthropod vs. vertebrate skeletal muscle.

    OpenAIRE

    Scheuer, T; Gilly, W F

    1986-01-01

    Voltage-dependent charge movement has been characterized in arthropod skeletal muscle. Charge movement in scorpion (Centuroides sculpturatus) muscle is distinguishable from that in vertebrate skeletal muscle by criteria of kinetics, voltage dependence, and pharmacology. The function of scorpion charge movement is gating of calcium channels in the sarcolemma, and depolarization-contraction coupling relies on calcium influx through these channels.

  2. Charge movement and depolarization-contraction coupling in arthropod vs. vertebrate skeletal muscle.

    Science.gov (United States)

    Scheuer, T; Gilly, W F

    1986-11-01

    Voltage-dependent charge movement has been characterized in arthropod skeletal muscle. Charge movement in scorpion (Centuroides sculpturatus) muscle is distinguishable from that in vertebrate skeletal muscle by criteria of kinetics, voltage dependence, and pharmacology. The function of scorpion charge movement is gating of calcium channels in the sarcolemma, and depolarization-contraction coupling relies on calcium influx through these channels.

  3. Arthropod-borne flaviviruses and RNA interference : seeking new approaches for antiviral therapy

    NARCIS (Netherlands)

    Diosa-Toro, Mayra; Urcuqui-Inchima, Silvio; Smit, Jolanda M

    2013-01-01

    Flaviviruses are the most prevalent arthropod-borne viruses worldwide, and nearly half of the 70 Flavivirus members identified are human pathogens. Despite the huge clinical impact of flaviviruses, there is no specific human antiviral therapy available to treat infection with any of the

  4. ABC transporters in Arthropods: genomic comparison and role in insecticide transport and resistance

    NARCIS (Netherlands)

    Dermauw, W.; Van Leeuwen, T.

    2014-01-01

    About a 100 years ago, the Drosophila white mutant marked the birth of Drosophila genetics. The white gene turned out to encode the first well studied ABC transporter in arthropods. The ABC gene family is now recognized as one of the largest transporter families in all kingdoms of life. The majority

  5. Pheromone-mediated aggregation in nonsocial arthropods : An evolutionary ecological perspective

    NARCIS (Netherlands)

    Wertheim, B; van Baalen, EJA; Dicke, M; Vet, LEM

    2005-01-01

    Although the use of aggregation pheromones has been reported for hundreds of nonsocial arthropod species, the evolutionary ecological aspects of this behavior have received little attention. Despite the elaborate literature on mechanisms. robust data on costs and benefits of aggregation pheromones

  6. Relationships between dead wood and arthropods in the Southeastern United States.

    Energy Technology Data Exchange (ETDEWEB)

    Ulyshen, Michael, Darragh

    2009-05-01

    The importance of dead wood to maintaining forest diversity is now widely recognized. However, the habitat associations and sensitivities of many species associated with dead wood remain unknown, making it difficult to develop conservation plans for managed forests. The purpose of this research, conducted on the upper coastal plain of South Carolina, was to better understand the relationships between dead wood and arthropods in the southeastern United States. In a comparison of forest types, more beetle species emerged from logs collected in upland pine-dominated stands than in bottomland hardwood forests. This difference was most pronounced for Quercus nigra L., a species of tree uncommon in upland forests. In a comparison of wood postures, more beetle species emerged from logs than from snags, but a number of species appear to be dependent on snags including several canopy specialists. In a study of saproxylic beetle succession, species richness peaked within the first year of death and declined steadily thereafter. However, a number of species appear to be dependent on highly decayed logs, underscoring the importance of protecting wood at all stages of decay. In a study comparing litter-dwelling arthropod abundance at different distances from dead wood, arthropods were more abundant near dead wood than away from it. In another study, grounddwelling arthropods and saproxylic beetles were little affected by large-scale manipulations of dead wood in upland pine-dominated forests, possibly due to the suitability of the forests surrounding the plots.

  7. Weeds as viable habitat for arthropod species in croplands of central Punjab

    International Nuclear Information System (INIS)

    Ruby, T.; Rana, S.A.; Rana, N.; Inayat, T.P.

    2011-01-01

    Weeds are considered a limiting factor of crop production. Simultaneously, these non-crop plants are a portion of the agricultural ecosystem and play an essential role as viable habitat for many organisms, including bio-control agents. Utilizing the quadrate method, sugarcane, fodder, wheat and mustard croplands were sampled for one year to determine the weed flora and arthropods living among it. Twenty weed species and eight major arthropod orders were found to be present. The majority of the weed plants were broad-leaved, while some were grass-like. A review of literature on Central Punjab weeds uncovered depicted a considerable change in the weed flora over few decades. This could be related to the intensive and extensive farming in the area, which has this increased over the few decades along with the construction of an extensive irrigation canal system. These alterations may have caused drastic changes in the soil structure and climate of the region. Most of the phytophagous arthropod species used weed plants as food. In turn, these were fed upon by a few zoophagous arthropod species that also utilized the weeds for shelter and oviposition. Thus, weeds have a specific role within the agro-ecosystem by supporting local biodiversity. (author)

  8. The Physics of Polarization

    Science.gov (United States)

    Landi Degl'Innocenti, Egidio

    2015-10-01

    The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.

  9. Inherited microbial symbionts increase herbivore abundances and alter arthropod diversity on a native grass.

    Science.gov (United States)

    Faeth, Stanley H; Shochat, Eyal

    2010-05-01

    Some microbial symbionts of plants are maternally inherited and thus functionally increase genetic and phenotypic variation within plant populations. This variation, coupled with that of the host plant and environment, may alter abundances, diversity, and trophic structure of associated plant and animal communities. Fungal endophytes in the genus Neotyphodium are vertically transmitted, asexual microbial symbionts of grasses that remain asymptomatic and rely upon their hosts for resources and transmission via seeds, often providing benefits to their hosts, including protection against herbivores. Endophyte infections may influence associated arthropod communities in agronomic grasses, but the long-term effects of endophytes and variation in host genotype and resource availability on arthropod communities in native grass populations are unknown. We conducted a long-term field experiment with four maternal genotypes of an infected (E+) native grass (Festuca arizonica) from whence the endophyte was experimentally removed (E-) and water availability was controlled, to test the effects of infection, plant genotype, and resources on abundances, biomass, diversity (richness and evenness), and trophic structure of the arthropod community. Generally, E+ grasses harbored more arthropods, including more herbivores, predators, and detritivores, suggesting that the effects of endophytes cascaded upward through trophic levels in terms of abundances, at least in early ontogeny of the host. That E+ plants harbored more herbivorous insects than E- plants suggests that infection does not increase but instead decreases resistance to herbivores, contrary to prevailing concepts of endophytes as defensive mutualists. Infection did not alter overall species richness of the arthropod community or richness of herbivores but reduced natural enemy richness, especially that of parasites, and increased richness of detritivores. Reduced richness and shifts in evenness of natural enemies on E

  10. Measurement of the terrestrial magnetic field and its anomalies; Mesures du champ magnetique terrestre et de ses anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Duret, D.

    1994-12-31

    After a presentation of the terrestrial magnetic field and its various anomalies, the different types of magnetometers commonly used are reviewed with their characteristics and performances: scalar magnetometers (free precession and continuous polarization proton magnetometers, dynamic polarization proton magnetometers, optical pumping magnetometers, electronic resonance scalar magnetometers (without pumping)); vectorial magnetometers (flux gate magnetometers, induction magnetometers, suspended magnet magnetometers, superconducting magnetometers, integrated magnetometers, resonance directional magnetometers). The magnetometry market and applications are discussed. 20 figs., 9 tabs., 72 refs.

  11. Regulatory mechanisms of group distributions in a gregarious arthropod

    Science.gov (United States)

    Broly, Pierre; Mullier, Romain; Devigne, Cédric; Deneubourg, Jean-Louis

    2015-01-01

    In a patchy environment, how social animals manage conspecific and environmental cues in their choice of habitat is a leading issue for understanding their spatial distribution and their exploitation of resources. Here, we experimentally tested the effects of environmental heterogeneities (artificial shelters) and some of their characteristics (size and fragmentation) on the aggregation process of a common species of terrestrial isopod (Crustacea). One hundred individuals were introduced into three different heterogeneous set-ups and in a homogeneous set-up. In the four set-ups, the populations split into two aggregates: one large (approx. 70 individuals) and one smaller (approx. 20 individuals). These aggregates were not randomly distributed in the arena but were formed diametrically opposite from one another. The similarity of the results among the four set-ups shows that under experimental conditions, the environmental heterogeneities have a low impact on the aggregation dynamics and spatial patterns of the isopod, merely serving to increase the probability of nucleation of the larger aggregation at these points. By contrast, the regulation of aggregate sizes and the regular distribution of groups are signatures of local amplification processes, in agreement with the short-range activator and long-range inhibitor model (scale-dependent feedbacks). In other words, we show how small-scale interactions may govern large-scale spatial patterns. This experimental illustration of spatial self-organization is an important step towards comprehension of the complex game of competition among groups in social species. PMID:26715999

  12. Habitat connectivity shapes urban arthropod communities: the key role of green roofs.

    Science.gov (United States)

    Braaker, S; Ghazoul, J; Obrist, M K; Moretti, M

    2014-04-01

    The installation of green roofs, defined here as rooftops with a shallow soil cover and extensive vegetation, has been proposed as a possible measure to mitigate the loss of green space caused by the steady growth of cities. However, the effectiveness of green roofs in supporting arthropod communities, and the extent to which they facilitate connectivity of these communities within the urban environment is currently largely unknown. We investigated the variation of species community composition (beta diversity) of four arthropod groups with contrasting mobility (Carabidae, Araneae, Curculionidae, and Apidae) on 40 green roofs and 40 extensively managed green sites on the ground in the city of Zurich, Switzerland. With redundancy analysis and variation partitioning, we (1) disentangled the relative importance of local environmental conditions, the surrounding land cover composition, and habitat connectivity on species community composition, (2) searched for specific spatial scales of habitat connectivity for the different arthropod groups, and (3) discussed the ecological and functional value of green roofs in cities. Our study revealed that on green roofs community composition of high-mobility arthropod groups (bees and weevils) were mainly shaped by habitat connectivity, while low-mobility arthropod groups (carabids and spiders) were more influenced by local environmental conditions. A similar but less pronounced pattern was found for ground communities. The high importance of habitat connectivity in shaping high-mobility species community composition indicates that these green roof communities are substantially connected by the frequent exchange of individuals among surrounding green roofs. On the other hand, low-mobility species communities on green roofs are more likely connected to ground sites than to other green roofs. The integration of green roofs in urban spatial planning strategies has great potential to enable higher connectivity among green spaces, so

  13. Comparative Genomics Reveals the Origins and Diversity of Arthropod Immune Systems

    Science.gov (United States)

    Palmer, William J.; Jiggins, Francis M.

    2015-01-01

    Insects are an important model for the study of innate immune systems, but remarkably little is known about the immune system of other arthropod groups despite their importance as disease vectors, pests, and components of biological diversity. Using comparative genomics, we have characterized the immune system of all the major groups of arthropods beyond insects for the first time—studying five chelicerates, a myriapod, and a crustacean. We found clear traces of an ancient origin of innate immunity, with some arthropods having Toll-like receptors and C3-complement factors that are more closely related in sequence or structure to vertebrates than other arthropods. Across the arthropods some components of the immune system, such as the Toll signaling pathway, are highly conserved. However, there is also remarkable diversity. The chelicerates apparently lack the Imd signaling pathway and beta-1,3 glucan binding proteins—a key class of pathogen recognition receptors. Many genes have large copy number variation across species, and this may sometimes be accompanied by changes in function. For example, we find that peptidoglycan recognition proteins have frequently lost their catalytic activity and switch between secreted and intracellular forms. We also find that there has been widespread and extensive duplication of the cellular immune receptor Dscam (Down syndrome cell adhesion molecule), which may be an alternative way to generate the high diversity produced by alternative splicing in insects. In the antiviral short interfering RNAi pathway Argonaute 2 evolves rapidly and is frequently duplicated, with a highly variable copy number. Our results provide a detailed analysis of the immune systems of several important groups of animals for the first time and lay the foundations for functional work on these groups. PMID:25908671

  14. Trophic phylogenetics: evolutionary influences on body size, feeding, and species associations in grassland arthropods.

    Science.gov (United States)

    Lind, Eric M; Vincent, John B; Weiblen, George D; Cavender-Bares, Jeannine; Borer, Elizabeth T

    2015-04-01

    Contemporary animal-plant interactions such as herbivory are widely understood to be shaped by evolutionary history. Yet questions remain about the role of plant phylogenetic diversity in generating and maintaining herbivore diversity, and whether evolutionary relatedness of producers might predict the composition of consumer communities. We tested for evidence of evolutionary associations among arthropods and the plants on which they were found, using phylogenetic analysis of naturally occurring arthropod assemblages sampled from a plant-diversity manipulation experiment. Considering phylogenetic relationships among more than 900 arthropod consumer taxa and 29 plant species in the experiment, we addressed several interrelated questions. First, our results support the hypothesis that arthropod functional traits such as body size and trophic role are phylogenetically conserved in community ecological samples. Second, herbivores tended to cooccur with closer phylogenetic relatives than would be expected at random, whereas predators and parasitoids did not show phylogenetic association patterns. Consumer specialization, as measured by association through time with monocultures of particular host plant species, showed significant phylogenetic signal, although the. strength of this association varied among plant species. Polycultures of phylogenetically dissimilar plant species supported more phylogenetically dissimilar consumer communities than did phylogenetically similar polycultures. Finally, we separated the effects of plant species richness and relatedness in predicting the phylogenetic distribution of the arthropod assemblages in this experiment. The phylogenetic diversity of plant communities predicted the phylogenetic diversity of herbivore communities even after accounting for plant species richness. The phylogenetic diversity of secondary consumers differed by guild, with predator phylogenetic diversity responding to herbivore relatedness, while parasitoid

  15. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance.

    Science.gov (United States)

    Dermauw, Wannes; Van Leeuwen, Thomas

    2014-02-01

    About a 100 years ago, the Drosophila white mutant marked the birth of Drosophila genetics. The white gene turned out to encode the first well studied ABC transporter in arthropods. The ABC gene family is now recognized as one of the largest transporter families in all kingdoms of life. The majority of ABC proteins function as primary-active transporters that bind and hydrolyze ATP while transporting a large diversity of substrates across lipid membranes. Although extremely well studied in vertebrates for their role in drug resistance, less is known about the role of this family in the transport of endogenous and exogenous substances in arthropods. The ABC families of five insect species, a crustacean and a chelicerate have been annotated in some detail. We conducted a thorough phylogenetic analysis of the seven arthropod and human ABC protein subfamilies, to infer orthologous relationships that might suggest conserved function. Most orthologous relationships were found in the ABCB half transporter, ABCD, ABCE and ABCF subfamilies, but specific expansions within species and lineages are frequently observed and discussed. We next surveyed the role of ABC transporters in the transport of xenobiotics/plant allelochemicals and their involvement in insecticide resistance. The involvement of ABC transporters in xenobiotic resistance in arthropods is historically not well documented, but an increasing number of studies using unbiased differential gene expression analysis now points to their importance. We give an overview of methods that can be used to link ABC transporters to resistance. ABC proteins have also recently been implicated in the mode of action and resistance to Bt toxins in Lepidoptera. Given the enormous interest in Bt toxicology in transgenic crops, such findings will provide an impetus to further reveal the role of ABC transporters in arthropods. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Winter predation by insectivorous birds and consequences for arthropods and plants in summer.

    Science.gov (United States)

    Barber, Nicholas A; Wouk, Jennifer

    2012-12-01

    Top-down effects of predators can have important consequences for ecosystems. Insectivorous birds frequently have strong predation effects on herbivores and other arthropods, as well as indirect effects on herbivores' host plants. Diet studies have shown that birds in temperate ecosystems consume arthropods in winter as well as in summer, but experimental studies of bird predation effects have not attempted to quantitatively separate winter predation impacts from those in summer. To understand if winter foraging by insectivorous birds has consequences for arthropods or plants, we performed a meta-analysis of published bird exclusion studies in temperate forest and shrubland habitats. We categorized 85 studies from 41 publications by whether birds were excluded year-round or only in summer, and analyzed arthropod and plant response variables. We also performed a manipulative field experiment in which we used a factorial design to exclude birds from Quercus velutina Lam. saplings in winter and summer, and censused arthropods and herbivore damage in the following growing season. In the meta-analysis, birds had stronger negative effects on herbivores in studies that included winter exclusion, and this effect was not due to study duration. However, this greater predation effect did not translate to a greater impact on plant damage or growth. In the field experiment, winter exclusion did not influence herbivore abundance or their impacts on plants. We have shown that winter feeding by temperate insectivorous birds can have important consequences for insect herbivore populations, but the strength of these effects may vary considerably among ecosystems. A full understanding of the ecological roles of insectivorous birds will require explicit consideration of their foraging in the non-growing season, and we make recommendations for how future studies can address this.

  17. Seasonal abundance of soil arthropods in relation to meteorological and edaphic factors in the agroecosystems of Faisalabad, Punjab, Pakistan

    Science.gov (United States)

    Shakir, Muhammad Mussadiq; Ahmed, Sohail

    2015-05-01

    Soil arthropods are an important component of agroecosystems, contributing significantly to their biodiversity and functioning. However, seasonal patterns, population dynamics, and significant roles of these soil arthropods in improvement of soil structures and functions are influenced by many factors. The objective of the current study was to investigate soil arthropod abundance in relation to a blend of meteorological and edaphic factors and to find out the difference in abundance among various crops (sugarcane, cotton, wheat, alfalfa fodder, and citrus orchards). The arthropod sampling was done by pitfall traps and Tullgren extractions on fortnightly intervals. Soil temperature and relative humidity were noted on the field sites while analysis for soil pH, organic matter, and soil moisture contents were done in the laboratory. The rainfall data was obtained from an observatory. Results showed that significant differences were found in soil arthropod abundance across different sampling months and crops. Out of total 13,673 soil arthropods sampled, 38 % belonged to Collembola, followed by 15 % Hymenoptera, 15 % Acarina, 11 % Myriapods, 6 % Coleoptera, 5 % Orthoptera, and 5 % Araneae. Mean abundance per sample was highest in summer months as compared to winter. Overall abundance per sample was significantly different between all crops ( p Aranae, Coleoptera), least abundant (Dermaptera, Hemiptera, Diptera), and rare (Blattaria, Isoptera, Diplura, Lepidoptera). Soil temperature and soil organic matter showed significant positive correlation with abundance, while relative humidity was significantly negatively correlated. Soil moisture and soil pH showed no significant correlations while no correlation was found with total rainfall. PCA analysis revealed that soil surface arthropods were the major contributors of variation in overall abundance in extreme temperature months while microarthropods in low-temperature months. CCA analysis revealed the occurrence of

  18. Marine and terrestrial herbivores display convergent chemical ecology despite 400 million years of independent evolution.

    Science.gov (United States)

    Rasher, Douglas B; Stout, E Paige; Engel, Sebastian; Shearer, Tonya L; Kubanek, Julia; Hay, Mark E

    2015-09-29

    Chemical cues regulate key ecological interactions in marine and terrestrial ecosystems. They are particularly important in terrestrial plant-herbivore interactions, where they mediate both herbivore foraging and plant defense. Although well described for terrestrial interactions, the identity and ecological importance of herbivore foraging cues in marine ecosystems remain unknown. Here we show that the specialist gastropod Elysia tuca hunts its seaweed prey, Halimeda incrassata, by tracking 4-hydroxybenzoic acid to find vegetative prey and the defensive metabolite halimedatetraacetate to find reproductive prey. Foraging cues were predicted to be polar compounds but instead were nonpolar secondary metabolites similar to those used by specialist terrestrial insects. Tracking halimedatetraacetate enables Elysia to increase in abundance by 12- to 18-fold on reproductive Halimeda, despite reproduction in Halimeda being rare and lasting for only ∼36 h. Elysia swarm to reproductive Halimeda where they consume the alga's gametes, which are resource rich but are chemically defended from most consumers. Elysia sequester functional chloroplasts and halimedatetraacetate from Halimeda to become photosynthetic and chemically defended. Feeding by Elysia suppresses the growth of vegetative Halimeda by ∼50%. Halimeda responds by dropping branches occupied by Elysia, apparently to prevent fungal infection associated with Elysia feeding. Elysia is remarkably similar to some terrestrial insects, not only in its hunting strategy, but also its feeding method, defense tactics, and effects on prey behavior and performance. Such striking parallels indicate that specialist herbivores in marine and terrestrial systems can evolve convergent ecological strategies despite 400 million years of independent evolution in vastly different habitats.

  19. Terrestrial ecosystems under warmer and drier climates

    Science.gov (United States)

    Pan, Y.

    2016-12-01

    Future warmer and drier climates will likely affect many of the world's terrestrial ecosystems. These changes will fundamentally reshape terrestrial systems through their components and across organization levels. However, it is unclear to what extent terrestrial ecosystems would be resilient enough to stay put to increased temperature and water stress by only adjusting carbon fluxes and water balances? And to what extent it would reach the thresholds at which terrestrial ecosystems were forced to alter species compositions and ecosystem structures for adapting to newer climates? The energy balance of terrestrial ecosystems link thermal and water conditions to defines terrestrial carbon processes and feedbacks to climate, which will inevitably change under warmer and drier climates. Recent theoretical studies provide a new framework, suggesting that terrestrial ecosystems were capable of balancing costs of carbon gain and water transport to achieve optimums for functioning and distribution. Such a paradigm is critical for understanding the dynamics of future terrestrial ecosystems under climate changes, and facilitate modeling terrestrial ecosystems which needs generalized principles for formulating ecosystem behaviors. This study aims to review some recent studies that explore responses of terrestrial ecosystems to rather novel climate conditions, such as heat-induced droughts, intending to provide better comprehension of complex carbon-water interactions through plants to an ecosystem, and relevant factors that may alleviate or worsen already deteriorated climates such as elevated CO2 and soil conditions.

  20. Groundwater and Terrestrial Water Storage

    Science.gov (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2014-01-01

    Terrestrial water storage (TWS) comprises groundwater, soil moisture, surface water, snow,and ice. Groundwater typically varies more slowly than the other TWS components because itis not in direct contact with the atmosphere, but often it has a larger range of variability onmultiannual timescales (Rodell and Famiglietti, 2001; Alley et al., 2002). In situ groundwaterdata are only archived and made available by a few countries. However, monthly TWSvariations observed by the Gravity Recovery and Climate Experiment (GRACE; Tapley et al.,2004) satellite mission, which launched in 2002, are a reasonable proxy for unconfinedgroundwater at climatic scales.

  1. [Review] Polarization and Polarimetry

    Science.gov (United States)

    Trippe, Sascha

    2014-02-01

    Polarization is a basic property of light and is fundamentally linked to the internal geometry of a source of radiation. Polarimetry complements photometric, spectroscopic, and imaging analyses of sources of radiation and has made possible multiple astrophysical discoveries. In this article I review (i) the physical basics of polarization: electromagnetic waves, photons, and parameterizations; (ii) astrophysical sources of polarization: scattering, synchrotron radiation, active media, and the Zeeman, Goldreich-Kylafis, and Hanle effects, as well as interactions between polarization and matter (like birefringence, Faraday rotation, or the Chandrasekhar-Fermi effect); (iii) observational methodology: on-sky geometry, influence of atmosphere and instrumental polarization, polarization statistics, and observational techniques for radio, optical, and X/γ wavelengths; and (iv) science cases for astronomical polarimetry: solar and stellar physics, planetary system bodies, interstellar matter, astrobiology, astronomical masers, pulsars, galactic magnetic fields, gamma-ray bursts, active galactic nuclei, and cosmic microwave background radiation.

  2. Polarization feedback laser stabilization

    Science.gov (United States)

    Esherick, P.; Owyoung, A.

    1987-09-28

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other. 4 figs.

  3. Polarization in Sagittarius A*

    OpenAIRE

    Bower, Geoffrey C.

    2000-01-01

    We summarize the current state of polarization observations of Sagittarius A*, the compact radio source and supermassive black hole candidate in the Galactic Center. These observations are providing new tools for understanding accretion disks, jets and their environments. Linear polarization observations have shown that Sgr A* is unpolarized at frequencies as high as 86 GHz. However, recent single-dish observations indicate that Sgr A* may have strong linear polarization at frequencies higher...

  4. Comparative Climatology of Terrestrial Planets

    Science.gov (United States)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    Public awareness of climate change on Earth is currently very high, promoting significant interest in atmospheric processes. We are fortunate to live in an era where it is possible to study the climates of many planets, including our own, using spacecraft and groundbased observations as well as advanced computational power that allows detailed modeling. Planetary atmospheric dynamics and structure are all governed by the same basic physics. Thus differences in the input variables (such as composition, internal structure, and solar radiation) among the known planets provide a broad suite of natural laboratory settings for gaining new understanding of these physical processes and their outcomes. Diverse planetary settings provide insightful comparisons to atmospheric processes and feedbacks on Earth, allowing a greater understanding of the driving forces and external influences on our own planetary climate. They also inform us in our search for habitable environments on planets orbiting distant stars, a topic that was a focus of Exoplanets, the preceding book in the University of Arizona Press Space Sciences Series. Quite naturally, and perhaps inevitably, our fascination with climate is largely driven toward investigating the interplay between the early development of life and the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Our purpose for this book is to set forth the foundations for this emerging science and to bring to the forefront our current understanding of atmospheric formation and climate evolution. Although there is significant comparison to be made to atmospheric processes on nonterrestrial planets in our solar system — the gas and ice giants — here we focus on the terrestrial planets, leaving even broader comparisons

  5. Characterization of polar organics in airborne particulate matter

    Science.gov (United States)

    Yokouchi, Y.; Ambe, Y.

    The methanol-extractable highly polar organics in atmospheric aerosol were characterized using GC-MS. Dicarboxylic acids having 2-16 carbon numbers were detected with a total concentration of 172 ng m -3. Azelaic acid ( C9) was the most abundant diacid and it possibly originated from the ozonolysis of unsaturated carboxylic acids such as oleic acid and linoleic acid, which mainly originate from terrestrial plants. A compound, which was tentatively identified as tetrahydrofuroic acid, contributed to about 10% of the highly polar organics. Other polyfunctional compounds found in the samples included some ketocarboxylic acids and aromatic acids such as phthalic acids, anisic acid and vanillic acid.

  6. Airborne Laser Polarization Sensor

    Science.gov (United States)

    Kalshoven, James, Jr.; Dabney, Philip

    1991-01-01

    Instrument measures polarization characteristics of Earth at three wavelengths. Airborne Laser Polarization Sensor (ALPS) measures optical polarization characteristics of land surface. Designed to be flown at altitudes of approximately 300 m to minimize any polarizing or depolarizing effects of intervening atmosphere and to look along nadir to minimize any effects depending on look angle. Data from measurements used in conjunction with data from ground surveys and aircraft-mounted video recorders to refine mathematical models used in interpretation of higher-altitude polarimetric measurements of reflected sunlight.

  7. Polarization at SLC

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-07-01

    The SLAC Linear Collider has been designed to readily accommodate polarized electron beams. Considerable effort has been made to implement a polarized source, a spin rotation system, and a system to monitor the beam polarization. Nearly all major components have been fabricated. At the current time, several source and polarimeter components have been installed. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. It is expected that a beam polarization of 45% will be achieved with no loss in luminosity. 13 refs., 15 figs

  8. Terrestrial Zone Exoplanets and Life

    Science.gov (United States)

    Matthews, Brenda

    2018-01-01

    One of the most exciting results from ALMA has been the detection of significant substructure within protoplanetary disks that can be linked to planet formation processes. For the first time, we are able to observe the process of assembly of material into larger bodies within such disks. It is not possible, however, for ALMA to probe the growth of planets in protoplanetary disks at small radii, i.e., in the terrestrial zone, where we expect rocky terrestrial planets to form. In this regime, the optical depths prohibit observation at the high frequencies observed by ALMA. To probe the effects of planet building processes and detect telltale gaps and signatures of planetary mass bodies at such small separations from the parent star, we require a facility of superior resolution and sensitivity at lower frequencies. The ngVLA is just such a facility. We will present the fundamental science that will be enabled by the ngVLA in protoplanetary disk structure and the formation of planets. In addition, we will discuss the potential for an ngVLA facility to detect the molecules that are the building blocks of life, reaching limits well beyond those reachable with the current generation of telescopes, and also to determine whether such planets will be habitable based on studies of the impact of stars on their nearest planetary neighbours.

  9. Habitat connectivity and local conditions shape taxonomic and functional diversity of arthropods on green roofs.

    Science.gov (United States)

    Braaker, Sonja; Obrist, Martin Karl; Ghazoul, Jaboury; Moretti, Marco

    2017-05-01

    Increasing development of urban environments creates high pressure on green spaces with potential negative impacts on biodiversity and ecosystem services. There is growing evidence that green roofs - rooftops covered with vegetation - can contribute mitigate the loss of urban green spaces by providing new habitats for numerous arthropod species. Whether green roofs can contribute to enhance taxonomic and functional diversity and increase connectivity across urbanized areas remains, however, largely unknown. Furthermore, only limited information is available on how environmental conditions shape green roof arthropod communities. We investigated the community composition of arthropods (Apidae, Curculionidae, Araneae and Carabidae) on 40 green roofs and 40 green sites at ground level in the city of Zurich, Switzerland. We assessed how the site's environmental variables (such as area, height, vegetation, substrate and connectivity among sites) affect species richness and functional diversity using generalized linear models. We used an extension of co-inertia analysis (RLQ) and fourth-corner analysis to highlight the mechanism underlying community assemblages across taxonomic groups on green roof and ground communities. Species richness was higher at ground-level sites, while no difference in functional diversity was found between green roofs and ground sites. Green roof arthropod diversity increased with higher connectivity and plant species richness, irrespective of substrate depth, height and area of green roofs. The species trait analysis reviewed the mechanisms related to the environmental predictors that shape the species assemblages of the different taxa at ground and roof sites. Our study shows the important contribution of green roofs in maintaining high functional diversity of arthropod communities across different taxonomic groups, despite their lower species richness compared with ground sites. Species communities on green roofs revealed to be characterized

  10. SEM characterization of anatomical variation in chitin organization in insect and arthropod cuticles.

    Science.gov (United States)

    Chandran, Rakkiyappan; Williams, Lee; Hung, Albert; Nowlin, Kyle; LaJeunesse, Dennis

    2016-03-01

    The cuticles of insects and arthropods have some of the most diverse material properties observed in nature, so much so that it is difficult to imagine that all cutciles are primarily composed of the same two materials: a fibrous chitin network and a matrix composed of cuticle proteins. Various factors contribute to the mechanical and optical properties of an insect or arthropod cuticle including the thickness and composition. In this paper, we also identified another factor that may contribute to the optical, surface, and mechanical properties of a cuticle, i.e. the organization of chitin nanofibers and chitin fiber bundles. Self-assembled chitin nanofibers serve as the foundation for all higher order chitin structures in the cuticles of insects and other arthropods via interactions with structural cuticle proteins. Using a technique that enables the characterization of chitin organization in the cuticle of intact insects and arthropod exoskeletons, we demonstrate a structure/function correlation of chitin organization with larger scale anatomical structures. The chitin scaffolds in cuticles display an extraordinarily diverse set of morphologies that may reflect specific mechanical or physical properties. After removal of the proteinaceous and mineral matrix of a cuticle, we observe using SEM diverse nanoscale and micro scale organization of in-situ chitin in the wing, head, eye, leg, and dorsal and ventral thoracic regions of the periodical cicada Magicicada septendecim and in other insects and arthropods. The organization of chitin also appears to have a significant role in the organization of nanoscale surface structures. While microscale bristles and hairs have long been known to be chitin based materials formed as cellular extensions, we have found a nanostructured layer of chitin in the cuticle of the wing of the dog day annual cicada Tibicen tibicens, which may be the scaffold for the nanocone arrays found on the wing. We also use this process to examine

  11. Changes of arthropod diversity across an altitudinal ecoregional zonation in Northwestern Argentina

    Directory of Open Access Journals (Sweden)

    Andrea X. González-Reyes

    2017-12-01

    Full Text Available This study examined arthropod community patterns over an altitudinal ecoregional zonation that extended through three ecoregions (Yungas, Monte de Sierras y Bolsones, and Puna and two ecotones (Yungas-Monte and Prepuna of Northwestern Argentina (altitudinal range of 2,500 m, and evaluated the abiotic and biotic factors and the geographical distance that could influence them. Pitfall trap and suction samples were taken seasonally in 15 sampling sites (1,500–4,000 m a.s.l during one year. In addition to climatic variables, several soil and vegetation variables were measured in the field. Values obtained for species richness between ecoregions and ecotones and by sampling sites were compared statistically and by interpolation–extrapolation analysis based on individuals at the same sample coverage level. Effects of predictor variables and the similarity of arthropods were shown using non-metric multidimensional scaling, and the resulting groups were evaluated using a multi-response permutation procedure. Polynomial regression was used to evaluate the relationship between altitude with total species richness and those of hyperdiverse/abundant higher taxa and the latter taxa with each predictor variable. The species richness pattern displayed a decrease in species diversity as the elevation increased at the bottom wet part (Yungas of our altitudinal zonation until the Monte, and a unimodal pattern of diversity in the top dry part (Monte, Puna. Each ecoregion and ecotonal zone evidenced a particular species richness and assemblage of arthropods, but the latter ones displayed a high percentage of species shared with the adjacent ecoregions. The arthropod elevational pattern and the changes of the assemblages were explained by the environmental gradient (especially the climate in addition to a geographic gradient (the distance of decay of similarity, demonstrating that the species turnover is important to explain the beta diversity along the

  12. Riparian vegetation in the alpine connectome: Terrestrial-aquatic and terrestrial-terrestrial interactions.

    Science.gov (United States)

    Zaharescu, Dragos G; Palanca-Soler, Antonio; Hooda, Peter S; Tanase, Catalin; Burghelea, Carmen I; Lester, Richard N

    2017-12-01

    Alpine regions are under increased attention worldwide for their critical role in early biogeochemical cycles, their high sensitivity to environmental change, and as repositories of natural resources of high quality. Their riparian ecosystems, at the interface between aquatic and terrestrial environments, play important geochemical functions in the watershed and are biodiversity hotspots, despite a harsh climate and topographic setting. With climate change rapidly affecting the alpine biome, we still lack a comprehensive understanding of the extent of interactions between riparian surface, lake and catchment environments. A total of 189 glacial - origin lakes were surveyed in the Central Pyrenees to test how key elements of the lake and terrestrial environments interact at different scales to shape riparian plant composition. Secondly, we evaluated how underlying ecotope features drive the formation of natural communities potentially sensitive to environmental change and assessed their habitat distribution. At the macroscale, vegetation composition responded to pan-climatic gradients altitude and latitude, which captured in a narrow geographic area the transition between large European climatic zones. Hydrodynamics was the main catchment-scale factor connecting riparian vegetation with major water fluxes, followed by topography and geomorphology. Lake sediment Mg and Pb, and water Mn and Fe contents reflected local influences from mafic bedrock and soil water saturation. Community analysis identified four keystone ecosystems: (i) damp ecotone, (ii) snow bed-silicate bedrock, (iii) wet heath, and (iv) calcareous substrate. These communities and their connections with ecotope elements could be at risk from a number of environmental change factors including warmer seasons, snow line and lowland species advancement, increased nutrient/metal input and water level fluctuations. The results imply important natural terrestrial-aquatic linkages in the riparian environment

  13. The effects of atmospheric nitrogen deposition on terrestrial and freshwater biodiversity

    Science.gov (United States)

    Baron, Jill S.; Barber, Mary C.; Adams, Mark; Agboola, Julius I.; Allen, Edith B.; Bealey, William J.; Bobbink, Roland; Bobrovsky, Maxim V.; Bowman, William D.; Branquinho, Cristina; Bustamente, Mercedes M. C.; Clark, Christopher M.; Cocking, Edward C.; Cruz, Cristina; Davidson, Eric A.; Denmead, O. Tom; Dias, Teresa; Dise, Nancy B.; Feest, Alan; Galloway, James N.; Geiser, Linda H.; Gilliam, Frank S.; Harrison, Ian J.; Khanina, Larisa G.; Lu, Xiankai; Manrique, Esteban; Ochoa-Hueso, Raul; Ometto, Jean P. H. B.; Payne, Richard; Scheuschner, Thomas; Sheppard, Lucy J.; Simpson, Gavin L.; Singh, Y. V.; Stevens, Carly J.; Strachan, Ian; Sverdrup, Harald; Tokuchi, Naoko; van Dobben, Hans; Woodin, Sarah

    2014-01-01

    This chapter reports the findings of a Working Group on how atmospheric nitrogen (N) deposition affects both terrestrial and freshwater biodiversity. Regional and global scale impacts on biodiversity are addressed, together with potential indicators. Key conclusions are that: the rates of loss in biodiversity are greatest at the lowest and initial stages of N deposition increase; changes in species compositions are related to the relative amounts of N, carbon (C) and phosphorus (P) in the plant soil system; enhanced N inputs have implications for C cycling; N deposition is known to be having adverse effects on European and North American vegetation composition; very little is known about tropical ecosystem responses, while tropical ecosystems are major biodiversity hotspots and are increasingly recipients of very high N deposition rates; N deposition alters forest fungi and mycorrhyzal relations with plants; the rapid response of forest fungi and arthropods makes them good indicators of change; predictive tools (models) that address ecosystem scale processes are necessary to address complex drivers and responses, including the integration of N deposition, climate change and land use effects; criteria can be identified for projecting sensitivity of terrestrial and aquatic ecosystems to N deposition. Future research and policy-relevant recommendations are identified.

  14. The Polar Rock Repository: Rescuing Polar Collections for New Research

    Science.gov (United States)

    Grunow, A.

    2016-12-01

    Geological field expeditions in polar regions are logistically difficult, financially expensive and can have a significant environmental impact on pristine regions. The scarcity of outcrop in Antarctica (98% ice-covered) makes previously collected rock samples very valuable to the science community. NSF recognized the need for preserving rock, dredge, and terrestrial core samples from polar areas and created the Polar Rock Repository (PRR). The PRR collection allows for full and open access to both samples and metadata via the PRR website. In addition to the physical samples and their basic metadata, the PRR archives supporting materials from the collector, field notebooks, images of the samples, field maps, air photos, thin sections and any associated bibliography/DOI's. Many of these supporting materials are unique. More than 40,000 samples are available from the PRR for scientific analysis to researchers around the globe. Most of the samples cataloged at the PRR were collected more than 30 years ago, some more than 100 years ago. The rock samples and metadata are made available online through an advanced search engine for the PRR website. This allows scientists to "drill down" into search results using categories and look-up object fields similar to websites like Amazon. Results can be viewed in a table, downloaded as a spreadsheet, or plotted on an interactive map that supports display of satellite imagery and bathymetry layers. Samples can be requested by placing them in the `shopping cart'. These old sample collections have been repeatedly used by scientists from around the world. One data request involved locating coal deposits in Antarctica for a global compilation and another for looking at the redox state of batholithic rocks from the Antarctic Peninsula using magnetic susceptibilities of PRR rocks. Sample usage has also included non-traditional geologic studies, such as a search for monopoles in Cenozoic volcanic samples, and remote sensing

  15. Potential Environmental and Ecological Effects of Global Climate Change on Venomous Terrestrial Species in the Wilderness.

    Science.gov (United States)

    Needleman, Robert K; Neylan, Isabelle P; Erickson, Timothy

    2018-01-29

    Climate change has been scientifically documented, and its effects on wildlife have been prognosticated. We sought to predict the overall impact of climate change on venomous terrestrial species. We hypothesize that given the close relationship between terrestrial venomous species and climate, a changing global environment may result in increased species migration, geographical redistribution, and longer seasons for envenomation, which would have repercussions on human health. A retrospective analysis of environmental, ecological, and medical literature was performed with a focus on climate change, toxinology, and future modeling specific to venomous terrestrial creatures. Species included venomous reptiles, snakes, arthropods, spiders, and Hymenoptera (ants and bees). Animals that are vectors of hemorrhagic infectious disease (eg, mosquitos, ticks) were excluded. Our review of the literature indicates that changes to climatic norms will have a potentially dramatic effect on terrestrial venomous creatures. Empirical evidence demonstrates that geographic distributions of many species have already shifted due to changing climatic conditions. Given that most terrestrial venomous species are ectotherms closely tied to ambient temperature, and that climate change is shifting temperature zones away from the equator, further significant distribution and population changes should be anticipated. For those species able to migrate to match the changing temperatures, new geographical locations may open. For those species with limited distribution capabilities, the rate of climate change may accelerate faster than species can adapt, causing population declines. Specifically, poisonous snakes and spiders will likely maintain their population numbers but will shift their geographic distribution to traditionally temperate zones more often inhabited by humans. Fire ants and Africanized honey bees are expected to have an expanded range distribution due to predicted warming trends

  16. Asexual Endophytes and Associated Alkaloids Alter Arthropod Community Structure and Increase Herbivore Abundances on a Native Grass

    Science.gov (United States)

    Dispite their minute biomass, microbial symbionts of plants potentially alter herbivory, diversity and community structure. Infection of grasses by asexual endophytic fungi often decreases herbivore loads and alters arthropod diverisy. However, most studies to date have involved agronomic grasses ...

  17. RHIC Polarized proton operation

    International Nuclear Information System (INIS)

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D'Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.E.; Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-01-01

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP 4 . A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above

  18. RHIC Polarized proton operation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D' Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R,; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; J.; Severino, F.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J. Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP{sup 4}. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above

  19. Molecular detection of hemoprotozoa and Rickettsia species in arthropods collected from wild animals in the Burgos Province, Spain

    OpenAIRE

    Lledó, Lourdes; Giménez-Pardo, Consuelo; Domínguez-Peñafiel, Gerardo; Sousa, Rita; Gegúndez, Maria Isabep; Casado, Nieves; Criado, Angel

    2010-01-01

    Limited information on the presence of bacterial and hematozoan infections in parasitic arthropods from Spain is available. In an attempt to address this issue, the prevalence of Theileria, Babesia, Hepatozoon, and Rickettsia species was investigated by polymerase chain reaction plus sequencing. In a survey for zoonotic pathogens in ectoparasites, 42 wild animals (which included rodents, carnivores, Sciuridae, and Cervidae) were captured in Burgos (Spain). A total of 256 arthropods (including...

  20. Our Polar Past

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2009-01-01

    The study of polar exploration is fascinating and offers students insights into the history, culture, and politics that affect the developing sciences at the farthest ends of Earth. Therefore, the authors think there is value in incorporating polar exploration accounts within modern science classrooms, and so they conducted research to test their…

  1. Terahertz polarization imaging

    NARCIS (Netherlands)

    Van der Valk, N.C.J.; Van der Marel, W.A.M.; Planken, P.C.M.

    2005-01-01

    We present a new method to measure the polarization state of a terahertz pulse by using a modified electrooptic sampling setup. To illustrate the power of this method, we show two examples in which the knowledge of the polarization of the terahertz pulse is essential for interpreting the results:

  2. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  3. Polar Science Is Cool!

    Science.gov (United States)

    Weeks, Sophie

    2012-01-01

    Children are fascinated by the fact that polar scientists do research in extremely cold and dangerous places. In the Arctic they might be viewed as lunch by a polar bear. In the Antarctic, they could lose toes and fingers to frostbite and the wind is so fast it can rip skin off. They camp on ice in continuous daylight, weeks from any form of…

  4. Effects of urban sprawl on arthropod communities in peri-urban farmed landscape in Shenbei New District, Shenyang, Liaoning Province, China.

    Science.gov (United States)

    Bian, Zhen-Xing; Wang, Shuai; Wang, Qiu-Bing; Yu, Miao; Qian, Feng-Kui

    2018-01-08

    Peri-urban farmland provides a diversity of ecological services. However, it is experiencing increasing pressures from urban sprawl. While the effects of land use associated with farming on arthropod assemblages has received increasing attention, most of this research has been conducted by comparing conventional and organic cropping systems. The present study identifies the effects of urban sprawl and the role of non-cropped habitat in defining arthropod diversity in peri-urban farmed landscapes. Multi-scale arthropod data from 30 sampling plots were used with linear-mixed models to elucidate the effects of distance from urban areas (0-13 km; 13-25 km and >25 km, zones I, II, and III, respectively) on arthropods. Results showed that urban sprawl, disturbed farm landscapes, and disturbance in non-cropped habitats had negative effects on arthropods, the latter requiring arthropods to re-establish annually from surrounding landscapes via dispersal. While arthropod species richness showed no obvious changes, arthropod abundance was lowest in zone II. Generally, patch density (PD), Shannon diversity index (SHDI), and aggregate index (AI) of non-cropped habitat were major drivers of changes in arthropod populations. This study contributes to identifying the effects of urban sprawl on arthropod diversity and documenting the multiple functions of farm landscapes in peri-urban regions.

  5. Elegant Shadow Making Tiny Force Visible for Water-Walking Arthropods and Updated Archimedes' Principle.

    Science.gov (United States)

    Zheng, Yelong; Lu, Hongyu; Yin, Wei; Tao, Dashuai; Shi, Lichun; Tian, Yu

    2016-10-07

    Forces acted on legs of water-walking arthropods with weights in dynes are of great interest for entomologist, physicists, and engineers. While their floating mechanism has been recognized, the in vivo leg forces stationary have not yet been simultaneously achieved. In this study, their elegant bright-edged leg shadows are used to make the tiny forces visible and measurable based on the updated Archimedes' principle. The force was approximately proportional to the shadow area with a resolution from nanonewton to piconewton/pixel. The sum of leg forces agreed well with the body weight measured with an accurate electronic balance, which verified updated Archimedes' principle at the arthropod level. The slight changes of vertical body weight focus position and the body pitch angle have also been revealed for the first time. The visualization of tiny force by shadow is cost-effective and very sensitive and could be used in many other applications.

  6. Two novel approaches to study arthropod anatomy by using dualbeam FIB/SEM.

    Science.gov (United States)

    Di Giulio, Andrea; Muzzi, Maurizio

    2018-03-01

    Transmission Electron Microscopy (TEM) has always been the conventional method to study arthropod ultrastructure, while the use of Scanning Electron Microscopy (SEM) was mainly devoted to the examination of the external cuticular structures by secondary electrons. The new generation field emission SEMs are capable to generate images at sub-cellular level, comparable to TEM images employing backscattered electrons. The potential of this kind of acquisition becomes very powerful in the dual beam FIB/SEM where the SEM column is combined with a Focused Ion Beam (FIB) column. FIB uses ions as a nano-scalpel to slice samples fixed and embedded in resin, replacing traditional ultramicrotomy. We here present two novel methods, which optimize the use of FIB/SEM for studying arthropod anatomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The Dose Makes the Poison: Nutritional Overload Determines the Life Traits of Blood-Feeding Arthropods.

    Science.gov (United States)

    Sterkel, Marcos; Oliveira, José Henrique M; Bottino-Rojas, Vanessa; Paiva-Silva, Gabriela O; Oliveira, Pedro L

    2017-08-01

    Vertebrate blood composition is heavily biased towards proteins, and hemoglobin, which is a hemeprotein, is by far the most abundant protein. Typically, hematophagous insects ingest blood volumes several times their weight before the blood meal. This barbarian feast offers an abundance of nutrients, but the degradation of blood proteins generates toxic concentrations of amino acids and heme, along with unparalleled microbiota growth. Despite this challenge, hematophagous arthropods have successfully developed mechanisms that bypass the toxicity of these molecules. While these adaptations allow hematophagous arthropods to tolerate their diet, they also constitute a unique mode of operation for cell signaling, immunity, and metabolism, the study of which may offer insights into the biology of disease vectors and may lead to novel vector-specific control methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Linking gene regulation to cell behaviors in the posterior growth zone of sequentially segmenting arthropods.

    Science.gov (United States)

    Williams, Terri A; Nagy, Lisa M

    2017-05-01

    Virtually all arthropods all arthropods add their body segments sequentially, one by one in an anterior to posterior progression. That process requires not only segment specification but typically growth and elongation. Here we review the functions of some of the key genes that regulate segmentation: Wnt, caudal, Notch pathway, and pair-rule genes, and discuss what can be inferred about their evolution. We focus on how these regulatory factors are integrated with growth and elongation and discuss the importance and challenges of baseline measures of growth and elongation. We emphasize a perspective that integrates the genetic regulation of segment patterning with the cellular mechanisms of growth and elongation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. [What gene and chromosomes say about the origin and evolution of insects and other arthropods].

    Science.gov (United States)

    Lukhtanov, V A; Kuznetsova, V G

    2010-09-01

    At the turn of the 21st century, the use of molecular and molecular cytogenetic methods led to revolutionary advances in systematics of insects and other arthropods. Analysis of nuclear and mitochondrial genes, as well as investigation of structural rearrangements in the mitochondrial chromosome convincingly supported the Pancrustacea hypothesis, according to which insects originated directly from crustaceans, whereas myriapods are not closely related to them. The presence of the specific telomeric motif TTAGG confirmed the monophyletic origin of arthropods (Arthropoda) and the assignment of tongue worms (Pentastomida) to this type. Several different types of telomeric sequences have been found within the class of insects. Investigation of the molecular organization of these sequences may shed light on the relationships between the orders Diptera, Siphonaptera, and Mecoptera and on the origin of such enigmatic groups as the orders Strepsiptera, Zoraptera and suborder Coleorrhyncha.

  10. Molecular survey of arthropod-borne pathogens in sheep keds (Melophagus ovinus), Central Europe.

    Science.gov (United States)

    Rudolf, Ivo; Betášová, Lenka; Bischof, Vlastimil; Venclíková, Kristýna; Blažejová, Hana; Mendel, Jan; Hubálek, Zdeněk; Kosoy, Michael

    2016-10-01

    In the study, we screened a total of 399 adult sheep keds (Melophagus ovinus) for the presence of RNA and DNA specific for arboviral, bacterial, and protozoan vector-borne pathogens. All investigated keds were negative for flaviviruses, phleboviruses, bunyaviruses, Borrelia burgdorferi, Rickettsia spp., Anaplasma phagocytophilum, "Candidatus Neoehrlichia mikurensis," and Babesia spp. All ked pools were positive for Bartonella DNA. The sequencing of the amplified fragments of the gltA and 16S-23S rRNA demonstrated a 100 % homology with Bartonella melophagi previously isolated from a sheep ked and from human blood in the USA. The identification of B. melophagi in sheep keds in Central Europe highlights needs extending a list of hematophagous arthropods beyond ticks and mosquitoes for a search of emerging arthropod-borne pathogens.

  11. Precision Polarization of Neutrons

    Science.gov (United States)

    Martin, Elise; Barron-Palos, Libertad; Couture, Aaron; Crawford, Christopher; Chupp, Tim; Danagoulian, Areg; Estes, Mary; Hona, Binita; Jones, Gordon; Klein, Andi; Penttila, Seppo; Sharma, Monisha; Wilburn, Scott

    2009-05-01

    Determining polarization of a cold neutron beam to high precision is required for the next generation neutron decay correlation experiments at the SNS, such as the proposed abBA and PANDA experiments. Precision polarimetry measurements were conducted at Los Alamos National Laboratory with the goal of determining the beam polarization to the level of 10-3 or better. The cold neutrons from FP12 were polarized using optically polarized ^3He gas as a spin filter, which has a highly spin-dependent absorption cross section. A second ^ 3He spin filter was used to analyze the neutron polarization after passing through a resonant RF spin rotator. A discussion of the experiment and results will be given.

  12. Optically polarized 3He

    Science.gov (United States)

    Gentile, T. R.; Nacher, P. J.; Saam, B.; Walker, T. G.

    2018-01-01

    This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements. PMID:29503479

  13. Optically polarized 3He

    Science.gov (United States)

    Gentile, T. R.; Nacher, P. J.; Saam, B.; Walker, T. G.

    2017-10-01

    This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements.

  14. Parallel Polarization State Generation.

    Science.gov (United States)

    She, Alan; Capasso, Federico

    2016-05-17

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  15. The Increase of Arthropods Biodiversity in Paddy Field Ecosystem Managed by Using Integrated Pest Management at South Borneo

    Directory of Open Access Journals (Sweden)

    Samharinto

    2012-12-01

    Full Text Available We have studied the arthropods biodiversity in two paddy field ecosystems, namely, paddy field ecosystem using Integrated Pest Management (IPM system and non-IPM paddy field ecosystem. This study was conducted from April 2011 – November 2011 in three locations, that is, Pasar Kamis village and Sungai Rangas village in Banjar regency, and Guntung Payung village in Banjarbaru city, South Borneo Province. In this study, we used insect nets, yellow sticky traps, light trap and pitfall trap to get the sample or catch the arthropods in one period of planting season. The arthropods caught were then classified into some classes: pest (herbivore, natural enemy (parasitoid and predator, and other arthropods. After that, the Species Diversity Index was determined using its Shannon-Wiener Index (H’, Evenness (e, Species Richness (R, and Species Similarity Index (IS. The sum of arthropods which have the characteristic of pest and parasitoid were higher in the IPM paddy fields than in the non-IPM paddy fields, and the sum of other arthropods were the same. The highest H’ and e values were in the IPM paddy field in Pasar Kamis village. The IS value for each three locations were 77.5% in Pasar Kamis village, 93.42% in Guntung Payung village, and 78.76% in Sungai Rangas village.

  16. The effects of land-use change on arthropod richness and abundance on Santa Maria Island (Azores)

    DEFF Research Database (Denmark)

    Meijer, Seline S.; Whittaker, Robert J.; Borges, P. A. V.

    2011-01-01

    We study how endemic, native and introduced arthropod species richness, abundance, diversity and community composition vary between four different habitat types (native forest, exotic forest of Cryptomeria japonica, semi-natural pasture and intensive pasture) and how arthropod richness and abunda......We study how endemic, native and introduced arthropod species richness, abundance, diversity and community composition vary between four different habitat types (native forest, exotic forest of Cryptomeria japonica, semi-natural pasture and intensive pasture) and how arthropod richness......), native, or introduced. The native forest had the highest values for species richness of Azorean endemics, SIEs and natives; and also had highest values of Azorean endemic diversity (Fisher’s alpha). In contrast, the intensive pasture had the lowest values for endemic and native species richness...... and diversity, but the highest values of total arthropod abundance and introduced species richness and diversity. Arthropod community composition was significantly different between the four habitat types. In the semi-natural pasture, the number of SIE species decreased with increasing distance from the native...

  17. Arthropod but not bird predation in ethiopian homegardens is higher in tree-poor than in tree-rich landscapes.

    Directory of Open Access Journals (Sweden)

    Debissa Lemessa

    Full Text Available Bird and arthropod predation is often associated with natural pest control in agricultural landscapes, but the rates of predation may vary with the amount of tree cover or other environmental factors. We examined bird and arthropod predation in three tree-rich and three tree-poor landscapes across southwestern Ethiopia. Within each landscape we selected three tree-rich and three tree-poor homegardens in which we recorded the number of tree species and tree stems within 100 × 100 m surrounding the central house. To estimate predation rates, we attached plasticine caterpillars on leaves of two coffee and two avocado shrubs in each homegarden, and recorded the number of attacked caterpillars for 7-9 consecutive weeks. The overall mean daily predation rate was 1.45% for birds and 1.60% for arthropods. The rates of arthropod predation varied among landscapes and were higher in tree-poor landscapes. There was no such difference for birds. Within landscapes, predation rates from birds and arthropods did not vary between tree-rich and tree-poor homegardens in either tree-rich or tree-poor landscapes. The most surprising result was the lack of response by birds to tree cover at either spatial scale. Our results suggest that in tree-poor landscapes there are still enough non-crop habitats to support predatory arthropods and birds to deliver strong top-down effect on crop pests.

  18. Parallel Expansions of Sox Transcription Factor Group B Predating the Diversifications of the Arthropods and Jawed Vertebrates

    Science.gov (United States)

    Zhong, Lei; Wang, Dengqiang; Gan, Xiaoni; Yang, Tong; He, Shunping

    2011-01-01

    Group B of the Sox transcription factor family is crucial in embryo development in the insects and vertebrates. Sox group B, unlike the other Sox groups, has an unusually enlarged functional repertoire in insects, but the timing and mechanism of the expansion of this group were unclear. We collected and analyzed data for Sox group B from 36 species of 12 phyla representing the major metazoan clades, with an emphasis on arthropods, to reconstruct the evolutionary history of SoxB in bilaterians and to date the expansion of Sox group B in insects. We found that the genome of the bilaterian last common ancestor probably contained one SoxB1 and one SoxB2 gene only and that tandem duplications of SoxB2 occurred before the arthropod diversification but after the arthropod-nematode divergence, resulting in the basal repertoire of Sox group B in diverse arthropod lineages. The arthropod Sox group B repertoire expanded differently from the vertebrate repertoire, which resulted from genome duplications. The parallel increases in the Sox group B repertoires of the arthropods and vertebrates are consistent with the parallel increases in the complexity and diversification of these two important organismal groups. PMID:21305035

  19. Variable Alkaloid Defenses in the Dendrobatid Poison Frog Oophaga pumilio are Perceived as Differences in Palatability to Arthropods.

    Science.gov (United States)

    Bolton, Sarah K; Dickerson, Kelsie; Saporito, Ralph A

    2017-03-01

    Conspicuously colored dendrobatid frogs sequester alkaloid defenses from dietary arthropods, resulting in considerable alkaloid variation among populations; however, little is known about how variation is perceived as a defense against predators. Previous studies have found variable alkaloids in the dendrobatid Oophaga pumilio to be associated with differences in toxicity to laboratory mice, suggesting variable defenses are important. Arthropods are natural predators that use chemoreception to detect prey, including frogs, and may therefore perceive variation in alkaloid profiles as differences in palatability. The goal of the present study is to determine how arthropods respond to variable alkaloid defenses in O. pumilio. Frog alkaloids were sampled from individual O. pumilio from ten geographic locations throughout the Bocas del Toro region of Panama and the Caribbean coast of Costa Rica. Alkaloid extracts were used in feeding bioassays with the vinegar fly Drosophila melanogaster and the ant Ectatomma ruidum. Both species of arthropods fed significantly less on frog alkaloid extracts when compared to controls, and differences in alkaloid palatability were observed among frog populations, as well as between sexes and life stages within a population. Differences in alkaloid quantity, richness, and type were the main predictors of arthropod palatability. Our findings also represent the first direct evidence of a palatability spectrum in a vertebrate that sequesters chemical defenses from dietary sources. Further, the presence of a palatability spectrum suggests that variable alkaloid defenses in O. pumilio are ecologically relevant and play an important role in natural predator-prey interactions, particularly with respect to arthropod predators.

  20. Terrestrial atmosphere, water and astrobiology

    Directory of Open Access Journals (Sweden)

    Coradini M.

    2010-12-01

    Full Text Available Primitive life, defined as a chemical system capable to transfer its molecular information via self-replication and also capable to evolve, originated about 4 billion years ago from the processing of organic molecules by liquid water. Terrestrial atmosphere played a key role in the process by allowing the permanent presence of liquid water and by participating in the production of carbon-based molecules. Water molecules exhibit specific properties mainly due to a dense network of hydrogen bonds. The carbon-based molecules were either home made in the atmosphere and/or in submarine hydrothermal systems or delivered by meteorites and micrometeorites. The search for possible places beyond the earth where the trilogy atmosphere/water/life could exist is the main objective of astrobiology. Within the Solar System, exploration missions are dedicated to Mars, Europa, Titan and the icy bodies. The discovery of several hundreds of extrasolar planets opens the quest to the whole Milky Way.

  1. Extreme solar-terrestrial events

    Science.gov (United States)

    Dal Lago, A.; Antunes Vieira, L. E.; Echer, E.; Balmaceda, L. A.; Rockenbach, M.; Gonzalez, W. D.

    2017-10-01

    Extreme solar-terrestrial events are those in which very energetic solar ejections hit the earth?s magnetosphere, causing intense energization of the earth?s ring current. Statistically, their occurrence is approximately once per Gleissberg solar cycle (70-100yrs). The solar transient occurred on July, 23rd (2012) was potentially one of such extreme events. The associated coronal mass ejection (CME), however, was not ejected towards the earth. Instead, it hit the STEREO A spacecraft, located 120 degrees away from the Sun-Earth line. Estimates of the geoeffectiveness of such a CME point to a scenario of extreme Space Weather conditions. In terms of the ring current energization, as measured by the Disturbance Storm-Time index (Dst), had this CME hit the Earth, it would have caused the strongest geomagnetic storm in space era.

  2. Radionuclide transfer in terrestrial animals

    International Nuclear Information System (INIS)

    DiGregorio, D.; Kitchings, T.; Van Voris, P.

    1978-01-01

    The analysis of dispersion of radionuclides in terrestrial food chains, generally, is a series of equations identifying the fractional input and outflow rates from trophic level to trophic level. Data that are prerequisite inputs for these food chain transport models include: (1) identification of specific transport pathway, (2) assimilation at each pathway link, and (3) the turnover rate or retention function by successive receptor species in the appropriate food chain. In this report, assimilation coefficients, biological half-lives, and excretion rates for a wide variety of vertebrate and invertebrate species and radionuclides have been compiled from an extensive search of the available literature. Using the information accumulated from the literature, correlations of nuclide metabolism and body weight are also discussed. (author)

  3. Terrestrial pathways of radionuclide particulates

    International Nuclear Information System (INIS)

    Boone, F.W.; Ng, Y.C.

    1981-01-01

    Formulations are developed for computing potential human intake of 13 radionuclides via the terrestrial food chains. The formulations are an extension of the NRC methodology. Specific regional crop and livestock transfer and fractional distribution data from the southern part of the U.S.A. are provided and used in the computation of comparative values with those computed by means of USNRC Regulatory Guide 1.109 formulations. In the development of the model, emphasis was also placed on identifying the various time-delay compartments of the food chains and accounting for all of the activity initially deposited. For all radionuclides considered, except 137 Cs, the new formulations predict lower potential intakes from the total of all food chains combined than do the comparable Regulatory Guide formulations by as much as a factor of 40. For 137 Cs the new formulations predict 10% higher potential intakes. (author)

  4. Phytopharmacological overview of Tribulus terrestris

    Science.gov (United States)

    Chhatre, Saurabh; Nesari, Tanuja; Somani, Gauresh; Kanchan, Divya; Sathaye, Sadhana

    2014-01-01

    Tribulus terrestris (family Zygophyllaceae), commonly known as Gokshur or Gokharu or puncture vine, has been used for a long time in both the Indian and Chinese systems of medicine for treatment of various kinds of diseases. Its various parts contain a variety of chemical constituents which are medicinally important, such as flavonoids, flavonol glycosides, steroidal saponins, and alkaloids. It has diuretic, aphrodisiac, antiurolithic, immunomodulatory, antidiabetic, absorption enhancing, hypolipidemic, cardiotonic, central nervous system, hepatoprotective, anti-inflammatory, analgesic, antispasmodic, anticancer, antibacterial, anthelmintic, larvicidal, and anticariogenic activities. For the last few decades or so, extensive research work has been done to prove its biological activities and the pharmacology of its extracts. The aim of this review is to create a database for further investigations of the discovered phytochemical and pharmacological properties of this plant to promote research. This will help in confirmation of its traditional use along with its value-added utility, eventually leading to higher revenues from the plant. PMID:24600195

  5. Horizontal Transfer of Non-LTR Retrotransposons from Arthropods to Flowering Plants.

    Science.gov (United States)

    Gao, Dongying; Chu, Ye; Xia, Han; Xu, Chunming; Heyduk, Karolina; Abernathy, Brian; Ozias-Akins, Peggy; Leebens-Mack, James H; Jackson, Scott A

    2018-02-01

    Even though lateral movements of transposons across families and even phyla within multicellular eukaryotic kingdoms have been found, little is known about transposon transfer between the kingdoms Animalia and Plantae. We discovered a novel non-LTR retrotransposon, AdLINE3, in a wild peanut species. Sequence comparisons and phylogenetic analyses indicated that AdLINE3 is a member of the RTE clade, originally identified in a nematode and rarely reported in plants. We identified RTE elements in 82 plants, spanning angiosperms to algae, including recently active elements in some flowering plants. RTE elements in flowering plants were likely derived from a single family we refer to as An-RTE. Interestingly, An-RTEs show significant DNA sequence identity with non-LTR retroelements from 42 animals belonging to four phyla. Moreover, the sequence identity of RTEs between two arthropods and two plants was higher than that of homologous genes. Phylogenetic and evolutionary analyses of RTEs from both animals and plants suggest that the An-RTE family was likely transferred horizontally into angiosperms from an ancient aphid(s) or ancestral arthropod(s). Notably, some An-RTEs were recruited as coding sequences of functional genes participating in metabolic or other biochemical processes in plants. This is the first potential example of horizontal transfer of transposons between animals and flowering plants. Our findings help to understand exchanges of genetic material between the kingdom Animalia and Plantae and suggest arthropods likely impacted on plant genome evolution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. The interactive effects of pulsed grazing disturbance and patch size vary among wetland arthropod guilds.

    Directory of Open Access Journals (Sweden)

    Anna R Armitage

    Full Text Available Pulse disturbances and habitat patch size can determine community composition independently or in concert, and may be particularly influential on small spatial scales for organisms with low mobility. In a field experiment, we investigated whether the effects of a pulsed disturbance that simulated a grazing event varied with habitat patch size. We focused on the short-term responses of multiple co-occurring emergent salt marsh arthropods with differing levels of mobility and dispersal potential. As part of a marsh restoration project, two types of emergent marsh structures were created: small circular mounds (0.5 m diameter separated by several meters of aquatic habitat, and larger, elongated terraces (>50 m long. Study plots (0.25 m(2 were established on both structures; in a subset of plots, we simulated a pulsed grazing disturbance event by clipping the aboveground tissue of emergent plants, primarily Spartina alterniflora. At the end of the two-month recovery period, Ischnodemus (Hemiptera: Blissidae density was over 50% lower in disturbed treatments within both large (terrace and small (mound patches. Predatory spider treatment responses were similar to Ischnodemus responses, suggesting a trophic relationship between those two arthropod groups. Alternatively, spiders may have been directly affected by the loss of shelter in the disturbed plots. Prokelisia (Homoptera: Delphacidae, which are generally more mobile than Ischnodemus, were not affected by disturbance treatment or by patch size, suggesting the potential for rapid recolonization following disturbance. Larval stem borers decreased by an order of magnitude in disturbed plots, but only in the large patches. In general, the disturbance effects of vegetation removal on arthropod density and community composition were stronger than patch size effects, and there were few interactions between pulsed disturbance and patch size. Rather, emergent marsh arthropod responses to disturbance and

  7. Estimating ecotoxicological effects of pesticide drift on nontarget arthropods in field hedgerows.

    Science.gov (United States)

    Otto, Stefan; Lazzaro, Luca; Finizio, Antonio; Zanin, Giuseppe

    2009-04-01

    When hedgerows grow in orchards where pesticides are applied, they can play a double role: Providing a barrier for chemical spray drift and as a refuge for beneficial arthropods such as pollinators and predators. Effectiveness of hedgerows as barriers to drift depends mainly on canopy density (that can be estimated through optical porosity) and wind speed. When optical porosity is low, the hedgerow can intercept a significant amount of spray drift and act as an effective barrier, but the intercepted pesticide can negatively affect the beneficial arthropods living there. A drift model was used to simulate drift in a hedgerow- vineyard system, and a deposition distribution model was used to calculate the pesticide spatial pattern distribution on a hedgerow with different optical porosity and wind speed conditions. The possible ecotoxicological effects were estimated for 28 active ingredients with different median lethal rates for two nontarget arthropods, Aphidius rhopalosiphi and Typhlodromus pyri. A spatialized risk assessment for a hedgerow is suggested to improve procedures based on application rate, standard drift, and vegetation distribution values, as in the hazard quotient approach. An alternative method for calculation of the exposure is also proposed, with a step-by-step example of a toxicity/exposure ratio calculation. The results highlighted the importance of the spatial pattern of drift and proved that a hedgerow can be an effective barrier against spray drift. Analysis of the toxicity/exposure ratio values showed that a hedgerow can continue its shelter and feeding function for nontarget arthropods when low-toxicity pesticides are used, there is no significant wind interference, or both.

  8. Arthropod diversity and assemblage structure response to deforestation and desertification in the Sahel of western Senegal

    Directory of Open Access Journals (Sweden)

    Brandon J. Lingbeek

    2017-07-01

    Full Text Available Drylands are highly vulnerable to desertification and among the most endangered ecosystems. To understand how biodiversity responds to environmental degradation in these fragile ecosystems, we examined whether arthropod, beetle, spider and ant diversity and assemblage structure differed (1 between seasons, (2 among locations (3 between protected areas of tropical dry forest and adjacent communal lands suffering from desertification, as well as (4 how vegetation impacts assemblage structures. We established 12 plots spaced homogenously throughout each protected area and the adjacent communal land at three locations: Beersheba, Bandia and Ngazobil. Within each plot, we measured canopy closure, vegetation height, percent cover of bare ground, leaf litter, grasses and forbs and collected arthropods using pitfall traps during the 2014 dry (May and rainy (September seasons. We collected 123,705 arthropods representing 733 morphospecies, 10,849 beetles representing 216 morphospecies, 4969 spiders representing 91 morphospecies and 59,183 ants representing 45 morphospecies. Results showed greater arthropod and beetle diversities (P = 0.002–0.040 in the rainy season, no difference in diversity among locations for any taxonomic group and a difference (P ≤ 0.001 in diversity for all taxa between protected areas and communal lands. Assemblage structures of all taxa responded (P = 0.001 to vegetation characteristics, differed (P = 0.015–0.045 between seasons and, with a few exceptions, locations and fragments. Our results illustrate the importance of a multi-taxa approach in understanding biodiversity response to anthropogenic disturbances as well as the value of protected areas in preserving biodiversity of the Sahel.

  9. Arthropod distribution in a tropical rainforest: tackling a four dimensional puzzle

    Czech Academy of Sciences Publication Activity Database

    Basset, Y.; Čížek, Lukáš; Cuénoud, P.; Didham, R. K.; Novotný, Vojtěch; Ødegaard, F.; Roslin, T.; Tishechkin, A. K.; Schmidl, J.; Winchester, N. N.; Roubik, D. W.; Aberlenc, H.-P.; Bail, J.; Barrios, H.; Bridle, J. R.; Castaňo-Meneses, G.; Corbara, B.; Curletti, G.; Duarte da Rocha, W.; De Bakker, D.; Delabie, J. H. C.; Dejean, A.; Fagan, L. L.; Floren, A.; Kitching, R. L.; Medianero, E.; Gama de Oliveira, E.; Orivel, J.; Pollet, M.; Rapp, F.; Ribeiro, S. P.; Roisin, Y.; Schmidt, J. B.; Sorensen, L.; Lewinsohn, T. M.; Leponce, M.

    2015-01-01

    Roč. 10, č. 12 (2015), e0144110 E-ISSN 1932-6203 R&D Projects: GA ČR GB14-36098G Grant - others:European Social Fund(CZ) CZ.1.07/2.3.00/20.0064 Institutional support: RVO:60077344 Keywords : Arthropod * rainforest * biodiversity Subject RIV: EH - Ecology, Behaviour Impact factor: 3.057, year: 2015 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144110

  10. Arthropod Pest Control for UK Oilseed Rape - Comparing Insecticide Efficacies, Side Effects and Alternatives.

    Directory of Open Access Journals (Sweden)

    Han Zhang

    Full Text Available Oilseed rape (Brassica napus is an important combinable break crop in the UK, which is largely protected from arthropod pests by insecticidal chemicals. Despite ongoing debate regarding the use of neonicotinoids, the dominant seed treatment ingredients used for this crop, there is little publicly available data comparing the efficacy of insecticides in controlling key arthropod pests or comparing the impacts on non-target species and the wider environment. To provide an insight into these matters, a UK-wide expert survey targeting agronomists and entomologists was conducted from March to June 2015. Based on the opinions of 90 respondents, an average of 20% yield loss caused by the key arthropod pests was expected to have occurred in the absence of insecticide treatments. Relatively older chemical groups were perceived to have lower efficacy for target pests than newer ones, partly due to the development of insecticide resistance. Without neonicotinoid seed treatments, a lack of good control for cabbage stem flea beetle was perceived. Wide spectrum foliar insecticide sprays were perceived to have significantly greater negative impacts than seed treatments on users' health, natural enemies, pollinators, soil and water, and many foliar active ingredients have had potential risks for non-target arthropod species in UK oilseed rape fields for the past 25 years. Overall, 72% of respondents opposed the neonicotinoid restriction, while 10% supported it. Opposition and support of the restriction were largely based on concerns for pollinators and the wider environment, highlighting the uncertainty over the side effects of neonicotinoid use. More people from the government and research institutes leaned towards neutrality over the issue, compared to those directly involved in growing the crop. Neonicotinoid restriction was expected to result in greater effort and expenditure on pest control and lower production (0-1 t/ha less. Alternatives for future

  11. Arthropod Diversity and Functional Importance in Old-Growth Forests of North America

    Directory of Open Access Journals (Sweden)

    Timothy Schowalter

    2017-03-01

    Full Text Available Old-growth forests have become rare in North America but provide habitat for unique assemblages of species that often are rare in younger forests. Insects and related arthropods reach their highest diversity in old-growth forests because of their stable moderate temperature and relative humidity and the rich variety of resources represented by high plant species richness and structural complexity. Old-growth arthropod assemblages typically are distinct from those in younger, managed forests. Major subcommunities include the arboreal community that is composed of a rich assemblage of herbivores, fungivores, and their associated predators and parasitoids that function to regulate primary production and nutrient fluxes, the stem zone community that includes bark- and wood-boring species and their associated predators and parasitoids that initiate the decomposition of coarse woody debris, and the forest floor community composed of a variety of detritivores, fungivores, burrowers, and their associated predators and parasitoids that are instrumental in litter decomposition. Insect outbreaks are relatively rare in old-growth forests, where the diversity of resources and predators limit population growth. In turn, insects contribute to plant diversity and limit primary production of host plant species, thereby promoting development of old-growth forest characteristics. Arthropods also provide important functions in decomposition and nutrient cycling that may be lost in younger, managed forests with limited provision of coarse woody debris and accumulated litter. Protection of remnant old-growth forests within the forest matrix may be particularly valuable for maintaining the diversity of plant and arthropod predators that can minimize outbreaks, thereby contributing to resilience to changing environmental conditions.

  12. Venomous and poisonous arthropods: identification, clinical manifestations of envenomation, and treatments used in human injuries

    OpenAIRE

    Haddad Junior, Vidal; Amorim, Paulo Cezar Haddad de; Haddad Junior, William Teixeira; Cardoso, João Luiz Costa

    2015-01-01

    Abstract This review presents the main species of venomous and poisonous arthropods, with commentary on the clinical manifestations provoked by the toxins and therapeutic measures used to treat human envenomations. The groups of arthopods discussed include the class Arachnida (spiders and scorpions, which are responsible for many injuries reported worldwide, including Brazil); the subphylum Myriapoda, with the classes Chilopoda and Diplopoda (centipedes and millipedes); and the subphylum Hexa...

  13. Rickettsial Pathogens and Arthropod Vectors of Medical and Veterinary Significance on Kwajalein Atoll and Wake Island

    Science.gov (United States)

    2012-01-01

    ectoparasites. Both C. felis and R sanguineus are vectors of rickettsial and parasitic agents to humans and domestic animals . Ctenocephalides felis...M. Helmy, J. R. Moriarity, & G. A. Dasch. 2006a. Rickettsial agents in Egyptian ticks collected from domestic animals . Experimental and Applied...Rickettsial pathogens and arthropod vectors of medical and veterinary significance on Kwajalein Atoll and Wake Island Will K. Reeves USAF School of

  14. Prevalence of ectoparasitic arthropods on wild animals and cattle in the Las Merindades area (Burgos, Spain)

    OpenAIRE

    Dom?nguez-Pe?afiel, G.; Gim?nez-Pardo, C.; Geg?ndez, M.I.; Lled?, L.

    2011-01-01

    This paper reports the prevalence of ectoparasitic arthropods in sampled groups of wild (n = 128; 16 species) and domestic (n = 69; 3 species) animals in the Las Merindades area of the Province of Burgos, Spain. The study revealed that wild animals were more infested and with a wider variety of ectoparasites than domestic animals. The parasitic prevalence was 67% for wild animals and 48% for livestock. In this way, 39% of animals were infected by ticks. Ixodes ricinus and Ixodes hexagonus wer...

  15. The effects of timing of grazing on plant and arthropod communities in high-elevation grasslands.

    Science.gov (United States)

    Davis, Stacy C; Burkle, Laura A; Cross, Wyatt F; Cutting, Kyle A

    2014-01-01

    Livestock grazing can be used as a key management tool for maintaining healthy ecosystems. However, the effectiveness of using grazing to modify habitat for species of conservation concern depends on how the grazing regime is implemented. Timing of grazing is one grazing regime component that is less understood than grazing intensity and grazer identity, but is predicted to have important implications for plant and higher trophic level responses. We experimentally assessed how timing of cattle grazing affected plant and arthropod communities in high-elevation grasslands of southwest Montana to better evaluate its use as a tool for multi-trophic level management. We manipulated timing of grazing, with one grazing treatment beginning in mid-June and the other in mid-July, in two experiments conducted in different grassland habitat types (i.e., wet meadow and upland) in 2011 and 2012. In the upland grassland experiment, we found that both early and late grazing treatments reduced forb biomass, whereas graminoid biomass was only reduced with late grazing. Grazing earlier in the growing season versus later did not result in greater recovery of graminoid or forb biomass as expected. In addition, the density of the most ubiquitous grassland arthropod order (Hemiptera) was reduced by both grazing treatments in upland grasslands. A comparison of end-of-season plant responses to grazing in upland versus wet meadow grasslands revealed that grazing reduced graminoid biomass in the wet meadow and forb biomass in the upland, irrespective of timing of grazing. Both grazing treatments also reduced end-of-season total arthropod and Hemiptera densities and Hemiptera biomass in both grassland habitat types. Our results indicate that both early and late season herbivory affect many plant and arthropod characteristics in a similar manner, but grazing earlier may negatively impact species of conservation concern requiring forage earlier in the growing season.

  16. Assessing Potential Impact of Bt Eggplants on Non-Target Arthropods in the Philippines

    Science.gov (United States)

    Navasero, Mario V.; Candano, Randolph N.; Hautea, Desiree M.; Hautea, Randy A.; Shotkoski, Frank A.; Shelton, Anthony M.

    2016-01-01

    Studies on potential adverse effects of genetically engineered crops are part of an environmental risk assessment that is required prior to the commercial release of these crops. Of particular concern are non-target organisms (NTOs) that provide important ecosystem services. Here, we report on studies conducted in the Philippines over three cropping seasons with Bt eggplants expressing Cry1Ac for control of the eggplant fruit and shoot borer (EFSB), Leucinodes orbonalis, to examine potential effects on field abundance, community composition, structure and biodiversity of NTO’s, particularly non-target arthropod (NTA) communities. We document that many arthropod taxa are associated with Bt eggplants and their non-Bt comparators and that the number of taxa and their densities varied within season and across trials. However, we found few significant differences in seasonal mean densities of arthropod taxa between Bt and non-Bt eggplants. As expected, a lower abundance of lepidopteran pests was detected in Bt eggplants. Higher abundance of a few non-target herbivores was detected in non-Bt eggplants as were a few non-target beneficials that might control them. Principal Response Curve (PRC) analyses showed no statistically significant impact of Bt eggplants on overall arthropod communities through time in any season. Furthermore, we found no significant adverse impacts of Bt eggplants on species abundance, diversity and community dynamics, particularly for beneficial NTAs. These results support our previous studies documenting that Bt eggplants can effectively and selectively control the main pest of eggplant in Asia, the EFSB. The present study adds that it can do so without adverse effects on NTAs. Thus, Bt eggplants can be a foundational component for controlling EFSB in an Integrated Pest Management (IPM) program and dramatically reduce dependence on conventional insecticides. PMID:27798662

  17. Single-minded and the evolution of the ventral midline in arthropods.

    Science.gov (United States)

    Linne, Viktoria; Eriksson, Bo Joakim; Stollewerk, Angelika

    2012-04-01

    In insects and crustaceans, ventral midline cells are present that subdivide the CNS into bilateral symmetric halves. In both arthropod groups unpaired midline neurons and glial cells have been identified that contribute to the embryonic patterning mechanisms. In the fruitfly Drosophila melanogaster, for example, the midline cells are involved in neural cell fate specification along the dorso-ventral axis but also in axonal pathfinding and organisation of the axonal scaffold. Both in insects and malacostracan crustaceans, the bHLH-PAS transcription factor single-minded is the master regulator of ventral midline development and homology has been suggested for individual midline precursors in these groups. The conserved arrangement of the axonal scaffold as well as the regular pattern of neural precursors in all euarthropod groups raises the question whether the ventral midline system is conserved in this phylum. In the remaining euarthropod groups, the chelicerates and myriapods, a single-minded homologue has been identified in the spider Achaearanea tepidariorum (chelicerate), however, the gene is not expressed in the ventral midline but in the median area of the ventral neuroectoderm. Here we show that At-sim is not required for ventral midline development. Furthermore, we identify sim homologues in representatives of arthropods that have not yet been analysed: the myriapod Strigamia maritima and a representative of an outgroup to the euarthropods, the onychophoran Euperipatoides kanangrensis. We compare the expression patterns to the A. tepidariorum sim homologue expression and furthermore analyse the nature of the arthropod midline cells. Our data suggest that in arthropods unpaired midline precursors evolved from the bilateral median domain of the ventral neuroectoderm in the last common ancestor of Mandibulata (insects, crustaceans, myriapods). We hypothesize that sim was expressed in this domain and recruited to ventral midline development. Subsequently, sim

  18. Self-referent phenotype matching and its role in female mate choice in arthropods

    Directory of Open Access Journals (Sweden)

    Carie B. WEDDLE, John HUNT, Scott K. SAKALUK

    2013-04-01

    Full Text Available A growing body of empirical evidence shows that females of many animal species gain benefits by mating polyandrously, and often prefer to mate with novel males over previous mates. Although a female preference for novel males has been demonstrated for multiple animal taxa, the mechanisms used by females to discriminate between novel and previous mates remain largely unknown. However, recent studies suggest that in decorated crickets Gryllodes sigillatus, females actually imbue males with their own chemical cues, known as cuticular hydrocarbons (CHCs during mating, and utilize chemosensory self-referencing to recognize recent mates. Here we review evidence that self-referent phenotype matching is a widespread mechanism of recognition in arthropods, and explore how CHCs are used to facilitate mate-choice decisions. There is substantial evidence that CHCs are used as recognition cues to discriminate between species, kin, sexes, mates, individuals, and self and non-self, and are used to facilitate mate-choice decisions in a wide range of arthropod taxa. There is also evidence that CHCs are often transferred between individuals during direct physical contact, including copulation. Chemosensory self-referencing via cuticular hydrocarbons could provide a simple, but reliable mechanism for identifying individuals from previous mating encounters. This mechanism does not require any specialized cognitive abilities because an individual’s phenotype is always available for reference. Given the ubiquitous use of CHCs among arthropods, chemosensory self-referencing may be a widespread mechanism used by female arthropods to facilitate female mate-choice decisions and to enhance opportunities for polyandry [Current Zoology 59 (2: 239-248, 2013].

  19. A Spherical Aerial Terrestrial Robot

    Science.gov (United States)

    Dudley, Christopher J.

    This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.

  20. Controversies Surrounding Segments and Parasegments in Onychophora: Insights from the Expression Patterns of Four “Segment Polarity Genes” in the Peripatopsid Euperipatoides rowelli

    Science.gov (United States)

    Franke, Franziska Anni; Mayer, Georg

    2014-01-01

    Arthropods typically show two types of segmentation: the embryonic parasegments and the adult segments that lie out of register with each other. Such a dual nature of body segmentation has not been described from Onychophora, one of the closest arthropod relatives. Hence, it is unclear whether onychophorans have segments, parasegments, or both, and which of these features was present in the last common ancestor of Onychophora and Arthropoda. To address this issue, we analysed the expression patterns of the “segment polarity genes” engrailed, cubitus interruptus, wingless and hedgehog in embryos of the onychophoran Euperipatoides rowelli. Our data revealed that these genes are expressed in repeated sets with a specific anterior-to-posterior order along the body in embryos of E. rowelli. In contrast to arthropods, the expression occurs after the segmental boundaries have formed. Moreover, the initial segmental furrow retains its position within the engrailed domain throughout development, whereas no new furrow is formed posterior to this domain. This suggests that no re-segmentation of the embryo occurs in E. rowelli. Irrespective of whether or not there is a morphological or genetic manifestation of parasegments in Onychophora, our data clearly show that parasegments, even if present, cannot be regarded as the initial metameric units of the onychophoran embryo, because the expression of key genes that define the parasegmental boundaries in arthropods occurs after the segmental boundaries have formed. This is in contrast to arthropods, in which parasegments rather than segments are the initial metameric units of the embryo. Our data further revealed that the expression patterns of “segment polarity genes” correspond to organogenesis rather than segment formation. This is in line with the concept of segmentation as a result of concerted evolution of individual periodic structures rather than with the interpretation of ‘segments’ as holistic units. PMID

  1. Discontinuous gas exchange in a tracheate arthropod, the pseudoscorpion Garypus californicus: Occurrence, characteristics and temperature dependence

    Directory of Open Access Journals (Sweden)

    John R.B. Lighton

    2002-11-01

    Full Text Available The discontinuous gas exchange cycle of the pseudoscorpion Garypus californicus, mean mass 5.9 mg, is rudimentary and is characterized by bursts of CO2 at frequencies ranging from 3.6 mHz at 15 °C to 13.3 mHz at 35 °C. The mean volume of CO2 emitted per burst is 3.6 µl g-1 at 25 °C, about a tenth of the amount emitted by tracheate arthropods with a well developed discontinuous gas exchange cycle. Interburst CO2 emission is high and increases with temperature, reaching near 45% of total CO2 production rate at 35 °C. No fluttering spiracle phase is evident. The metabolic rate of G. californicus at 25 °C (8.4 µW is typical of other arthropods. We infer from the high rate of interburst CO2 emission in G. californicus that trans-spiracular O2 partial pressure gradients are small and that spiracular conductance is correspondingly high, which may lead to high rates of respiratory water loss relative to arthropods with more stringent spiracular control and higher CO2 buffering capacity. The typical moist, hypogeal environments and small body sizes of pseudoscorpions correlate well with their respiratory physiology

  2. Genetics-based interactions among plants, pathogens, and herbivores define arthropod community structure.

    Science.gov (United States)

    Busby, Posy E; Lamit, Louis J; Keith, Arthur R; Newcombe, George; Gehring, Catherine A; Whitham, Thomas G; Dirzo, Rodolfo

    2015-07-01

    Plant resistance to pathogens or insect herbivores is common, but its potential for indirectly influencing plant-associated communities is poorly known. Here, we test whether pathogens' indirect effects on arthropod communities and herbivory depend on plant resistance to pathogens and/or herbivores, and address the overarching interacting foundation species hypothesis that genetics-based interactions among a few highly interactive species can structure a much larger community. In a manipulative field experiment using replicated genotypes of two Populus species and their interspecific hybrids, we found that genetic variation in plant resistance to both pathogens and insect herbivores modulated the strength of pathogens' indirect effects on arthropod communities and insect herbivory. First, due in part to the pathogens' differential impacts on leaf biomass among the two Populus species and the hybrids, the pathogen most strongly impacted arthropod community composition, richness, and abundance on the pathogen-susceptible tree species. Second, we found similar patterns comparing pathogen-susceptible and pathogen-resistant genotypes within species. Third, within a plant species, pathogens caused a fivefold greater reduction in herbivory on insect-herbivore-susceptible plant genotypes than on herbivore-resistant genotypes, demonstrating that the pathogen-herbivore interaction is genotype dependent. We conclude that interactions among plants, pathogens, and herbivores can structure multitrophic communities, supporting the interacting foundation species hypothesis. Because these interactions are genetically based, evolutionary changes in genetic resistance could result in ecological changes in associated communities, which may in turn feed back to affect plant fitness.

  3. Subolesin/Akirin vaccines for the control of arthropod vectors and vectorborne pathogens.

    Science.gov (United States)

    de la Fuente, J; Moreno-Cid, J A; Galindo, R C; Almazan, C; Kocan, K M; Merino, O; Perez de la Lastra, J M; Estrada-Peña, A; Blouin, E F

    2013-11-01

    Diseases transmitted by arthropod vectors such as mosquitoes, ticks and sand flies greatly impact human and animal health, and therefore, their control is important for the eradication of vectorborne diseases (VBD). Vaccination is an environmentally friendly alternative for vector control that allows control of several VBD by targeting their common vector. Recent results have suggested that subolesin (SUB) and its orthologue in insects, akirin (AKR) are good candidate antigens for the control of arthropod vector infestations and pathogen infection. SUB was discovered as a tick-protective antigen in Ixodes scapularis. Vaccination trials with recombinant SUB/AKR demonstrated effective control of arthropod vector infestations in various hard and soft tick species, mosquitoes, sand flies, poultry red mites and sea lice by reducing their numbers, weight, oviposition, fertility and/or moulting. SUB/AKR vaccination also reduced tick infection with tickborne pathogens, Anaplasma phagocytophilum, A. marginale, Babesia bigemina and Borrelia burgdorferi. The effect of vaccination on different hosts, vector species, developmental stages and vectorborne pathogen infections demonstrated the feasibility of SUB/AKR universal vaccines for the control of multiple vector infestations and for reduction in VBD. © 2013 Blackwell Verlag GmbH.

  4. The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone

    Directory of Open Access Journals (Sweden)

    Zhou Liqin

    2008-06-01

    Full Text Available Abstract Background Inherited bacteria have come to be recognised as important components of arthropod biology. In addition to mutualistic symbioses, a range of other inherited bacteria are known to act either as reproductive parasites or as secondary symbionts. Whilst the incidence of the α-proteobacterium Wolbachia is relatively well established, the current knowledge of other inherited bacteria is much weaker. Here, we tested 136 arthropod species for a range of inherited bacteria known to demonstrate reproductive parasitism, sampling each species more intensively than in past surveys. Results The inclusion of inherited bacteria other than Wolbachia increased the number of infections recorded in our sample from 33 to 57, and the proportion of species infected from 22.8% to 32.4%. Thus, whilst Wolbachia remained the dominant inherited bacterium, it alone was responsible for around half of all inherited infections of the bacteria sampled, with members of the Cardinium, Arsenophonus and Spiroplasma ixodetis clades each occurring in 4% to 7% of all species. The observation that infection was sometimes rare within host populations, and that there was variation in presence of symbionts between populations indicates that our survey will itself underscore incidence. Conclusion This extensive survey demonstrates that at least a third of arthropod species are infected by a diverse assemblage of maternally inherited bacteria that are likely to strongly influence their hosts' biology, and indicates an urgent need to establish the nature of the interaction between non-Wolbachia bacteria and their hosts.

  5. Fungal metabolic plasticity and sexual development mediate induced resistance to arthropod fungivory.

    Science.gov (United States)

    Döll, Katharina; Chatterjee, Subhankar; Scheu, Stefan; Karlovsky, Petr; Rohlfs, Marko

    2013-11-22

    Prey organisms do not tolerate predator attack passively but react with a multitude of inducible defensive strategies. Although inducible defence strategies are well known in plants attacked by herbivorous insects, induced resistance of fungi against fungivorous animals is largely unknown. Resistance to fungivory is thought to be mediated by chemical properties of fungal tissue, i.e. by production of toxic secondary metabolites. However, whether fungi change their secondary metabolite composition to increase resistance against arthropod fungivory is unknown. We demonstrate that grazing by a soil arthropod, Folsomia candida, on the filamentous fungus Aspergillus nidulans induces a phenotype that repels future fungivores and retards fungivore growth. Arthropod-exposed colonies produced significantly higher amounts of toxic secondary metabolites and invested more in sexual reproduction relative to unchallenged fungi. Compared with vegetative tissue and asexual conidiospores, sexual fruiting bodies turned out to be highly resistant against fungivory in facultative sexual A. nidulans. This indicates that fungivore grazing triggers co-regulated allocation of resources to sexual reproduction and chemical defence in A. nidulans. Plastic investment in facultative sex and chemical defence may have evolved as a fungal strategy to escape from predation.

  6. Effect of the application of chlorpyrifos to maize on pests and beneficial arthropods in Nicaragua

    International Nuclear Information System (INIS)

    Monzon, A.; Llana, A. de la

    1999-01-01

    Field experiments were performed between 1994 and 1997 to evaluate the effect of chlorpyrifos insecticide on arthropods in maize agroecosystem. The experiments were carried out in Boaco (Central zone) and Managua (Pacific zone) areas. Experiments were set up according to randomized block design, with large plots (750 m 2 ) and four replications. The treatments were 1L/ha Lorsban 4E (containing 480 g a.i../L) and control. Visual sampling, pitfall traps and yellow traps were used to estimate numbers of pest insects and beneficial arthropods. Chlorpiryfos had a measureable affect on fall armyworm (Spodoptera frugiperda) and Dalbulus maidis. The plots sprayed with the insecticide had the lowest population of S. frugiperda and the highest population of D. maidis. Beneficials insects, mainly parasitoids were more affected than pests by the insecticide sprays. The highest parasitism was found in the unsprayed plots. Overall, the lowest population of arthropods was found in the sprayed plots, except that in Managua the highest number of D. maidis were found in the sprayed plots. (author)

  7. Genetic and ontogenetic variation in an endangered tree structures dependent arthropod and fungal communities.

    Directory of Open Access Journals (Sweden)

    Benjamin J Gosney

    Full Text Available Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings.

  8. Invasion patterns of ground-dwelling arthropods in Canarian laurel forests

    Science.gov (United States)

    Arndt, Erik; Perner, Jörg

    2008-09-01

    Patterns of invasive species in four different functional groups of ground-dwelling arthropods (Carnivorous ground dwelling beetles; Chilopoda; Diplopoda; Oniscoidea) were examined in laurel forests of the Canary Islands. The following hypotheses were tested: (A) increasing species richness is connected with decreasing invasibility as predicted by the Diversity-invasibility hypothesis (DIH); (B) disturbed or anthropogenically influenced habitats are more sensitive for invasions than natural and undisturbed habitats; and (C) climatic differences between laurel forest sites do not affect the rate of invasibility. A large proportion of invasives (species and abundances) was observed in most of the studied arthropod groups. However, we did not find any support for the DIH based on the examined arthropod groups. Regarding the impact of the extrinsic factors 'disturbance' and 'climate' on invasion patterns, we found considerable differences between the studied functional groups. Whereas the 'disturbance parameters' played a minor role and only affected the relative abundances of invasive centipedes (positively) and millipedes (negatively), the 'climate parameters' were significantly linked with the pattern of invasive detritivores. Interactions between native and invading species have not been observed thus far, but cannot completely be excluded.

  9. Red imported fire ant impacts on upland arthropods in Southern Mississippi

    Science.gov (United States)

    Epperson, D.M.; Allen, Craig R.

    2010-01-01

    Red imported fire ants (Solenopsis invicta) have negative impacts on a broad array of invertebrate species. We investigated the impacts of fire ants on the upland arthropod community on 20???40 ha study sites in southern Mississippi. Study sites were sampled from 19972000 before, during, and after fire ant bait treatments to reduce fire ant populations. Fire ant abundance was assessed with bait transects on all sites, and fire ant population indices were estimated on a subset of study sites. Species richness and diversity of other ant species was also assessed from bait transects. Insect biomass and diversity was determined from light trap samples. Following treatments, fire ant abundance and population indices were significantly reduced, and ant species diversity and richness were greater on treated sites. Arthropod biomass, species diversity and species richness estimated from light trap samples were negatively correlated with fire ant abundance, but there were no observable treatment effects. Solenopsis invicta has the potential to negatively impact native arthropod communities resulting in a potential loss of both species and function.

  10. Kodymirus and the case for convergence of raptorial appendages in Cambrian arthropods.

    Science.gov (United States)

    Lamsdell, James C; Stein, Martin; Selden, Paul A

    2013-09-01

    Kodymirus vagans Chlupáč and Havlíček in Sb Geol Ved Paleontol 6:7-20, 1965 is redescribed as an aglaspidid-like arthropod bearing a single pair of enlarged raptorial appendages, which are shown to be the second cephalic appendage. A number of early Palaeozoic arthropods, recognized from predominantly Cambrian Konservat-Lagerstätten, are known to have borne single pairs of large raptorial appendages. They are well established for the iconic yet problematic anomalocarids, the common megacheirans, and the ubiquitous bivalved Isoxys. Further taxa, such as fuxianhuiids and Branchiocaris, have been reported to have single pairs of specialized cephalic appendages, i.e., appendages differentiated from a largely homonomous limbs series, members of which act in metachronal motion. The homology of these raptorial appendages across these Cambrian arthropods has often been assumed, despite differences in morphology. Thus, anomalocaridids, for instance, have long multiarticulate "frontal appendages" consisting of many articles bearing an armature of paired serial spines, while megacheirans and Isoxys have short "great appendages" consisting of few articles with well-developed endites or elongate fingers. Homology of these appendages would require them to belong to the same cephalic segment. We argue based on morphological evidence that, to the contrary, the raptorial appendages of some of these taxa can be shown to belong to different cephalic segments and are the result of convergence in life habits. K. vagans is yet another important example for this, representing an instance for this morphology from a marginal marine environment.

  11. Effect of brushwood transposition on the leaf litter arthropod fauna in a cerrado area

    Directory of Open Access Journals (Sweden)

    Paula Cristina Benetton Vergílio

    2013-10-01

    Full Text Available The results of ecological restoration techniques can be monitored through biological indicators of soil quality such as the leaf litter arthropod fauna. This study aimed to determine the immediate effect of brushwood transposition transferred from an area of native vegetation to a disturbed area, on the leaf litter arthropod fauna in a degraded cerrado area. The arthropod fauna of four areas was compared: a degraded area with signal grass, two experimental brushwood transposition areas, with and without castor oil plants, and an area of native cerrado. In total, 7,660 individuals belonging to 23 taxa were sampled. Acari and Collembola were the most abundant taxa in all studied areas, followed by Coleoptera, Diptera, Hemiptera, Hymenoptera, and Symphyla. The brushwood transposition area without castor oil plants had the lowest abundance and dominance and the highest diversity of all areas, providing evidence of changes in the soil community. Conversely, the results showed that the presence of castor oil plants hampered early succession, negatively affecting ecological restoration in this area.

  12. Short communication. Incidence of the OLIPE mass-trapping on olive non-target arthropods

    Energy Technology Data Exchange (ETDEWEB)

    Porcel, M.; Ruano, F.; Sanllorente, O.; Caballero, J. A.; Campos, M.

    2009-07-01

    Due to the widespread of mass-trapping systems for Bactrocera oleae (Gmelin) (Diptera: Tephritidae) control in organic olive cropping, an assessment of the impact on arthropods of the olive agroecosystem was undertaken for the OLIPE trap type. The sampling was carried out in Los Pedroches valley (Cordoba, southern Spain) in three different organic orchard sites. Six OLIPE traps baited with diammonium phosphate were collected from each site (18 in total) from July to November 2002 every 15 days on average. Additionally, in the latest sampling dates, half the traps were reinforced with pheromone to assess its impact on non-target arthropods. From an average of 43.0 catches per trap (cpt) of non-target arthropods during the whole sampling period, the highest number of captures corresponds to the Order Diptera (that represents a 68.5%), followed distantly by the family Formicidae (12.9%) and the Order Lepidoptera (10.4%). Besides the impact on ant populations, other beneficial groups were recorded such as parasitoids (Other Hymenoptera: 2.6%) and predators (Araneae: 1.0%; Neuroptera s.l.: 0.4%). Concerning the temporal distribution of catches, total captures peaked on July and had a slight increase at the beginning of autumn. No significant differences were observed between traps with and without pheromone. The results evidence that a considerable amount of non-specific captures could be prevented by improving the temporal planning of the mass-trapping system. (Author) 25 refs.

  13. Arthropod prey of imported fire ants (Hymenoptera: Formicidae) in Mississippi sweetpotato fields.

    Science.gov (United States)

    Rashid, Tahir; Chen, Jian; Vogt, James T; McLeod, Paul J

    2013-08-01

    The red imported fire ants, Solenopsis invicta (Buren), are generally considered pests. They have also been viewed as beneficial predators feeding on other insect pests of various agroecosystems. This study documents the foraging habits of fire ants in a sweetpotato field in Mississippi. Fire ant foraging trails connecting outside colonies to a sweetpotato field were exposed and foraging ants moving out of the field toward the direction of the colony were collected along with the solid food particles they were carrying. The food material was classified as arthropod or plant in origin. The arthropod particles were identified to orders. Fire ant foragers carried more arthropods than plant material. Coleoptera and Homoptera were the most abundant groups preyed upon. These insect orders contain various economically important pests of sweetpotato. Other major hexapod groups included the orders Hemiptera, Diptera and Collembola. The quantity of foraged material varied over the season. No damage to sweetpotato roots could be attributed to fire ant feeding. Imported fire ant foraging may reduce the number of insect pests in sweetpotato fields. © 2012 Institute of Zoology, Chinese Academy of Sciences.

  14. PolarTREC-Teachers and Researchers Exploring and Collaborating: Bringing Polar Research to the Classroom

    Science.gov (United States)

    Warnick, W. K.; Warburton, J.; Breen, K.; Wiggins, H. V.; Larson, A.; Behr, S.

    2006-12-01

    PolarTREC-Teachers and Researchers Exploring and Collaborating is a three-year (2007-2009) teacher professional development program that pairs K-12 teachers with researchers to improve science education through authentic polar research experience. PolarTREC builds on the strengths of the existing TREC program in the Arctic, an NSF supported program managed by the Arctic Research Consortium of the US (ARCUS), to embrace a wider range of research activities in the Arctic and Antarctic. PolarTREC uses a Teacher Research Experience (TRE) model to foster the integration of research and education to produce a legacy of long-term teacher-researcher collaborations, improved teacher content knowledge through experiences in scientific inquiry, and broad public interest and engagement in polar science. PolarTREC will enable thirty-six teachers to spend two to six weeks in the Arctic or Antarctic, working closely with researchers investigating a wide range of topics such as sea-ice dynamics, terrestrial ecology, marine biology, atmospheric chemistry, and long-term climate change. With the help of their host researcher and the research team, teachers will develop the experience and tools necessary to teach science through scientific inquiry and investigation based on real-world experiences. While in the field, teachers and researchers will communicate extensively with their colleagues, communities, and hundreds of students of all ages across the globe, using a variety of tools including satellite phones, online journals, podcasts and interactive "Live from IPY" calls and web-based seminars. The online outreach elements of the project convey these experiences to a broad audience far beyond the classrooms of the PolarTREC teachers. In addition to field research experiences, PolarTREC will support teacher professional development and a sustained community of teachers, scientists, and the public through workshops, Internet seminars, an e-mail listserve, and ongoing teacher

  15. Hepatoprotective and Antioxidant Activities of Tribulus Terrestris

    NARCIS (Netherlands)

    Harraz, Fathalla M; Ghazy, Nabila M; Hammoda, Hala M; Nafeaa, Abeer A.; Abdallah, Ingy I.

    2015-01-01

    Tribulus terrestris L. has been used in folk medicine throughout history. The present study examined the acute toxicity of the total ethanolic extract of T. Terrestris followed by investigation of the hepatoprotective activity of the total ethanolic extract and different fractions of the aerial

  16. First record of Wolbachia in South American terrestrial isopods: prevalence and diversity in two species of Balloniscus (Crustacea, Oniscidea

    Directory of Open Access Journals (Sweden)

    Mauricio Pereira Almerão

    2012-01-01

    Full Text Available Wolbachia are endosymbiotic bacteria that commonly infect arthropods, inducing certain phenotypes in their hosts. So far, no endemic South American species of terrestrial isopods have been investigated for Wolbachia infection. In this work, populations from two species of Balloniscus (B. sellowii and B. glaber were studied through a diagnostic PCR assay. Fifteen new Wolbachia 16S rDNA sequences were detected. Wolbachia found in both species were generally specific to one population, and five populations hosted two different Wolbachia 16S rDNA sequences. Prevalence was higher in B. glaber than in B. sellowii, but uninfected populations could be found in both species. Wolbachia strains from B. sellowii had a higher genetic variation than those isolated from B. glaber. AMOVA analyses showed that most of the genetic variance was distributed among populations of each species rather than between species, and the phylogenetic analysis suggested that Wolbachia strains from Balloniscus cluster within Supergroup B, but do not form a single monophyletic clade, suggesting multiple infections for this group. Our results highlight the importance of studying Wolbachia prevalence and genetic diversity in Neotropical species and suggest that South American arthropods may harbor a great number of diverse strains, providing an interesting model to investigate the evolution of Wolbachia and its hosts.

  17. The circumpolar biodiversity monitoring program - Terrestrial plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    The Circumpolar Biodiversity Monitoring Program, CBMP, Terrestrial Plan, www.caff.is/terrestrial, is a framework to focus and coordinate monitoring of terrestrial biodiversity across the Arctic. The goal of the plan is to improve the collective ability of Arctic traditional knowledge (TK) holders......, northern communities, and scientists to detect, understand and report on long-term change in Arctic terrestrial ecosystems and biodiversity. This presentation will outline the key management questions the plan aims to address and the proposed nested, multi-scaled approach linking targeted, research based...... monitoring with survey-based monitoring and remotely sensed data. The CBMP Terrestrial Plan intends to build upon and expand existing monitoring networks, engaging participants across a range of capacity and interests. The presentation will summarize the recommended focal soil ecosystem components...

  18. Polarization at the SLC

    Energy Technology Data Exchange (ETDEWEB)

    Moffeit, K.C.

    1988-10-01

    The Stanford Linear collider was designed to accommodate polarized electron beams. Longitudinally polarized electrons colliding with unpolarized positrons at a center of mass energy near the Z/sup 0/ mass can be used as novel and sensitive probes of the electroweak process. A gallium arsenide based photon emission source will provide a beam of longitudinally polarized electrons of about 45 percent polarization. A system of bend magnets and a superconducting solenoid will be used to rotate the spins so that the polarization is preserved while the 1.21 GeV electrons are stored in the damping ring. Another set of bend magnets and two superconducting solenoids orient the spin vectors so that longitudinal polarization of the electrons is achieved at the collision point with the unpolarized positrons. A system to monitor the polarization based on Moller and Compton scattering will be used. Nearly all major components have been fabricated and tested. Subsystems of the source and polarimeters have been installed, and studies are in progress. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. 8 refs., 16 figs., 1 tab.

  19. Oxygen as a driver of early arthropod micro-benthos evolution.

    Directory of Open Access Journals (Sweden)

    Mark Williams

    Full Text Available BACKGROUND: We examine the physiological and lifestyle adaptations which facilitated the emergence of ostracods as the numerically dominant Phanerozoic bivalve arthropod micro-benthos. METHODOLOGY/PRINCIPAL FINDINGS: The PO(2 of modern normoxic seawater is 21 kPa (air-equilibrated water, a level that would cause cellular damage if found in the tissues of ostracods and much other marine fauna. The PO(2 of most aquatic breathers at the cellular level is much lower, between 1 and 3 kPa. Ostracods avoid oxygen toxicity by migrating to waters which are hypoxic, or by developing metabolisms which generate high consumption of O(2. Interrogation of the Cambrian record of bivalve arthropod micro-benthos suggests a strong control on ecosystem evolution exerted by changing seawater O(2 levels. The PO(2 of air-equilibrated Cambrian-seawater is predicted to have varied between 10 and 30 kPa. Three groups of marine shelf-dwelling bivalve arthropods adopted different responses to Cambrian seawater O(2. Bradoriida evolved cardiovascular systems that favoured colonization of oxygenated marine waters. Their biodiversity declined during intervals associated with black shale deposition and marine shelf anoxia and their diversity may also have been curtailed by elevated late Cambrian (Furongian oxygen-levels that increased the PO(2 gradient between seawater and bradoriid tissues. Phosphatocopida responded to Cambrian anoxia differently, reaching their peak during widespread seabed dysoxia of the SPICE event. They lacked a cardiovascular system and appear to have been adapted to seawater hypoxia. As latest Cambrian marine shelf waters became well oxygenated, phosphatocopids went extinct. Changing seawater oxygen-levels and the demise of much of the seabed bradoriid micro-benthos favoured a third group of arthropod micro-benthos, the ostracods. These animals adopted lifestyles that made them tolerant of changes in seawater O(2. Ostracods became the numerically

  20. Extended studies on the diversity of arthropod-pathogenic fungi in Austria and Poland

    Directory of Open Access Journals (Sweden)

    Cezary Tkaczyk

    2013-12-01

    Full Text Available Results of studies on diversity of arthropod-pathogenic fungi in selected habitats in Austria and Poland carried out in the years 2006-2007 and 2009-2010 are discussed. In total 47 species of entomopathogenic fungi were found as pathogens of different arthropods in Austria. Twenty six entomophthoralean species from different insects and one species from mites were identified and 16 of them are recorded as new to Austria. From among 21 species of anamorphic Hypocreales (Ascomycota affecting arthropods in Austria, 13 species so far have not been known from this country. In total 51 species of fungi affecting different arthropods in Poland were recorded, among them 28 species of Entomophthorales and 23 anamorphic Hypocreales (Ascomycota were separated. The most frequent species of the entomopathogenic fungi both in agricultural and afforested areas in Austria were the common and usually worldwide distributed cordycipitaceous anamorphs Beauveria bassiana, Isaria fumosorosea and in areas of this study less numerous I. farinosa. The most frequent pathogens occurring in mite communities on plants and in wood infested by insects were Hirsutella species. Several entomophthoralean species developed epizootics that caused high reduction in host populations of different arthropods in both countries. Especially interesting is the first record of mycoses (up to 60% mortality, caused by Zoophthora spp. on Phyllobius beetles in a mixed forest near Białowieża. During our joint research, we found the first time in Poland and Europe, the presence of the fungus Furia cf. shandongensis on earwigs and Hirsutella entomophila on Ips typographus adults in forest habitats. From the feeding sites of the latter bark beetle and other subcortical species in oak bark (mostly Dryocoetes villosus and D. alni in black alder over a dozen of various Lecanicillium strains - including few of the features not allowing to classify them to any of so far known species – were