WorldWideScience

Sample records for polar symmetric flow

  1. Entanglement of polar symmetric top molecules as candidate qubits.

    Science.gov (United States)

    Wei, Qi; Kais, Sabre; Friedrich, Bretislav; Herschbach, Dudley

    2011-10-21

    Proposals for quantum computing using rotational states of polar molecules as qubits have previously considered only diatomic molecules. For these the Stark effect is second-order, so a sizable external electric field is required to produce the requisite dipole moments in the laboratory frame. Here we consider use of polar symmetric top molecules. These offer advantages resulting from a first-order Stark effect, which renders the effective dipole moments nearly independent of the field strength. That permits use of much lower external field strengths for addressing sites. Moreover, for a particular choice of qubits, the electric dipole interactions become isomorphous with NMR systems for which many techniques enhancing logic gate operations have been developed. Also inviting is the wider chemical scope, since many symmetric top organic molecules provide options for auxiliary storage qubits in spin and hyperfine structure or in internal rotation states. © 2011 American Institute of Physics

  2. Bistable states of TM polarized non-linear waves guided by symmetric layered structures

    International Nuclear Information System (INIS)

    Mihalache, D.

    1985-04-01

    Dispersion relations for TM polarized non-linear waves propagating in a symmetric single film optical waveguide are derived. The system consists of a layer of thickness d with dielectric constant epsilon 1 bounded at two sides by a non-linear medium characterized by the diagonal dielectric tensor epsilon 11 =epsilon 22 =epsilon 0 , epsilon 33 =epsilon 0 +α|E 3 | 2 , where E 3 is the normal electric field component. For sufficiently large d/lambda (lambda is the wavelength) we predict bistable states of both symmetric and antisymmetric modes provided that the power flow is the control parameter. (author)

  3. Asymptotic behaviour in polarized and half-polarized U(1) symmetric vacuum spacetimes

    International Nuclear Information System (INIS)

    Isenberg, James; Moncrief, Vincent

    2002-01-01

    We use the Fuchsian algorithm to study the behaviour near the singularity of certain families of U(1) symmetric solutions of the vacuum Einstein equations (with the U(1) isometry group acting spatially). We consider an analytic family of polarized solutions with the maximum number of arbitrary functions consistent with the polarization condition (one of the 'gravitational degrees of freedom' is turned off) and show that all members of this family are asymptotically velocity term dominated (AVTD) as one approaches the singularity. We show that the same AVTD behaviour holds for a family of 'half-polarized' solutions, which is defined by adding one extra arbitrary function to those characterizing the polarized solutions. (The full set of nonpolarized solutions involves two extra arbitrary functions.) Using SL(2, R) Geroch transformations, we produce a further class of U(1) symmetric solutions with AVTD behaviour. We begin to address the issue of whether AVTD behaviour is independent of the choice of time foliation by showing that indeed AVTD behaviour is seen for a wide class of choices of harmonic time in the polarized and half-polarized (U(1) symmetric vacuum) solutions discussed here

  4. Long-period polar rain variations, solar wind and hemispherically symmetric polar rain

    International Nuclear Information System (INIS)

    Makita, K.; Meng, C.

    1987-01-01

    On the basic of electron data obtained by the Defense Meteorological Satellite Program (DMSP) F2 satellite the long-period variations of the polar rain flux are examined for four consecutive solar rotations. It is clearly demonstrated that the asymmetric enhancement of the polar rain flux is strongly controlled by the sector structure of the interplanetary magnetic field (IMF). However, the orbit-to-orbit and day-to-day variations of the polar rain flux are detected even during a very stable sector period, and the polar rain flux does not have any clear relationship to the magnitude of the IMF B/sub x/ or B/sub y/. Thus the polarity of B/sub x/ controls only the accessibility of a polar region. It is also noticed that the intensity of polar rain fluxes does not show any relationship to the density of the solar wind, suggesting that the origin of the polar rain electrons is different from the commonly observed part of the solar wind electron distribution function. In addition to the asymmetric polar rain distribution, increasing polar rain fluxes of similar high intensity are sometimes detected over both polar caps. An examination of more than 1 year's data from the DMSP F2 and F4 satellites shows that simultaneous intense uniform precipitations (>10 7 electrons/cm 2 s sr) over both polar caps are not coincidental; it also shows that the spectra are similar. The occurrence of hemispherically symmetric events is not common. They generally are observed after an IMF sector transition period, during unstable periods in the sector structure, and while the solar wind density is high. copyright American Geophysical Union 1987

  5. Helically symmetric equilibria with pressure anisotropy and incompressible plasma flow

    Science.gov (United States)

    Evangelias, A.; Kuiroukidis, A.; Throumoulopoulos, G. N.

    2018-02-01

    We derive a generalized Grad-Shafranov equation governing helically symmetric equilibria with pressure anisotropy and incompressible flow of arbitrary direction. Through the most general linearizing ansatz for the various free surface functions involved therein, we construct equilibrium solutions and study their properties. It turns out that pressure anisotropy can act either paramegnetically or diamagnetically, the parallel flow has a paramagnetic effect, while the non-parallel component of the flow associated with the electric field has a diamagnetic one. Also, pressure anisotropy and flow affect noticeably the helical current density.

  6. A new method for generating axially-symmetric and radially-polarized beams

    International Nuclear Information System (INIS)

    Niu Chunhui; Gu Benyuan; Dong Bizhen; Zhang Yan

    2005-01-01

    A scheme for generating axially-symmetric and radially-polarized beams is proposed by using two diffractive phase elements (DPEs) made of birefringent materials. The design of these two DPEs is based on the general theory of phase-retrieval of optical system in combination with an iterative algorithm. The first DPE is used for demultiplexing two orthogonally linearly-polarized light beams to produce diffractive patterns, and the second DPE is used for compensating the phase difference to obtain the desired radially-polarized beam

  7. Simplified design of thin-film polarizing beam splitter using embedded symmetric trilayer stack.

    Science.gov (United States)

    Azzam, R M A

    2011-07-01

    An analytically tractable design procedure is presented for a polarizing beam splitter (PBS) that uses frustrated total internal reflection and optical tunneling by a symmetric LHL trilayer thin-film stack embedded in a high-index prism. Considerable simplification arises when the refractive index of the high-index center layer H matches the refractive index of the prism and its thickness is quarter-wave. This leads to a cube design in which zero reflection for the p polarization is achieved at a 45° angle of incidence independent of the thicknesses of the identical symmetric low-index tunnel layers L and L. Arbitrarily high reflectance for the s polarization is obtained at subwavelength thicknesses of the tunnel layers. This is illustrated by an IR Si-cube PBS that uses an embedded ZnS-Si-ZnS trilayer stack.

  8. Compact broadband polarization beam splitter using a symmetric directional coupler with sinusoidal bends.

    Science.gov (United States)

    Zhang, Fan; Yun, Han; Wang, Yun; Lu, Zeqin; Chrostowski, Lukas; Jaeger, Nicolas A F

    2017-01-15

    We design and demonstrate a compact broadband polarization beam splitter (PBS) using a symmetric directional coupler with sinusoidal bends on a silicon-on-insulator platform. The sinusoidal bends in our PBS suppress the power exchange between two parallel symmetric strip waveguides for the transverse-electric (TE) mode, while allowing for the maximum power transfer to the adjacent waveguide for the transverse-magnetic (TM) mode. Our PBS has a nominal coupler length of 8.55 μm, and it has an average extinction ratio (ER) of 12.0 dB for the TE mode, an average ER of 20.1 dB for the TM mode, an average polarization isolation (PI) of 20.6 dB for the through port, and an average PI of 11.5 dB for the cross port, all over a bandwidth of 100 nm.

  9. Modelling the air flow in symmetric and asymmetric street canyons

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, J.L.; Martin, F. [Research Center for Energy, Environment and Technology (CIEMAT), Madrid (Spain). Fossil Fuels Dept., Numerical Simulation and Modelling Program

    2004-07-01

    In recent years a large amount of research has been conducted on urban scale and street canyon. Control of air quality inside cities is important for human health. To achieve this objective, street canyon modelling plays a significant role. Pollutant dispersion inside canyons are determined by wind flow around this complex geometry. Experimental investigations have been made by means of field measurements such as Vachon, G. et al. or wind tunnel experiences as Meroney, R.N. et al. or Kastner-Klein, P. and E.J. Plate. In many of these researches, they have used CFD models in several configurations, for instance Assimakopoulos, V.D. et al. or Sini, J.-F. et al. These models are based on a numerical resolution of Navier-Stokes equations with a turbulence closure. In this study, the aim is contribute to the understanding of air circulation inside street canyons. In order to achieve this purpose, several configurations of canyons are investigated. Two-dimensional sequences of real-scale street canyons (order to obstacles height is meters) with different features (symmetric canyons and asymmetric canyons forming step-up and step-down notch configurations) are simulated. These general configurations are modified to investigate some parameters such as aspect ratio, W/H, where W is the width of street and H is the height of buildings. Flows with high Reynolds numbers are modelling. FLUENT CFD software is used. (orig.)

  10. Spin polarized and density modulated phases in symmetric electron-electron and electron-hole bilayers.

    Science.gov (United States)

    Kumar, Krishan; Moudgil, R K

    2012-10-17

    We have studied symmetric electron-electron and electron-hole bilayers to explore the stable homogeneous spin phase and the feasibility of inhomogeneous charge-/spin-density ground states. The former is resolved by comparing the ground-state energies in states of different spin polarizations, while the latter is resolved by searching for a divergence in the wavevector-dependent static charge/spin susceptibility. For this endeavour, we have used the dielectric approach within the self-consistent mean-field theory of Singwi et al. We find that the inter-layer interactions tend to change an abrupt spin-polarization transition of an isolated layer into a nearly gradual one, even though the partially spin-polarized phases are not clearly stable within the accuracy of our calculation. The transition density is seen to decrease with a reduction in layer spacing, implying a suppression of spin polarization by inter-layer interactions. Indeed, the suppression shows up distinctly in the spin susceptibility computed from the spin-polarization dependence of the ground-state energy. However, below a critical layer spacing, the unpolarized liquid becomes unstable against a charge-density-wave (CDW) ground state at a density preceding full spin polarization, with the transition density for the CDW state increasing on further reduction in the layer spacing. Due to attractive e-h correlations, the CDW state is found to be more pronounced in the e-h bilayer. On the other hand, the static spin susceptibility diverges only in the long-wavelength limit, which simply represents a transition to the homogeneous spin-polarized phase.

  11. Designing symmetric polar direct drive implosions on the Omega laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikova, Natalia S.; Cobble, James A.; Murphy, Thomas J.; Tregillis, Ian L.; Bradley, Paul A.; Hakel, Peter; Hsu, Scott C.; Kyrala, George A.; Obrey, Kimberly A.; Schmitt, Mark J.; Baumgaertel, Jessica A.; Batha, Steven H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-04-15

    Achieving symmetric capsule implosions with Polar Direct Drive [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004); R. S. Craxton et al., Phys. Plasmas 12, 056304 (2005); F. J. Marshall et al., J. Phys. IV France 133, 153–157 (2006)] has been explored during recent Defect Induced Mix Experiment campaign on the Omega facility at the Laboratory for Laser Energetics. To minimize the implosion asymmetry due to laser drive, optimized laser cone powers, as well as improved beam pointings, were designed using 3D radiation-hydrodynamics code HYDRA [M. M. Marinak et al., Phys. Plasmas 3, 2070 (1996)]. Experimental back-lit radiographic and self-emission images revealed improved polar symmetry and increased neutron yield which were in good agreement with 2D HYDRA simulations. In particular, by reducing the energy in Omega's 21.4° polar rings by 16.75%, while increasing the energy in the 58.9° equatorial rings by 8.25% in such a way as to keep the overall energy to the target at 16 kJ, the second Legendre mode (P{sub 2}) was reduced by a factor of 2, to less than 4% at bang time. At the same time the neutron yield increased by 62%. The polar symmetry was also improved relative to nominal DIME settings by a more radical repointing of OMEGA's 42.0° and 58.9° degree beams, to compensate for oblique incidence and reduced absorption at the equator, resulting in virtually no P{sub 2} around bang time and 33% more yield.

  12. Non-symmetric bi-stable flow around the Ahmed body

    International Nuclear Information System (INIS)

    Meile, W.; Ladinek, T.; Brenn, G.; Reppenhagen, A.; Fuchs, A.

    2016-01-01

    Highlights: • The non-symmetric bi-stable flow around the Ahmed body is investigated experimentally. • Bi-stability, described for symmetric flow by Cadot and co-workers, was found in nonsymmetric flow also. • The flow field randomly switches between two states. • The flow is subject to a spanwise instability identified by Cadot and co-workers for symmetric flow. • Aerodynamic forces fluctuate strongly due to the bi-stability. - Abstract: The flow around the Ahmed body at varying Reynolds numbers under yawing conditions is investigated experimentally. The body geometry belongs to a regime subject to spanwise flow instability identified in symmetric flow by Cadot and co-workers (Grandemange et al., 2013b). Our experiments cover the two slant angles 25° and 35° and Reynolds numbers up to 2.784 × 10"6. Special emphasis lies on the aerodynamics under side wind influence. For the 35° slant angle, forces and moments change significantly with the yawing angle in the range 10° ≤ |β| ≤ 15°. The lift and the pitching moment exhibit strong fluctuations due to bi-stable flow around a critical angle β of ±12.5°, where the pitching moment changes sign. Time series of the forces and moments are studied and explained by PIV measurements in the flow field near the rear of the body.

  13. Nanotrumpets and circularly polarized luminescent nanotwists hierarchically self-assembled from an achiral C3-symmetric ester.

    Science.gov (United States)

    Sang, Yutao; Duan, Pengfei; Liu, Minghua

    2018-04-17

    An achiral C3-symmetric molecule was found to self-assemble into various hierarchical nanostructures such as nanotwists, nanotrumpets and nanobelts, in which the twisted fibers showed supramolecular chirality as well as circularly polarized luminescence although the compound is achiral.

  14. Transition to a pair of chaotic symmetric flows

    International Nuclear Information System (INIS)

    Chen Zhimin; Price, W.G.

    2006-01-01

    The complexity of transition to chaotic flow is discussed. It is shown that many different bifurcation processes may coexist and join together to excite the chaotic flow. The profile of this nonlinear dynamical behaviour is developed on the basis of a four-mode truncation model

  15. Axi-symmetric patterns of active polar filaments on spherical and composite surfaces

    Science.gov (United States)

    Srivastava, Pragya; Rao, Madan

    2014-03-01

    Experiments performed on Fission Yeast cells of cylindrical and spherical shapes, rod-shaped bacteria and reconstituted cylindrical liposomes suggest the influence of cell geometry on patterning of cortical actin. A theoretical model based on active hydrodynamic description of cortical actin that includes curvature-orientation coupling predicts spontaneous formation of acto-myosin rings, cables and nodes on cylindrical and spherical geometries [P. Srivastava et al, PRL 110, 168104(2013)]. Stability and dynamics of these patterns is also affected by the cellular shape and has been observed in experiments performed on Fission Yeast cells of spherical shape. Motivated by this, we study the stability and dynamics of axi-symmetric patterns of active polar filaments on the surfaces of spherical, saddle shaped and conical geometry and classify the stable steady state patterns on these surfaces. Based on the analysis of the fluorescence images of Myosin-II during ring slippage we propose a simple mechanical model for ring-sliding based on force balance and make quantitative comparison with the experiments performed on Fission Yeast cells. NSF Grant DMR-1004789 and Syracuse Soft Matter Program.

  16. Even distribution/dividing of single-phase fluids by symmetric bifurcation of flow channels

    International Nuclear Information System (INIS)

    Liu, Hong; Li, Peiwen

    2013-01-01

    Highlights: ► We addressed an issue of distributing a flow to a number of flow channels uniformly. ► The flow distribution is accomplished through bifurcation of channels. ► Some key parameters to the flow distribution uniformity have been identified. ► Flow uniformity was studied for several versions of flow distributor designs. ► A novel fluid packaging device of high efficiency was provided. -- Abstract: This study addresses a fundamental issue of distributing a single-phase fluid flow into a number of flow channels uniformly. A basic mechanism of flow distribution is accomplished through bifurcation of channels that symmetrically split one flow channel into two downstream channels. Applying the basic mechanism, cascades flow distributions are designed to split one flow into a large number of downstream flows uniformly. Some key parameters decisive to the flow distribution uniformity in such a system have been identified, and the flow distribution uniformity of air was studied for several versions of flow distributor designs using CFD analysis. The effect of the key parameters of the flow channel designs to the flow distribution uniformity was investigated. As an example of industrial application, a novel fluid packaging device of high efficiency was proposed and some CFD analysis results for the device were provided. The optimized flow distributor makes a very good uniform flow distribution which will significantly improve the efficiency of fluid packaging. The technology is expected to be of great significance to many industrial devices that require high uniformity of flow distribution

  17. Motion compensated frame interpolation with a symmetric optical flow constraint

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau; Roholm, Lars; Bruhn, Andrés

    2012-01-01

    We consider the problem of interpolating frames in an image sequence. For this purpose accurate motion estimation can be very helpful. We propose to move the motion estimation from the surrounding frames directly to the unknown frame by parametrizing the optical flow objective function such that ......We consider the problem of interpolating frames in an image sequence. For this purpose accurate motion estimation can be very helpful. We propose to move the motion estimation from the surrounding frames directly to the unknown frame by parametrizing the optical flow objective function...... methods. The proposed reparametrization is generic and can be applied to almost every existing algorithm. In this paper we illustrate its advantages by considering the classic TV-L1 optical flow algorithm as a prototype. We demonstrate that this widely used method can produce results that are competitive...... with current state-of-the-art methods. Finally we show that the scheme can be implemented on graphics hardware such that it be- comes possible to double the frame rate of 640 × 480 video footage at 30 fps, i.e. to perform frame doubling in realtime....

  18. Unsteady Flow in a Horizontal Double-Sided Symmetric Thin Liquid Films

    Directory of Open Access Journals (Sweden)

    Joseph G. ABDULAHAD

    2017-06-01

    Full Text Available In this paper a mathematical model is constructed to describe a two dimensional incompressible flow in a symmetric horizontal thin liquid film for unsteadies flow. We apply the Navier-Stokes equations with specified boundary conditions and we obtain the equation of the film thickness by using the similarity method in which we can isolate the explicit time dependence and then the shape of the film will depend on one variable only.

  19. Flow of Polymer Melts in Plane- and Axi-Symmetric Converging Dies

    DEFF Research Database (Denmark)

    Lauridsen, Carsten Linding; Kjær, Erik Michael; Haudrum, Jan

    1998-01-01

    The extensional flow has considerable influence on the pressure loss in converging flows, which are present in both extrusion and injection moulding. Both plane- and axi-symmetric converging flows have been studied with LDPE, HDPE and PS. The transient extensional viscosities are determined in al...... are comparable for the LDPE and the PS melts. Furthermore, the pressure losses are characterized with the Deborah number in which the characteristic time of the material is shear rate dependent and the characteristic time of the flow is Hencky strain rate dependent....

  20. An Explanation of Jupiter's Equatorially Symmetric Gravitational Field using a Four-layer, Non-spheroidal Model with Zonal Flow

    Science.gov (United States)

    Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John

    2017-10-01

    The structure/amplitude of the Jovian equatorially symmetric gravitational field is affected by both rotational distortion and the fast equatorially symmetric zonal flow. We construct a fully self-consistent, four-layer, non-spheroidal (i.e, the shape is irregular) model of Jupiter that comprises an inner core, a metallic region, an outer molecular envelope and a thin transition layer between the metallic and molecular regions. While the core is assumed to have a uniform density, three different equations of state are adopted for the metallic, molecular and transition regions. We solve the governing equations via a perturbation approach. The leading-order problem accounts for the full effect of rotational distortion, and determines the density, size and shape of the core, the location and thickness of the transition layer, and the shape of the 1-bar pressure level; it also produces the mass, the equatorial and polar radii of Jupiter, and the even zonal gravitational coefficients caused by the rotational distortion. The next-order problem determines the corrections caused by the zonal flow which is assumed to be confined within the molecular envelope and on cylinders parallel to the rotation axis. Our model provides the total even gravitational coefficients that can be compared with those acquired by the Juno spacecraft.

  1. Flow of Polymer Melts in Plane- and Axi-symmetric Converging Dies

    DEFF Research Database (Denmark)

    Lauridsen, Carsten Linding; Kjær, Erik Michael; Haudrum, Jan

    1997-01-01

    The extensional flow has considerable influence on the pressure loss in converging flows, which are present in both extrusion and injection moulding. Both plane- and axi-symmetric converging flows have been studied with LDPE, HDPE and PS. The transient extensional viscosities are determined in al...... for the LDPE and the PS melts. Further more, the pressure losses are characterised with the Deborah number in which the characteristic time of the material is shear rate dependent and the characteristic rime of the now is Hencky strain rate dependent....

  2. Canonic FFT flow graphs for real-valued even/odd symmetric inputs

    Science.gov (United States)

    Lao, Yingjie; Parhi, Keshab K.

    2017-12-01

    Canonic real-valued fast Fourier transform (RFFT) has been proposed to reduce the arithmetic complexity by eliminating redundancies. In a canonic N-point RFFT, the number of signal values at each stage is canonic with respect to the number of signal values, i.e., N. The major advantage of the canonic RFFTs is that these require the least number of butterfly operations and only real datapaths when mapped to architectures. In this paper, we consider the FFT computation whose inputs are not only real but also even/odd symmetric, which indeed lead to the well-known discrete cosine and sine transforms (DCTs and DSTs). Novel algorithms for generating the flow graphs of canonic RFFTs with even/odd symmetric inputs are proposed. It is shown that the proposed algorithms lead to canonic structures with N/2 +1 signal values at each stage for an N-point real even symmetric FFT (REFFT) or N/2 -1 signal values at each stage for an N-point RFFT real odd symmetric FFT (ROFFT). In order to remove butterfly operations, several twiddle factor transformations are proposed in this paper. We also discuss the design of canonic REFFT for any composite length. Performances of the canonic REFFT/ROFFT are also discussed. It is shown that the flow graph of canonic REFFT/ROFFT has less number of interconnections, less butterfly operations, and less twiddle factor operations, compared to prior works.

  3. Effects of the Observed Meridional Flow Variations since 1996 on the Sun's Polar Fields

    Science.gov (United States)

    Hathaway, David H.; Upton, Lisa

    2013-01-01

    The cause of the low and extended minimum in solar activity between Sunspot Cycles 23 and 24 was the small size of Sunspot Cycle 24 itself - small cycles start late and leave behind low minima. Cycle 24 is small because the polar fields produced during Cycle 23 were substantially weaker than those produced during the previous cycles and those (weak) polar fields are the seeds for the activity of the following cycle. The polar fields are produced by the latitudinal transport of magnetic flux that emerged in low-latitude active regions. The polar fields thus depend upon the details of both the flux emergence and the flux transport. We have measured the flux transport flows (differential rotation, meridional flow, and supergranules) since 1996 and find systematic and substantial variation in the meridional flow alone. Here we present experiments using a Surface Flux Transport Model in which magnetic field data from SOHO/MDI and SDO/HMI are assimilated into the model only at latitudes between 45-degrees north and south of the equator (this assures that the details of the active region flux emergence are well represented). This flux is then transported in both longitude and latitude by the observed flows. In one experiment the meridional flow is given by the time averaged (and north-south symmetric) meridional flow profile. In the second experiment the time-varying and north-south asymmetric meridional flow is used. Differences between the observed polar fields and those produced in these two experiments allow us to ascertain the effects of these meridional flow variations on the Sun s polar fields.

  4. How fast can a black hole eat. [Equation stationary spherically symmetric solutions, Thompson scattering, mass flow

    Energy Technology Data Exchange (ETDEWEB)

    Kafka, P; Meszaros, P [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (Germany, F.R.)

    1976-11-01

    Stationary spherically symmetric solutions of the equations for accretion of large mass flows onto a black hole, including the interaction of matter and radiation due to Thomson scattering in diffusion approximation are constructed. The relevance of these solutions is discussed with respect to the question of whether the limitation of the luminosity (Eddington limit) also implies an upper bound to the possible rate of mass flow. The question remains open until all instabilities have been studied. At the moment a negative answer is favoured.

  5. Asymmetric flows over symmetric surfaces: capacitive coupling in induced-charge electro-osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Mansuripur, T S [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Pascall, A J; Squires, T M [Department of Chemical Engineering, University of California, Santa Barbara, CA 93106 (United States)], E-mail: squires@engineering.ucsb.edu

    2009-07-15

    We report curious asymmetric induced-charge electro-osmotic (ICEO) flows over a symmetric, planar gate electrode under applied ac electric fields, whereas symmetric, counter-rotating rolls are expected. Furthermore, the asymmetric component of the flow is consistently directed towards the grounded electrode. We propose that capacitive coupling of the gate electrode to the microscope stage-a comparatively large equipotential surface that acts effectively as a ground-is responsible for this symmetry breaking. This stray capacitance drives the formation of a double layer whose zeta potential is proportional to the potential drop from the electrolyte directly above the gate electrode to the external stage. Therefore, the charge in this 'stray' double layer varies in phase with the driving field, resulting in a rectified, steady flow as with standard ICEO. We experimentally vary the stray capacitance, the electric potential of the stage and the location of the gate electrode, and find that the effect on the stray flow is qualitatively consistent with the predictions of the proposed mechanism. In the process, we demonstrate that capacitive coupling offers an additional means of manipulating fluid flow over a polarizable surface.

  6. Asymmetric flows over symmetric surfaces: capacitive coupling in induced-charge electro-osmosis

    International Nuclear Information System (INIS)

    Mansuripur, T S; Pascall, A J; Squires, T M

    2009-01-01

    We report curious asymmetric induced-charge electro-osmotic (ICEO) flows over a symmetric, planar gate electrode under applied ac electric fields, whereas symmetric, counter-rotating rolls are expected. Furthermore, the asymmetric component of the flow is consistently directed towards the grounded electrode. We propose that capacitive coupling of the gate electrode to the microscope stage-a comparatively large equipotential surface that acts effectively as a ground-is responsible for this symmetry breaking. This stray capacitance drives the formation of a double layer whose zeta potential is proportional to the potential drop from the electrolyte directly above the gate electrode to the external stage. Therefore, the charge in this 'stray' double layer varies in phase with the driving field, resulting in a rectified, steady flow as with standard ICEO. We experimentally vary the stray capacitance, the electric potential of the stage and the location of the gate electrode, and find that the effect on the stray flow is qualitatively consistent with the predictions of the proposed mechanism. In the process, we demonstrate that capacitive coupling offers an additional means of manipulating fluid flow over a polarizable surface.

  7. Polarization-independent characteristics of the metasurfaces with the symmetrical axis’s orientation angle of 45° or 135°

    International Nuclear Information System (INIS)

    Wang, Wei; Guo, Zhongyi; Li, Yan; Mao, Xiaoqin; Wang, Benyang; Fan, Guanghua; Qu, Shiliang; Ran, Lingling; Sun, Yongxuan; Shen, Fei

    2016-01-01

    A series of symmetrical nanoantennas with a symmetrical axis orientation angle of 45° or 135°, which are suitable for both X/Y linear and circular polarizations incidences simultaneously, have been designed and investigated in detail. We have deduced the transmitted matrix of the metasurface structure by rigorous mathematical theory, and found that the essential reason for the polarization-independence characteristics is that there are the same transmitted amplitudes and phases under the incidences of X/Y linear and circular polarization lights due to metasurface structure with the symmetrical axis’s orientation angles of 45° or 135°. Based on the V-shaped, C-shaped, U-shaped and elliptical slit nanoantennas, we have verified the proposed theory fully by numerical simulations. The independence of the incident polarizations is very important for the practical applications and developments of the metasurfaces. (paper)

  8. Study on polarized optical flow algorithm for imaging bionic polarization navigation micro sensor

    Science.gov (United States)

    Guan, Le; Liu, Sheng; Li, Shi-qi; Lin, Wei; Zhai, Li-yuan; Chu, Jin-kui

    2018-05-01

    At present, both the point source and the imaging polarization navigation devices only can output the angle information, which means that the velocity information of the carrier cannot be extracted from the polarization field pattern directly. Optical flow is an image-based method for calculating the velocity of pixel point movement in an image. However, for ordinary optical flow, the difference in pixel value as well as the calculation accuracy can be reduced in weak light. Polarization imaging technology has the ability to improve both the detection accuracy and the recognition probability of the target because it can acquire the extra polarization multi-dimensional information of target radiation or reflection. In this paper, combining the polarization imaging technique with the traditional optical flow algorithm, a polarization optical flow algorithm is proposed, and it is verified that the polarized optical flow algorithm has good adaptation in weak light and can improve the application range of polarization navigation sensors. This research lays the foundation for day and night all-weather polarization navigation applications in future.

  9. Asymmetry of blood flow and cancer cell adhesion in a microchannel with symmetric bifurcation and confluence.

    Science.gov (United States)

    Ishikawa, Takuji; Fujiwara, Hiroki; Matsuki, Noriaki; Yoshimoto, Takefumi; Imai, Yohsuke; Ueno, Hironori; Yamaguchi, Takami

    2011-02-01

    Bifurcations and confluences are very common geometries in biomedical microdevices. Blood flow at microchannel bifurcations has different characteristics from that at confluences because of the multiphase properties of blood. Using a confocal micro-PIV system, we investigated the behaviour of red blood cells (RBCs) and cancer cells in microchannels with geometrically symmetric bifurcations and confluences. The behaviour of RBCs and cancer cells was strongly asymmetric at bifurcations and confluences whilst the trajectories of tracer particles in pure water were almost symmetric. The cell-free layer disappeared on the inner wall of the bifurcation but increased in size on the inner wall of the confluence. Cancer cells frequently adhered to the inner wall of the bifurcation but rarely to other locations. Because the wall surface coating and the wall shear stress were almost symmetric for the bifurcation and the confluence, the result indicates that not only chemical mediation and wall shear stress but also microscale haemodynamics play important roles in the adhesion of cancer cells to the microchannel walls. These results provide the fundamental basis for a better understanding of blood flow and cell adhesion in biomedical microdevices.

  10. Radial electric field and ion parallel flow in the quasi-symmetric and Mirror configurations of HSX

    Science.gov (United States)

    Kumar, S. T. A.; Dobbins, T. J.; Talmadge, J. N.; Wilcox, R. S.; Anderson, D. T.

    2018-05-01

    The radial electric field and the ion mean parallel flow are obtained in the helically symmetric experiment stellarator from toroidal flow measurements of C+6 ion at two locations on a flux surface, using the Pfirsch–Schlüter effect. Results from the standard quasi-helically symmetric magnetic configuration are compared with those from the Mirror configuration where the quasi-symmetry is deliberately degraded using auxiliary coils. For similar injected power, the quasi-symmetric configuration is observed to have significantly lower flows while the experimental observations from the Mirror geometry are in better agreement with neoclassical calculations. Indications are that the radial electric field near the core of the quasi-symmetric configuration may be governed by non-neoclassical processes.

  11. Space-charge flow in a non-cylindrically symmetric diode

    International Nuclear Information System (INIS)

    Quintenz, J.P.; Poukey, J.W.

    1976-01-01

    The one-dimensional cylindrical space-charge-limited emission and flow results of Langmuir and Blodgett are extended to the two-dimensional (r-theta) non-symmetric case by solving a fluid model numerically. It is found that particle beams thus generated can be controlled by suitable adjustment of the applied potentials and cylinder radii. A particle code has been modified to treat razor blade cathodes by including a simplified model for the blade emission. Numerical results are compared with experimental data. These results indicate that beams produced by razor blades pinch less tightly than those from block cathodes, but in some cases may still pinch enough to be interesting

  12. Perturbation solutions for flow through symmetrical hoppers with inserts and asymmetrical wedge hoppers

    Science.gov (United States)

    Cox, G. M.; Mccue, S. W.; Thamwattana, N.; Hill, J. M.

    Under certain circumstances, an industrial hopper which operates under the "funnel-flow" regime can be converted to the "mass-flow" regime with the addition of a flow-corrective insert. This paper is concerned with calculating granular flow patterns near the outlet of hoppers that incorporate a particular type of insert, the cone-in-cone insert. The flow is considered to be quasi-static, and governed by the Coulomb-Mohr yield condition together with the non-dilatant double-shearing theory. In two-dimensions, the hoppers are wedge-shaped, and as such the formulation for the wedge-in-wedge hopper also includes the case of asymmetrical hoppers. A perturbation approach, valid for high angles of internal friction, is used for both two-dimensional and axially symmetric flows, with analytic results possible for both leading order and correction terms. This perturbation scheme is compared with numerical solutions to the governing equations, and is shown to work very well for angles of internal friction in excess of 45°.

  13. Cyclic and heteroclinic flows near general static spherically symmetric black holes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Ayyesha K.; Jamil, Mubasher [National University of Sciences and Technology(NUST), Department of Mathematics, School of Natural Sciences (SNS), Islamabad (Pakistan); Azreg-Ainou, Mustapha [Baskent University, Engineering Faculty, Ankara (Turkey); Faizal, Mir [University of Lethbridge, Department of Physics and Astronomy, Alberta (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada)

    2016-05-15

    We investigate the Michel-type accretion onto a static spherically symmetric black hole. Using a Hamiltonian dynamical approach, we show that the standard method employed for tackling the accretion problem has masked some properties of the fluid flow. We determine new analytical solutions that are neither transonic nor supersonic as the fluid approaches the horizon(s); rather, they remain subsonic for all values of the radial coordinate. Moreover, the three-velocity vanishes and the pressure diverges on the horizon(s), resulting in a flow-out of the fluid under the effect of its own pressure. This is in favor of the earlier prediction that pressure-dominant regions form near the horizon. This result does not depend on the form of the metric and it applies to a neighborhood of any horizon where the time coordinate is timelike. For anti-de Sitter-like f(R) black holes we discuss the stability of the critical flow and determine separatrix heteroclinic orbits. For de Sitter-like f(R) black holes, we construct polytropic cyclic, non-homoclinic, physical flows connecting the two horizons. These flows become non-relativistic for Hamiltonian values higher than the critical value, allowing for a good estimate of the proper period of the flow. (orig.)

  14. Flows of Newtonian and Power-Law Fluids in Symmetrically Corrugated Cappilary Fissures and Tubes

    Science.gov (United States)

    Walicka, A.

    2018-02-01

    In this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric flow rate in laminar flow regimes of Newtonian and power-law fluids through symmetrically corrugated capillary fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration when analytical expressions are hard to obtain due to mathematical complexities. Five converging-diverging or diverging-converging geometrics, viz. wedge and cone, parabolic, hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. For the wedge and cone geometry the present results for the power-law fluid were compared with the results obtained by another method; this comparison indicates a good compatibility between both the results.

  15. Steady Stokes flow past dumbbell shaped axially symmetric body of revolution: An analytic approach

    Directory of Open Access Journals (Sweden)

    Srivastava Kumar Deepak

    2012-01-01

    Full Text Available In this paper, the problem of steady Stokes flow past dumbbell-shaped axially symmetric isolated body of revolution about its axis of symmetry is considered by utilizing a method (Datta and Srivastava, 1999 based on body geometry under the restrictions of continuously turning tangent on the boundary. The relationship between drag and moment is established in transverse flow situation. The closed form expression of Stokes drag is then calculated for dumbbell-shaped body in terms of geometric parameters b, c, d and a with the aid of this linear relation and the formula of torque obtained by (Chwang and Wu, part 1, 1974 with the use of singularity distribution along axis of symmetry. Drag coefficient and moment coefficient are defined in various forms in terms of dumbbell parameters. Their numerical values are calculated and depicted in respective graphs and compared with some known values.

  16. Influence of flow constraints on the properties of the critical endpoint of symmetric nuclear matter

    Science.gov (United States)

    Ivanytskyi, A. I.; Bugaev, K. A.; Sagun, V. V.; Bravina, L. V.; Zabrodin, E. E.

    2018-06-01

    We propose a novel family of equations of state for symmetric nuclear matter based on the induced surface tension concept for the hard-core repulsion. It is shown that having only four adjustable parameters the suggested equations of state can, simultaneously, reproduce not only the main properties of the nuclear matter ground state, but the proton flow constraint up its maximal particle number densities. Varying the model parameters we carefully examine the range of values of incompressibility constant of normal nuclear matter and its critical temperature, which are consistent with the proton flow constraint. This analysis allows us to show that the physically most justified value of nuclear matter critical temperature is 15.5-18 MeV, the incompressibility constant is 270-315 MeV and the hard-core radius of nucleons is less than 0.4 fm.

  17. Flows of Newtonian and Power-Law Fluids in Symmetrically Corrugated Cappilary Fissures and Tubes

    Directory of Open Access Journals (Sweden)

    Walicka A.

    2018-02-01

    Full Text Available In this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric flow rate in laminar flow regimes of Newtonian and power-law fluids through symmetrically corrugated capillary fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration when analytical expressions are hard to obtain due to mathematical complexities. Five converging-diverging or diverging-converging geometrics, viz. wedge and cone, parabolic, hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. For the wedge and cone geometry the present results for the power-law fluid were compared with the results obtained by another method; this comparison indicates a good compatibility between both the results.

  18. Linear perturbation of spherically symmetric flows: a first-order upwind scheme for the gas dynamics equations in Lagrangian coordinates

    International Nuclear Information System (INIS)

    Clarisse, J.M.

    2007-01-01

    A numerical scheme for computing linear Lagrangian perturbations of spherically symmetric flows of gas dynamics is proposed. This explicit first-order scheme uses the Roe method in Lagrangian coordinates, for computing the radial spherically symmetric mean flow, and its linearized version, for treating the three-dimensional linear perturbations. Fulfillment of the geometric conservation law discrete formulations for both the mean flow and its perturbation is ensured. This scheme capabilities are illustrated by the computation of free-surface mode evolutions at the boundaries of a spherical hollow shell undergoing an homogeneous cumulative compression, showing excellent agreement with reference results. (author)

  19. Robust numerical methods for boundary-layer equations for a model problem of flow over a symmetric curved surface

    NARCIS (Netherlands)

    A.R. Ansari; B. Hossain; B. Koren (Barry); G.I. Shishkin (Gregori)

    2007-01-01

    textabstractWe investigate the model problem of flow of a viscous incompressible fluid past a symmetric curved surface when the flow is parallel to its axis. This problem is known to exhibit boundary layers. Also the problem does not have solutions in closed form, it is modelled by boundary-layer

  20. A fast inverse consistent deformable image registration method based on symmetric optical flow computation

    International Nuclear Information System (INIS)

    Yang Deshan; Li Hua; Low, Daniel A; Deasy, Joseph O; Naqa, Issam El

    2008-01-01

    Deformable image registration is widely used in various radiation therapy applications including daily treatment planning adaptation to map planned tissue or dose to changing anatomy. In this work, a simple and efficient inverse consistency deformable registration method is proposed with aims of higher registration accuracy and faster convergence speed. Instead of registering image I to a second image J, the two images are symmetrically deformed toward one another in multiple passes, until both deformed images are matched and correct registration is therefore achieved. In each pass, a delta motion field is computed by minimizing a symmetric optical flow system cost function using modified optical flow algorithms. The images are then further deformed with the delta motion field in the positive and negative directions respectively, and then used for the next pass. The magnitude of the delta motion field is forced to be less than 0.4 voxel for every pass in order to guarantee smoothness and invertibility for the two overall motion fields that are accumulating the delta motion fields in both positive and negative directions, respectively. The final motion fields to register the original images I and J, in either direction, are calculated by inverting one overall motion field and combining the inversion result with the other overall motion field. The final motion fields are inversely consistent and this is ensured by the symmetric way that registration is carried out. The proposed method is demonstrated with phantom images, artificially deformed patient images and 4D-CT images. Our results suggest that the proposed method is able to improve the overall accuracy (reducing registration error by 30% or more, compared to the original and inversely inconsistent optical flow algorithms), reduce the inverse consistency error (by 95% or more) and increase the convergence rate (by 100% or more). The overall computation speed may slightly decrease, or increase in most cases

  1. Convection flow structure in the central polar cap

    Science.gov (United States)

    Bristow, W. A.

    2017-12-01

    A previous study of spatially averaged flow velocity in the central polar cap [Bristow et al., 2015] observed under steady IMF conditions found that it was extremely rare for the average to exceed 850 m/s (less than 0.2 % of the time). Anecdotally, however it is not uncommon to observe line-of-sight velocities in excess of 100 m/s in the McMurdo radar field of view directly over the magnetic pole. This discrepancy motivated this study, which examines the conditions under which high-velocity flows are observed at latitudes greater than 80° magnetic latitude. It was found that highly structured flows are common in the central polar cap, which leads to the flow within regions to have significant deviation from the average. In addition, the high-speed flow regions are usually directed away from the earth-sun line. No specific set of driving conditions was identified to be associated with high-speed flows. The study did conclude that 1)Polar cap velocities are generally highly structured. 2)Flow patterns typically illustrate narrow channels, vortical flow regions, and propagating features. 3) Persistent waves are a regular occurrence. 3)Features are observed to propagate from day side to night side, and from night side to day side.. 4)Convection often exhibits significant difference between the two hemispheres. And 5)About 10% of the time the velocity somewhere in the cap exceeds 1 Km/s The presentation will conclude with a discussion of the physical reasons for the flow structure. Bristow, W. A., E. Amata, J. Spaleta, and M. F. Marcucci (2015), Observations of the relationship between ionospheric central polar cap and dayside throat convection velocities, and solar wind/IMF driving, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021199.

  2. Vanishing Viscosity Approach to the Compressible Euler Equations for Transonic Nozzle and Spherically Symmetric Flows

    Science.gov (United States)

    Chen, Gui-Qiang G.; Schrecker, Matthew R. I.

    2018-04-01

    We are concerned with globally defined entropy solutions to the Euler equations for compressible fluid flows in transonic nozzles with general cross-sectional areas. Such nozzles include the de Laval nozzles and other more general nozzles whose cross-sectional area functions are allowed at the nozzle ends to be either zero (closed ends) or infinity (unbounded ends). To achieve this, in this paper, we develop a vanishing viscosity method to construct globally defined approximate solutions and then establish essential uniform estimates in weighted L p norms for the whole range of physical adiabatic exponents γ\\in (1, ∞) , so that the viscosity approximate solutions satisfy the general L p compensated compactness framework. The viscosity method is designed to incorporate artificial viscosity terms with the natural Dirichlet boundary conditions to ensure the uniform estimates. Then such estimates lead to both the convergence of the approximate solutions and the existence theory of globally defined finite-energy entropy solutions to the Euler equations for transonic flows that may have different end-states in the class of nozzles with general cross-sectional areas for all γ\\in (1, ∞) . The approach and techniques developed here apply to other problems with similar difficulties. In particular, we successfully apply them to construct globally defined spherically symmetric entropy solutions to the Euler equations for all γ\\in (1, ∞).

  3. Evolution of symmetric reconnection layer in the presence of parallel shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Lu Haoyu [Space Science Institute, School of Astronautics, Beihang University, Beijing 100191 (China); Sate Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190 (China); Cao Jinbin [Space Science Institute, School of Astronautics, Beihang University, Beijing 100191 (China)

    2011-07-15

    The development of the structure of symmetric reconnection layer in the presence of a shear flow parallel to the antiparallel magnetic field component is studied by using a set of one-dimensional (1D) magnetohydrodynamic (MHD) equations. The Riemann problem is simulated through a second-order conservative TVD (total variation diminishing) scheme, in conjunction with Roe's averages for the Riemann problem. The simulation results indicate that besides the MHD shocks and expansion waves, there exist some new small-scale structures in the reconnection layer. For the case of zero initial guide magnetic field (i.e., B{sub y0} = 0), a pair of intermediate shock and slow shock (SS) is formed in the presence of the parallel shear flow. The critical velocity of initial shear flow V{sub zc} is just the Alfven velocity in the inflow region. As V{sub z{infinity}} increases to the value larger than V{sub zc}, a new slow expansion wave appears in the position of SS in the case V{sub z{infinity}} < V{sub zc}, and one of the current densities drops to zero. As plasma {beta} increases, the out-flow region is widened. For B{sub y0} {ne} 0, a pair of SSs and an additional pair of time-dependent intermediate shocks (TDISs) are found to be present. Similar to the case of B{sub y0} = 0, there exists a critical velocity of initial shear flow V{sub zc}. The value of V{sub zc} is, however, smaller than the Alfven velocity of the inflow region. As plasma {beta} increases, the velocities of SS and TDIS increase, and the out-flow region is widened. However, the velocity of downstream SS increases even faster, making the distance between SS and TDIS smaller. Consequently, the interaction between SS and TDIS in the case of high plasma {beta} influences the property of direction rotation of magnetic field across TDIS. Thereby, a wedge in the hodogram of tangential magnetic field comes into being. When {beta}{yields}{infinity}, TDISs disappear and the guide magnetic field becomes constant.

  4. Parabolic heavy ion flow in the polar magnetosphere

    International Nuclear Information System (INIS)

    Horwitz, J.L.

    1987-01-01

    Recent observations by the Dynamics Explorer 1 satellite over the dayside polar cap magnetosphere have indicated downward flows of heavy ions (O + , O ++ , N + , N ++ ) with flow velocities of the order 1 km/s (Lockwood et al., 1985b). These downward flows were interpreted as the result of parabolic flow of these heavy ionospheric ions from a source region associated with the polar cleft topside ionosphere. Here the author utilizes a two-dimensional kinetic model to elicit features of the transport of very low energy O + ions from the cleft ionosphere. Bulk parameter (density, flux, thermal energies, etc.) distributions in the noon-midnight meridian plane illustrate the effects of varying convection electric fields and source energies. The results illustrate that particularly under conditions of weak convection electric fields and weak ion heating in the cleft region, much of the intermediate altitude polar cap magnetosphere may be populated by downward flowing heavy ions. It is further shown how two-dimensional transport effects may alter the characteristic vertical profiles of densities and fluxes from ordinary profiles computed in one-dimensional steady state models

  5. Baroclinic instability of a symmetric, rotating, stratified flow: a study of the nonlinear stabilisation mechanisms in the presence of viscosity

    Directory of Open Access Journals (Sweden)

    R. Mantovani

    2002-01-01

    Full Text Available This paper presents the analysis of symmetric circulations of a rotating baroclinic flow, forced by a steady thermal wind and dissipated by Laplacian friction. The analysis is performed with numerical time-integration. Symmetric flows, vertically bound by horizontal walls and subject to either periodic or vertical wall lateral boundary conditions, are investigated in the region of parameter-space where unstable small amplitude modes evolve into stable stationary nonlinear solutions. The distribution of solutions in parameter-space is analysed up to the threshold of chaotic behaviour and the physical nature of the nonlinear interaction operating on the finite amplitude unstable modes is investigated. In particular, analysis of time-dependent energy-conversions allows understanding of the physical mechanisms operating from the initial phase of linear instability to the finite amplitude stable state. Vertical shear of the basic flow is shown to play a direct role in injecting energy into symmetric flow since the stage of linear growth. Dissipation proves essential not only in limiting the energy of linearly unstable modes, but also in selecting their dominant space-scales in the finite amplitude stage.

  6. Energy Performance and Radial Force of a Mixed-Flow Pump with Symmetrical and Unsymmetrical Tip Clearances

    Directory of Open Access Journals (Sweden)

    Yue Hao

    2017-01-01

    Full Text Available The energy performance and radial force of a mixed flow pump with symmetrical and unsymmetrical tip clearance are investigated in this paper. As the tip clearance increases, the pump head and efficiency both decrease. The center of the radial force on the principal axis is located at the coordinate origin when the tip clearance is symmetrical, and moves to the third quadrant when the tip clearance is unsymmetrical. Analysis results show that the total radial force on the principal axis is closely related to the fluctuation of mass flow rate in each single flow channel. Unsteady simulations show that the dominant frequencies of radial force on the hub and blade correspond to the blade number, vane number, or double blade number because of the rotor stator interaction. The radial force on the blade pressure side decreases with the tip clearance increase because of leakage flow. The unsymmetrical tip clearances in an impeller induce uneven leakage flow rate and then result in unsymmetrical work ability of each blade and flow pattern in each channel. Thus, the energy performance decreases and the total radial force increases for a mixed flow pump with unsymmetrical tip clearance.

  7. Polar cap flow channel events: spontaneous and driven responses

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2010-11-01

    Full Text Available We present two case studies of specific flow channel events appearing at the dusk and/or dawn polar cap boundary during passage at Earth of interplanetary (IP coronal mass ejections (ICMEs on 10 January and 25 July 2004. The channels of enhanced (>1 km/s antisunward convection are documented by SuperDARN radars and dawn-dusk crossings of the polar cap by the DMSP F13 satellite. The relationship with Birkeland currents (C1–C2 located poleward of the traditional R1–R2 currents is demonstrated. The convection events are manifest in ground magnetic deflections obtained from the IMAGE (International Monitor for Auroral Geomagnetic Effects Svalbard chain of ground magnetometer stations located within 71–76° MLAT. By combining the ionospheric convection data and the ground magnetograms we are able to study the temporal behaviour of the convection events. In the two ICME case studies the convection events belong to two different categories, i.e., directly driven and spontaneous events. In the 10 January case two sharp southward turnings of the ICME magnetic field excited corresponding convection events as detected by IMAGE and SuperDARN. We use this case to determine the ground magnetic signature of enhanced flow channel events (the NH-dusk/By<0 variant. In the 25 July case a several-hour-long interval of steady southwest ICME field (Bz<0; By<0 gave rise to a long series of spontaneous convection events as detected by IMAGE when the ground stations swept through the 12:00–18:00 MLT sector. From the ground-satellite conjunction on 25 July we infer the pulsed nature of the polar cap ionospheric flow channel events in this case. The typical duration of these convection enhancements in the polar cap is 10 min.

  8. Dynein Transmits Polarized Actomyosin Cortical Flows to Promote Centrosome Separation

    Directory of Open Access Journals (Sweden)

    Alessandro De Simone

    2016-03-01

    Full Text Available The two centrosomes present at the onset of mitosis must separate in a timely and accurate fashion to ensure proper bipolar spindle assembly. The minus-end-directed motor dynein plays a pivotal role in centrosome separation, but the underlying mechanisms remain elusive, particularly regarding how dynein coordinates this process in space and time. We addressed these questions in the one-cell C. elegans embryo, using a combination of 3D time-lapse microscopy and computational modeling. Our analysis reveals that centrosome separation is powered by the joint action of dynein at the nuclear envelope and at the cell cortex. Strikingly, we demonstrate that dynein at the cell cortex acts as a force-transmitting device that harnesses polarized actomyosin cortical flows initiated by the centrosomes earlier in the cell cycle. This mechanism elegantly couples cell polarization with centrosome separation, thus ensuring faithful cell division.

  9. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery.

    Science.gov (United States)

    Duan, Wentao; Vemuri, Rama S; Hu, Dehong; Yang, Zheng; Wei, Xiaoliang

    2017-02-13

    Redox flow batteries have been considered as one of the most promising stationary energy storage solutions for improving the reliability of the power grid and deployment of renewable energy technologies. Among the many flow battery chemistries, non-aqueous flow batteries have the potential to achieve high energy density because of the broad voltage windows of non-aqueous electrolytes. However, significant technical hurdles exist currently limiting non-aqueous flow batteries to demonstrate their full potential, such as low redox concentrations, low operating currents, under-explored battery status monitoring, etc. In an attempt to address these limitations, we recently reported a non-aqueous flow battery based on a highly soluble, redox-active organic nitronyl nitroxide radical compound, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). This redox material exhibits an ambipolar electrochemical property, and therefore can serve as both anolyte and catholyte redox materials to form a symmetric flow battery chemistry. Moreover, we demonstrated that Fourier transform infrared (FTIR) spectroscopy could measure the PTIO concentrations during the PTIO flow battery cycling and offer reasonably accurate detection of the battery state of charge (SOC), as cross-validated by electron spin resonance (ESR) measurements. Herein we present a video protocol for the electrochemical evaluation and SOC diagnosis of the PTIO symmetric flow battery. With a detailed description, we experimentally demonstrated the route to achieve such purposes. This protocol aims to spark more interests and insights on the safety and reliability in the field of non-aqueous redox flow batteries.

  10. Symmetric voltage-controlled variable resistance

    Science.gov (United States)

    Vanelli, J. C.

    1978-01-01

    Feedback network makes resistance of field-effect transistor (FET) same for current flowing in either direction. It combines control voltage with source and load voltages to give symmetric current/voltage characteristics. Since circuit produces same magnitude output voltage for current flowing in either direction, it introduces no offset in presense of altering polarity signals. It is therefore ideal for sensor and effector circuits in servocontrol systems.

  11. A symmetrical rail accelerator

    International Nuclear Information System (INIS)

    Igenbergs, E.

    1991-01-01

    This paper reports on the symmetrical rail accelerator that has four rails, which are arranged symmetrically around the bore. The opposite rails have the same polarity and the adjacent rails the opposite polarity. In this configuration the radial force acting upon the individual rails is significantly smaller than in a conventional 2-rail configuration and a plasma armature is focussed towards the axis of the barrel. Experimental results indicate a higher efficiency compared to a conventional rail accelerator

  12. An electrode polarization impedance based flow sensor for low water flow measurement

    International Nuclear Information System (INIS)

    Yan, Tinghu; Sabic, Darko

    2013-01-01

    This note describes an electrode polarization impedance based flow sensor for low water flow measurement. It consists of two pairs of stainless steel electrodes set apart and inserted into a non-conductive flow tube with each pair of electrodes placed diametrically at the opposite sides. The flow sensor is modeled as a typical four-electrode system of which two electrodes are current-carrying and the other two serve as output pick ups. The polarization impedances of the two current carrying electrodes are affected by water flows resulting in changes of differential potential between the two pick-up electrodes which are separated by the same fluid. The interrogation of the two excitation electrodes with dc biased ac signals offers significantly higher sensor sensitivities to flow. The prototype flow sensor constructed for a 20 mm diameter pipeline was able to measure water flow rate as low as tested at 1.06 l h −1 and remained sensitive at a flow rate of 25.18 l h −1 when it was driven with a sinusoidal voltage at 1000 Hz with a peak ac amplitude of 2 V and a dc offset of +8 V. The nonlinear characteristics of the sensor response indicate that the sensor is more sensitive at low flows and will not be able to measure at very high flows. Additional experiments are needed to evaluate the influences of impurities, chemical species, ions constituents, conductivity and temperature over a practical range of residential water conditions, the effects of fluctuating ground signals, measurement uncertainty, power consumption, compensation of effects and practical operations. The flow sensor (principle) presented may be used as (in) a secondary sensor in combination with an existing electronic water meter to extend the low end of measurement range in residential water metering. (technical design note)

  13. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Wentao; Vemuri, Rama S.; Hu, Dehong; Yang, Zheng; Wei, Xiaoliang

    2017-01-01

    Redox flow batteries have been considered as one of the most promising stationary energy storage solutions for improving the reliability of the power grid and deployment of renewable energy technologies. Among the many flow battery chemistries, nonaqueous flow batteries have the potential to achieve high energy density because of the broad voltage windows of nonaqueous electrolytes. However, significant technical hurdles exist currently limiting nonaqueous flow batteries to demonstrate their full potential, such as low redox concentrations, low operating currents, under-explored battery status monitoring, etc. In an attempt to address these limitations, we report a nonaqueous flow battery based on a highly soluble, redox-active organic nitronyl nitroxide radical compound, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). This redox materials exhibits an ambipolar electrochemical property with two reversible redox pairs that are moderately separated by a voltage gap of ~1.7 V. Therefore, PTIO can serve as both anolyte and catholyte redox materials to form a symmetric flow battery chemistry, which affords the advantages such as high effective redox concentrations and low irreversible redox material crossover. The PTIO flow battery shows decent electrochemical cyclability under cyclic voltammetry and flow cell conditions; an improved redox concentration of 0.5 M PTIO and operational current density of 20 mA cm-2 were achieved in flow cell tests. Moreover, we show that Fourier transform infrared (FTIR) spectroscopy could measure the PTIO concentrations during the PTIO flow battery cycling and offer reasonably accurate detection of the battery state of charge (SOC) as cross-validated by electron spin resonance measurements. This study suggests FTIR can be used as a reliable online SOC sensor to monitor flow battery status and ensure battery operations stringently in a safe SOC range.

  14. Polar-coordinate lattice Boltzmann modeling of compressible flows

    Science.gov (United States)

    Lin, Chuandong; Xu, Aiguo; Zhang, Guangcai; Li, Yingjun; Succi, Sauro

    2014-01-01

    We present a polar coordinate lattice Boltzmann kinetic model for compressible flows. A method to recover the continuum distribution function from the discrete distribution function is indicated. Within the model, a hybrid scheme being similar to, but different from, the operator splitting is proposed. The temporal evolution is calculated analytically, and the convection term is solved via a modified Warming-Beam (MWB) scheme. Within the MWB scheme a suitable switch function is introduced. The current model works not only for subsonic flows but also for supersonic flows. It is validated and verified via the following well-known benchmark tests: (i) the rotational flow, (ii) the stable shock tube problem, (iii) the Richtmyer-Meshkov (RM) instability, and (iv) the Kelvin-Helmholtz instability. As an original application, we studied the nonequilibrium characteristics of the system around three kinds of interfaces, the shock wave, the rarefaction wave, and the material interface, for two specific cases. In one of the two cases, the material interface is initially perturbed, and consequently the RM instability occurs. It is found that the macroscopic effects due to deviating from thermodynamic equilibrium around the material interface differ significantly from those around the mechanical interfaces. The initial perturbation at the material interface enhances the coupling of molecular motions in different degrees of freedom. The amplitude of deviation from thermodynamic equilibrium around the shock wave is much higher than those around the rarefaction wave and material interface. By comparing each component of the high-order moments and its value in equilibrium, we can draw qualitatively the main behavior of the actual distribution function. These results deepen our understanding of the mechanical and material interfaces from a more fundamental level, which is indicative for constructing macroscopic models and other kinds of kinetic models.

  15. Wide-angle, polarization-insensitive and broadband absorber based on eight-fold symmetric SRRs metamaterial

    Science.gov (United States)

    Wu, Dong; Liu, Yumin; Yu, Zhongyuan; Chen, Lei; Ma, Rui; Li, Yutong; Li, Ruifang; Ye, Han

    2016-12-01

    In this paper, we propose a novel three dimensional metamaterial design with eight-fold rotational symmetry that shows a polarization-insensitive, wide-angle and broadband perfect absorption in the microwave band. By simulation, the polarization-insensitive absorption is over 90% between 26.9 GHz to 32.9 GHz, and the broadband absorption remains a good absorption performance to a wide incident angles for both TE and TM polarizations. The magnetic field distribution are investigated to interpret the physical mechanism of broadband absorption. The broadband absorption is based on overlapping the multiple magnetic resonances at the neighboring frequencies by coupling effects of multiple metallic split-ring resonators (SRRs). Moreover, it is demonstrate that the designed structure can be extended to other frequencies by scale down the size of the unit cell, such as the visible frequencies. The simulated results show that the absorption of the smaller absorber is above 90% in the frequency range from 467 THz to 765 THz(392-642 nm), which include orange to purple light in visible region(400-760nm). The wide-angle and polarization-insensitive stabilities of the smaller absorber is also demonstrated at visible region. The proposed work provides a new design of realization of a polarization-insensitive, wide-angle and broadband absorber ranging different frequency bands, and such a structure has potential application in the fields of solar cell, imaging and detection.

  16. Numerical investigations of opposing mixed convection heat transfer in vertical flat channel 2. Vortex flow in case of symmetrical heating

    International Nuclear Information System (INIS)

    Sirvydas, A.; Poskas, R.

    2006-01-01

    We present the results on numerical investigation of the local opposing mixed convection heat transfer in a vertical flat channel with symmetrical heating at low Reynolds numbers. Numerical two-dimensional simulation was performed for the same channel and for the same conditions as in the experiment using the FLUENT 6.1 code. The unsteady flow investigations were performed in airflow for the experimental conditions at the Reynolds number 2130 and Grashof number 6.2* 10 8 . Quasi-steady flow investigations were performed for two Reynolds numbers (2130 and 4310) and the Grashof number up to 3.1*10 9 in order to simulate the buoyancy effect on the flow structure. In both steady and quasi-steady modelling cases the results demonstrated that under the high buoyancy effect the chequerwise local circular flow took place near the heated walls. This made velocity profiles asymmetrical and caused pulsations of the wall temperature. Wall temperature had a pulsatory character, however, the resulting averaged values correlated rather well with experimental data for steady and quasi-steady cases for Re in = 2130. For Re in = 4310, the resulting averaged values for x/d e ≤25 correlated rather well with experimental data. When x/d e > 25, the difference between the experimental and the calculated wall temperature was increasing, increasing, possibly due to a steady flow and heat transfer modelling. (author)

  17. Investigation of pitchfork bifurcation phenomena effects on heat transfer of viscoelastic flow inside a symmetric sudden expansion

    Science.gov (United States)

    Shahbani-Zahiri, A.; Hassanzadeh, H.; Shahmardan, M. M.; Norouzi, M.

    2017-11-01

    In this paper, the inertial and non-isothermal flows of the viscoelastic fluid through a planar channel with symmetric sudden expansion are numerically simulated. Effects of pitchfork bifurcation phenomena on the heat transfer rate are examined for the thermally developing and fully developed flow of the viscoelastic fluid inside the expanded part of the planar channel with an expansion ratio of 1:3. The rheological model of exponential Phan Thien-Tanner is used to include both the effects of shear-thinning and elasticity in fluid viscosity. The properties of fluids are temperature-dependent, and the viscous dissipation and heat stored by fluid elasticity are considered in the heat transfer equation. For coupling the governing equations, the PISO algorithm (Pressure Implicit with Splitting of Operator) is applied and the system of equations is linearized using the finite volume method on the collocated grids. The main purpose of this study is to examine the pitchfork bifurcation phenomena and its influences on the temperature distribution, the local and mean Nusselt numbers, and the first and second normal stress differences at different Reynolds, elasticity, and Brinkman numbers. The results show that by increasing the Brinkman number for the heated flow of the viscoelastic fluid inside the expanded part of the channel, the value of the mean Nusselt number is almost linearly decreased. Also, the maximum values of the local Nusselt number for the thermally developing flow and the local Nusselt number of the thermally fully developed flow are decremented by enhancing the Brinkman number.

  18. Variable property, steady, axi-symmetric, laminar, continuum plasma flow over spheroidal particles

    International Nuclear Information System (INIS)

    Wen Yuemin; Jog, Milind A.

    2005-01-01

    Steady, continuum, laminar plasma flow over spheroidal particles has been numerically investigated in this paper using a finite volume method. To body-fit the non-spherical particle surface, an adaptive orthogonal grid is generated. The flow field and the temperature distribution are calculated for oblate and prolate particle shapes. A number of particle surface temperatures and far field temperatures are considered and thermo-physical property variation is fully accounted for in our model. The particle shapes are represented in terms of axis ratio which is defined as the ratio of axis perpendicular to the flow direction to the axis along the flow direction. For oblate shape, axis ratios from 1.6 (disk-like) to 1 (sphere) are used whereas for prolate shape, axis ratios of 1(sphere) to 0.4 (cylinder-like) are used. Effects of flow Reynolds number, particle shape, surface and far field temperatures, and variable properties, on the flow field, temperature variations, drag coefficient, and Nusselt number are outlined. Results show that particle shape has significant effect on flow and heat transfer to particle surface. Compared to a constant property flow, accounting for thermo-physical property variation leads to prediction of higher temperature and velocity gradients in the vicinity of the particle surface. Based on the numerical results, a correlation for the Nusslet number is proposed that accounts for the effect of particle shape in continuum flow with large thermo-physical property variation

  19. Polyoxovanadate-alkoxide clusters as multi-electron charge carriers for symmetric non-aqueous redox flow batteries.

    Science.gov (United States)

    VanGelder, L E; Kosswattaarachchi, A M; Forrestel, P L; Cook, T R; Matson, E M

    2018-02-14

    Non-aqueous redox flow batteries have emerged as promising systems for large-capacity, reversible energy storage, capable of meeting the variable demands of the electrical grid. Here, we investigate the potential for a series of Lindqvist polyoxovanadate-alkoxide (POV-alkoxide) clusters, [V 6 O 7 (OR) 12 ] (R = CH 3 , C 2 H 5 ), to serve as the electroactive species for a symmetric, non-aqueous redox flow battery. We demonstrate that the physical and electrochemical properties of these POV-alkoxides make them suitable for applications in redox flow batteries, as well as the ability for ligand modification at the bridging alkoxide moieties to yield significant improvements in cluster stability during charge-discharge cycling. Indeed, the metal-oxide core remains intact upon deep charge-discharge cycling, enabling extremely high coulombic efficiencies (∼97%) with minimal overpotential losses (∼0.3 V). Furthermore, the bulky POV-alkoxide demonstrates significant resistance to deleterious crossover, which will lead to improved lifetime and efficiency in a redox flow battery.

  20. ExB flow shear and enhanced confinement in the Madison Symmetric Torus reversed-field pinch

    International Nuclear Information System (INIS)

    Chapman, B.E.; Almagri, A.F.; Anderson, J.K.; Chiang, C.; Craig, D.; Fiksel, G.; Lanier, N.E.; Prager, S.C.; Sarff, J.S.; Stoneking, M.R.; Terry, P.W.

    1998-01-01

    Strong ExB flow shear occurs in the edge of three types of enhanced confinement discharge in the Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] reversed-field pinch. Measurements in standard (low confinement) discharges indicate that global magnetic fluctuations drive particle and energy transport in the plasma core, while electrostatic fluctuations drive particle transport in the plasma edge. This paper explores possible contributions of ExB flow shear to the reduction of both the magnetic and electrostatic fluctuations and, thus, the improved confinement. In one case, shear in the ExB flow occurs when the edge plasma is biased. Biased discharges exhibit changes in the edge electrostatic fluctuations and improved particle confinement. In two other cases, the flow shear emerges (1) when auxiliary current is driven in the edge and (2) spontaneously, following sawtooth crashes. Both edge electrostatic and global magnetic fluctuations are reduced in these discharges, and both particle and energy confinement improve. copyright 1998 American Institute of Physics

  1. Turbulence, transport, and zonal flows in the Madison symmetric torus reversed-field pinch

    Science.gov (United States)

    Williams, Z. R.; Pueschel, M. J.; Terry, P. W.; Hauff, T.

    2017-12-01

    The robustness and the effect of zonal flows in trapped electron mode (TEM) turbulence and Ion Temperature Gradient (ITG) turbulence in the reversed-field pinch (RFP) are investigated from numerical solutions of the gyrokinetic equations with and without magnetic external perturbations introduced to model tearing modes. For simulations without external magnetic field perturbations, zonal flows produce a much larger reduction of transport for the density-gradient-driven TEM turbulence than they do for the ITG turbulence. Zonal flows are studied in detail to understand the nature of their strong excitation in the RFP and to gain insight into the key differences between the TEM- and ITG-driven regimes. The zonal flow residuals are significantly larger in the RFP than in tokamak geometry due to the low safety factor. Collisionality is seen to play a significant role in the TEM zonal flow regulation through the different responses of the linear growth rate and the size of the Dimits shift to collisionality, while affecting the ITG only minimally. A secondary instability analysis reveals that the TEM turbulence drives zonal flows at a rate that is twice that of the ITG turbulence. In addition to interfering with zonal flows, the magnetic perturbations are found to obviate an energy scaling relation for fast particles.

  2. Collective flow in a cylindrically symmetric expansion geometry and its influence on particle spectra

    International Nuclear Information System (INIS)

    Schnedermann, E.; Heinz, U.

    1991-01-01

    Relativistic hydrodynamics has a long tradition of application to high energy collisions from e + e - to AA. A new way within the hydrodynamical environment is presented to compute the global expansion characteristics of the reaction zone. The method consists of integrating the hydrodynamical equations in a cylindrically symmetric region assuming specific thermal and velocity profiles to obtain global conservation laws from the local ones. Monitoring these, the system may be followed from its hot and dense initial state until freeze-out, where particle spectra can be computed and compared to experiments. By varying the initial conditions, both the rapidity distribution and the transverse momentum spectrum of pions from NA35 200 GeV/A S+S central collisions can be fitted and thus information gained about the early stages of the collision. As a further perspective, the method provides a framework within which hydrodynamical effects on the particle spectra can be discussed. It furthermore has the advantage to be numerically orders of magnitude faster than traditional local hydrodynamics. (author) 13 refs.; 4 figs.; 1 tab

  3. Locally-rotationally-symmetric Bianchi type-V cosmology with heat flow

    Indian Academy of Sciences (India)

    LRS) Bianchi type-V cosmological model with perfect fluid and heat flow. A general approach is introduced to solve Einstein's field equations using a law of variation for the mean Hubble parameter, which is related to average scale factor of the ...

  4. Numerical approximation of flow in a symmetric channel with vibrating walls

    Directory of Open Access Journals (Sweden)

    Sváček P.

    2010-12-01

    Full Text Available In this paper the numerical solution of two dimensional fluid-structure interaction problem is addressed. The fluid motion is modelled by the incompressible unsteady Navier-Stokes equations. The spatial discretization by stabilized finite element method is used. The motion of the computational domain is treated with the aid of Arbitrary Lagrangian Eulerian (ALE method. The time-space problem is solved with the aid of multigrid method. The method is applied onto a problem of interaction of channel flow with moving walls, which models the air flow in the glottal region of the human vocal tract. The pressure boundary conditions and the effects of the isotropic and anisotropic mesh refinement are discussed. The numerical results are presented.

  5. Cyclic and heteroclinic flows near general static spherically symmetric black holes: semi-cyclic flows - addendum and corrigendum

    Energy Technology Data Exchange (ETDEWEB)

    Azreg-Ainou, Mustapha [Baskent University, Engineering Faculty, Ankara (Turkey)

    2017-01-15

    We present new accretion solutions of a polytropic perfect fluid onto an f(R)-gravity de Sitter-like black hole. We consider two f(R)-gravity models and obtain finite-period cyclic flows oscillating between the event and cosmological horizons as well as semi-cyclic critical flows executing a two-way motion from and back to the same horizon. Besides the generalizations and new solutions presented in this work, a corrigendum to Eur. Phys. J. C (2016) 76:280 is provided. (orig.)

  6. On-chip broadband ultra-compact optical couplers and polarization splitters based on off-centered and non-symmetric slotted Si-wire waveguides

    Science.gov (United States)

    Haldar, Raktim; Mishra, V.; Dutt, Avik; Varshney, Shailendra K.

    2016-10-01

    In this work, we propose novel schemes to design on-chip ultra-compact optical directional couplers (DC) and broadband polarization beam splitters (PBS) based on off-centered and asymmetric dielectric slot waveguides, respectively. Slot dimensions and positions are optimized to achieve maximum coupling coefficients between two symmetric and non-symmetric slotted Si wire waveguides through overlap integral method. We observe >88% of enhancement in the coupling coefficients when the size-optimized slots are placed in optimal positions, with respect to the same waveguides with no slot. When the waveguides are parallel, in that case, a coupling length as short as 1.73 μm is accomplished for TM mode with the off-centered and optimized slots. This scheme enables us to design optical DC with very small footprint, L c ∼ 0.9 μm in the presence of S-bends. We also report a compact (L c ∼ 1.1 μm) on-chip broadband PBS with hybrid slots. Extinction ratios of 13 dB and 22.3 dB are realized with very low insertion loss (0.055 dB and 0.008 dB) for TM and TE modes at 1.55 μm, respectively. The designed PBS exhibits a bandwidth of 78 nm for the TM mode (C-and partial L-bands) and >100 nm for the TE mode (S + C + L wavelength bands). Such on-chip devices can be used to design compact photonic interconnects and quantum information processing units efficiently. We have also investigated the fabrication tolerances of the proposed devices and described the fabrication steps to realize such hybrid devices. Our results are in good agreement with 3D FDTD simulations.

  7. The influence of plasma flows bringing the magnetotail back to a more symmetric configuration

    Science.gov (United States)

    Reistad, J. P.; Østgaard, N.; Laundal, K.; Tenfjord, P.; Snekvik, K.; Haaland, S.; Milan, S. E.; Ohma, A.; Grocott, A.; Oksavik, K.

    2017-12-01

    Research from the past decades, most importantly conjugate studies, have shown extensive evidence of the Earth's closed magnetotail being highly displaced from the quiet-day configuration in response to the IMF interacting with the magnetosphere. By displaced we here refer to the mapping of magnetic field-lines from one hemisphere to the other. The large-scale ionospheric convection related to such displaced closed field-lines has also been studied, showing that the footprint in one hemisphere tend to move faster to reduce the displacement, a process we refer to as the restoring of symmetry. Although the appearance and occurrence of the plasma flows related to the restoring of symmetry has been shown to have a strong Interplanetary Magnetic Field (IMF) control, its dynamics and relation to internal magnetospheric processes are unknown. Using multiple years of line-of-sight measurements of the ionospheric plasma convection from the Super Dual Auroral Radar Network binned by IMF, season, and SML index, we have found that the restoring symmetry flows dominate the average convection pattern in the nightside ionosphere during low levels of magnetotail activity, quantified by the SML index. For increasing magnetotail activity, signatures of the restoring symmetry process become less and less pronounced in the global average convection maps. This effect is seen for all clock angles away from IMF By = 0. These results are relevant in order to better understand the dynamic evolution of flux-tubes in the asymmetric magnetosphere.

  8. Influence of Base Oil Polarity on the Transient Shear Flow of Biodegradable Lubricating Greases

    Directory of Open Access Journals (Sweden)

    Martin Fiedler

    2015-09-01

    Full Text Available The scope of this study is to elucidate the physical mechanisms influencing the transient flow behavior of lubricating greases based on biogenic oleochemicals from a polarity point of view. This includes the mutually interacting influence of base oil polarity and thickening agents on the rheologically-measured mechanical structural degradation in transient shear flow. Due to the high temperature dependence of Keesom forces in the background of polar-active bond mechanisms, the analysis of the transient flow response as a function of temperature allows to attribute the observed influences to differences in base oil polarity. In general, clay-thickened greases show a greater tendency to be rheologically influenced by base oil polarities than soap-thickened lubricating greases.

  9. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears

    OpenAIRE

    Cahill, James A; Stirling, Ian; Kistler, Logan; Salamzade, Rauf; Ersmark, Erik; Fulton, Tara L; Stiller, Mathias; Green, Richard E; Shapiro, Beth

    2015-01-01

    © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd. Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we...

  10. Asymmetrical to symmetrical magnetic fabric of dykes: Paleo-flow orientations and Paleo-stresses recorded on feeder-bodies from the Motru Dyke Swarm (Romania)

    Science.gov (United States)

    Femenias, O.; Diot, H.; Berza, T.; Gauffriau, A.; Demaiffe, D.

    2003-04-01

    The fabric of crystals in a dyke is representative of the flow of magma, considered as a newtonian fluid. The AMS of the rocks (=magnetic mineralogy subfabric) gives a good representation of the shape preferred orientation related to the total fabric which, in turn is marker of the magmatic flow acquired during emplacement of the fluid within the dyke width. Generally, a symmetrical distribution of the fabric in terms of foliation and lineation across the dyke is in agreement with a model involving symmetrical differential displacements of the flow of the fluid within a channel. In this case, the flow direction is in relation with the imbrication of the symmetric foliations. In this study, we present the cases of both symmetrical and asymmetrical dyke fabric recording and involving different process of emplacement during a regional deformation. From a regional survey of a large Pan-African calc-alkaline dyke swarm (of basaltic-andesitic-dacitic-rhyolitic composition) of the Alpine Danubian window from South Carpathians of Romania, two populations of dykes have been described: thick (from 1 to 30 meters) N-S trending dykes and thin (less than 1 meter) E-W dykes. These two populations crosscut the country rocks without simple chronological relations between them. The thick dykes display asymmetrical fabric that involve a relatively long history of emplacement and important distance of flow. They record the regional sinistral movement of the walls. By contrast, the thin dykes are symmetrical and display frequently an arteritic morphology that limits the dyke length, with no cartographic extension. The mean orientations of the two types of dykes can be related to the same regional stress field and a continuum of emplacement is proposed for the two types of dykes during the regional deformation.

  11. Porphyrin-Based Symmetric Redox-Flow Batteries towards Cold-Climate Energy Storage.

    Science.gov (United States)

    Ma, Ting; Pan, Zeng; Miao, Licheng; Chen, Chengcheng; Han, Mo; Shang, Zhenfeng; Chen, Jun

    2018-03-12

    Electrochemical energy storage with redox-flow batteries (RFBs) under subzero temperature is of great significance for the use of renewable energy in cold regions. However, RFBs are generally used above 10 °C. Herein we present non-aqueous organic RFBs based on 5,10,15,20-tetraphenylporphyrin (H 2 TPP) as a bipolar redox-active material (anode: [H 2 TPP] 2- /H 2 TPP, cathode: H 2 TPP/[H 2 TPP] 2+ ) and a Y-zeolite-poly(vinylidene fluoride) (Y-PVDF) ion-selective membrane with high ionic conductivity as a separator. The constructed RFBs exhibit a high volumetric capacity of 8.72 Ah L -1 with a high voltage of 2.83 V and excellent cycling stability (capacity retention exceeding 99.98 % per cycle) in the temperature range between 20 and -40 °C. Our study highlights principles for the design of RFBs that operate at low temperatures, thus offering a promising approach to electrochemical energy storage under cold-climate conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Asymmetrical to symmetrical magnetic fabric of dikes: Paleo-flow orientations and Paleo-stresses recorded on feeder-bodies from the Motru Dike Swarm (Romania)

    Science.gov (United States)

    Féménias, Olivier; Diot, Hervé; Berza, Tudor; Gauffriau, Antoine; Demaiffe, Daniel

    2004-08-01

    The fabric in a dike is representative of the magmatic flow, considered as Newtonian. The anisotropy of magnetic susceptibility of the rocks gives a good representation of the shape-preferred orientation which, in turn, is a marker of the magmatic flow. Generally, a symmetrical pattern of the fabric across the dike is in agreement with a flow of magma within a channel: the flow direction is then reliable with this imbrication. An asymmetrical fabric is dependent on the flow and displacement of the wall. We present the case of both symmetrical and asymmetrical dike fabrics recording different emplacements. From a Pan-African calc-alkaline dike swarm (of basaltic-andesitic-dacitic-rhyolitic composition) of the Alpine Danubian window from South Carpathians (Romania), two populations of dikes have been described: thick (1-30 m) N-S-trending dikes and thin (movement of the walls. In contrast, the thin dikes are symmetrical and frequently display an arteritic morphology that limits the dike length, with no cartographic extension. We propose to relate the two types of dikes to the same regional stress field in a continuum of emplacement during a regional brittle event.

  13. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears.

    Science.gov (United States)

    Cahill, James A; Stirling, Ian; Kistler, Logan; Salamzade, Rauf; Ersmark, Erik; Fulton, Tara L; Stiller, Mathias; Green, Richard E; Shapiro, Beth

    2015-03-01

    Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we present an analysis of data from a large panel of polar bear and brown bear genomes that includes brown bears from the ABC islands, the Alaskan mainland and Europe. Our results provide clear evidence that gene flow between the two species had a geographically wide impact, with polar bear DNA found within the genomes of brown bears living both on the ABC islands and in the Alaskan mainland. Intriguingly, while brown bear genomes contain up to 8.8% polar bear ancestry, polar bear genomes appear to be devoid of brown bear ancestry, suggesting the presence of a barrier to gene flow in that direction. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  14. Symmetric textures

    International Nuclear Information System (INIS)

    Ramond, P.

    1993-01-01

    The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures

  15. Brownian motion and thermophoresis effects on Peristaltic slip flow of a MHD nanofluid in a symmetric/asymmetric channel

    Science.gov (United States)

    Sucharitha, G.; Sreenadh, S.; Lakshminarayana, P.; Sushma, K.

    2017-11-01

    The slip and heat transfer effects on MHD peristaltic transport of a nanofluid in a non-uniform symmetric/asymmetric channel have studied under the assumptions of elongated wave length and negligible Reynolds number. From the simplified governing equations, the closed form solutions for velocity, stream function, temperature and concentrations are obtained. Also dual solutions are discussed for symmetric and asymmetric channel cases. The effects of important physical parameters are explained graphically. The slip parameter decreases the fluid velocity in middle of the channel whereas it increases the velocity at the channel walls. Temperature and concentration are decreasing and increasing functions of radiation parameter respectively. Moreover, velocity, temperature and concentrations are high in symmetric channel when compared with asymmetric channel.

  16. MHD accelerated motion on a body placed symmetrical to the flow in the presence of transverse magnetic field fixed relative to the body

    International Nuclear Information System (INIS)

    Goyal, Mamta; Bansal, J.L.

    1993-01-01

    The growth of the boundary layer in an accelerated flow of an electricity conducting fluid past a symmetrical placed body in the presence of uniform transverse magnetic field fixed relative to the body has been studied. The boundary layer equation has been solved by using a method previously developed by Pozzi, based on expressing the unknown velocity in term of an error function and on using differential and integral relations obtained from the balance equation. As examples, the impulsive flow past a circular cylinder and uniformly accelerated flow over a flat plate are considered. It is found that the effect of the magnetic field is to decelerate the fluid motion which results in an earlier boundary layer separation in the impulsive flow past a circular cylinder. The results show a good agreement with the numerical data available in the literature. (author). 30 refs., 4 figs., 2 tabs

  17. Experimental and numerical investigation of the iso-thermal flow characteristics within a cylindrical chamber with multiple planar-symmetric impinging jets

    Science.gov (United States)

    Long, Shen; Lau, Timothy C. W.; Chinnici, Alfonso; Tian, Zhao Feng; Dally, Bassam B.; Nathan, Graham J.

    2017-10-01

    We present a joint experimental and numerical study of the flow structure within a cylindrical chamber generated by planar-symmetric isothermal jets, under conditions of relevance to a wide range of practical applications, including the Hybrid Solar Receiver Combustor (HSRC) technology. The HSRC features a cavity with a coverable aperture to allow it to be operated as either a combustion chamber or a solar receiver, with multiple burners to direct a flame into the chamber and a heat exchanger that absorbs the heat from both energy sources. In this study, we assess the cases of two or four inlet jets (simulating the burners), configured in a planar-symmetric arrangement and aligned at an angle to the axis (αj) over the range of 0°-90°, at a constant inlet Reynolds number of ReD = 10 500. The jets were positioned in the same axial plane near the throat and interact with each other and the cavity walls. Measurements obtained with particle image velocimetry were used together with numerical modeling employing Reynolds-averaged Navier-Stokes methods to characterize the large-scale flow field within selected configurations of the device. The results reveal a significant dependence of the mean flow-field on αj and the number of inlet jets (Nj). Four different flow regimes with key distinctive features were identified within the range of αj and Nj considered here. It was also found that αj has a controlling influence on the extent of back-flow through the throat, the turbulence intensity, the flow stability, and the dominant recirculation zone, while Nj has a secondary influence on the turbulence intensity, the flow stability, and the transition between each flow regime.

  18. Computational fluid dynamics simulations of flow and concentration polarization in forward osmosis membrane systems

    DEFF Research Database (Denmark)

    Gruber, M.F.; Johnson, C.J.; Tang, C.Y.

    2011-01-01

    is inspired by previously published CFD models for pressure-driven systems and the general analytical theory for flux modeling in asymmetric membranes. Simulations reveal a non-negligible external concentration polarization on the porous support, even when accounting for high cross-flow velocity and slip...

  19. Hall effect on MHD flow of visco-elastic micro-polar fluid layer ...

    African Journals Online (AJOL)

    Department of Mathematics, Meerut College, Meerut, Uttar Pradesh, INDIA ... the micro-polar heat conduction parameter has stabilizing effect when. 1. 2. ∈> ...... 1964, Elastico-viscous boundary layer flow, Proceedings of the Cambridge Philosophical Society, ... fluid”, Indian Journal of Pure and Applied Mathematics, Vol.

  20. Flow velocity measurement by using zero-crossing polarity cross correlation method

    International Nuclear Information System (INIS)

    Xu Chengji; Lu Jinming; Xia Hong

    1993-01-01

    Using the designed correlation metering system and a high accurate hot-wire anemometer as a calibration device, the experimental study of correlation method in a tunnel was carried out. The velocity measurement of gas flow by using zero-crossing polarity cross correlation method was realized and the experimental results has been analysed

  1. Modeling Asymmetric Flow of Viscoelastic Fluid in Symmetric Planar Sudden Expansion Geometry Based on User-Defined Function in FLUENT CFD Package

    Directory of Open Access Journals (Sweden)

    Zhi-Ying Zheng

    2013-01-01

    Full Text Available Through embedding an in-house subroutine into FLUENT code by utilizing the functionalization of user-defined function provided by the software, a new numerical simulation methodology on viscoelastic fluid flows has been established. In order to benchmark this methodology, numerical simulations under different viscoelastic fluid solution concentrations (with solvent viscosity ratio varied from 0.2 to 0.9, extensibility parameters (100≤L2≤500, Reynolds numbers (0.1 ≤ Re ≤ 100, and Weissenberg numbers (0 ≤ Wi ≤ 20 are conducted on unsteady laminar flows through a symmetric planar sudden expansion with expansion ratio of 1: 3 for viscoelastic fluid flows. The constitutive model used to describe the viscoelastic effect of viscoelastic fluid flow is FENE-P (finitely extensive nonlinear elastic-Peterlin model. The numerical simulation results show that the influences of elasticity, inertia, and concentration on the flow bifurcation characteristics are more significant than those of extensibility. The present simulation results including the critical Reynolds number for which the flow becomes asymmetric, vortex size, bifurcation diagram, velocity distribution, streamline, and pressure loss show good agreements with some published results. That means the newly established method based on FLUENT software platform for simulating peculiar flow behaviors of viscoelastic fluid is credible and suitable for the study of viscoelastic fluid flows.

  2. A numerical study on the forced convection heat transfer from an isothermal and isoflux sphere in the steady symmetric flow regime

    Energy Technology Data Exchange (ETDEWEB)

    Dhole, S.D.; Chhabra, R.P. [Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208 016 (India); Eswaran, V. [Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208 016 (India)

    2006-03-15

    The effects of Reynolds and Prandtl numbers on the heat transfer characteristics of an unconfined sphere for different thermal boundary conditions (isothermal and isoflux) on the sphere surface have been investigated numerically by using a finite volume method for the range of conditions as 5=symmetric flow regime. The variation of local Nusselt number on the sphere surface shows the effect of Prandtl number on heat transfer from a sphere in this flow regime. In addition, this work also demonstrates an approach to solve such flow problems using the Cartesian form of the field equations. (author)

  3. Symmetric autocompensating quantum key distribution

    Science.gov (United States)

    Walton, Zachary D.; Sergienko, Alexander V.; Levitin, Lev B.; Saleh, Bahaa E. A.; Teich, Malvin C.

    2004-08-01

    We present quantum key distribution schemes which are autocompensating (require no alignment) and symmetric (Alice and Bob receive photons from a central source) for both polarization and time-bin qubits. The primary benefit of the symmetric configuration is that both Alice and Bob may have passive setups (neither Alice nor Bob is required to make active changes for each run of the protocol). We show that both the polarization and the time-bin schemes may be implemented with existing technology. The new schemes are related to previously described schemes by the concept of advanced waves.

  4. Circumpolar Genetic Structure and Recent Gene Flow of Polar Bears: A Reanalysis.

    Science.gov (United States)

    Malenfant, René M; Davis, Corey S; Cullingham, Catherine I; Coltman, David W

    2016-01-01

    Recently, an extensive study of 2,748 polar bears (Ursus maritimus) from across their circumpolar range was published in PLOS ONE, which used microsatellites and mitochondrial haplotypes to apparently show altered population structure and a dramatic change in directional gene flow towards the Canadian Archipelago-an area believed to be a future refugium for polar bears as their southernmost habitats decline under climate change. Although this study represents a major international collaborative effort and promised to be a baseline for future genetics work, methodological shortcomings and errors of interpretation undermine some of the study's main conclusions. Here, we present a reanalysis of this data in which we address some of these issues, including: (1) highly unbalanced sample sizes and large amounts of systematically missing data; (2) incorrect calculation of FST and of significance levels; (3) misleading estimates of recent gene flow resulting from non-convergence of the program BayesAss. In contrast to the original findings, in our reanalysis we find six genetic clusters of polar bears worldwide: the Hudson Bay Complex, the Western and Eastern Canadian Arctic Archipelago, the Western and Eastern Polar Basin, and-importantly-we reconfirm the presence of a unique and possibly endangered cluster of bears in Norwegian Bay near Canada's expected last sea-ice refugium. Although polar bears' abundance, distribution, and population structure will certainly be negatively affected by ongoing-and increasingly rapid-loss of Arctic sea ice, these genetic data provide no evidence of strong directional gene flow in response to recent climate change.

  5. Circumpolar Genetic Structure and Recent Gene Flow of Polar Bears: A Reanalysis.

    Directory of Open Access Journals (Sweden)

    René M Malenfant

    Full Text Available Recently, an extensive study of 2,748 polar bears (Ursus maritimus from across their circumpolar range was published in PLOS ONE, which used microsatellites and mitochondrial haplotypes to apparently show altered population structure and a dramatic change in directional gene flow towards the Canadian Archipelago-an area believed to be a future refugium for polar bears as their southernmost habitats decline under climate change. Although this study represents a major international collaborative effort and promised to be a baseline for future genetics work, methodological shortcomings and errors of interpretation undermine some of the study's main conclusions. Here, we present a reanalysis of this data in which we address some of these issues, including: (1 highly unbalanced sample sizes and large amounts of systematically missing data; (2 incorrect calculation of FST and of significance levels; (3 misleading estimates of recent gene flow resulting from non-convergence of the program BayesAss. In contrast to the original findings, in our reanalysis we find six genetic clusters of polar bears worldwide: the Hudson Bay Complex, the Western and Eastern Canadian Arctic Archipelago, the Western and Eastern Polar Basin, and-importantly-we reconfirm the presence of a unique and possibly endangered cluster of bears in Norwegian Bay near Canada's expected last sea-ice refugium. Although polar bears' abundance, distribution, and population structure will certainly be negatively affected by ongoing-and increasingly rapid-loss of Arctic sea ice, these genetic data provide no evidence of strong directional gene flow in response to recent climate change.

  6. Enhanced motor learning with bilateral transcranial direct current stimulation: Impact of polarity or current flow direction?

    Science.gov (United States)

    Naros, Georgios; Geyer, Marc; Koch, Susanne; Mayr, Lena; Ellinger, Tabea; Grimm, Florian; Gharabaghi, Alireza

    2016-04-01

    Bilateral transcranial direct current stimulation (TDCS) is superior to unilateral TDCS when targeting motor learning. This effect could be related to either the current flow direction or additive polarity-specific effects on each hemisphere. This sham-controlled randomized study included fifty right-handed healthy subjects in a parallel-group design who performed an exoskeleton-based motor task of the proximal left arm on three consecutive days. Prior to training, we applied either sham, right anodal (a-TDCS), left cathodal (c-TDCS), concurrent a-TDCS and c-TDCS with two independent current sources and return electrodes (double source (ds)-TDCS) or classical bilateral stimulation (bi-TDCS). Motor performance improved over time for both unilateral (a-TDCS, c-TDCS) and bilateral (bi-TDCS, ds-TDCS) TDCS montages. However, only the two bilateral paradigms led to an improvement of the final motor performance at the end of the training period as compared to the sham condition. There was no difference between the two bilateral stimulation conditions (bi-TDCS, ds-TDCS). Bilateral TDCS is more effective than unilateral stimulation due to its polarity-specific effects on each hemisphere rather than due to its current flow direction. This study is the first systematic evaluation of stimulation polarity and current flow direction of bi-hemispheric motor cortex TDCS on motor learning of proximal upper limb muscles. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. A tensor formulation of the equation of transfer for spherically symmetric flows. [radiative transfer in seven dimensional Riemannian space

    Science.gov (United States)

    Haisch, B. M.

    1976-01-01

    A tensor formulation of the equation of radiative transfer is derived in a seven-dimensional Riemannian space such that the resulting equation constitutes a divergence in any coordinate system. After being transformed to a spherically symmetric comoving coordinate system, the transfer equation contains partial derivatives in angle and frequency, as well as optical depth due to the effects of aberration and the Doppler shift. However, by virtue of the divergence form of this equation, the divergence theorem may be applied to yield a numerical differencing scheme which is expected to be stable and to conserve luminosity. It is shown that the equation of transfer derived by this method in a Lagrangian coordinate system may be reduced to that given by Castor (1972), although it is, of course, desirable to leave the equation in divergence form.

  8. Characteristics of transonic spherical symmetric accretion flow in Schwarzschild-de Sitter and Schwarzschild anti-de Sitter backgrounds, in pseudo-general relativistic paradigm

    Science.gov (United States)

    Ghosh, Shubhrangshu; Banik, Prabir

    2015-07-01

    In this paper, we present a complete work on steady state spherically symmetric Bondi type accretion flow in the presence of cosmological constant (Λ) in both Schwarzschild-de Sitter (SDS) and Schwarzschild anti-de Sitter (SADS) backgrounds considering an isolated supermassive black hole (SMBH), with the inclusion of a simple radiative transfer scheme, in the pseudo-general relativistic paradigm. We do an extensive analysis on the transonic behavior of the Bondi type accretion flow onto the cosmological BHs including a complete analysis of the global parameter space and the stability of flow, and do a complete study of the global family of solutions for a generic polytropic flow. Bondi type accretion flow in SADS background renders multiplicity in its transonic behavior with inner "saddle" type and outer "center" type sonic points, with the transonic solutions forming closed loops or contours. There is always a limiting value for ∣Λ∣ up to which we obtain valid stationary transonic solutions, which correspond to both SDS and SADS geometries; this limiting value moderately increases with the increasing radiative efficiency of the flow, especially correspond to Bondi type accretion flow in SADS background. Repulsive Λ suppresses the Bondi accretion rate by an order of magnitude for relativistic Bondi type accretion flow for a certain range in temperature, and with a marginal increase in the Bondi accretion rate if the corresponding accretion flow occurs in SADS background. However, for a strongly radiative Bondi type accretion flow with high mass accretion rate, the presence of cosmological constant do not much influence the corresponding Bondi accretion rate of the flow. Our analysis show that the relic cosmological constant has a substantial effect on Bondi type accretion flow onto isolated SMBHs and their transonic solutions beyond length-scale of kiloparsecs, especially if the Bondi type accretion occurs onto the host supergiant ellipticals or central

  9. Brown and polar bear Y chromosomes reveal extensive male-biased gene flow within brother lineages.

    Science.gov (United States)

    Bidon, Tobias; Janke, Axel; Fain, Steven R; Eiken, Hans Geir; Hagen, Snorre B; Saarma, Urmas; Hallström, Björn M; Lecomte, Nicolas; Hailer, Frank

    2014-06-01

    Brown and polar bears have become prominent examples in phylogeography, but previous phylogeographic studies relied largely on maternally inherited mitochondrial DNA (mtDNA) or were geographically restricted. The male-specific Y chromosome, a natural counterpart to mtDNA, has remained underexplored. Although this paternally inherited chromosome is indispensable for comprehensive analyses of phylogeographic patterns, technical difficulties and low variability have hampered its application in most mammals. We developed 13 novel Y-chromosomal sequence and microsatellite markers from the polar bear genome and screened these in a broad geographic sample of 130 brown and polar bears. We also analyzed a 390-kb-long Y-chromosomal scaffold using sequencing data from published male ursine genomes. Y chromosome evidence support the emerging understanding that brown and polar bears started to diverge no later than the Middle Pleistocene. Contrary to mtDNA patterns, we found 1) brown and polar bears to be reciprocally monophyletic sister (or rather brother) lineages, without signals of introgression, 2) male-biased gene flow across continents and on phylogeographic time scales, and 3) male dispersal that links the Alaskan ABC islands population to mainland brown bears. Due to female philopatry, mtDNA provides a highly structured estimate of population differentiation, while male-biased gene flow is a homogenizing force for nuclear genetic variation. Our findings highlight the importance of analyzing both maternally and paternally inherited loci for a comprehensive view of phylogeographic history, and that mtDNA-based phylogeographic studies of many mammals should be reevaluated. Recent advances in sequencing technology render the analysis of Y-chromosomal variation feasible, even in nonmodel organisms. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e

  10. Ultra-Broadband Silicon-Wire Polarization Beam Combiner/Splitter Based on a Wavelength Insensitive Coupler With a Point-Symmetrical Configuration

    OpenAIRE

    Uematsu, Takui; Kitayama, Tetsuya; Ishizaka, Yuhei; Saitoh, Kunimasa

    2014-01-01

    An ultrabroadband silicon wire polarization beam combiner/splitter (PBCS) based on a wavelength-insensitive coupler is proposed. The proposed PBCS consists of three identical directional couplers and two identical delay lines. We design the PBCS using the 3-D finite element method. Numerical simulations show that the proposed PBCS can achieve the transmittance of more than 90% over a wide wavelength range from 1450 to 1650 nm for both TE and TM polarized modes.

  11. Polarization-, carrier-, and format-selectable optical flow generation based on a multi-flow transmitter using passive polymers

    DEFF Research Database (Denmark)

    Katopodis, V.; Spyropoulou, M.; Tsokos, C.

    2016-01-01

    and acting as the interface between any software defined switch and the physical layer transport equipment. The transmitter has been evaluated within a flexible network node comprising programmable flexible wavelength selective switches (WSSs). Two single-flow scenarios based on a dual-polarization m...... generation is feasible with appropriate distribution of the client data in the digital domain and encapsulation into OTN containers. Configuration of the electrical and optical transmitter resources is performed via a developed software defined optics (SDO) platform residing on top of the transmitter...

  12. Analytical study of the non orthogonal stagnation point flow of a micro polar fluid

    Directory of Open Access Journals (Sweden)

    M. Ali. Abbas

    2017-01-01

    Full Text Available In this paper we consider the steady two dimensional flow of micro polar fluids on a flat plate. The flow under discussion is the modified Hiemenz flow for a micro polar fluid which occurs in the hjkns + skms boundary layer near an orthogonal stagnation point. The full governing equation reduced to a modified Hiemenz flow. The solution to the boundary value problem is governed by two non dimensional parameters, the material parameter K and the ratio of the micro rotation to skin friction parameter n. The obtained nonlinear coupled ordinary differential equations are solved by using the Homotopy perturbation method. Comparison between numerical and analytical solutions of the problem is shown in tables form for different values of the governing parameters K and n. Effects of the material parameter K on the velocity profile and microrotation profiles for different cases of n are discussed graphically as well as numerically. Velocity profile decreases as the material parameter K increases and the microrotation profile increases as the material parameter K increases for different cases of n.

  13. Comparison of the Degradation of the Polarization Resistance of Symmetrical LSM-YSZ Cells, with Anode Supported Ni-YSZ/YSZ/LSM-YSZ SOFCs

    DEFF Research Database (Denmark)

    Torres da Silva, Iris Maura; Nielsen, Jimmi; Hjelm, Johan

    2009-01-01

    Impedance spectra of a symmetrical cell with SOFC cathodes (LSM-YSZ/YSZ/LSM-YSZ) and an anode supported planar SOFC (Ni-YSZ/YSZ/LSM-YSZ) were collected at OCV at 650{degree sign}C in air (cathode) and humidified (4%) hydrogen (anode), over 155 hours. The impedance was affected by degradation over...... time in the same frequency range for both cells (~10 Hz), possibly indicating that the same physical process was affected in both types of cell. However, deconvolution of the impedance data was not straightforward. When n-values of the constant phase elements in the otherwise identical equivalent...

  14. A High-Resolution Continuous Flow Analysis System for Polar Ice Cores

    DEFF Research Database (Denmark)

    Dallmayr, Remi; Goto-Azuma, Kumiko; Kjær, Helle Astrid

    2016-01-01

    of Polar Research (NIPR) in Tokyo. The system allows the continuous analysis of stable water isotopes and electrical conductivity, as well as the collection of discrete samples from both inner and outer parts of the core. This CFA system was designed to have sufficiently high temporal resolution to detect...... signals of abrupt climate change in deep polar ice cores. To test its performance, we used the system to analyze different climate intervals in ice drilled at the NEEM (North Greenland Eemian Ice Drilling) site, Greenland. The quality of our continuous measurement of stable water isotopes has been......In recent decades, the development of continuous flow analysis (CFA) technology for ice core analysis has enabled greater sample throughput and greater depth resolution compared with the classic discrete sampling technique. We developed the first Japanese CFA system at the National Institute...

  15. In vitro lipofection with novel series of symmetric 1,3-dialkoylamidopropane-based cationic surfactants containing single primary and tertiary amine polar head groups.

    Science.gov (United States)

    Sheikh, Mohammad; Feig, Jennifer; Gee, Becky; Li, Song; Savva, Michalakis

    2003-06-01

    A novel series of symmetric double-chained primary and tertiary 1,3-dialkoylamido monovalent cationic lipids were synthesized and evaluated for their transfection activities. In the absence of the helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine), only the primary and tertiary dioleoyl derivatives 1,3lmp5 and 1,3lmt5, respectively elicited transfection activity. This is a striking difference between symmetrical 1,2-diacyl glycerol-based monovalent cationic lipids that always found both dioleoyl and dimyristoyl analogues being efficient transfection reagents. In the presence of helper lipid, all cationic derivatives induced marker gene expression, except the dilauroyl analogues 1,3lmp1 and 1,3lmt1 that elicited no transfection activity. Combining electrophoretic mobility data of the lipoplexes at different charge ratios with transfection activity suggested two requirements for high transfection activity with monovalent double-chained cationic lipids, that is, binding/association of the lipid to the plasmid DNA and membrane fusion properties of the lipid layers surrounding the DNA.

  16. In-situ characterization of symmetric dual-pass architecture of microfluidic co-laminar flow cells

    International Nuclear Information System (INIS)

    Ibrahim, Omar A.; Goulet, Marc-Antoni; Kjeang, Erik

    2016-01-01

    Highlights: • An analytical cell design is proposed for characterization of dual-pass flow cells • High power density up to 0.75 W cm −2 is demonstrated • The performance contributions of the inlet and outlet passes are of the same order • Downstream crossover is analyzed as a function of cell current and flow rate - Abstract: Microfluidic co-laminar flow cells with dual-pass architecture enable fuel recirculation and in-situ regeneration, and offer improvements in performance characteristics. In this work, a unique analytical cell design is proposed, with two split portions having flow-through porous electrodes. Each cell portion is first tested individually with vanadium redox species and the results are used to quantify the previously unknown crossover losses at the downstream portion of the cell, shown here to be a strong function of the flow rate. Moreover, the upstream cell portion demonstrates impressive room-temperature power density up to 0.75 W cm −2 at 1.0 A cm −2 , which is the highest performance reported to date for a microfluidic vanadium redox battery. Next, the two cell portions are connected in parallel to resemble a complete cell with dual-pass architecture, thereby enabling novel in-situ diagnostics of the inlet and outlet passes of the cell. For instance, the reactant utilization efficiency of the downstream cell portion is shown to be on the same order as that of the upstream portion at both low and high flow rates. Furthermore, in-situ regeneration is also demonstrated. Overall, the present results provide a deeper understanding of dual-pass reactant conversion and crossover which will be useful for future device optimization.

  17. The research of urban spatial polarization based on the space of flows theory——a case study of Shanghai

    Directory of Open Access Journals (Sweden)

    LIU Chaoqing

    2013-04-01

    Full Text Available Based on the elite space and the relation model between the space of flows and the urban space,the paper analyzed the mechanism and consequence of the new urban spatial polarization.Using the Shanghai sixth census data and the sample data,the paper discussed the new phenomenon of urban spatial polarization in the information age by the location quotient analysis and GIS spatial analysis.The research result showed that the space of flows influencing urban spatial polarization through the elite space is a higher level agglomeration,including the spatial concentration of the human capital,the concentration of wealth and knowledge of science and technology.

  18. Step-flow growth mode instability of N-polar GaN under N-excess

    International Nuclear Information System (INIS)

    Chèze, C.; Sawicka, M.; Siekacz, M.; Łucznik, B.; Boćkowski, M.; Skierbiszewski, C.; Turski, H.; Cywiński, G.; Smalc-Koziorowska, J.; Weyher, J. L.; Kryśko, M.

    2013-01-01

    GaN layers were grown on N-polar GaN substrates by plasma-assisted molecular beam epitaxy under different III/V ratios. Ga-rich conditions assure step-flow growth with atomically flat surface covered by doubly-bunched steps, as for Ga-polar GaN. Growth under N-excess however leads to an unstable step-flow morphology. Particularly, for substrates slightly miscut towards , interlacing fingers are covered by atomic steps pinned on both sides by small hexagonal pits. In contrast, a three-dimensional island morphology is observed on the Ga-polar equivalent sample. We attribute this result to lower diffusion barriers on N-polar compared to Ga-polar GaN under N-rich conditions

  19. Effects of initial conditions on self-similarity in a co-flowing axi-symmetric round jet

    International Nuclear Information System (INIS)

    Uddin, M.; Pollard, A.

    2004-01-01

    The effect of initial conditions of a spatially developing coflowing jet is investigated using an LES at Re D = 7,300. A co-flow velocity to initial jet centerline velocity ratio of 1:11 and a co-flow to initial jet diameter ratio of 35:1 are used to match the flow cases of Reference 11. The 35D x 135D simulation volume is divided into 1024 x 256 x 128 control volumes in the longitudinal, radial and azimuthal directions respectively. Time averaged results of the effect of initial conditions on mean flow, the decay of jet centreline velocity, growth of the jet and the distribution of Reynolds stresses in the near, and far field of the shear layer is presented. These quantities show good agreement with the measurements of Reference 11. Our results suggest that the first order moments, e.g., decay of centreline velocity excess, the radial mean velocity profiles, have little dependence on the initial conditions. As well, the Reynolds shear stress appears to have lesser sensitivity to the variation of initial velocity profiles. However, initial conditions have pronounced effect on the self-similarity of normal stresses. Additionally, the computations indicate little Reynolds number dependency, which is consistent with Townsend's school of thought. (author)

  20. Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows

    DEFF Research Database (Denmark)

    Bekshaev, A. Ya; Angelsky, O. V.; Hanson, Steen Grüner

    2012-01-01

    between the forward- and backward-scattered momentum fluxes in the Rayleigh scattering regime appears due to the spin part of the internal energy flow in the incident beam. The transverse ponderomotive forces exerted on dielectric and conducting particles of different sizes are calculated and special......Based on the Mie theory and on the incident beam model via superposition of two plane waves, we analyze numerically the momentum flux of the field scattered by a spherical, nonmagnetic microparticle placed within the spatially inhomogeneous circularly polarized paraxial light beam. The asymmetry...

  1. Equilibrium structures and flows of polar and nonpolar liquids in different carbon nanotubes

    Science.gov (United States)

    Abramyan, Andrey K.; Bessonov, Nick M.; Mirantsev, Leonid V.; Chevrychkina, Anastasiia A.

    2018-03-01

    Molecular dynamics (MD) simulations of equilibrium structures and flows of polar water and nonpolar methane confined by single-walled carbon nanotubes (SWCNTs) with circular and square cross sections and bounding walls with regular graphene structure and random (amorphous) distribution of carbon atoms have been performed. The results of these simulations show that equilibrium structures of both confined liquids depend strongly on the shape of the cross section of SWCNTs, whereas the structure of their bounding walls has a minor influence on these structures. On contrary, the external pressure driven water and methane flows through above mentioned SWCNTs depend significantly on both the shape of their cross sections and the structure of their bounding walls.

  2. ANALYSIS OF TRANSONIC FLOW PAST CUSPED AIRFOILS

    Directory of Open Access Journals (Sweden)

    Jiří Stodůlka

    2015-06-01

    Full Text Available Transonic flow past two cusped airfoils is numerically solved and achieved results are analyzed by means of flow behavior and oblique shocks formation.Regions around sharp trailing edges are studied in detail and parameters of shock waves are solved and compared using classical shock polar approach and verified by reduction parameters for symmetric configurations.

  3. Study on flow-induced acoustic resonance in symmetrically located side-branches using dynamic PIV technique

    International Nuclear Information System (INIS)

    Li, Yanrong; Inagaki, Terumi; Nishi, Yasuyuki; Someya, Satoshi; Okamoto, Koji

    2014-01-01

    Flow-induced acoustic resonance in a piping system containing closed coaxial side-branches was investigated experimentally. Resonance characteristics of the piping system were examined by a microphone. The results revealed that the resonance frequencies of the shear layer instability were locked in corresponding to the natural frequencies of the side-branches. Phase-averaged velocity fields were obtained two-dimensionally in the junction of coaxial side-branches by dynamic particle image velocimetry (PIV), while the acoustic resonance was induced at the first and second hydrodynamic modes. Patterns of jet correspond to two hydrodynamic modes were derived from the phase-averaged velocity fields. The dynamic PIV can acquire time-series velocity fluctuations, then, two-dimensional phase delay maps under resonance and off-resonance conditions in the junction of coaxial side-branches were obtained. Experimental results show that the proposed phase delay map method costs less experiment and computation time and achieves a better accuracy and repetition than the phase-locking technique. In addition, the phase delay map method can obtain phase difference under the different frequency components. This is important when two different acoustic modes were induced in one experimental condition. (author)

  4. Evidence from lava flows for complex polarity transitions: The new composite Steens Mountain reversal record

    Science.gov (United States)

    Jarboe, Nicholas A.; Coe, Robert S.; Glen, Jonathan M. G.

    2011-01-01

    Geomagnetic polarity transitions may be significantly more complex than are currently depicted in many sedimentary and lava-flow records. By splicing together paleomagnetic results from earlier studies at Steens Mountain with those from three newly studied sections of Oregon Plateau flood basalts at Catlow Peak and Poker Jim Ridge 70–90 km to the southeast and west, respectively, we provide support for this interpretation with the most detailed account of a magnetic field reversal yet observed in volcanic rocks. Forty-five new distinguishable transitional (T) directions together with 30 earlier ones reveal a much more complex and detailed record of the 16.7 Ma reversed (R)-to-normal (N) polarity transition that marks the end of Chron C5Cr. Compared to the earlier R-T-N-T-N reversal record, the new record can be described as R-T-N-T-N-T-R-T-N. The composite record confirms earlier features, adds new west and up directions and an entire large N-T-R-T segment to the path, and fills in directions on the path between earlier directional jumps. Persistent virtual geomagnetic pole (VGP) clusters and separate VGPs have a preference for previously described longitudinal bands from transition study compilations, which suggests the presence of features at the core–mantle boundary that influence the flow of core fluid and distribution of magnetic flux. Overall the record is consistent with the generalization that VGP paths vary greatly from reversal to reversal and depend on the location of the observer. Rates of secular variation confirm that the flows comprising these sections were erupted rapidly, with maximum rates estimated to be 85–120 m ka−1 at Catlow and 130–195 m ka−1 at Poker Jim South. Paleomagnetic poles from other studies are combined with 32 non-transitional poles found here to give a clockwise rotation of the Oregon Plateau of 11.4°± 5.6° with respect to the younger Columbia River Basalt Group flows to the north and 14.5°± 4.6° with respect

  5. A New Method for Simulating Power Flow Density Focused by a Silicon Lens Antenna Irradiated with Linearly Polarized THz Wave

    Directory of Open Access Journals (Sweden)

    Catur Apriono

    2015-08-01

    Full Text Available A terahertz system uses dielectric lens antennas for focusing and collimating beams of terahertz wave radiation. Linearly polarized terahertz wave radiation has been widely applied in the terahertz system. Therefore, an accurate method for analyzing the power flow density in the dielectric lens antenna irradiated with the linearly polarized terahertz wave radiation is important to design the terahertz systems. In optics, ray-tracing method has been used to calculate the power flow density by a number density of rays. In this study, we propose a method of ray-tracing combined with Fresnel’s transmission, including transmittance and polarization of the terahertz wave radiation to calculate power flow density in a Silicon lens antenna. We compare power flow density calculated by the proposed method with the regular ray-tracing method. When the Silicon lens antenna is irradiated with linearly polarized terahertz wave radiation, the proposed method calculates the power flow density more accurately than the regular ray-tracing.

  6. Saturn's polar ionospheric flows and their relation to the main auroral oval

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2004-04-01

    Full Text Available We consider the flows and currents in Saturn's polar ionosphere which are implied by a three-component picture of large-scale magnetospheric flow driven both by planetary rotation and the solar wind interaction. With increasing radial distance in the equatorial plane, these components consist of a region dominated by planetary rotation where planetary plasma sub-corotates on closed field lines, a surrounding region where planetary plasma is lost down the dusk tail by the stretching out of closed field lines followed by plasmoid formation and pinch-off, as first described for Jupiter by Vasyliunas, and an outer region driven by the interaction with the solar wind, specifically by reconnection at the dayside magnetopause and in the dawn tail, first discussed for Earth by Dungey. The sub-corotating flow on closed field lines in the dayside magnetosphere is constrained by Voyager plasma observations, showing that the plasma angular velocity falls to around half of rigid corotation in the outer magnetosphere, possibly increasing somewhat near the dayside magnetopause, while here we provide theoretical arguments which indicate that the flow should drop to considerably smaller values on open field lines in the polar cap. The implied ionospheric current system requires a four-ring pattern of field-aligned currents, with distributed downward currents on open field lines in the polar cap, a narrow ring of upward current near the boundary of open and closed field lines, and regions of distributed downward and upward current on closed field lines at lower latitudes associated with the transfer of angular momentum from the planetary atmosphere to the sub-corotating planetary magnetospheric plasma. Recent work has shown that the upward current associated with sub-corotation is not sufficiently intense to produce significant auroral acceleration and emission. Here we suggest that the observed auroral oval at Saturn instead corresponds to the ring of upward

  7. Saturn's polar ionospheric flows and their relation to the main auroral oval

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2004-04-01

    Full Text Available We consider the flows and currents in Saturn's polar ionosphere which are implied by a three-component picture of large-scale magnetospheric flow driven both by planetary rotation and the solar wind interaction. With increasing radial distance in the equatorial plane, these components consist of a region dominated by planetary rotation where planetary plasma sub-corotates on closed field lines, a surrounding region where planetary plasma is lost down the dusk tail by the stretching out of closed field lines followed by plasmoid formation and pinch-off, as first described for Jupiter by Vasyliunas, and an outer region driven by the interaction with the solar wind, specifically by reconnection at the dayside magnetopause and in the dawn tail, first discussed for Earth by Dungey. The sub-corotating flow on closed field lines in the dayside magnetosphere is constrained by Voyager plasma observations, showing that the plasma angular velocity falls to around half of rigid corotation in the outer magnetosphere, possibly increasing somewhat near the dayside magnetopause, while here we provide theoretical arguments which indicate that the flow should drop to considerably smaller values on open field lines in the polar cap. The implied ionospheric current system requires a four-ring pattern of field-aligned currents, with distributed downward currents on open field lines in the polar cap, a narrow ring of upward current near the boundary of open and closed field lines, and regions of distributed downward and upward current on closed field lines at lower latitudes associated with the transfer of angular momentum from the planetary atmosphere to the sub-corotating planetary magnetospheric plasma. Recent work has shown that the upward current associated with sub-corotation is not sufficiently intense to produce significant auroral acceleration and emission. Here we suggest that the observed auroral oval at Saturn instead corresponds to the ring of

  8. Hypogenetic chaotic jerk flows

    International Nuclear Information System (INIS)

    Li, Chunbiao; Sprott, Julien Clinton; Xing, Hongyan

    2016-01-01

    Removing the amplitude or polarity information in the feedback loop of a jerk structure shows that special nonlinearities with partial information in the variable can also lead to chaos. Some striking properties are found for this kind of hypogenetic chaotic jerk flow, including multistability of symmetric coexisting attractors from an asymmetric structure, hidden attractors with respect to equilibria but with global attraction, easy amplitude control, and phase reversal which is convenient for chaos applications. - Highlights: • Hypogenetic chaotic jerk flows with incomplete feedback of amplitude or polarity are obtained. • Multistability of symmetric coexisting attractors from an asymmetric structure is found. • Some jerk systems have hidden attractors with respect to equilibria but have global attraction. • These chaotic jerk flows have the properties of amplitude control and phase reversal.

  9. Causal symmetric spaces

    CERN Document Server

    Olafsson, Gestur; Helgason, Sigurdur

    1996-01-01

    This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces

  10. Cold-Based Glaciation on Mercury: Accumulation and Flow of Ice in Permanently-Shadowed Circum-Polar Crater Interiors

    Science.gov (United States)

    Fastook, J. L.; Head, J. W.

    2018-05-01

    Examining the potential for dynamic flow of ice deposits in permanently-shadowed craters, it is determined that the cold environment of the polar craters yields very small velocities and deformation is minimal on a time scale of millions of years.

  11. Facade Layout Symmetrization

    KAUST Repository

    Jiang, Haiyong

    2016-04-11

    We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.

  12. Symmetrization of Facade Layouts

    KAUST Repository

    Jiang, Haiyong; Yan, Dong-Ming; Dong, Weiming; Wu, Fuzhang; Nan, Liangliang; Zhang, Xiaopeng

    2016-01-01

    We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.

  13. Facade Layout Symmetrization

    KAUST Repository

    Jiang, Haiyong; Dong, Weiming; Yan, Dongming; Zhang, Xiaopeng

    2016-01-01

    We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.

  14. Symmetrization of Facade Layouts

    KAUST Repository

    Jiang, Haiyong

    2016-02-26

    We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.

  15. On the role of IMF By in generating the electric field responsible for the flow across the polar cap

    International Nuclear Information System (INIS)

    Vennerstroem, S.; Friis-Christensen, E.

    1987-01-01

    During periods of southward interplanetary magnetic field (IMF) the authors have examined the relationship between magnetic variations in the central polar cap and the IMF B y and B z components. The geomagnetic polar cap index PC that can be used as a measure of the flow across the polar cap has been derived using data from Thule in the IMS period. The results have been compared with IMP 8 measurements of the IMF and the solar wind velocity. The statistical analysis shows that the absolute value of the azimuthal component |B y | contributes to the cross-polar cap flow in the same manner as the southward component B s . The relative contributions of |B y | and B z have been examined and compared with the theoretical expression υB T sin 2 θ/2 for the merging electric field. It is found that the contribution of |B y | compared to B z is only half as big in the observations as in the theoretical expression. The B y effect on PC is compared to an earlier reported effect of B y on the geomagnetic index AL (Murayama et al., 1980) and found to be quite different from this. This is discussed in relation to interpretations in terms of merging site asymmetry

  16. PolNet: A Tool to Quantify Network-Level Cell Polarity and Blood Flow in Vascular Remodeling.

    Science.gov (United States)

    Bernabeu, Miguel O; Jones, Martin L; Nash, Rupert W; Pezzarossa, Anna; Coveney, Peter V; Gerhardt, Holger; Franco, Claudio A

    2018-05-08

    In this article, we present PolNet, an open-source software tool for the study of blood flow and cell-level biological activity during vessel morphogenesis. We provide an image acquisition, segmentation, and analysis protocol to quantify endothelial cell polarity in entire in vivo vascular networks. In combination, we use computational fluid dynamics to characterize the hemodynamics of the vascular networks under study. The tool enables, to our knowledge for the first time, a network-level analysis of polarity and flow for individual endothelial cells. To date, PolNet has proven invaluable for the study of endothelial cell polarization and migration during vascular patterning, as demonstrated by two recent publications. Additionally, the tool can be easily extended to correlate blood flow with other experimental observations at the cellular/molecular level. We release the source code of our tool under the Lesser General Public License. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. On Symmetric Polynomials

    OpenAIRE

    Golden, Ryan; Cho, Ilwoo

    2015-01-01

    In this paper, we study structure theorems of algebras of symmetric functions. Based on a certain relation on elementary symmetric polynomials generating such algebras, we consider perturbation in the algebras. In particular, we understand generators of the algebras as perturbations. From such perturbations, define injective maps on generators, which induce algebra-monomorphisms (or embeddings) on the algebras. They provide inductive structure theorems on algebras of symmetric polynomials. As...

  18. Current density and polarization curves for radial flow field patterns applied to PEMFCs (Proton Exchange Membrane Fuel Cells)

    International Nuclear Information System (INIS)

    Cano-Andrade, S.; Hernandez-Guerrero, A.; Spakovsky, M.R. von; Damian-Ascencio, C.E.; Rubio-Arana, J.C.

    2010-01-01

    A numerical solution of the current density and velocity fields of a 3-D PEM radial configuration fuel cell is presented. The energy, momentum and electrochemical equations are solved using a computational fluid dynamics (CFD) code based on a finite volume scheme. There are three cases of principal interest for this radial model: four channels, eight channels and twelve channels placed in a symmetrical path over the flow field plate. The figures for the current-voltage curves for the three models proposed are presented, and the main factors that affect the behavior of each of the curves are discussed. Velocity contours are presented for the three different models, showing how the fuel cell behavior is affected by the velocity variations in the radial configuration. All these results are presented for the case of high relative humidity. The favorable results obtained for this unconventional geometry seems to indicate that this geometry could replace the conventional commercial geometries currently in use.

  19. The Effect of Thermal Radiation on Entropy Generation Due to Micro-Polar Fluid Flow Along a Wavy Surface

    Directory of Open Access Journals (Sweden)

    Kuei-Hao Chang

    2011-09-01

    Full Text Available In this study, the effect of thermal radiation on micro-polar fluid flow over a wavy surface is studied. The optically thick limit approximation for the radiation flux is assumed. Prandtl’s transposition theorem is used to stretch the ordinary coordinate system in certain directions. The wavy surface can be transferred into a calculable plane coordinate system. The governing equations of micro-polar fluid along a wavy surface are derived from the complete Navier-Stokes equations. A simple transformation is proposed to transform the governing equations into boundary layer equations so they can be solved numerically by the cubic spline collocation method. A modified form for the entropy generation equation is derived. Effects of thermal radiation on the temperature and the vortex viscosity parameter and the effects of the wavy surface on the velocity are all included in the modified entropy generation equation.

  20. Symmetric cryptographic protocols

    CERN Document Server

    Ramkumar, Mahalingam

    2014-01-01

    This book focuses on protocols and constructions that make good use of symmetric pseudo random functions (PRF) like block ciphers and hash functions - the building blocks for symmetric cryptography. Readers will benefit from detailed discussion of several strategies for utilizing symmetric PRFs. Coverage includes various key distribution strategies for unicast, broadcast and multicast security, and strategies for constructing efficient digests of dynamic databases using binary hash trees.   •        Provides detailed coverage of symmetric key protocols •        Describes various applications of symmetric building blocks •        Includes strategies for constructing compact and efficient digests of dynamic databases

  1. Unsteady mixed convection flow of a micro-polar fluid near the stagnation point on a vertical surface

    Energy Technology Data Exchange (ETDEWEB)

    Lok, Y.Y. [Center for Academic Services, Kolej Universiti Teknikal Kebangsaan Malaysia, 75450 Ayer Keroh, Melaka (Malaysia); Amin, N. [Department of Mathematics, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Pop, I. [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)

    2006-12-15

    The unsteady mixed convection boundary-layer flow of a micro-polar fluid near the region of the stagnation point on a double-infinite vertical flat plate is studied. It is assumed that the unsteadiness is caused by the impulsive motion of the free stream velocity and by sudden increase or sudden decrease in the surface temperature from the uniform ambient temperature. The problem is reduced to a system of non-dimensional partial differential equations, which is solved numerically using the Keller-box method. This method may present well-behaved solutions for the transient (small time) solution and those of the steady-state flow (large time) solution. It was found that there is a smooth transition from the small-time solution (initial unsteady-state flow) to the large-time solution (final steady-state flow). Further, it is shown that for both assisting and opposing cases and a fixed value of the Prandtl number, the reduced steady-state skin friction and the steady-state heat transfer from the wall (or Nusselt number) decrease with the increase of the material parameter. On the other hand, it is shown that with the increase of the Prandtl number and a fixed value of the material parameter, the reduced steady-state skin friction decreases when the flow is assisting and it increases when the flow is opposing. (author)

  2. Observations of current flow to a positively polarized electrode in a quiescent magnetoplasma

    International Nuclear Information System (INIS)

    Ferreira, J.L.; Urrutia, J.M.; Stenzel, R.L.

    1988-05-01

    This work reports experimental studies on the current flow to an electrode immersed in a quiescent magnetized plasma. The observed intense current driven instabilities during the current flow were found to be related with an anomalous current transport. (author)

  3. All-optical symmetric ternary logic gate

    Science.gov (United States)

    Chattopadhyay, Tanay

    2010-09-01

    Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.

  4. Solution of the comoving-frame equation of transfer in spherically symmetric flows. IV. Frequency-dependent source functions for scattering by atoms and electrons

    International Nuclear Information System (INIS)

    Mihalas, D.; Kunasz, P.B.; Hummer, D.G.

    1976-01-01

    A numerical method is presented of solving the radiative transfer equation in the comoving frame of a spherically symmetric expanding atmosphere in which both the line and the electron-scattering source function can depend on frequency (i.e., when there is partial frequency redistribution in the scattering process). This method is used to assess the adequacy of various assumptions regarding frequency redistribution in the comoving frame and to discuss the effects of electron scattering more accurately than previously possible. The methods developed here can be used in realistic model atmospheres to account for the (major) effects of electron scattering upon emergent flux profiles

  5. Linear perturbation of spherically symmetric flows: a first-order upwind scheme for the gas dynamics equations in Lagrangian coordinates; Perturbation lineaire d'ecoulements a symetrie spherique: schema decentre d'ordre 1 pour les equations de la dynamique des gaz en variables de Lagrange

    Energy Technology Data Exchange (ETDEWEB)

    Clarisse, J.M

    2007-07-01

    A numerical scheme for computing linear Lagrangian perturbations of spherically symmetric flows of gas dynamics is proposed. This explicit first-order scheme uses the Roe method in Lagrangian coordinates, for computing the radial spherically symmetric mean flow, and its linearized version, for treating the three-dimensional linear perturbations. Fulfillment of the geometric conservation law discrete formulations for both the mean flow and its perturbation is ensured. This scheme capabilities are illustrated by the computation of free-surface mode evolutions at the boundaries of a spherical hollow shell undergoing an homogeneous cumulative compression, showing excellent agreement with reference results. (author)

  6. Centrioles in Symmetric Spaces

    OpenAIRE

    Quast, Peter

    2011-01-01

    We describe all centrioles in irreducible simply connected pointed symmetric spaces of compact type in terms of the root system of the ambient space, and we study some geometric properties of centrioles.

  7. Symmetric eikonal expansion

    International Nuclear Information System (INIS)

    Matsuki, Takayuki

    1976-01-01

    Symmetric eikonal expansion for the scattering amplitude is formulated for nonrelativistic and relativistic potential scatterings and also for the quantum field theory. The first approximations coincide with those of Levy and Sucher. The obtained scattering amplitudes are time reversal invariant for all cases and are crossing symmetric for the quantum field theory in each order of approximation. The improved eikonal phase introduced by Levy and Sucher is also derived from the different approximation scheme from the above. (auth.)

  8. On the role of strong gravity in polarization from scattering of light in relativistic flows

    Czech Academy of Sciences Publication Activity Database

    Horák, Jiří; Karas, Vladimír

    2006-01-01

    Roč. 365, č. 3 (2006), s. 813-826 ISSN 0035-8711 R&D Projects: GA MŠk(CZ) LC06014; GA AV ČR(CZ) IAA300030510; GA ČR GA205/03/0902 Institutional research plan: CEZ:AV0Z10030501 Keywords : polarization * black hole physics * relativity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.057, year: 2006

  9. Flow characteristics in occupied zone – An experimental study with symmetrically located thermal plumes and low-momentum diffuse ceiling air distribution

    DEFF Research Database (Denmark)

    Lestinen, Sami; Kilpeläinen, Simo; Kosonen, Risto

    2018-01-01

    and turbulent mixing that can further yield a draught discomfort in an occupied zone. The main objective was to investigate large-scale airflow patterns and fluctuations as a result of interaction of buoyancy flows and diffuse ceiling flow. Experiments were performed in a test room of 5.5 m (length) x 3.8 m...

  10. Ion diode performance on a positive polarity inductive voltage adder with layered magnetically insulated transmission line flow

    International Nuclear Information System (INIS)

    Hinshelwood, D. D.; Schumer, J. W.; Allen, R. J.; Commisso, R. J.; Jackson, S. L.; Murphy, D. P.; Phipps, D.; Swanekamp, S. B.; Weber, B. V.; Ottinger, P. F.; Apruzese, J. P.; Cooperstein, G.; Young, F. C.

    2011-01-01

    A pinch-reflex ion diode is fielded on the pulsed-power machine Mercury (R. J. Allen, et al., 15th IEEE Intl. Pulsed Power Conf., Monterey, CA, 2005, p. 339), which has an inductive voltage adder (IVA) architecture and a magnetically insulated transmission line (MITL). Mercury is operated in positive polarity resulting in layered MITL flow as emitted electrons are born at a different potential in each of the adder cavities. The usual method for estimating the voltage by measuring the bound current in the cathode and anode of the MITL is not accurate with layered flow, and the interaction of the MITL flow with a pinched-beam ion diode load has not been studied previously. Other methods for determining the diode voltage are applied, ion diode performance is experimentally characterized and evaluated, and circuit and particle-in-cell (PIC) simulations are performed. Results indicate that the ion diode couples efficiently to the machine operating at a diode voltage of about 3.5 MV and a total current of about 325 kA, with an ion current of about 70 kA of which about 60 kA is proton current. It is also found that the layered flow impedance of the MITL is about half the vacuum impedance.

  11. Multiparty symmetric sum types

    DEFF Research Database (Denmark)

    Nielsen, Lasse; Yoshida, Nobuko; Honda, Kohei

    2010-01-01

    This paper introduces a new theory of multiparty session types based on symmetric sum types, by which we can type non-deterministic orchestration choice behaviours. While the original branching type in session types can represent a choice made by a single participant and accepted by others...... determining how the session proceeds, the symmetric sum type represents a choice made by agreement among all the participants of a session. Such behaviour can be found in many practical systems, including collaborative workflow in healthcare systems for clinical practice guidelines (CPGs). Processes...... with the symmetric sums can be embedded into the original branching types using conductor processes. We show that this type-driven embedding preserves typability, satisfies semantic soundness and completeness, and meets the encodability criteria adapted to the typed setting. The theory leads to an efficient...

  12. Counting with symmetric functions

    CERN Document Server

    Mendes, Anthony

    2015-01-01

    This monograph provides a self-contained introduction to symmetric functions and their use in enumerative combinatorics.  It is the first book to explore many of the methods and results that the authors present. Numerous exercises are included throughout, along with full solutions, to illustrate concepts and also highlight many interesting mathematical ideas. The text begins by introducing fundamental combinatorial objects such as permutations and integer partitions, as well as generating functions.  Symmetric functions are considered in the next chapter, with a unique emphasis on the combinatorics of the transition matrices between bases of symmetric functions.  Chapter 3 uses this introductory material to describe how to find an assortment of generating functions for permutation statistics, and then these techniques are extended to find generating functions for a variety of objects in Chapter 4.  The next two chapters present the Robinson-Schensted-Knuth algorithm and a method for proving Pólya’s enu...

  13. Symmetric Tensor Decomposition

    DEFF Research Database (Denmark)

    Brachat, Jerome; Comon, Pierre; Mourrain, Bernard

    2010-01-01

    We present an algorithm for decomposing a symmetric tensor, of dimension n and order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables...... of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...... of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions and for detecting the rank....

  14. Debris Flows and Water Tracks in Continental Antarctica: Water as a geomorphic agent in a hyperarid polar desert

    Science.gov (United States)

    Hauber, E.; Sassenroth, C.; De Vera, J.-P.; Schmitz, N.; Reiss, D.; Hiesinger, H.; Johnsson, A.

    2017-09-01

    Most studies using Antarctica as a Mars analogue have focused on the McMurdo Dry Valleys, which are among the coldest and driest places on Earth. However, other ice-free areas in continental Antarctica also display landforms that can inform the study of the possible geomorphic impact of water in a polar desert. Here we present a new analogue site in the interior of the Transantarctic Mountains in Northern Victoria Land. Gullies show unambiguous evidence for debris flows, and water tracks act as shallow subsurface pathways of water on top of the permafrost tale. Both processes are driven by meltwater from glacier ice and snow in an environ-ment which never experiences rainfall and in which the air temperatures probably never exceed 0°C.

  15. Distributed Searchable Symmetric Encryption

    NARCIS (Netherlands)

    Bösch, C.T.; Peter, Andreas; Leenders, Bram; Lim, Hoon Wei; Tang, Qiang; Wang, Huaxiong; Hartel, Pieter H.; Jonker, Willem

    Searchable Symmetric Encryption (SSE) allows a client to store encrypted data on a storage provider in such a way, that the client is able to search and retrieve the data selectively without the storage provider learning the contents of the data or the words being searched for. Practical SSE schemes

  16. Influence of core flows on the decade variations of the polar motion

    Science.gov (United States)

    Hulot, G.; Le Huy, M.; Le Mouël, J.-L.

    We address the possibility for the core flows that generate the geomagnetic field to contribute significantly to the decade variations of the mean pole position (generally called the Markowitz wobble). This assumption is made plausible by the observation that the flow at the surface of the core-estimated from the geomagnetic secular variation models-experiences important changes on this time scale. We discard the viscous and electromagnetic core-mantle couplings and consider only the pressure torque pf resulting from the fluid flow overpressure acting on the non-spherical core-mantle boundary (CMB) at the bottom of the mantle, and the gravity torque gf due to the density heterogeneity driving the core flow. We show that forces within the core balance each other on the time scale considered and, using global integrals over the core, the mantle and the whole Earth, we write Euler's equation for the mantle in terms of two more useful torques Pgeo and . The "geostrophic torque", γ Pgeo incorporates γpf and part of γgf, while γ is another fraction of γgf. We recall how the geostrophic pressure pgeo, and thus γPgeo for a given topography, can be derived from the flow at the CMB and compute the motion of the mean pole from 1900 to 1990, assuming in a first approach that the unknown γ can be neglected. The amplitude of the computed pole motion is three to ten times less than the observed one and out of the phase with it. In order to estimate the possible contribution of γ we then use a second approach and consider the case in which the reference state for the Earth is assumed to be the classical axisymmetric ellipsoidal figure with an almost constant ellipticity within the core. We show that (γPgeo + γ) is then equal to a pseudo-electromagnetic torque γL3, the torque exerted on the core by the component of the Lorentz force along the axis of rotation (this torque exists even though the mantle is assumed insulating). This proves that, at least in this case and

  17. Evidence for a new geomagnetic reversal from lava flows in Idaho: discussion of short polarity reversals in the Brunhes and late Matuyama Polarity Chrons

    Science.gov (United States)

    Champion, D.E.; Lanphere, M.A.; Kuntz, M.A.

    1988-01-01

    K-Ar ages and paleomagnetic data for basalt samples from a new core hole (site E) at the Idaho National Engineering Laboratory (INEL) indicate that the age of the reversed polarity event recorded in Snake River Plain lavas is older than 465 ?? 50 ka (1000 years before present) reported previously by Champion et al. (1981). A review of data documenting short reversal records from volcanic and sedimentary rocks shows that there is evidence for eight polarity subchrons in the Brunhes and two besides the Jaramillo in the late Matuyama. These 10 short subchrons begin to indicate the many short events that Cox (1968) hypothesized must exist if polarity interval lengths have a Poisson distribution. The mean sustained polarity interval length since late Matuyama Chron time is 90 000 years. The similarity of this number with the 105-year period of the Earth's orbital eccentricity suggests anew that linkage between geomagnetic, paleoclimatic, and possible underlying Earth orbital parameters should be evaluated. -from Authors

  18. On isotropic cylindrically symmetric stellar models

    International Nuclear Information System (INIS)

    Nolan, Brien C; Nolan, Louise V

    2004-01-01

    We attempt to match the most general cylindrically symmetric vacuum spacetime with a Robertson-Walker interior. The matching conditions show that the interior must be dust filled and that the boundary must be comoving. Further, we show that the vacuum region must be polarized. Imposing the condition that there are no trapped cylinders on an initial time slice, we can apply a result of Thorne's and show that trapped cylinders never evolve. This results in a simplified line element which we prove to be incompatible with the dust interior. This result demonstrates the impossibility of the existence of an isotropic cylindrically symmetric star (or even a star which has a cylindrically symmetric portion). We investigate the problem from a different perspective by looking at the expansion scalars of invariant null geodesic congruences and, applying to the cylindrical case, the result that the product of the signs of the expansion scalars must be continuous across the boundary. The result may also be understood in relation to recent results about the impossibility of the static axially symmetric analogue of the Einstein-Straus model

  19. Symmetric waterbomb origami.

    Science.gov (United States)

    Chen, Yan; Feng, Huijuan; Ma, Jiayao; Peng, Rui; You, Zhong

    2016-06-01

    The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels.

  20. Symmetric modular torsatron

    Science.gov (United States)

    Rome, J.A.; Harris, J.H.

    1984-01-01

    A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

  1. Symmetric vectors and algebraic classification

    International Nuclear Information System (INIS)

    Leibowitz, E.

    1980-01-01

    The concept of symmetric vector field in Riemannian manifolds, which arises in the study of relativistic cosmological models, is analyzed. Symmetric vectors are tied up with the algebraic properties of the manifold curvature. A procedure for generating a congruence of symmetric fields out of a given pair is outlined. The case of a three-dimensional manifold of constant curvature (''isotropic universe'') is studied in detail, with all its symmetric vector fields being explicitly constructed

  2. Representations of locally symmetric spaces

    International Nuclear Information System (INIS)

    Rahman, M.S.

    1995-09-01

    Locally symmetric spaces in reference to globally and Hermitian symmetric Riemannian spaces are studied. Some relations between locally and globally symmetric spaces are exhibited. A lucid account of results on relevant spaces, motivated by fundamental problems, are formulated as theorems and propositions. (author). 10 refs

  3. Symmetric Logic Synthesis with Phase Assignment

    OpenAIRE

    Benschop, N. F.

    2001-01-01

    Decomposition of any Boolean Function BF_n of n binary inputs into an optimal inverter coupled network of Symmetric Boolean functions SF_k (k \\leq n) is described. Each SF component is implemented by Threshold Logic Cells, forming a complete and compact T-Cell Library. Optimal phase assignment of input polarities maximizes local symmetries. The "rank spectrum" is a new BF_n description independent of input ordering, obtained by mapping its minterms onto an othogonal n \\times n grid of (transi...

  4. Holographic Spherically Symmetric Metrics

    Science.gov (United States)

    Petri, Michael

    The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.

  5. Symmetric extendibility of quantum states

    OpenAIRE

    Nowakowski, Marcin L.

    2015-01-01

    Studies on symmetric extendibility of quantum states become especially important in a context of analysis of one-way quantum measures of entanglement, distilabillity and security of quantum protocols. In this paper we analyse composite systems containing a symmetric extendible part with a particular attention devoted to one-way security of such systems. Further, we introduce a new one-way monotone based on the best symmetric approximation of quantum state. We underpin those results with geome...

  6. A symmetric safety valve

    International Nuclear Information System (INIS)

    Burtraw, Dallas; Palmer, Karen; Kahn, Danny

    2010-01-01

    How to set policy in the presence of uncertainty has been central in debates over climate policy. Concern about costs has motivated the proposal for a cap-and-trade program for carbon dioxide, with a 'safety valve' that would mitigate against spikes in the cost of emission reductions by introducing additional emission allowances into the market when marginal costs rise above the specified allowance price level. We find two significant problems, both stemming from the asymmetry of an instrument that mitigates only against a price increase. One is that most important examples of price volatility in cap-and-trade programs have occurred not when prices spiked, but instead when allowance prices collapsed. Second, a single-sided safety valve may have unintended consequences for investment. We illustrate that a symmetric safety valve provides environmental and welfare improvements relative to the conventional one-sided approach.

  7. Symmetric q-Bessel functions

    Directory of Open Access Journals (Sweden)

    Giuseppe Dattoli

    1996-05-01

    Full Text Available q analog of bessel functions, symmetric under the interchange of q and q^ −1 are introduced. The definition is based on the generating function realized as product of symmetric q-exponential functions with appropriate arguments. Symmetric q-Bessel function are shown to satisfy various identities as well as second-order q-differential equations, which in the limit q → 1 reproduce those obeyed by the usual cylindrical Bessel functions. A brief discussion on the possible algebraic setting for symmetric q-Bessel functions is also provided.

  8. Conformally symmetric traversable wormholes

    International Nuclear Information System (INIS)

    Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.

    2007-01-01

    Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at a finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced

  9. Filtering microfluidic bubble trains at a symmetric junction.

    Science.gov (United States)

    Parthiban, Pravien; Khan, Saif A

    2012-02-07

    We report how a nominally symmetric microfluidic junction can be used to sort all bubbles of an incoming train exclusively into one of its arms. The existence of this "filter" regime is unexpected, given that the junction is symmetric. We analyze this behavior by quantifying how bubbles modulate the hydrodynamic resistance in microchannels and show how speeding up a bubble train whilst preserving its spatial periodicity can lead to filtering at a nominally symmetric junction. We further show how such an asymmetric traffic of bubble trains can be triggered in symmetric geometries by identifying conditions wherein the resistance to flow decreases with an increase in the number of bubbles in the microchannel and derive an exact criterion to predict the same.

  10. Mesotherapy for benign symmetric lipomatosis.

    Science.gov (United States)

    Hasegawa, Toshio; Matsukura, Tomoyuki; Ikeda, Shigaku

    2010-04-01

    Benign symmetric lipomatosis, also known as Madelung disease, is a rare disorder characterized by fat distribution around the shoulders, arms, and neck in the context of chronic alcoholism. Complete excision of nonencapsulated lipomas is difficult. However, reports describing conservative therapeutic measures for lipomatosis are rare. The authors present the case of a 42-year-old man with a diagnosis of benign symmetric lipomatosis who had multiple, large, symmetrical masses in his neck. Multiple phosphatidylcholine injections in the neck were administered 4 weeks apart, a total of seven times to achieve lipolysis. The patient's lipomatosis improved in response to the injections, and he achieved good cosmetic results. Intralesional injection, termed mesotherapy, using phosphatidylcholine is a potentially effective therapy for benign symmetric lipomatosis that should be reconsidered as a therapeutic option for this disease.

  11. Looking for symmetric Bell inequalities

    OpenAIRE

    Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano

    2010-01-01

    Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell e...

  12. A symmetric bipolar nebula around MWC 922.

    Science.gov (United States)

    Tuthill, P G; Lloyd, J P

    2007-04-13

    We report regular and symmetric structure around dust-enshrouded Be star MWC 922 obtained with infrared imaging. Biconical lobes that appear nearly square in aspect, forming this "Red Square" nebula, are crossed by a series of rungs that terminate in bright knots or "vortices," and an equatorial dark band crossing the core delimits twin hyperbolic arcs. The intricate yet cleanly constructed forms that comprise the skeleton of the object argue for minimal perturbation from global turbulent or chaotic effects. We also report the presence of a linear comb structure, which may arise from optically projected shadows of a periodic feature in the inner regions, such as corrugations in the rim of a circumstellar disk. The sequence of nested polar rings draws comparison with the triple-ring system seen around the only naked-eye supernova in recent history: SN1987A.

  13. Penetration of geomagnetic pulsations from one polar cao cap to the other one

    International Nuclear Information System (INIS)

    Mal'tsev, Yu.P.; Lyatskij, V.B.

    1982-01-01

    A theoretical study is made of penetration of geomagnetic pulsations, excited in one polar cap in the region of open field lines, into the other one. The geomagnetic pulsations excited in a polar cap in the region of open field lines are also observed in the opposite polar cap. This is connected with the flow of ionospheric perturbation currents from one hemisphere to another over the boundary of the region with closed magnetic lines. In case of long-period oscillations under symmetrical conditions, both in the north and south polar caps, the ionospheric effect of the opposite hemisphere results in the fact that the electrical currents flowing from a source to the polar cap boundary grow 1.5 times as high. In case of short-period oscillations a portion of longitudinal current flowing between the hemispheres is branched away for polarization currents. As a result, the electrical field and currents in the ionosphere of the opposite hemisphere can substantially decrease as compared to the long-period oscillations

  14. Directional change during a Miocene R-N geomagnetic polarity reversal recorded by mafic lava flows, Sheep Creek Range, north central Nevada, USA

    Science.gov (United States)

    Bogue, S. W.; Glen, J. M. G.; Jarboe, N. A.

    2017-09-01

    Recurring transitional field directions during three Miocene geomagnetic reversals provide evidence that lateral inhomogeneity of the lower mantle affects flow in the outer core. We compare new paleomagnetic results from a composite sequence of 15.2 Ma lava flows in north central Nevada (Sheep Creek Range; 40.7°N, 243.2°E), erupted during a polarity reversal, to published data from Steens Mountain (250 km to the northwest in Oregon) and the Newberry Mountains (650 km to the south in California) that document reversals occurring millions of years and many polarity switches earlier. Alternating field demagnetization, followed by thermal demagnetization in half the samples, clearly isolated the primary thermoremanent magnetization of Sheep Creek Range flows. We correlated results from our three sampled sections to produce a composite record that begins with a single virtual geomagnetic pole (VGP) at low latitude in the Atlantic, followed by two VGPs situated near latitude 30°N in NE Africa. After jumping to 83°N (one VGP), the pole moves to equatorial South America (one VGP), back to NE Africa (three VGPs), to high southern latitudes (two VGPs), back to equatorial South America (three VGPs), and finally to high northern latitudes (nine VGPs). The repeated visits of the transitional VGP to positions in South America and near NE Africa, as well as the similar behavior recorded at Steens Mountain and the Newberry Mountains, suggest that lower mantle or core-mantle boundary features localize core flow structures, thereby imparting a discernible regional structure on the transitional geomagnetic field that persists for millions of years.

  15. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  16. Spherically symmetric near-critical accretion onto neutron stars

    International Nuclear Information System (INIS)

    Miller, G.S.

    1990-01-01

    Numerical and approximate analytic solutions for time-independent, spherically symmetric, radiation pressure-dominated accretion flows are presented. For flows with luminosities at infinity, L-infinity, sufficiently close to the Eddington limit L-crit, the flow velocity profile is qualitatively different from the modified free-fall profile v(r) = (1 - L-infinity/L-crit)exp 1/2 (2GM/r)exp 1/2. Advective contributions to the comoving radiation flux decelerate the flow within a criical radius, and, in this settling region, the velocity of the flow decreases linearly with decreasing radius. 14 refs

  17. Solitons in PT-symmetric potential with competing nonlinearity

    International Nuclear Information System (INIS)

    Khare, Avinash; Al-Marzoug, S.M.; Bahlouli, Hocine

    2012-01-01

    We investigate the effect of competing nonlinearities on beam dynamics in PT-symmetric potentials. In particular, we consider the stationary nonlinear Schrödinger equation (NLSE) in one dimension with competing cubic and generalized nonlinearity in the presence of a PT-symmetric potential. Closed form solutions for localized states are obtained. These solitons are shown to be stable over a wide range of potential parameters. The transverse power flow associated with these complex solitons is also examined. -- Highlights: ► Effect of competing nonlinearities on beam dynamics in PT-symmetric potentials. ► Closed form solutions for localized states are. ► The transverse power flow associated with these complex solitons is also examined.

  18. Harmonic analysis on symmetric spaces

    CERN Document Server

    Terras, Audrey

    This text explores the geometry and analysis of higher rank analogues of the symmetric spaces introduced in volume one. To illuminate both the parallels and differences of the higher rank theory, the space of positive matrices is treated in a manner mirroring that of the upper-half space in volume one. This concrete example furnishes motivation for the general theory of noncompact symmetric spaces, which is outlined in the final chapter. The book emphasizes motivation and comprehensibility, concrete examples and explicit computations (by pen and paper, and by computer), history, and, above all, applications in mathematics, statistics, physics, and engineering. The second edition includes new sections on Donald St. P. Richards’s central limit theorem for O(n)-invariant random variables on the symmetric space of GL(n, R), on random  matrix theory, and on advances in the theory of automorphic forms on arithmetic groups.

  19. Looking for symmetric Bell inequalities

    International Nuclear Information System (INIS)

    Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano

    2010-01-01

    Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.

  20. Symmetric normalisation for intuitionistic logic

    DEFF Research Database (Denmark)

    Guenot, Nicolas; Straßburger, Lutz

    2014-01-01

    We present two proof systems for implication-only intuitionistic logic in the calculus of structures. The first is a direct adaptation of the standard sequent calculus to the deep inference setting, and we describe a procedure for cut elimination, similar to the one from the sequent calculus......, but using a non-local rewriting. The second system is the symmetric completion of the first, as normally given in deep inference for logics with a DeMorgan duality: all inference rules have duals, as cut is dual to the identity axiom. We prove a generalisation of cut elimination, that we call symmetric...

  1. Diagrams for symmetric product orbifolds

    International Nuclear Information System (INIS)

    Pakman, Ari; Rastelli, Leonardo; Razamat, Shlomo S.

    2009-01-01

    We develop a diagrammatic language for symmetric product orbifolds of two-dimensional conformal field theories. Correlation functions of twist operators are written as sums of diagrams: each diagram corresponds to a branched covering map from a surface where the fields are single-valued to the base sphere where twist operators are inserted. This diagrammatic language facilitates the study of the large N limit and makes more transparent the analogy between symmetric product orbifolds and free non-abelian gauge theories. We give a general algorithm to calculate the leading large N contribution to four-point correlators of twist fields.

  2. Looking for symmetric Bell inequalities

    Energy Technology Data Exchange (ETDEWEB)

    Bancal, Jean-Daniel; Gisin, Nicolas [Group of Applied Physics, University of Geneva, 20 rue de l' Ecole-de Medecine, CH-1211 Geneva 4 (Switzerland); Pironio, Stefano, E-mail: jean-daniel.bancal@unige.c [Laboratoire d' Information Quantique, Universite Libre de Bruxelles (Belgium)

    2010-09-24

    Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.

  3. Value of a dual-polarized gap-filling radar in support of southern California post-fire debris-flow warnings

    Science.gov (United States)

    Jorgensen, David P.; Hanshaw, Maiana N.; Schmidt, Kevin M.; Laber, Jayme L; Staley, Dennis M.; Kean, Jason W.; Restrepo, Pedro J.

    2011-01-01

    A portable truck-mounted C-band Doppler weather radar was deployed to observe rainfall over the Station Fire burn area near Los Angeles, California, during the winter of 2009/10 to assist with debris-flow warning decisions. The deployments were a component of a joint NOAA–U.S. Geological Survey (USGS) research effort to improve definition of the rainfall conditions that trigger debris flows from steep topography within recent wildfire burn areas. A procedure was implemented to blend various dual-polarized estimators of precipitation (for radar observations taken below the freezing level) using threshold values for differential reflectivity and specific differential phase shift that improves the accuracy of the rainfall estimates over a specific burn area sited with terrestrial tipping-bucket rain gauges. The portable radar outperformed local Weather Surveillance Radar-1988 Doppler (WSR-88D) National Weather Service network radars in detecting rainfall capable of initiating post-fire runoff-generated debris flows. The network radars underestimated hourly precipitation totals by about 50%. Consistent with intensity–duration threshold curves determined from past debris-flow events in burned areas in Southern California, the portable radar-derived rainfall rates exceeded the empirical thresholds over a wider range of storm durations with a higher spatial resolution than local National Weather Service operational radars. Moreover, the truck-mounted C-band radar dual-polarimetric-derived estimates of rainfall intensity provided a better guide to the expected severity of debris-flow events, based on criteria derived from previous events using rain gauge data, than traditional radar-derived rainfall approaches using reflectivity–rainfall relationships for either the portable or operational network WSR-88D radars. Part of the reason for the improvement was due to siting the radar closer to the burn zone than the WSR-88Ds, but use of the dual-polarimetric variables

  4. Symmetric relations of finite negativity

    NARCIS (Netherlands)

    Kaltenbaeck, M.; Winkler, H.; Woracek, H.; Forster, KH; Jonas, P; Langer, H

    2006-01-01

    We construct and investigate a space which is related to a symmetric linear relation S of finite negativity on an almost Pontryagin space. This space is the indefinite generalization of the completion of dom S with respect to (S.,.) for a strictly positive S on a Hilbert space.

  5. Tilting-connected symmetric algebras

    OpenAIRE

    Aihara, Takuma

    2010-01-01

    The notion of silting mutation was introduced by Iyama and the author. In this paper we mainly study silting mutation for self-injective algebras and prove that any representation-finite symmetric algebra is tilting-connected. Moreover we give some sufficient conditions for a Bongartz-type Lemma to hold for silting objects.

  6. Symmetric group representations and Z

    OpenAIRE

    Adve, Anshul; Yong, Alexander

    2017-01-01

    We discuss implications of the following statement about the representation theory of symmetric groups: every integer appears infinitely often as an irreducible character evaluation, and every nonnegative integer appears infinitely often as a Littlewood-Richardson coefficient and as a Kronecker coefficient.

  7. Symmetric Key Authentication Services Revisited

    NARCIS (Netherlands)

    Crispo, B.; Popescu, B.C.; Tanenbaum, A.S.

    2004-01-01

    Most of the symmetric key authentication schemes deployed today are based on principles introduced by Needham and Schroeder [15] more than twenty years ago. However, since then, the computing environment has evolved from a LAN-based client-server world to include new paradigms, including wide area

  8. Quantum systems and symmetric spaces

    International Nuclear Information System (INIS)

    Olshanetsky, M.A.; Perelomov, A.M.

    1978-01-01

    Certain class of quantum systems with Hamiltonians related to invariant operators on symmetric spaces has been investigated. A number of physical facts have been derived as a consequence. In the classical limit completely integrable systems related to root systems are obtained

  9. The symmetric longest queue system

    NARCIS (Netherlands)

    van Houtum, Geert-Jan; Adan, Ivo; van der Wal, Jan

    1997-01-01

    We derive the performance of the exponential symmetric longest queue system from two variants: a longest queue system with Threshold Rejection of jobs and one with Threshold Addition of jobs. It is shown that these two systems provide lower and upper bounds for the performance of the longest queue

  10. Symmetric imaging findings in neuroradiology

    International Nuclear Information System (INIS)

    Zlatareva, D.

    2015-01-01

    Full text: Learning objectives: to make a list of diseases and syndromes which manifest as bilateral symmetric findings on computed tomography and magnetic resonance imaging; to discuss the clinical and radiological differential diagnosis for these diseases; to explain which of these conditions necessitates urgent therapy and when additional studies and laboratory can precise diagnosis. There is symmetry in human body and quite often we compare the affected side to the normal one but in neuroradiology we might have bilateral findings which affected pair structures or corresponding anatomic areas. It is very rare when clinical data prompt diagnosis. Usually clinicians suspect such an involvement but Ct and MRI can reveal symmetric changes and are one of the leading diagnostic tool. The most common location of bilateral findings is basal ganglia and thalamus. There are a number of diseases affecting these structures symmetrically: metabolic and systemic diseases, intoxication, neurodegeneration and vascular conditions, toxoplasmosis, tumors and some infections. Malformations of cortical development and especially bilateral perisylvian polymicrogyria requires not only exact report on the most affected parts but in some cases genetic tests or combination with other clinical symptoms. In the case of herpes simplex encephalitis bilateral temporal involvement is common and this finding very often prompt therapy even before laboratory results. Posterior reversible encephalopathy syndrome (PReS) and some forms of hypoxic ischemic encephalopathy can lead to symmetric changes. In these acute conditions MR plays a crucial role not only in diagnosis but also in monitoring of the therapeutic effect. Patients with neurofibromatosis type 1 or type 2 can demonstrate bilateral optic glioma combined with spinal neurofibroma and bilateral acoustic schwanoma respectively. Mirror-image aneurysm affecting both internal carotid or middle cerebral arteries is an example of symmetry in

  11. Effect of Long-Period Ocean Tides on the Earth's Polar Motion

    Science.gov (United States)

    Gross, R. S.; Chao, B. F.; Desai, S. D.

    1997-01-01

    The second-degree zonal tide raising potential is symmetric about the polar axis and hence can excite the Earth's polar motion only through its action upon nonaxisymmetric features of the Earth such as the oceans.

  12. Critical properties of symmetric nanoscale metal-ferroelectric-metal capacitors

    International Nuclear Information System (INIS)

    Zheng Yue; Cai, M.Q.; Woo, C.H.

    2010-01-01

    The size, surface and interface effects on the magnitude and stability of spontaneous polarization in a symmetric nanoscale ferroelectric capacitor were studied by analyzing its evolutionary trajectory based on a thermodynamic model. Analytic expressions of the Curie temperature, spontaneous polarization, critical thickness and the Curie-Weiss relation were derived, taking into account the effects of the depolarization field, built-in electric field, interfaces and surfaces. Our results show that the critical properties are not only functions of the ambient temperature, misfit strain and electromechanical boundary conditions, but also depend on the characteristics of electrodes, surfaces and interfaces, through the incomplete charge compensation, near-surface variation of polarization and work function steps of ferroelectric-electrode interfaces, which are adjustable.

  13. Separator-Integrated, Reversely Connectable Symmetric Lithium-Ion Battery.

    Science.gov (United States)

    Wang, Yuhang; Zeng, Jiren; Cui, Xiaoqi; Zhang, Lijuan; Zheng, Gengfeng

    2016-02-24

    A separator-integrated, reversely connectable, symmetric lithium-ion battery is developed based on carbon-coated Li3V2(PO4)3 nanoparticles and polyvinylidene fluoride-treated separators. The Li3V2(PO4)3 nanoparticles are synthesized via a facile solution route followed by calcination in Ar/H2 atmosphere. Sucrose solution is used as the carbon source for uniform carbon coating on the Li3V2(PO4)3 nanoparticles. Both the carbon and the polyvinylidene fluoride treatments substantially improve the cycling life of the symmetric battery by preventing the dissolution and shuttle of the electroactive Li3V2(PO4)3. The obtained symmetric full cell exhibits a reversible capacity of ≈ 87 mA h g(-1), good cycling stability, and capacity retention of ≈ 70% after 70 cycles. In addition, this type of symmetric full cell can be operated in both forward and reverse connection modes, without any influence on the cycling of the battery. Furthermore, a new separator integration approach is demonstrated, which enables the direct deposition of electroactive materials for the battery assembly and does not affect the electrochemical performance. A 10-tandem-cell battery assembled without differentiating the electrode polarity exhibits a low thickness of ≈ 4.8 mm and a high output voltage of 20.8 V. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Parity-Time Symmetric Photonics

    KAUST Repository

    Zhao, Han

    2018-01-17

    The establishment of non-Hermitian quantum mechanics (such as parity-time (PT) symmetry) stimulates a paradigmatic shift for studying symmetries of complex potentials. Owing to the convenient manipulation of optical gain and loss in analogy to the complex quantum potentials, photonics provides an ideal platform for visualization of many conceptually striking predictions from the non-Hermitian quantum theory. A rapidly developing field has emerged, namely, PT symmetric photonics, demonstrating intriguing optical phenomena including eigenstate coalescence and spontaneous PT symmetry breaking. The advance of quantum physics, as the feedback, provides photonics with brand-new paradigms to explore the entire complex permittivity plane for novel optical functionalities. Here, we review recent exciting breakthroughs in PT symmetric photonics while systematically presenting their underlying principles guided by non-Hermitian symmetries. The potential device applications for optical communication and computing, bio-chemical sensing, and healthcare are also discussed.

  15. Homotheties of cylindrically symmetric static spacetimes

    International Nuclear Information System (INIS)

    Qadir, A.; Ziad, M.; Sharif, M.

    1998-08-01

    In this note we consider the homotheties of cylindrically symmetric static spacetimes. We find that we can provide a complete list of all metrics that admit non-trivial homothetic motions and are cylindrically symmetric static. (author)

  16. Maximally Symmetric Composite Higgs Models.

    Science.gov (United States)

    Csáki, Csaba; Ma, Teng; Shu, Jing

    2017-09-29

    Maximal symmetry is a novel tool for composite pseudo Goldstone boson Higgs models: it is a remnant of an enhanced global symmetry of the composite fermion sector involving a twisting with the Higgs field. Maximal symmetry has far-reaching consequences: it ensures that the Higgs potential is finite and fully calculable, and also minimizes the tuning. We present a detailed analysis of the maximally symmetric SO(5)/SO(4) model and comment on its observational consequences.

  17. Numerical simulation of flow and melting characteristics of seawater-ice crystals two-phase flow in inlet straight pipe of shell and tube heat exchanger of polar ship

    Science.gov (United States)

    Xu, Li; Huang, Chang-Xu; Huang, Zhen-Fei; Sun, Qiang; Li, Jie

    2018-05-01

    The ice crystal particles are easy to enter into the seawater cooling system of polar ship together with seawater when it sails in the Arctic. They are easy to accumulate in the pipeline, causing serious blockage of the cooling pipe. In this study, the flow and melting characteristics of ice particles-seawater two-phase flow in inlet straight pipe of shell-and-tube heat exchanger were numerically simulated by using Eulerian-Eulerian two-fluid model coupled with the interphase heat and mass transfer model. The influences of inlet ice packing factor, ice crystal particle diameter, and inlet velocity on the distribution and melting characteristics of ice crystals were investigated. The degree of asymmetry of the distribution of ice crystals in the cross section decreases gradually when the IPF changes from 5 to 15%. The volume fractions of ice crystals near the top of the outlet cross section are 19.59, 19.51, and 22.24% respectively for ice packing factor of 5, 10 and 15%. When the particle diameter is 0.5 mm, the ice crystals are gradually stratified during the flow process. With particle diameters of 1.0 and 2.0 mm, the region with the highest volume fraction of ice crystals is a small circle and the contours in the cloud map are compact. The greater the inlet flow velocity, the less stratified the ice crystals and the more obvious the turbulence on the outlet cross section. The average volume fraction of ice crystals along the flow direction is firstly rapidly reduced and then stabilized after 300 mm.

  18. On symmetric structures of order two

    Directory of Open Access Journals (Sweden)

    Michel Bousquet

    2008-04-01

    Full Text Available Let (ω n 0 < n be the sequence known as Integer Sequence A047749 http://www.research.att.com/ njas/sequences/A047749 In this paper, we show that the integer ω n enumerates various kinds of symmetric structures of order two. We first consider ternary trees having a reflexive symmetry and we relate all symmetric combinatorial objects by means of bijection. We then generalize the symmetric structures and correspondences to an infinite family of symmetric objects.

  19. Analysis of flow and LDL concentration polarization in siphon of internal carotid artery: Non-Newtonian effects.

    Science.gov (United States)

    Sharifi, Alireza; Niazmand, Hamid

    2015-10-01

    Carotid siphon is known as one of the risky sites among the human intracranial arteries, which is prone to formation of atherosclerotic lesions. Indeed, scientists believe that accumulation of low density lipoprotein (LDL) inside the lumen is the major cause of atherosclerosis. To this aim, three types of internal carotid artery (ICA) siphon have been constructed to examine variations of hemodynamic parameters in different regions of the arteries. Providing real physiological conditions, blood considered as non-Newtonian fluid and real velocity and pressure waveforms have been employed as flow boundary conditions. Moreover, to have a better estimation of risky sites, the accumulation of LDL particles has been considered, which has been usually ignored in previous relevant studies. Governing equations have been discretized and solved via open source OpenFOAM software. A new solver has been built to meet essential parameters related to the flow and mass transfer phenomena. In contrast to the common belief regarding negligible effect of blood non-Newtonian behavior inside large arteries, current study suggests that the non-Newtonian blood behavior is notable, especially on the velocity field of the U-type model. In addition, it is concluded that neglecting non-Newtonian effects underestimates the LDL accumulation up to 3% in the U-type model at the inner side of both its bends. However, in the V and C type models, non-Newtonian effects become relatively small. Results also emphasize that the outer part of the second bend at the downstream is also at risk similar to the inner part of the carotid bends. Furthermore, from findings it can be implied that the risky sites strongly depend on the ICA shape since the extension of the risky sites are relatively larger for the V-type model, while the LDL concentrations are higher for the C-type model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Geomagnetic fluctuations during a polarity transition

    Science.gov (United States)

    Audunsson, Haraldur; Levi, Shaul

    1997-01-01

    The extensive Roza Member of the Columbia River Basalt Group (Washington State) has intermediate paleomagnetic directions, bracketed by underlying normal and overlying reverse polarity flows. A consistent paleomagnetic direction was measured at 11 widely distributed outcrops; the average direction has a declination of 189° and an inclination of -5°, with greater variation in the inclination [Rietman, 1966]. In this study the Roza Member was sampled in two Pasco Basin drillcores, where it is a single cooling unit and its thickness exceeds 50 m. Excellent core recovery allowed uniform and dense sampling of the drillcores. During its protracted cooling, the Roza flow in the drillcores recorded part of a 15.5 Ma geomagnetic polarity transition. The inclination has symmetric, quasicyclic intraflow variation, while the declination is nearly constant, consistent with the results from the outcrops. Thermal models of the cooling flow provide the timing for remanence acquisition. The inclination is inferred to have progressed from 0° to -15° and back to -3°over a period of 15 to 60 years, at rates of 1.6° to 0.5°/yr. Because the geomagnetic intensity was probably weak during the transition, these apparently high rates of change are not significantly different from present-day secular variation. These results agree with the hypothesis that normal secular variation persists through geomagnetic transitions. The Iow-amplitude quasicyclical fluctuations of the field over tens of years, recorded by Roza, suggest that the geomagnetic field reverses in discrete steps, and that more than 15-60 years were required to complete this reversal.

  1. Baryon symmetric big bang cosmology

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1978-01-01

    It is stated that the framework of baryon symmetric big bang (BSBB) cosmology offers our greatest potential for deducting the evolution of the Universe because its physical laws and processes have the minimum number of arbitrary assumptions about initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the Universe and how galaxies and galaxy clusters are formed. BSBB cosmology also provides the only acceptable explanation at present for the origin of the cosmic γ-ray background radiation. (author)

  2. Symmetric functions and orthogonal polynomials

    CERN Document Server

    Macdonald, I G

    1997-01-01

    One of the most classical areas of algebra, the theory of symmetric functions and orthogonal polynomials has long been known to be connected to combinatorics, representation theory, and other branches of mathematics. Written by perhaps the most famous author on the topic, this volume explains some of the current developments regarding these connections. It is based on lectures presented by the author at Rutgers University. Specifically, he gives recent results on orthogonal polynomials associated with affine Hecke algebras, surveying the proofs of certain famous combinatorial conjectures.

  3. Immanant Conversion on Symmetric Matrices

    Directory of Open Access Journals (Sweden)

    Purificação Coelho M.

    2014-01-01

    Full Text Available Letr Σn(C denote the space of all n χ n symmetric matrices over the complex field C. The main objective of this paper is to prove that the maps Φ : Σn(C -> Σn (C satisfying for any fixed irre- ducible characters X, X' -SC the condition dx(A +aB = dχ·(Φ(Α + αΦ(Β for all matrices A,В ε Σ„(С and all scalars a ε C are automatically linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on ΣИ(С.

  4. Nonstandard jump functions for radically symmetric shock waves

    International Nuclear Information System (INIS)

    Baty, Roy S.; Tucker, Don H.; Stanescu, Dan

    2008-01-01

    Nonstandard analysis is applied to derive generalized jump functions for radially symmetric, one-dimensional, magnetogasdynamic shock waves. It is assumed that the shock wave jumps occur on infinitesimal intervals and the jump functions for the physical parameters occur smoothly across these intervals. Locally integrable predistributions of the Heaviside function are used to model the flow variables across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the physical parameters for two families of self-similar flows. It is shown that the microstructures for these families of radially symmetric, magnetogasdynamic shock waves coincide in a nonstandard sense for a specified density jump function.

  5. Information Retrieval and Criticality in Parity-Time-Symmetric Systems.

    Science.gov (United States)

    Kawabata, Kohei; Ashida, Yuto; Ueda, Masahito

    2017-11-10

    By investigating information flow between a general parity-time (PT-)symmetric non-Hermitian system and an environment, we find that the complete information retrieval from the environment can be achieved in the PT-unbroken phase, whereas no information can be retrieved in the PT-broken phase. The PT-transition point thus marks the reversible-irreversible criticality of information flow, around which many physical quantities such as the recurrence time and the distinguishability between quantum states exhibit power-law behavior. Moreover, by embedding a PT-symmetric system into a larger Hilbert space so that the entire system obeys unitary dynamics, we reveal that behind the information retrieval lies a hidden entangled partner protected by PT symmetry. Possible experimental situations are also discussed.

  6. Alignment of symmetric top molecules by short laser pulses

    DEFF Research Database (Denmark)

    Hamilton, Edward; Seideman, Tamar; Ejdrup, Tine

    2005-01-01

    -resolved photofragment imaging. Using methyliodide and tert-butyliodide as examples, we calculate and measure the alignment dynamics, focusing on the temporal structure and intensity of the revival patterns, including their dependence on the pulse duration, and their behavior at long times, where centrifugal distortion......Nonadiabatic alignment of symmetric top molecules induced by a linearly polarized, moderately intense picosecond laser pulse is studied theoretically and experimentally. Our studies are based on the combination of a nonperturbative solution of the Schrodinger equation with femtosecond time...

  7. Electromagnetically Induced Transparency in Symmetric Planar Metamaterial at THz Wavelengths

    Directory of Open Access Journals (Sweden)

    Abdelwaheb Ourir

    2015-03-01

    Full Text Available We report the experimental observation and the evidence of the analogue of electromagnetically-induced transparency (EIT in a symmetric planar metamaterial. This effect has been obtained in the THz range thanks to a destructive Fano-interference between the two first modes of an array of multi-gap split ring resonators deposited on a silicon substrate. This structure is a planar thin film material with four-fold symmetry. Thanks to this property, a polarization-independent transmission has been achieved. The proposed metamaterial is well adapted to variety of slow-light applications in the infrared and optical range.

  8. Terahertz broadband polarization converter based on metamaterials

    Science.gov (United States)

    Li, Yonghua; Zhao, Guozhong

    2018-01-01

    Based on the metamaterial composed of symmetrical split resonant ring, a broadband reflective terahertz polarization converter is proposed. The numerical simulation shows that it can rotate the polarization direction of linear polarized wave 90° in the range of 0.7-1.8THz and the polarization conversion ratio is over 90%. The reflection coefficient of the two electric field components in the diagonal direction is the same and the phase difference is 180° ,which leads to the cross-polarization rotation.In order to further study the physical mechanism of high polarization conversion, we analyze the surface current distribution of the resonant ring. The polarization converter has potential applications in terahertz wave plate and metamaterial antenna design.

  9. Probabilistic cloning of three symmetric states

    International Nuclear Information System (INIS)

    Jimenez, O.; Bergou, J.; Delgado, A.

    2010-01-01

    We study the probabilistic cloning of three symmetric states. These states are defined by a single complex quantity, the inner product among them. We show that three different probabilistic cloning machines are necessary to optimally clone all possible families of three symmetric states. We also show that the optimal cloning probability of generating M copies out of one original can be cast as the quotient between the success probability of unambiguously discriminating one and M copies of symmetric states.

  10. Classification of symmetric toroidal orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-09-15

    We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.

  11. Nonlinear PT-symmetric plaquettes

    International Nuclear Information System (INIS)

    Li Kai; Kevrekidis, P G; Malomed, Boris A; Günther, Uwe

    2012-01-01

    We introduce four basic two-dimensional (2D) plaquette configurations with onsite cubic nonlinearities, which may be used as building blocks for 2D PT-symmetric lattices. For each configuration, we develop a dynamical model and examine its PTsymmetry. The corresponding nonlinear modes are analyzed starting from the Hamiltonian limit, with zero value of the gain–loss coefficient, γ. Once the relevant waveforms have been identified (chiefly, in an analytical form), their stability is examined by means of linearization in the vicinity of stationary points. This reveals diverse and, occasionally, fairly complex bifurcations. The evolution of unstable modes is explored by means of direct simulations. In particular, stable localized modes are found in these systems, although the majority of identified solutions are unstable. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)

  12. Relativistic fluids in spherically symmetric space

    International Nuclear Information System (INIS)

    Dipankar, R.

    1977-12-01

    Some of McVittie and Wiltshire's (1977) solutions of Walker's (1935) isotropy conditions for relativistic perfect fluid spheres are generalized. Solutions are spherically symmetric and conformally flat

  13. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.

    2012-01-01

    switching to the right (left) circular polarization, the particles performed spinning motion in agreement with the angular momentum imparted by the field, but they were involved in an orbital rotation around the beam axis as well, which in previous works [Y. Zhao et al, Phys. Rev. Lett. 99, 073901 (2007......Non-spherical dielectric microparticles were suspended in a water-filled cell and exposed to a coherent Gaussian light beam with controlled state of polarization. When the beam polarization is linear, the particles were trapped at certain off-axial position within the beam cross section. After...... of inhomogeneously polarized paraxial beams [A. Bekshaev et al, J. Opt. 13, 053001 (2011)]....

  14. Radiometric and paleomagnetic evidence for the Emperor reversed polarity event at 0.46 ± 0.05 M.Y. in basalt lava flows from the eastern Snake River Plain, Idaho

    Science.gov (United States)

    Champion, Duane E.; Dalrymple, G. Brent; Kuntz, Mel A.

    1981-01-01

    K-Ar and paleomagnetic data from cores through a sequence of basalt flows in the eastern Snake River Plain provide evidence for a brief (0.005 to 0.01 m.y.) reversal of the geomagnetic field 0.46 ± 0.05 m.y. ago. This reversed polarity event has also been found in sea-floor magnetic anomalies and in sediment cores and is probably the Emperor event of Ryan [1972].

  15. Comprehensive asynchronous symmetric rendezvous algorithm in ...

    Indian Academy of Sciences (India)

    Meenu Chawla

    2017-11-10

    Nov 10, 2017 ... Simulation results affirm that CASR algorithm performs better in terms of average time-to-rendezvous as compared ... process; neighbour discovery; symmetric rendezvous algorithm. 1. .... dezvous in finite time under the symmetric model. The CH ..... CASR algorithm in Matlab 7.11 and performed several.

  16. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  17. Symmetric splitting of very light systems

    International Nuclear Information System (INIS)

    Grotowski, K.; Majka, Z.; Planeta, R.

    1985-01-01

    Fission reactions that produce fragments close to one half the mass of the composite system are traditionally observed in heavy nuclei. In light systems, symmetric splitting is rarely observed and poorly understood. It would be interesting to verify the existence of the symmetric splitting of compound nuclei with A 12 C + 40 Ca, 141 MeV 9 Be + 40 Ca and 153 MeV 6 Li + 40 Ca. The out-of-plane correlation of symmetric products was also measured for the reaction 186 MeV 12 C + 40 Ca. The coincidence measurements of the 12 C + 40 Ca system demonstrated that essentially all of the inclusive yield of symmetric products around 40 0 results from a binary decay. To characterize the dependence of the symmetric splitting process on the excitation energy of the 12 C + 40 C system, inclusive measurements were made at bombarding energies of 74, 132, 162, and 185 MeV

  18. Spherically symmetric charged compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Jaypee Institute of Information Technology University, Department of Mathematics, Noida, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Chowdhury, Sourav Roy [Seth Anandaram Jaipuria College, Department of Physics, Kolkata, West Bengal (India)

    2015-08-15

    In this article we consider the static spherically symmetric metric of embedding class 1. When solving the Einstein-Maxwell field equations we take into account the presence of ordinary baryonic matter together with the electric charge. Specific new charged stellar models are obtained where the solutions are entirely dependent on the electromagnetic field, such that the physical parameters, like density, pressure etc. do vanish for the vanishing charge. We systematically analyze altogether the three sets of Solutions I, II, and III of the stellar models for a suitable functional relation of ν(r). However, it is observed that only the Solution I provides a physically valid and well-behaved situation, whereas the Solutions II and III are not well behaved and hence not included in the study. Thereafter it is exclusively shown that the Solution I can pass through several standard physical tests performed by us. To validate the solution set presented here a comparison has also been made with that of the compact stars, like RX J 1856 - 37, Her X - 1, PSR 1937+21, PSRJ 1614-2230, and PSRJ 0348+0432, and we have shown the feasibility of the models. (orig.)

  19. Exact axially symmetric galactic dynamos

    Science.gov (United States)

    Henriksen, R. N.; Woodfinden, A.; Irwin, J. A.

    2018-05-01

    We give a selection of exact dynamos in axial symmetry on a galactic scale. These include some steady examples, at least one of which is wholly analytic in terms of simple functions and has been discussed elsewhere. Most solutions are found in terms of special functions, such as associated Lagrange or hypergeometric functions. They may be considered exact in the sense that they are known to any desired accuracy in principle. The new aspect developed here is to present scale-invariant solutions with zero resistivity that are self-similar in time. The time dependence is either a power law or an exponential factor, but since the geometry of the solution is self-similar in time we do not need to fix a time to study it. Several examples are discussed. Our results demonstrate (without the need to invoke any other mechanisms) X-shaped magnetic fields and (axially symmetric) magnetic spiral arms (both of which are well observed and documented) and predict reversing rotation measures in galaxy haloes (now observed in the CHANG-ES sample) as well as the fact that planar magnetic spirals are lifted into the galactic halo.

  20. Baryon symmetric big bang cosmology

    Science.gov (United States)

    Stecker, F. W.

    1978-01-01

    Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.

  1. Substring-Searchable Symmetric Encryption

    Directory of Open Access Journals (Sweden)

    Chase Melissa

    2015-06-01

    Full Text Available In this paper, we consider a setting where a client wants to outsource storage of a large amount of private data and then perform substring search queries on the data – given a data string s and a search string p, find all occurrences of p as a substring of s. First, we formalize an encryption paradigm that we call queryable encryption, which generalizes searchable symmetric encryption (SSE and structured encryption. Then, we construct a queryable encryption scheme for substring queries. Our construction uses suffix trees and achieves asymptotic efficiency comparable to that of unencrypted suffix trees. Encryption of a string of length n takes O(λn time and produces a ciphertext of size O(λn, and querying for a substring of length m that occurs k times takes O(λm+k time and three rounds of communication. Our security definition guarantees correctness of query results and privacy of data and queries against a malicious adversary. Following the line of work started by Curtmola et al. (ACM CCS 2006, in order to construct more efficient schemes we allow the query protocol to leak some limited information that is captured precisely in the definition. We prove security of our substring-searchable encryption scheme against malicious adversaries, where the query protocol leaks limited information about memory access patterns through the suffix tree of the encrypted string.

  2. Uniqueness of flat spherically symmetric spacelike hypersurfaces admitted by spherically symmetric static spacetimes

    Science.gov (United States)

    Beig, Robert; Siddiqui, Azad A.

    2007-11-01

    It is known that spherically symmetric static spacetimes admit a foliation by flat hypersurfaces. Such foliations have explicitly been constructed for some spacetimes, using different approaches, but none of them have proved or even discussed the uniqueness of these foliations. The issue of uniqueness becomes more important due to suitability of flat foliations for studying black hole physics. Here, flat spherically symmetric spacelike hypersurfaces are obtained by a direct method. It is found that spherically symmetric static spacetimes admit flat spherically symmetric hypersurfaces, and that these hypersurfaces are unique up to translation under the timelike Killing vector. This result guarantees the uniqueness of flat spherically symmetric foliations for such spacetimes.

  3. Neutron polarization

    International Nuclear Information System (INIS)

    Firk, F.W.K.

    1976-01-01

    Some recent experiments involving polarized neutrons are discussed; they demonstrate how polarization studies provide information on fundamental aspects of nuclear structure that cannot be obtained from more traditional neutron studies. Until recently, neutron polarization studies tended to be limited either to very low energies or to restricted regions at higher energies, determined by the kinematics of favorable (p, vector n) and (d, vector n) reactions. With the advent of high intensity pulsed electron and proton accelerators and of beams of vector polarized deuterons, this is no longer the case. One has entered an era in which neutron polarization experiments are now being carried out, in a routine way, throughout the entire range from thermal energies to tens-of-MeV. The significance of neutron polarization studies is illustrated in discussions of a wide variety of experiments that include the measurement of T-invariance in the β-decay of polarized neutrons, a search for the effects of meson exchange currents in the photo-disintegration of the deuteron, the determination of quantum numbers of states in the fission of aligned 235 U and 237 Np induced by polarized neutrons, and the double- and triple-scattering of fast neutrons by light nuclei

  4. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  5. The symmetric extendibility of quantum states

    International Nuclear Information System (INIS)

    Nowakowski, Marcin L

    2016-01-01

    Studies on the symmetric extendibility of quantum states have become particularly important in the context of the analysis of one-way quantum measures of entanglement, and the distillability and security of quantum protocols. In this paper we analyze composite systems containing a symmetric extendible part, with particular attention devoted to the one-way security of such systems. Further, we introduce a new one-way entanglement monotone based on the best symmetric approximation of a quantum state and the extendible number of a quantum state. We underpin these results with geometric observations about the structures of multi-party settings which posses substantial symmetric extendible components in their subspaces. The impossibility of reducing the maximal symmetric extendibility by means of the one-way local operations and classical communication method is pointed out on multiple copies. Finally, we state a conjecture linking symmetric extendibility with the one-way distillability and security of all quantum states, analyzing the behavior of a private key in the neighborhood of symmetric extendible states. (paper)

  6. Averaging in spherically symmetric cosmology

    International Nuclear Information System (INIS)

    Coley, A. A.; Pelavas, N.

    2007-01-01

    The averaging problem in cosmology is of fundamental importance. When applied to study cosmological evolution, the theory of macroscopic gravity (MG) can be regarded as a long-distance modification of general relativity. In the MG approach to the averaging problem in cosmology, the Einstein field equations on cosmological scales are modified by appropriate gravitational correlation terms. We study the averaging problem within the class of spherically symmetric cosmological models. That is, we shall take the microscopic equations and effect the averaging procedure to determine the precise form of the correlation tensor in this case. In particular, by working in volume-preserving coordinates, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomogeneous gravitational field and matter distribution. We find that the correlation tensor in a Friedmann-Lemaitre-Robertson-Walker (FLRW) background must be of the form of a spatial curvature. Inhomogeneities and spatial averaging, through this spatial curvature correction term, can have a very significant dynamical effect on the dynamics of the Universe and cosmological observations; in particular, we discuss whether spatial averaging might lead to a more conservative explanation of the observed acceleration of the Universe (without the introduction of exotic dark matter fields). We also find that the correlation tensor for a non-FLRW background can be interpreted as the sum of a spatial curvature and an anisotropic fluid. This may lead to interesting effects of averaging on astrophysical scales. We also discuss the results of averaging an inhomogeneous Lemaitre-Tolman-Bondi solution as well as calculations of linear perturbations (that is, the backreaction) in an FLRW background, which support the main conclusions of the analysis

  7. Polarization (ellipsometric) measurements of liquid condensate deposition and evaporation rates and dew points in flowing salt/ash-containing combustion gases

    Science.gov (United States)

    Seshadri, K.; Rosner, D. E.

    1985-01-01

    An application of an optical polarization technique in a combustion environment is demonstrated by following, in real-time, growth rates of boric oxide condensate on heated platinum ribbons exposed to seeded propane-air combustion gases. The results obtained agree with the results of earlier interference measurements and also with theoretical chemical vapor deposition predictions. In comparison with the interference method, the polarization technique places less stringent requirements on surface quality, which may justify the added optical components needed for such measurements.

  8. Linac design algorithm with symmetric segments

    International Nuclear Information System (INIS)

    Takeda, Harunori; Young, L.M.; Nath, S.; Billen, J.H.; Stovall, J.E.

    1996-01-01

    The cell lengths in linacs of traditional design are typically graded as a function of particle velocity. By making groups of cells and individual cells symmetric in both the CCDTL AND CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. We have implemented a design algorithm in the PARMILA code in which cells and multi-cavity segments are made symmetric, significantly reducing the number of unique components. Using the symmetric algorithm, a sample linac design was generated and its performance compared with a similar one of conventional design

  9. A symmetric positive definite formulation for monolithic fluid structure interaction

    KAUST Repository

    Robinson-Mosher, Avi; Schroeder, Craig; Fedkiw, Ronald

    2011-01-01

    In this paper we consider a strongly coupled (monolithic) fluid structure interaction framework for incompressible flow, as opposed to a loosely coupled (partitioned) method. This requires solving a single linear system that combines the unknown velocities of the structure with the unknown pressures of the fluid. In our previous work, we were able to obtain a symmetric formulation of this coupled system; however, it was also indefinite, making it more difficult to solve. In fact in practice there have been cases where we have been unable to invert the system. In this paper we take a novel approach that consists of factoring the damping matrix of deformable structures and show that this can be used to obtain a symmetric positive definite system, at least to the extent that the uncoupled systems were symmetric positive definite. We use a traditional MAC grid discretization of the fluid and a fully Lagrangian discretization of the structures for the sake of exposition, noting that our procedure can be generalized to other scenarios. For the special case of rigid bodies, where there are no internal damping forces, we exactly recover the system of Batty et al. (2007) [4]. © 2010 Elsevier Inc.

  10. A symmetric positive definite formulation for monolithic fluid structure interaction

    KAUST Repository

    Robinson-Mosher, Avi

    2011-02-01

    In this paper we consider a strongly coupled (monolithic) fluid structure interaction framework for incompressible flow, as opposed to a loosely coupled (partitioned) method. This requires solving a single linear system that combines the unknown velocities of the structure with the unknown pressures of the fluid. In our previous work, we were able to obtain a symmetric formulation of this coupled system; however, it was also indefinite, making it more difficult to solve. In fact in practice there have been cases where we have been unable to invert the system. In this paper we take a novel approach that consists of factoring the damping matrix of deformable structures and show that this can be used to obtain a symmetric positive definite system, at least to the extent that the uncoupled systems were symmetric positive definite. We use a traditional MAC grid discretization of the fluid and a fully Lagrangian discretization of the structures for the sake of exposition, noting that our procedure can be generalized to other scenarios. For the special case of rigid bodies, where there are no internal damping forces, we exactly recover the system of Batty et al. (2007) [4]. © 2010 Elsevier Inc.

  11. Symmetric low-voltage powering system for relativistic electronic devices

    International Nuclear Information System (INIS)

    Agafonov, A.V.; Lebedev, A.N.; Krastelev, E.G.

    2005-01-01

    A special driver for double-sided powering of relativistic magnetrons and several methods of localized electron flow forming in the interaction region of relativistic magnetrons are proposed and discussed. Two experimental installations are presented and discussed. One of them is designed for laboratory research and demonstration experiments at a rather low voltage. The other one is a prototype of a full-scale installation for an experimental research at relativistic levels of voltages on the microwave generation in the new integrated system consisting of a relativistic magnetron and symmetrical induction driver

  12. Symmetric nuclear matter with Skyrme interaction

    International Nuclear Information System (INIS)

    Manisa, K.; Bicer, A.; Atav, U.

    2010-01-01

    The equation of state (EOS) and some properties of symmetric nuclear matter, such as the saturation density, saturation energy and incompressibility, are obtained by using Skyrme's density-dependent effective nucleon-nucleon interaction.

  13. Performance limitations of translationally symmetric nonimaging devices

    Science.gov (United States)

    Bortz, John C.; Shatz, Narkis E.; Winston, Roland

    2001-11-01

    The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quality, referred to herein as the translational skew invariant, is analogous to the conventional skew invariant, which is conserved in rotationally symmetric optical systems. The invariance of both of these quantities is a consequence of Noether's theorem. We show how performance limits for translationally symmetric nonimaging optical devices can be derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. Examples of computed performance limits are provided. In addition, we show that a numerically optimized non-tracking solar concentrator utilizing symmetry-breaking surface microstructure can overcome the performance limits associated with translational symmetry. The optimized design provides a 47.4% increase in efficiency and concentration relative to an ideal translationally symmetric concentrator.

  14. Symmetrical parahiliar infiltrated, cough and dyspnoea

    International Nuclear Information System (INIS)

    Giraldo Estrada, Horacio; Escalante, Hector

    2004-01-01

    It is the case a patient to who is diagnosed symmetrical parahiliar infiltrated; initially she is diagnosed lymphoma Hodgkin, treaty with radiotherapy and chemotherapy, but the X rays of the thorax demonstrated parahiliars and paramediastinals infiltrated

  15. Introduction to left-right symmetric models

    International Nuclear Information System (INIS)

    Grimus, W.

    1993-01-01

    We motivate left-right symmetric models by the possibility of spontaneous parity breaking. Then we describe the multiplets and the Lagrangian of such models. Finally we discuss lower bounds on the right-handed scale. (author)

  16. A cosmological problem for maximally symmetric supergravity

    International Nuclear Information System (INIS)

    German, G.; Ross, G.G.

    1986-01-01

    Under very general considerations it is shown that inflationary models of the universe based on maximally symmetric supergravity with flat potentials are unable to resolve the cosmological energy density (Polonyi) problem. (orig.)

  17. Theorem on axially symmetric gravitational vacuum configurations

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, A; Le Denmat, G [Paris-6 Univ., 75 (France). Inst. Henri Poincare

    1977-01-24

    A theorem is proved which asserts the non-existence of axially symmetric gravitational vacuum configurations with non-stationary rotation only. The eventual consequences in black-hole physics are suggested.

  18. Symmetric Imidazolium-Based Paramagnetic Ionic Liquids

    Science.gov (United States)

    2017-11-29

    Charts N/A Unclassified Unclassified Unclassified SAR 14 Kamran Ghiassi N/A 1 Symmetric Imidazolium-Based Paramagnetic Ionic Liquids Kevin T. Greeson...NUMBER (Include area code) 29 November 2017 Briefing Charts 01 November 2017 - 30 November 2017 Symmetric Imidazolium-Based Paramagnetic Ionic ... Liquids K. Greeson, K. Ghiassi, J. Alston, N. Redeker, J. Marcischak, L. Gilmore, A. Guenthner Air Force Research Laboratory (AFMC) AFRL/RQRP 9 Antares

  19. The Symmetric Rudin-Shapiro Transform

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour

    2003-01-01

    A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, and symmetric transform given as the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generatin...... large sets of spread spectrum signals. This presentation provides a simple definition of the symmetric RST that leads to a fast N log(N) and numerically stable implementation of the transform....

  20. The Symmetric Rudin-Shapiro Transform

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour

    2003-01-01

    A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, symmetric transform, the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generating large sets...... of spread spectrum signals. This presentation provides a simple definition of the symmetric RST that leads to a fast N log(N) and numerically stable implementation of the transform....

  1. Pion condensation in symmetric nuclear matter

    International Nuclear Information System (INIS)

    Kabir, K.; Saha, S.; Nath, L.M.

    1987-09-01

    Using a model which is based essentially on the chiral SU(2)xSU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenon is expected to be seen in the pion-nucleus interaction. (author). 20 refs

  2. Pion condensation in symmetric nuclear matter

    Science.gov (United States)

    Kabir, K.; Saha, S.; Nath, L. M.

    1988-01-01

    Using a model which is based essentially on the chiral SU(2)×SU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenom is expected to be seen in the pion-nucleus interaction.

  3. Free surface and hydraulic phenomena in a windowless symmetrical target

    Energy Technology Data Exchange (ETDEWEB)

    Cascone, R.; Salve, M. de; Malandrone, M.; Panella, B. [Politecnico di Torino, Dipt. di Energetica, Torino (Italy)

    2001-07-01

    In the windowless concept for the Accelerator Driven Systems target the liquid flow in the spallation region must be able to remove the volumetric thermal power due to the proton interactions with nuclei. In this paper the hydraulic phenomena of a basic symmetrical windowless target configuration with two concentric cylinders have been studied. The tests were aimed to measure the profile of the free surface of the flow and the liquid velocity field, by using water as hydraulic equivalent to lead-bismuth eutectic fluid. The test section consists of two concentric plexiglass pipes (inner cylinder diameter 200 mm, outer cylinder diameter 290 mm) where the water flows up in the annular region and flows down in the central region. The most important experimental parameters are the fluid level measured from the top edge of the inner cylinder and the imposed flow rate. The experiments have been carried out at room temperature in the following range: flow rate from 2.5 to 20 kg/s; fluid level at zero flow rate from -50 to 186 mm. (authors)

  4. Ionization detector, electrode configuration and single polarity charge detection method

    Science.gov (United States)

    He, Z.

    1998-07-07

    An ionization detector, an electrode configuration and a single polarity charge detection method each utilize a boundary electrode which symmetrically surrounds first and second central interlaced and symmetrical electrodes. All of the electrodes are held at a voltage potential of a first polarity type. The first central electrode is held at a higher potential than the second central or boundary electrodes. By forming the first and second central electrodes in a substantially interlaced and symmetrical pattern and forming the boundary electrode symmetrically about the first and second central electrodes, signals generated by charge carriers are substantially of equal strength with respect to both of the central electrodes. The only significant difference in measured signal strength occurs when the charge carriers move to within close proximity of the first central electrode and are received at the first central electrode. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge. 10 figs.

  5. Ionic polarization

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1992-01-01

    Ferroelectricity occurs in many different kinds of materials. Many of the technologically important solids, which are ferroelectric, can be classified as ionic. Any microscopic theory of ferroelectricity must contain a description of local polarization forces. We have collaborated in the development of a theory of ionic polarization which is quite successful. Its basic assumption is that the polarization is derived from the properties of the individual ions. We have applied this theory successfully to diverse subjects as linear and nonlinear optical response, phonon dispersion, and piezoelectricity. We have developed numerical methods using the local Density approximation to calculate the multipole polarizabilities of ions when subject to various fields. We have also developed methods of calculating the nonlinear hyperpolarizability, and showed that it can be used to explain light scattering experiments. This paper elaborates on this polarization theory

  6. Polarization experiments

    International Nuclear Information System (INIS)

    Halzen, F.

    1977-02-01

    In a theoretical review of polarization experiments two important points are emphasized: (a) their versatility and their relevance to a large variety of aspects of hadron physics (tests of basic symmetries; a probe of strong interaction dynamics; a tool for hadron spectroscopy); (b) the wealth of experimental data on polarization parameters in pp and np scattering in the Regge language and in the diffraction language. (author)

  7. Optimum detection for extracting maximum information from symmetric qubit sets

    International Nuclear Information System (INIS)

    Mizuno, Jun; Fujiwara, Mikio; Sasaki, Masahide; Akiba, Makoto; Kawanishi, Tetsuya; Barnett, Stephen M.

    2002-01-01

    We demonstrate a class of optimum detection strategies for extracting the maximum information from sets of equiprobable real symmetric qubit states of a single photon. These optimum strategies have been predicted by Sasaki et al. [Phys. Rev. A 59, 3325 (1999)]. The peculiar aspect is that the detections with at least three outputs suffice for optimum extraction of information regardless of the number of signal elements. The cases of ternary (or trine), quinary, and septenary polarization signals are studied where a standard von Neumann detection (a projection onto a binary orthogonal basis) fails to access the maximum information. Our experiments demonstrate that it is possible with present technologies to attain about 96% of the theoretical limit

  8. Symmetric Moeller/Bhabha luminosity monitor for the OLYMPUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Capozza, Luigi; Maas, Frank; Perez Benito, Roberto; Rodriguez Pineiro, David [Helmholtz-Institut Mainz, Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); O' Connor, Colton [Massachusetts Institute of Technology, Cambridge, MA (United States); Diefenbach, Juergen; Glaeser, Boris [Institut fuer Kernphysik, Mainz (Germany); Khaneft, Dmitry [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Helmholtz-Institut Mainz, Mainz (Germany); Ma, Yue [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2015-07-01

    The OLYMPUS experiment is motivated by the discrepancy between the proton electric to magnetic form factor ratio measured using unpolarized and polarized electron scattering. This discrepancy can be explained by a two-photon exchange (TPE) contribution in lepton-hadron scattering. Measuring the ratio of electron-proton and positron-proton elastic scattering cross sections the contribution of the TPE can be determined. For this purpose, very precise measurements of the relative luminosity have to be performed. The symmetric Moeller/Bhabha luminosity monitor, made of calorimetric lead fluoride (PbF{sub 2}) Cherenkov detectors, provides precise data from counting coincidences Moeller and Bhabha events. High sensitivity to the geometrical acceptance and alignment requires accurate study of systematic uncertainties.

  9. Flow-induced endothelial cell alignment requires the RhoGEF Trio as a scaffold protein to polarize active Rac1 distribution

    NARCIS (Netherlands)

    Kroon, Jeffrey; Heemskerk, Niels; Kalsbeek, Martin J. T.; de Waard, Vivian; van Rijssel, Jos; van Buul, Jaap D.

    2017-01-01

    Endothelial cells line the lumen of the vessel wall and are exposed to flow. In linear parts of the vessel, the endothelial cells experience laminar flow, resulting in endothelial cell alignment in the direction of flow, thereby protecting the vessel wall from inflammation and permeability. In order

  10. Polarization measurement for internal polarized gaseous targets

    International Nuclear Information System (INIS)

    Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun

    2004-01-01

    The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)

  11. Irreducible Representations of Oscillatory and Swirling Flows in Active Soft Matter

    Science.gov (United States)

    Ghose, Somdeb; Adhikari, R.

    2014-03-01

    Recent experiments imaging fluid flow around swimming microorganisms have revealed complex time-dependent velocity fields that differ qualitatively from the stresslet flow commonly employed in theoretical descriptions of active matter. Here we obtain the most general flow around a finite sized active particle by expanding the surface stress in irreducible Cartesian tensors. This expansion, whose first term is the stresslet, must include, respectively, third-rank polar and axial tensors to minimally capture crucial features of the active oscillatory flow around translating Chlamydomonas and the active swirling flow around rotating Volvox. The representation provides explicit expressions for the irreducible symmetric, antisymmetric, and isotropic parts of the continuum active stress. Antisymmetric active stresses do not conserve orbital angular momentum and our work thus shows that spin angular momentum is necessary to restore angular momentum conservation in continuum hydrodynamic descriptions of active soft matter.

  12. A cone-like enhancement of polar solar corona plasma and its influence on heliospheric particles

    Science.gov (United States)

    Grzedzielski, Stan; Sokół, Justyna M.

    2017-04-01

    We will present results of the study of the properties of the solar wind plasma due to rotation of the polar solar corona. We focus in our study on the solar minimum conditions, when the polar coronal holes are well formed and the magnetic field in the solar polar corona exhibit almost regular "ray-like" structure. The solar rotation twists the magnetic field lines of the expanding fast polar solar wind and the resulting toroidal component of the field induces a force directed towards the rotation axis. This phenomenon is tantamount to a (weak) zeta pinch, known also in other astrophysical contexts (e.g. like in AGN jets). The pinch compresses the polar solar corona plasma and forms a cone-like enhancement of the solar wind density aligned with the rotation axis in the spherically symmetric case. The effect is likely very dynamic due to fast changing conditions in the solar corona, however in the study presented here, we assume a time independent description to get an order-of-magnitude estimate. The weak pinch is treated as a first-order perturbation to the zeroth-order radial flow. Following the assumptions based on the available knowledge about the plasma properties in the polar solar corona we estimated the most typical density enhancements. The cone like structure may extend as far from the Sun as tens of AU and thus will influence the heliospheric particles inside the heliosphere. An increase of the solar wind density in the polar region may be related with a decrease of the solar wind speed. Such changes of the solar wind plasma at high latitudes may modify the charge-exchange and electron impact ionization rates of heliospheric particles in interplanetary space. We will present their influence on the interstellar neutral gas and energetic neutral atoms observed by IBEX.

  13. Polarization dependent switching of asymmetric nanorings with a circular field

    Directory of Open Access Journals (Sweden)

    Nihar R. Pradhan

    2016-01-01

    Full Text Available We experimentally investigated the switching from onion to vortex states in asymmetric cobalt nanorings by an applied circular field. An in-plane field is applied along the symmetric or asymmetric axis of the ring to establish domain walls (DWs with symmetric or asymmetric polarization. A circular field is then applied to switch from the onion state to the vortex state, moving the DWs in the process. The asymmetry of the ring leads to different switching fields depending on the location of the DWs and direction of applied field. For polarization along the asymmetric axis, the field required to move the DWs to the narrow side of the ring is smaller than the field required to move the DWs to the larger side of the ring. For polarization along the symmetric axis, establishing one DW in the narrow side and one on the wide side, the field required to switch to the vortex state is an intermediate value.

  14. Generation of Symmetric Dicke States of Remote Qubits with Linear Optics

    International Nuclear Information System (INIS)

    Thiel, C.; Zanthier, J. von; Bastin, T.; Solano, E.; Agarwal, G. S.

    2007-01-01

    We propose a method for generating all symmetric Dicke states, either in the long-lived internal levels of N massive particles or in the polarization degrees of freedom of photonic qubits, using linear optical tools only. By means of a suitable multiphoton detection technique, erasing Welcher-Weg information, our proposed scheme allows the generation and measurement of an important class of entangled multiqubit states

  15. Anchoring Polar Magnetic Field in a Stationary Thick Accretion Disk

    Energy Technology Data Exchange (ETDEWEB)

    Samadi, Maryam; Abbassi, Shahram, E-mail: samadimojarad@um.ac.ir [Department of Physics, School of Sciences, Ferdowsi University of Mashhad, Mashhad, 91775-1436 (Iran, Islamic Republic of)

    2017-08-20

    We investigate the properties of a hot accretion flow bathed in a poloidal magnetic field. We consider an axisymmetric viscous-resistive flow in the steady-state configuration. We assume that the dominant mechanism of energy dissipation is due to turbulence viscosity and magnetic diffusivity. A certain fraction of that energy can be advected toward the central compact object. We employ the self-similar method in the radial direction to find a system of ODEs with just one varible, θ in the spherical coordinates. For the existence and maintenance of a purely poloidal magnetic field in a rotating thick disk, we find that the necessary condition is a constant value of angular velocity along a magnetic field line. We obtain an analytical solution for the poloidal magnetic flux. We explore possible changes in the vertical structure of the disk under the influences of symmetric and asymmetric magnetic fields. Our results reveal that a polar magnetic field with even symmetry about the equatorial plane makes the disk vertically thin. Moreover, the accretion rate decreases when we consider a strong magnetic field. Finally, we notice that hot magnetized accretion flows can be fully advected even in a slim shape.

  16. Sources of polarized neutrons

    International Nuclear Information System (INIS)

    Walter, L.

    1983-01-01

    Various sources of polarized neutrons are reviewed. Monoenergetic source produced with unpolarized or polarized beams, white sources of polarized neutrons, production by transmissions through polarized hydrogen targets and polarized thermal neutronsare discussed, with appropriate applications included. (U.K.)

  17. Conservation laws in baroclinic inertial-symmetric instabilities

    Science.gov (United States)

    Grisouard, Nicolas; Fox, Morgan B.; Nijjer, Japinder

    2017-04-01

    Submesoscale oceanic density fronts are structures in geostrophic and hydrostatic balance, but are more prone to instabilities than mesoscale flows. As a consequence, they are believed to play a large role in air-sea exchanges, near-surface turbulence and dissipation of kinetic energy of geostrophically and hydrostatically balanced flows. We will present two-dimensional (x, z) Boussinesq numerical experiments of submesoscale baroclinic fronts on the f-plane. Instabilities of the mixed inertial and symmetric types (the actual name varies across the literature) develop, with the absence of along-front variations prohibiting geostrophic baroclinic instabilities. Two new salient facts emerge. First, contrary to pure inertial and/or pure symmetric instability, the potential energy budget is affected, the mixed instability extracting significant available potential energy from the front and dissipating it locally. Second, in the submesoscale regime, the growth rate of this mixed instability is sufficiently large that significant radiation of near-inertial internal waves occurs. Although energetically small compared to e.g. local dissipation within the front, this process might be a significant source of near-inertial energy in the ocean.

  18. Coherent Backscattering in the Cross-Polarized Channel

    Science.gov (United States)

    Mischenko, Michael I.; Mackowski, Daniel W.

    2011-01-01

    We analyze the asymptotic behavior of the cross-polarized enhancement factor in the framework of the standard low-packing-density theory of coherent backscattering by discrete random media composed of spherically symmetric particles. It is shown that if the particles are strongly absorbing or if the smallest optical dimension of the particulate medium (i.e., the optical thickness of a plane-parallel slab or the optical diameter of a spherically symmetric volume) approaches zero, then the cross-polarized enhancement factor tends to its upper-limit value 2. This theoretical prediction is illustrated using direct computer solutions of the Maxwell equations for spherical volumes of discrete random medium.

  19. Vacuum polarization energy for general backgrounds in one space dimension

    Directory of Open Access Journals (Sweden)

    H. Weigel

    2017-03-01

    Full Text Available For field theories in one time and one space dimensions we propose an efficient method to compute the vacuum polarization energy of static field configurations that do not allow a decomposition into symmetric and anti-symmetric channels. The method also applies to scenarios in which the masses of the quantum fluctuations at positive and negative spatial infinity are different. As an example we compute the vacuum polarization energy of the kink soliton in the ϕ6 model. We link the dependence of this energy on the position of the soliton to the different masses.

  20. On the elliptic flow for nearly symmetric collisions and nuclear ...

    Indian Academy of Sciences (India)

    10Ne20+13Al27, 18Ar40+21Sc45, 30Zn64+28Ni58, 36Kr86+41Nb93) using the quantum molecular dynamics (QMD) model. General features of elliptic flow are investigated with the help of theoretical simulations. The simulations are ...

  1. Crossing-symmetric solutions to low equations

    International Nuclear Information System (INIS)

    McLeod, R.J.; Ernst, D.J.

    1985-01-01

    Crossing symmetric models of the pion-nucleon interaction in which crossing symmetry is kept to lowest order in msub(π)/msub(N) are investigated. Two iterative techniques are developed to solve the crossing-symmetric Low equation. The techniques are used to solve the original Chew-Low equations and their generalizations to include the coupling to the pion-production channels. Small changes are found in comparison with earlier results which used an iterative technique proposed by Chew and Low and which did not produce crossing-symmetric results. The iterative technique of Chew and Low is shown to fail because of its inability to produce zeroes in the amplitude at complex energies while physical solutions to the model require such zeroes. We also prove that, within the class of solutions such that phase shifts approach zero for infinite energy, the solution to the Low equation is unique. (orig.)

  2. Revisiting the Optical PT-Symmetric Dimer

    Directory of Open Access Journals (Sweden)

    José Delfino Huerta Morales

    2016-08-01

    Full Text Available Optics has proved a fertile ground for the experimental simulation of quantum mechanics. Most recently, optical realizations of PT -symmetric quantum mechanics have been shown, both theoretically and experimentally, opening the door to international efforts aiming at the design of practical optical devices exploiting this symmetry. Here, we focus on the optical PT -symmetric dimer, a two-waveguide coupler where the materials show symmetric effective gain and loss, and provide a review of the linear and nonlinear optical realizations from a symmetry-based point of view. We go beyond a simple review of the literature and show that the dimer is just the smallest of a class of planar N-waveguide couplers that are the optical realization of the Lorentz group in 2 + 1 dimensions. Furthermore, we provide a formulation to describe light propagation through waveguide couplers described by non-Hermitian mode coupling matrices based on a non-Hermitian generalization of the Ehrenfest theorem.

  3. PT symmetric Aubry–Andre model

    International Nuclear Information System (INIS)

    Yuce, C.

    2014-01-01

    PT symmetric Aubry–Andre model describes an array of N coupled optical waveguides with position-dependent gain and loss. We show that the reality of the spectrum depends sensitively on the degree of quasi-periodicity for small number of lattice sites. We obtain the Hofstadter butterfly spectrum and discuss the existence of the phase transition from extended to localized states. We show that rapidly changing periodical gain/loss materials almost conserve the total intensity. - Highlights: • We show that PT symmetric Aubry–Andre model may have real spectrum. • We show that the reality of the spectrum depends sensitively on the degree of disorder. • We obtain the Hofstadter butterfly spectrum for PT symmetric Aubry–Andre model. • We discuss that phase transition from extended to localized states exists

  4. PT symmetric Aubry–Andre model

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C., E-mail: cyuce@anadolu.edu.tr

    2014-06-13

    PT symmetric Aubry–Andre model describes an array of N coupled optical waveguides with position-dependent gain and loss. We show that the reality of the spectrum depends sensitively on the degree of quasi-periodicity for small number of lattice sites. We obtain the Hofstadter butterfly spectrum and discuss the existence of the phase transition from extended to localized states. We show that rapidly changing periodical gain/loss materials almost conserve the total intensity. - Highlights: • We show that PT symmetric Aubry–Andre model may have real spectrum. • We show that the reality of the spectrum depends sensitively on the degree of disorder. • We obtain the Hofstadter butterfly spectrum for PT symmetric Aubry–Andre model. • We discuss that phase transition from extended to localized states exists.

  5. A branch-and-cut algorithm for the symmetric two-echelon capacitated vehicle routing problem

    DEFF Research Database (Denmark)

    Jepsen, Mads Kehlet; Spoorendonk, Simon; Røpke, Stefan

    2013-01-01

    This paper presents an exact method for solving the symmetric two-echelon capacitated vehicle routing problem, a transportation problem concerned with the distribution of goods from a depot to a set of customers through a set of satellite locations. The presented method is based on an edge flow...

  6. Implementing a New Dense Symmetric Eigensolver on Multicore Systems

    KAUST Repository

    Sukkari, Dalal E.

    2013-07-01

    We present original advanced architecture implementations of the QDWHeig algo- rithm for solving dense symmetric eigenproblems. The algorithm (Y. Nakatsukasa and N. J. Higham, 2012) performs a spectral divide-and-conquer, which recursively divides the matrix into smaller submatrices by finding an invariant subspace for a subset of the spectrum. The main contribution of this thesis is to enhance the per- formance of QDWHeig algorithm by relying on a high performance kernels from PLASMA [1] and LAPACK [2]. We demonstrate the quality of the eigenpairs that are computed with the QDWHeig algorithm for many matrix types with different eigenvalue clustering. We then implement QDWHeig using kernels from LAPACK and PLASMA, and compare its performance against other divide-and-conquer sym- metric eigensolvers. The main part of QDWHeig is finding a polar decomposition. We introduce mixed precision to enhance the performance in finding the polar decom- position. Our evaluation considers speed and accuracy of the computed eigenvalues. Some applications require finding only a subspectrum of the eigenvalues; therefore we modify the algorithm to find the eigenpairs in a given interval of interest. An ex- perimental study shows significant improvement on the performance of our algorithm using mixed precision and PLASMA routines.

  7. Symmetry theorems via the continuous steiner symmetrization

    Directory of Open Access Journals (Sweden)

    L. Ragoub

    2000-06-01

    Full Text Available Using a new approach due to F. Brock called the Steiner symmetrization, we show first that if $u$ is a solution of an overdetermined problem in the divergence form satisfying the Neumann and non-constant Dirichlet boundary conditions, then $Omega$ is an N-ball. In addition, we show that we can relax the condition on the value of the Dirichlet boundary condition in the case of superharmonicity. Finally, we give an application to positive solutions of some semilinear elliptic problems in symmetric domains for the divergence case.

  8. The Axially Symmetric One-Monopole

    International Nuclear Information System (INIS)

    Wong, K.-M.; Teh, Rosy

    2009-01-01

    We present new classical generalized one-monopole solution of the SU(2) Yang-Mills-Higgs theory with the Higgs field in the adjoint representation. We show that this solution with θ-winding number m = 1 and φ-winding number n = 1 is an axially symmetric generalization of the 't Hooft-Polyakov one-monopole. We construct this axially symmetric one-monopole solution by generalizing the large distance asymptotic solutions of the 't Hooft-Polyakov one-monopole to the Jacobi elliptic functions and solving the second order equations of motion numerically when the Higgs potential is vanishing. This solution is a non-BPS solution.

  9. Symmetric splitting of very light systems

    International Nuclear Information System (INIS)

    Grotowski, K.; Majka, Z.; Planeta, R.

    1984-01-01

    Inclusive and coincidence measurements have been performed to study symmetric products from the reactions 74--186 MeV 12 C+ 40 Ca, 141 MeV 9 Be+ 40 Ca, and 153 MeV 6 Li+ 40 Ca. The binary decay of the composite system has been verified. Energy spectra, angular distributions, and fragment correlations are presented. The total kinetic energies for the symmetric products from these very light composite systems are compared to liquid drop model calculations and fission systematics

  10. Polarization study

    International Nuclear Information System (INIS)

    Nurushev, S.B.

    1989-01-01

    Brief review is presented of the high energy polarization study including experimental data and the theoretical descriptions. The mostimportant proposals at the biggest accelerators and the crucial technical developments are also listed which may become a main-line of spin physics. 35 refs.; 10 figs.; 4 tabs

  11. Polar Stratigraphy

    Science.gov (United States)

    1999-01-01

    These three images were taken on three different orbits over the north polar cap in April 1999. Each shows a different part of the same ice-free trough. The left and right images are separated by a distance of more than 100 kilometers (62 miles). Note the similar layers in each image.

  12. Classifying spaces of degenerating polarized Hodge structures

    CERN Document Server

    Kato, Kazuya

    2009-01-01

    In 1970, Phillip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kazuya Kato and Sampei Usui realize this dream by creating a logarithmic Hodge theory. They use the logarithmic structures begun by Fontaine-Illusie to revive nilpotent orbits as a logarithmic Hodge structure. The book focuses on two principal topics. First, Kato and Usui construct the fine moduli space of polarized logarithmic Hodge structures with additional structures. Even for a Hermitian symmetric domain D, the present theory is a refinem

  13. North Polar Cap

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour. In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime. The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap. Image information: VIS instrument. Latitude 86.5, Longitude 64.5 East (295.5 West). 40 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen

  14. Flow-induced endothelial cell alignment requires the RhoGEF Trio as a scaffold protein to polarize active Rac1 distribution.

    Science.gov (United States)

    Kroon, Jeffrey; Heemskerk, Niels; Kalsbeek, Martin J T; de Waard, Vivian; van Rijssel, Jos; van Buul, Jaap D

    2017-07-01

    Endothelial cells line the lumen of the vessel wall and are exposed to flow. In linear parts of the vessel, the endothelial cells experience laminar flow, resulting in endothelial cell alignment in the direction of flow, thereby protecting the vessel wall from inflammation and permeability. In order for endothelial cells to align, they undergo rapid remodeling of the actin cytoskeleton by local activation of the small GTPase Rac1. However, it is not clear whether sustained and local activation of Rac1 is required for long-term flow-induced cell alignment. Using a FRET-based DORA Rac1 biosensor, we show that local Rac1 activity remains for 12 h upon long-term flow. Silencing studies show that the RhoGEF Trio is crucial for keeping active Rac1 at the downstream side of the cell and, as a result, for long-term flow-induced cell alignment. Surprisingly, Trio appears to be not involved in flow-induced activation of Rac1. Our data show that flow induces Rac1 activity at the downstream side of the cell in a Trio-dependent manner and that Trio functions as a scaffold protein rather than a functional GEF under long-term flow conditions. © 2017 Kroon et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Design of a dual linear polarization antenna using split ring resonators at X-band

    Science.gov (United States)

    Ahmed, Sadiq; Chandra, Madhukar

    2017-11-01

    Dual linear polarization microstrip antenna configurations are very suitable for high-performance satellites, wireless communication and radar applications. This paper presents a new method to improve the co-cross polarization discrimination (XPD) for dual linear polarized microstrip antennas at 10 GHz. For this, three various configurations of a dual linear polarization antenna utilizing metamaterial unit cells are shown. In the first layout, the microstrip patch antenna is loaded with two pairs of spiral ring resonators, in the second model, a split ring resonator is placed between two microstrip feed lines, and in the third design, a complementary split ring resonators are etched in the ground plane. This work has two primary goals: the first is related to the addition of metamaterial unit cells to the antenna structure which permits compensation for an asymmetric current distribution flow on the microstrip antenna and thus yields a symmetrical current distribution on it. This compensation leads to an important enhancement in the XPD in comparison to a conventional dual linear polarized microstrip patch antenna. The simulation reveals an improvement of 7.9, 8.8, and 4 dB in the E and H planes for the three designs, respectively, in the XPD as compared to the conventional dual linear polarized patch antenna. The second objective of this paper is to present the characteristics and performances of the designs of the spiral ring resonator (S-RR), split ring resonator (SRR), and complementary split ring resonator (CSRR) metamaterial unit cells. The simulations are evaluated using the commercial full-wave simulator, Ansoft High-Frequency Structure Simulator (HFSS).

  16. Small diameter symmetric networks from linear groups

    Science.gov (United States)

    Campbell, Lowell; Carlsson, Gunnar E.; Dinneen, Michael J.; Faber, Vance; Fellows, Michael R.; Langston, Michael A.; Moore, James W.; Multihaupt, Andrew P.; Sexton, Harlan B.

    1992-01-01

    In this note is reported a collection of constructions of symmetric networks that provide the largest known values for the number of nodes that can be placed in a network of a given degree and diameter. Some of the constructions are in the range of current potential engineering significance. The constructions are Cayley graphs of linear groups obtained by experimental computation.

  17. Sobolev spaces on bounded symmetric domains

    Czech Academy of Sciences Publication Activity Database

    Engliš, Miroslav

    Roč. 60, č. 12 ( 2015 ), s. 1712-1726 ISSN 1747-6933 Institutional support: RVO:67985840 Keywords : bounded symmetric domain * Sobolev space * Bergman space Subject RIV: BA - General Mathematics Impact factor: 0.466, year: 2015 http://www.tandfonline.com/doi/abs/10.1080/17476933. 2015 .1043910

  18. Cuspidal discrete series for semisimple symmetric spaces

    DEFF Research Database (Denmark)

    Andersen, Nils Byrial; Flensted-Jensen, Mogens; Schlichtkrull, Henrik

    2012-01-01

    We propose a notion of cusp forms on semisimple symmetric spaces. We then study the real hyperbolic spaces in detail, and show that there exists both cuspidal and non-cuspidal discrete series. In particular, we show that all the spherical discrete series are non-cuspidal. (C) 2012 Elsevier Inc. All...

  19. Exact solutions of the spherically symmetric multidimensional ...

    African Journals Online (AJOL)

    The complete orthonormalised energy eigenfunctions and the energy eigenvalues of the spherically symmetric isotropic harmonic oscillator in N dimensions, are obtained through the methods of separation of variables. Also, the degeneracy of the energy levels are examined. KEY WORDS: - Schrödinger Equation, Isotropic ...

  20. Super-symmetric informationally complete measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Huangjun, E-mail: hzhu@pitp.ca

    2015-11-15

    Symmetric informationally complete measurements (SICs in short) are highly symmetric structures in the Hilbert space. They possess many nice properties which render them an ideal candidate for fiducial measurements. The symmetry of SICs is intimately connected with the geometry of the quantum state space and also has profound implications for foundational studies. Here we explore those SICs that are most symmetric according to a natural criterion and show that all of them are covariant with respect to the Heisenberg–Weyl groups, which are characterized by the discrete analog of the canonical commutation relation. Moreover, their symmetry groups are subgroups of the Clifford groups. In particular, we prove that the SIC in dimension 2, the Hesse SIC in dimension 3, and the set of Hoggar lines in dimension 8 are the only three SICs up to unitary equivalence whose symmetry groups act transitively on pairs of SIC projectors. Our work not only provides valuable insight about SICs, Heisenberg–Weyl groups, and Clifford groups, but also offers a new approach and perspective for studying many other discrete symmetric structures behind finite state quantum mechanics, such as mutually unbiased bases and discrete Wigner functions.

  1. Harmonic maps of the bounded symmetric domains

    International Nuclear Information System (INIS)

    Xin, Y.L.

    1994-06-01

    A shrinking property of harmonic maps into R IV (2) is proved which is used to classify complete spacelike surfaces of the parallel mean curvature in R 4 2 with a reasonable condition on the Gauss image. Liouville-type theorems of harmonic maps from the higher dimensional bounded symmetric domains are also established. (author). 25 refs

  2. The Mathematics of Symmetrical Factorial Designs

    Indian Academy of Sciences (India)

    The Mathematics of Symmetrical Factorial Designs. Mausumi Bose (nee Sen) obtained her MSc degree in. Statistics from the Calcutta. University and PhD degree from the Indian Statistical. Institute. She is on the faculty of the Indian. Statistical Institute. Her main field of research interest is design and analysis of experiments.

  3. Symmetric intersections of Rauzy fractals | Sellami | Quaestiones ...

    African Journals Online (AJOL)

    In this article we study symmetric subsets of Rauzy fractals of unimodular irreducible Pisot substitutions. The symmetry considered is re ection through the origin. Given an unimodular irreducible Pisot substitution, we consider the intersection of its Rauzy fractal with the Rauzy fractal of the reverse substitution. This set is ...

  4. Fourier inversion on a reductive symmetric space

    NARCIS (Netherlands)

    Ban, E.P. van den

    1999-01-01

    Let X be a semisimple symmetric space. In previous papers, [8] and [9], we have dened an explicit Fourier transform for X and shown that this transform is injective on the space C 1 c (X) ofcompactly supported smooth functions on X. In the present paper, which is a continuation of these papers, we

  5. A viewpoint on nearly conformally symmetric manifold

    International Nuclear Information System (INIS)

    Rahman, M.S.

    1990-06-01

    Some observations, with definition, on Nearly Conformally Symmetric (NCS) manifold are made. A number of theorems concerning conformal change of metric and parallel tensors on NCS manifolds are presented. It is illustrated that a manifold M = R n-1 x R + 1 , endowed with a special metric, is NCS but not of harmonic curvature. (author). 8 refs

  6. Harmonic analysis on reductive symmetric spaces

    NARCIS (Netherlands)

    Ban, E.P. van den; Schlichtkrull, H.

    2000-01-01

    We give a relatively non-technical survey of some recent advances in the Fourier theory for semisimple symmetric spaces. There are three major results: An inversion formula for the Fourier transform, a Palley-Wiener theorem, which describes the Fourier image of the space of completely supported

  7. Fourier transforms on a semisimple symmetric space

    NARCIS (Netherlands)

    Ban, E.P. van den; Schlichtkrull, H.

    1994-01-01

    Let G=H be a semisimple symmetric space, that is, G is a connected semisimple real Lie group with an involution ?, and H is an open subgroup of the group of xed points for ? in G. The main purpose of this paper is to study an explicit Fourier transform on G=H. In terms of general representation

  8. Fourier transforms on a semisimple symmetric space

    NARCIS (Netherlands)

    Ban, E.P. van den; Carmona, J.; Delorme, P.

    1997-01-01

    Let G=H be a semisimple symmetric space, that is, G is a connected semisimple real Lie group with an involution ?, and H is an open subgroup of the group of xed points for ? in G. The main purpose of this paper is to study an explicit Fourier transform on G=H. In terms of general representation

  9. General multimode polarization splitter design in uniaxial media

    Science.gov (United States)

    Teixeira, Poliane A.; Silva, Daniely G.; Gabrielli, Lucas H.; Spadoti, Danilo H.; Junqueira, Mateus A. F. C.

    2018-03-01

    Quasiconformal transformation optics is used to design two-dimensional polarization beam splitters. The resulting media present inhomogeneous uniaxial permittivity and nonmagnetic response. The compact devices are theoretically designed and investigated for symmetrical and asymmetrical geometries, with footprint of 64 and 110 μm2, respectively. The polarization splitter performance is evaluated for the fundamental mode and third mode, exhibiting an insertion loss closer to 0 dB and extinction ratio above 40 dB over a broad wavelength range.

  10. Weakly Interacting Symmetric and Anti-Symmetric States in the Bilayer Systems

    Science.gov (United States)

    Marchewka, M.; Sheregii, E. M.; Tralle, I.; Tomaka, G.; Ploch, D.

    We have studied the parallel magneto-transport in DQW-structures of two different potential shapes: quasi-rectangular and quasi-triangular. The quantum beats effect was observed in Shubnikov-de Haas (SdH) oscillations for both types of the DQW structures in perpendicular magnetic filed arrangement. We developed a special scheme for the Landau levels energies calculation by means of which we carried out the necessary simulations of beating effect. In order to obtain the agreement between our experimental data and the results of simulations, we introduced two different quasi-Fermi levels which characterize symmetric and anti-symmetric states in DQWs. The existence of two different quasi Fermi-Levels simply means, that one can treat two sub-systems (charge carriers characterized by symmetric and anti-symmetric wave functions) as weakly interacting and having their own rate of establishing the equilibrium state.

  11. Determination of the polarization states of an arbitrary polarized terahertz beam: vectorial vortex analysis.

    Science.gov (United States)

    Wakayama, Toshitaka; Higashiguchi, Takeshi; Oikawa, Hiroki; Sakaue, Kazuyuki; Washio, Masakazu; Yonemura, Motoki; Yoshizawa, Toru; Tyo, J Scott; Otani, Yukitoshi

    2015-03-24

    Vectorial vortex analysis is used to determine the polarization states of an arbitrarily polarized terahertz (0.1-1.6 THz) beam using THz achromatic axially symmetric wave (TAS) plates, which have a phase retardance of Δ = 163° and are made of polytetrafluorethylene. Polarized THz beams are converted into THz vectorial vortex beams with no spatial or wavelength dispersion, and the unknown polarization states of the incident THz beams are reconstructed. The polarization determination is also demonstrated at frequencies of 0.16 and 0.36 THz. The results obtained by solving the inverse source problem agree with the values used in the experiments. This vectorial vortex analysis enables a determination of the polarization states of the incident THz beam from the THz image. The polarization states of the beams are estimated after they pass through the TAS plates. The results validate this new approach to polarization detection for intense THz sources. It could find application in such cutting edge areas of physics as nonlinear THz photonics and plasmon excitation, because TAS plates not only instantaneously elucidate the polarization of an enclosed THz beam but can also passively control THz vectorial vortex beams.

  12. Magnetohydrodynamic implosion symmetry and suppression of Richtmyer-Meshkov instability in an octahedrally symmetric field

    KAUST Repository

    Mostert, W.; Pullin, D. I.; Wheatley, V.; Samtaney, Ravi

    2017-01-01

    We present numerical simulations of ideal magnetohydrodynamics showing suppression of the Richtmyer-Meshkov instability in spherical implosions in the presence of an octahedrally symmetric magnetic field. This field configuration is of interest owing to its high degree of spherical symmetry in comparison with previously considered dihedrally symmetric fields. The simulations indicate that the octahedral field suppresses the instability comparably to the other previously considered candidate fields for light-heavy interface accelerations while retaining a highly symmetric underlying flow even at high field strengths. With this field, there is a reduction in the root-mean-square perturbation amplitude of up to approximately 50% at representative time under the strongest field tested while maintaining a homogeneous suppression pattern compared to the other candidate fields.

  13. Magnetohydrodynamic implosion symmetry and suppression of Richtmyer-Meshkov instability in an octahedrally symmetric field

    KAUST Repository

    Mostert, W.

    2017-01-27

    We present numerical simulations of ideal magnetohydrodynamics showing suppression of the Richtmyer-Meshkov instability in spherical implosions in the presence of an octahedrally symmetric magnetic field. This field configuration is of interest owing to its high degree of spherical symmetry in comparison with previously considered dihedrally symmetric fields. The simulations indicate that the octahedral field suppresses the instability comparably to the other previously considered candidate fields for light-heavy interface accelerations while retaining a highly symmetric underlying flow even at high field strengths. With this field, there is a reduction in the root-mean-square perturbation amplitude of up to approximately 50% at representative time under the strongest field tested while maintaining a homogeneous suppression pattern compared to the other candidate fields.

  14. Polar Polygons

    Science.gov (United States)

    2005-01-01

    18 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark-outlined polygons on a frost-covered surface in the south polar region of Mars. In summer, this surface would not be bright and the polygons would not have dark outlines--these are a product of the presence of seasonal frost. Location near: 77.2oS, 204.8oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  15. Tuning the transmission lineshape of a photonic crystal slab guided-resonance mode by polarization control.

    Science.gov (United States)

    Huang, Ningfeng; Martínez, Luis Javier; Povinelli, Michelle L

    2013-09-09

    We demonstrate a system consisting of a two-dimensional photonic crystal slab and two polarizers which has a tunable transmission lineshape. The lineshape can be tuned from a symmetric Lorentzian to a highly asymmetric Fano lineshape by rotating the output polarizer. We use temporal coupled mode theory to explain the measurement results. The theory also predicts tunable phase shift and group delay.

  16. Representations of the infinite symmetric group

    CERN Document Server

    Borodin, Alexei

    2016-01-01

    Representation theory of big groups is an important and quickly developing part of modern mathematics, giving rise to a variety of important applications in probability and mathematical physics. This book provides the first concise and self-contained introduction to the theory on the simplest yet very nontrivial example of the infinite symmetric group, focusing on its deep connections to probability, mathematical physics, and algebraic combinatorics. Following a discussion of the classical Thoma's theorem which describes the characters of the infinite symmetric group, the authors describe explicit constructions of an important class of representations, including both the irreducible and generalized ones. Complete with detailed proofs, as well as numerous examples and exercises which help to summarize recent developments in the field, this book will enable graduates to enhance their understanding of the topic, while also aiding lecturers and researchers in related areas.

  17. Symmetric, discrete fractional splines and Gabor systems

    DEFF Research Database (Denmark)

    Søndergaard, Peter Lempel

    2006-01-01

    In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing the continu......In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing...... the continuous splines, and one is a truly finite, discrete construction. We discuss the properties of these splines and their usefulness as windows for Gabor frames and Wilson bases....

  18. Symmetric configurations highlighted by collective quantum coherence

    Energy Technology Data Exchange (ETDEWEB)

    Obster, Dennis [Radboud University, Institute for Mathematics, Astrophysics and Particle Physics, Nijmegen (Netherlands); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Sasakura, Naoki [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan)

    2017-11-15

    Recent developments in quantum gravity have shown the Lorentzian treatment to be a fruitful approach towards the emergence of macroscopic space-times. In this paper, we discuss another related aspect of the Lorentzian treatment: we argue that collective quantum coherence may provide a simple mechanism for highlighting symmetric configurations over generic non-symmetric ones. After presenting the general framework of the mechanism, we show the phenomenon in some concrete simple examples in the randomly connected tensor network, which is tightly related to a certain model of quantum gravity, i.e., the canonical tensor model. We find large peaks at configurations invariant under Lie-group symmetries as well as a preference for charge quantization, even in the Abelian case. In future study, this simple mechanism may provide a way to analyze the emergence of macroscopic space-times with global symmetries as well as various other symmetries existing in nature, which are usually postulated. (orig.)

  19. Overlap-free symmetric D 0 Lwords

    Directory of Open Access Journals (Sweden)

    Anna Frid

    2001-12-01

    Full Text Available A D0L word on an alphabet Σ={0,1,…,q-1} is called symmetric if it is a fixed point w=φ(w of a morphism φ:Σ * → Σ * defined by φ(i= t 1 + i t 2 + i … t m + i for some word t 1 t 2 … t m (equal to φ(0 and every i ∈ Σ; here a means a mod q. We prove a result conjectured by J. Shallit: if all the symbols in φ(0 are distinct (i.e., if t i ≠ t j for i ≠ j, then the symmetric D0L word w is overlap-free, i.e., contains no factor of the form axaxa for any x ∈ Σ * and a ∈ Σ.

  20. Young—Capelli symmetrizers in superalgebras†

    Science.gov (United States)

    Brini, Andrea; Teolis, Antonio G. B.

    1989-01-01

    Let Supern[U [unk] V] be the nth homogeneous subspace of the supersymmetric algebra of U [unk] V, where U and V are Z2-graded vector spaces over a field K of characteristic zero. The actions of the general linear Lie superalgebras pl(U) and pl(V) span two finite-dimensional K-subalgebras B and [unk] of EndK(Supern[U [unk] V]) that are the centralizers of each other. Young—Capelli symmetrizers and Young—Capelli *-symmetrizers give rise to K-linear bases of B and [unk] containing orthogonal systems of idempotents; thus they yield complete decompositions of B and [unk] into minimal left and right ideals, respectively. PMID:16594014

  1. Factored Facade Acquisition using Symmetric Line Arrangements

    KAUST Repository

    Ceylan, Duygu

    2012-05-01

    We introduce a novel framework for image-based 3D reconstruction of urban buildings based on symmetry priors. Starting from image-level edges, we generate a sparse and approximate set of consistent 3D lines. These lines are then used to simultaneously detect symmetric line arrangements while refining the estimated 3D model. Operating both on 2D image data and intermediate 3D feature representations, we perform iterative feature consolidation and effective outlier pruning, thus eliminating reconstruction artifacts arising from ambiguous or wrong stereo matches. We exploit non-local coherence of symmetric elements to generate precise model reconstructions, even in the presence of a significant amount of outlier image-edges arising from reflections, shadows, outlier objects, etc. We evaluate our algorithm on several challenging test scenarios, both synthetic and real. Beyond reconstruction, the extracted symmetry patterns are useful towards interactive and intuitive model manipulations.

  2. Commutative curvature operators over four-dimensional generalized symmetric

    Directory of Open Access Journals (Sweden)

    Ali Haji-Badali

    2014-12-01

    Full Text Available Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

  3. Irreducible complexity of iterated symmetric bimodal maps

    Directory of Open Access Journals (Sweden)

    J. P. Lampreia

    2005-01-01

    Full Text Available We introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a ∗-product that we define in the space of bimodal kneading sequences. Finally, we give some properties for this product and study the ∗-product induced on the associated Markov shifts.

  4. A symmetric Roos bound for linear codes

    NARCIS (Netherlands)

    Duursma, I.M.; Pellikaan, G.R.

    2006-01-01

    The van Lint–Wilson AB-method yields a short proof of the Roos bound for the minimum distance of a cyclic code. We use the AB-method to obtain a different bound for the weights of a linear code. In contrast to the Roos bound, the role of the codes A and B in our bound is symmetric. We use the bound

  5. Resistor Networks based on Symmetrical Polytopes

    Directory of Open Access Journals (Sweden)

    Jeremy Moody

    2015-03-01

    Full Text Available This paper shows how a method developed by Van Steenwijk can be generalized to calculate the resistance between any two vertices of a symmetrical polytope all of whose edges are identical resistors. The method is applied to a number of cases that have not been studied earlier such as the Archimedean polyhedra and their duals in three dimensions, the regular polytopes in four dimensions and the hypercube in any number of dimensions.

  6. Symmetric vs. asymmetric punishment regimes for bribery

    OpenAIRE

    Engel, Christoph; Goerg, Sebastian J.; Yu, Gaoneng

    2012-01-01

    In major legal orders such as UK, the U.S., Germany, and France, bribers and recipients face equally severe criminal sanctions. In contrast, countries like China, Russia, and Japan treat the briber more mildly. Given these differences between symmetric and asymmetric punishment regimes for bribery, one may wonder which punishment strategy is more effective in curbing corruption. For this purpose, we designed and ran a lab experiment in Bonn (Germany) and Shanghai (China) with exactly the same...

  7. Symmetric scrolled packings of multilayered carbon nanoribbons

    Science.gov (United States)

    Savin, A. V.; Korznikova, E. A.; Lobzenko, I. P.; Baimova, Yu. A.; Dmitriev, S. V.

    2016-06-01

    Scrolled packings of single-layer and multilayer graphene can be used for the creation of supercapacitors, nanopumps, nanofilters, and other nanodevices. The full atomistic simulation of graphene scrolls is restricted to consideration of relatively small systems in small time intervals. To overcome this difficulty, a two-dimensional chain model making possible an efficient calculation of static and dynamic characteristics of nanoribbon scrolls with allowance for the longitudinal and bending stiffness of nanoribbons is proposed. The model is extended to the case of scrolls of multilayer graphene. Possible equilibrium states of symmetric scrolls of multilayer carbon nanotribbons rolled up so that all nanoribbons in the scroll are equivalent are found. Dependences of the number of coils, the inner and outer radii, lowest vibrational eigenfrequencies of rolled packages on the length L of nanoribbons are obtained. It is shown that the lowest vibrational eigenfrequency of a symmetric scroll decreases with a nanoribbon length proportionally to L -1. It is energetically unfavorable for too short nanoribbons to roll up, and their ground state is a stack of plane nanoribbons. With an increasing number k of layers, the nanoribbon length L necessary for creation of symmetric scrolls increases. For a sufficiently small number of layers k and a sufficiently large nanoribbon length L, the scrolled packing has the lowest energy as compared to that of stack of plane nanoribbons and folded structures. The results can be used for development of nanomaterials and nanodevices on the basis of graphene scrolled packings.

  8. Is the Universe matter-antimatter symmetric

    International Nuclear Information System (INIS)

    Alfven, H.

    1976-09-01

    According to the symmetric cosmology there should be antimatter regions in space which are equally as large as the matter regions. The regions of different kind are separated by Leidenfrost layers, which may be very thin and not observable from a distance. This view has met resistance which in part is based on the old view that the dilute interstellar and intergalactic medium is more or less homogeneous. However, through space research in the magnetosphere and interplanetary space we know that thin layers, dividing space into regions of different magnetisation, exist and based on this it is concluded that space in general has a cellular structure. This result may break down the psychological resistance to the symmetric theory. The possibility that every second star in our galaxy consists of antimatter is discussed, and it is shown that this view is not in conflict with any observations. As most stars are likely to be surrounded by solar systems of a structure like our own, it is concluded that collisions between comets and antistars (or anticomets and stars) would be rather frequent. Such collisions would result in phenomena of the same type as the observed cosmic γ-ray bursts. Another support for the symmetric cosmology is the continuous X-ray background radiation. Also many of the observed large energy releases in cosmos are likely to be due to annihilation

  9. Strategic Polarization.

    Science.gov (United States)

    Kalai, Adam; Kalai, Ehud

    2001-08-01

    In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.

  10. Flow-alignment of bicellar lipid mixtures: orientations of probe molecules and membrane-associated biomacromolecules in lipid membranes studied with polarized light

    KAUST Repository

    Kogan, Maxim; Beke-Somfai, Tamá s; Nordé n, Bengt

    2011-01-01

    Bicelles are excellent membrane-mimicking hosts for a dynamic and structural study of solutes with NMR, but the magnetic fields required for their alignment are hard to apply to optical conditions. Here we demonstrate that bicellar mixtures can be aligned by shear forces in a Couette flow cell, to provide orientation of membrane-bound retinoic acid, pyrene and cytochrome c (cyt c) protein, conveniently studied with linear dichroism spectroscopy. © 2011 The Royal Society of Chemistry.

  11. On the harmonic starlike functions with respect to symmetric ...

    African Journals Online (AJOL)

    In the present paper, we introduce the notions of functions harmonic starlike with respect to symmetric, conjugate and symmetric conjugate points. Such results as coefficient inequalities and structural formulae for these function classes are proved. Keywords: Harmonic functions, harmonic starlike functions, symmetric points, ...

  12. and acidochromic properties of symmetrical ketocyanines

    Indian Academy of Sciences (India)

    The absorption spectral features are less sensitive to the solvent ... viscosity reporters probing local environments in sim- ..... ues are highly sensitive to solvent polarity and acidity. ..... of the investigated dyes in weak organic acid such as tri-.

  13. Origin of unipolar half-cycle pulses generation in inversion symmetric media

    International Nuclear Information System (INIS)

    Song, Xiaohong; Hao, Zhizhen; Yan, Ming; Wu, Miaoli; Yang, Weifeng

    2015-01-01

    We investigate the physical mechanism of unipolar half-cycle pulses generation in resonant two-level media with inversion symmetry. The unipolar half-cycle pulse contains substantial nonzero dc or zero-frequency component in its Fourier spectrum of the electric field. Here the origin of zero-frequency component generation in inversion symmetric media driven by symmetric electric field is identified. We show that in the regime of extreme nonlinear optics, i.e. the Rabi frequency is comparable to or even larger than the carrier frequency of the laser pulse, the time evolution of the polarization can display obvious up-down asymmetric structure under certain conditions, which manifests in the zero-frequency component generation, and is responsible for the formation of unipolar half-cycle pulses in the course of pulse propagation. (letter)

  14. Design Concept of Superconducting Multipole Wiggler with Variably Polarized X-Ray

    International Nuclear Information System (INIS)

    Hwang, C.S.; Chang, C.H.; Li, W.P.; Lin, F.Y.

    2004-01-01

    In response to the growing demand for X-ray research, and to satisfy future needs for generating circularly polarized synchrotron radiation in the X-ray region, a 3.5 T superconducting multipole with a periodic length of 6 cm was designed to produce horizontal linearly polarized, and circularly polarized light on a 1.5 GeV electron storage ring. Differently arranged excitation current loop for the same coil design switched between the operation of symmetric and asymmetric modes to creat the linearly and circularly polarized light, respectively. This study elucidates the design concepts of the superconducting multipole wiggler with symmetric and asymmetric operation modes. The design of the magnetic circuit and the field calculation are also discussed. Meanwhile, the spectra characteristics of the symmetric and asymmetric modes are calculated and presented in this article

  15. Polarized neutron reflectometry in high magnetic fields

    International Nuclear Information System (INIS)

    Fritzsche, H.

    2005-01-01

    A simple method is described to maintain the polarization of a neutron beam on its way through the large magnetic stray fields produced by a vertical field of a cryomagnet with a split-coil geometry. The two key issues are the proper shielding of the neutron spin flippers and an additional radial field component in order to guide the neutron spin through the region of the null point (i.e., point of reversal for the vertical field component). Calculations of the neutron's spin rotation as well as polarized neutron reflectometry experiments on an ErFe 2 /DyFe 2 multilayer show the perfect performance of the used setup. The recently commissioned cryomagnet M5 with a maximum vertical field of up to 7.2 T in asymmetric mode for polarized neutrons and 9 T in symmetric mode for unpolarized neutrons was used on the C5 spectrometer in reflectometry mode, at the NRU reactor in Chalk River, Canada

  16. Dual formulation of covariant nonlinear duality-symmetric action of kappa-symmetric D3-brane

    Science.gov (United States)

    Vanichchapongjaroen, Pichet

    2018-02-01

    We study the construction of covariant nonlinear duality-symmetric actions in dual formulation. Essentially, the construction is the PST-covariantisation and nonlinearisation of Zwanziger action. The covariantisation made use of three auxiliary scalar fields. Apart from these, the construction proceed in a similar way to that of the standard formulation. For example, the theories can be extended to include interactions with external fields, and that the theories possess two local PST symmetries. We then explicitly demonstrate the construction of covariant nonlinear duality-symmetric actions in dual formulation of DBI theory, and D3-brane. For each of these theories, the twisted selfduality condition obtained from duality-symmetric actions are explicitly shown to match with the duality relation between field strength and its dual from the one-potential actions. Their on-shell actions between the duality-symmetric and the one-potential versions are also shown to match. We also explicitly prove kappa-symmetry of the covariant nonlinear duality-symmetric D3-brane action in dual formulation.

  17. Polarized secondary radioactive beams

    International Nuclear Information System (INIS)

    Zaika, N.I.

    1992-01-01

    Three methods of polarized radioactive nuclei beam production: a) a method nuclear interaction of the non-polarized or polarized charged projectiles with target nuclei; b) a method of polarization of stopped reaction radioactive products in a special polarized ion source with than following acceleration; c) a polarization of radioactive nuclei circulating in a storage ring are considered. Possible life times of the radioactive ions for these methods are determined. General schemes of the polarization method realizations and depolarization problems are discussed

  18. Polar crane

    International Nuclear Information System (INIS)

    Makosinski, S.

    1981-01-01

    In many applications polar cranes have to be repeatedly positioned with high accuracy. A guidance system is disclosed which has two pairs of guides. Each guide consists of two rollers carried by a sheave rotatable mounted on the crane bridge, the rollers being locatable one on each side of a guideway, e.g. the circular track on which the bridge runs. The pairs of guides are interconnected by respective rope loops which pass around and are locked to the respective pairs of sheaves in such a manner that movement of one guide results in equal movement of the other guide in a sense to maintain the repeatability of positioning of the centre of the bridge. A hydraulically-linked guide system is also described. (author)

  19. Polarization of photons emitted by decaying dark matter

    Directory of Open Access Journals (Sweden)

    W. Bonivento

    2017-02-01

    Full Text Available Radiatively decaying dark matter may be searched through investigating the photon spectrum of galaxies and galaxy clusters. We explore whether the properties of dark matter can be constrained through the study of a polarization state of emitted photons. Starting from the basic principles of quantum mechanics we show that the models of symmetric dark matter are indiscernible by the photon polarization. However, we find that the asymmetric dark matter consisted of Dirac fermions is a source of circularly polarized photons, calling for the experimental determination of the photon state.

  20. Self-consistent electrodynamic scattering in the symmetric Bragg case

    International Nuclear Information System (INIS)

    Campos, H.S.

    1988-01-01

    We have analyzed the symmetric Bragg case, introducing a model of self consistent scattering for two elliptically polarized beams. The crystal is taken as a set of mathematical planes, each of them defined by a surface density of dipoles. We have considered the mesofield and the epifield differently from that of the Ewald's theory and, we assumed a plane of dipoles and the associated fields as a self consistent scattering unit. The exact analytical treatment when applied to any two neighbouring planes, results in a general and self consistent Bragg's equation, in terms of the amplitude and phase variations. The generalized solution for the set of N planes was obtained after introducing an absorption factor in the incident radiation, in two ways: (i) the analytical one, through a rule of field similarity, which says that the incidence occurs in both faces of the all crystal planes and also, through a matricial development with the Chebyshev polynomials; (ii) using the numerical solution we calculated, iteratively, the reflectivity, the reflection phase, the transmissivity, the transmission phase and the energy. The results are showed through reflection and transmission curves, which are characteristics as from kinematical as dynamical theories. The conservation of the energy results from the Ewald's self consistency principle is used. In the absorption case, the results show that it is not the only cause for the asymmetric form in the reflection curves. The model contains basic elements for a unified, microscope, self consistent, vectorial and exact formulation for interpretating the X ray diffraction in perfect crystals. (author)

  1. Valley-symmetric quasi-1D transport in ballistic graphene

    Science.gov (United States)

    Lee, Hu-Jong

    We present our recent studies on gate-defined valley-symmetric one-dimensional (1D) carrier guiding in ballistic monolayer graphene and valley-symmetry-protected topological 1D transport in ballistic bilayer graphene. Successful carrier guiding was realized in ballistic monolayer graphene even in the absence of a band gap by inducing a high distinction ( more than two orders of magnitude) in the carrier density between the region of a quasi-1D channel and the rest of the top-gated regions. Conductance of a channel shows quantized values in units of 4e2/ h, suggesting that the valley symmetry is preserved. For the latter, the topological 1D conduction was realized between two closely arranged insulating regions with inverted band gaps, induced under a pair of split dual gating with polarities opposite to each other. The maximum conductance along the boundary channel showed 4e2/ h, again with the preserved valley symmetry. The 1D topological carrier guiding demonstrated in this study affords a promising route to robust valleytronic applications and sophisticated valley-associated functionalities based on 2D materials. This work was funded by the National Research Foundation of Korea.

  2. Physics of zonal flows

    International Nuclear Information System (INIS)

    Itoh, K.; Fujisawa, A.; Itoh, S.-I.; Yagi, M.; Nagashima, Y.; Diamond, P.H.; Tynan, G.R.; Hahm, T.S.

    2006-01-01

    Zonal flows, which means azimuthally symmetric band-like shear flows, are ubiquitous phenomena in nature and the laboratory. It is now widely recognized that zonal flows are a key constituent in virtually all cases and regimes of drift wave turbulence, indeed, so much so that this classic problem is now frequently referred to as ''drift wave-zonal flow turbulence.'' In this review, new viewpoints and unifying concepts are presented, which facilitate understanding of zonal flow physics, via theory, computation and their confrontation with the results of laboratory experiment. Special emphasis is placed on identifying avenues for further progress. (author)

  3. Physics of zonal flows

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.-I.; Diamond, P.H.; Hahm, T.S.; Fujisawa, A.; Tynan, G.R.; Yagi, M.; Nagashima, Y.

    2006-01-01

    Zonal flows, which means azimuthally symmetric band-like shear flows, are ubiquitous phenomena in nature and the laboratory. It is now widely recognized that zonal flows are a key constituent in virtually all cases and regimes of drift wave turbulence, indeed, so much so that this classic problem is now frequently referred to as 'drift wave-zonal flow turbulence'. In this review, new viewpoints and unifying concepts are presented, which facilitate understanding of zonal flow physics, via theory, computation and their confrontation with the results of laboratory experiment. Special emphasis is placed on identifying avenues for further progress

  4. Polarized fine structure in the excitation spectrum of a negatively charged quantum dot

    OpenAIRE

    Ware, M. E.; Stinaff, E. A.; Gammon, D.; Doty, M. F.; Bracker, A. S.; Gershoni, D.; Korenev, V. L.; Badescu, S. C.; Lyanda-Geller, Y.; Reinecke, T. L.

    2005-01-01

    We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge tunable InAs/GaAs quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are understood from the spin character of the triplet states and a small amount of qua...

  5. Spherically symmetric self-similar universe

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, C C [Toronto Univ., Ontario (Canada)

    1979-10-01

    A spherically symmetric self-similar dust-filled universe is considered as a simple model of a hierarchical universe. Observable differences between the model in parabolic expansion and the corresponding homogeneous Einstein-de Sitter model are considered in detail. It is found that an observer at the centre of the distribution has a maximum observable redshift and can in principle see arbitrarily large blueshifts. It is found to yield an observed density-distance law different from that suggested by the observations of de Vaucouleurs. The use of these solutions as central objects for Swiss-cheese vacuoles is discussed.

  6. Dijet rates with symmetric Et cuts

    International Nuclear Information System (INIS)

    Banfi, Andrea; Dasgupta, Mrinal

    2004-01-01

    We consider dijet production in the region where symmetric cuts on the transverse energy, E t , are applied to the jets. In this region next-to-leading order calculations are unreliable and an all-order resummation of soft gluon effects is needed, which we carry out. Although, for illustrative purposes, we choose dijets produced in deep inelastic scattering, our general ideas apply additionally to dijets produced in photoproduction or gamma-gamma processes and should be relevant also to the study of prompt di-photon E t spectra in association with a recoiling jet, in hadron-hadron processes. (author)

  7. Covariant, chirally symmetric, confining model of mesons

    International Nuclear Information System (INIS)

    Gross, F.; Milana, J.

    1991-01-01

    We introduce a new model of mesons as quark-antiquark bound states. The model is covariant, confining, and chirally symmetric. Our equations give an analytic solution for a zero-mass pseudoscalar bound state in the case of exact chiral symmetry, and also reduce to the familiar, highly successful nonrelativistic linear potential models in the limit of heavy-quark mass and lightly bound systems. In this fashion we are constructing a unified description of all the mesons from the π through the Υ. Numerical solutions for other cases are also presented

  8. Elastic energy for reflection-symmetric topologies

    International Nuclear Information System (INIS)

    Majumdar, A; Robbins, J M; Zyskin, M

    2006-01-01

    Nematic liquid crystals in a polyhedral domain, a prototype for bistable displays, may be described by a unit-vector field subject to tangent boundary conditions. Here we consider the case of a rectangular prism. For configurations with reflection-symmetric topologies, we derive a new lower bound for the one-constant elastic energy. For certain topologies, called conformal and anticonformal, the lower bound agrees with a previous result. For the remaining topologies, called nonconformal, the new bound is an improvement. For nonconformal topologies we derive an upper bound, which differs from the lower bound by a factor depending only on the aspect ratios of the prism

  9. Nanotribology of Symmetric and Asymmetric Liquid Lubricants

    Directory of Open Access Journals (Sweden)

    Shinji Yamada

    2010-03-01

    Full Text Available When liquid molecules are confined in a narrow gap between smooth surfaces, their dynamic properties are completely different from those of the bulk. The molecular motions are highly restricted and the system exhibits solid-like responses when sheared slowly. This solidification behavior is very dependent on the molecular geometry (shape of liquids because the solidification is induced by the packing of molecules into ordered structures in confinement. This paper reviews the measurements of confined structures and friction of symmetric and asymmetric liquid lubricants using the surface forces apparatus. The results show subtle and complex friction mechanisms at the molecular scale.

  10. Unary self-verifying symmetric difference automata

    CSIR Research Space (South Africa)

    Marais, Laurette

    2016-07-01

    Full Text Available stream_source_info Marais_2016_ABSTRACT.pdf.txt stream_content_type text/plain stream_size 796 Content-Encoding ISO-8859-1 stream_name Marais_2016_ABSTRACT.pdf.txt Content-Type text/plain; charset=ISO-8859-1 18th... International Workshop on Descriptional Complexity of Formal Systems, 5 - 8 July 2016, Bucharest, Romania Unary self-verifying symmetric difference automata Laurette Marais1,2 and Lynette van Zijl1(B) 1 Department of Computer Science, Stellenbosch...

  11. Characterisation of an AGATA symmetric prototype detector

    International Nuclear Information System (INIS)

    Nelson, L.; Dimmock, M.R.; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Nolan, P.J.; Lazarus, I.; Simpson, J.; Medina, P.; Santos, C.; Parisel, C.

    2007-01-01

    The Advanced GAmma Tracking Array (AGATA) symmetric prototype detector has been tested at University of Liverpool. A 137 Ce source, collimated to a 2 mm diameter, was scanned across the front face of the detector and data were acquired utilising digital electronics. Pulse shapes from a selection of well-defined photon interaction positions have been analysed to investigate the position sensitivity of the detector. Furthermore, the application of the electric field simulation software, Multi Geometry Simulation (MGS) to generate theoretical pulse shapes for AGATA detectors has been presented

  12. How Symmetrical Assumptions Advance Strategic Management Research

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul; Hallberg, Hallberg

    2014-01-01

    We develop the case for symmetrical assumptions in strategic management theory. Assumptional symmetry obtains when assumptions made about certain actors and their interactions in one of the application domains of a theory are also made about this set of actors and their interactions in other...... application domains of the theory. We argue that assumptional symmetry leads to theoretical advancement by promoting the development of theory with greater falsifiability and stronger ontological grounding. Thus, strategic management theory may be advanced by systematically searching for asymmetrical...

  13. Characterisation of an AGATA symmetric prototype detector

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, L. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)]. E-mail: ln@ns.ph.liv.ac.uk; Dimmock, M.R. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)]. E-mail: mrd@ns.ph.liv.ac.uk; Boston, A.J. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)]. E-mail: ajb@ns.ph.liv.ac.uk; Boston, H.C. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Cresswell, J.R. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Nolan, P.J. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Lazarus, I. [CCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Simpson, J. [CCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Medina, P. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France); Santos, C. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France); Parisel, C. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France)

    2007-04-01

    The Advanced GAmma Tracking Array (AGATA) symmetric prototype detector has been tested at University of Liverpool. A {sup 137}Ce source, collimated to a 2 mm diameter, was scanned across the front face of the detector and data were acquired utilising digital electronics. Pulse shapes from a selection of well-defined photon interaction positions have been analysed to investigate the position sensitivity of the detector. Furthermore, the application of the electric field simulation software, Multi Geometry Simulation (MGS) to generate theoretical pulse shapes for AGATA detectors has been presented.

  14. Soft theorems for shift-symmetric cosmologies

    Science.gov (United States)

    Finelli, Bernardo; Goon, Garrett; Pajer, Enrico; Santoni, Luca

    2018-03-01

    We derive soft theorems for single-clock cosmologies that enjoy a shift symmetry. These so-called consistency conditions arise from a combination of a large diffeomorphism and the internal shift symmetry and fix the squeezed limit of all correlators with a soft scalar mode. As an application, we show that our results reproduce the squeezed bispectrum for ultra-slow-roll inflation, a particular shift-symmetric, nonattractor model which is known to violate Maldacena's consistency relation. Similar results have been previously obtained by Mooij and Palma using background-wave methods. Our results shed new light on the infrared structure of single-clock cosmological spacetimes.

  15. Pion condensation in symmetric nuclear matter

    International Nuclear Information System (INIS)

    Shamsunnahar, T.; Saha, S.; Kabir, K.; Nath, L.M.

    1991-01-01

    We have investigated the possibility of pion condensation in symmetric nuclear matter using a model of pion-nucleon interaction based essentially on chiral SU(2) x SU(2) symmetry. We have found that pion condensation is not possible for any finite value of the density. Consequently, no critical opalescence phenomenon is likely to be seen in pion-nucleus scattering nor is it likely to be possible to explain the EMC effect in terms of an increased number of pions in the nucleus. (author)

  16. Baryon symmetric big-bang cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Stecker, F.W.

    1978-04-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.

  17. Baryon symmetric big-bang cosmology

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1978-04-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation

  18. Geometrodynamics of spherically symmetric Lovelock gravity

    International Nuclear Information System (INIS)

    Kunstatter, Gabor; Taves, Tim; Maeda, Hideki

    2012-01-01

    We derive the Hamiltonian for spherically symmetric Lovelock gravity using the geometrodynamics approach pioneered by Kuchar (1994 Phys. Rev. D 50 3961) in the context of four-dimensional general relativity. When written in terms of the areal radius, the generalized Misner-Sharp mass and their conjugate momenta, the generic Lovelock action and Hamiltonian take on precisely the same simple forms as in general relativity. This result supports the interpretation of Lovelock gravity as the natural higher dimensional extension of general relativity. It also provides an important first step towards the study of the quantum mechanics, Hamiltonian thermodynamics and formation of generic Lovelock black holes. (fast track communication)

  19. Symmetric Anderson impurity model: Magnetic susceptibility, specific heat and Wilson ratio

    Science.gov (United States)

    Zalom, Peter; Pokorný, Vladislav; Janiš, Václav

    2018-05-01

    We extend the spin-polarized effective-interaction approximation of the parquet renormalization scheme from Refs. [1,2] applied on the symmetric Anderson model by adding the low-temperature asymptotics of the total energy and the specific heat. We calculate numerically the Wilson ratio and determine analytically its asymptotic value in the strong-coupling limit. We demonstrate in this way that the exponentially small Kondo scale from the strong-coupling regime emerges in qualitatively the same way in the spectral function, magnetic susceptibility and the specific heat.

  20. Natural Circulation Characteristics of a Symmetric Loop under Inclined Conditions

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2014-01-01

    Full Text Available Natural circulation is an important process for primary loops of some marine integrated reactors. The reactor works under inclined conditions when severe accidents happen to the ship. In this paper, to investigate the characteristics of natural circulation, experiments were conducted in a symmetric loop under the inclined angle of 0~45°. A CFD model was also set up to predict the behaviors of the loop beyond the experimental scope. Total circulation flow rate decreases with the increase of inclined angle. Meanwhile one circulation is depressed while the other is enhanced, and accordingly the disparity between the branch circulations arises and increases with the increase of inclined angle. Circulation only takes place in one branch circuit at large inclined angle. Also based on the CFD model, the influences of flow resistance distribution and loop configuration on natural circulation are predicted. The numerical results show that to design the loop with the configuration of big altitude difference and small width, it is favorable to reduce the influence of inclination; however too small loop width will cause severe reduction of circulation ability at large angle inclination.

  1. Electroweak Baryogenesis in R-symmetric Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Fok, R.; Kribs, Graham D.; Martin, Adam; Tsai, Yuhsin

    2013-03-01

    We demonstrate that electroweak baryogenesis can occur in a supersymmetric model with an exact R-symmetry. The minimal R-symmetric supersymmetric model contains chiral superfields in the adjoint representation, giving Dirac gaugino masses, and an additional set of "R-partner" Higgs superfields, giving R-symmetric \\mu-terms. New superpotential couplings between the adjoints and the Higgs fields can simultaneously increase the strength of the electroweak phase transition and provide additional tree-level contributions to the lightest Higgs mass. Notably, no light stop is present in this framework, and in fact, we require both stops to be above a few TeV to provide sufficient radiative corrections to the lightest Higgs mass to bring it up to 125 GeV. Large CP-violating phases in the gaugino/higgsino sector allow us to match the baryon asymmetry of the Universe with no constraints from electric dipole moments due to R-symmetry. We briefly discuss some of the more interesting phenomenology, particularly of the of the lightest CP-odd scalar.

  2. Nuclear polarization and neutrons

    International Nuclear Information System (INIS)

    Glaettli, H.

    1985-01-01

    Different possibilities for the use of polarized nuclei in thermal neutron scattering on condensed matter are reviewed. Highly polarized nuclei are the starting point for studying dipolar magnetic order. Systematic measurement of spin-dependent scattering lengths is possible on samples with polarized nuclei. Highly polarized hydrogen should help to unravel complicated structures in chemistry and biology. The use of polarized proton targets as an energy-independent neutron polarizer in the thermal and epithermal region should be considered afresh. (author)

  3. An efficient source of continuous variable polarization entanglement

    DEFF Research Database (Denmark)

    Dong, R.; Heersink, J.; Yoshikawa, J.-I.

    2007-01-01

    classical excitation in Ŝ3. Polarization entanglement was generated by interfering two independent polarization squeezed fields on a symmetric beam splitter. The resultant beams exhibit strong quantum noise correlations in the dark Ŝ1-Ŝ2 polarization plane. To verify entanglement generation, we......We have experimentally demonstrated the efficient creation of highly entangled bipartite continuous variable polarization states. Exploiting an optimized scheme for the production of squeezing using the Kerr non-linearity of a glass fibre we generated polarization squeezed pulses with a mean...... was found to depend critically on the beam-splitting ratio of the entangling beam splitter. Carrying out measurements on a different set of conjugate Stokes parameters, correlations of -3.6 ±0.3 and -3.4 ±0.3 dB have been observed. This result is more robust against asymmetries in the entangling beam...

  4. Neutron polarization in polarized 3He targets

    International Nuclear Information System (INIS)

    Friar, J.L.; Gibson, B.F.; Payne, G.L.; Bernstein, A.M.; Chupp, T.E.

    1990-01-01

    Simple formulas for the neutron and proton polarizations in polarized 3 He targets are derived assuming (1) quasielastic final states; (2) no final-state interactions; (3) no meson-exchange currents; (4) large momentum transfers; (5) factorizability of 3 He SU(4) response-function components. Numerical results from a wide variety of bound-state solutions of the Faddeev equations are presented. It is found that this simple model predicts the polarization of neutrons in a fully polarized 3 He target to be 87%, while protons should have a slight residual polarization of -2.7%. Numerical studies show that this model works very well for quasielastic electron scattering

  5. Lift generation by a two-dimensional symmetric flapping wing: immersed boundary-lattice Boltzmann simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ota, Keigo; Suzuki, Kosuke; Inamuro, Takaji, E-mail: inamuro@kuaero.kyoto-u.ac.jp [Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto 606-8501 (Japan)

    2012-08-01

    Two-dimensional (2D) symmetric flapping flight is investigated by an immersed boundary-lattice Boltzmann method (IB-LBM). In this method, we can treat the moving boundary problem efficiently on the Cartesian grid. We consider a model consisting of 2D symmetric flapping wings without mass connected by a hinge with mass. Firstly, we investigate the effect of the Reynolds number in the range of 40-200 on flows around symmetric flapping wings under no gravity field and find that for high Reynolds numbers (Re Greater-Than-Or-Slanted-Equal-To 55), asymmetric vortices with respect to the horizontal line appear and the time-averaged lift force is induced on the wings, whereas for low Reynolds numbers (Re Less-Than-Or-Slanted-Equal-To 50), only symmetric vortices appear around the wings and no lift force is induced. Secondly, the effect of the initial position of the wings is investigated, and the range of the initial phases where the upward flight is possible is found. The effects of the mass and flapping amplitude are also studied. Finally, we carry out free flight simulations under gravity field for various Reynolds numbers in the range 60 Less-Than-Or-Slanted-Equal-To Re Less-Than-Or-Slanted-Equal-To 300 and Froude numbers in the range 3 Less-Than-Or-Slanted-Equal-To Fr Less-Than-Or-Slanted-Equal-To 60 and identify the region where upward flight is possible. (paper)

  6. Mesomorphic Behavior of Symmetrical and Unsymmetrical Azomethines with Two Imine Groups

    Directory of Open Access Journals (Sweden)

    Patrice Rannou

    2009-02-01

    Full Text Available Seven symmetrical azomethines with two imine groups (HC=N were synthesized by condensation of the benzene-1,4-dicarboxaldehydewith five amines (first group: A1-A5 and of the 2,5-thiophenedicarboxaldehyde with two amines (second group: AT1-AT2. Additionally, two unsymmetrical azomethines were obtained by a two step condensation of benzene-1,4-dicarboxaldehydewith pyren-1-amine(1st step (abbreviated hereinafter as AP1 and then AP1 was reacted with4-dodecylaniline or 4-hexadecylaniline (2nd step (third group: AP1A-AP1B. Liquid crystalline properties of the azomethines were studied by differential scanning calorimetry (DSC, polarizing optical microscopy (POM and UV-vis spectroscopy in the function of temperature [UV-vis(T]. The Wide-Angle X-ray Diffraction (WAXD technique was used to probe the structural properties of the azomethines. Mesomorphic behavior was observed for symmetrical and unsymmetrical azomethines, obtained from the benzene-1,4-dicarboxaldehyde and symmetrical ones prepared from 2,5-thiophenedicarboxaldehyde and different amineshaving aliphatic chains. Based on the POM and DSC measurements the following mesophases were detected: nematic, smectic A, smectic C, smectic F (I, smectic G (J.

  7. Axion-photon conversion in space and in low symmetrical dielectric crystals

    International Nuclear Information System (INIS)

    Gorelik, V S

    2016-01-01

    The opportunities of axions detection as the result of axion-photon conversion processes in the space and in low symmetrical dielectric crystals are discussed. In accordance with the modern theory predictions, axions are pseudoscalar vacuum particles having very small (0.001-1.0 meV) rest energy. The possibility of axions conversion into photons and vice-versa processes in vacuum at the presence of outer magnetic field has been analyzed before. Pseudoscalar (axion type) modes are existing in some types of crystals. Polar pseudoscalar lattice and exciton modes in low symmetrical crystals are strongly interacted with axions. In this work, optical excitation of axion-type modes in low symmetrical crystals is proposed for observation of axion - photon conversion processes. Instead of outer magnetic field, the crystalline field of such crystals may be used. The experimental schemes for axion-photon conversion processes observation with recording the secondary emission of luminescence, infrared or Stimulated Raman Scattering in some dielectric crystals are discussed. (paper)

  8. Geometric algebra description of polarization mode dispersion, polarization-dependent loss, and Stokes tensor transformations.

    Science.gov (United States)

    Soliman, George; Yevick, David; Jessop, Paul

    2014-09-01

    This paper demonstrates that numerous calculations involving polarization transformations can be condensed by employing suitable geometric algebra formalism. For example, to describe polarization mode dispersion and polarization-dependent loss, both the material birefringence and differential loss enter as bivectors and can be combined into a single symmetric quantity. Their frequency and distance evolution, as well as that of the Stokes vector through an optical system, can then each be expressed as a single compact expression, in contrast to the corresponding Mueller matrix formulations. The intrinsic advantage of the geometric algebra framework is further demonstrated by presenting a simplified derivation of generalized Stokes parameters that include the electric field phase. This procedure simultaneously establishes the tensor transformation properties of these parameters.

  9. Geometric inequalities for axially symmetric black holes

    International Nuclear Information System (INIS)

    Dain, Sergio

    2012-01-01

    A geometric inequality in general relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities play an important role in the characterization of the gravitational collapse; they are closely related with the cosmic censorship conjecture. Axially symmetric black holes are the natural candidates to study these inequalities because the quasi-local angular momentum is well defined for them. We review recent results in this subject and we also describe the main ideas behind the proofs. Finally, a list of relevant open problems is presented. (topical review)

  10. Minimal Left-Right Symmetric Dark Matter.

    Science.gov (United States)

    Heeck, Julian; Patra, Sudhanwa

    2015-09-18

    We show that left-right symmetric models can easily accommodate stable TeV-scale dark matter particles without the need for an ad hoc stabilizing symmetry. The stability of a newly introduced multiplet either arises accidentally as in the minimal dark matter framework or comes courtesy of the remaining unbroken Z_{2} subgroup of B-L. Only one new parameter is introduced: the mass of the new multiplet. As minimal examples, we study left-right fermion triplets and quintuplets and show that they can form viable two-component dark matter. This approach is, in particular, valid for SU(2)×SU(2)×U(1) models that explain the recent diboson excess at ATLAS in terms of a new charged gauge boson of mass 2 TeV.

  11. Design and Analysis of Symmetric Primitives

    DEFF Research Database (Denmark)

    Lauridsen, Martin Mehl

    . In the second part, we delve into the matter of the various aspects of designing a symmetric cryptographic primitive. We start by considering generalizations of the widely acclaimed Advanced Encryption Standard (AES) block cipher. In particular, our focus is on a component operation in the cipher which permutes...... analyze and implement modes recommended by the National Institute of Standards and Technology (NIST), as well as authenticated encryption modes from the CAESAR competition, when instantiated with the AES. The data processed in our benchmarking has sizes representative to that of typical Internet traffic...... linear cryptanalysis. We apply this model to the standardized block cipher PRESENT. Finally, we present very generic attacks on two authenticated encryption schemes, AVALANCHE and RBS, by pointing out severe design flaws that can be leveraged to fully recover the secret key with very low complexity...

  12. Quasiaxially symmetric stellarators with three field periods

    International Nuclear Information System (INIS)

    Garabedian, P.; Ku, L.

    1999-01-01

    Compact hybrid configurations with two field periods have been studied recently as candidates for a proof of principle experiment at the Princeton Plasma Physics Laboratory. This project has led us to the discovery of a family of quasiaxially symmetric stellarators with three field periods that have significant advantages, although their aspect ratios are a little larger. They have reversed shear and perform better in a local analysis of ballooning modes. Nonlinear equilibrium and stability calculations predict that the average beta limit will be at least as high as 4% if the bootstrap current turns out to be as big as that expected in comparable tokamaks. The concept relies on a combination of helical fields and bootstrap current to achieve adequate rotational transform at low aspect ratio. copyright 1999 American Institute of Physics

  13. Primordial two-component maximally symmetric inflation

    Science.gov (United States)

    Enqvist, K.; Nanopoulos, D. V.; Quirós, M.; Kounnas, C.

    1985-12-01

    We propose a two-component inflation model, based on maximally symmetric supergravity, where the scales of reheating and the inflation potential at the origin are decoupled. This is possible because of the second-order phase transition from SU(5) to SU(3)×SU(2)×U(1) that takes place when φ≅φcinflation at the global minimum, and leads to a reheating temperature TR≅(1015-1016) GeV. This makes it possible to generate baryon asymmetry in the conventional way without any conflict with experimental data on proton lifetime. The mass of the gravitinos is m3/2≅1012 GeV, thus avoiding the gravitino problem. Monopoles are diluted by residual inflation in the broken phase below the cosmological bounds if φcUSA.

  14. Lovelock black holes with maximally symmetric horizons

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Hideki; Willison, Steven; Ray, Sourya, E-mail: hideki@cecs.cl, E-mail: willison@cecs.cl, E-mail: ray@cecs.cl [Centro de Estudios CientIficos (CECs), Casilla 1469, Valdivia (Chile)

    2011-08-21

    We investigate some properties of n( {>=} 4)-dimensional spacetimes having symmetries corresponding to the isometries of an (n - 2)-dimensional maximally symmetric space in Lovelock gravity under the null or dominant energy condition. The well-posedness of the generalized Misner-Sharp quasi-local mass proposed in the past study is shown. Using this quasi-local mass, we clarify the basic properties of the dynamical black holes defined by a future outer trapping horizon under certain assumptions on the Lovelock coupling constants. The C{sup 2} vacuum solutions are classified into four types: (i) Schwarzschild-Tangherlini-type solution; (ii) Nariai-type solution; (iii) special degenerate vacuum solution; and (iv) exceptional vacuum solution. The conditions for the realization of the last two solutions are clarified. The Schwarzschild-Tangherlini-type solution is studied in detail. We prove the first law of black-hole thermodynamics and present the expressions for the heat capacity and the free energy.

  15. Polyhomogeneous expansions from time symmetric initial data

    Science.gov (United States)

    Gasperín, E.; Valiente Kroon, J. A.

    2017-10-01

    We make use of Friedrich’s construction of the cylinder at spatial infinity to relate the logarithmic terms appearing in asymptotic expansions of components of the Weyl tensor to the freely specifiable parts of time symmetric initial data sets for the Einstein field equations. Our analysis is based on the assumption that a particular type of formal expansions near the cylinder at spatial infinity corresponds to the leading terms of actual solutions to the Einstein field equations. In particular, we show that if the Bach tensor of the initial conformal metric does not vanish at the point at infinity then the most singular component of the Weyl tensor decays near null infinity as O(\\tilde{r}-3\\ln \\tilde{r}) so that spacetime will not peel. We also provide necessary conditions on the initial data which should lead to a peeling spacetime. Finally, we show how to construct global spacetimes which are candidates for non-peeling (polyhomogeneous) asymptotics.

  16. From Symmetric Glycerol Derivatives to Dissymmetric Chlorohydrins

    Directory of Open Access Journals (Sweden)

    Gemma Villorbina

    2011-03-01

    Full Text Available The anticipated worldwide increase in biodiesel production will result in an accumulation of glycerol for which there are insufficient conventional uses. The surplus of this by-product has increased rapidly during the last decade, prompting a search for new glycerol applications. We describe here the synthesis of dissymmetric chlorohydrin esters from symmetric 1,3-dichloro-2-propyl esters obtained from glycerol. We studied the influence of two solvents: 1,4-dioxane and 1-butanol and two bases: sodium carbonate and 1-butylimidazole, on the synthesis of dissymmetric chlorohydrin esters. In addition, we studied the influence of other bases (potassium and lithium carbonates in the reaction using 1,4-dioxane as the solvent. The highest yield was obtained using 1,4-dioxane and sodium carbonate.

  17. Bidding behavior in a symmetric Chinese auction

    Directory of Open Access Journals (Sweden)

    Mauricio Benegas

    2015-01-01

    Full Text Available This paper purposes a symmetric all-pay auction where the bidders compete neither for an object nor the object itself but for a lottery on receive. That lottery is determined endogenously through the bids. This auction is known as chance auction or more popularly as Chinese auction. The model considers the possibility that for some bidders the optimal strategy is to bid zero and to rely on luck. It showed that bidders become less aggressive when the lottery satisfies a variational condition. It was also shown that luck factor is decisive to determine if the expected payoff in Chinese auction is bigger or smaller than expected payoff in standard all-pay auction.

  18. Canonical quantization of static spherically symmetric geometries

    International Nuclear Information System (INIS)

    Christodoulakis, T; Dimakis, N; Terzis, P A; Doulis, G; Grammenos, Th; Melas, E; Spanou, A

    2013-01-01

    The conditional symmetries of the reduced Einstein–Hilbert action emerging from a static, spherically symmetric geometry are used as supplementary conditions on the wave function. Based on their integrability conditions, only one of the three existing symmetries can be consistently imposed, while the unique Casimir invariant, being the product of the remaining two symmetries, is calculated as the only possible second condition on the wave function. This quadratic integral of motion is identified with the reparametrization generator, as an implication of the uniqueness of the dynamical evolution, by fixing a suitable parametrization of the r-lapse function. In this parametrization, the determinant of the supermetric plays the role of the mesure. The combined Wheeler – DeWitt and linear conditional symmetry equations are analytically solved. The solutions obtained depend on the product of the two ''scale factors''

  19. Cryptanalysis of Some Lightweight Symmetric Ciphers

    DEFF Research Database (Denmark)

    Abdelraheem, Mohamed Ahmed Awadelkareem Mohamed Ahmed

    In recent years, the need for lightweight encryption systems has been increasing as many applications use RFID and sensor networks which have a very low computational power and thus incapable of performing standard cryptographic operations. In response to this problem, the cryptographic community...... on a variant of PRESENT with identical round keys. We propose a new attack named the Invariant Subspace Attack that was specifically mounted against the lightweight block cipher PRINTcipher. Furthermore, we mount several attacks on a recently proposed stream cipher called A2U2....... of the international standards in lightweight cryptography. This thesis aims at analyzing and evaluating the security of some the recently proposed lightweight symmetric ciphers with a focus on PRESENT-like ciphers, namely, the block cipher PRESENT and the block cipher PRINTcipher. We provide an approach to estimate...

  20. Cosmic ray antimatter and baryon symmetric cosmology

    Science.gov (United States)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1982-01-01

    The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic-ray antiprotons, including the new low-energy measurement of Buffington, et al. We conclude that the cosmic-ray antiproton data may be evidence for antimatter galaxies and baryon symmetric cosmology. The present bar P data are consistent with a primary extragalactic component having /p=/equiv 1+/- 3.2/0.7x10 = to the -4 independent of energy. We propose that the primary extragalactic cosmic ray antiprotons are most likely from active galaxies and that expected disintegration of bar alpha/alpha ban alpha/alpha. We further predict a value for ban alpha/alpha =/equiv 10 to the -5, within range of future cosmic ray detectors.

  1. Symmetric Topological Phases and Tensor Network States

    Science.gov (United States)

    Jiang, Shenghan

    Classification and simulation of quantum phases are one of main themes in condensed matter physics. Quantum phases can be distinguished by their symmetrical and topological properties. The interplay between symmetry and topology in condensed matter physics often leads to exotic quantum phases and rich phase diagrams. Famous examples include quantum Hall phases, spin liquids and topological insulators. In this thesis, I present our works toward a more systematically understanding of symmetric topological quantum phases in bosonic systems. In the absence of global symmetries, gapped quantum phases are characterized by topological orders. Topological orders in 2+1D are well studied, while a systematically understanding of topological orders in 3+1D is still lacking. By studying a family of exact solvable models, we find at least some topological orders in 3+1D can be distinguished by braiding phases of loop excitations. In the presence of both global symmetries and topological orders, the interplay between them leads to new phases termed as symmetry enriched topological (SET) phases. We develop a framework to classify a large class of SET phases using tensor networks. For each tensor class, we can write down generic variational wavefunctions. We apply our method to study gapped spin liquids on the kagome lattice, which can be viewed as SET phases of on-site symmetries as well as lattice symmetries. In the absence of topological order, symmetry could protect different topological phases, which are often referred to as symmetry protected topological (SPT) phases. We present systematic constructions of tensor network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries.

  2. The radiation chemistry of symmetric aliphatic polyesters

    International Nuclear Information System (INIS)

    Babanalbandi, A.; Hill, D.J.T.; Pomery, P.J.; Whittaker, A.K.

    1996-01-01

    Full text: Naturally occurring, symmetric polyesters, including polyglycolic acid, polylactic acid and polyhydroxybutyrate, have found biomedical applications in areas as diverse as the controlled release of pharmaceuticals and the manufacture of surgical sutures. As biomedical products, the materials require sterilization by high energy radiation. This has provided the motivation for the present work. D'Alelio et al. have reported that linear, asymmetric polyesters undergo scission on irradiation, but that branched polyesters containing a methyl group in the diol segments undergo crosslinking. However, for the symmetric polyhydroxybutyrate, Carswell-Pomerantz et al. have reported that only scission occurs on radiolysis, with the evolution of CO and CO 2 as a result of the loss of ester linkages. These workers also found that G(CO + CO 2 ) was approximately equal to G(S) for this polyester. By contrast, Collett et al. have reported that G(S) = 1.26 and G(X) = 0.53 for polylactic acid, which indicates that the polymer undergoes nett crosslinking on radiolysis to form a gel. They have also reported that poly(lactic-co-glycolic acid) should form a gel on radiolysis, since G(S) = 1.66 and G(X) = 0.65 for a 1:1 copolymer composition. In the present work the radiolysis of polylactic acid and poly(lactic-co-glycolic acid) have been reinvestigated in order to resolve the differences between the work of Collett et al. and that of Carswell-Pomerantz et al. In these studies, ESR has been used to study the radicals formed, GPC has been used to investigate scission and crosslinking, GC has been used to study the small molecule volatile products and NMR spectroscopy has been used to identify and measure the new chemical structures formed in the polymers

  3. FFLP problem with symmetric trapezoidal fuzzy numbers

    Directory of Open Access Journals (Sweden)

    Reza Daneshrad

    2015-04-01

    Full Text Available The most popular approach for solving fully fuzzy linear programming (FFLP problems is to convert them into the corresponding deterministic linear programs. Khan et al. (2013 [Khan, I. U., Ahmad, T., & Maan, N. (2013. A simplified novel technique for solving fully fuzzy linear programming problems. Journal of Optimization Theory and Applications, 159(2, 536-546.] claimed that there had been no method in the literature to find the fuzzy optimal solution of a FFLP problem without converting it into crisp linear programming problem, and proposed a technique for the same. Others showed that the fuzzy arithmetic operation used by Khan et al. (2013 had some problems in subtraction and division operations, which could lead to misleading results. Recently, Ezzati et al. (2014 [Ezzati, R., Khorram, E., & Enayati, R. (2014. A particular simplex algorithm to solve fuzzy lexicographic multi-objective linear programming problems and their sensitivity analysis on the priority of the fuzzy objective functions. Journal of Intelligent and Fuzzy Systems, 26(5, 2333-2358.] defined a new operation on symmetric trapezoidal fuzzy numbers and proposed a new algorithm to find directly a lexicographic/preemptive fuzzy optimal solution of a fuzzy lexicographic multi-objective linear programming problem by using new fuzzy arithmetic operations, but their model was not fully fuzzy optimization. In this paper, a new method, by using Ezzati et al. (2014’s fuzzy arithmetic operation and a fuzzy version of simplex algorithm, is proposed for solving FFLP problem whose parameters are represented by symmetric trapezoidal fuzzy number without converting the given problem into crisp equivalent problem. By using the proposed method, the fuzzy optimal solution of FFLP problem can be easily obtained. A numerical example is provided to illustrate the proposed method.

  4. Axially symmetric Lorentzian wormholes in general relativity

    International Nuclear Information System (INIS)

    Schein, F.

    1997-11-01

    The field equations of Einstein's theory of general relativity, being local, do not fix the global structure of space-time. They admit topologically non-trivial solutions, including spatially closed universes and the amazing possibility of shortcuts for travel between distant regions in space and time - so-called Lorentzian wormholes. The aim of this thesis is to (mathematically) construct space-times which contain traversal wormholes connecting arbitrary distant regions of an asymptotically flat or asymptotically de Sitter universe. Since the wormhole mouths appear as two separate masses in the exterior space, space-time can at best be axially symmetric. We eliminate the non-staticity caused by the gravitational attraction of the mouths by anchoring them by strings held at infinity or, alternatively, by electric repulsion. The space-times are obtained by surgically grafting together well-known solutions of Einstein's equations along timelike hypersurfaces. This surgery naturally concentrates a non-zero stress-energy tensor on the boundary between the two space-times which can be investigated by using the standard thin shell formalism. It turns out that, when using charged black holes, the provided constructions are possible without violation of any of the energy conditions. In general, observers living in the axially symmetric, asymptotically flat (respectively asymptotically de Sitter) region axe able to send causal signals through the topologically non-trivial region. However, the wormhole space-times contain closed timelike curves. Because of this explicit violation of global hyperbolicity these models do not serve as counterexamples to known topological censorship theorems. (author)

  5. Polarized electron sources

    International Nuclear Information System (INIS)

    Prepost, R.

    1994-01-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented

  6. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  7. Magnetospectroscopy of symmetric and anti-symmetric states in double quantum wells

    Science.gov (United States)

    Marchewka, M.; Sheregii, E. M.; Tralle, I.; Ploch, D.; Tomaka, G.; Furdak, M.; Kolek, A.; Stadler, A.; Mleczko, K.; Zak, D.; Strupinski, W.; Jasik, A.; Jakiela, R.

    2008-02-01

    The experimental results obtained for magnetotransport in the InGaAs/InAlAs double quantum well (DQW) structures of two different shapes of wells are reported. A beating effect occurring in the Shubnikov-de Haas (SdH) oscillations was observed for both types of structures at low temperatures in the parallel transport when the magnetic field was perpendicular to the layers. An approach for the calculation of the Landau level energies for DQW structures was developed and then applied to the analysis and interpretation of the experimental data related to the beating effect. We also argue that in order to account for the observed magnetotransport phenomena (SdH and integer quantum Hall effect), one should introduce two different quasi-Fermi levels characterizing two electron subsystems regarding the symmetry properties of their states, symmetric and anti-symmetric ones, which are not mixed by electron-electron interaction.

  8. Alfvénic fluctuations in "newborn"' polar solar wind

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2005-06-01

    Full Text Available The 3-D structure of the solar wind is strongly dependent upon the Sun's activity cycle. At low solar activity a bimodal structure is dominant, with a fast and uniform flow at the high latitudes, and slow and variable flows at low latitudes. Around solar maximum, in sharp contrast, variable flows are observed at all latitudes. This last kind of pattern, however, is a relatively short-lived feature, and quite soon after solar maximum the polar wind tends to regain its role. The plasma parameter distributions for these newborn polar flows appear very similar to those typically observed in polar wind at low solar activity. The point addressed here is about polar wind fluctuations. As is well known, the low-solar-activity polar wind is characterized by a strong flow of Alfvénic fluctuations. Does this hold for the new polar flows too? An answer to this question is given here through a comparative statistical analysis on parameters such as total energy, cross helicity, and residual energy, that are of general use to describe the Alfvénic character of fluctuations. Our results indicate that the main features of the Alfvénic fluctuations observed in low-solar-activity polar wind have been quickly recovered in the new polar flows developed shortly after solar maximum. Keywords. Interplanetary physics (MHD waves and turbulence; Sources of the solar wind – Space plasma physics (Turbulence

  9. Polarized neutron spectrometer

    International Nuclear Information System (INIS)

    Abov, Yu.G.; Novitskij, V.V.; Alfimenkov, V.P.; Galinskij, E.M.; Mareev, Yu.D.; Pikel'ner, L.B.; Chernikov, A.N.; Lason', L.; Tsulaya, V.M.; Tsulaya, M.I.

    2000-01-01

    The polarized neutron spectrometer, intended for studying the interaction of polarized neutrons with nuclei and condensed media in the area of energies from thermal up to several electron-volt, is developed at the IBR-2 reactor (JINR, Dubna). Diffraction on the Co(92%)-Fe(8%) magnetized monocrystals is used for the neutron polarization and polarization analysis. The neutron polarization within the whole energy range equals ∼ 95% [ru

  10. A THEORETICAL STUDY OF THE BUILD-UP OF THE SUN’S POLAR MAGNETIC FIELD BY USING A 3D KINEMATIC DYNAMO MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, Gopal; Choudhuri, Arnab Rai [Department of Physics, Indian Institute of Science, Bangalore, 560012 (India); Miesch, Mark S., E-mail: ghazra@physics.iisc.ernet.in, E-mail: arnab@physics.iisc.ernet.in, E-mail: miesch@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO 80301 (United States)

    2017-01-20

    We develop a three-dimensional kinematic self-sustaining model of the solar dynamo in which the poloidal field generation is from tilted bipolar sunspot pairs placed on the solar surface above regions of strong toroidal field by using the SpotMaker algorithm, and then the transport of this poloidal field to the tachocline is primarily caused by turbulent diffusion. We obtain a dipolar solution within a certain range of parameters. We use this model to study the build-up of the polar magnetic field and show that some insights obtained from surface flux transport models have to be revised. We present results obtained by putting a single bipolar sunspot pair in a hemisphere and two symmetrical sunspot pairs in two hemispheres. We find that the polar fields produced by them disappear due to the upward advection of poloidal flux at low latitudes, which emerges as oppositely signed radial flux and which is then advected poleward by the meridional flow. We also study the effect that a large sunspot pair, violating Hale’s polarity law, would have on the polar field. We find that there would be some effect—especially if the anti-Hale pair appears at high latitudes in the mid-phase of the cycle—though the effect is not very dramatic.

  11. Optical pumping production of spin polarized hydrogen

    International Nuclear Information System (INIS)

    Knize, R.J.; Happer, W.; Cecchi, J.L.

    1984-01-01

    There has been much interest recently in the production of large quantities of spin polarized hydrogen in various fields including controlled fusion, quantum fluids, high energy, and nuclear physics. One promising method for the development of large quantities of spin polarized hydrogen is the utilization of optical pumping with a laser. Optical pumping is a process where photon angular momentum is converted into electron and nuclear spin. The advent of tunable CW dye lasers (approx. 1 watt) allow the production of greater than 10 18 polarized atoms/sec. We have begun a program at Princeton to investigate the physics and technology of using optical pumping to produce large quantities of spin polarized hydrogen. Initial experiments have been done in small closed glass cells. Eventually, a flowing system, open target, or polarized ion source could be constructed

  12. Entangling capabilities of symmetric two-qubit gates

    Indian Academy of Sciences (India)

    Com- putational investigation of entanglement of such ensembles is therefore impractical for ... the computational complexity. Pairs of spin-1 ... tensor operators which can also provide different symmetric logic gates for quantum pro- ... that five of the eight, two-qubit symmetric quantum gates expressed in terms of our newly.

  13. SUSY formalism for the symmetric double well potential

    Indian Academy of Sciences (India)

    symmetric double well potential barrier we have obtained a class of exactly solvable potentials subject to moving boundary condition. The eigenstates are also obtained by the same technique. Keywords. SUSY; moving boundary condition; exactly solvable; symmetric double well; NH3 molecule. PACS Nos 02.30.Ik; 03.50.

  14. A New Formulation for Symmetric Implicit Runge-Kutta-Nystrom ...

    African Journals Online (AJOL)

    In this paper we derive symmetric stable Implicit Runge-Kutta –Nystrom Method for the Integration of General Second Order ODEs by using the collocation approach.The block hybrid method obtained by the evaluation of the continuous interpolant at different nodes of the polynomial is symmetric and suitable for stiff intial ...

  15. Crossing symmetric solution of the Chew-Low equation

    International Nuclear Information System (INIS)

    McLeod, R.J.; Ernst, D.J.

    1982-01-01

    An N/D dispersion theory is developed which solves crossing symmetric Low equations. The method is used to generate crossing symmetric solutions to the Chew-Low model. We show why the technique originally proposed by Chew and Low was incapable of producing solutions. (orig.)

  16. Sparse symmetric preconditioners for dense linear systems in electromagnetism

    NARCIS (Netherlands)

    Carpentieri, Bruno; Duff, Iain S.; Giraud, Luc; Monga Made, M. Magolu

    2004-01-01

    We consider symmetric preconditioning strategies for the iterative solution of dense complex symmetric non-Hermitian systems arising in computational electromagnetics. In particular, we report on the numerical behaviour of the classical incomplete Cholesky factorization as well as some of its recent

  17. Stability of transparent spherically symmetric thin shells and wormholes

    International Nuclear Information System (INIS)

    Ishak, Mustapha; Lake, Kayll

    2002-01-01

    The stability of transparent spherically symmetric thin shells (and wormholes) to linearized spherically symmetric perturbations about static equilibrium is examined. This work generalizes and systematizes previous studies and explores the consequences of including the cosmological constant. The approach shows how the existence (or not) of a domain wall dominates the landscape of possible equilibrium configurations

  18. Coupled dilaton and electromagnetic field in cylindrically symmetric ...

    Indian Academy of Sciences (India)

    The dilaton black hole solutions have attracted considerable attention for the ... theory and study the corresponding cylindrically symmetric spacetime, where .... where Йm and Йe are integration constants to be interpreted later as the ..... feature is apparent for the cylindrically symmetric spacetime in the presence of the dila-.

  19. Radon transformation on reductive symmetric spaces: support theorems

    NARCIS (Netherlands)

    Kuit, J.J.|info:eu-repo/dai/nl/313872589

    2011-01-01

    In this thesis we introduce a class of Radon transforms for reductive symmetric spaces, including the horospherical transforms, and study some of their properties. In particular we obtain a generalization of Helgason's support theorem for the horospherical transform on a Riemannian symmetric space.

  20. New approach to solve symmetric fully fuzzy linear systems

    Indian Academy of Sciences (India)

    In this paper, we present a method to solve fully fuzzy linear systems with symmetric coefficient matrix. The symmetric coefficient matrix is decomposed into two systems of equations by using Cholesky method and then a solution can be obtained. Numerical examples are given to illustrate our method.

  1. Synthesis & Characterization of New bis-Symmetrical Adipoyl ...

    African Journals Online (AJOL)

    Full Title: Synthesis and Characterization of New bis-Symmetrical Adipoyl, Terepthaloyl, Chiral Diimido-di-L-alanine Diesters and Chiral Phthaloyl-L-alanine Ester of Tripropoxy p-tert-Butyl Calix[4]arene and Study of Their Hosting Ability for Alanine and Na+. Bis-symmetrical tripropoxy p-tert-butyl calix[4]arene esters were ...

  2. FACES WITH LARGE DIAMETER ON THE SYMMETRICAL TRAVELING SALESMAN POLYTOPE

    NARCIS (Netherlands)

    SIERKSMA, G; TIJSSEN, GA

    This paper deals with the symmetric traveling salesman polytope and contains three main theorems. The first one gives a new characterization of (non)adjacency. Based on this characterization a new upper bound for the diameter of the symmetric traveling salesman polytope (conjectured to be 2 by M.

  3. Polarized targets and beams

    International Nuclear Information System (INIS)

    Meyer, W.

    1985-01-01

    First the experimental situation of the single-pion photoproduction and the photodisintegration of the deuteron is briefly discussed. Then a description of the Bonn polarization facilities is given. The point of main effort is put on the polarized target which plays a vital role in the program. A facility for photon induced double polarization experiments at ELSA will be presented in section 4. Properties of a tensor polarized deuteron target are discussed in section 5. The development in the field of polarized targets, especially on new target materials, enables a new generation of polarized target experiments with (polarized) electrons. Some comments on the use of a polarized target in combination with electron beams will be discussed in section 6. Electron deuteron scattering from a tensor polarized deuteron target is considered and compared with other experimental possibilities. (orig./HSI)

  4. Symmetric metamaterials based on flower-shaped structure

    International Nuclear Information System (INIS)

    Tuong, P.V.; Park, J.W.; Rhee, J.Y.; Kim, K.W.; Cheong, H.; Jang, W.H.; Lee, Y.P.

    2013-01-01

    We proposed new models of metamaterials (MMs) based on a flower-shaped structure (FSS), whose “meta-atoms” consist of two flower-shaped metallic parts separated by a dielectric layer. Like the non-symmetric MMs based on cut-wire-pairs or electric ring resonators, the symmetrical FSS demonstrates the negative permeability at GHz frequencies. Employing the results, we designed a symmetric negative-refractive-index MM [a symmetric combined structure (SCS)], which is composed of FSSs and cross continuous wires. The MM properties of the FSS and the SCS are presented numerically and experimentally. - Highlights: • A new designed of sub-wavelength metamaterial, flower-shaped structure was proposed. • Flower-shaped meta-atom illustrated effective negative permeability. • Based on the meta-atom, negative refractive index was conventionally gained. • Negative refractive index was demonstrated with symmetric properties for electromagnetic wave. • Dimensional parameters were studied under normal electromagnetic wave

  5. Analysis of the polarization characteristic of a satellite-to-ground laser communication optical system

    Science.gov (United States)

    Wang, Chao; Jiang, Lun; An, Yan; Doug, Ke-yan; Zhang, Ya-lin

    2015-10-01

    We present three rotation symmetric planar metamaterials and consist of 3, 4 and 6 split resonant rings (SRRs) respectively, proved that they are polarization-insensitive. The modulation characters constructed by the three planar metamaterials are also studied and compared to demonstrate that the structure with more even rotation symmetry is much more beneficial to be polarization-independence. Furthermore, the influencing rules of the electrodes on the polarization character of metamaterials are obtained. The polarization character can be converted by tailoring the electrodes which provides a guide to construct and design novel terahertz polarimetirc devices for potential applications.

  6. Symmetric weak ternary quantum homomorphic encryption schemes

    Science.gov (United States)

    Wang, Yuqi; She, Kun; Luo, Qingbin; Yang, Fan; Zhao, Chao

    2016-03-01

    Based on a ternary quantum logic circuit, four symmetric weak ternary quantum homomorphic encryption (QHE) schemes were proposed. First, for a one-qutrit rotation gate, a QHE scheme was constructed. Second, in view of the synthesis of a general 3 × 3 unitary transformation, another one-qutrit QHE scheme was proposed. Third, according to the one-qutrit scheme, the two-qutrit QHE scheme about generalized controlled X (GCX(m,n)) gate was constructed and further generalized to the n-qutrit unitary matrix case. Finally, the security of these schemes was analyzed in two respects. It can be concluded that the attacker can correctly guess the encryption key with a maximum probability pk = 1/33n, thus it can better protect the privacy of users’ data. Moreover, these schemes can be well integrated into the future quantum remote server architecture, and thus the computational security of the users’ private quantum information can be well protected in a distributed computing environment.

  7. Skyrmions and vector mesons: a symmetric approach

    International Nuclear Information System (INIS)

    Caldi, D.G.

    1984-01-01

    We propose an extension of the effective, low-energy chiral Lagrangian known as the Skyrme model, to one formulated by a non-linear sigma model generalized to include vector mesons in a symmetric way. The model is based on chiral SU(6) x SU(6) symmetry spontaneously broken to static SU(6). The rho and other vector mesons are dormant Goldstone bosons since they are in the same SU(6) multiplet as the pion and other pseudoscalars. Hence the manifold of our generalized non-linear sigma model is the coset space (SU(6) x SU(6))/Su(6). Relativistic effects, via a spin-dependent mass term, break the static SU(6) and give the vectors a mass. The model can then be fully relativistic and covariant. The lowest-lying Skyrmion in this model is the whole baryonic 56-plet, which splits into the octet and decuplet in the presence of relativistic SU(6)-breaking. Due to the built-in SU(6) and the presence of vector mesons, the model is expected to have better phenomenological results, as well as providing a conceptually more unified picture of mesons and baryons. 29 references

  8. Randomized Symmetric Crypto Spatial Fusion Steganographic System

    Directory of Open Access Journals (Sweden)

    Viswanathan Perumal

    2016-06-01

    Full Text Available The image fusion steganographic system embeds encrypted messages in decomposed multimedia carriers using a pseudorandom generator but it fails to evaluate the contents of the cover image. This results in the secret data being embedded in smooth regions, which leads to visible distortion that affects the imperceptibility and confidentiality. To solve this issue, as well as to improve the quality and robustness of the system, the Randomized Symmetric Crypto Spatial Fusion Steganography System is proposed in this study. It comprises three-subsystem bitwise encryption, spatial fusion, and bitwise embedding. First, bitwise encryption encrypts the message using bitwise operation to improve the confidentiality. Then, spatial fusion decomposes and evaluates the region of embedding on the basis of sharp intensity and capacity. This restricts the visibility of distortion and provides a high embedding capacity. Finally, the bitwise embedding system embeds the encrypted message through differencing the pixels in the region by 1, checking even or odd options and not equal to zero constraints. This reduces the modification rate to avoid distortion. The proposed heuristic algorithm is implemented in the blue channel, to which the human visual system is less sensitive. It was tested using standard IST natural images with steganalysis algorithms and resulted in better quality, imperceptibility, embedding capacity and invulnerability to various attacks compared to other steganographic systems.

  9. Triple symmetric key cryptosystem for data security

    Science.gov (United States)

    Fuzail, C. Md; Norman, Jasmine; Mangayarkarasi, R.

    2017-11-01

    As the technology is getting spreads in the macro seconds of speed and in which the trend changing era from human to robotics the security issue is also getting increased. By means of using machine attacks it is very easy to break the cryptosystems in very less amount of time. Cryptosystem is a process which provides the security in all sorts of processes, communications and transactions to be done securely with the help of electronical mechanisms. Data is one such thing with the expanded implication and possible scraps over the collection of data to secure predominance and achievement, Information Security is the process where the information is protected from invalid and unverified accessibilities and data from mishandling. So the idea of Information Security has risen. Symmetric key which is also known as private key.Whereas the private key is mostly used to attain the confidentiality of data. It is a dynamic topic which can be implemented over different applications like android, wireless censor networks, etc. In this paper, a new mathematical manipulation algorithm along with Tea cryptosystem has been implemented and it can be used for the purpose of cryptography. The algorithm which we proposed is straightforward and more powerful and it will authenticate in harder way and also it will be very difficult to break by someone without knowing in depth about its internal mechanisms.

  10. Experimental pseudo-symmetric trap EPSILON

    International Nuclear Information System (INIS)

    Skovoroda, A.A.; Arsenin, V.V.; Dlougach, E.D.; Kulygin, V.M.; Kuyanov, A.Yu.; Timofeev, A.V.; Zhil'tsov, V.A.; Zvonkov, A.V.

    2001-01-01

    Within the framework of the conceptual project 'Adaptive Plasma EXperiment' a trap with the closed magnetic field lines 'Experimental Pseudo-Symmetric trap' is examined. The project APEX is directed at the theoretical and experimental development of physical foundations for stationary thermonuclear reactor on the basis of an alternative magnetic trap with tokamak-level confinement of high β plasma. The fundamental principle of magnetic field pseudosymmetry that should be satisfied for plasma to have tokamak-like confinement is discussed. The calculated in paraxial approximation examples of pseudosymmetric curvilinear elements with poloidal direction of B isolines are adduced. The EPSILON trap consisting of two straight axisymmetric mirrors linked by two curvilinear pseudosymmetric elements is considered. The plasma currents are short-circuited within the curvilinear element what increases the equilibrium β. The untraditional scheme of MHD stabilization of a trap with the closed field lines by the use of divertor inserted into axisymmetric mirror is analyzed. The experimental installation EPSILON-OME that is under construction for experimental check of divertor stabilization is discussed. The possibility of ECR plasma production in EPSILON-OME under conditions of high density and small magnetic field is examined. (author)

  11. Left-right symmetric superstring supergravitation

    International Nuclear Information System (INIS)

    Burova, M.V.; Ter-Martirosyan, K.E.

    1988-01-01

    A left-right (L-R) symmetric model of four-dimensional supergravitation with a SO(10) gauge group obtained as the low-energy limit is superstring theory is considered. The spectrum of the gauge fields and their interactions are in agreement with the Weinberg-Salam theory. In addition, the model includes heavy W R ± and Z μ ' bosons. Beside the N g =3 generations of the 16-plets the SO(10) model includes the fragments of such generations which play the role of Higgs particles and also scalar chiral filds, the number of which exceeds by one the number of generations. As a result the neutrinos of each generation obtain a stable small Majorana mass. It is shown that the scalar field potential leads to spontaneous violation of the SU(2) R group and L-R symmetry and at low energies the standard Weinberg-Salam theory appears. However, reasonable values of X bosons masses M x and sun 2 Θ W (Θ W is the Weinberg angle) can be obtained in the model only in the case of high mass scale M R ∼10 10 -10 12 GeV of the right group SU(2) R violation

  12. Symmetric charge transfer cross section of uranium

    International Nuclear Information System (INIS)

    Shibata, Takemasa; Ogura, Koichi

    1995-03-01

    Symmetric charge transfer cross section of uranium was calculated under consideration of reaction paths. In the charge transfer reaction a d 3/2 electron in the U atom transfers into the d-electron site of U + ( 4 I 9/2 ) ion. The J value of the U atom produced after the reaction is 6, 5, 4 or 3, at impact energy below several tens eV, only resonant charge transfer in which the product atom is ground state (J=6) takes place. Therefore, the cross section is very small (4-5 x 10 -15 cm 2 ) compared with that considered so far. In the energy range of 100-1000eV the cross section increases with the impact energy because near resonant charge transfer in which an s-electron in the U atom transfers into the d-electron site of U + ion. Charge transfer cross section between U + in the first excited state (289 cm -1 ) and U in the ground state was also obtained. (author)

  13. Explaining Polarization Reversals in STEREO Wave Data

    Science.gov (United States)

    Breneman, A.; Cattell, C.; Wygant, J.; Kersten, K.; Wilson, L, B., III; Dai, L.; Colpitts, C.; Kellogg, P. J.; Goetz, K.; Paradise, A.

    2012-01-01

    Recently Breneman et al. reported observations of large amplitude lightning and transmitter whistler mode waves from two STEREO passes through the inner radiation belt (Lpaper. We show, with a combination of observations and simulated wave superposition, that these polarization reversals are due to the beating of an incident electromagnetic whistler mode wave at 21.4 kHz and linearly polarized, symmetric lower hybrid sidebands Doppler-shifted from the incident wave by +/-200 Hz. The existence of the lower hybrid waves is consistent with the parametric decay mechanism of Lee and Kuo whereby an incident whistler mode wave decays into symmetric, short wavelength lower hybrid waves and a purely growing (zero-frequency) mode. Like the lower hybrid waves, the purely growing mode is Doppler-shifted by 200 Hz as observed on STEREO. This decay mechanism in the upper ionosphere has been previously reported at equatorial latitudes and is thought to have a direct connection with explosive spread F enhancements. As such it may represent another dissipation mechanism of VLF wave energy in the ionosphere and may help to explain a deficit of observed lightning and transmitter energy in the inner radiation belts as reported by Starks et al.

  14. Modified polarized geometrical attenuation model for bidirectional reflection distribution function based on random surface microfacet theory.

    Science.gov (United States)

    Liu, Hong; Zhu, Jingping; Wang, Kai

    2015-08-24

    The geometrical attenuation model given by Blinn was widely used in the geometrical optics bidirectional reflectance distribution function (BRDF) models. Blinn's geometrical attenuation model based on symmetrical V-groove assumption and ray scalar theory causes obvious inaccuracies in BRDF curves and negatives the effects of polarization. Aiming at these questions, a modified polarized geometrical attenuation model based on random surface microfacet theory is presented by combining of masking and shadowing effects and polarized effect. The p-polarized, s-polarized and unpolarized geometrical attenuation functions are given in their separate expressions and are validated with experimental data of two samples. It shows that the modified polarized geometrical attenuation function reaches better physical rationality, improves the precision of BRDF model, and widens the applications for different polarization.

  15. Polarization holographic optical recording of a new photochromic diarylethene

    Science.gov (United States)

    Pu, Shouzhi; Miao, Wenjuan; Chen, Anyin; Cui, Shiqiang

    2008-12-01

    A new symmetrical photochromic diarylethene, 1,2-bis[2-methyl-5-(3-methoxylphenyl)-3-thienyl]perfluorocyclopentene (1a), was synthesized, and its photochromic properties were investigated. The compound exhibited good photochromism both in solution and in PMMA film with alternating irradiation by UV/VIS light, and the maxima absorption of its closed-ring isomer 1b are 582 and 599 nm, respectively. Using diarylethene 1b/PMMA film as recording medium and a He-Ne laser (633 nm) for recording and readout, four types of polarization and angular multiplexing holographic optical recording were performed perfectly. For different types of polarization recording including parallel linear polarization recording, parallel circular polarization recording, orthogonal linear polarization recording and orthogonal circular polarization recording,have been accomplished successfully. The results demonstrated that the orthogonal circular polarization recording is the best method for polarization holographic optical recording when this compound was used as recording material. With angular multiplexing recording technology, two high contrast holograms were recorded in the same place on the film with the dimension of 0.78 μm2.

  16. Scattering with polarized neutrons

    International Nuclear Information System (INIS)

    Schweizer, J.

    2007-01-01

    In the history of neutron scattering, it was shown very soon that the use of polarized neutron beams brings much more information than usual scattering with unpolarized neutrons. We shall develop here the different scattering methods that imply polarized neutrons: 1) polarized beams without polarization analysis, the flipping ratio method; 2) polarized beams with a uniaxial polarization analysis; 3) polarized beams with a spherical polarization analysis. For all these scattering methods, we shall give examples of the physical problems which can been solved by these methods, particularly in the field of magnetism: investigation of complex magnetic structures, investigation of spin or magnetization densities in metals, insulators and molecular compounds, separation of magnetic and nuclear scattering, investigation of magnetic properties of liquids and amorphous materials and even, for non magnetic material, separation between coherent and incoherent scattering. (author)

  17. Polarized Light Corridor Demonstrations.

    Science.gov (United States)

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  18. Comparison of eigensolvers for symmetric band matrices.

    Science.gov (United States)

    Moldaschl, Michael; Gansterer, Wilfried N

    2014-09-15

    We compare different algorithms for computing eigenvalues and eigenvectors of a symmetric band matrix across a wide range of synthetic test problems. Of particular interest is a comparison of state-of-the-art tridiagonalization-based methods as implemented in Lapack or Plasma on the one hand, and the block divide-and-conquer (BD&C) algorithm as well as the block twisted factorization (BTF) method on the other hand. The BD&C algorithm does not require tridiagonalization of the original band matrix at all, and the current version of the BTF method tridiagonalizes the original band matrix only for computing the eigenvalues. Avoiding the tridiagonalization process sidesteps the cost of backtransformation of the eigenvectors. Beyond that, we discovered another disadvantage of the backtransformation process for band matrices: In several scenarios, a lot of gradual underflow is observed in the (optional) accumulation of the transformation matrix and in the (obligatory) backtransformation step. According to the IEEE 754 standard for floating-point arithmetic, this implies many operations with subnormal (denormalized) numbers, which causes severe slowdowns compared to the other algorithms without backtransformation of the eigenvectors. We illustrate that in these cases the performance of existing methods from Lapack and Plasma reaches a competitive level only if subnormal numbers are disabled (and thus the IEEE standard is violated). Overall, our performance studies illustrate that if the problem size is large enough relative to the bandwidth, BD&C tends to achieve the highest performance of all methods if the spectrum to be computed is clustered. For test problems with well separated eigenvalues, the BTF method tends to become the fastest algorithm with growing problem size.

  19. Survival and transmission of symmetrical chromosomal aberrations

    International Nuclear Information System (INIS)

    Savage, J.R.K.

    1979-01-01

    The interaction between the lesions to produce chromosomal structural changes may be either asymmetrical (A) or symmetrical (S). In A, one or more acentric fragments are always produced, and there may also be the mechanical separation problems resulting from bridges at anaphase, while S-changes never produce fragment, and pose no mechanical problem in cell division. If A and S events occur with equal frequency, it might be an indication that they are truly the alternative modes of lesion interaction. Unstimulated lymphocytes were irradiated with 2.68 Gy 250 kV X-ray, and metaphases were sampled at 50 h after the stimulation. Preparations were complete diploid cells, and any obvious second division cells were rejected. So far as dermal repair and fibroblast functions are concerned, aberration burden seems to have little consequence from the view-point of the long-term survival in vivo. Large numbers of aberrations (mainly S translocation and terminal deletion) were found in the samples taken up to 60 years after therapy. Skin biopsies were removed 1 day and 6 months after irradiation and cultured. In irradiated cells, reciprocal translocations dominated, followed by terminal deletions, then inversions, while no chromosome-type aberration was seen in the control cells. a) The relative occurrence of A : S changes, b) long-term survival in vivo, c) the possibility of in vivo repair, and d) some unusual features of translocation found in Syrian hamsters are reviewed. The relevance or importance of major S events is clearly dependent upon the cells, the tissues or the organisms in which they occur. (Yamashita, S.)

  20. Techniques in polarization physics

    International Nuclear Information System (INIS)

    Clausnitzer, G.

    1974-01-01

    A review of the current status of the technical tools necessary to perform different kinds of polarization experiments is presented, and the absolute and relative accuracy with which data can be obtained is discussed. A description of polarized targets and sources of polarized fast neutrons is included. Applications of polarization techniques to other fields is mentioned briefly. (14 figures, 3 tables, 110 references) (U.S.)

  1. Effects of the Earth’ s triaxiality on the polar motion excitations

    Directory of Open Access Journals (Sweden)

    Chen Wei

    2012-05-01

    Full Text Available his study aims to evaluate the significance of the Earth’s triaxiality to the polar motion theory. First of all, we compare the polar motion theories for both the triaxial and rotationally-symmetric Earth models, which is established on the basis of the EGM2008 global gravity model and the MHB2000 Earth model. Then, we use the atmospheric and oceanic data (the NCEP/NCAR reanalyses and the ECCO assimulation products to quantify the triaxiality effect on polar motion excitations. Numerical results imply that triaxiality only cause a small correction (about 0. 1–0.2 mas to the geophysical excitations for the rotationally-symmetric case. The triaxiality correction is much smaller than the errors in the atmospheric and oceanic data, and thus can be neglected for recent studies on polar motion excitations.

  2. Polarized Moessbauer transitions

    International Nuclear Information System (INIS)

    Barb, D.

    1975-01-01

    Theoretical aspects of the emission, absorption and scattering of polarized gamma rays are reviewed for a general case of combined magnetic and electric hyperfine interactions; various possibilities of obtaining polarized gamma sources are described and examples are given of the applications of Moessbauer spectroscopy with polarized gamma rays in solving problems of solid state physics. (A.K.)

  3. Geographical Income Polarization

    DEFF Research Database (Denmark)

    Azhar, Hussain; Jonassen, Anders Bruun

    inter municipal income inequality. Counter factual simulations show that rising property prices to a large part explain the rise in polarization. One side-effect of polarization is tendencies towards a parallel polarization of residence location patterns, where low skilled individuals tend to live...

  4. Calculation of polarization effects

    International Nuclear Information System (INIS)

    Chao, A.W.

    1983-09-01

    Basically there are two areas of accelerator applications that involve beam polarization. One is the acceleration of a polarized beam (most likely a proton beam) in a synchrotron. Another concerns polarized beams in an electron storage ring. In both areas, numerical techniques have been very useful

  5. Radon transformation on reductive symmetric spaces:Support theorems

    DEFF Research Database (Denmark)

    Kuit, Job Jacob

    2013-01-01

    We introduce a class of Radon transforms for reductive symmetric spaces, including the horospherical transforms, and derive support theorems for these transforms. A reductive symmetric space is a homogeneous space G/H for a reductive Lie group G of the Harish-Chandra class, where H is an open sub...... is based on the relation between the Radon transform and the Fourier transform on G/H, and a Paley–Wiener-shift type argument. Our results generalize the support theorem of Helgason for the Radon transform on a Riemannian symmetric space....

  6. Nilpotent orbits in real symmetric pairs and stationary black holes

    International Nuclear Information System (INIS)

    Dietrich, Heiko; De Graaf, Willem A.; Ruggeri, Daniele; Trigiante, Mario

    2017-01-01

    In the study of stationary solutions in extended supergravities with symmetric scalar manifolds, the nilpotent orbits of a real symmetric pair play an important role. In this paper we discuss two approaches to determine the nilpotent orbits of a real symmetric pair. We apply our methods to an explicit example, and thereby classify the nilpotent orbits of (SL 2 (R)) 4 acting on the fourth tensor power of the natural 2-dimensional SL 2 (R)-module. This makes it possible to classify all stationary solutions of the so-called STU-supergravity model. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Color symmetrical superconductivity in a schematic nuclear quark model

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, C.; da Providencia, J.

    2010-01-01

    In this letter, a novel BCS-type formalism is constructed in the framework of a schematic QCD inspired quark model, having in mind the description of color symmetrical superconducting states. In the usual approach to color superconductivity, the pairing correlations affect only the quasi-particle...... states of two colors, the single-particle states of the third color remaining unaffected by the pairing correlations. In the theory of color symmetrical superconductivity here proposed, the pairing correlations affect symmetrically the quasi-particle states of the three colors and vanishing net color...

  8. Highly-dispersive electromagnetic induced transparency in planar symmetric metamaterials.

    Science.gov (United States)

    Lu, Xiqun; Shi, Jinhui; Liu, Ran; Guan, Chunying

    2012-07-30

    We propose, design and experimentally demonstrate highly-dispersive electromagnetically induced transparency (EIT) in planar symmetric metamaterials actively switched and controlled by angles of incidence. Full-wave simulation and measurement results show EIT phenomena, trapped-mode excitations and the associated local field enhancement of two symmetric metamaterials consisting of symmetrically split rings (SSR) and a fishscale (FS) metamaterial pattern, respectively, strongly depend on angles of incidence. The FS metamaterial shows much broader spectral splitting than the SSR metamaterial due to the surface current distribution variation.

  9. Geometric characteristics of aberrations of plane-symmetric optical systems

    International Nuclear Information System (INIS)

    Lu Lijun; Deng Zhiyong

    2009-01-01

    The geometric characteristics of aberrations of plane-symmetric optical systems are studied in detail with a wave-aberration theory. It is dealt with as an extension of the Seidel aberrations to realize a consistent aberration theory from axially symmetric to plane-symmetric systems. The aberration distribution is analyzed with the spot diagram of a ray and an aberration curve. Moreover, the root-mean-square value and the centroid of aberration distribution are discussed. The numerical results are obtained with the focusing optics of a toroidal mirror at grazing incidence.

  10. Ultra-Wideband, Dual-Polarized, Beam-Steering P-Band Array Antenna

    Science.gov (United States)

    duToit, Cornelis

    2014-01-01

    A dual-polarized, wide-bandwidth (200 MHz for one polarization, 100 MHz for the orthogonal polarization) antenna array at P-band was designed to be driven by NASA's EcoSAR digital beam former. EcoSAR requires two wide P-band antenna arrays mounted on the wings of an aircraft, each capable of steering its main beam up to 35deg off-boresight, allowing the twin radar beams to be steered at angles to the flight path. The science requirements are mainly for dual-polarization capability and a wide bandwidth of operation of up to 200 MHz if possible, but at least 100 MHz with high polarization port isolation and low cross-polarization. The novel design geometry can be scaled with minor modifications up to about four times higher or down to about half the current design frequencies for any application requiring a dual-polarized, wide-bandwidth steerable antenna array. EcoSAR is an airborne interferometric P-band synthetic aperture radar (SAR) research application for studying two- and three-dimensional fine-scale measurements of terrestrial ecosystem structure and biomass, which will ultimately aid in the broader study of the carbon cycle and climate change. The two 2×8 element Pband antenna arrays required by the system will be separated by a baseline of about 25 m, allowing for interferometry measurements. The wide 100-to- 200-MHz bandwidth dual-polarized beams employed will allow the determination of the amount of biomass and even tree height on the ground. To reduce the size of the patches along the boresight dimension in order to fit them into the available space, two techniques were employed. One technique is to add slots along the edges of each patch where the main electric currents are expected to flow, and the other technique is to bend the central part of the patch away from the ground plane. The latter also facilitates higher mechanical rigidity. The high port isolation of more than 40 dB was achieved by employing a highly symmetrical feed mechanism for each

  11. Dynamics of the quiet polar cap

    International Nuclear Information System (INIS)

    Carlson, H.C. Jr.

    1990-01-01

    Work in the past has established that a few percent of the time, under northward interplanetary magnetic field and thus magnetically quiet conditions, sun aligned arcs are found in the polar cap with intensities greater than the order of a kilo Rayleigh in the visible. Here we extend this view. We first note that imaging systems with sensitivity down to tens of Rayleighs in the visible find sun aligned arcs in the polar cap far more often, closer to half the time than a few percent. Furthermore, these sun aligned arcs have simple electrodynamics. They mark boundaries between rapid antisunward flow of ionospheric plasma on their dawn side and significantly slower flow, or even sunward flow, on their dusk side. Since the sun aligned arcs are typically the order of 1000 km to transpolar in the sun-earth direction, and the order of 100 km or less in the dawn-dusk direction, they demarcate lines of strongly anisotropic ionospheric flow shears or convection cells. The very quiet polar cap (strongly northward IMF) is in fact characterized by the presence of sun aligned arcs and multiple highly anisotropic ionospheric flow shears. Sensitive optical images are a valuable diagnostic with which to study polar ionospheric convection under these poorly understood conditions. (author)

  12. Angularly symmetric splitting of a light beam upon reflection and refraction at an air-dielectric plane boundary.

    Science.gov (United States)

    Azzam, R M A

    2015-12-01

    Conditions for achieving equal and opposite angular deflections of a light beam by reflection and refraction at an air-dielectric boundary are determined. Such angularly symmetric beam splitting (ASBS) is possible only if the angle of incidence is >60° by exactly one third of the angle of refraction. This simple law, plus Snell's law, leads to several analytical results that clarify all aspects of this phenomenon. In particular, it is shown that the intensities of the two symmetrically deflected beams can be equalized by proper choice of the prism refractive index and the azimuth of incident linearly polarized light. ASBS enables a geometrically attractive layout of optical systems that employ multiple prism beam splitters.

  13. Characterizing crustal and uppermost mantle anisotropy with a depth-dependent tilted hexagonally symmetric elastic tensor: theory and examples

    Science.gov (United States)

    Feng, L.; Xie, J.; Ritzwoller, M. H.

    2017-12-01

    Two major types of surface wave anisotropy are commonly observed by seismologists but are only rarely interpreted jointly: apparent radial anisotropy, which is the difference in propagation speed between horizontally and vertically polarized waves inferred from Love and Rayleigh waves, and apparent azimuthal anisotropy, which is the directional dependence of surface wave speeds (usually Rayleigh waves). We describe a method of inversion that interprets simultaneous observations of radial and azimuthal anisotropy under the assumption of a hexagonally symmetric elastic tensor with a tilted symmetry axis defined by dip and strike angles. With a full-waveform numerical solver based on the spectral element method (SEM), we verify the validity of the forward theory used for the inversion. We also present two examples, in the US and Tibet, in which we have successfully applied the tomographic method to demonstrate that the two types of apparent anisotropy can be interpreted jointly as a tilted hexagonally symmetric medium.

  14. Emerging Translational Variance: Vacuum Polarization Energy of the ϕ6 Kink

    Directory of Open Access Journals (Sweden)

    H. Weigel

    2017-01-01

    Full Text Available We propose an efficient method to compute the vacuum polarization energy of static field configurations that do not allow decomposition into symmetric and antisymmetric channels in one space dimension. In particular, we compute the vacuum polarization energy of the kink soliton in the ϕ6 model. We link the dependence of this energy on the position of the center of the soliton to the different masses of the quantum fluctuations at negative and positive spatial infinity.

  15. Acceleration of polarized particles

    International Nuclear Information System (INIS)

    Buon, J.

    1992-05-01

    The spin kinetics of polarized beams in circular accelerators is reviewed in the case of spin-1/2 particles (electrons and protons) with emphasis on the depolarization phenomena. The acceleration of polarized proton beams in synchrotrons is described together with the cures applied to reduce depolarization, including the use of 'Siberian Snakes'. The in-situ polarization of electrons in storage rings due to synchrotron radiation is studied as well as depolarization in presence of ring imperfections. The applications of electron polarization to accurately calibrate the rings in energy and to use polarized beams in colliding-beam experiments are reviewed. (author) 76 refs., 19 figs., 1 tab

  16. Overview of zonal flow physics

    International Nuclear Information System (INIS)

    Diamond, P.H.; Itoh, K.; Itoh, S.-I.; Hahm, T.S.

    2005-01-01

    Zonal flows, by which we mean azimuthally symmetric band-like shear flows, are ubiquitous phenomena in nature and the laboratory. It is now widely recognized that zonal flows are a key constituent in virtually all cases and regimes of drift wave turbulence, indeed, so much so that this classic problem is now frequently referred to as 'drift wave-zonal flow turbulence'. In this theory overview, we present new viewpoints and unifying concepts which facilitate understanding of zonal flow physics, via theory, computation and their confrontation with the results of laboratory experiment. Special emphasis is placed on identifying avenues for further progress. (author)

  17. Path integral representation of the symmetric Rosen-Morse potential

    International Nuclear Information System (INIS)

    Duru, I.H.

    1983-09-01

    An integral formula for the Green's function of symmetric Rosen-Morse potential is obtained by solving path integrals. The correctly normalized wave functions and bound state energy spectrum are derived. (author)

  18. The geometrical theory of diffraction for axially symmetric reflectors

    DEFF Research Database (Denmark)

    Rusch, W.; Sørensen, O.

    1975-01-01

    The geometrical theory of diffraction (GTD) (cf. [1], for example) may be applied advantageously to many axially symmetric reflector antenna geometries. The material in this communication presents analytical, computational, and experimental results for commonly encountered reflector geometries...

  19. Symmetric Pin Diversion Detection using a Partial Defect Detector (PDET)

    International Nuclear Information System (INIS)

    Sitaraman, S.; Ham, Y.S.

    2009-01-01

    Since the signature from the Partial Defect Detector (PDET) is principally dependent on the geometric layout of the guide tube locations, the capability of the technique in detecting symmetric diversion of pins needs to be determined. The Monte Carlo simulation study consisted of cases where pins were removed in a symmetric manner and the resulting signatures were examined. In addition to the normalized gamma-to-neutron ratios, the neutron and gamma signatures normalized to their maximum values, were also examined. Examination of the shape of the three curves as well as of the peak-to-valley differences in excess of the maximum expected in intact assemblies, indicated pin diversion. A set of simulations with various symmetric patterns of diversion were examined. The results from these studies indicated that symmetric diversions as low as twelve percent could be detected by this methodology

  20. Systems of Differential Equations with Skew-Symmetric, Orthogonal Matrices

    Science.gov (United States)

    Glaister, P.

    2008-01-01

    The solution of a system of linear, inhomogeneous differential equations is discussed. The particular class considered is where the coefficient matrix is skew-symmetric and orthogonal, and where the forcing terms are sinusoidal. More general matrices are also considered.

  1. A Paley-Wiener theorem for reductive symmetric spaces

    NARCIS (Netherlands)

    Ban, E.P. van den; Schlichtkrull, H.

    2006-01-01

    Let X = G/H be a reductive symmetric space and K a maximal compact subgroup of G. The image under the Fourier transform of the space of K-finite compactly supported smooth functions on X is characterized.

  2. Report on the Dynamical Evolution of an Axially Symmetric Quasar ...

    Indian Academy of Sciences (India)

    retical arguments together with some numerical evidence. The evolution of the orbits is studied, as mass is transported from the disk to the nucleus. ... galaxies and non-axially symmetric quasar models (see Papadopoulos & Caranicolas.

  3. first principles derivation of a stress function for axially symmetric

    African Journals Online (AJOL)

    HOD

    governing partial differential equations of linear isotropic elasticity were reduced to the solution of the biharmonic ... The stress function was then applied to solve the axially symmetric ..... [1] Borg S.K.: Fundamentals of Engineering Elasticity,.

  4. Symmetrization of mathematical model of charge transport in semiconductors

    Directory of Open Access Journals (Sweden)

    Alexander M. Blokhin

    2002-11-01

    Full Text Available A mathematical model of charge transport in semiconductors is considered. The model is a quasilinear system of differential equations. A problem of finding an additional entropy conservation law and system symmetrization are solved.

  5. An algebraic approach to the non-symmetric Macdonald polynomial

    International Nuclear Information System (INIS)

    Nishino, Akinori; Ujino, Hideaki; Wadati, Miki

    1999-01-01

    In terms of the raising and lowering operators, we algebraically construct the non-symmetric Macdonald polynomials which are simultaneous eigenfunctions of the commuting Cherednik operators. We also calculate Cherednik's scalar product of them

  6. Hardware Realization of Chaos Based Symmetric Image Encryption

    KAUST Repository

    Barakat, Mohamed L.

    2012-01-01

    This thesis presents a novel work on hardware realization of symmetric image encryption utilizing chaos based continuous systems as pseudo random number generators. Digital implementation of chaotic systems results in serious degradations

  7. Experimental technique of calibration of symmetrical air pollution ...

    Indian Academy of Sciences (India)

    Based on the inherent property of symmetry of air pollution models, a Symmetrical Air Pollution. Model ... process is in compliance with air pollution regula- ..... Ground simulation is achieved through MATLAB package which is based on least-.

  8. Hardware Realization of Chaos-based Symmetric Video Encryption

    KAUST Repository

    Ibrahim, Mohamad A.

    2013-01-01

    This thesis reports original work on hardware realization of symmetric video encryption using chaos-based continuous systems as pseudo-random number generators. The thesis also presents some of the serious degradations caused by digitally

  9. Polarization effects. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.

    1981-01-01

    The use of polarized proton beams in ISABELLE is important for several general reasons: (1) With a single longitudinally polarized proton beam, effects involving parity violation can be identified and hence processes involving weak interactions can be separated from those involving strong and electromagnetic interactions. (2) Spin effects are important in the strong interactions and can be useful for testing QCD. The technique for obtaining polarized proton beams in ISABELLE appears promising, particularly in view of the present development of a polarized proton beam for the AGS. Projections for the luminosity in ISABELLE for collisions of polarized protons - one or both beams polarized with longitudinal or transverse polarization - range from 1/100 to 1 times the luminosity for unpolarized protons.

  10. The Physics of Polarization

    Science.gov (United States)

    Landi Degl'Innocenti, Egidio

    2015-10-01

    The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.

  11. Invariant subspaces in some function spaces on symmetric spaces. II

    International Nuclear Information System (INIS)

    Platonov, S S

    1998-01-01

    Let G be a semisimple connected Lie group with finite centre, K a maximal compact subgroup of G, and M=G/K a Riemannian symmetric space of non-compact type. We study the problem of describing the structure of closed linear subspaces in various function spaces on M that are invariant under the quasiregular representation of the group G. We consider the case when M is a symplectic symmetric space of rank 1

  12. Symmetric coupling of four spin-1/2 systems

    Science.gov (United States)

    Suzuki, Jun; Englert, Berthold-Georg

    2012-06-01

    We address the non-binary coupling of identical angular momenta based upon the representation theory for the symmetric group. A correspondence is pointed out between the complete set of commuting operators and the reference-frame-free subsystems. We provide a detailed analysis of the coupling of three and four spin-1/2 systems and discuss a symmetric coupling of four spin-1/2 systems.

  13. Multiple symmetrical lipomatosis (Madelung's disease) - a case report

    International Nuclear Information System (INIS)

    Vieira, Marcelo Vasconcelos; Abreu, Marcelo de; Furtado, Claudia Dietz; Silveira, Marcio Fleck da; Furtado, Alvaro Porto Alegre; Genro, Carlos Horacio; Grazziotin, Rossano Ughini

    2001-01-01

    Multiple symmetrical lipomatosis (Madelung's disease) is a rare disorder characterized by deep accumulation of fat tissue, involving mainly the neck, shoulders and chest. This disease is associated with heavy alcohol intake and it is more common in men of Mediterranean origin. This disease can cause severe aesthetic deformities and progressive respiratory dysfunction. We report a case of a patient with multiple symmetrical lipomatosis and describe the clinical and radiological features of this disorder. (author)

  14. Symmetrized neutron transport equation and the fast Fourier transform method

    International Nuclear Information System (INIS)

    Sinh, N.Q.; Kisynski, J.; Mika, J.

    1978-01-01

    The differential equation obtained from the neutron transport equation by the application of the source iteration method in two-dimensional rectangular geometry is transformed into a symmetrized form with respect to one of the angular variables. The discretization of the symmetrized equation leads to finite difference equations based on the five-point scheme and solved by use of the fast Fourier transform method. Possible advantages of the approach are shown on test calculations

  15. THE LINE POLARIZATION WITHIN A GIANT Lyα NEBULA

    International Nuclear Information System (INIS)

    Prescott, Moire K. M.; Smith, Paul S.; Schmidt, Gary D.; Dey, Arjun

    2011-01-01

    Recent theoretical work has suggested that Lyα nebulae could be substantially polarized in the Lyα emission line, depending on the geometry, kinematics, and powering mechanism at work. Polarization observations can therefore provide a useful constraint on the source of ionization in these systems. In this Letter, we present the first Lyα polarization measurements for a giant Lyα nebula at z∼ 2.656. We do not detect any significant linear polarization of the Lyα emission: P Lyα = 2.6% ± 2.8% (corrected for statistical bias) within a single large aperture. The current data also do not show evidence for the radial polarization gradient predicted by some theoretical models. These results rule out singly scattered Lyα (e.g., from the nearby active galactic nucleus, AGN) and may be inconsistent with some models of backscattering in a spherical outflow. However, the effects of seeing, diminished signal-to-noise ratio, and angle averaging within radial bins make it difficult to put strong constraints on the radial polarization profile. The current constraints may be consistent with higher density outflow models, spherically symmetric infall models, photoionization by star formation within the nebula or the nearby AGN, resonant scattering, or non-spherically symmetric cold accretion (i.e., along filaments). Higher signal-to-noise ratio data probing to higher spatial resolution will allow us to harness the full diagnostic power of polarization observations in distinguishing between theoretical models of giant Lyα nebulae.

  16. Finite-difference time-domain (FDTD) analysis on the interaction between a metal block and a radially polarized focused beam.

    Science.gov (United States)

    Kitamura, Kyoko; Sakai, Kyosuke; Noda, Susumu

    2011-07-18

    Radially polarized focused beams have attracted a great deal of attention because of their unique properties characterized by the longitudinal field. Although this longitudinal field is strongly confined to the beam axis, the energy flow, i.e., the Poynting vector, has null intensity on the axis. Hence, the interaction of the focused beam and matter has thus far been unclear. We analyzed the interactions between the focused beam and a subwavelength metal block placed at the center of the focus using three-dimensional finite-difference time-domain (FDTD) calculation. We found that most of the Poynting energy propagates through to the far-field, and that a strong enhancement of the electric field appeared on the metal surface. This enhancement is attributed to the constructive interference of the symmetric electric field and the coupling to the surface plasmon mode.

  17. Evidence for Excitation of Polar Motion by Fortnightly Ocean Tides

    Science.gov (United States)

    Gross, Richard S.; Hamdan, Kamal H.; Boggs, Dale H.

    1996-01-01

    The second-degree zonal tide raising potential, which is responsible for tidal changes in the Earth's rotation rate and length-of-day, is symmetric about the polar axis and hence can excite the Earth's polar motion only through its action upon nonaxisymmetric features of the Earth such as the oceans. Ocean tidal excitation of polar motion in the diurnal and semidiurnal tidal bands has been previously detected and examined. Here, the detection of ocean tidal excitation of polar motion in the long-period tidal band, specifically at the Mf' (13.63-day) and Mf (13.66-day) tidal frequencies, is reported. Spectra of the SPACE94 polar motion excitation series exhibit peaks at the prograde and retrograde fortnightly tidal periods. After removing effects of atmospheric wind and pressure changes, an empirical model for the effect of the fortnightly ocean tides upon polar motion excitation is obtained by least-squares fitting periodic terms at the Mf and Mf' tidal frequencies to the residual polar motion excitation series. The resulting empirical model is then compared with the predictions of two hydrodynamic ocean tide models.

  18. Workshop on polarized neutron filters and polarized pulsed neutron experiments

    International Nuclear Information System (INIS)

    Itoh, Shinichi

    2004-07-01

    The workshop was held in KEK by thirty-three participants on April 26, 2004. The polarized neutron filter method was only discussed. It consists of three parts; the first part was discussed on the polarized neutron methods, the second part on the polarized neutron experiments and the third on the pulse neutron spectrometer and polarized neutron experiments. The six papers were presented such as the polarized 3 He neutron spin filter, neutron polarization by proton polarized filter, soft master and neutron scattering, polarized neutron in solid physics, polarization experiments by chopper spectroscope and neutron polarization system in superHRPD. (S.Y.)

  19. Instrumentation with polarized neutrons

    International Nuclear Information System (INIS)

    Boeni, P.; Muenzer, W.; Ostermann, A.

    2009-01-01

    Neutron scattering with polarization analysis is an indispensable tool for the investigation of novel materials exhibiting electronic, magnetic, and orbital degrees of freedom. In addition, polarized neutrons are necessary for neutron spin precession techniques that path the way to obtain extremely high resolution in space and time. Last but not least, polarized neutrons are being used for fundamental studies as well as very recently for neutron imaging. Many years ago, neutron beam lines were simply adapted for polarized beam applications by adding polarizing elements leading usually to unacceptable losses in neutron intensity. Recently, an increasing number of beam lines are designed such that an optimum use of polarized neutrons is facilitated. In addition, marked progress has been obtained in the technology of 3 He polarizers and the reflectivity of large-m supermirrors. Therefore, if properly designed, only factors of approximately 2-3 in neutron intensity are lost. It is shown that S-benders provide neutron beams with an almost wavelength independent polarization. Using twin cavities, polarized beams with a homogeneous phase space and P>0.99 can be produced without significantly sacrificing intensity. It is argued that elliptic guides, which are coated with large m polarizing supermirrors, provide the highest flux.

  20. On the Wiener Polarity Index of Lattice Networks.

    Science.gov (United States)

    Chen, Lin; Li, Tao; Liu, Jinfeng; Shi, Yongtang; Wang, Hua

    2016-01-01

    Network structures are everywhere, including but not limited to applications in biological, physical and social sciences, information technology, and optimization. Network robustness is of crucial importance in all such applications. Research on this topic relies on finding a suitable measure and use this measure to quantify network robustness. A number of distance-based graph invariants, also known as topological indices, have recently been incorporated as descriptors of complex networks. Among them the Wiener type indices are the most well known and commonly used such descriptors. As one of the fundamental variants of the original Wiener index, the Wiener polarity index has been introduced for a long time and known to be related to the cluster coefficient of networks. In this paper, we consider the value of the Wiener polarity index of lattice networks, a common network structure known for its simplicity and symmetric structure. We first present a simple general formula for computing the Wiener polarity index of any graph. Using this formula, together with the symmetric and recursive topology of lattice networks, we provide explicit formulas of the Wiener polarity index of the square lattices, the hexagonal lattices, the triangular lattices, and the 33 ⋅ 42 lattices. We also comment on potential future research topics.

  1. Supersonic plasma flow between high latitude conjugate ionospheres

    International Nuclear Information System (INIS)

    Roesler, G.

    1975-01-01

    The polar wind problem has been investigated for closed field lines in situations where one of the two conjugate ionospheric regions is fully illuminated by the sun and the other darkness (solstices at high latitudes). A supersonic flow between hemispheres is possible; the magnetospheric part of this flow must be symmetric with respect to the equator. The daytime fluxes are proportional to the neutral hydrogen density. Fluxes of the order of 10 8 cm -2 sec -1 are only possible with density considerably higher than given by CIRA models. For stationary solutions higher flow speeds are needed on the dark side than provided from the illuminated side. It is concluded that shock waves with upward velocities of about 5 km/sec would form above the dark ionosphere. This implies a reduction by a factor of 3 to 5 of the plasma influx into the dark hemisphere, whereby F-layer densities of only up to 2 x 10 4 cm -3 can be maintained. (orig.) [de

  2. Multiphoton polarization Bremsstrahlung effect

    International Nuclear Information System (INIS)

    Golovinskij, P.A.

    2001-01-01

    A general approach to induced polarization effects was formulated on the basis of theory of many particles in a strong periodic field. Correlation with the perturbation theory is shown and the types of effective polarization potentials both for isolated atoms and ions, and for ions in plasma, are provided. State of art in the theory of forced polarization Bremsstrahlung effect is analyzed and some outlooks for further experimental and theoretical studies are outlined [ru

  3. The Topology of Symmetric Tensor Fields

    Science.gov (United States)

    Levin, Yingmei; Batra, Rajesh; Hesselink, Lambertus; Levy, Yuval

    1997-01-01

    Combinatorial topology, also known as "rubber sheet geometry", has extensive applications in geometry and analysis, many of which result from connections with the theory of differential equations. A link between topology and differential equations is vector fields. Recent developments in scientific visualization have shown that vector fields also play an important role in the analysis of second-order tensor fields. A second-order tensor field can be transformed into its eigensystem, namely, eigenvalues and their associated eigenvectors without loss of information content. Eigenvectors behave in a similar fashion to ordinary vectors with even simpler topological structures due to their sign indeterminacy. Incorporating information about eigenvectors and eigenvalues in a display technique known as hyperstreamlines reveals the structure of a tensor field. The simplify and often complex tensor field and to capture its important features, the tensor is decomposed into an isotopic tensor and a deviator. A tensor field and its deviator share the same set of eigenvectors, and therefore they have a similar topological structure. A a deviator determines the properties of a tensor field, while the isotopic part provides a uniform bias. Degenerate points are basic constituents of tensor fields. In 2-D tensor fields, there are only two types of degenerate points; while in 3-D, the degenerate points can be characterized in a Q'-R' plane. Compressible and incompressible flows share similar topological feature due to the similarity of their deviators. In the case of the deformation tensor, the singularities of its deviator represent the area of vortex core in the field. In turbulent flows, the similarities and differences of the topology of the deformation and the Reynolds stress tensors reveal that the basic addie-viscosity assuptions have their validity in turbulence modeling under certain conditions.

  4. Airborne Laser Polarization Sensor

    Science.gov (United States)

    Kalshoven, James, Jr.; Dabney, Philip

    1991-01-01

    Instrument measures polarization characteristics of Earth at three wavelengths. Airborne Laser Polarization Sensor (ALPS) measures optical polarization characteristics of land surface. Designed to be flown at altitudes of approximately 300 m to minimize any polarizing or depolarizing effects of intervening atmosphere and to look along nadir to minimize any effects depending on look angle. Data from measurements used in conjunction with data from ground surveys and aircraft-mounted video recorders to refine mathematical models used in interpretation of higher-altitude polarimetric measurements of reflected sunlight.

  5. Polarization of Be stars

    International Nuclear Information System (INIS)

    Johns, M.W.

    1975-01-01

    Linear polarization of starlight may be produced by electron scattering in the extended atmospheres of early type stars. Techniques are investigated for the measurement and interpretation of this polarization. Polarimetric observations were made of twelve visual double star systems in which at least one member was a B type star as a means of separating the intrinsic stellar polarization from the polarization produced in the interstellar medium. Four of the double stars contained a Be star. Evidence for intrinsic polarization was found in five systems including two of the Be systems, one double star with a short period eclipsing binary, and two systems containing only normal early type stars for which emission lines have not been previously reported. The interpretation of these observations in terms of individual stellar polarizations and their wavelength dependence is discussed. The theoretical basis for the intrinsic polarization of early type stars is explored with a model for the disk-like extended atmospheres of Be stars. Details of a polarimeter for the measurement of the linear polarization of astronomical point sources are also presented with narrow band (Δ lambda = 100A) measurements of the polarization of γ Cas from lambda 4000 to lambda 5800

  6. Polarization at SLC

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-07-01

    The SLAC Linear Collider has been designed to readily accommodate polarized electron beams. Considerable effort has been made to implement a polarized source, a spin rotation system, and a system to monitor the beam polarization. Nearly all major components have been fabricated. At the current time, several source and polarimeter components have been installed. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. It is expected that a beam polarization of 45% will be achieved with no loss in luminosity. 13 refs., 15 figs

  7. Cotangent bundles over all the Hermitian symmetric spaces

    International Nuclear Information System (INIS)

    Arai, Masato; Baba, Kurando

    2016-01-01

    We construct the N = 2 supersymmetric nonlinear sigma models on the cotangent bundles over all the compact and non-compact Hermitian symmetric spaces. In order to construct them we use the projective superspace formalism which is an N = 2 off-shell superfield formulation in four-dimensional space-time. This formalism allows us to obtain the explicit expression of N = 2 supersymmetric nonlinear sigma models on the cotangent bundles over any Hermitian symmetric spaces in terms of the N =1 superfields, once the Kähler potentials of the base manifolds are obtained. Starting with N = 1 supersymmetric Kähler nonlinear sigma models on the Hermitian symmetric spaces, we extend them into the N = 2 supersymmetric models by using the projective superspace formalism and derive the general formula for the cotangent bundles over all the compact and non-compact Hermitian symmetric spaces. We apply to the formula for the non-compact Hermitian symmetric space E 7 /E 6 × U(1) 1 . (paper)

  8. Optomechanically induced absorption in parity-time-symmetric optomechanical systems

    Science.gov (United States)

    Zhang, X. Y.; Guo, Y. Q.; Pei, P.; Yi, X. X.

    2017-06-01

    We explore the optomechanically induced absorption (OMIA) in a parity-time- (PT -) symmetric optomechanical system (OMS). By numerically calculating the Lyapunov exponents, we find out the stability border of the PT -symmetric OMS. The results show that in the PT -symmetric phase the system can be either stable or unstable depending on the coupling constant and the decay rate. In the PT -symmetric broken phase the system can have a stable state only for small gain rates. By calculating the transmission rate of the probe field, we find that there is an inverted optomechanically induced transparency (OMIT) at δ =-ωM and an OMIA at δ =ωM for the PT -symmetric optomechanical system. At each side of δ =-ωM there is an absorption window due to the resonance absorption of the two generated supermodes. Comparing with the case of optomechanics coupled to a passive cavity, we find that the active cavity can enhance the resonance absorption. The absorption rate at δ =ωM increases as the coupling strength between the two cavities increases. Our work provides us with a promising platform for controlling light propagation and light manipulation in terms of PT symmetry, which might have potential applications in quantum information processing and quantum optical devices.

  9. A cascaded three-phase symmetrical multistage voltage multiplier

    International Nuclear Information System (INIS)

    Iqbal, Shahid; Singh, G K; Besar, R; Muhammad, G

    2006-01-01

    A cascaded three-phase symmetrical multistage Cockcroft-Walton voltage multiplier (CW-VM) is proposed in this report. It consists of three single-phase symmetrical voltage multipliers, which are connected in series at their smoothing columns like string of batteries and are driven by three-phase ac power source. The smoothing column of each voltage multiplier is charged twice every cycle independently by respective oscillating columns and discharged in series through load. The charging discharging process completes six times a cycle and therefore the output voltage ripple's frequency is of sixth order of the drive signal frequency. Thus the proposed approach eliminates the first five harmonic components of load generated voltage ripples and sixth harmonic is the major ripple component. The proposed cascaded three-phase symmetrical voltage multiplier has less than half the voltage ripple, and three times larger output voltage and output power than the conventional single-phase symmetrical CW-VM. Experimental and simulation results of the laboratory prototype are given to show the feasibility of proposed cascaded three-phase symmetrical CW-VM

  10. Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure

    International Nuclear Information System (INIS)

    Peter, A. John; Lee, Chang Woo

    2012-01-01

    Photo-induced spin dependent electron transmission through a narrow gap InSb/InGa x Sb 1−x semiconductor symmetric well is theoretically studied using transfer matrix formulism. The transparency of electron transmission is calculated as a function of electron energy for different concentrations of gallium. Enhanced spin-polarized photon assisted resonant tunnelling in the heterostructure due to Dresselhaus and Rashba spin-orbit coupling induced splitting of the resonant level and compressed spin-polarization are observed. Our results show that Dresselhaus spin-orbit coupling is dominant for the photon effect and the computed polarization efficiency increases with the photon effect and the gallium concentration

  11. Polarized Fine Structure in the Photoluminescence Excitation Spectrum of a Negatively Charged Quantum Dot

    Science.gov (United States)

    Ware, M. E.; Stinaff, E. A.; Gammon, D.; Doty, M. F.; Bracker, A. S.; Gershoni, D.; Korenev, V. L.; Bădescu, Ş. C.; Lyanda-Geller, Y.; Reinecke, T. L.

    2005-10-01

    We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge-tunable InAs/GaAs quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are understood from the spin character of the triplet states and a small amount of quantum dot asymmetry, which mixes the wave functions through asymmetric e-e and e-h exchange interactions.

  12. Distributed simulation of mixing flow of dough

    International Nuclear Information System (INIS)

    Baloch, A.

    2005-01-01

    This paper reports on a study concerned with the numerical simulation of incompressible complex mixing flows of viscoelastic fluids is of industrial importance, particularly relevance in the food processing industry, such as occurs in dough mixing. The flows considered are in a complex domain setting. The present problem is one of this form, expressed as the flow between an outer rotating cylindrical vessel all and a stationary cylindrical/stirrers. The context is one of mixing with in a cylindrical vessel, where stirrers are located on the mixing vessel lid, and placed in a concentric/eccentric position with respect to the central cylindrical axis of the vessel. Here, the motion is considered as driven by the rotation of the outer vessel wall, with various stirrer locations. Two dough mixers at various rotation speeds are studied; one with one stirrer and the other with two stirrers. With a singular circular stirrer, an eccentric configuration is adopted. A further eccentric case with two circular stirrers is also contrasted against the above, where a symmetrical arrangement is assumed. Numerical simulations are based on two dimensions in the cylindrical polar co-ordinates system. The results reflected close agreement with the equivalent experimental results. The motivation for this work is to develop and advance technology to model the mixing of dough. The ultimate target is to predict and adjust the design of dough mixers, so that optimal dough processing may be achieved notably, with reference to work input on the dough. The hardware platform is a network combination of homogeneous Intel Linux clusters of workstations. A semi-implicit time-stepping Taylor-Galerkin scheme is employed with PVM (Parallel Virtual Machine) message passing libraries as the message passing protocol. Parallel results are compared against single processor (sequentially) solutions, using the parallelism paradigm of domain decomposition. Linear speed-up with the number of processors is

  13. Beam broadening of polar molecules and clusters in deflection experiments.

    Science.gov (United States)

    Bulthuis, J; Kresin, V V

    2012-01-07

    A beam of rotating dipolar particles (molecules or clusters) will broaden when passed through an electric or magnetic field gradient region. This broadening, which is a common experimental observable, can be expressed in terms of the variance of the distribution of the resulting polarization orientation (the direction cosine). Here, the broadening for symmetric-top and linear rotors is discussed. These two types of rotors have qualitatively different low-field orientation distribution functions, but behave similarly in a strong field. While analytical expressions for the polarization variance can be derived from first-order perturbation theory, for experimental guidance it is important to identify the applicability and limitations of these expressions, and the general dependence of the broadening on the experimental parameters. For this purpose, the analytical results are compared with the full diagonalization of the rotational Stark-effect matrices. Conveniently for experimental estimations, it is found that for symmetric tops, the dependence of the broadening parameter on the rotational constant, the axial ratio, and the field strength remains similar to the analytical expression even outside of the perturbative regime. Also, it is observed that the shape envelope, the centroid, and the width of the orientation distribution function for a symmetric top are quite insensitive to the value of its rotational constant (except at low rotational temperatures).

  14. Translating Solitons of Mean Curvature Flow of Noncompact Submanifolds

    International Nuclear Information System (INIS)

    Li Guanghan; Tian Daping; Wu Chuanxi

    2011-01-01

    We prove the existence and asymptotic behavior of rotationally symmetric solitons of mean curvature flow for noncompact submanifolds in Euclidean and Minkowski spaces, which generalizes part of the corresponding results for hypersurfaces of Jian.

  15. Dual-band high-efficiency polarization converter using an anisotropic metasurface

    Science.gov (United States)

    Lin, Baoqin; Wang, Buhong; Meng, Wen; Da, Xinyu; Li, Wei; Fang, Yingwu; Zhu, Zihang

    2016-05-01

    In this work, a dual-band and high-efficiency reflective cross-polarization converter based on an anisotropic metasurface for linearly polarized electromagnetic waves is proposed. Its unit cell is composed of an elliptical disk-ring mounted on grounded dielectric substrate, which is an anisotropic structure with a pair of mutually perpendicular symmetric axes u and v along ± 45 ° directions with respect to y-axis direction. Both the simulation and measured results show that the polarization converter can convert x- or y-polarized incident wave to its cross polarized wave in the two frequency bands (6.99-9.18 GHz, 11.66-20.40 GHz) with the conversion efficiency higher than 90%; moreover, the higher frequency band is an ultra-wide one with a relative bandwidth of 54.5% for multiple plasmon resonances. In addition, we present a detailed analysis for the polarization conversion of the polarization converter, and derive a formula to calculate the cross- and co-polarization reflections at y-polarized incidence according to the phase differences between the two reflected coefficients at u-polarized and v-polarized incidences. The simulated, calculated, and measured results are all in agreement with the entire frequency regions.

  16. Propagation of Axially Symmetric Detonation Waves

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R L; Roeske, F; Souers, P C; Tarver, C M; Chow, C T S; Lee, R S; McGuire, E M; Overturf, G E; Vitello, P A

    2002-06-26

    We have studied the non-ideal propagation of detonation waves in LX-10 and in the insensitive explosive TATB. Explosively-driven, 5.8-mm-diameter, 0.125-mm-thick aluminum flyer plates were used to initiate 38-mm-diameter, hemispherical samples of LX-10 pressed to a density of 1.86 g/cm{sup 3} and of TATB at a density of 1.80 g/cm{sup 3}. The TATB powder was a grade called ultrafine (UFTATB), having an arithmetic mean particle diameter of about 8-10 {micro}m and a specific surface area of about 4.5 m{sup 2}/g. Using PMMA as a transducer, output pressure was measured at 5 discrete points on the booster using a Fabry-Perot velocimeter. Breakout time was measured on a line across the booster with a streak camera. Each of the experimental geometries was calculated using the Ignition and Growth Reactive Flow Model, the JWL++ Model and the Programmed Burn Model. Boosters at both ambient and cold (-20 C and -54 C) temperatures have been experimentally and computationally studied. A comparison of experimental and modeling results is presented.

  17. Design and Numerical Study of Micropump Based on Induced Electroosmotic Flow

    Directory of Open Access Journals (Sweden)

    Kai Zhang

    2018-01-01

    Full Text Available Induced charge electroosmotic flow is a new electric driving mode. Based on the Navier–Stokes equations and the Poisson–Nernst–Planck (PNP ion transport equations, the finite volume method is adopted to calculate the equations and boundary conditions of the induced charge electroosmotic flow. In this paper, the formula of the induced zeta potential of the polarized solid surface is proposed, and a UDF program suitable for the simulation of the induced charge electroosmotic is prepared according to this theory. At the same time, on the basis of this theory, a cross micropump driven by induced charge electroosmotic flow is designed, and the voltage, electric potential, charge density, and streamline of the induced electroosmotic micropump are obtained. Studies have shown that when the cross-shaped micropump is energized, in the center of the induction electrode near the formation of a dense electric double layer, there exist four symmetrical vortices at the four corners, and they push the solution towards both outlets; it can be found that the average velocity of the solution in the cross-flow microfluidic pump is nonlinear with the applied electric field, which maybe helpful for the practical application of induced electroosmotic flow in the field of micropump.

  18. TRANSVERSELY POLARIZED Λ PRODUCTION

    International Nuclear Information System (INIS)

    BORER, D.

    2000-01-01

    Transversely polarized Λ production in hard scattering processes is discussed in terms of a leading twist T-odd fragmentation function which describes the fragmentation of an unpolarized quark into a transversely polarized Λ. We focus on the properties of this function and its relevance for the RHIC and HERMES experiments

  19. Our Polar Past

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2009-01-01

    The study of polar exploration is fascinating and offers students insights into the history, culture, and politics that affect the developing sciences at the farthest ends of Earth. Therefore, the authors think there is value in incorporating polar exploration accounts within modern science classrooms, and so they conducted research to test their…

  20. Marine polar steroids

    International Nuclear Information System (INIS)

    Stonik, Valentin A

    2001-01-01

    Structures, taxonomic distribution and biological activities of polar steroids isolated from various marine organisms over the last 8-10 years are considered. The peculiarities of steroid biogenesis in the marine biota and their possible biological functions are discussed. Syntheses of some highly active marine polar steroids are described. The bibliography includes 254 references.

  1. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  2. Decomposition of a symmetric second-order tensor

    Science.gov (United States)

    Heras, José A.

    2018-05-01

    In the three-dimensional space there are different definitions for the dot and cross products of a vector with a second-order tensor. In this paper we show how these products can uniquely be defined for the case of symmetric tensors. We then decompose a symmetric second-order tensor into its ‘dot’ part, which involves the dot product, and the ‘cross’ part, which involves the cross product. For some physical applications, this decomposition can be interpreted as one in which the dot part identifies with the ‘parallel’ part of the tensor and the cross part identifies with the ‘perpendicular’ part. This decomposition of a symmetric second-order tensor may be suitable for undergraduate courses of vector calculus, mechanics and electrodynamics.

  3. Nilpotent orbits in real symmetric pairs and stationary black holes

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Heiko [School of Mathematical Sciences, Monash University, VIC (Australia); De Graaf, Willem A. [Department of Mathematics, University of Trento, Povo (Italy); Ruggeri, Daniele [Universita di Torino, Dipartimento di Fisica (Italy); INFN, Sezione di Torino (Italy); Trigiante, Mario [DISAT, Politecnico di Torino (Italy)

    2017-02-15

    In the study of stationary solutions in extended supergravities with symmetric scalar manifolds, the nilpotent orbits of a real symmetric pair play an important role. In this paper we discuss two approaches to determine the nilpotent orbits of a real symmetric pair. We apply our methods to an explicit example, and thereby classify the nilpotent orbits of (SL{sub 2}(R)){sup 4} acting on the fourth tensor power of the natural 2-dimensional SL{sub 2}(R)-module. This makes it possible to classify all stationary solutions of the so-called STU-supergravity model. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Tourist Demand Reactions: Symmetric or Asymmetric across the Business Cycle?

    Science.gov (United States)

    Bronner, Fred; de Hoog, Robert

    2017-09-01

    Economizing and spending priorities on different types of vacations are investigated during two periods: an economic downturn and returning prosperity. Two nation-wide samples of vacationers are used: one during a downturn, the other one at the start of the recovery period. Through comparing the results, conclusions can be drawn about symmetric or asymmetric tourist demand across the business cycle. The main summer holiday has an asymmetric profile: being fairly crisis-resistant during a recession and showing considerable growth during an expansion. This does not apply to short vacations and day trips, each having a symmetric profile: during a recession they experience substantial reductions and during expansion comparable growth. So when talking about tourist demand in general , one cannot say that it is symmetric or asymmetric across the business cycle: it depends on the type of vacation. Differences in tourist demand are best explained by the role of Quality-of-Life for vacationers.

  5. Symmetric spaces and the Kashiwara-Vergne method

    CERN Document Server

    Rouvière, François

    2014-01-01

    Gathering and updating results scattered in journal articles over thirty years, this self-contained monograph gives a comprehensive introduction to the subject. Its goal is to: - motivate and explain the method for general Lie groups, reducing the proof of deep results in invariant analysis to the verification of two formal Lie bracket identities related to the Campbell-Hausdorff formula (the "Kashiwara-Vergne conjecture"); - give a detailed proof of the conjecture for quadratic and solvable Lie algebras, which is relatively elementary; - extend the method to symmetric spaces; here an obstruction appears, embodied in a single remarkable object called an "e-function"; - explain the role of this function in invariant analysis on symmetric spaces, its relation to invariant differential operators, mean value operators and spherical functions; - give an explicit e-function for rank one spaces (the hyperbolic spaces); - construct an e-function for general symmetric spaces, in the spirit of Kashiwara and Vergne's or...

  6. Rings with involution whose symmetric elements are central

    Directory of Open Access Journals (Sweden)

    Taw Pin Lim

    1980-01-01

    Full Text Available In a ring R with involution whose symmetric elements S are central, the skew-symmetric elements K form a Lie algebra over the commutative ring S. The classification of such rings which are 2-torsion free is equivalent to the classification of Lie algebras K over S equipped with a bilinear form f that is symmetric, invariant and satisfies [[x,y],z]=f(y,zx−f(z,xy. If S is a field of char ≠2, f≠0 and dimK>1 then K is a semisimple Lie algebra if and only if f is nondegenerate. Moreover, the derived algebra K′ is either the pure quaternions over S or a direct sum of mutually orthogonal abelian Lie ideals of dim≤2.

  7. Kinetic-energy distribution for symmetric fission of 236U

    International Nuclear Information System (INIS)

    Brissot, R.; Bocquet, J.P.; Ristori, C.; Crancon, J.; Guet, C.R.; Nifenecker, H.A.; Montoya, M.

    1980-01-01

    Fission fragment kinetic-energy distributions have been measured at the Grenoble high-flux reactor with the Lohengrin facility. Spurious events were eliminated in the symmetric region by a coherence test based on a time-of-flight measurement of fragment velocities. A Monte-Carlo calculation is then performed to correct the experimental data for neutron evaporation. The difference between the most probable kinetic energy in symmetric fission and the fission in which the heavy fragment is 'magic' (Zsub(H)=50) is found to be approximately =30 MeV. The results suggest that for the symmetric case the total excitation energy available at scission is shared equally among the fragments. (author)

  8. The discrete dynamics of symmetric competition in the plane.

    Science.gov (United States)

    Jiang, H; Rogers, T D

    1987-01-01

    We consider the generalized Lotka-Volterra two-species system xn + 1 = xn exp(r1(1 - xn) - s1yn) yn + 1 = yn exp(r2(1 - yn) - s2xn) originally proposed by R. M. May as a model for competitive interaction. In the symmetric case that r1 = r2 and s1 = s2, a region of ultimate confinement is found and the dynamics therein are described in some detail. The bifurcations of periodic points of low period are studied, and a cascade of period-doubling bifurcations is indicated. Within the confinement region, a parameter region is determined for the stable Hopf bifurcation of a pair of symmetrically placed period-two points, which imposes a second component of oscillation near the stable cycles. It is suggested that the symmetric competitive model contains much of the dynamical complexity to be expected in any discrete two-dimensional competitive model.

  9. Bound states for non-symmetric evolution Schroedinger potentials

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Gulmaro Corona [Area de Analisis Matematico y sus Aplicaciones, Universidad Autonoma Metropolitana-Azcapotalco, Atzcapotzalco, DF (Mexico)). E-mail: ccg@correo.azc.uam.mx

    2001-09-14

    We consider the spectral problem associated with the evolution Schroedinger equation, (D{sup 2}+ k{sup 2}){phi}=u{phi}, where u is a matrix-square-valued function, with entries in the Schwartz class defined on the real line. The solution {phi}, called the wavefunction, consists of a function of one real variable, matrix-square-valued with entries in the Schwartz class. This problem has been dealt for symmetric potentials u. We found for the present case that the bound states are localized similarly to the scalar and symmetric cases, but by the zeroes of an analytic matrix-valued function. If we add an extra condition to the potential u, we can determine these states by an analytic scalar function. We do this by generalizing the scalar and symmetric cases but without using the fact that the Wronskian of a pair of wavefunction is constant. (author)

  10. Solution of generalized shifted linear systems with complex symmetric matrices

    International Nuclear Information System (INIS)

    Sogabe, Tomohiro; Hoshi, Takeo; Zhang, Shao-Liang; Fujiwara, Takeo

    2012-01-01

    We develop the shifted COCG method [R. Takayama, T. Hoshi, T. Sogabe, S.-L. Zhang, T. Fujiwara, Linear algebraic calculation of Green’s function for large-scale electronic structure theory, Phys. Rev. B 73 (165108) (2006) 1–9] and the shifted WQMR method [T. Sogabe, T. Hoshi, S.-L. Zhang, T. Fujiwara, On a weighted quasi-residual minimization strategy of the QMR method for solving complex symmetric shifted linear systems, Electron. Trans. Numer. Anal. 31 (2008) 126–140] for solving generalized shifted linear systems with complex symmetric matrices that arise from the electronic structure theory. The complex symmetric Lanczos process with a suitable bilinear form plays an important role in the development of the methods. The numerical examples indicate that the methods are highly attractive when the inner linear systems can efficiently be solved.

  11. An electromagnetic helical undulator for polarized X-rays

    International Nuclear Information System (INIS)

    Gluskin, E.; Vinokurov, N.; Tcheskidov, V.; Medvedko, A.; Evtushenko, Y.; Kolomogorov, V.; Vobly, P.; Antokhin, E.; Ivanov, P.; Vasserman, I. B.; Trakhtenberg, E. M.; Den Hartog, P. K.; Deriy, B.; Erdmann, M.; Makarov, O.; Moog, E. R.

    1999-01-01

    Linearly and circularly polarized x-rays have been very successfully applied to the study of the properties of materials. Many applications can benefit from the availability of energy-turnable, high-brilliance x-ray beams with adjustable polarization properties. A helical undulator that can generate beams of variable (linear to circular) polarization has been designed and built by the Budker Institute of Nuclear Physics and the Advanced Photon Source. The first harmonic of this 12.8-cm-period device will cover the energy range from 0.4 keV to 3.5 keV. An important feature of this fully electromagnetic device is that it will allow one to generate 100% horizontally (K x =O)or vertically (K y =O) plane-polarized radiation, which will enable many experiments otherwise not technically feasible. With symmetric deflection parameters (K x =K y ), the on-axis radiation will be circularly polarized, with a user-selectable handedness. The polarization can be changed at rates up to 10 Hz

  12. Vacuum ultraviolet spectropolarimeter design for precise polarization measurements.

    Science.gov (United States)

    Narukage, Noriyuki; Auchère, Frédéric; Ishikawa, Ryohko; Kano, Ryouhei; Tsuneta, Saku; Winebarger, Amy R; Kobayashi, Ken

    2015-03-10

    Precise polarization measurements in the vacuum ultraviolet (VUV) region provide a new means for inferring weak magnetic fields in the upper atmosphere of the Sun and stars. We propose a VUV spectropolarimeter design ideally suited for this purpose. This design is proposed and adopted for the NASA-JAXA chromospheric lyman-alpha spectropolarimeter (CLASP), which will record the linear polarization (Stokes Q and U) of the hydrogen Lyman-α line (121.567 nm) profile. The expected degree of polarization is on the order of 0.1%. Our spectropolarimeter has two optically symmetric channels to simultaneously measure orthogonal linear polarization states with a single concave diffraction grating that serves both as the spectral dispersion element and beam splitter. This design has a minimal number of reflective components with a high VUV throughput. Consequently, these design features allow us to minimize the polarization errors caused by possible time variation of the VUV flux during the polarization modulation and by statistical photon noise.

  13. Polarization Optics in Telecommunications

    CERN Document Server

    Damask, Jay N

    2005-01-01

    The strong investments into optical telecommunications in the late 1990s resulted in a wealth of new research, techniques, component designs, and understanding of polarization effects in fiber. Polarization Optics in Telecommunications brings together recent advances in the field to create a standard, practical reference for component designers and optical fiber communication engineers. Beginning with a sound foundation in electromagnetism, the author offers a dissertation of the spin-vector formalism of polarization and the interaction of light with media. Applications discussed include optical isolators, optical circulators, fiber collimators, and a variety of applied waveplate and prism combinations. Also included in an extended discussion of polarization-mode dispersion (PMD) and polarization-dependent loss (PDL), their representation, behavior, statistical properties, and measurement. This book draws extensively from the technical and patent literature and is an up-to-date reference for researchers and c...

  14. Parallel Polarization State Generation.

    Science.gov (United States)

    She, Alan; Capasso, Federico

    2016-05-17

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  15. Parallel coupling of symmetric and asymmetric exclusion processes

    International Nuclear Information System (INIS)

    Tsekouras, K; Kolomeisky, A B

    2008-01-01

    A system consisting of two parallel coupled channels where particles in one of them follow the rules of totally asymmetric exclusion processes (TASEP) and in another one move as in symmetric simple exclusion processes (SSEP) is investigated theoretically. Particles interact with each other via hard-core exclusion potential, and in the asymmetric channel they can only hop in one direction, while on the symmetric lattice particles jump in both directions with equal probabilities. Inter-channel transitions are also allowed at every site of both lattices. Stationary state properties of the system are solved exactly in the limit of strong couplings between the channels. It is shown that strong symmetric couplings between totally asymmetric and symmetric channels lead to an effective partially asymmetric simple exclusion process (PASEP) and properties of both channels become almost identical. However, strong asymmetric couplings between symmetric and asymmetric channels yield an effective TASEP with nonzero particle flux in the asymmetric channel and zero flux on the symmetric lattice. For intermediate strength of couplings between the lattices a vertical-cluster mean-field method is developed. This approximate approach treats exactly particle dynamics during the vertical transitions between the channels and it neglects the correlations along the channels. Our calculations show that in all cases there are three stationary phases defined by particle dynamics at entrances, at exits or in the bulk of the system, while phase boundaries depend on the strength and symmetry of couplings between the channels. Extensive Monte Carlo computer simulations strongly support our theoretical predictions. Theoretical calculations and computer simulations predict that inter-channel couplings have a strong effect on stationary properties. It is also argued that our results might be relevant for understanding multi-particle dynamics of motor proteins

  16. Symmetric vs. asymmetric stem cell divisions: an adaptation against cancer?

    Directory of Open Access Journals (Sweden)

    Leili Shahriyari

    Full Text Available Traditionally, it has been held that a central characteristic of stem cells is their ability to divide asymmetrically. Recent advances in inducible genetic labeling provided ample evidence that symmetric stem cell divisions play an important role in adult mammalian homeostasis. It is well understood that the two types of cell divisions differ in terms of the stem cells' flexibility to expand when needed. On the contrary, the implications of symmetric and asymmetric divisions for mutation accumulation are still poorly understood. In this paper we study a stochastic model of a renewing tissue, and address the optimization problem of tissue architecture in the context of mutant production. Specifically, we study the process of tumor suppressor gene inactivation which usually takes place as a consequence of two "hits", and which is one of the most common patterns in carcinogenesis. We compare and contrast symmetric and asymmetric (and mixed stem cell divisions, and focus on the rate at which double-hit mutants are generated. It turns out that symmetrically-dividing cells generate such mutants at a rate which is significantly lower than that of asymmetrically-dividing cells. This result holds whether single-hit (intermediate mutants are disadvantageous, neutral, or advantageous. It is also independent on whether the carcinogenic double-hit mutants are produced only among the stem cells or also among more specialized cells. We argue that symmetric stem cell divisions in mammals could be an adaptation which helps delay the onset of cancers. We further investigate the question of the optimal fraction of stem cells in the tissue, and quantify the contribution of non-stem cells in mutant production. Our work provides a hypothesis to explain the observation that in mammalian cells, symmetric patterns of stem cell division seem to be very common.

  17. Some curvature properties of quarter symmetric metric connections

    International Nuclear Information System (INIS)

    Rastogi, S.C.

    1986-08-01

    A linear connection Γ ji h with torsion tensor T j h P i -T i h P j , where T j h is an arbitrary (1,1) tensor field and P i is a 1-form, has been called a quarter-symmetric connection by Golab. Some properties of such connections have been studied by Rastogi, Mishra and Pandey, and Yano and Imai. In this paper based on the curvature tensor of quarter-symmetric metric connection we define a tensor analogous to conformal curvature tensor and study some properties of such a tensor. (author)

  18. Symmetric bends how to join two lengths of cord

    CERN Document Server

    Miles, Roger E

    1995-01-01

    A bend is a knot securely joining together two lengths of cord (or string or rope), thereby yielding a single longer length. There are many possible different bends, and a natural question that has probably occurred to many is: "Is there a 'best' bend and, if so, what is it?"Most of the well-known bends happen to be symmetric - that is, the two constituent cords within the bend have the same geometric shape and size, and interrelationship with the other. Such 'symmetric bends' have great beauty, especially when the two cords bear different colours. Moreover, they have the practical advantage o

  19. Norm estimates of complex symmetric operators applied to quantum systems

    International Nuclear Information System (INIS)

    Prodan, Emil; Garcia, Stephan R; Putinar, Mihai

    2006-01-01

    This paper communicates recent results in the theory of complex symmetric operators and shows, through two non-trivial examples, their potential usefulness in the study of Schroedinger operators. In particular, we propose a formula for computing the norm of a compact complex symmetric operator. This observation is applied to two concrete problems related to quantum mechanical systems. First, we give sharp estimates on the exponential decay of the resolvent and the single-particle density matrix for Schroedinger operators with spectral gaps. Second, we provide new ways of evaluating the resolvent norm for Schroedinger operators appearing in the complex scaling theory of resonances

  20. Exploring plane-symmetric solutions in f(R) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Shamir, M. F., E-mail: farasat.shamir@nu.edu.pk [National University of Computer and Emerging Sciences, Department of Sciences and Humanities (Pakistan)

    2016-02-15

    The modified theories of gravity, especially the f(R) gravity, have attracted much attention in the last decade. This paper is devoted to exploring plane-symmetric solutions in the context of metric f(R) gravity. We extend the work on static plane-symmetric vacuum solutions in f(R) gravity already available in the literature [1, 2]. The modified field equations are solved using the assumptions of both constant and nonconstant scalar curvature. Some well-known solutions are recovered with power-law and logarithmic forms of f(R) models.

  1. Characterization of Generalized Young Measures Generated by Symmetric Gradients

    Science.gov (United States)

    De Philippis, Guido; Rindler, Filip

    2017-06-01

    This work establishes a characterization theorem for (generalized) Young measures generated by symmetric derivatives of functions of bounded deformation (BD) in the spirit of the classical Kinderlehrer-Pedregal theorem. Our result places such Young measures in duality with symmetric-quasiconvex functions with linear growth. The "local" proof strategy combines blow-up arguments with the singular structure theorem in BD (the analogue of Alberti's rank-one theorem in BV), which was recently proved by the authors. As an application of our characterization theorem we show how an atomic part in a BD-Young measure can be split off in generating sequences.

  2. Integrability and symmetric spaces. II- The coset spaces

    International Nuclear Information System (INIS)

    Ferreira, L.A.

    1987-01-01

    It shown that a sufficient condition for a model describing the motion of a particle on a coset space to possess a fundamental Poisson bracket relation, and consequently charges involution, is that it must be a symmetric space. The conditions a hamiltonian, or any function of the canonical variables, has to satisfy in order to commute with these charges are studied. It is shown that, for the case of non compact symmetric space, these conditions lead to an algebraic structure which plays an important role in the construction of conserved quantities. (author) [pt

  3. Color-symmetric superconductivity in a phenomenological QCD model

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, C.; Providencia, J. da

    2009-01-01

    In this paper, we construct a theory of the NJL type where superconductivity is present, and yet the superconducting state remains, in the average, color symmetric. This shows that the present approach to color superconductivity is consistent with color singletness. Indeed, quarks are free...... in the deconfined phase, but the deconfined phase itself is believed to be a color singlet. The usual description of the color superconducting state violates color singletness. On the other hand, the color superconducting state here proposed is color symmetric in the sense that an arbitrary color rotation leads...

  4. (Anti)symmetric multivariate exponential functions and corresponding Fourier transforms

    International Nuclear Information System (INIS)

    Klimyk, A U; Patera, J

    2007-01-01

    We define and study symmetrized and antisymmetrized multivariate exponential functions. They are defined as determinants and antideterminants of matrices whose entries are exponential functions of one variable. These functions are eigenfunctions of the Laplace operator on the corresponding fundamental domains satisfying certain boundary conditions. To symmetric and antisymmetric multivariate exponential functions there correspond Fourier transforms. There are three types of such Fourier transforms: expansions into the corresponding Fourier series, integral Fourier transforms and multivariate finite Fourier transforms. Eigenfunctions of the integral Fourier transforms are found

  5. Positive projections of symmetric matrices and Jordan algebras

    DEFF Research Database (Denmark)

    Fuglede, Bent; Jensen, Søren Tolver

    2013-01-01

    An elementary proof is given that the projection from the space of all symmetric p×p matrices onto a linear subspace is positive if and only if the subspace is a Jordan algebra. This solves a problem in a statistical model.......An elementary proof is given that the projection from the space of all symmetric p×p matrices onto a linear subspace is positive if and only if the subspace is a Jordan algebra. This solves a problem in a statistical model....

  6. Algorithms for sparse, symmetric, definite quadratic lambda-matrix eigenproblems

    International Nuclear Information System (INIS)

    Scott, D.S.; Ward, R.C.

    1981-01-01

    Methods are presented for computing eigenpairs of the quadratic lambda-matrix, M lambda 2 + C lambda + K, where M, C, and K are large and sparse, and have special symmetry-type properties. These properties are sufficient to insure that all the eigenvalues are real and that theory analogous to the standard symmetric eigenproblem exists. The methods employ some standard techniques such as partial tri-diagonalization via the Lanczos Method and subsequent eigenpair calculation, shift-and- invert strategy and subspace iteration. The methods also employ some new techniques such as Rayleigh-Ritz quadratic roots and the inertia of symmetric, definite, quadratic lambda-matrices

  7. Determination of symmetrical index for 3H in river waters

    International Nuclear Information System (INIS)

    Jankovic, M.; Todorovic, D.; Jankovic, B.; Nikolic, J.; Sarap, N.

    2011-01-01

    The paper presents the results of determining the symmetric index, which describes the magnitude of the tritium content changes with time, for samples of Sava and Danube river waters and Mlaka creek water. The results cover the period from 2003 to 2008. It was shown that the value of the symmetric index is the highest for Mlaka samples, which is in accordance with the fact that in these samples the highest concentration of tritium was found in comparison with samples of the Sava and Danube. [sr

  8. Flat synchronizations in spherically symmetric space-times

    International Nuclear Information System (INIS)

    Herrero, Alicia; Morales-Lladosa, Juan Antonio

    2010-01-01

    It is well known that the Schwarzschild space-time admits a spacelike slicing by flat instants and that the metric is regular at the horizon in the associated adapted coordinates (Painleve-Gullstrand metric form). We consider this type of flat slicings in an arbitrary spherically symmetric space-time. The condition ensuring its existence is analyzed, and then, we prove that, for any spherically symmetric flat slicing, the densities of the Weinberg momenta vanish. Finally, we deduce the Schwarzschild solution in the extended Painleve-Gullstrand-LemaItre metric form by considering the coordinate decomposition of the vacuum Einstein equations with respect to a flat spacelike slicing.

  9. Polar bears at risk

    Energy Technology Data Exchange (ETDEWEB)

    Norris, S.; Rosentrater, L.; Eid, P.M. [WWF International Arctic Programme, Oslo (Norway)

    2002-05-01

    Polar bears, the world's largest terrestrial carnivore, spend much of their lives on the arctic sea ice. This is where they hunt and move between feeding, denning, and resting areas. The world population, estimated at 22,000 bears, is made up of 20 relatively distinct populations varying in size from a few hundred to a few thousand animals. About 60 per cent of all polar bears are found in Canada. In general, the status of this species is stable, although there are pronounced differences between populations. Reductions in the extent and thickness of sea ice has lead the IUCN Polar Bear Specialist Group to describe climate change as one of the major threats facing polar bears today. Though the long-term effects of climate change will vary in different areas of the Arctic, impacts on the condition and reproductive success of polar bears and their prey are likely to be negative. Longer ice-free periods resulting from earlier break-up of sea ice in the spring and later formation in the fall is already impacting polar bears in the southern portions of their range. In Canada's Hudson Bay, for example, bears hunt on the ice through the winter and into early summer, after which the ice melts completely, forcing bears ashore to fast on stored fat until freeze-up in the fall. The time bears have on the ice to hunt and build up their body condition is cut short when the ice melts early. Studies from Hudson Bay show that for every week earlier that ice break-up occurs, bears will come ashore 10 kg lighter and in poorer condition. It is likely that populations of polar bears dividing their time between land and sea will be severely reduced and local extinctions may occur as greenhouse gas emissions continue to rise and sea ice melts. Expected changes in regional weather patterns will also impact polar bears. Rain in the late winter can cause maternity dens to collapse before females and cubs have departed, thus exposing occupants to the elements and to predators. Such

  10. Base flow and exhaust plume interaction. Part 1 : Experimental study

    NARCIS (Netherlands)

    Schoones, M.M.J.; Bannink, W.J.

    1998-01-01

    An experimental study of the flow field along an axi-symmetric body with a single operating exhaust nozzle has been performed in the scope of an investigation on base flow-jet plume interactions. The structure of under-expanded jets in a co-flowing supersonic free stream was described using

  11. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    Grueebler, W.

    1984-01-01

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  12. GUIDE FOR POLARIZED NEUTRONS

    Science.gov (United States)

    Sailor, V.L.; Aichroth, R.W.

    1962-12-01

    The plane of polarization of a beam of polarized neutrons is changed by this invention, and the plane can be flipped back and forth quicitly in two directions in a trouble-free manner. The invention comprises a guide having a plurality of oppositely directed magnets forming a gap for the neutron beam and the gaps are spaced longitudinally in a spiral along the beam at small stepped angles. When it is desired to flip the plane of polarization the magnets are suitably rotated to change the direction of the spiral of the gaps. (AEC)

  13. Heidelberg polarized alkali source

    International Nuclear Information System (INIS)

    Kraemer, D.; Steffens, E.; Jaensch, H.; Philipps Universitaet, Marburg, Germany)

    1984-01-01

    A new atomic beam type polarized alkali ion source has been installed at Heidelberg. In order to improve the beam polarization considerably optical pumping is applied in combination with an adiabatic medium field transition which results in beams in single hyperfine sublevels. The m state population is determined by laser-induced fluorescence spectroscopy. Highly polarized beams (P/sub s/ > 0.9, s = z, zz) with intensities of 30 to 130 μA can be extracted for Li + and Na + , respectively

  14. Bilaterally symmetric Fourier approximations of the skull outlines of ...

    Indian Academy of Sciences (India)

    Present work illustrates a scheme of quantitative description of the shape of the skull outlines of temnospondyl amphibians using bilaterally symmetric closed Fourier curves. Some special points have been identified on the Fourier fits of the skull outlines, which are the local maxima, or minima of the distances from the ...

  15. PEO nanocomposite polymer electrolyte for solid state symmetric

    Indian Academy of Sciences (India)

    Physical and electrochemical properties of polyethylene oxide (PEO)-based nanocomposite solid polymer electrolytes (NPEs) were investigated for symmetric capacitor applications. Nanosize fillers, i.e., Al2O3 and SiO2 incorporated polymer electrolyte exhibited higher ionic conductivity than those with filler-free composites ...

  16. Symmetric approximations of the Navier-Stokes equations

    International Nuclear Information System (INIS)

    Kobel'kov, G M

    2002-01-01

    A new method for the symmetric approximation of the non-stationary Navier-Stokes equations by a Cauchy-Kovalevskaya-type system is proposed. Properties of the modified problem are studied. In particular, the convergence as ε→0 of the solutions of the modified problem to the solutions of the original problem on an infinite interval is established

  17. Duality, phase structures, and dilemmas in symmetric quantum games

    International Nuclear Information System (INIS)

    Ichikawa, Tsubasa; Tsutsui, Izumi

    2007-01-01

    Symmetric quantum games for 2-player, 2-qubit strategies are analyzed in detail by using a scheme in which all pure states in the 2-qubit Hilbert space are utilized for strategies. We consider two different types of symmetric games exemplified by the familiar games, the Battle of the Sexes (BoS) and the Prisoners' Dilemma (PD). These two types of symmetric games are shown to be related by a duality map, which ensures that they share common phase structures with respect to the equilibria of the strategies. We find eight distinct phase structures possible for the symmetric games, which are determined by the classical payoff matrices from which the quantum games are defined. We also discuss the possibility of resolving the dilemmas in the classical BoS, PD, and the Stag Hunt (SH) game based on the phase structures obtained in the quantum games. It is observed that quantization cannot resolve the dilemma fully for the BoS, while it generically can for the PD and SH if appropriate correlations for the strategies of the players are provided

  18. SUSY formalism for the symmetric double well potential

    Indian Academy of Sciences (India)

    Using first- and second-order supersymmetric Darboüx formalism and starting with symmetric double well potential barrier we have obtained a class of exactly solvable potentials subject to moving boundary condition. The eigenstates are also obtained by the same technique.

  19. Initial value formulation for the spherically symmetric dust solution

    International Nuclear Information System (INIS)

    Liu, H.

    1990-01-01

    An initial value formulation for the dust solution with spherical symmetry is given explicitly in which the initial distributions of dust and its velocity on an initial surface are chosen to be the initial data. As special cases, the Friedmann universe, the Schwarzschild solution in comoving coordinates, and a spherically symmetric and radially inhomogeneous cosmological model are derived

  20. Coupled dilaton and electromagnetic field in cylindrically symmetric ...

    Indian Academy of Sciences (India)

    An exact solution is obtained for coupled dilaton and electromagnetic field in a cylindrically symmetric spacetime where an axial magnetic field as well as a radial electric field both are present. Depending on the choice of the arbitrary constants our solution reduces either to dilatonic gravity with pure electric field or to that ...

  1. PT-Symmetric Waveguides and the Lack of Variational Techniques

    Czech Academy of Sciences Publication Activity Database

    Krejčiřík, David

    2012-01-01

    Roč. 73, č. 1 (2012), s. 1-2 ISSN 0378-620X Institutional support: RVO:61389005 Keywords : Robin Laplacian * non-self-adjoint boundary conditions * complex symmetric operator * PT-symmetry * waveguides * discrete and essential spectra Subject RIV: BA - General Mathematics Impact factor: 0.713, year: 2012

  2. Confining but chirally symmetric dense and cold matter

    International Nuclear Information System (INIS)

    Glozman, L. Ya.

    2012-01-01

    The possibility for existence of cold, dense chirally symmetric matter with confinement is reviewed. The answer to this question crucially depends on the mechanism of mass generation in QCD and interconnection of confinement and chiral symmetry breaking. This question can be clarified from spectroscopy of hadrons and their axial properties. Almost systematical parity doubling of highly excited hadrons suggests that their mass is not related to chiral symmetry breaking in the vacuum and is approximately chirally symmetric. Then there is a possibility for existence of confining but chirally symmetric matter. We clarify a possible mechanism underlying such a phase at low temperatures and large density. Namely, at large density the Pauli blocking prevents the gap equation to generate a solution with broken chiral symmetry. However, the chirally symmetric part of the quark Green function as well as all color non-singlet quantities are still infrared divergent, meaning that the system is with confinement. A possible phase transition to such a matter is most probably of the first order. This is because there are no chiral partners to the lowest lying hadrons.

  3. Technical report: Electric field in not completely symmetric systems

    International Nuclear Information System (INIS)

    Vila, F.

    1994-08-01

    In this paper it is studied theoretically the electric field in the not completely symmetric system earthed metallic sphere-uniformly charged dielectric plan, for sphere surface points situated in the plan that contains sphere's center and vertical symmetry axe of dielectric plan. (author). 11 refs, 1 fig

  4. Symmetrical waveguide devices fabricated by direct UV writing

    DEFF Research Database (Denmark)

    Færch, Kjartan Ullitz; Svalgaard, Mikael

    2002-01-01

    Power splitters and directional couplers fabricated by direct UV writing in index matched silica-on-silicon samples can suffer from an asymmetrical device performance, even though the UV writing is carried out in a symmetrical fashion. This effect originates from a reduced photosensitivity...

  5. On the axially symmetric equilibrium of a magnetically confined plasma

    International Nuclear Information System (INIS)

    Lehnert, B.

    1975-01-01

    The axially symmetric equilibrium of a magnetically confined plasma is reconsidered, with the special purpose of studying high-beta schemes with a purely poloidal magnetic field. A number of special solutions of the pressure and magnetic flux functions are shown to exist, the obtained results may form starting-points in a further analysis of physically relevant configurations. (Auth.)

  6. Symmetric structures of coherent states in superfluid helium-4

    International Nuclear Information System (INIS)

    Ahmad, M.

    1981-02-01

    Coherent States in superfluid helium-4 are discussed and symmetric structures are assigned to these states. Discrete and continuous series functions are exhibited for such states. Coherent State structure has been assigned to oscillating condensed bosons and their inter-relations and their effects on the superfluid system are analysed. (author)

  7. Spectra of PT -symmetric Hamiltonians on tobogganic contours

    Indian Academy of Sciences (India)

    The term PT -symmetric quantum mechanics, although defined to be of a much broader use, was coined in tight connection with C. Bender's analysis of one- ... on the other hand, the other members of the family were strange Hamiltonians with imaginary potentials which do not appear physical at all. The aim of the.

  8. Symmetrical and asymmetrical growth restriction in preterm-born children

    NARCIS (Netherlands)

    Bocca-Tjeertes, Inger; Bos, Arend; Kerstjens, Jorien; de Winter, Andrea; Reijneveld, Sijmen

    OBJECTIVE: To determine how symmetric (proportionate; SGR) and asymmetric (disproportionate; AGR) growth restriction influence growth and development in preterms from birth to 4 years. METHODS: This community-based cohort study of 810 children comprised 86 SGR, 61 AGR, and 663 non-growth restricted

  9. Perception of the Symmetrical Patterning of Human Gait by Infants.

    Science.gov (United States)

    Booth, Amy E.; Pinto, Jeannine; Bertenthal, Bennett I.

    2002-01-01

    Two experiments tested infants' sensitivity to properties of point-light displays of a walker and a runner that were equivalent regarding the phasing of limb movements. Found that 3-, but not 5-month-olds, discriminated these displays. When the symmetrical phase-patterning of the runner display was perturbed by advancing two of its limbs by 25…

  10. Rotationally symmetric numerical solutions to the sine-Gordon equation

    DEFF Research Database (Denmark)

    Olsen, O. H.; Samuelsen, Mogens Rugholm

    1981-01-01

    We examine numerically the properties of solutions to the spherically symmetric sine-Gordon equation given an initial profile which coincides with the one-dimensional breather solution and refer to such solutions as ring waves. Expanding ring waves either exhibit a return effect or expand towards...

  11. Symmetrical Womanhood: The Educational Ideology of Activism at Wellesley.

    Science.gov (United States)

    Palmieri, Patricia Ann

    1995-01-01

    The ideology of higher education for women at Wellesley College in the late 19th and early 20th centuries is discussed in the context of feminism and the women's suffrage movement. "Symmetrical womanhood," a concept emphasizing balance of traditional roles and intellectual and community involvement, was a goal of Wellesley faculty of…

  12. Normalizations of Eisenstein integrals for reductive symmetric spaces

    NARCIS (Netherlands)

    van den Ban, E.P.; Kuit, Job

    2017-01-01

    We construct minimal Eisenstein integrals for a reductive symmetric space G/H as matrix coefficients of the minimal principal series of G. The Eisenstein integrals thus obtained include those from the \\sigma-minimal principal series. In addition, we obtain related Eisenstein integrals, but with

  13. Analytic families of eigenfunctions on a reductive symmetric space

    NARCIS (Netherlands)

    Ban, E.P. van den; Schlichtkrull, H.

    2000-01-01

    In harmonic analysis on a reductive symmetric space X an important role is played by families of generalized eigenfunctions for the algebra D (X) of invariant dierential operators. Such families arise for instance as matrix coeÆcients of representations that come in series, such as the (generalized)

  14. Whittaker Vector of Deformed Virasoro Algebra and Macdonald Symmetric Functions

    Science.gov (United States)

    Yanagida, Shintarou

    2016-03-01

    We give a proof of Awata and Yamada's conjecture for the explicit formula of Whittaker vector of the deformed Virasoro algebra realized in the Fock space. The formula is expressed as a summation over Macdonald symmetric functions with factored coefficients. In the proof, we fully use currents appearing in the Fock representation of Ding-Iohara-Miki quantum algebra.

  15. Plane Symmetric Cosmological Model with Quark and Strange ...

    Indian Academy of Sciences (India)

    Keywords. f(R,T) theory of gravity—plane symmetric space-time—quark and strange quark matter—constant deceleration parameter. 1. Introduction. Modern astrophysical observations point out that present expansion of the Universe is an accelerated epoch. The most fascinating evidence for this is found in measurements ...

  16. Strong orientational coordinates and orientational order parameters for symmetric objects

    International Nuclear Information System (INIS)

    Haji-Akbari, Amir; Glotzer, Sharon C

    2015-01-01

    Recent advancements in the synthesis of anisotropic macromolecules and nanoparticles have spurred an immense interest in theoretical and computational studies of self-assembly. The cornerstone of such studies is the role of shape in self-assembly and in inducing complex order. The problem of identifying different types of order that can emerge in such systems can, however, be challenging. Here, we revisit the problem of quantifying orientational order in systems of building blocks with non-trivial rotational symmetries. We first propose a systematic way of constructing orientational coordinates for such symmetric building blocks. We call the arising tensorial coordinates strong orientational coordinates (SOCs) as they fully and exclusively specify the orientation of a symmetric object. We then use SOCs to describe and quantify local and global orientational order, and spatiotemporal orientational correlations in systems of symmetric building blocks. The SOCs and the orientational order parameters developed in this work are not only useful in performing and analyzing computer simulations of symmetric molecules or particles, but can also be utilized for the efficient storage of rotational information in long trajectories of evolving many-body systems. (paper)

  17. Is PT -symmetric quantum theory false as a fundamental theory?

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2016-01-01

    Roč. 56, č. 3 (2016), s. 254-257 ISSN 1210-2709 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : quantum mechanics * PT-symmetric representations of observables * masurement outcomes Subject RIV: BE - Theoretical Physics

  18. A New Symmetrical Unit for Breakwater Armour : First Tests

    NARCIS (Netherlands)

    Salauddin, M.; Broere, A.; Van der Meer, J.W.; Verhagen, H.J.; Bijl, E.

    2015-01-01

    A new and symmetrical single layer armour unit, the crablock, has been designed in the UAE. One breakwater was reconstructed with crablock, but very limited testing had been performed. Just to become more acquainted with this new unit, pre-competitive research at a university has been performed,

  19. Helically symmetric experiment, (HSX) goals, design and status

    International Nuclear Information System (INIS)

    Anderson, F.S.B.; Almagri, A.F.; Anderson, D.T.; Matthews, P.G.; Talmadge, J.N.; Shohet, J.L.

    1995-01-01

    HSX is a quasi-helically symmetric (QHS) stellarator currently under construction at the Torsatron-Stellarator Laboratory of the University of Wisconsin-Madison. This device is unique in its magnetic design in that the magnetic field spectrum possesses only a single dominant (helical) component. This design avoids the large direct orbit losses and the low-collisionality neoclassical losses associated with conventional stellarators. The restoration of symmetry to the confining magnetic field makes the neoclassical confinement in this device analogous to an axisymmetric q=1/3 tokamak. The HSX device has been designed with a clear set of primary physics goals: demonstrate the feasibility of construction of a QHS device, examine single particle confinement of injected ions with regard to magnetic field symmetry breaking, compare density and temperature profiles in this helically symmetric system to those for axisymmetric tokamaks and conventional stellarators, examine electric fields and plasma rotation with edge biasing in relation to L-H transitions in symmetric versus non-symmetric stellarator systems, investigate QHS effects on 1/v regime electron confinement, and examine how greatly-reduced neoclassical electron thermal conductivity compares to the experimental χ e profile. 3 refs., 4 figs., 1 tab

  20. On the random geometry of a symmetric matter antimatter universe

    International Nuclear Information System (INIS)

    Aldrovandi, R.; Goto, M.

    1977-05-01

    A statistical analysis is made of the randon geometry of an early symmetric matter-antimatter universe model. Such a model is shown to determine the total number of the largest agglomerations in the universe, as well as of some special configurations. Constraints on the time development of the protoagglomerations are also obtained