WorldWideScience

Sample records for polar solvent system

  1. Quantitative infrared spectroscopy of lipids in solution: II. Novel polar solvent systems.

    Science.gov (United States)

    Schmid, P; Steiner, R N

    1975-01-01

    In the second part of this series, previous solvent limitations in infrared studies are discussed and novel polar solvent systems for the analysis of nonpolar and polar lipids described. Limitation of potassium bromide windows for infrared cells are discussed. The use of calcium fluoride cells with crude lipids is discussed. Problems related to hydrogen bonding of lipid solutes in various solvent systems are discussed as well as hydrogen-deuterium exchange in biologically important lipids.

  2. Organic high ionic strength aqueous two-phase solvent system series for separation of ultra-polar compounds by spiral high-speed counter-current chromatography

    Science.gov (United States)

    Zeng, Yun; Liu, Gang; Ma, Ying; Chen, Xiaoyuan; Ito, Yoichiro

    2011-01-01

    Existing two-phase solvent systems for high-speed countercurrent chromatography cover the separation of hydrophobic to moderately polar compounds, but often fail to provide suitable partition coefficient values for highly polar compounds such as sulfonic acids, catecholamines and zwitter ions. The present paper introduces a new solvent series which can be applied for the separation of these polar compounds. It is composed of 1-butanol, ethanol, saturated ammonium sulfate and water at various volume ratios and consists of a series of 10 steps which are arranged according to the polarity of the solvent system so that the two-phase solvent system with suitable K values for the target compound(s) can be found in a few steps. Each solvent system gives proper volume ratio and high density difference between the two phases to provide a satisfactory level of retention of the stationary phase in the spiral column assembly. The method is validated by partition coefficient measurement of four typical polar compounds including methyl green (basic dye), tartrazine (sulfonic acid), tyrosine (zwitter ion) and epinephrine (a catecholamine), all of which show low partition coefficient values in the polar 1-butanol-water system. The capability of the method is demonstrated by separation of three catecholamines. PMID:22033108

  3. Photocyclization reaction of a diarylmaleimide derivative in polar solvents.

    Science.gov (United States)

    Ohsumi, Masato; Hazama, Masaki; Fukaminato, Tuyoshi; Irie, Masahiro

    2008-07-28

    Photochromism of a symmetric diarylmaleimide derivative, having two thiophene rings (1), and a non-symmetric derivative having a S,S-dioxide thiophene ring and a thiophene ring (2) as the aryl moieties, was studied in various solvents. The photocyclization quantum yield of gradually decreased with increasing the solvent polarity and the reaction was not observed in polar solvents, such as ethanol and acetonitrile; on the other hand, such a strong solvent dependence of the photocyclization reaction was not observed for ; the different behavior is attributed to the weaker electron donating ability of the S,S-dioxide thiophene ring.

  4. CO2-Binding Organic Liquids Gas Capture with Polarity-Swing-Assisted Regeneration Full Technology Feasibility Study B1 - Solvent-based Systems

    Energy Technology Data Exchange (ETDEWEB)

    Heldebrant, David J

    2014-08-31

    PNNL, Fluor Corporation and Queens University (Kingston, ON) successfully completed a three year comprehensive study of the CO2BOL water-lean solvent platform with Polarity Swing Assisted Regeneration (PSAR). This study encompassed solvent synthesis, characterization, environmental toxicology, physical, thermodynamic and kinetic property measurements, Aspen Plus™ modeling and bench-scale testing of a candidate CO2BOL solvent molecule. Key Program Findings The key program findings are summarized as follows: • PSAR favorably reduced stripper duties and reboiler temperatures with little/no impact to absorption column • >90% CO2 capture was achievable at reasonable liquid-gas ratios in the absorber • High rich solvent viscosities (up to 600 cP) were successfully demonstrated in the bench-scale system. However, the projected impacts of high viscosity to capital cost and operational limits compromised the other levelized cost of electricity benefits. • Low thermal conductivity of organics significantly increased the required cross exchanger surface area, and potentially other heat exchange surfaces. • CO2BOL had low evaporative losses during bench-scale testing • There was no evidence of foaming during bench scale testing • Current CO2BOL formulation costs project to be $35/kg • Ecotoxicity (Water Daphnia) was comparable between CO2BOL and MEA (169.47 versus 103.63 mg/L) • Full dehydration of the flue gas was determined to not be economically feasible. However, modest refrigeration (13 MW for the 550 MW reference system) was determined to be potentially economically feasible, and still produce a water-lean condition for the CO2BOLs (5 wt% steady-state water loading). • CO2BOLs testing with 5 wt% water loading did not compromise anhydrous performance behavior, and showed actual enhancement of CO2 capture performance. • Mass transfer of CO2BOLs was not greatly impeded by viscosity • Facile separation of antisolvent from lean CO2BOL was

  5. Frequency-Dependent Solvent Impedance and Colloid Microelectrophoresis Measurements in Partially Polar Solvents.

    Science.gov (United States)

    Hayden, Edward; Aljabal, Zena; Yethiraj, Anand

    2017-05-16

    We carry out frequency-dependent solvent impedance measurements and alternating current (ac) colloid microelectrophoresis experiments in partially polar solvents in the low-frequency regime (0.25 Hz ≤ f ≤ 10 Hz). Solvent electrode polarization effects are quantified first in partially polar solvent mixtures containing bromocyclohexane (CHB). We find that the polarization capacitance from electrode polarization exhibits a clear power law behavior C p = C p0 f -m with power law exponent m = 0.25 ± 0.04. Once we account for electrode polarization effects, we are able to obtain quantitative mobilities in the low-frequency regime from our ac microelectrophoresis measurements; for these measurements, we use poly(methyl methacrylate colloids that are gravitationally confined to a plane while suspended in a low-polar solvent mixture of cis-trans decahydronapthalene and CHB. We find that the dimensionless electrophoretic mobility is constant, consistent with expectations for frequencies below the ion-diffusion frequency, and has a value E = 1.6 ± 0.4.

  6. The Role of Solvent Polarity on Low-Temperature Methanol Synthesis Catalyzed by Cu Nanoparticles

    International Nuclear Information System (INIS)

    Ahoba-Sam, Christian; Olsbye, Unni; Jens, Klaus-Joachim

    2017-01-01

    Methanol syntheses at low temperature in a liquid medium present an opportunity for full syngas conversion per pass. The aim of this work was to study the role of solvents polarity on low-temperature methanol synthesis reaction using eight different aprotic polar solvents. A “once through” catalytic system, which is composed of Cu nanoparticles and sodium methoxide, was used for methanol synthesis at 100°C and 20 bar syngas pressure. Solvent polarity rather than the 7–10 nm Cu (and 30 nm Cu on SiO 2 ) catalyst used dictated trend of syngas conversion. Diglyme with a dielectric constant (ε) = 7.2 gave the highest syngas conversion among the eight different solvents used. Methanol formation decreased with either increasing or decreasing solvent ε value of diglyme (ε = 7.2). To probe the observed trend, possible side reactions of methyl formate (MF), the main intermediate in the process, were studied. MF was observed to undergo two main reactions; (i) decarbonylation to form CO and MeOH and (ii) a nucleophilic substitution to form dimethyl ether and sodium formate. Decreasing polarity favored the decarbonylation side reaction while increasing polarity favored the nucleophilic substitution reaction. In conclusion, our results show that moderate polarity solvents, e.g., diglyme, favor MF hydrogenolysis and, hence, methanol formation, by retarding the other two possible side reactions.

  7. Relaxation dynamics of a polar solvent cage around a nonpolar electronically excited solvent probe. A subpicosecond laser study

    International Nuclear Information System (INIS)

    Mialocq, J.C.; Hebert, P.; Baldacchino, G.; Gustavsson, T.

    1993-01-01

    The aim of the present paper is to show that the LDS 751 unsymmetrical cyanine laser dye, highly polar in the ground state and non polar in the fluorescent excited singlet state, is a suitable solvent probe. Excitation of LDS 751 in a polar solvent with an ultrashort laser pulse suddenly annihilates the permanent dipole moment of the solute and suppresses the forces which orientate the nearby solvent molecules. The subpicosecond analysis of the Time-Dependent Fluorescence Stokes Shift (TDFSS) of LDS 751 thus enables to probe the relaxation of polar solvent molecules which can be considered as free of solute-solvent interactions. (author)

  8. Near-threshold photoionization of aromatic solutes in polar solvents

    Science.gov (United States)

    Kohler, Bern

    2000-03-01

    In recent years, pump-probe experiments with femtosecond laser pulses have provided exciting new insight into the dynamics of excess electrons in polar liquids. Some of these findings are resulting in revisions to long-held notions in radiation chemistry. In particular, there is now increasing evidence that photoionization close to threshold proceeds by a mechanism radically different than that of charge ejection from an isolated molecule. Photoionization in this near-threshold regime does not require the promotion of an electron to the conduction band of the solvent, but can instead proceed by a mechanism that more closely resembles photoinduced electron transfer to localized electronic states. The density of these localized trapping states is substantial in water and extends as much as several eV below the conduction band edge. Charge ejection experiments in polar solvents can thus provide new information about the energy landscapes of molecular liquids. Because it is inconvenient to access the ionization threshold energy of neat liquids, our work has focused on charge ejection from aromatic compounds "doped" into the band gap of various polar solvents. This allows easier access to the energies necessary for near-threshold photoionization and allows specific solute-solvent interactions to be explored by chemical substitution. Results from femtosecond transient absorption experiments will be presented on the photoionization dynamics of indole, benzimidazole, and some nucleic acid bases. In addition, some results will be presented from photodetachment experiments on solvated radical ions.

  9. Dispersing surface-modified imogolite nanotubes in polar and non-polar solvents

    Science.gov (United States)

    Li, Ming; Brant, Jonathan A.

    2018-02-01

    Furthering the development of nanocomposite structures, namely membranes for water treatment applications, requires that methods be developed to ensure nanoparticle dispersion in polar and non-polar solvents, as both are widely used in associated synthesis techniques. Here, we report on a two-step method to graft polyvinylpyrrolidone (PVP), and a one-step method for octadecylphosphonic acid (OPA), onto the outer surfaces of imogolite nanotubes. The goal of these approaches was to improve and maintain nanotube dispersion in polymer compatible polar and non-polar solvents. The PVP coating modified the imogolite surface charge from positive to weakly negative at pH ≤ 9; the OPA made it weakly positive at acidic pH values to negative at pH ≥ 7. The PVP surface coating stabilized the nanotubes through steric hindrance in polar protic, dipolar aprotic, and chloroform. In difference to the PVP, the OPA surface coating allowed the nanotubes to be dispersed in n-hexane and chloroform, but not in the polar solvents. The lack of miscibility in the polar solvents, as well as the better dispersion in n-hexane, was attributed to the stronger hydrophobicity of the OPA polymer relative to the PVP. [Figure not available: see fulltext.

  10. Solvent sorting in (mixed solvent electrolyte) systems: Time-resolved ...

    Indian Academy of Sciences (India)

    Solvent sorting in (mixed solvent electrolyte) systems: Time-resolved ... Mixed solvent systems; electrolyte solutions; dynamic fluorescence measurements; theory. 1. ..... Open and filled triangles represent τs for the other binary mixture in the absence and presence of 1.0 M LiClO4, respectively. exponentially with the mole ...

  11. Photophysics of Curcumin excited state in toluene-polar solvent mixtures: Role of H-bonding properties of the polar solvent

    Energy Technology Data Exchange (ETDEWEB)

    Saini, R.K.; Das, K., E-mail: kaustuv@rrcat.gov.in

    2014-01-15

    Excited state dynamics of Curcumin in binary solvent mixtures of toluene and polar H-bonding solvents were compared by using an instrument endowed with 40 ps time resolution. The solvation time constant of Curcumin increases significantly (and can therefore be measured) in polar solvents which have, either, both H-bond donating and accepting ability, or, only H-bond donating ability. These results suggest that the rate limiting step in the excited state dynamics of the pigment might be the formation and reorganization of the intermolecular H-bonding between the keto group of the pigment and the H-bond donating moieties of the polar solvent. -- Highlights: • Excited state dynamics of Curcumin in a binary solvent mixture of toluene and three polar H-bonding solvents were compared. • The solvation time constant increases significantly with polar solvents having, H-bond donating and accepting, or, H-bond donating ability. • Observed results suggest that H-bonding property of polar solvent plays an important role in the excited state dynamics. • Intermolecular H-bonding between the keto group of the pigment and polar solvent may be the rate limiting step.

  12. Photophysics of Curcumin excited state in toluene-polar solvent mixtures: Role of H-bonding properties of the polar solvent

    International Nuclear Information System (INIS)

    Saini, R.K.; Das, K.

    2014-01-01

    Excited state dynamics of Curcumin in binary solvent mixtures of toluene and polar H-bonding solvents were compared by using an instrument endowed with 40 ps time resolution. The solvation time constant of Curcumin increases significantly (and can therefore be measured) in polar solvents which have, either, both H-bond donating and accepting ability, or, only H-bond donating ability. These results suggest that the rate limiting step in the excited state dynamics of the pigment might be the formation and reorganization of the intermolecular H-bonding between the keto group of the pigment and the H-bond donating moieties of the polar solvent. -- Highlights: • Excited state dynamics of Curcumin in a binary solvent mixture of toluene and three polar H-bonding solvents were compared. • The solvation time constant increases significantly with polar solvents having, H-bond donating and accepting, or, H-bond donating ability. • Observed results suggest that H-bonding property of polar solvent plays an important role in the excited state dynamics. • Intermolecular H-bonding between the keto group of the pigment and polar solvent may be the rate limiting step

  13. Solvent sorting in (mixed solvent electrolyte) systems: Time-resolved ...

    Indian Academy of Sciences (India)

    eral studies7–19 that investigated the solvation and rota- tional dynamics either in electrolyte solutions in a sin- gle polar solvent or in binary mixtures in the absence of any electrolyte, similar studies for electrolyte solutions. £For correspondence ..... vent rotation being much faster than the ion translation provides some ...

  14. Lipase mediated synthesis of rutin fatty ester: Study of its process parameters and solvent polarity.

    Science.gov (United States)

    Vaisali, C; Belur, Prasanna D; Regupathi, Iyyaswami

    2017-10-01

    Lipophilization of antioxidants is recognized as an effective strategy to enhance solubility and thus effectiveness in lipid based food. In this study, an effort was made to optimize rutin fatty ester synthesis in two different solvent systems to understand the influence of reaction system hydrophobicity on the optimum conditions using immobilised Candida antartica lipase. Under unoptimized conditions, 52.14% and 13.02% conversion was achieved in acetone and tert-butanol solvent systems, respectively. Among all the process parameters, water activity of the system was found to show highest influence on the conversion in each reaction system. In the presence of molecular sieves, the ester production increased to 62.9% in tert-butanol system, unlike acetone system. Under optimal conditions, conversion increased to 60.74% and 65.73% in acetone and tert-butanol system, respectively. This study shows, maintaining optimal water activity is crucial in reaction systems having polar solvents compared to more non-polar solvents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Lid opening and conformational stability of T1 Lipase is mediated by increasing chain length polar solvents

    Directory of Open Access Journals (Sweden)

    Jonathan Maiangwa

    2017-05-01

    Full Text Available The dynamics and conformational landscape of proteins in organic solvents are events of potential interest in nonaqueous process catalysis. Conformational changes, folding transitions, and stability often correspond to structural rearrangements that alter contacts between solvent molecules and amino acid residues. However, in nonaqueous enzymology, organic solvents limit stability and further application of proteins. In the present study, molecular dynamics (MD of a thermostable Geobacillus zalihae T1 lipase was performed in different chain length polar organic solvents (methanol, ethanol, propanol, butanol, and pentanol and water mixture systems to a concentration of 50%. On the basis of the MD results, the structural deviations of the backbone atoms elucidated the dynamic effects of water/organic solvent mixtures on the equilibrium state of the protein simulations in decreasing solvent polarity. The results show that the solvent mixture gives rise to deviations in enzyme structure from the native one simulated in water. The drop in the flexibility in H2O, MtOH, EtOH and PrOH simulation mixtures shows that greater motions of residues were influenced in BtOH and PtOH simulation mixtures. Comparing the root mean square fluctuations value with the accessible solvent area (SASA for every residue showed an almost correspondingly high SASA value of residues to high flexibility and low SASA value to low flexibility. The study further revealed that the organic solvents influenced the formation of more hydrogen bonds in MtOH, EtOH and PrOH and thus, it is assumed that increased intraprotein hydrogen bonding is ultimately correlated to the stability of the protein. However, the solvent accessibility analysis showed that in all solvent systems, hydrophobic residues were exposed and polar residues tended to be buried away from the solvent. Distance variation of the tetrahedral intermediate packing of the active pocket was not conserved in organic solvent

  16. Phase Behavior of Laundry Surfactants in Polar Solvents

    NARCIS (Netherlands)

    Stuart, Marc C.A.; Pas, John C. van de; Engberts, Jan B.F.N.

    2006-01-01

    Laundry surfactants are usually mixtures of ionic and nonionic detergents that exhibit a complex phase behavior. Here the ternary phase behavior of an isotropic and a liquid crystalline (LC) surfactant mixture has been examined in water/solvent systems. The size of the LC area in the ternary phase

  17. Solvent density mode instability in non-polar solutions

    Indian Academy of Sciences (India)

    this region produces time scales, one in the range of 1–2 ps and the other in the range of ≥10 ps for f = 4 as reported earlier [17]. Note also that both the values of f (f = 4) and density for which these two time scales are predicted are very close to the solute–solvent systems for which the experiments have reported multiple ...

  18. The effect of different solvent polarity on the precipitation of heavy ...

    African Journals Online (AJOL)

    The precipitation of heavy organics (Saturates, Aromatics, Resins and Asphaltenes) from the Niger delta (Atan crude oil residue) was studied. Two C4 organic polar solvents (ethyl acetate and butanone) were used to investigate the effect of polarity of the precipitating solvents. The heavy organics precipitated from Antan ...

  19. Effects of solvent polarity on mutual styrene grafting onto polypropylene by electron beam irradiation

    International Nuclear Information System (INIS)

    Moura, E.; Manzoli, J.E.; Geraldo, A.B.C.

    2012-01-01

    Radiation induced mutual grafting of styrene onto polypropylene has been carried using several grafting solutions with different organic solvents and polarity levels. In the mixture of styrene and protic polar solvents high grafting yields were obtained. This behavior suggests that grafting process does not have dependence on swelling of the substrate, something that is expected when a non-polar substrate and a non-polar media are in contact. In this case, the grafting yield may be related to the free radical generation at protic polar solvent; these reactive specimens start the reaction on substrate surface to allow the accessibility of monomer species to active sites. Some reaction mechanisms are proposed. - Highlights: ► Styrene grafting is performed with high yield when protic polar solvents are used. ► Results are related to effects from electron solvation and dipole interactions. ► Grafting samples performed in n-octanol mixtures had crystallinity changes.

  20. In silico study of amphiphilic nanotubes based on cyclic peptides in polar and non-polar solvent

    DEFF Research Database (Denmark)

    Vijayakumar, Vinodhkumar; Vijayaraj, Ramadoss; Peters, Günther H.J.

    2016-01-01

    The stability of cyclic peptide assemblies (CPs) forming a macromolecular nanotube structure was investigated in solvents of different polarity using computational methods. The stability and structure of the complexes were studied using traditional molecular dynamics (MD). Energy of dissociation ...

  1. Solvent density mode instability in non-polar solutions

    Indian Academy of Sciences (India)

    1Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National. Centre for Basic Sciences, ... upon excitation mainly drives the solvent reorganization [12,13]. However, the. Stokes shifts ..... process [17] where a solvent density mode with momentum q is scattered to another density mode of ...

  2. Aminosilicone solvent recovery methods and systems

    Energy Technology Data Exchange (ETDEWEB)

    Spiry, Irina Pavlovna; Perry, Robert James; Wood, Benjamin Rue; Singh, Surinder Prabhjot; Farnum, Rachel Lizabeth; Genovese, Sarah Elizabeth

    2018-02-13

    The present invention is directed to aminosilicone solvent recovery methods and systems. The methods and systems disclosed herein may be used to recover aminosilicone solvent from a carbon dioxide containing vapor stream, for example, a vapor stream that leaves an aminosilicone solvent desorber apparatus. The methods and systems of the invention utilize a first condensation process at a temperature from about 80.degree. C. to about 150.degree. C. and a second condensation process at a temperature from about 5.degree. C. to about 75.degree. C. The first condensation process yields recovered aminosilicone solvent. The second condensation process yields water.

  3. Influence of polar solvents on the enhancement of light-ends in ...

    African Journals Online (AJOL)

    Crude oil 'micelle' can be dispersed into fuels, oil and resin/asphalthene components using some hydrocarbon solvents. This can be adapted towards influencing/enhancing its product slates during the processing of crude oils. This research was carried out to investigate the effect of polar solvents (ethanol and acetone) in ...

  4. Variational calculation of quantum mechanical/molecular mechanical free energy with electronic polarization of solvent

    Science.gov (United States)

    Nakano, Hiroshi; Yamamoto, Takeshi

    2012-04-01

    Quantum mechanical/molecular mechanical (QM/MM) free energy calculation presents a significant challenge due to an excessive number of QM calculations. A useful approach for reducing the computational cost is that based on the mean field approximation to the QM subsystem. Here, we describe such a mean-field QM/MM theory for electronically polarizable systems by starting from the Hartree product ansatz for the total system and invoking a variational principle of free energy. The MM part is then recast to a classical polarizable model by introducing the charge response kernel. Numerical test shows that the potential of mean force (PMF) thus obtained agrees quantitatively with that obtained from a direct QM/MM calculation, indicating the utility of self-consistent mean-field approximation. Next, we apply the obtained method to prototypical reactions in several qualitatively different solvents and make a systematic comparison of polarization effects. The results show that in aqueous solution the PMF does not depend very much on the water models employed, while in nonaqueous solutions the PMF is significantly affected by explicit polarization. For example, the free energy barrier for a phosphoryl dissociation reaction in acetone and cyclohexane is found to increase by more than 10 kcal/mol when switching the solvent model from an empirical to explicitly polarizable one. The reason for this is discussed based on the parametrization of empirical nonpolarizable models.

  5. Plasma-polymerized films providing selective affinity to the polarity of vaporized organic solvents

    International Nuclear Information System (INIS)

    Akimoto, Takuo; Ikeshita, Yusuke; Terashima, Ryo; Karube, Isao

    2009-01-01

    Plasma-polymerized films (PPFs) were fabricated as recognition membranes for a vapor-sensing device, and their affinity to vaporized organic solvents was evaluated with surface plasmon resonance. The affinity we intended to create is the selective sorption of the vaporized organic solvents depending on their polarity. For this purpose, acetonitrile, ethylenediamine (EDA), styrene, hexamethyldisiloxane (HMDSO), and hexamethyldisilazane were used to fabricate PPFs. Vaporized methanol, ethanol, and 1-propanol were used as high-polar solvents to be analyzed. Hexane, toluene, and p-xylene were used as low-polar solvents. As a result, the HMDSO-PPF with 97.3 o of contact angle was found to provide affinity to the low-polar solvents. In contrast, the EDA-PPF with 7.1 o of contact angle provided affinity to the high-polar solvents. Observations of the surface morphology of the HMDSO- and EDA-PPFs with a scanning electron microscope revealed that they are composed of nano-scale islands.

  6. How many molecular layers of polar solvent molecules control chemistry? The concept of compensating dipoles.

    Science.gov (United States)

    Langhals, Heinz; Braun, Patricia; Dietl, Christian; Mayer, Peter

    2013-09-27

    The extension of the solvent influence of the shell into the volume of a polar medium was examined by means of anti-collinear dipoles on the basis of the E(T)(30) solvent polarity scale (i.e., the molar energy of excitation of a pyridinium-N-phenolatebetaine dye; generally: E(T) =28,591 nm kcal mol(-1)/λmax) where no compensation effects were found. As a consequence, solvent polarity effects are concentrated to a very thin layer of a few thousand picometres around the solute where extensions into the bulk solvent become unimportant. A parallelism to the thin surface layer of water to the gas phase is discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effects of polar protic solvents on dual emissions of 3 ...

    Indian Academy of Sciences (India)

    TECS

    max – position of the fluorescence maxima of N* and T* forms, respectively; φ is the fluorescence quantum yield. bData from ref. [25]. cThe long-wavelength absorption band of the dye overlaps with the absorption spectrum of the anionic form in this solvent. dThe long-wavelength absorption band appears as a shoulder in ...

  8. Tipping Point for Expansion of Layered Aluminosilicates in Weakly Polar Solvents: Supercritical CO 2

    Energy Technology Data Exchange (ETDEWEB)

    Schaef, Herbert T. [Pacific Northwest National Laboratory, Richland, Washington 99356, United States; Loganathan, Narasimhan [College; Bowers, Geoffrey M. [Department; Kirkpatrick, R. James [College; Yazaydin, A. Ozgur [College; Department; Burton, Sarah D. [William; Hoyt, David W. [William; Thanthiriwatte, K. Sahan [Department; Dixon, David A. [Department; McGrail, B. Peter [Pacific Northwest National Laboratory, Richland, Washington 99356, United States; Rosso, Kevin M. [Pacific Northwest National Laboratory, Richland, Washington 99356, United States; Ilton, Eugene S. [Pacific Northwest National Laboratory, Richland, Washington 99356, United States; Loring, John S. [Pacific Northwest National Laboratory, Richland, Washington 99356, United States

    2017-10-11

    Layered aluminosilicates play a dominant role in the mechanical and gas storage properties of the subsurface, are used in diverse industrial applications, and serve as model materials for understanding solvent-ion-support systems. Although expansion in the presence of H2O is well known to be systematically correlated with the hydration free energy of the interlayer cation, in environments dominated by non-polar solvents (i.e. CO2), uptake into the interlayer is not well-understood. Using novel high pressure capabilities, we investigated the interaction of super-critical CO2 with Na+-, NH4+-, and Cs+-saturated montmorillonite, comparing results with predictions from molecular dynamics simulations. Despite the known trend in H2O, and that cation solvation energies in CO2 suggest a stronger interaction with Na+, both the NH4+- and Cs+-clays readily absorbed CO2 and expanded while the Na+-clay did not. The apparent inertness of the Na+-clay was not due to kinetics, as experiments seeking a stable expanded state showed that none exists. Molecular dynamics simulations revealed a large endothermicity to CO2 intercalation in the Na+-clay, but little or no energy barrier for the NH4+- and Cs+-clays. Consequently, we have shown for the first time that in the presence of a low dielectric constant gas swelling depends more on the strength of the interaction between interlayer cation and aluminosilicate sheets and less on that with solvent. The finding suggests a distinct regime in layered aluminosilicates swelling behavior triggered by low solvent polarizability, with important implications in geomechanics, storage and retention of volatile gases, and across industrial uses in gelling, decoloring, heterogeneous catalysis, and semi-permeable reactive barriers.

  9. Solvent cleaning system and method for removing contaminants from solvent used in resin recycling

    Science.gov (United States)

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

  10. Managing the solvent water polarization to obtain improved NMR spectra of large molecular structures

    International Nuclear Information System (INIS)

    Hiller, Sebastian; Wider, Gerhard; Etezady-Esfarjani, Touraj; Horst, Reto; Wuethrich, Kurt

    2005-01-01

    In large molecular structures, the magnetization of all hydrogen atoms in the solute is strongly coupled to the water magnetization through chemical exchange between solvent water and labile protons of macromolecular components, and through dipole-dipole interactions and the associated 'spin diffusion' due to slow molecular tumbling. In NMR experiments with such systems, the extent of the water polarization is thus of utmost importance. This paper presents a formalism that describes the propagation of the water polarization during the course of different NMR experiments, and then compares the results of model calculations for optimized water polarization with experimental data. It thus demonstrates that NMR spectra of large molecular structures can be improved with the use of paramagnetic spin relaxation agents which selectively enhance the relaxation of water protons, so that a substantial gain in signal-to-noise can be achieved. The presently proposed use of a relaxation agent can also replace the water flip-back pulses when working with structures larger than about 30 kDa. This may be a valid alternative in situations where flip-back pulses are difficult to introduce into the overall experimental scheme, or where they would interfere with other requirements of the NMR experiment

  11. Charge transfer state induced from locally excited state by polar solvent

    Science.gov (United States)

    Sun, Mengtao

    2005-06-01

    The photophysical properties of the novel perylene imide (Pi) and oligo-pentaphenyl bisfluorene (pPh) containing molecule have been investigated by quantum chemical methods. It is concluded that the first excited singlet state in the gas is the locally excited state; while the lowest excited state in polar solvents is the intramolecular charge transfer (ICT) state, which corresponds to the ICT from pPh to Pi. This excited state in the polar solvent adopts a planar geometry, in marked contrast to the twisted geometry in the gas phase. The planar geometry in the polar solvent significantly delocalized densities of HOMOs, compared to those in the gas phase, but the influence of the planar geometry to densities of LUMO is very small. Overall, the computed results remain in good agreement with the relevant experimental data.

  12. Solvent Handbook Database System user's manual

    International Nuclear Information System (INIS)

    1993-03-01

    Industrial solvents and cleaners are used in maintenance facilities to remove wax, grease, oil, carbon, machining fluids, solder fluxes, mold release, and various other contaminants from parts, and to prepare the surface of various metals. However, because of growing environmental and worker-safety concerns, government regulations have already excluded the use of some chemicals and have restricted the use of halogenated hydrocarbons because they affect the ozone layer and may cause cancer. The Solvent Handbook Database System lets you view information on solvents and cleaners, including test results on cleaning performance, air emissions, recycling and recovery, corrosion, and non-metals compatibility. Company and product safety information is also available

  13. Hazardous Solvent Substitution Data System reference manual

    International Nuclear Information System (INIS)

    Branham-Haar, K.A.; Twitchell, K.E.

    1993-07-01

    Concern for the environment, in addition to Federal regulation, mandate the replacement of hazardous solvents with safer cleaning agents. Manufacturers are working to produce these replacement solvents. As these products are developed, potential users need to be informed of their availability. To promote the use of these new products instead of traditional solvents, the Idaho National Engineering Laboratory (INEL) has developed the Hazardous Solvent Substitution Data System (HSSDS). The HSSDS provides a comprehensive system of information on alternatives to hazardous solvents and related subjects, and it makes that information available to solvent users, industrial hygienists, and process engineers. The HSSDS uses TOPIC reg-sign, a text retrieval system produced by Verity, Inc., to allow a user to search for information on a particular subject. TOPIC reg-sign produces a listing of the retrieved documents and allows the use to examine the documents individually and to use the information contained in them. This reference manual does not replace the comprehensive TOPIC reg-sign user documentation (available from Verity, Inc.), or the HSSDS Tutorial (available from the INEL). The purpose of this reference manual is to provide enough instruction on TOPIC reg-sign so the user may begin accessing the data contained in the HSSDS

  14. Effects of solvent polarity on mutual polypropylene grafting by electron beam irradiation

    International Nuclear Information System (INIS)

    Geraldo, A.B.C.; Moura, E.; Somessari, E.S.R.; Silveira, C.G.; Paes, H.A.; Souza, C.A.; Fernandes, W.; Manzoli, J.E.

    2011-01-01

    Complete text of publication follows. Copolymerization by grafting is a process largely known and the advantages of modifying polymers by radiation includes superimposition of properties related to the backbone and the grafted chains in the absence of an initiator. This process produces low byproduct levels, costs and hazards. Since polypropylene is applied in many industrial and commercial sectors, the grafting process is an alternative to improve some of its physical and chemical properties. The aim of this work was to verify the effect of distinct organic solvents on polypropylene grafting process by mutual irradiation applying absorbed doses from 30 kGy to 100 kGy at dose rates of 2.2 kGy/s and 22.4 kGy/s. All process were performed in atmosphere air presence. Styrene was the monomer grafted on polymer substrate and some non-polar and polar organic solvents, like toluene, xylene, acetone, methanol and its homologous, were used at distinct concentrations. The grafted samples were evaluated by degree of styrene grafting (gravimetric determination) and the Mid-FTIR spectrophotometry. As a general behavior, the degree of grafting increases when absorbed dose values increase in a specific solvent until a maximum dose value (50-70 kGy), after this, the degree of grafting decreases. Moreover, the grafting process have high yields when protic polar solvents are used. These results suggest the grafting process does not have dependence of substrate swelling, that is expected when a non-polar substrate and a non-polar media are in contact. The grafting, in this case, can be related to the free radical generation at protic polar solvents in a first step of process mechanism; these reactive specimens start the reaction on substrate surface to allow the accessibility of monomer species to active sites. Some reaction mechanisms are proposed.

  15. Assessment of Solvent-Induced Nitrogen Shielding Variations of Triazole Systems

    Science.gov (United States)

    Witanowski, M.; Sicinska, W.; Biedrzycka, Z.; Grabowski, Z.; Webb, G. A.

    High-precision 14N NMR shieldings are reported for all of the possible N-methyl triazoles in a variety of solvents. A large difference is observed in the effects of solvent on the shieldings of the pyrrole-type and pyridine-type nitrogen atoms in such systems. This difference largely arises from solvent-to-solute hydrogen-bonding effects for the latter type of nitrogen atom. For these two types of nitrogen atoms in triazoles, solvent polarity effects induce changes in the shieldings in opposite directions: this is corroborated by shielding calculations using the solvaton model. Solvent-to-solute hydrogen-bonding effects are larger than those due to solvent polarity and permit the assessment of the basicities of nonequivalent nitrogenous sites; these appear to parallel the analogous basicities with respect to protonation.

  16. Decontamination of Oils Contaminated with Polychlorinated Biphenyls and Dibenzyl Disulfide Using Polar Aprotic Solvents

    Czech Academy of Sciences Publication Activity Database

    Kaštánek, František; Matějková, Martina; Spáčilová, Lucie; Maléterová, Ywetta; Kaštánek, P.; Šolcová, Olga

    2015-01-01

    Roč. 4, č. 2 (2015), s. 41-48 ISSN 2319-5967 R&D Projects: GA TA ČR(CZ) TA04020151 Institutional support: RVO:67985858 Keywords : corrosive sulfur * dibenzyl disulfide * polar aprotic solvents Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://www.ijesit.com/Volume%204/Issue%202/IJESIT201502_06.pdf

  17. Characterization of molecularly imprinted polymers using a new polar solvent titration method.

    Science.gov (United States)

    Song, Di; Zhang, Yagang; Geer, Michael F; Shimizu, Ken D

    2014-07-01

    A new method of characterizing molecularly imprinted polymers (MIPs) was developed and tested, which provides a more accurate means of identifying and measuring the molecular imprinting effect. In the new polar solvent titration method, a series of imprinted and non-imprinted polymers were prepared in solutions containing increasing concentrations of a polar solvent. The polar solvent additives systematically disrupted the templation and monomer aggregation processes in the prepolymerization solutions, and the extent of disruption was captured by the polymerization process. The changes in binding capacity within each series of polymers were measured, providing a quantitative assessment of the templation and monomer aggregation processes in the imprinted and non-imprinted polymers. The new method was tested using three different diphenyl phosphate imprinted polymers made using three different urea functional monomers. Each monomer had varying efficiencies of templation and monomer aggregation. The new MIP characterization method was found to have several advantages. To independently verify the new characterization method, the MIPs were also characterized using traditional binding isotherm analyses. The two methods appeared to give consistent conclusions. First, the polar solvent titration method is less susceptible to false positives in identifying the imprinting effect. Second, the method is able to differentiate and quantify changes in binding capacity, as measured at a fixed guest and polymer concentration, arising from templation or monomer aggregation processes in the prepolymerization solution. Third, the method was also easy to carry out, taking advantage of the ease of preparing MIPs. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Hazardous Solvent Substitution Data System tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Twitchell, K.E.; Skinner, N.L.

    1993-07-01

    This manual is the tutorial for the Hazardous Solvent Substitution Data System (HSSDS), an online, comprehensive system of information on alternatives to hazardous solvents and related subjects. The HSSDS data base contains product information, material safety data sheets, toxicity reports, usage reports, biodegradable data, product chemical element lists, and background information on solvents. HSSDS use TOPIC{reg_sign} to search for information based on a query defined by the user. TOPIC provides a full text retrieval of unstructured source documents. In this tutorial, a series of lessons is provided that guides the user through basic steps common to most queries performed with HSSDS. Instructions are provided for both window-based and character-based applications.

  19. Hazardous Solvent Substitution Data System tutorial

    International Nuclear Information System (INIS)

    Twitchell, K.E.; Skinner, N.L.

    1993-07-01

    This manual is the tutorial for the Hazardous Solvent Substitution Data System (HSSDS), an online, comprehensive system of information on alternatives to hazardous solvents and related subjects. The HSSDS data base contains product information, material safety data sheets, toxicity reports, usage reports, biodegradable data, product chemical element lists, and background information on solvents. HSSDS use TOPIC reg-sign to search for information based on a query defined by the user. TOPIC provides a full text retrieval of unstructured source documents. In this tutorial, a series of lessons is provided that guides the user through basic steps common to most queries performed with HSSDS. Instructions are provided for both window-based and character-based applications

  20. Ionic magnetic fluids in polar solvents with tuned counter-ions

    Energy Technology Data Exchange (ETDEWEB)

    Lopes Filomeno, C. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Grupo de Fluidos Complexos Inst. de Quimica, Univ. de Brasília, Brasília (DF) (Brazil); Kouyaté, M. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Cousin, F. [Lab. Léon Brillouin – CE-Saclay, Gif-sur-Yvette (France); Demouchy, G. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Dpt de physique, Univ. de Cergy Pontoise, Cergy-Pontoise (France); Dubois, E.; Michot, L.; Mériguet, G. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Perzynski, R., E-mail: regine.perzynski@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Peyre, V.; Sirieix-Plénet, J. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Tourinho, F.A. [Grupo de Fluidos Complexos Inst. de Quimica, Univ. de Brasília, Brasília (DF) (Brazil)

    2017-06-01

    The aim of the present study is to propose a new reproducible method for preparing colloidal dispersions of electrostatically charged nanoparticles (NPs) in polar solvents with different kinds of counter-ions. Maghemite NPs are here dispersed in solvents of different dielectric constant, namely water, dimethylsulfoxide (DMSO) and an ionic liquid, ethylammonium nitrate (EAN). If the existence of a NP superficial charge happens to be necessary for the colloidal stability of the dispersions in these three solvents, the standard DLVO theory cannot be used any more to describe the colloidal stability in EAN. The structure of the dispersions and the strength of the interparticle repulsion are investigated by small angle X-ray scattering measurements, in association with Ludwig–Soret coefficient determinations. Specificities, associated to the nature of the counter-ions are identified in this work on the colloidal stability, on the interparticle repulsion and on the Ludwig–Soret coefficient. - Highlights: • A controlled synthesis of ionic magnetic fluids in three polar solvents is proposed. • Colloidal repulsion in the magnetic fluids depends on the counter-ion nature. • Soret coefficient of citrate-coated maghemite nanoparticles is probed in water-pH7. • Thermophilicity of nanoparticles depends on the nature of their counter-ions. • Nanoparticles dressed with same counter-ions have solvent-dependent thermoproperties.

  1. Study of interactions between alcohols and polar and non-polar solvents by NMR

    International Nuclear Information System (INIS)

    Servanton-Gadouleau, Monique; Biais, Jacques; Lemanceau, Bernard

    1975-01-01

    The temperature and concentration dependence of the chemical shift variation of the hydroxylic proton of methanol, n-propanol and n-heptanol in n-hexane, n-heptane, cyclohexane, carbon tetrachloride and 1,1-dichloroethane is presented. For each alcohol the results are strongly dependent on the solvents, none of them can be, a priori, considered as perfect. For convenient interpretation of the experimental data hydrophobic and hydrophilic interactions are taken into account. From the proposed models thermodynamically consistent results are obtained concerning the solute-solute and solute-solvent interactions [fr

  2. Controlling Actinide Hydration in Mixed Solvent Systems: Towards Tunable Solvent Systems to Close the Fuel Cycle

    International Nuclear Information System (INIS)

    Clark, Sue B.

    2016-01-01

    The goal of this project has been to define the extent of hydration the f-elements and other cations in mixed solvent electrolyte systems. Methanol-water and other mixed solvent systems have been studied, where the solvent dielectric constant was varied systematically. Thermodynamic and spectroscopic studies provide details concerning the energetics of complexation and other reactions of these cations. This information has also been used to advance new understanding of the behavior of these cations in a variety of systems, ranging from environmental studies, chromatographic approaches, and ionization processes for mass spectrometry.

  3. Controlling Actinide Hydration in Mixed Solvent Systems: Towards Tunable Solvent Systems to Close the Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Sue B. [Washington State Univ., Pullman, WA (United States). Dept. of Chemistry

    2016-10-31

    The goal of this project has been to define the extent of hydration the f-elements and other cations in mixed solvent electrolyte systems. Methanol-water and other mixed solvent systems have been studied, where the solvent dielectric constant was varied systematically. Thermodynamic and spectroscopic studies provide details concerning the energetics of complexation and other reactions of these cations. This information has also been used to advance new understanding of the behavior of these cations in a variety of systems, ranging from environmental studies, chromatographic approaches, and ionization processes for mass spectrometry.

  4. Solvent polarity and oxygen sensitivity, rather than viscosity, determine lifetimes of biaryl-sensitised terbium luminescence.

    Science.gov (United States)

    Walter, Edward R H; Williams, J A Gareth; Parker, David

    2017-12-14

    In a macrocyclic terbium complex incorporating a biaryl sensitiser, the observed variation of emission lifetime is shown to be determined by the solubility of oxygen in the solvent system and the relative energy of the chromophore excited state, rather than any dependence on solvent viscosity.

  5. Nitrobenzene anti-parallel dimer formation in non-polar solvents

    Directory of Open Access Journals (Sweden)

    Toshiyuki Shikata

    2014-06-01

    Full Text Available We investigated the dielectric and depolarized Rayleigh scattering behaviors of nitrobenzene (NO2-Bz, which is a benzene mono-substituted with a planar molecular frame bearing the large electric dipole moment 4.0 D, in non-polar solvents solutions, such as tetrachloromethane and benzene, at up to 3 THz for the dielectric measurements and 8 THz for the scattering experiments at 20 °C. The dielectric relaxation strength of the system was substantially smaller than the proportionality to the concentration in a concentrated regime and showed a Kirkwood correlation factor markedly lower than unity; gK ∼ 0.65. This observation revealed that NO2-Bz has a tendency to form dimers, (NO2-Bz2, in anti-parallel configurations for the dipole moment with increasing concentration of the two solvents. Both the dielectric and scattering data exhibited fast and slow Debye-type relaxation modes with the characteristic time constants ∼7 and ∼50 ps in a concentrated regime (∼15 and ∼30 ps in a dilute regime, respectively. The fast mode was simply attributed to the rotational motion of the (monomeric NO2-Bz. However, the magnitude of the slow mode was proportional to the square of the concentration in the dilute regime; thus, the mode was assigned to the anti-parallel dimer, (NO2-Bz2, dissociation process, and the slow relaxation time was attributed to the anti-parallel dimer lifetime. The concentration dependencies of both the dielectric and scattering data show that the NO2-Bz molecular processes are controlled through a chemical equilibrium between monomers and anti-parallel dimers, 2NO2-Bz ↔ (NO2-Bz2, due to a strong dipole-dipole interaction between nitro groups.

  6. Covalent Surface Modification of Silicon Oxides with Alcohols in Polar Aprotic Solvents.

    Science.gov (United States)

    Lee, Austin W H; Gates, Byron D

    2017-09-05

    Alcohol-based monolayers were successfully formed on the surfaces of silicon oxides through reactions performed in polar aprotic solvents. Monolayers prepared from alcohol-based reagents have been previously introduced as an alternative approach to covalently modify the surfaces of silicon oxides. These reagents are readily available, widely distributed, and are minimally susceptible to side reactions with ambient moisture. A limitation of using alcohol-based compounds is that previous reactions required relatively high temperatures in neat solutions, which can degrade some alcohol compounds or could lead to other unwanted side reactions during the formation of the monolayers. To overcome these challenges, we investigate the condensation reaction of alcohols on silicon oxides carried out in polar aprotic solvents. In particular, propylene carbonate has been identified as a polar aprotic solvent that is relatively nontoxic, readily accessible, and can facilitate the formation of alcohol-based monolayers. We have successfully demonstrated this approach for tuning the surface chemistry of silicon oxide surfaces with a variety of alcohol containing compounds. The strategy introduced in this research can be utilized to create silicon oxide surfaces with hydrophobic, oleophobic, or charged functionalities.

  7. Solvent polarity controls the helical conformation of short peptides rich in Calpha-tetrasubstituted amino acids.

    Science.gov (United States)

    Bellanda, Massimo; Mammi, Stefano; Geremia, Silvano; Demitri, Nicola; Randaccio, Lucio; Broxterman, Quirinus B; Kaptein, Bernard; Pengo, Paolo; Pasquato, Lucia; Scrimin, Paolo

    2007-01-01

    The two peptides, rich in C(alpha)-tetrasubstituted amino acids, Ac-[Aib-L-(alphaMe)Val-Aib](2)-L-His-NH(2) (1) and Ac-[Aib-L-(alphaMe)Val-Aib](2)-O-tBu (2 a) are prevalently helical. They present the unique property of changing their conformation from the alpha- to the 3(10)-helix as a function of the polarity of the solvent: alpha in more polar solvents, 3(10) in less polar ones. Conclusive evidence of this reversible change of conformation is reported on the basis of the circular dichroism (CD) spectra and a detailed two-dimensional NMR analysis in two solvents (trifluoroethanol and methanol) refined with molecular dynamics calculations. The X-ray diffractometric analysis of the crystals of both peptides reveals that they assume a prevalent 3(10)-helix conformation in the solid state. This conformation is practically superimposable on that obtained from the NMR analysis of 1 in methanol. The NMR results further validate the reported CD signature of the 3(10)-helix and the use of the CD technique for its assessment.

  8. System for measuring the proton polarization in a polarized target

    International Nuclear Information System (INIS)

    Karnaukhov, I.M.; Lukhanin, A.A.; Telegin, Yu.N.; Trotsenko, V.I.; Chechetenko, V.F.

    1984-01-01

    The system for measuring the proton polarization in a polarized target representing the high-sensitivity nuclear magnetic resonance (NMR) is described Q-meter with series connection and a circuit for measuring system resonance characteristic is used for NMR-absorption signal recording. Measuring coil is produced of a strip conductor in order to obtain uniform system sensitivity to polarization state in all target volume and improve signal-to-noise ratio. Polarization measuring system operates ion-line with the M-6000 computer. The total measuring error for the value of free proton polarization in target taking into account the error caused by local depolarization of working substance under irradiation by high-intense photon beam is <= 6%. Long-term application of the described system for measuring the proton polarization in the LUEh-20000 accelerator target used in the pion photoproduction experiments has demonstrated its high reliability

  9. Photophysics of a coumarin based Schiff base in solvents of varying polarities

    Science.gov (United States)

    Ghosh, Saptarshi; Roy, Nayan; Singh, T. Sanjoy; Chattopadhyay, Nitin

    2018-01-01

    The present work reports detailed photophysics of a coumarin based Schiff base, namely, (E)-7-(((8-hydroxyquinolin-2-yl)methylene)amino)-4-methyl-2H-chromen-2-one (HMC) in different solvents of varying polarity exploiting steady state absorption, fluorescence and time resolved fluorescence spectroscopy. The dominant photophysical features of HMC are discussed in terms of emission from an intramolecular charge transfer (ICT) excited state. Molecular orbital (MO) diagrams as obtained from DFT based computational analysis confirms the occurrence of charge transfer from 8‧-hydroxy quinoline moiety of the molecule to the coumarin part. The notable difference in the photophysical response of HMC from its analogous coumarin (C480) lies in a lower magnitude of fluorescence quantum yield of the former, particularly in the solvents of low polarity, which is rationalized by considering the higher rate of non-radiative decay of HMC in apolar solvents. Phosphorescence emission as well as phosphorescence lifetime of HMC has also been reported in 77 K frozen matrix.

  10. Carbon nanotube enhanced membrane distillation for online preconcentration of trace pharmaceuticals in polar solvents.

    Science.gov (United States)

    Gethard, Ken; Mitra, Somenath

    2011-06-21

    Carbon nanotube enhanced membrane distillation (MD) is presented as a novel, online analytical preconcentration method for removing polar solvents thereby concentrating the analytes, making this technique an alternate to conventional thermal evaporation. In a carbon nanotube immobilized membrane (CNIM), the CNTs serve as sorbent sites and provide additional pathways for enhanced solvent vapor transport, thus enhancing preconcentration. Enrichment using CNIM doubled compared to membranes without CNTs, while the methanol flux and mass transfer coefficients increased by 61% and 519% respectively. The carbon nanotube enhanced MD process showed excellent precision (RSD of 3-5%), linearity, and the detection limits were in the range of 0.001 to 0.009 mg L(-1) by HPLC analysis.

  11. Non-Aqueous Biocatalysis in Homogeneous Solvent Systems

    Directory of Open Access Journals (Sweden)

    Sebastián Torres

    2004-01-01

    Full Text Available Enzymes are highly specific catalysts that typically function in aqueous solvents. However, many enzymes retain their catalytic activities at high concentrations in non- aqueous environments, including neat hydrophilic organic solvents. In fact, enzymes can be used to carry out reactions in organic solvents that are not possible in aqueous systems. Therefore, biocatalysis in homogenous non-aqueous solvents offers possibilities for producing useful chemicals and several synthetic reactions have already been developed using this type of system. The current review discusses factors that influence enzyme catalysis in non-aqueous solvents such us water content, solvent concentration, interaction of solvent with protein structure, stability and activity. Also, new strategies for non-conventional biocatalysis using extremophiles and ionic solvents are mentioned.

  12. Use of uranyl nitrate as a shift reagent in polar and inert solvents

    International Nuclear Information System (INIS)

    Nosov, B.P.

    1988-01-01

    This work examines the effect of uranyl nitrate as a shift reagent on the PMR spectra of different organic molecules in polar and inert solvents. In order to identify the coordination site of the uranyl ion, its effect on the spectra of amino acids and acetic or propionic acids in water was compared. It was found that the induced shifts of the protons in the corresponding positions of the different acids after addition of uranyl nitrate agreed to within ±0.01 ppm. When nitrogenous bases such as diethylamine and pyridine were added to solutions of the carboxylic acids with uranyl nitrate, an increase in the induced chemical shift of the resonance signals occurred. These facts suggest the coordination of the uranyl ion with the carboxyl oxygen both for acetic and propionic acids and for amino acids. The authors established that the addition of uranyl nitrate to solutions of organic compounds caused different downfield shifts of the resonance signals from the protons. In polar solvents shifts induced by uranyl nitrate in the PMR spectra of carboxylic acids occur only when nitrogenous bases are added

  13. Fluorescence study of arene probe microenvironment in the intraparticle void volume of zeolites interfaced with bathing polar solvents.

    Science.gov (United States)

    Ellison, Eric H; Moodley, Deshi; Hime, Joseph

    2006-03-16

    Fluorescence methodologies have been utilized to examine micropolarity, intramolecular motion, and singlet quenching in the intraparticle void volume of zeolites X, Y, and ultrastable Y (USY) interfaced with bathing polar solvents. Micropolarity was assessed from the 3-to-1 band ratio (III/I) of the fluorescence spectrum of pyrene (PY) and from lambda(max) of the fluorescence spectrum of 1-pyrenecarboxaldehyde (1-PCA). In zeolites bathed in anhydrous solvents, both PY and 1-PCA reported increased micropolarity according to the trend USY nitrocompounds dissolved in solvents bathing the zeolite was examined by a time-resolved approach. For all of the quenchers and solvents studied, quenching was more efficient in USY compared to NaX and NaY. Interestingly, the rate of O2 quenching in USY-MeOH was only 12 times lower than that in bulk MeOH. In contrast, in NaY-MeOH and NaX-MeOH the rate of O2 quenching was too low to be measured. The rate constants in these systems were therefore taken as the rate constant for diffusion-controlled quenching of trapped electrons measured previously. These values were 600 times and 10(5) times lower than the rate of fluorescence quenching in USY-MeOH, respectively. The O2 quenching studies show that dispersive interactions of polar solvents with the cavity walls dominate in USY because of the hydrophobic nature of the USY surface. In NaX and NaY, stronger ion-dipole and hydrogen bonding interactions dominate and lead to more restricted access and lowered quenching efficiency. Perrin (or static) quenching of pyrene fluorescence was also examined to infer the concentration of nitromethane (NM) in the void volume of NaX and NaY bathed in MeOH, ACN, or H2O. The results indicate that access of NM to the interior of NaY is more inhibited in ACN compared to MeOH, presumably because of the higher dipole moment of ACN and its resulting stronger association with the zeolite surface. At similar levels of static quenching equated to a similar NM

  14. Switchable polarity solvent for liquid phase microextraction of Cd(II) as pyrrolidinedithiocarbamate chelates from environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Erkan, E-mail: kimyager_erkan@hotmail.com; Soylak, Mustafa, E-mail: soylak@erciyes.edu.tr

    2015-07-30

    A switchable polarity solvent was synthesized from triethylamine (TEA)/water/CO{sub 2} (Dry ice) via proton transfer reaction has been used for the microextraction of cadmium(II) as pyrrolidinedithiocarbamate (APDC) chelate. Cd(II)-APDC chelate was extracted into the switchable polarity solvent drops by adding 2 mL 10 M sodium hydroxide solution. Analytical parameters affecting the complex formation and microextraction efficiency such as pH, amount of ligand, volume of switchable polarity solvent and NaOH, sample volume were optimized. The effects of foreign ions were found tolerably. Under optimum conditions, the detection limit was 0.16 μg L{sup −1} (3Sb/m, n = 7) and the relative standard deviation was 5.4% (n = 7). The method was validated by the analysis of certified reference materials (TMDA-51.3 fortified water, TMDA-53.3 fortified water and SPS-WW2 waste water, 1573a Tomato Leaves and Oriental Basma Tobacco Leaves (INCT-OBTL-5)) and addition/recovery tests. The method was successfully applied to determination of cadmium contents of water, vegetable, fruit and cigarette samples. - Highlights: • Switchable polarity solvent was synthesized from triethylamine (TEA)/water/CO{sub 2}. • The switchable polarity solvent has been used for the microextraction of cadmium(II). • The important factors were optimized. • The method was applied to determination of cadmium in real samples.

  15. Does Synergism in Microscopic Polarity Correlate with Extrema in Macroscopic Properties for Aqueous Mixtures of Dipolar Aprotic Solvents?

    Science.gov (United States)

    Duereh, Alif; Sato, Yoshiyuki; Smith, Richard Lee; Inomata, Hiroshi; Pichierri, Fabio

    2017-06-22

    Aqueous mixtures of dipolar aprotic solvents (acetonitrile, γ-valerolactone, γ-butyrolactone, tetrahydrofuran, 1,4-dioxane, acetone, pyridine, N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, and dimethyl sulfoxide) show synergism in microscopic polarity and extrema in macroscopic viscosity (η) and molar excess enthalpy (H E ) in water-rich compositions that correlate with solvent functional group electrostatic basicity (β 2 H ). Microscopic polarities of aqueous solvent mixtures were estimated by measuring the spectral shift (λ max ) of 4-nitroaniline with UV-vis spectroscopy at 25 °C. Dynamic viscosities (η) and densities were measured for eight aqueous dipolar aprotic mixtures over the full range of compositions at (25 to 45) °C. The λ max , η, and H E values of the aqueous mixtures showed a linear trend with increasing electrostatic basicity of the solvent functional groups that is attributed to the size and strength of the hydration shell of water. Density functional theory (DFT) calculations were performed for 1:3 complexes (solvent: (H 2 O) 3 ) and it was found that aqueous mixtures with high basicity have high binding energies and short hydrogen bonding distances implying that the size and strength of the hydration shell of water is proportional to functional group basicity. Consideration of functional group basicity of dipolar aprotic solvents allows one to relate synergism in microscopic polarity to extrema in macroscopic properties for a wide range of aqueous dipolar aprotic solvent mixtures.

  16. Solvent selection for biocatalysis in mainly organic systems: predictions of effects on equilibrium position.

    Science.gov (United States)

    Halling, P J

    1990-03-25

    Predictions may be made for the influence of solvent choice on the equilibrium position of biocatalyzed reactions, based on data for the liquid-liquid distribution of the reactants. The most reliable predictions are probably for dilute systems, based on partition coefficients or correlations derived from them. The effective equilibrium constant for esterification reactions is predicted to alter by more than four orders of magnitude on changing between different water-immiscible solvents. The equilibrium constant correlates well with the solubility of water in the solvent, and is most favorable for synthesis in the least polar solvents (aliphatic hydrocarbons). Similar effects seem to apply for other reactions, including oxidation of alcohols and hydrolysis of chlorides. Predictions can be made for nondilute systems using the UNIFAC system of group contributions, but the reliability of these is more questionable.

  17. Spectroscopic and excited-state properties of tri-9-anthrylborane I: Solvent polarity effects.

    Science.gov (United States)

    Kitamura, Noboru; Sakuda, Eri

    2005-08-25

    Spectroscopic and excited-state properties of tri-9-anthrylborane (TAB), showing unique absorption and fluorescence characteristics originating from p(boron)-pi(anthryl group) orbital interactions, were studied in 12 solvents. Although the absorption maximum energy (nu(a)) of TAB which appeared at around 21 x 10(3) cm(-1) (band I) was almost independent of the solvent polarity parameter, f(X) (f(X) = (D(s) - 1)/(2D(s) + 1) - (n(2) - 1)/(2n(2) + 1) where D(s) and n represent the static dielectric constant and the refractive index of a solvent, respectively), the fluorescence maximum energy (nu(f)) showed a linear correlation with f(X). The f(X) dependence of the value of nu(a) - nu(f) demonstrated that the change in the dipole moment of TAB upon light excitation was approximately 8.0 D, indicating that absorption band I was ascribed to an intramolecular charge-transfer transition in nature. The excited electron of TAB was thus concluded to localize primarily on the p orbital of the boron atom. Furthermore, it was shown that the fluorescence lifetime and quantum yield of TAB varied from 11.8 to 1.1 ns and from 0.41 to 0.02, respectively, with an increase in f(X). The present results indicated that the nonradiative decay rate constant (k(nr)) of TAB was influenced significantly by f(X). Excited-state decay of TAB was understood by intramolecular back-electron (charge) transfer from the p orbital of the boron atom to the pi orbital of the anthryl group, which was discussed in terms of the energy gap dependence of k(nr). Specific solvent interactions of TAB revealed by the present spectroscopic and photophysical studies are also discussed.

  18. Thermodynamic constrains for life based on non-aqueous polar solvents on free-floating planets.

    Science.gov (United States)

    Badescu, Viorel

    2011-02-01

    Free-floating planets (FFPs) might originate either around a star or in solitary fashion. These bodies can retain molecular gases atmospheres which, upon cooling, have basal pressures of tens of bars or more. Pressure-induced opacity of these gases prevents such a body from eliminating its internal radioactive heat and its surface temperature can exceed for a long term the melting temperature of a life-supporting solvent. In this paper two non-aqueous but still polar solvents are considered: hydrogen sulfide and ammonia. Thermodynamic requirements to be fulfilled by a hypothetic gas constituent of a life-supporting FFP's atmosphere are studied. The three gases analyzed here (nitrogen, methane and ethane) are candidates. We show that bodies with ammonia oceans are possible in interstellar space. This may happen on FFPs of (significantly) smaller or larger mass than the Earth. Generally, in case of FFP smaller in size than the Earth, the atmosphere exhibits a convective layer near the surface and a radiative layer at higher altitudes while the atmosphere of FFPs larger in size than Earth does not exhibit a convective layer. The atmosphere mass of a life-hosting FFP of Earth size is two or three orders of magnitude larger than the mass of Earth atmosphere. For FFPs larger than the Earth and specific values of surface pressure and temperature, there are conditions for condensation (in the ethane atmosphere). Some arguments induce the conclusion than the associated surface pressures and temperatures should be treated with caution as appropriate life conditions.

  19. Hydrogen recovery by novel solvent systems

    Energy Technology Data Exchange (ETDEWEB)

    Shinnar, R.; Ludmer, Z.; Ullmann, A.

    1991-08-01

    The objective of this work is to develop a novel method for purification of hydrogen from coal-derived synthesis gas. The study involved a search for suitable mixtures of solvents for their ability to separate hydrogen from the coal derived gas stream in significant concentration near their critical point of miscibility. The properties of solvent pairs identified were investigated in more detail to provide data necessary for economic evaluation and process development.

  20. Effect of Organic Solvent on the Enzyme Bleaching Agent System

    OpenAIRE

    コマツ, エミコ; モリタ, ミユキ; Emiko, KOMATSU; Miyuki, MORITA

    2002-01-01

    The Orange n decoloration reaction in the presence of various organic solvents with the HRP-H_2O_2 system was examined. In 5% organic solvent mixing aqueous solutions, the decoloration rates of Orange n were about 0.9-0.5 times of those in the aqueous solutions. Decoloration rate of Orange II decreased, as the concentration of organic solvent increases. The reaction of Orange n decoloration stopped at the 60% dimethyl sulfoxide concentration.

  1. System for measuring of proton polarization in polarized target

    International Nuclear Information System (INIS)

    Derkach, A.Ya.; Lukhanin, A.A.; Karnaukhov, I.M.; Kuz'menko, V.S.; Telegin, Yu.N.; Trotsenko, V.I.; Chechetenko, V.F.

    1981-01-01

    Measurement system of proton polarization in the target, which uses the method of nuclear magnetic resonance is described. To record the signal of NMR-absorption a parallel Q-meter of voltage with analogous subtraction of resonance characteristics of measurement circuit is used. To obtain gradual sensitivity of the system to polarization state in the whole volume of the target the measurement coils is made of tape conductor. The analysis and mathematical modelling of Q-meter are carried out. Corrections for nonlinearity and dispersion are calculated. Key diagrams of the main electron blocks of Q-meter are presented. The system described operates on line with the M6000 computer. Total error of measurement of polarization value of free protons in the target does not exceed 6% [ru

  2. Non-covalent synthesis of calix[4]arene-capped porphyrins in polar solvents via ionic interactions

    NARCIS (Netherlands)

    Fiammengo, R.; Timmerman, P.; Huskens, Jurriaan; Versluis, Kees; Heck, Albert J.R.; Reinhoudt, David

    2002-01-01

    Non-covalent synthesis of calix[4]arene capped porphyrins can be achieved in polar solvents (up to 45% molar fraction of water) via ionic interaction. Thus tetracationic meso-tetrakis(N-alkylpyridinium-3-yl) porphyrins 1a–d and tetra anionic 25,26,27,28-tetrakis(2-ethoxyethoxy)-calix[4]arene

  3. System of measurement of proton polarization in a polarized target

    Energy Technology Data Exchange (ETDEWEB)

    Karnaukov, I.M.; Chechetenko, V.F.; Lukhanin, A.A.; Telegin, Y.N.; Trotsenko, V.I.

    1985-05-01

    This paper describes a nuclear magnetic resonance spectrometer with high sensitivity. The signal of NMR absorption is recorded by a Q-meter with a series circuit and a circuit for compensation of the resonance characteristic of the measuring circuit. In order to ensure uniform sensitivity of the system to the state of polarization throughout the volume of the target and to enhance the S/N ration the measuring coil is made of a flat conductor. The polarization-measuring system works on-line with an M-6000 computer. The total error of measurement of the polarization of free protons in a target with allowance for the error due to local depolarization of free protons in a target with allowance for the error due to local depolarization of the working substance under irradiation with an intense photon beam is less than or equal to 6%.

  4. Polyethylene glycol: A recyclable solvent system for the synthesis of ...

    Indian Academy of Sciences (India)

    Administrator

    22 as green solvent has also been documented, but ionic liquids safety is still debated and the reactions in water do not give good yields because of the hydrophobic nature of the organic reactants. Recently, polyethylene glycol is found to be an interesting recyclable and eco-friendly solvent system in synthetic chemistry for ...

  5. Tipping Point for Expansion of Layered Aluminosilicates in Weakly Polar Solvents: Supercritical CO2.

    Science.gov (United States)

    Schaef, Herbert T; Loganathan, Narasimhan; Bowers, Geoffrey M; Kirkpatrick, R James; Yazaydin, A Ozgur; Burton, Sarah D; Hoyt, David W; Thanthiriwatte, K Sahan; Dixon, David A; McGrail, B Peter; Rosso, Kevin M; Ilton, Eugene S; Loring, John S

    2017-10-25

    Layered aluminosilicates play a dominant role in the mechanical and gas storage properties of the subsurface, are used in diverse industrial applications, and serve as model materials for understanding solvent-ion-support systems. Although expansion in the presence of H 2 O is well-known to be systematically correlated with the hydration free energy of the interlayer cation, particularly in environments dominated by nonpolar solvents (i.e., CO 2 ), uptake into the interlayer is not well-understood. Using novel high-pressure capabilities, we investigated the interaction of dry supercritical CO 2 with Na-, NH 4 -, and Cs-saturated montmorillonite, comparing results with predictions from molecular dynamics simulations. Despite the known trend in H 2 O and that cation solvation energies in CO 2 suggest a stronger interaction with Na, both the NH 4 - and Cs-clays readily absorbed CO 2 and expanded, while the Na-clay did not. The apparent inertness of the Na-clay was not due to kinetics, as experiments seeking a stable expanded state showed that none exists. Molecular dynamics simulations revealed a large endothermicity to CO 2 intercalation in the Na-clay but little or no energy barrier for the NH 4 - and Cs-clays. Indeed, the combination of experiment and theory clearly demonstrate that CO 2 intercalation of Na-montmorillonite clays is prohibited in the absence of H 2 O. Consequently, we have shown for the first time that in the presence of a low dielectric constant, gas swelling depends more on the strength of the interaction between the interlayer cation and aluminosilicate sheets and less on that with solvent. The finding suggests a distinct regime in layered aluminosilicate swelling behavior triggered by low solvent polarizability, with important implications in geomechanics, storage, and retention of volatile gases, and across industrial uses in gelling, decoloring, heterogeneous catalysis, and semipermeable reactive barriers.

  6. Sugar-Based Polyamides: Self-Organization in Strong Polar Organic Solvents.

    Science.gov (United States)

    Rosu, Cornelia; Russo, Paul S; Daly, William H; Cueto, Rafael; Pople, John A; Laine, Roger A; Negulescu, Ioan I

    2015-09-14

    Periodic patterns resembling spirals were observed to form spontaneously upon unassisted cooling of d-glucaric acid- and d-galactaric acid-based polyamide solutions in N-methyl-N-morpholine oxide (NMMO) monohydrate. Similar observations were made in d-galactaric acid-based polyamide/ionic liquid (IL) solutions. The morphologies were investigated by optical, polarized light and confocal microscopy assays to reveal pattern details. Differential scanning calorimetry was used to monitor solution thermal behavior. Small- and wide-angle X-ray scattering data reflected the complex and heterogeneous nature of the self-organized patterns. Factors such as concentration and temperature were found to influence spiral dimensions and geometry. The distance between rings followed a first-order exponential decay as a function of polymer concentration. Fourier-Transform Infrared Microspectroscopy analysis of spirals pointed to H-bonding between the solvent and the pendant hydroxyl groups of the glucose units from the polymer backbone. Tests on self-organization into spirals of ketal-protected d-galactaric acid polyamides in NMMO monohydrate confirmed the importance of the monosaccharide's pendant free hydroxyl groups on the formation of these patterns. Rheology performed on d-galactaric-based polyamides at high concentration in NMMO monohydrate solution revealed the optimum conditions necessary to process these materials as fibers by spinning. The self-organization of these sugar-based polyamides mimics certain biological materials.

  7. Evaluation of solvent systems for optimized extractables studies of single use bioprocessing solutions.

    Science.gov (United States)

    Dorival-García, Noemí; Bones, Jonathan

    2017-09-01

    Despite their advantages, there is concern that single-use systems used in biopharmaceutical manufacture might release potentially toxic substances during standard unit operations that negatively impact cell growth. Characterization of the extractables profile for single-use systems is necessary to know which compounds potentially become leachables under operational cell culture conditions. A key issue in the design of extractables studies is the composition of the model solvent, in particular its pH and polarity. In this study, a new approach, based on design of experiments (DoE), has been applied to determine the composition of the model solvent for extractable profiling of single-use bags (SUBs). Particular focus was placed on the determination of the degradation products of the antioxidant Irgafos 168 ® , due to evidence that some of these degradation products have cytotoxic effects on CHO cells. Results indicated that 2-propanol:water is the most appropriate solvent for the extraction of highly hydrophobic compounds with polar groups and/or acid-base properties from SUBs. The described DoE approach simplifies the number of experiments, evaluates all possible solvent water mixtures to select the best extraction solvent based on polarity, establishes the influence of each variable and provides information about variable interaction, which represents an important improvement over current best practice. The developed approach was applied to seven SUBs from different vendors and production dates facilitating the identification of potentially non-satisfactory films for cultivation of CHO cell lines under process conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Temperature dependence measurements and structural characterization of trimethyl ammonium ionic liquids with a highly polar solvent.

    Science.gov (United States)

    Attri, Pankaj; Venkatesu, Pannuru; Hofman, T

    2011-08-25

    We report the synthesis and characterization of a series of an ammonium ionic liquids (ILs) containing acetate, dihydrogen phosphate, and hydrogen sulfate anions with a common cation. To characterize the thermophysical properties of these newly synthesized ILs with the highly polar solvent N,N-dimethylformamide (DMF), precise measurements such as densities (ρ) and ultrasonic sound velocities (u) over the whole composition range have been performed at atmospheric pressure and over wide temperature ranges (25-50 °C). The excess molar volume (V(E)) and the deviation in isentropic compressibilities (Δκ(s)) were predicted using these temperature dependence properties as a function of the concentration of ILs. The Redlich-Kister polynomial was used to correlate the results. The ILs investigated in the present study included trimethylammonium acetate [(CH(3))(3)NH][CH(3)COO] (TMAA), trimethylammonium dihydrogen phosphate [(CH(3))(3)NH][H(2)PO(4)] (TMAP), and trimethylammonium hydrogen sulfate [(CH(3))(3)NH][HSO(4)] (TMAS). The intermolecular interactions and structural effects were analyzed on the basis of the measured and the derived properties. In addition, the hydrogen bonding between ILs and DMF has been demonstrated using semiempirical calculations with help of Hyperchem 7. A qualitative analysis of the results is discussed in terms of the ion-dipole, ion-pair interactions, and hydrogen bonding between ILs and DMF molecules and their structural factors. The influence of the anion of the protic IL, namely, acetate (CH(3)COO), dihydrogen phosphate (H(2)PO(4)), and hydrogen sulfate (HSO(4)), on the thermophysical properties is also provided. © 2011 American Chemical Society

  9. Hazardous Solvent Substitution Data System reference manual. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Branham-Haar, K.A.; Twitchell, K.E.

    1993-07-01

    Concern for the environment, in addition to Federal regulation, mandate the replacement of hazardous solvents with safer cleaning agents. Manufacturers are working to produce these replacement solvents. As these products are developed, potential users need to be informed of their availability. To promote the use of these new products instead of traditional solvents, the Idaho National Engineering Laboratory (INEL) has developed the Hazardous Solvent Substitution Data System (HSSDS). The HSSDS provides a comprehensive system of information on alternatives to hazardous solvents and related subjects, and it makes that information available to solvent users, industrial hygienists, and process engineers. The HSSDS uses TOPIC{reg_sign}, a text retrieval system produced by Verity, Inc., to allow a user to search for information on a particular subject. TOPIC{reg_sign} produces a listing of the retrieved documents and allows the use to examine the documents individually and to use the information contained in them. This reference manual does not replace the comprehensive TOPIC{reg_sign} user documentation (available from Verity, Inc.), or the HSSDS Tutorial (available from the INEL). The purpose of this reference manual is to provide enough instruction on TOPIC{reg_sign} so the user may begin accessing the data contained in the HSSDS.

  10. Characterization and antioxidant activity of bovine serum albumin and sulforaphane complex in different solvent systems

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xueyan; Zhou, Rui; Jing, Hao, E-mail: h200521@cau.edu.cn

    2014-02-15

    Modes and influencing factors of bovine serum albumin (BSA) and sulforaphane (SFN) interaction will help us understand the interaction mechanisms and functional changes of bioactive small molecule and biomacromolecule. This study investigated interaction mechanisms of BSA and SFN and associated antioxidant activity in three solvent systems of deionized water (dH{sub 2}O), dimethyl sulfoxide (DMSO) and ethanol (EtOH), using Fourier transform infrared spectroscopy (FT-IR), fluorescence spectroscopy, synchronous fluorescence spectroscopy, DPPH and ABTS radical scavenging assays. The results revealed that SFN had ability to quench BSA's fluorescence in static modes, and to interact with BSA at both tyrosine (Tyr) and tryptophan (Trp) residues, while the Trp residues were highly sensitive, which was demonstrated by fluorescence at 340 nm. Hydrophobic forces, hydrogen bonds and van der Waals interactions were all involved in BSA and SFN interaction, which were not significantly changed by three solvents. The binding constant values and binding site numbers were in a descending order of dH{sub 2}O>DMSO>EtOH. The values of free energy change were in a descending order of dH{sub 2}O>DMSO>EtOH, which indicated that the binding forces were in a descending order of dH{sub 2}O>DMSO>EtOH. There was no significant difference in antioxidant activity between SFN and BSA–SFN. Moreover, three solvents had not significant influence on antioxidant activity of SFN and BSA–SFN. -- Highlights: • We report interaction mechanisms of BSA and sulforaphane in three solvent systems. • We report antioxidant activity of BSA–sulforaphane complex in three solvent systems. • Decreasing the solvent polarity will decrease the binding of BSA and sulforaphane. • Three solvents had not influence on antioxidant activity of BSA–sulforaphane.

  11. Polarization phenomena in few-body systems

    International Nuclear Information System (INIS)

    Conzett, H.E.

    1975-12-01

    Recent polarization studies in N--N scattering at and below 50 MeV have provided specific and significant improvements in the phase-shift parameters. High energy investigations with both polarized proton beams and targets have shown unexpectedly large spin effects, and this provides a challenge for theoretical effort to explain these results. Experimental and theoretical work on the three-nucleon problem continues to yield new and interesting results, with the emphasis now shifting to polarization studies in the breakup reaction. On-going work on several-nucleon systems continues to provide polarization data for general analyses, nuclear structure information, or specific resonance effects. Finally, the basic interaction symmetries continue to have unique and important consequences for polarization observables. 17 figures

  12. [Cell polarity in the cardiovascular system].

    Science.gov (United States)

    Haller, C; Kübler, W

    1999-05-01

    The importance of cell polarity as a fundamental biological principle is increasingly recognized in the cardiovascular system. Polar cell mechanisms underlie not only the development of the heart and blood vessels, but also play a major role in the adult organism for polarized endothelial functions such as the separation of the intra- and extravascular compartment and the vectorial exchange of substances between these compartments. Endothelial cells are connected through intercellular junctions which separate the functionally and structurally distinct luminal and abluminal cell surfaces. The luminal plasma membrane is in contact with the blood and takes part in the regulation of hemostasis. The abluminal cell membrane connects the endothelial cell with the basement membrane and modulates blood flow through the release of vasoactive substances. Results from epithelial model systems have shown that the polarized cell phenotype is generated by specific protein sorting and regulated protein trafficking between the trans-Golgi network and the cell surface. The polarized distribution of cell membrane proteins is maintained by anchorage with the cytoskeleton and limitation of lateral diffusion by tight junctions. Disturbances of cell polarity may contribute to the pathogenesis of disease states, including ischemic and radiocontrast-induced acute renal failure and carcinomas. Recent results have demonstrated the importance of cholesterol for protein traffic from the trans-Golgi network to the apical cell membrane. This novel intracellular function of cholesterol could point to a connection between cell polarity and the pathogenesis of arteriosclerosis. The polarity of the endothelium also has to be taken into account when developing gene-therapeutic strategies, since therapeutic success will not only depend on the efficient expression of the desired gene product, but also on its correct cellular location or secretion into the correct extracellular compartment. These

  13. Lyotropic Mesomorphisms of a Lamellar Liquid Crystalline Phase in Non-hydrous Condition: A Phospholipid Hydrated by Different Polar Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Kyu [Korea Kolmar Corporation, Yongi (Korea, Republic of); Jeong, Kwan Young [Chung-buk University, Cheongju (Korea, Republic of)

    2010-05-15

    The lyotropic mesomorphism of lamellar liquid crystalline phase was examined by observing the swelling behavior of Distearoylphosphatidylcholine(DSPC) in glycerin and panthenol without water. The lyotropic mesomorphism was examined by using DSC, XRDs and Cryo-SEM. Increase of two polar solvents under non-hydrous condition showed distinctive differences in the lyotropic mesomorphism from forming different anisotropic structures with DSPC. Glycerin did not affect to the crystalline region of lamellar phase, whereas typical swelling mesomorphism was shown in the noncrystalline region. In contrast, panthenol showed some effect on the crystalline region, but common swelling mesomorphism was found in the non-crystalline region. In this case, the isopropyl and propyl groups in panthenol were the main factor to affect to the lipophilic domain in the crystalline region of lamellar phase. Also, it was found that the formation of well-arranged lamellar structure only by introducing glycerin and panthenol as a solvent without water, was possible. These results were confirmed by examination of the swelling mesomorphism of liquid crystal membrane triggered by introducing the two polar solvents.

  14. Influence of solvent polarization and non-uniform ion size on electrostatic properties between charged surfaces in an electrolyte solution

    Science.gov (United States)

    Sin, Jun-Sik

    2017-12-01

    In this paper, we study electrostatic properties between two similar or oppositely charged surfaces immersed in an electrolyte solution by using the mean-field approach accounting for solvent polarization and non-uniform size effects. Applying a free energy formalism accounting for unequal ion sizes and orientational ordering of water dipoles, we derive coupled and self-consistent equations to calculate electrostatic properties between charged surfaces. Electrostatic properties for similarly charged surfaces depend on the counterion size but not on the coion size. Moreover, electrostatic potential and osmotic pressure between similarly charged surfaces are found to be increased with increasing counterion size. On the other hand, the corresponding ones between oppositely charged surfaces are related to both sizes of positive and negative ions. For oppositely charged surfaces, the electrostatic potential, number density of solvent molecules, and relative permittivity of an electrolyte having unequal ion sizes are not symmetric about the centerline between the charged surfaces. For either case, the consideration of solvent polarization results in a decrease in the electrostatic potential and the osmotic pressure compared to the case without the effect.

  15. Lipase-catalysed ester synthesis in solvent-free oil system: is it esterification or transesterification?

    Science.gov (United States)

    Sun, Jingcan; Yu, Bin; Curran, Philip; Liu, Shao-Quan

    2013-12-01

    Ester synthesis was carried out in a solvent-free system of lipase, coconut oil and ethanol or fusel alcohols to ascertain the reaction mechanism. During ester formation, octanoic and decanoic acids increased initially and then decreased gradually, indicating that ester production was a two-step reaction consisting of hydrolysis and esterification, rather than alcoholysis. With ethanol as the alcohol substrate, added butyric acid inhibited ester synthesis. However, when fusel alcohols were used as the alcohol substrate, no significant inhibitory effect by butyric acid was observed. Added octanoic acid did not show any adverse effect on the synthesis of corresponding esters. The results suggest that polarity of the reactants determines lipase activity. This study provides the first evidence on the mechanism of immobilised lipase-catalysed ester synthesis in a solvent-free system involving both hydrolysis and esterification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Apparatus and method for removing solvent from carbon dioxide in resin recycling system

    Science.gov (United States)

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two-step resin recycling system and method solvent that produces essentially contaminant-free synthetic resin material. The system and method includes one or more solvent wash vessels to expose resin particles to a solvent, the solvent contacting the resin particles in the one or more solvent wash vessels to substantially remove contaminants on the resin particles. A separator is provided to separate the solvent from the resin particles after removal from the one or more solvent wash vessels. The resin particles are next exposed to carbon dioxide in a closed loop carbon dioxide system. The closed loop system includes a carbon dioxide vessel where the carbon dioxide is exposed to the resin, substantially removing any residual solvent remaining on the resin particles after separation. A separation vessel is also provided to separate the solvent from the solvent laden carbon dioxide. Both the carbon dioxide and the solvent are reused after separation in the separation vessel.

  17. Solvents in Organic Synthesis: Replacement and Multi-step Reaction Systems

    DEFF Research Database (Denmark)

    Gani, Rafiqul; Gómez, Paola Arenas; Folic, Milica

    2008-01-01

    with the principles of green chemistry, highlight the need to minimize and optimize the use of organic solvents as much as possible. One important step in optimizing organic solvent use is the identification of suitable ‘greener' solvents that can help to minimize the environmental, health and safety concerns during...... solvent screening problem, several solvent replacement problems and a multi-stage reaction system. In each example a list of solvent candidates is generated so they may be further investigated experimentally....

  18. Modulation of dual fluorescence in a 3-hydroxyquinolone dye by perturbation of its intramolecular proton transfer with solvent polarity and basicity.

    Science.gov (United States)

    Yushchenko, Dmytro A; Shvadchak, Volodymyr V; Bilokin', Mykhailo D; Klymchenko, Andrey S; Duportail, Guy; Mély, Yves; Pivovarenko, Vasyl G

    2006-11-01

    A representative of a new class of dyes with dual fluorescence due to an excited state intramolecular proton transfer (ESIPT) reaction, namely 1-methyl-2-(4-methoxy)phenyl-3-hydroxy-4(1H)-quinolone (QMOM), has been studied in a series of solvents covering a large range of polarity and basicity. A linear dependence of the logarithm of its two bands intensity ratio, log(I(N*)/I(T*)), upon the solvent polarity expressed as a function of the dielectric constant, (epsilon- 1)/(2epsilon + 1), is observed for a series of protic solvents. A linear dependence for log(I(N*)/I(T*)) is also found in aprotic solvents after taking into account the solvent basicity. In contrast, the positions of the absorption and the two emission bands of QMOM do not noticeably depend on the solvent polarity and basicity, indicating relatively small changes in the transition moment of QMOM upon excitation and emission. Time-resolved experiments in acetonitrile, ethyl acetate and dimethylformamide suggest an irreversible ESIPT reaction for this dye. According to the time-resolved data, an increase of solvent basicity results in a dramatic decrease of the ESIPT rate constant, probably due to the disruption of the intramolecular H-bond of the dye by the basic solvent. Due to this new sensor property, 3-hydroxyquinolones are promising candidates for the development of a new generation of environment-sensitive fluorescence dyes for probing interactions of biomolecules.

  19. Solvent Dependence of (14)N Nuclear Magnetic Resonance Chemical Shielding Constants as a Test of the Accuracy of the Computed Polarization of Solute Electron Densities by the Solvent.

    Science.gov (United States)

    Ribeiro, Raphael F; Marenich, Aleksandr V; Cramer, Christopher J; Truhlar, Donald G

    2009-09-08

    Although continuum solvation models have now been shown to provide good quantitative accuracy for calculating free energies of solvation, questions remain about the accuracy of the perturbed solute electron densities and properties computed from them. Here we examine those questions by applying the SM8, SM8AD, SMD, and IEF-PCM continuum solvation models in combination with the M06-L density functional to compute the (14)N magnetic resonance nuclear shieldings of CH3CN, CH3NO2, CH3NCS, and CH3ONO2 in multiple solvents, and we analyze the dependence of the chemical shifts on solvent dielectric constant. We examine the dependence of the computed chemical shifts on the definition of the molecular cavity (both united-atom models and models based on superposed individual atomic spheres) and three kinds of treatments of the electrostatics, namely the generalized Born approximation with the Coulomb field approximation, the generalized Born model with asymmetric descreening, and models based on approximate numerical solution schemes for the nonhomogeneous Poisson equation. Our most systematic analyses are based on the computation of relative (14)N chemical shifts in a series of solvents, and we compare calculated shielding constants relative to those in CCl4 for various solvation models and density functionals. While differences in the overall results are found to be reasonably small for different solvation models and functionals, the SMx models SM8, and SM8AD, using the same cavity definitions (which for these models means the same atomic radii) as those employed for the calculation of free energies of solvation, exhibit the best agreement with experiment for every functional tested. This suggests that in addition to predicting accurate free energies of solvation, the SM8 and SM8AD generalized Born models also describe the solute polarization in a manner reasonably consistent with experimental (14)N nuclear magnetic resonance spectroscopy. Models based on the

  20. Role of Solvent Polarity and Hydrogen-Bonding on Excited-State Fluorescence of 3-[(E)-{4-[Dimethylamino]benzylidene}amino]-2-naphthoic Acid (DMAMN): Isomerization vs Rotomerization.

    Science.gov (United States)

    Al-Ansari, Ibrahim Ahmed Z

    2018-02-22

    The present experimental and theoretical study on a new chromophore DMAMN of the type push-π-pull (push = dimethylaniline, π = imine, pull = 2-naphthoic acid), allows understanding of the mechanism by which the molecular conformational undergoes isomerization/rotomerization following electronic excitation. The steady-state fluorescence spectra of this compound, carried out in solvents of different polarities and proticities, showed significant changes in both the shape and peak positions. The wavelength and intensity change depend on the polarity and hydrogen-bonding environment. In highly polar solvents, the emission is weak and red-shifted compared to that for cyclohexane, but it is more red-shifted in moderate aprotic polar solvents. In hydroxyl solvents, a new weak low-energy emission band appears at ∼525 nm, attributed to the intermolecularly H-bonded open conformer. On the basis of the generated potential energy landscapes of the ground state and low-lying excited state in the gas phase and solution, we found that selective photon absorption, brings this molecule to a "bright" state, from which N═C isomerization Z → E, takes place. This isomerization in gas-phase and low-polarity solvents leads to two minima with a barrier, whereas in highly polar-protic media, it gives one minimum on the S 1 surface with low ΔE S1/T1 (0.17 eV), facilitating deactivation via ISC.

  1. Polyethylene glycol: A recyclable solvent system for the synthesis of ...

    Indian Academy of Sciences (India)

    Ceric ammonium nitrate (CAN) efficiently catalysed the synthesis of benzimidazole derivatives from -phenylenediamine and aldehydes in PEG. This method provides a novel route for the synthesis of benzimidazoles in good yields with little catalyst loading. The recovery and the successful reutilization of the solvent system ...

  2. UV-Vis spectrophotometric studies of self-oxidation/dissociation of quaternary ammonium permanganates (QAP) - impact of solvent polarity

    Science.gov (United States)

    Bank, Suraj Prakash; Guru, Partha Sarathi; Dash, Sukalyan

    2015-05-01

    Self-oxidation/dissociation of some quaternary ammonium permanganates (QAPs), such as cetyltrimethylammonium permanganate (CTAP) and tetrabutylammonium permanganate (TBAP), have been studied spectrophotometrically in six different organic solvent media of different polarities wherein the compounds show good solubility and stability. The optical densities of the substrates at zero time (ODo) and first-order rate constants of dissociation (k1) have been determined from their successive scanning for 40 min. At comparable experimental conditions, absorption capabilities of the substrates are compared from the ODo values in various organic media; the stability of the solutions is compared from the successive scan spectra in those media. The ODo values and the k1 values have been plotted against some solvent parameters to understand their effects on the absorbance and reactivity of the QAPs. These data are also subjected to multiple regression analysis to explain the influence of various solvent parameters on the ion-pairing properties of the substrates, thus elucidating their effects on the process of self-oxidation/dissociation of the substrates.

  3. Explaining level inversion of the La and Lb States of indole and indole derivatives in polar solvents.

    Science.gov (United States)

    Brisker-Klaiman, Daria; Dreuw, Andreas

    2015-06-08

    Quantum chemical methods are used to study the solvent effects on the spectra of indole and a series of methyl-substituted indoles. We focus on the low-lying L(a) and L(b) states and study their interplay. We find that the solvent mainly affects emission from the L(a) state, by stabilizing its energy in its excited-state geometry. The stabilization of the L(a) state increases with increasing solvent polarity, which accounts for the large fluorescence shift observed in indoles and leads to an inversion in the nature of the lowest emitting state, from L(b) in vacuum to L(a) in water. To the best of our knowledge, this is the first theoretical evidence for level inversion done for a series of indoles. The underlying mechanism of level inversion is analyzed in detail. The usual interpretation of level inversion in terms of their static dipole moment is criticized and an improved predictive measurement is suggested. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Novel Paradigm Supercapacitors V: Significance of Organic Polar Solvents and Salt Identities

    Science.gov (United States)

    2017-06-01

    confident that we have positively contributed to the literature. Dr. Luhrs, thank you for ensuring my work was centered on sound engineering principles...for testing they were immediately transferred from the vacuum to the non-aqueous solvent to minimize the absorption of atmospheric moisture into the

  5. Simulation of equilibrium distribution data in a solvent extraction system

    International Nuclear Information System (INIS)

    Mondal, S.; Giriyalkar, A.B.; Singh, A.K.; Singh, D.K.; Hubli, R.C.

    2014-01-01

    In hydrometallurgy, solvent extraction has been proved to be the purification method to recover metal in high-pure form from impure solution. Any solvent extraction process is complex and based on some operating parameters which always lure the scientists to model them. Operating parameters like aqueous to organic volume ratio and concentration of feed are related to required number of stages for a product with specific recovery. So to determine final feed concentration or aqueous to organic volume ratio for a specific extractant concentration, one needs to carry out a number of extraction experiments tediously supported by analysis. Here an attempt is being made to model the distribution of solute between organic and aqueous phases with minimum analytical and experimental support for any system. The model can predict the effect on solvent extraction for a change in the aqueous to organic volume ratio i.e. slope of operating line, percentage loading of solvent, feed concentration, solvent concentration, number of stages and in the process it can help in optimizing conditions for the best result from a solvent extraction system. Uranium-7% TBP in dodecane system was taken up to validate the model. The predicted values of the model was tallied against uranium distribution between aqueous and organic phases in a running mixer settler. The equation for operating line i.e. straight line is derived from O/A=1.5 and considering barren organic contains 2 ppm uranium: y 1 = 0.667x 0 - .002. The extraction isotherm i.e. parabola equation came as : x 1 = 0.003y 0 2 + 0.723y 0 considering three points i.e. (0,0), (13,16.7) (uranium analysis for first stage of mixer-settler) and (25, 30.69) (feed concentration, loading capacity of solvent). Using these two equations the results that were obtained, predicted the solute distribution across different stages exactly as it is in the running mixer settler. Individual isotherms could also be drawn with the predicted results from the

  6. Two novel solvent system compositions for protected synthetic peptide purification by centrifugal partition chromatography.

    Science.gov (United States)

    Amarouche, Nassima; Giraud, Matthieu; Forni, Luciano; Butte, Alessandro; Edwards, F; Borie, Nicolas; Renault, Jean-Hugues

    2014-04-11

    Protected synthetic peptide intermediates are often hydrophobic and not soluble in most common solvents. They are thus difficult to purify by preparative reversed-phase high-performance liquid chromatography (RP-HPLC), usually used for industrial production. It is then challenging to develop alternative chromatographic purification processes. Support-free liquid-liquid chromatographic techniques, including both hydrostatic (centrifugal partition chromatography or CPC) and hydrodynamic (counter-current chromatography or CCC) devices, are mainly involved in phytochemical studies but have also been applied to synthetic peptide purification. In this framework, two new biphasic solvent system compositions covering a wide range of polarity were developed to overcome solubility problems mentioned above. The new systems composed of heptane/tetrahydrofuran/acetonitrile/dimethylsulfoxide/water and heptane/methyl-tetrahydrofuran/N-methylpyrrolidone/water were efficiently used for the CPC purification of a 39-mer protected exenatide (Byetta®) and a 8-mer protected peptide intermediate of bivalirudin (Angiox®) synthesis. Phase compositions of the different biphasic solvent systems were determined by (1)H nuclear magnetic resonance. Physico-chemical properties including viscosity, density and interfacial tension of these biphasic systems are also described. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Research on generating various polarization-modes in polarized illumination system

    Science.gov (United States)

    Huang, Jinping; Lin, Wumei; Fan, Zhenjie

    2013-08-01

    With the increase of the numerical aperture (NA), the polarization of light affects the imaging quality of projection lens more significantly. On the contrary, according to the mask pattern, the resolution of projection lens can be improved by using the polarized illumination. That is to say, using the corresponding polarized beam (or polarization-mode) along with the off-axis illumination will improve the resolution and the imaging quality of the of projection lens. Therefore, the research on the generation of various polarization modes and its conversion methods become more and more important. In order to realize various polarization modes in polarized illumination system, after read a lot of references, we provide a way that fitting for the illumination system with the wavelength of 193nm.Six polarization-modes and a depolarized mode are probably considered. Wave-plate stack is used to generate linearly polarization-mode, which have a higher degree polarization. In order to generate X-Y and Y-X polarization mode, the equipment consisting of four sectors of λ/2 wave plate was used. We combined 16 sectors of λ/2 wave plate which have different orientations of the "slow" axis to generate radial and azimuthal polarization. Finally, a multi-polarization control device was designed. Using the kind of multi-polarization control device which applying this method could help to choose the polarization modes conveniently and flexibility for the illumination system.

  8. Synthesis of sol–gel silica particles in reverse micelles with mixed-solvent polar cores: tailoring nanoreactor structure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Bürglová, Kristýna; Hlaváč, Jan [Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry (Czech Republic); Bartlett, John R., E-mail: jbartlett@usc.edu.au [University of the Sunshine Coast, Faculty of Science, Health, Education and Engineering (Australia)

    2015-07-15

    In this paper, we describe a new approach for producing metal oxide nano- and microparticles via sol–gel processing in confined media (sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles), in which the chemical and physical properties of the polar aqueous core of the reverse micelles are modulated by the inclusion of a second polar co-solvent. The co-solvents were selected for their capacity to solubilise compounds with low water solubility and included dimethylsulfoxide, dimethylformamide, ethylene glycol, n-propanol, dimethylacetamide and N-methylpyrrolidone. A broad range of processing conditions across the sodium bis(2-ethylhexyl)sulfosuccinate/cyclohexane/water phase diagram were identified that are suitable for preparing particles with dimensions <50 to >500 nm. In contrast, only a relatively narrow range of processing conditions were suitable for preparing such particles in the absence of the co-solvents, highlighting the role of the co-solvent in modulating the properties of the polar core of the reverse micelles. A mechanism is proposed that links the interactions between the various reactive sites on the polar head group of the surfactant and the co-solvent to the nucleation and growth of the particles.

  9. Third generation capture system: precipitating amino acid solvent systems

    NARCIS (Netherlands)

    Sanchez Fernandez, E.; Misiak, K.; Ham, L. van der; Goetheer, E.L.V.

    2013-01-01

    This work summarises the results of the design of novel separation processes for CO2 removal from flue gas based on precipitating amino acid solvents. The processes here described (DECAB, DECAB Plus and pH-swing) use a combination of enhanced CO2 absorption (based on the Le Chatelier’s principle)

  10. Unimolecular Solvolyses in Ionic Liquid: Alcohol Dual Solvent Systems

    Directory of Open Access Journals (Sweden)

    Elizabeth D. Kochly

    2016-01-01

    Full Text Available A study was undertaken of the solvolysis of pivaloyl triflate in a variety of ionic liquid:alcohol solvent mixtures. The solvolysis is a kΔ process (i.e., a process in which ionization occurs with rearrangement, and the resulting rearranged carbocation intermediate reacts with the alcohol cosolvent via two competing pathways: nucleophilic attack or elimination of a proton. Five different ionic liquids and three different alcohol cosolvents were investigated to give a total of fifteen dual solvent systems. 1H-NMR analysis was used to determine relative amounts of elimination and substitution products. It was found, not surprisingly, that increasing the bulkiness of alcohol cosolvent led to increased elimination product. The change in the amount of elimination product with increasing ionic liquid concentration, however, varied greatly between ionic liquids. These differences correlate strongly, though not completely, to the Kamlet–Taft solvatochromic parameters of the hydrogen bond donating and accepting ability of the solvent systems. An additional factor playing into these differences is the bulkiness of the ionic liquid anion.

  11. Produced Water Treatment Using the Switchable Polarity Solvent Forward Osmosis (SPS FO) Desalination Process: Preliminary Engineering Design Basis

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel; Adhikari, Birendra; Orme, Christopher; Wilson, Aaron

    2016-05-01

    Switchable Polarity Solvent Forward Osmosis (SPS FO) is a semi-permeable membrane-based water treatment technology. INL is currently advancing SPS FO technology such that a prototype unit can be designed and demonstrated for the purification of produced water from oil and gas production operations. The SPS FO prototype unit will used the thermal energy in the produced water as a source of process heat, thereby reducing the external process energy demands. Treatment of the produced water stream will reduce the volume of saline wastewater requiring disposal via injection, an activity that is correlated with undesirable seismic events, as well as generate a purified product water stream with potential beneficial uses. This paper summarizes experimental data that has been collected in support of the SPS FO scale-up effort, and describes how this data will be used in the sizing of SPS FO process equipment. An estimate of produced water treatment costs using the SPS FO process is also provided.

  12. Polarization sensitive optical frequency domain imaging system for endobronchial imaging

    NARCIS (Netherlands)

    Li, J.; Feroldi, Fabio; de Lange, J.; Daniels, J.M.A.; Grünberg, K.; de Boer, J.F.

    2015-01-01

    A polarization sensitive endoscopic optical frequency domain imaging (PS-OFDI) system with a motorized distal scanning catheter is demonstrated. It employs a passive polarization delay unit to multiplex two orthogonal probing polarization states in depth, and a polarization diverse detection unit to

  13. Solvent-Free Biodiesel Production Catalyzed by Crude Lipase Powder from Seeds: Effects of Alcohol Polarity, Glycerol, and Thermodynamic Water Activity.

    Science.gov (United States)

    Kouteu, Paul Alain Nanssou; Blin, Joël; Baréa, Bruno; Barouh, Nathalie; Villeneuve, Pierre

    2017-10-04

    The aim of this work was to evaluate the potential of crude lipase powders made from Adansonia grandidieri and Jatropha mahafalensis seeds for the synthesis of fatty acid alkyl esters in a solvent-free system. The influence of the nature of the alcohol, the amount of glycerol, and hydration of the powder was investigated. Results showed that the activity of these crude lipase powders was inversely proportional to the alcohol polarity and the amount of the glycerol in the reaction medium. To ensure optimum activity, A. grandidieri and J. mahafalensis powders must be conditioned to a water activity of 0.33 and 0.66. To obtain a fatty acid ethyl ester yield greater than 95% with A. grandidieri, ethanol should be introduced at an amount corresponding to a triacylglycerol to ethanol molar ratio of 2:1 every 15 h for 96 h and use 25% of preconditioned crude lipase powders (2 additions of 12.5%).

  14. A chemically modified lipase preparation for catalyzing the transesterification reaction in even highly polar organic solvents.

    Science.gov (United States)

    Solanki, Kusum; Gupta, Munishwar Nath

    2011-05-15

    Acylation of Pseudomonas cepacia lipase with Pyromellitic dianhydride to modify 72% of total amino groups was carried out. Different organic solvents were screened for precipitation of modified lipase. It was found that 1,2-dimethoxyethane was the best precipitant which precipitated 97% protein and complete activity. PCMC (protein coated microcrystals), CLPCMC (crosslinked protein coated microcrystals), EPROS (enzyme precipitated and rinsed with organic solvents) and pH tuned preparations of modified and unmodified lipase were prepared and used for carrying out transesterification reaction with n-octane and dimethyl formamide (DMF) as reaction medium. In n-octane, among all the preparations, CLPCMC of modified lipase gave highest rate (1970 nmol min(-1)mg(-1)) as compared to unmodified pH tuned lipase (128 nmol min(-1) mg(-1)). In DMF, with both 1% (v/v) and 5% (v/v) water content, CLPCMC showed highest initial rate of 0.72 and 7.2 nmol min(-1) mg(-1), respectively. Unmodified pH tuned lipase showed no activity at all in DMF with both 1% and 5% (v/v) water content. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Esterase Active in Polar Organic Solvents from the Yeast Pseudozyma sp. NII 08165

    Directory of Open Access Journals (Sweden)

    Deepthy Alex

    2014-01-01

    Full Text Available Esterases/lipases active in water miscible solvents are highly desired in biocatalysis where substrate solubility is limited and also when the solvent is desired as an acyl acceptor in transesterification reactions, as with the case of biodiesel production. We have isolated an esterase from the glycolipid producing yeast-Pseudozyma sp. NII 08165 which in its crude form was alkali active, thermo stable, halo tolerant and also capable of acting in presence of high methanol concentration. The crude enzyme which maintained 90% of its original activity after being treated at 70°C was purified and the properties were characterized. The partially purified esterase preparation had temperature and pH optima of 60°C and 8.0 respectively. The enzyme retained almost complete activity in presence of 25% methanol and 80% activity in the same strength of ethanol. Conditions of enzyme production were optimized, which lead to 9 fold increase in the esterase yield. One of the isoforms of the enzyme LIP1 was purified to homogeneity and characterized. Purified LIP1 had a Km and Vmax of 0.01 and 1.12, respectively. The purified esterase lost its thermo and halo tolerance but interestingly, retained 97% activity in methanol.

  16. Numerical simulation of the solvate structures of acetylsalicylic acid in supercritical carbon dioxide containing polar co-solvents

    Science.gov (United States)

    Petrenko, V. E.; Antipova, M. L.; Gurina, D. L.; Odintsova, E. G.; Kumeev, R. S.; Golubev, V. A.

    2016-07-01

    Hydrogen-bonded complexes of acetylsalicylic acid with polar co-solvents in supercritical carbon dioxide, modified by methanol, ethanol, and acetone of 0.03 mole fraction concentration, are studied by numerical methods of classical molecular dynamics simulation and quantum chemical calculations. The structure, energy of formation, and lifetime of hydrogen-bonded complexes are determined, along with their temperature dependences (from 318 to 388 K at constant density of 0.7 g cm-3). It is shown that the hydrogen bonds between acetylsalicylic acid and methanol are most stable at 318 K and are characterized by the highest value of absolute energy. At higher supercritical temperatures, however, the longest lifetime is observed for acetylsalicylic acid-ethanol complexes. These results correlate with the known literature experimental data showing that the maximum solubility of acetylsalicylic acid at density values close to those considered in this work and at temperatures of 318 and 328 K is achieved when using methanol and ethanol as co-solvents, respectively.

  17. Solvent dependency of the UV-Vis spectrum of indenoisoquinolines: role of keto-oxygens as polarity interaction probes.

    Directory of Open Access Journals (Sweden)

    Andrea Coletta

    Full Text Available Indenoisoquinolines are the most promising non-campthotecins topoisomerase IB inhibitors. We present an integrated experimental/computational investigation of the UV-Vis spectra of the IQNs parental compound (NSC314622 and two of its derivatives (NSC724998 and NSC725776 currently undergoing Phase I clinical trials. In all the three compounds a similar dependence of the relative absorption intensities at 270 nm and 290 nm on solvent polarity is found. The keto-oxygens in positions 5 and 11 of the molecular scaffold of the molecule are the principal chromophores involved in this dependence. Protic interactions on these sites are also found to give rise to absorptions at wavelength <250 nm observed in water solution, due to the stabilization of highly polarized tautomers of the molecule. These results suggest that the keto-oxygens are important polarizable groups that can act as useful interactors with the molecular receptor, providing at the same time an useful fingerprint for the monitoring of the drug binding to topoisomerase IB.

  18. Selective Solvent-Induced Stabilization of Polar Oxide Surfaces in an Electrochemical Environment

    Science.gov (United States)

    Yoo, Su-Hyun; Todorova, Mira; Neugebauer, Jörg

    2018-02-01

    The impact of an electrochemical environment on the thermodynamic stability of polar oxide surfaces is investigated for the example of ZnO(0001) surfaces immersed in water using density functional theory calculations. We show that solvation effects are highly selective: They have little effect on surfaces showing a metallic character, but largely stabilize semiconducting structures, particularly those that have a high electrostatic penalty in vacuum. The high selectivity is shown to have direct consequences for the surface phase diagram and explains, e.g., why certain surface structures could be observed only in an electrochemical environment.

  19. Effects of non-polar solvent on the morphology and property of three-dimensional hierarchical TiO2 nanostructures by one-step solvothermal route

    Science.gov (United States)

    Zhou, Yi; Wu, Hongyan; Zhong, Xian; Liu, Ce

    2014-07-01

    Three-dimensional (3D) hierarchical rutile TiO2 microspheres composed of nanorods with diameter of several-tens of nanometers, with different morphologies and with average size ranging from 1.3 to 1.8 μm, were successfully synthesized through a surfactant-free solvothermal route. The effects of the solvents n-hexane, chloroform, and cyclohexane on the microstructures of 3D hierarchical TiO2 nanostructures were investigated. Results of scanning electron microscopy showed that 3D sea-urchin like hierarchical TiO2 composed of nanorods with a diameter of 10 nm can only be prepared in the cyclohexane-water system. The growth mechanism of 3D sea-urchin like hierarchical TiO2 composed of numerous nanorods was further examined and found to differ from the well-known "growth → assembly" mode. The effects of surface tension and polarity of solvents on the morphology and crystal strength of 3D hierarchical TiO2 nanostructure were also investigated. In addition, the prepared 3D sea-urchin like hierarchical TiO2 showed highest photocatalytic activity compared with other 3D hierarchical TiO2 nanostructures in this study and Degussa P25 for the degradation of Rhodamine B solution under UV light irradiation, which could be attributed to its special hierarchical superstructure, the increase of surface catalytic sites and its special composition units.

  20. Prednisolone multicomponent nanoparticle preparation by aerosol solvent extraction system.

    Science.gov (United States)

    Moribe, Kunikazu; Fukino, Mika; Tozuka, Yuichi; Higashi, Kenjirou; Yamamoto, Keiji

    2009-10-01

    Prednisolone nanoparticles were prepared in the presence of a hydrophilic polymer and a surfactant by the aerosol solvent extraction system (ASES). A ternary mixture of prednisolone, polyethylene glycol (PEG), and sodium dodecyl sulfate (SDS) dissolved in methanol was sprayed through a nozzle into the reaction vessel filled with supercritical carbon dioxide. After the ASES process was repeated, precipitates of the ternary components were obtained by depressurizing the reaction vessel. When a methanolic solution of prednisolone/PEG 4000/SDS at a weight ratio of 1:6:2 was sprayed under the optimized ASES conditions, the mean particle size of prednisolone obtained after dispersing the precipitates in water was observed to be ca. 230 nm. Prednisolone nanoparticles were not obtained by the binary ASES process for prednisolone, in the presence of either PEG or SDS. Furthermore, ternary cryogenic cogrinding, as well as solvent evaporation, was not effective for the preparation of prednisolone nanoparticles. As the ASES process can be conducted under moderate temperature conditions, the ASES process that was applied to the ternary system appeared to be one of the most promising methods for the preparation of drug nanoparticles using the multicomponent system.

  1. Coherent scattering of electromagnetic radiation by a polarized particle system

    International Nuclear Information System (INIS)

    Agre, M.Ya.; Rapoport, L.P.

    1996-01-01

    The paper deals with the development of the theory of coherent scattering of electromagnetic waves by a polarized atom or molecular system. Peculiarities of the angular distribution and polarization peculiarities of scattered radiation are discussed

  2. Solvent Optimization for Efficient Enzymatic Monoacylglycerol Production Based on a Glycerolysis Reaction

    DEFF Research Database (Denmark)

    Damstrup, Marianne; Jensen, Tine; Sparsø, Flemming V.

    2005-01-01

    This study was aimed at screening solvent systems of varying polarities to identify suitable solvents for efficient and practical enzymatic glycerolysis. Several pure solvents and solvent mixtures were screened in a batch reaction system consisting of glycerol, sunflower oil, and Novozymo (R) 435...

  3. A carbohydrate-anion recognition system in aprotic solvents.

    Science.gov (United States)

    Ren, Bo; Dong, Hai; Ramström, Olof

    2014-05-01

    A carbohydrate-anion recognition system in nonpolar solvents is reported, in which complexes form at the B-faces of β-D-pyranosides with H1-, H3-, and H5-cis patterns similar to carbohydrate-π interactions. The complexation effect was evaluated for a range of carbohydrate structures; it resulted in either 1:1 carbohydrate-anion complexes, or 1:2 complex formation depending on the protection pattern of the carbohydrate. The interaction was also evaluated with different anions and solvents. In both cases it resulted in significant binding differences. The results indicate that complexation originates from van der Waals interactions or weak CH⋅⋅⋅A(-) hydrogen bonds between the binding partners and is related to electron-withdrawing groups of the carbohydrates as well as increased hydrogen-bond-accepting capability of the anions. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  4. A polar system of intercontinental bird migration.

    Science.gov (United States)

    Alerstam, Thomas; Bäckman, Johan; Gudmundsson, Gudmundur A; Hedenström, Anders; Henningsson, Sara S; Karlsson, Håkan; Rosén, Mikael; Strandberg, Roine

    2007-10-22

    Studies of bird migration in the Beringia region of Alaska and eastern Siberia are of special interest for revealing the importance of bird migration between Eurasia and North America, for evaluating orientation principles used by the birds at polar latitudes and for understanding the evolutionary implications of intercontinental migratory connectivity among birds as well as their parasites. We used tracking radar placed onboard the ice-breaker Oden to register bird migratory flights from 30 July to 19 August 2005 and we encountered extensive bird migration in the whole Beringia range from latitude 64 degrees N in Bering Strait up to latitude 75 degrees N far north of Wrangel Island, with eastward flights making up 79% of all track directions. The results from Beringia were used in combination with radar studies from the Arctic Ocean north of Siberia and in the Beaufort Sea to make a reconstruction of a major Siberian-American bird migration system in a wide Arctic sector between longitudes 110 degrees E and 130 degrees W, spanning one-third of the entire circumpolar circle. This system was estimated to involve more than 2 million birds, mainly shorebirds, terns and skuas, flying across the Arctic Ocean at mean altitudes exceeding 1 km (maximum altitudes 3-5 km). Great circle orientation provided a significantly better fit with observed flight directions at 20 different sites and areas than constant geographical compass orientation. The long flights over the sea spanned 40-80 degrees of longitude, corresponding to distances and durations of 1400-2600 km and 26-48 hours, respectively. The birds continued from this eastward migration system over the Arctic Ocean into several different flyway systems at the American continents and the Pacific Ocean. Minimization of distances between tundra breeding sectors and northerly stopover sites, in combination with the Beringia glacial refugium and colonization history, seemed to be important for the evolution of this major

  5. Estimation of phase separation temperatures for polyethersulfone/solvent/non-solvent systems in RTIPS and membrane properties

    DEFF Research Database (Denmark)

    Liu, Min; Liu, Sheng-Hui; Skov, Anne Ladegaard

    2018-01-01

    and the mean pore size of membranes prepared with the RTIPS process decreased in line with an increase of PES molecular weight. When the membrane formation mechanism was the RTIPS process, the mechanical properties were better than those of the corresponding membranes prepared with the NIPS process.......Phase separation temperature estimations, based on Hansen solubility parameters for poly(ethersulfone) (PES)/solvent/non-solvent systems, were carried out to study the control of phase separation temperature in a reverse thermally induced phase separation (RTIPS) process. Four membrane...

  6. A fluorescent paramagnetic Mn metal–organic framework based on semi-rigid pyrene tetracarboxylic acid: sensing of solvent polarity and explosive nitroaromatics

    Directory of Open Access Journals (Sweden)

    Alankriti Bajpai

    2015-09-01

    Full Text Available An Mn metal–organic framework (Mn-MOF, Mn-L, based on a pyrene-tetraacid linker (H4L, displays a respectable fluorescence quantum yield of 8.3% in spite of the presence of the paramagnetic metal ions, due presumably to fixation of the metal ions in geometries that do not allow complete energy/charge-transfer quenching. Remarkably, the porous Mn-L MOF with ∼25% solvent-accessible volume exhibits a heretofore unprecedented solvent-dependent fluorescence emission maximum, permitting its use as a probe of solvent polarity; the emission maxima in different solvents correlate excellently with Reichardt's solvent polarity parameter (ETN. Further, the applicability of Mn-L to the sensing of nitroaromatics via fluorescence quenching is demonstrated; the detection limit for TNT is shown to be 125 p.p.m. The results bring out the fact that MOFs based on paramagnetic metal ions can indeed find application when the quenching mechanisms are attenuated by certain geometries of the organic linkers of the MOF.

  7. The Case for Tetrahedral Oxy-subhydride (TOSH Structures in the Exclusion Zones of Anchored Polar Solvents Including Water

    Directory of Open Access Journals (Sweden)

    Klaus Oehr

    2014-11-01

    Full Text Available We hypothesize a mechanistic model of how negatively-charged exclusion zones (EZs are created. While the growth of EZs is known to be associated with the absorption of ambient photonic energy, the molecular dynamics giving rise to this process need greater elucidation. We believe they arise due to the formation of oxy-subhydride structures (OH−(H2O4 with a tetrahedral (sp3 (OH−(H2O3 core. Five experimental data sets derived by previous researchers were assessed in this regard: (1 water-derived EZ light absorbance at specific infrared wavelengths, (2 EZ negative potential in water and ethanol, (3 maximum EZ light absorbance at 270 nm ultraviolet wavelength, (4 ability of dimethyl sulphoxide but not ether to form an EZ, and (5 transitory nature of melting ice derived EZs. The proposed tetrahedral oxy-subhydride structures (TOSH appear to adequately account for all of the experimental evidence derived from water or other polar solvents.

  8. Influence of Solvent Polarity and DNA-Binding on Spectral Properties of Quaternary Benzo[c]phenanthridine Alkaloids.

    Directory of Open Access Journals (Sweden)

    Michal Rájecký

    Full Text Available Quaternary benzo[c]phenanthridine alkaloids are secondary metabolites of the plant families Papaveraceae, Rutaceae, and Ranunculaceae with anti-inflammatory, antifungal, antimicrobial and anticancer activities. Their spectral changes induced by the environment could be used to understand their interaction with biomolecules as well as for analytical purposes. Spectral shifts, quantum yield and changes in lifetime are presented for the free form of alkaloids in solvents of different polarity and for alkaloids bound to DNA. Quantum yields range from 0.098 to 0.345 for the alkanolamine form and are below 0.033 for the iminium form. Rise of fluorescence lifetimes (from 2-5 ns to 3-10 ns and fluorescence intensity are observed after binding of the iminium form to the DNA for most studied alkaloids. The alkanolamine form does not bind to DNA. Acid-base equilibrium constant of macarpine is determined to be 8.2-8.3. Macarpine is found to have the highest increase of fluorescence upon DNA binding, even under unfavourable pH conditions. This is probably a result of its unique methoxy substitution at C12 a characteristic not shared with other studied alkaloids. Association constant for macarpine-DNA interaction is 700000 M(-1.

  9. Stability and selectivity of alkaline proteases in hydrophilic solvents

    DEFF Research Database (Denmark)

    Pedersen, Lars Haastrup; Ritthitham, Sinthuwat; Pleissner, Daniel

    2008-01-01

    Hydrophilic, organic solvents can be used as co-solvents with water to produce one phase systems sustaining optimal mass transfer of substrates and products of mixed polarity in biocatalysed processes. At concentrations below 50 % hydrophilic solvents can even have a stabilising effect on alkalin...

  10. influence of polar solvents on the enhancement of light-ends

    African Journals Online (AJOL)

    user

    Unfortunately, light crude oil reserve is fast depleting [1]. This is perhaps one of the ... reduced to a Crude Dispersion System (CDS), the smallest of it being referred to as .... Table 3: Comparison of the yields of fractional cuts obtained by TBP distillation crude and the various Ethanol blends. Fractional cut, 0C. Pure crude 0%.

  11. Liquid biphase systems formed in ternary mixtures of two organic solvents and ethylene oxide oligomers or polymers

    Directory of Open Access Journals (Sweden)

    Spitzer Marcos

    2000-01-01

    Full Text Available Phase equilibrium data were determined for ternary systems containing ethylene oxide oligomers or polymers, heptane and one of three organic solvents (methanol, dichloromethane or chloroform. The effects of temperature, of polymer molecular weight and of the chemical nature of the organic solvent on phase equilibrium were investigated. For all the studied systems, the miscibility region was reduced as temperature decreased, indicating an exothermic phase separation process. For both binary and ternary mixtures, the miscibility also decreased as the macromolecule size increased, although this effect was less significant for the ternary mixtures. These features suggest that phase separation is more influenced by enthalpic than entropic contributions. Regarding the different polar solvents investigated, methanol presented a much smaller miscibility region, in accordance with its inferior solvation ability for PEO. The largest miscibility region was observed with chloroform, not much different from the behaviour observed with dichloromethane. Tie lines were determined for some systems, confirming the strong segregation between polymer and the hydrocarbon solvent.

  12. Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system

    Science.gov (United States)

    Goldberg, Mitchell D.; Kilcoyne, Heather; Cikanek, Harry; Mehta, Ajay

    2013-12-01

    next generation polar-orbiting environmental satellite system, designated as the Joint Polar Satellite System (JPSS), was proposed in February 2010, as part of the President's Fiscal Year 2011 budget request, to be the Civilian successor to the restructured National Polar-Orbiting Operational Environmental Satellite System (NPOESS). Beginning 1 October 2013, the JPSS baseline consists of a suite of five instruments: advanced microwave and infrared sounders critical for short- and medium-range weather forecasting; an advanced visible and infrared imager needed for environmental assessments such as snow/ice cover, droughts, volcanic ash, forest fires and surface temperature; ozone sensor primarily used for global monitoring of ozone and input to weather and climate models; and an Earth radiation budget sensor for monitoring the Earth's energy budget. NASA will fund the Earth radiation budget sensor and the ozone limb sensor for the second JPSS operational satellite--JPSS-2. JPSS is implemented through a partnership between NOAA and the U.S. National Aeronautics and Space Administration (NASA). NOAA is responsible for overall funding; maintaining the high-level requirements; establishing international and interagency partnerships; developing the science and algorithms, and user engagement; NOAA also provides product data distribution and archiving of JPSS data. NASA's role is to serve as acquisition Center of Excellence, providing acquisition of instruments, spacecraft and the multimission ground system, and early mission implementation through turnover to NOAA for operations.

  13. Thermodynamic stability of hydrogen-bonded systems in polar and nonpolar environments.

    Science.gov (United States)

    Pasalić, Hasan; Aquino, Adélia J A; Tunega, Daniel; Haberhauer, Georg; Gerzabek, Martin H; Georg, Herbert C; Moraes, Tatiane F; Coutinho, Kaline; Canuto, Sylvio; Lischka, Hans

    2010-07-30

    The thermodynamic properties of a selected set of benchmark hydrogen-bonded systems (acetic acid dimer and the complexes of acetic acid with acetamide and methanol) was studied with the goal of obtaining detailed information on solvent effects on the hydrogen-bonded interactions using water, chloroform, and n-heptane as representatives for a wide range in the dielectric constant. Solvent effects were investigated using both explicit and implicit solvation models. For the explicit description of the solvent, molecular dynamics and Monte Carlo simulations in the isothermal-isobaric (NpT) ensemble combined with the free energy perturbation technique were performed to determine solvation free energies. Within the implicit solvation approach, the polarizable continuum model and the conductor-like screening model were applied. Combination of gas phase results with the results obtained from the different solvation models through an appropriate thermodynamic cycle allows estimation of complexation free energies, enthalpies, and the respective entropic contributions in solution. Owing to the strong solvation effects of water the cyclic acetic acid dimer is not stable in aqueous solution. In less polar solvents the double hydrogen bond structure of the acetic acid dimer remains stable. This finding is in agreement with previous theoretical and experimental results. A similar trend as for the acetic acid dimer is also observed for the acetamide complex. The methanol complex was found to be thermodynamically unstable in gas phase as well as in any of the three solvents. 2010 Wiley Periodicals, Inc.

  14. Analysis of the Cybotactic Region of Two Renewable Lactone-Water Mixed-Solvent Systems that Exhibit Synergistic Kamlet-Taft Basicity.

    Science.gov (United States)

    Duereh, Alif; Sato, Yoshiyuki; Smith, Richard Lee; Inomata, Hiroshi

    2016-05-19

    Kamlet-Taft solvatochromic parameters (polarity, basicity, acidity) of hydrogen bond donor (HBD)/acceptor (HBA) mixed-solvent systems, water (H2O)-γ-valerolactone (GVL), methanol (MeOH)-GVL, ethanol (EtOH)-GVL, H2O-γ-butyrolactone (GBL), MeOH-GBL, and EtOH-GBL, were measured over their entire composition region at 25 °C using UV-vis spectroscopy. Basicity of H2O-GVL and H2O-GBL systems exhibited positive deviation from ideality and synergism in the Kamlet-Taft basicity values. The cybotactic region around each indicator in the mixed-solvent systems was analyzed with the preferential solvation model. Both H2O-GVL and H2O-GBL mixed-solvent systems were found to be completely saturated with mutual complex molecules and to have higher basicity than pure water because water prefers to interact with GVL or GBL molecules rather than with itself. Formation of H2O-GVL and H2O-GBL complex molecules via specific hydrogen bond donor-acceptor interactions were confirmed by infrared spectroscopy. In MeOH-GVL or MeOH-GBL mixed-solvent systems, MeOH molecules prefer self-interaction over that with GVL or GBL so that synergistic basicity was not observed. Synergistic basicity and basicity increase for various functional groups of ten mixed-solvent (water-HBA solvent) systems can be quantitatively explained by considering electrostatic basicity and a ratio of the partial excess HBA solvent basicity with the HBA solvent molar volume that correlate linearly with the preferential solvation model complex molecular parameter (f12/1). Analysis of the cybotactic region of indicators in aqueous mixtures with the preferential solvation model allows one to estimate the trends of mixed-solvent basicity.

  15. Hydrogen recovery by novel solvent systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Shinnar, R.; Ludmer, Z.; Ullmann, A.

    1991-08-01

    The objective of this work is to develop a novel method for purification of hydrogen from coal-derived synthesis gas. The study involved a search for suitable mixtures of solvents for their ability to separate hydrogen from the coal derived gas stream in significant concentration near their critical point of miscibility. The properties of solvent pairs identified were investigated in more detail to provide data necessary for economic evaluation and process development.

  16. Process control system using polarizing interferometer

    Science.gov (United States)

    Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

    1994-02-15

    A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.

  17. Process control system using polarizing interferometer

    Science.gov (United States)

    Schultz, Thomas J.; Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.

    1994-01-01

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.

  18. Acetone-based cellulose solvent.

    Science.gov (United States)

    Kostag, Marc; Liebert, Tim; Heinze, Thomas

    2014-08-01

    Acetone containing tetraalkylammonium chloride is found to be an efficient solvent for cellulose. The addition of an amount of 10 mol% (based on acetone) of well-soluble salt triethyloctylammonium chloride (Et3 OctN Cl) adjusts the solvent's properties (increases the polarity) to promote cellulose dissolution. Cellulose solutions in acetone/Et3 OctN Cl have the lowest viscosity reported for comparable aprotic solutions making it a promising system for shaping processes and homogeneous chemical modification of the biopolymer. Recovery of the polymer and recycling of the solvent components can be easily achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Salting-out-enhanced ionic liquid microextraction with a dual-role solvent for simultaneous determination of trace pollutants with a wide polarity range in aqueous samples.

    Science.gov (United States)

    Gao, Man; Qu, Jingang; Chen, Kai; Jin, Lide; Dahlgren, Randy Alan; Wang, Huili; Tan, Chengxia; Wang, Xuedong

    2017-11-01

    In real aquatic environments, many occupational pollutants with a wide range of polarities coexist at nanogram to milligram per liter levels. Most reported microextraction methods focus on extracting compounds with similar properties (e.g., polarity or specific functional groups). Herein, we developed a salting-out-enhanced ionic liquid microextraction based on a dual-role solvent (SILM-DS) for simultaneous detection of tetracycline, doxycycline, bisphenol A, triclosan, and methyltriclosan, with log K ow ranging from -1.32 to 5.40 in complex milk and environmental water matrices. The disperser in the ionic-liquid-based dispersive liquid-liquid microextraction was converted to the extraction solvent in the subsequent salting-out-assisted microextraction procedures, and thus a single solvent performed a dual role as both extractant and disperser in the SILM-DS process. Acetonitrile was selected as the dual-role solvent because of its strong affinity for both ionic liquids and water, as well as the extractant in the salting-out step. Optimized experimental conditions were 115 μL [C 8 MIM][PF 6 ] as extractor, 1200 μL acetonitrile as dual-role solvent, pH 2.0, 5.0 min ultrasound extraction time, 3.0 g Na 2 SO 4 , and 3.0 min vortex extraction time. Under optimized conditions, the recoveries of the five pollutants ranged from 74.5 to 106.9%, and their LODs were 0.12-0.75 μg kg -1 in milk samples and 0.11-0.79 μg L -1 in environmental waters. Experimental precision based on relative standard deviation was 1.4-6.4% for intraday and 2.3-6.5% for interday analyses. Compared with previous methods, the prominent advantages of the newly developed method are simultaneous determination of pollutants with a wide range of polarities and a substantially reduced workload for ordinary environmental monitoring and food tests. Therefore, the new method has great application potential for simultaneous determination of trace pollutants with strongly contrasting polarities in several

  20. Orthogonal polynomials describing polarization aberration for rotationally symmetric optical systems.

    Science.gov (United States)

    Xu, Xiangru; Huang, Wei; Xu, Mingfei

    2015-10-19

    Optical lithography has approached a regime of high numerical aperture and wide field, where the impact of polarization aberration on imaging quality turns to be serious. Most of the existing studies focused on the distribution rule of polarization aberration on the pupil, and little attention had been paid to the field. In this paper, a new orthonormal set of polynomials is established to describe the polarization aberration of rotationally symmetric optical systems. The polynomials can simultaneously reveal the distribution rules of polarization aberration on the exit pupil and the field. Two examples are given to verify the polynomials.

  1. Dynamic materials accounting for solvent-extraction systems

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, D.D.; Ostenak, C.A.

    1979-01-01

    Methods for estimating nuclear materials inventories in solvent-extraction contactors are being developed. These methods employ chemical models and available process measurements. Comparisons of model calculations and experimental data for mixer-settlers and pulsed columns indicate that this approach should be adequate for effective near-real-time materials accounting in nuclear fuels reprocessing plants.

  2. Dynamic materials accounting for solvent-extraction systems

    International Nuclear Information System (INIS)

    Cobb, D.D.; Ostenak, C.A.

    1979-01-01

    Methods for estimating nuclear materials inventories in solvent-extraction contactors are being developed. These methods employ chemical models and available process measurements. Comparisons of model calculations and experimental data for mixer-settlers and pulsed columns indicate that this approach should be adequate for effective near-real-time materials accounting in nuclear fuels reprocessing plants

  3. Anion exchange in mixed solvent systems Part 7

    International Nuclear Information System (INIS)

    Koprda, V.

    1976-01-01

    The diffusion of chlorocomplexes of some corrosion and fission products in anion exchange beads has been studied in mixed solvent media. The effects of variables on the kinetics of the exchange process by the batch and flow technique were examined. The strongly basic anion exchanger Dowex 2x8 in its Cl - form was used in organic solvent-water-hydrochloric acid solutions. The dependence of the exchange rate on temperature, the viscosity of the solution, the mean resin particle diameter and the composition of the solution was studied. Film and particle diffusion coefficients were calculated from the experimental data. The results provide valuable data for the design of separation procedures. The most perspective parameters affecting substantially the kinetics of ion exchange and the dynamic behaviour of ionic species in chromatographic column seem to be temperature temperature, viscosity of solution, resin particle diameter and the quantity of organic solvent in mixed solution. The results of the kinetics of chlorocomplexes of trace radionuclides of corrosion and fission products provide valuable data for the design of separation procedures from mixed solvents. (T.G.)

  4. Measurement and prediction of aromatic solute distribution coefficients for aqueous-organic solvent systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.R.; Luthy, R.G.

    1984-06-01

    Experimental and modeling activities were performed to assess techniques for measurement and prediction of distribution coefficients for aromatic solutes between water and immiscible organic solvents. Experiments were performed to measure distribution coefficients in both clean water and wastewater systems, and to assess treatment of a wastewater by solvent extraction. The theoretical portions of this investigation were directed towards development of techniques for prediction of solute-solvent/water distribution coefficients. Experiments were performed to assess treatment of a phenolic-laden coal conversion wastewater by solvent extraction. The results showed that solvent extraction for recovery of phenolic material offered several wastewater processing advantages. Distribution coefficients were measured in clean water and wastewater systems for aromatic solutes of varying functionality with different solvent types. It was found that distribution coefficients for these compounds in clean water systems were not statistically different from distribution coefficients determined in a complex coal conversion process wastewater. These and other aromatic solute distribution coefficient data were employed for evaluation of modeling techniques for prediction of solute-solvent/water distribution coefficients. Eight solvents were selected in order to represent various chemical classes: toluene and benzene (aromatics), hexane and heptane (alkanes), n-octanol (alcohols), n-butyl acetate (esters), diisopropyl ether (ethers), and methylisobutyl ketone (ketones). The aromatic solutes included: nonpolar compounds such as benzene, toluene and naphthalene, phenolic compounds such as phenol, cresol and catechol, nitrogenous aromatics such as aniline, pyridine and aminonaphthalene, and other aromatic solutes such as naphthol, quinolinol and halogenated compounds. 100 references, 20 figures, 34 tables.

  5. A potentiometric study of molecular heteroconjugation equilibria in (n-butylamine+acetic acid) systems in binary (acetonitrile +1,4-dioxane) solvent mixtures

    International Nuclear Information System (INIS)

    Czaja, Malgorzata; Makowski, Mariusz; Chmurzynski, Lech

    2006-01-01

    By using the potentiometric method the following quantities have been determined: acidity constants of molecular acid, K a (HA), of cationic acid, K a (BH + ), anionic and cationic homoconjugation constants, K AHA - and K BHB + , respectively, as well as molecular heteroconjugation constants, K AHB , in (n-butylamine+acetic acid) systems without proton transfer in binary (acetonitrile+1,4-dioxane), AN+D, solvent mixtures. The results of these measurements have shown that the magnitudes of the molecular heteroconjugation constants do not depend on the 1,4-dioxane content in the mixed solvent, i.e., on solvent polarity. It has also been found that in the (acid+base) systems without proton transfer, the manner of carrying out the titration (direct B+HA vs. reverse HA+B) does not affect the magnitudes of the molecular heteroconjugation constants

  6. A potentiometric study of molecular heteroconjugation equilibria in (n-butylamine+acetic acid) systems in binary (acetonitrile +1,4-dioxane) solvent mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Czaja, Malgorzata [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Makowski, Mariusz [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Chmurzynski, Lech [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland)]. E-mail: lech@chem.univ.gda.pl

    2006-05-15

    By using the potentiometric method the following quantities have been determined: acidity constants of molecular acid, K{sub a}(HA), of cationic acid, K{sub a}(BH{sup +}), anionic and cationic homoconjugation constants, K{sub AHA{sup -}} and K{sub BHB{sup +}}, respectively, as well as molecular heteroconjugation constants, K{sub AHB}, in (n-butylamine+acetic acid) systems without proton transfer in binary (acetonitrile+1,4-dioxane), AN+D, solvent mixtures. The results of these measurements have shown that the magnitudes of the molecular heteroconjugation constants do not depend on the 1,4-dioxane content in the mixed solvent, i.e., on solvent polarity. It has also been found that in the (acid+base) systems without proton transfer, the manner of carrying out the titration (direct B+HA vs. reverse HA+B) does not affect the magnitudes of the molecular heteroconjugation constants.

  7. A polar system of intercontinental bird migration

    OpenAIRE

    Alerstam, Thomas; Bäckman, Johan; Gudmundsson, Gudmundur A; Hedenström, Anders; Henningsson, Sara S; Karlsson, Håkan; Rosén, Mikael; Strandberg, Roine

    2007-01-01

    Studies of bird migration in the Beringia region of Alaska and eastern Siberia are of special interest for revealing the importance of bird migration between Eurasia and North America, for evaluating orientation principles used by the birds at polar latitudes and for understanding the evolutionary implications of intercontinental migratory connectivity among birds as well as their parasites. We used tracking radar placed onboard the ice-breaker Oden to register bird migratory flights from 30 ...

  8. Joint Polar Satellite System Common Ground System Overview

    Science.gov (United States)

    Jamilkowski, M. L.; Miller, S. W.; Grant, K. D.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will contribute the afternoon orbit component and ground processing system of the restructured National Polar-orbiting Operational Environmental Satellite System (NPOESS). As such, JPSS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the ground processing component of both Polar-orbiting Operational Environmental Satellites and the Defense Meteorological Satellite Program (DMSP) replacement, previously known as the Defense Weather Satellite System (DWSS), managed by the Department of Defense (DoD). The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS), and consists of a Command, Control, and Communications Segment (C3S) and an Interface Data Processing Segment (IDPS). Both segments are developed by Raytheon Intelligence and Information Systems (IIS). The C3S currently flies the Suomi National Polar Partnership (Suomi NPP) satellite and transfers mission data from Suomi NPP and between the ground facilities. The IDPS processes Suomi NPP satellite data to provide Environmental Data Records (EDRs) to NOAA and DoD processing centers operated by the United States government. When the JPSS-1 satellite is launched in early 2017, the responsibilities of the C3S and the IDPS will be expanded to support both Suomi NPP and JPSS-1. The JPSS CGS currently provides data processing for Suomi NPP, generating multiple terabytes per day across over two dozen environmental data products; that workload will be multiplied by two when the JPSS-1 satellite is

  9. Enzymatic Synthesis of Glucose-Based Fatty Acid Esters in Bisolvent Systems Containing Ionic Liquids or Deep Eutectic Solvents

    Directory of Open Access Journals (Sweden)

    Kai-Hua Zhao

    2016-09-01

    Full Text Available Sugar fatty acid esters (SFAEs are biocompatible nonionic surfactants with broad applications in food, cosmetic, and pharmaceutical industries. They can be synthesized enzymatically with many advantages over their chemical synthesis. In this study, SFAE synthesis was investigated by using two reactions: (1 transesterification of glucose with fatty acid vinyl esters and (2 esterification of methyl glucoside with fatty acids, catalyzed by Lipozyme TLIM and Novozym 435 respectively. Fourteen ionic liquids (ILs and 14 deep eutectic solvents (DESs were screened as solvents, and the bisolvent system composed of 1-hexyl-3-methylimidazolium trifluoromethylsulfonate ([HMIm][TfO] and 2-methyl-2-butanol (2M2B was the best for both reactions, yielding optimal productivities (769.6 and 397.5 µmol/h/g, respectively which are superior to those reported in the literature. Impacts of different reaction conditions were studied for both reactions. Response surface methodology (RSM was employed to optimize the transesterification reaction. Results also demonstrated that as co-substrate, methyl glucoside yielded higher conversions than glucose, and that conversions increased with an increase in the chain length of the fatty acid moieties. DESs were poor solvents for the above reactions presumably due to their high viscosity and high polarity.

  10. The solvent efflux system of Pseudomonas putida S12 is not involved in antibiotic resistance.

    Science.gov (United States)

    Isken, S; De Bont, J A

    2000-11-01

    The active efflux system contributing to the solvent tolerance of Pseudomonas putida S12 was characterized physiologically. The mutant P. putida JK1, which lacks the active efflux system, was compared with the wild-type organism. None of 20 known substrates of common multi-drug-resistant pumps had a stronger growth-inhibiting effect on the mutant than on the wild type. The amount of [14C]toluene accumulating in P. putida S12 increased in the presence of the solvent xylene and in the presence of uncouplers. The effect of uncouplers confirms the proton dependency of the efflux system in P. putida S12. Other compounds, potential substrates for the solvent pump, did not affect the accumulation of [14C]toluene. These results show that the efflux system in P. putida S12 is specific for organic solvents and does not export antibiotics or other known substrates of multi-drug-resistant pumps.

  11. Kinetics and Optimization of Lipophilic Kojic Acid Derivative Synthesis in Polar Aprotic Solvent Using Lipozyme RMIM and Its Rheological Study

    Directory of Open Access Journals (Sweden)

    Nurazwa Ishak

    2018-02-01

    Full Text Available The synthesis of kojic acid derivative (KAD from kojic and palmitic acid (C16:0 in the presence of immobilized lipase from Rhizomucor miehei (commercially known as Lipozyme RMIM, was studied using a shake flask system. Kojic acid is a polyfunctional heterocycles that acts as a source of nucleophile in this reaction allowing the formation of a lipophilic KAD. In this study, the source of biocatalyst, Lipozyme RMIM, was derived from the lipase of Rhizomucor miehei immobilized on weak anion exchange macro-porous Duolite ES 562 by the adsorption technique. The effects of solvents, enzyme loading, reaction temperature, and substrate molar ratio on the reaction rate were investigated. In one-factor-at-a-time (OFAT experiments, a high reaction rate (30.6 × 10−3 M·min−1 of KAD synthesis was recorded using acetone, enzyme loading of 1.25% (w/v, reaction time of 12 h, temperature of 50 °C and substrate molar ratio of 5:1. Thereafter, a yield of KAD synthesis was optimized via the response surface methodology (RSM whereby the optimized molar ratio (fatty acid: kojic acid, enzyme loading, reaction temperature and reaction time were 6.74, 1.97% (w/v, 45.9 °C, and 20 h respectively, giving a high yield of KAD (64.47%. This condition was reevaluated in a 0.5 L stirred tank reactor (STR where the agitation effects of two impellers; Rushton turbine (RT and pitch-blade turbine (PBT, were investigated. In the STR, a very high yield of KAD synthesis (84.12% was achieved using RT at 250 rpm, which was higher than the shake flask, thus indicating better mixing quality in STR. In a rheological study, a pseudoplastic behavior of KAD mixture was proposed for potential application in lotion formulation.

  12. Kinetics and Optimization of Lipophilic Kojic Acid Derivative Synthesis in Polar Aprotic Solvent Using Lipozyme RMIM and Its Rheological Study.

    Science.gov (United States)

    Ishak, Nurazwa; Lajis, Ahmad Firdaus B; Mohamad, Rosfarizan; Ariff, Arbakariya B; Mohamed, Mohd Shamzi; Halim, Murni; Wasoh, Helmi

    2018-02-24

    The synthesis of kojic acid derivative (KAD) from kojic and palmitic acid (C16:0) in the presence of immobilized lipase from Rhizomucor miehei (commercially known as Lipozyme RMIM), was studied using a shake flask system. Kojic acid is a polyfunctional heterocycles that acts as a source of nucleophile in this reaction allowing the formation of a lipophilic KAD. In this study, the source of biocatalyst, Lipozyme RMIM, was derived from the lipase of Rhizomucor miehei immobilized on weak anion exchange macro-porous Duolite ES 562 by the adsorption technique. The effects of solvents, enzyme loading, reaction temperature, and substrate molar ratio on the reaction rate were investigated. In one-factor-at-a-time (OFAT) experiments, a high reaction rate (30.6 × 10 -3 M·min -1 ) of KAD synthesis was recorded using acetone, enzyme loading of 1.25% ( w / v ), reaction time of 12 h, temperature of 50 °C and substrate molar ratio of 5:1. Thereafter, a yield of KAD synthesis was optimized via the response surface methodology (RSM) whereby the optimized molar ratio (fatty acid: kojic acid), enzyme loading, reaction temperature and reaction time were 6.74, 1.97% ( w / v ), 45.9 °C, and 20 h respectively, giving a high yield of KAD (64.47%). This condition was reevaluated in a 0.5 L stirred tank reactor (STR) where the agitation effects of two impellers; Rushton turbine (RT) and pitch-blade turbine (PBT), were investigated. In the STR, a very high yield of KAD synthesis (84.12%) was achieved using RT at 250 rpm, which was higher than the shake flask, thus indicating better mixing quality in STR. In a rheological study, a pseudoplastic behavior of KAD mixture was proposed for potential application in lotion formulation.

  13. Polarization sensitive optical frequency domain imaging system for endobronchial imaging.

    Science.gov (United States)

    Li, Jianan; Feroldi, Fabio; de Lange, Joop; Daniels, Johannes M A; Grünberg, Katrien; de Boer, Johannes F

    2015-02-09

    A polarization sensitive endoscopic optical frequency domain imaging (PS-OFDI) system with a motorized distal scanning catheter is demonstrated. It employs a passive polarization delay unit to multiplex two orthogonal probing polarization states in depth, and a polarization diverse detection unit to detect interference signal in two orthogonal polarization channels. Per depth location four electro-magnetic field components are measured that can be represented in a complex 2x2 field matrix. A Jones matrix of the sample is derived and the sample birefringence is extracted by eigenvalue decomposition. The condition of balanced detection and the polarization mode dispersion are quantified. A complex field averaging method based on the alignment of randomly pointing field phasors is developed to reduce speckle noise. The variation of the polarization states incident on the tissue due to the circular scanning and catheter sheath birefringence is investigated. With this system we demonstrated imaging of ex vivo chicken muscle, in vivo pig lung and ex vivo human lung specimens.

  14. Probing effect of solvent concentration on glass transition and sub-Tg structural relaxation in polymer solvent mixtures: The case of polystyrene-toluene system

    Science.gov (United States)

    Pierleoni, Davide; Scherillo, Giuseppe; Minelli, Matteo; Mensitieri, Giuseppe; Doghieri, Ferruccio

    2016-05-01

    A novel experimental method for the analysis of volume relaxation induced by solvents in glassy polymers is presented. A gravimetric technique is used to evaluate the isothermal solvent mass uptake at controlled increasing/decreasing solvent pressure at constant rate. Fundamental properties of the solvent/polymer system can be obtained directly, and models can be applied, combining both nonequilibrium thermodynamics and mechanics of volume relaxation contribution. The fundamental case of polystyrene and toluene mixtures are thus accounted for, and various experimental conditions have been explored, varying the temperature, and spanning over different pressure increase/decrease rates. The results obtained allowed to evaluate the isothermal second order transition induced by solvent sorption, as well as the determination of the effect of the pressure rate. Therefore, this work proposes a new standard for the characterization and the understanding of the relaxational behavior of glassy polymers.

  15. Joint Polar Satellite System: the United States New Generation Civilian Polar Orbiting Environmental Satellite System

    Science.gov (United States)

    Mandt, G.

    2017-12-01

    The Joint Polar Satellite System (JPSS) is the Nation's advanced series of polar-orbiting environmental satellites. JPSS represents significant technological and scientific advancements in observations used for severe weather prediction and environmental monitoring. The Suomi National Polar-orbiting Partnership (S-NPP) is providing state-of-the art atmospheric, oceanographic, and environmental data, as the first of the JPSS satellites while the second in the series, J-1, is scheduled to launch in October 2017. The JPSS baseline consists of a suite of four instruments: an advanced microwave and infrared sounders which are critical for weather forecasting; a leading-edge visible and infrared imager critical to data sparse areas such as Alaska and needed for environmental assessments such as snow/ice cover, droughts, volcanic ash, forest fires and surface temperature; and an ozone sensor primarily used for global monitoring of ozone and input to weather and climate models. The same suite of instruments that are on JPSS-1 will be on JPSS-2, 3 and 4. The JPSS-2 instruments are well into their assembly and test phases and are scheduled to be completed in 2018. The JPSS-2 spacecraft critical design review (CDR) is scheduled for 2Q 2018 with the launch in 2021. The sensors for the JPSS-3 and 4 spacecraft have been approved to enter into their acquisition phases. JPSS partnership with the US National Aeronautics and Space Agency (NASA) continues to provide a strong foundation for the program's success. JPSS also continues to maintain its important international relationships with European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) and the Japan Aerospace Exploration Agency (JAXA). JPSS works closely with its user community through the Proving Ground and Risk Reduction (PGRR) Program to identify opportunities to maximize the operational application of current JPSS capabilities. The PGRR Program also helps identify and evaluate the use of JPSS

  16. Potentiometric investigations of (acid+base) equilibria in (n-butylamine+acetic acid) systems in binary (acetone+cyclohexane) solvent mixtures

    International Nuclear Information System (INIS)

    Czaja, MaIgorzata; Kozak, Anna; Makowski, Mariusz; Chmurzynski, Lech

    2005-01-01

    By using the potentiometric titration method, standard equilibrium constants have been determined of acid dissociation of molecular acid, K a (HA), cationic acid, K a (BH + ), of anionic and cationic homoconjugation, K AHA - andK BHB + , respectively, and of molecular heteroconjugation, K AHB (K BHA ), in (acid+base) systems without proton transfer consisting of n-butylamine and acetic acid in binary (acetone+cyclohexane) solvent mixtures. The results have shown that both the pK a (HA) and pK a (BH + ), as well as lgK AHA - values change non-linearly as a function of composition of the solvent mixture. On the other hand, standard molecular heteroconjugation constants without proton transfer do not depend on the cyclohexane content in the mixture, i.e. on solvent polarity

  17. Potentiometric investigations of (acid+base) equilibria in (n-butylamine+acetic acid) systems in binary (acetone+cyclohexane) solvent mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Czaja, MaIgorzata [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Kozak, Anna [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Makowski, Mariusz [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Chmurzynski, Lech [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland)]. E-mail: lech@chem.univ.gda.pl

    2005-08-15

    By using the potentiometric titration method, standard equilibrium constants have been determined of acid dissociation of molecular acid, K{sub a}(HA), cationic acid, K{sub a}(BH{sup +}), of anionic and cationic homoconjugation, K{sub AHA{sup -}}andK{sub BHB{sup +}}, respectively, and of molecular heteroconjugation, K{sub AHB} (K{sub BHA}), in (acid+base) systems without proton transfer consisting of n-butylamine and acetic acid in binary (acetone+cyclohexane) solvent mixtures. The results have shown that both the pK{sub a}(HA) and pK{sub a}(BH{sup +}), as well as lgK{sub AHA{sup -}} values change non-linearly as a function of composition of the solvent mixture. On the other hand, standard molecular heteroconjugation constants without proton transfer do not depend on the cyclohexane content in the mixture, i.e. on solvent polarity.

  18. Central nervous system effects of chronic solvent abuse

    International Nuclear Information System (INIS)

    Okada, Shin-ichi; Yamanouchi, Naoto; Kodama, Kazuhiro; Sakamoto, Tadashi; Sato, Toshio; Hirai, Shinji; Uchida, Yoshitaka.

    1994-01-01

    Thirteen organic solvent abusers (13 men and 2 women) were examined by magnetic resonace imaging (MRI) and singl photon emission computed tomography (SPECT). Three patients had neurological findings, such as ataxia of the upper extremities and walking disorder, and 2 of these had localized signal abnormality on MRI. T2-weighted imaging showed high signal intensities in the cerebral white matter, endocyst posterior shank, pars ventralis, and cerebellar white matter. These seemed to be attributable to demyelination. Two patients who showed locally abnormal MRI findings had begun to abuse organic solvents. There was a significant correlation between the age at the time of beginning inhalation and behavioral IQ (r=0.84). This suggested the importance of age at the time of beginning inhalation. When SPECT images were visually interpreted in 11 patients, 5 patients had a decreased blood flow in the bilateral frontal lobes (n=2), the right frontal lobe (n=2), and the bilateral cerebellar hemisphere (n=2). In the other 6 patients, blood flow was normal. There was a negative correlation between blood flow in the left frontal lobe and the score for the third Scale for the Assessment of Negative Symptoms (SANS) item. (N.K.)

  19. A Novel Attitude Determination System Aided by Polarization Sensor

    Directory of Open Access Journals (Sweden)

    Wei Zhi

    2018-01-01

    Full Text Available This paper aims to develop a novel attitude determination system aided by polarization sensor. An improved heading angle function is derived using the perpendicular relationship between directions of E-vector of linearly polarized light and solar vector in the atmospheric polarization distribution model. The Extended Kalman filter (EKF with quaternion differential equation as a dynamic model is applied to fuse the data from sensors. The covariance functions of filter process and measurement noises are deduced in detail. The indoor and outdoor tests are conducted to verify the validity and feasibility of proposed attitude determination system. The test results showed that polarization sensor is not affected by magnetic field, thus the proposed system can work properly in environments containing the magnetic interference. The results also showed that proposed system has higher measurement accuracy than common attitude determination system and can provide precise parameters for Unmanned Aerial Vehicle (UAV flight control. The main contribution of this paper is implementation of the EKF for incorporating the self-developed polarization sensor into the conventional attitude determination system. The real-world experiment with the quad-rotor proved that proposed system can work in a magnetic interference environment and provide sufficient accuracy in attitude determination for autonomous navigation of vehicle.

  20. Novel calibration system with sparse wires for CMB polarization receivers

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, O.; /KEK, Tsukuba /Chicago U., KICP; Nguyen, H.; /Fermilab; Bischoff, C.; /Chicago U., KICP /Harvard-Smithsonian Ctr. Astrophys.; Brizius, A.; Buder, I.; Kusaka, A. /Chicago U., KICP

    2011-07-01

    B-modes in the cosmic microwave background (CMB) polarization is a smoking gun signature of the inflationary universe. To achieve better sensitivity to this faint signal, CMB polarization experiments aim to maximize the number of detector elements, resulting in a large focal plane receiver. Detector calibration of the polarization response becomes essential. It is extremely useful to be able to calibrate 'simultaneously' all detectors on the large focal plane. We developed a novel calibration system that rotates a large 'sparse' grid of metal wires, in front of and fully covering the field of view of the focal plane receiver. Polarized radiation is created via the reflection of ambient temperature from the wire surface. Since the detector has a finite beam size, the observed signal is smeared according to the beam property. The resulting smeared polarized radiation has a reasonable intensity (a few Kelvin or less) compared to the sky temperature ({approx}10 K observing condition). The system played a successful role for receiver calibration of QUIET, a CMB polarization experiment located in the Atacama desert in Chile. The successful performance revealed that this system is applicable to other experiments based on different technologies, e.g. TES bolometers.

  1. Reverse Schreinemakers Method for Experimental Analysis of Mixed-Solvent Electrolyte Systems

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Thomsen, Kaj; Stenby, Erling Halfdan

    2009-01-01

    from determining the composition of salt mixtures by pH titration are discussed, and the derived method significantly improves the obtained result from titration. Furthermore, the method reduces the required experimental work needed for analysis of phase composition. The method is applicable to multi......A method based on Schreinemakers's tie-line theory of 1893 is derived for determining the composition and phase amounts in solubility experiments for multi-solvent electrolyte systems. The method uses the lever rule in reverse compared to Schreinemakers's wet residue method, and is therefore called...... the reverse Schreinemakers (RS) method. The method is based on simple mass balance principles similar to the wet residues method. It allows for accurate determination of the mixed-solvent phase composition even though part of the solvent may precipitate as complexes between solvent and salt. Discrepancies...

  2. Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems.

    Science.gov (United States)

    An, Jiwoo; Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L

    2017-06-02

    The development of rapid, convenient, and high throughput sample preparation approaches such as liquid phase microextraction techniques have been continuously developed over the last decade. More recently, significant attention has been given to the replacement of conventional organic solvents used in liquid phase microextraction techniques in order to reduce toxic waste and to improve selectivity and/or extraction efficiency. With these objectives, non-conventional solvents have been explored in liquid phase microextraction and aqueous biphasic systems. The utilized non-conventional solvents include ionic liquids, magnetic ionic liquids, and deep eutectic solvents. They have been widely used as extraction solvents or additives in various liquid phase microextraction modes including dispersive liquid-liquid microextraction, single-drop microextraction, hollow fiber-liquid phase microextraction, as well as in aqueous biphasic systems. This review provides an overview into the use of non-conventional solvents in these microextraction techniques in the past 5 years (2012-2016). Analytical applications of the techniques are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Polarization-independent, differential-phase-shift, quantum-key distribution system using upconversion detectors.

    Science.gov (United States)

    Iwai, Yuki; Honjo, Toshimori; Inoue, Kyo; Kamada, Hidehiko; Nishida, Yoshiki; Tadanaga, Osamu; Asobe, Masaki

    2009-05-15

    We propose and demonstrate a polarization-independent, differential-phase-shift, quantum-key distribution system with upconversion detectors. Even though the detectors have polarization dependency, use of alternative polarization modulation and a two-bit delay interferometer achieves polarization-insensitive operation. In an experiment, sifted key bits were polarization-independently generated over 50 km fiber.

  4. Physicochemical studies of the carbamate-CO2-solvent system

    International Nuclear Information System (INIS)

    Prencipe, M.; Ishida, T.

    1977-08-01

    The formation of carbamate from CO 2 and the various amine solutions has been investigated for the purpose of elucidating the structure of the species generated in the reaction. The amine solutions used were 1 and 2 molar solutions of di-n-butylamine (DNBA) in triethylamine (TEA), pure DNBA and pure TEA. It has been found that the nonaqueous solvent participates in the formation of carbamate in 1 and 2M-DNBA/TEA solutions as a proton acceptor in DNBA-carbamate formation. However, due to the high concentration of the solutions and the basicities of the amines, a significant amount of DNBA which does not form the DNBA-carbamate anion is also found to be participating as a proton acceptor. Pure TEA absorbs only 1 / 60 of the absorption by pure DNBA. The extent of TEA participation in the CO 2 -absorption process other than as a proton acceptor in DNBA-carbamate is negligible. The formation of carbamic acid and zwitterion have been found unlikely. 7 tables, 15 figs

  5. Rational approach to solvent system selection for liquid-liquid extraction-assisted sample pretreatment in counter-current chromatography.

    Science.gov (United States)

    Wang, Jiajia; Gu, Dongyu; Wang, Miao; Guo, Xinfeng; Li, Haoquan; Dong, Yue; Guo, Hong; Wang, Yi; Fan, Mengqi; Yang, Yi

    2017-05-15

    A rational liquid-liquid extraction approach was established to pre-treat samples for high-speed counter-current chromatography (HSCCC). n-Hexane-ethyl acetate-methanol-water (4:5:4:5, v/v) and (1:5:1:5, v/v) were selected as solvent systems for liquid-liquid extraction by systematically screening K of target compounds to remove low- and high-polarity impurities in the sample, respectively. After liquid-liquid extraction was performed, 1.4g of crude sample II was obtained from 18.5g of crude sample I which was extracted from the flowers of Robinia pseudoacacia L., and then separated with HSCCC by using a solvent system composed of n-hexane-ethyl acetate-methanol-water (1:2:1:2, v/v). As a result, 31mg of robinin and 37mg of kaempferol 7-O-α-l-rhamnopyranoside were isolated from 200mg of crude sample II in a single run of HSCCC. A scale-up separation was also performed, and 160mg of robinin with 95% purity and 188mg of kaempferol 7-O-α-l-rhamnopyranoside with 97% purity were produced from 1.2g of crude sample II. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Structure and properties of polycaprolactone/chitosan nonwovens tailored by solvent systems.

    Science.gov (United States)

    Urbanek, Olga; Sajkiewicz, Paweł; Pierini, Filippo; Czerkies, Maciej; Kołbuk, Dorota

    2017-02-03

    Electrospinning of chitosan blends is a reasonable idea to prepare fibre mats for biomedical applications. Synthetic and natural components provide, for example, appropriate mechanical strength and biocompatibility, respectively. However, solvent characteristics and the polyelectrolyte nature of chitosan influence the spinnability of these blends. In order to compare the effect of solvent on polycaprolactone/chitosan fibres, two types of the most commonly used solvent systems were chosen, namely 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and acetic acid (AA)/formic acid (FA). Results obtained by various experimental methods clearly indicated the effect of the solvent system on the structure and properties of electrospun polycaprolactone/chitosan fibres. Viscosity measurements confirmed different polymer-solvent interactions. Various molecular interactions resulting in different macromolecular conformations of chitosan influenced its spinnability and properties. HFIP enabled fibres to be obtained whose average diameter was less than 250 nm while maintaining the brittle and hydrophilic character of the nonwoven, typical for the chitosan component. Spectroscopy studies revealed the formation of chitosan salts in the case of the AA/FA solvent system. Chitosan salts visibly influenced the structure and properties of the prepared fibre mats. The use of AA/FA caused a reduction of Young's modulus and wettability of the proposed blends. It was confirmed that wettability, mechanical properties and the antibacterial effect of polycaprolactone/chitosan fibres may be tailored by selecting an appropriate solvent system. The MTT cell proliferation assay revealed an increase of cytotoxicity to mouse fibroblasts in the case of 25% w/w of chitosan in electrospun nonwovens.

  7. Electrochemical characterization of praseodymia doped zircon. Catalytic effect on the electrochemical reduction of molecular oxygen in polar organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, Antonio, E-mail: antonio.domenech@uv.es [Departament de Quimica Analitica, Universitat de Valencia, Dr. Moliner, 50, 46100 Burjassot, Valencia (Spain); Montoya, Noemi; Alarcon, Javier [Departament de Quimica Inorganica, Universitat de Valencia, Dr. Moliner, 50, 46100 Burjassot, Valencia (Spain)

    2011-08-01

    Highlights: > Electrochemical characterization of Pr centers in praseodymia-doped zircon. > Study of the catalytic effect on the reduction of peroxide radical anion in nonaqueous solvents. > Assessment of non-uniform distribution of Pr centers in the zircon grains. - Abstract: The voltammetry of microparticles and scanning electrochemical microscopy methodologies are applied to characterize praseodymium centers in praseodymia-doped zircon (Pr{sub x}Zr{sub (1-y)}Si{sub (1-z)}O{sub 4}; y + z = x; 0.02 < x < 0.10) specimens prepared via sol-gel synthetic routes. In contact with aqueous electrolytes, two overlapping Pr-centered cathodic processes, attributable to the Pr (IV) to Pr (III) reduction of Pr centers in different sites are obtained. In water-containing, air-saturated acetone and DMSO solutions as solvent, Pr{sub x}Zr{sub (1-y)}Si{sub (1-z)}O{sub 4} materials produce a significant catalytic effect on the electrochemical reduction of peroxide radical anion electrochemically generated. These electrochemical features denote that most of the Pr centers are originally in its 4+ oxidation state in the parent Pr{sub x}Zr{sub (1-y)}Si{sub (1-z)}O{sub 4} specimens. The variation of the catalytic performance of such specimens with potential scan rate, water concentration and Pr loading suggests that Pr is not uniformly distributed within the zircon grains, being concentrated in the outer region of such grains.

  8. Multi-Polarization Reconfigurable Antenna for Wireless Biomedical System.

    Science.gov (United States)

    Wong, Hang; Lin, Wei; Huitema, Laure; Arnaud, Eric

    2017-06-01

    This paper presents a multi-polarization reconfigurable antenna with four dipole radiators for biomedical applications in body-centric wireless communication system (BWCS). The proposed multi-dipole antenna with switchable 0°, +45°, 90° and -45° linear polarizations is able to overcome the polarization mismatching and multi-path distortion in complex wireless channels as in BWCS. To realize this reconfigurable feature for the first time among all the reported antenna designs, we assembled four dipoles together with 45° rotated sequential arrangements. These dipoles are excited by the same feeding source provided by a ground tapered Balun. A metallic reflector is placed below the dipoles to generate a broadside radiation. By introducing eight PIN diodes as RF switches between the excitation source and the four dipoles, we can control a specific dipole to operate. As the results, 0°, +45°, 90° and -45° linear polarizations can be switched correspondingly to different operating dipoles. Experimental results agree with the simulation and show that the proposed antenna well works in all polarization modes with desirable electrical characteristics. The antenna has a wide impedance bandwidth of 34% from 2.2 to 3.1 GHz (for the reflection coefficient ≤ -10 dB) and exhibits a stable cardioid-shaped radiation pattern across the operating bandwidth with a peak gain of 5.2 dBi. To validate the effectiveness of the multi-dipole antenna for biomedical applications, we also designed a meandered PIFA as the implantable antenna. Finally, the communication link measurement shows that our proposed antenna is able to minimize the polarization mismatching and maintains the optimal communication link thanks to its polarization reconfigurability.

  9. Joint Polar Satellite System Common Ground System Overview

    Science.gov (United States)

    Jamilkowski, M. L.; Smith, D. C.

    2011-12-01

    Jointly acquired by NOAA & NASA, the next-generation civilian environmental satellite system, Joint Polar Satellite System (JPSS), will supply the afternoon orbit & ground system of the restructured NPOESS program. JPSS will replace NOAA's current POES satellites and the ground processing part of both POES & DoD's Defense Weather Satellite System (DWSS)(DMSP replacement). JPSS sensors will collect meteorological, oceanographic, climatological and solar-geophysical data. The ground system, or JPSS Common Ground System (CGS), has 6 integrated product teams/segments: Command, Control & Communications (C3S); Interface Data Processing (IDPS); Field Terminal (FTS); Systems Engineering, Integration & Test (SEIT); Operations & Support (O&S); and Sustainment developed by Raytheon Intelligence & Information Systems. The IDPS will process JPSS data to provide Environmental Data Records (EDRs) to NOAA & DoD processing centers beginning with the NPOESS Preparatory Project (NPP) and through JPSS & DWSS eras. C3S will: manage overall JPSS & DWSS missions from control/status of space/ground assets to ensure timely delivery of high-quality data to IDPS; provide globally-distributed ground assets to collect/transport mission, telemetry and command data between satellites & processing locations; provide all commanding & state-of-health monitoring functions of NPP, JPSS and DWSS satellites, and delivery of mission data to each Central IDP and monitor/report system-wide health/status and data communications with external systems and between CGS segments. SEIT leads the overall effort, including: manage/coordinate/execute JPSS CGS activities with NASA participation/oversight; plan/conduct all activities related to systems engineering, develop & ensure completeness of JPSS CGS functional & technical baselines and perform integration, deployment, testing and verification; sponsor/support modeling & simulation, performance analysis and trade studies; provide engineering for the product

  10. Combining random walk and regression models to understand solvation in multi-component solvent systems.

    Science.gov (United States)

    Gale, Ella M; Johns, Marcus A; Wirawan, Remigius H; Scott, Janet L

    2017-07-21

    Polysaccharides, such as cellulose, are often processed by dissolution in solvent mixtures, e.g. an ionic liquid (IL) combined with a dipolar aprotic co-solvent (CS) that the polymer does not dissolve in. A multi-walker, discrete-time, discrete-space 1-dimensional random walk can be applied to model solvation of a polymer in a multi-component solvent mixture. The number of IL pairs in a solvent mixture and the number of solvent shells formable, x, is associated with n, the model time-step, and N, the number of random walkers. The mean number of distinct sites visited is proportional to the amount of polymer soluble in a solution. By also fitting a polynomial regression model to the data, we can associate the random walk terms with chemical interactions between components and probe where the system deviates from a 1-D random walk. The 'frustration' between solvents shells is given as ln x in the random walk model and as a negative IL:IL interaction term in the regression model. This frustration appears in regime II of the random walk model (high volume fractions of IL) where walkers interfere with each other, and the system tends to its limiting behaviour. In the low concentration regime, (regime I) the solvent shells do not interact, and the system depends only on IL and CS terms. In both models (and both regimes), the system is almost entirely controlled by the volume available to solvation shells, and thus is a counting/space-filling problem, where the molar volume of the CS is important. Small deviations are observed when there is an IL-CS interaction. The use of two models, built on separate approaches, confirm these findings, demonstrating that this is a real effect and offering a route to identifying such systems. Specifically, the majority of CSs - such as dimethylformide - follow the random walk model, whilst 1-methylimidazole, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone and tetramethylurea offer a CS-mediated improvement and propylene carbonate

  11. System and process for polarity swing assisted regeneration of gas selective capture liquids

    Science.gov (United States)

    Heldebrant, David J.; Tegrotenhuis, Ward E.; Freeman, Charles J.; Elliott, Michael L.; Koech, Phillip K.; Humble, Paul H.; Zheng, Feng; Zhang, Jian

    2017-07-18

    A polarity swing-assisted regeneration (PSAR) process is disclosed for improving the efficiency of releasing gases chemically bound to switchable ionic liquids. Regeneration of the SWIL involves addition of a quantity of non-polar organic compound as an anti-solvent to destabilize the SWIL, which aids in release of the chemically bound gas. The PSAR decreases gas loading of a SWIL at a given temperature and increases the rate of gas release compared to heating in the absence of anti-solvent.

  12. Dual Alkali Solvent System for CO2 Capture from Flue Gas.

    Science.gov (United States)

    Li, Yang; Wang, H Paul; Liao, Chang-Yu; Zhao, Xinglei; Hsiung, Tung-Li; Liu, Shou-Heng; Chang, Shih-Ger

    2017-08-01

    A novel two-aqueous-phase CO 2 capture system, namely the dual alkali solvent (DAS) system, has been developed. Unlike traditional solvent-based CO 2 capture systems in which the same solvent is used for both CO 2 absorption and stripping, the solvent of the DAS system consists of two aqueous phases. The upper phase, which contains an organic alkali 1-(2-hydroxyethyl) piperazine (HEP), is used for CO 2 absorption. The lower phase, which consists of a mixture of K 2 CO 3 /KHCO 3 aqueous solution and KHCO 3 precipitate, is used for CO 2 stripping. Only a certain kind of amine (such as HEP) is able to ensure the phase separation, satisfactory absorption efficiency, effective CO 2 transfer from the upper phase to the lower phase, and regeneration of the upper phase. In the meantime, due to the presence of K 2 CO 3 /KHCO 3 in the lower phase, HEP in the upper phase is capable of being regenerated from its sulfite/sulfate heat stable salt, which enables the simultaneous absorption of CO 2 and SO 2 /SO 3 from the flue gas. Preliminary experiments and simulations indicate that the implementation of the DAS system can lead to 24.0% stripping energy savings compared to the Econamine process, without significantly lowering the CO 2 absorption efficiency (∼90%).

  13. Third-order superintegrable systems separating in polar coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, Frederick; Winternitz, Pavel, E-mail: tremblaf@crm.umontreal.c, E-mail: wintern@crm.umontreal.c [Centre de Recherches Mathematiques and Departement de Mathematiques et de Statistique, Universite de Montreal, C.P. 6128, succ. Centre-Ville, Montreal, QC H3C 3J7 (Canada)

    2010-04-30

    A complete classification of quantum and classical superintegrable systems in E{sub 2} is presented that allow the separation of variables in polar coordinates and admit an additional integral of motion of order 3 in the momentum. New quantum superintegrable systems are discovered for which the potential is expressed in terms of the sixth Painleve transcendent or in terms of the Weierstrass elliptic function.

  14. A mixed solvent system for preparation of spherically agglomerated crystals of ascorbic acid.

    Science.gov (United States)

    Ren, Fuzheng; Zhou, Yaru; Liu, Yan; Fu, Jinping; Jing, Qiufang; Ren, Guobin

    2017-09-01

    The objective of this research was to develop a novel solvent system to prepare spherically agglomerated crystals (SAC) of ascorbic acid with improved flowability for direct compression. A spherical agglomeration method was developed by selecting the mixed solvents (n-butyl and ethyl acetate) as a poor solvent and the process was further optimized by using triangular phase diagram and particle vision measurement. Physiochemical properties of SAC were characterized and compared with original drug crystals. It showed that amount of poor solvent, ratio of solvent mixture, and drug concentration are critical for preparation of SAC with desirable properties. The solid state of SAC was same as original crystals according to DSC, XRD, and FT-IR results. There was no significant difference in solubility and dissolution rate of drug between SAC and original crystals. The flowability and packability of SAC as well as the tensile strength and elastic recovery of tablets made from SAC were all significantly improved when compared with original crystals and tablets from crystals. It is concluded that the present method was suitable to prepare SAC of ascorbic acid for direct compression.

  15. Solvent activities of the fluorinated solid polymer electrolyte/water system in fuel cells

    Science.gov (United States)

    Kim, Tae Hwan; Bae, Young Chan

    We modified the lattice fluid equation-of-state by the introducing Debye-Hückel equation. A thermodynamic model taking into account the specific interaction and ionic strength between the polymer and the solvent is proposed. The proposed model successfully predicts the vapor/liquid equilibria (VLE) of solvents and the solid polymer electrolyte (SPE). A generalized lattice fluid model is modified to describe the change of water activity in solid polymer electrolyte (SPE)/water systems. The calculated activity curves using the proposed model agree remarkably well with the experimental data.

  16. Vapour–Liquid Equilibria in the Polystyrene + Toluene System at Higher Concentrations of Solvent

    Czech Academy of Sciences Publication Activity Database

    Pavlíček, Jan; Bogdanić, Grozdana; Wichterle, Ivan

    2015-01-01

    Roč. 29, č. 1 (2015), s. 1-4 ISSN 0352-9568 R&D Projects: GA ČR GA15-19542S Institutional support: RVO:67985858 Keywords : polymer-solvent system * vapor-liquid equilibrium * correlation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.675, year: 2015

  17. Cryogenic control system of the large COMPASS polarized target

    CERN Document Server

    Gautheron, F; Baum, G; Berglund, P; Doshita, N; Görtz, S; Gustafsson, K K; Horikawa, N; Kisselev, Yu V; Koivuniemi, J H; Kondo, K; Meyer, Werner T; Reicherz, G

    2004-01-01

    The dilution refrigerator used to cool the large COMPASS polarized target is monitored through a PC running LabVIEW trademark 6.1 under Windows 2000 trademark . About 60 parameters of the target (temperatures, pressures, flow rates) are continuously plotted and checked. They are periodically recorded in an Oracle trademark database and in a data file. An alarm for every parameter can be individually activated and optionally connected to a GSM (Global System for Mobile Communication) delivery message system. A web server receives and publishes the online status of the target with online tables and graphics on a dedicated COMPASS polarized target information web site. A Siemens programmable logic controller (PLC) powered by an uninterruptable source keeps the cryogenic system safe and stable during the long beam periods by controlling valves and interlocks. This safety feature protects the dilution refrigerator against potential damages in case of power failure.

  18. Cryogenic control system of the large COMPASS polarized target

    Science.gov (United States)

    Gautheron, F.; Ball, J.; Baum, G.; Berglund, P.; Doshita, N.; Goertz, St.; Gustafsson, K.; Horikawa, N.; Kisselev, Y.; Koivuniemi, J.; Kondo, K.; Meyer, W.; Reicherz, G.

    2004-06-01

    The dilution refrigerator used to cool the large COMPASS polarized target is monitored through a PC running LabVIEW TM 6.1 under Windows 2000 TM. About 60 parameters of the target (temperatures, pressures, flow rates) are continuously plotted and checked. They are periodically recorded in an Oracle TM database and in a data file. An alarm for every parameter can be individually activated and optionally connected to a GSM (Global System for Mobile Communication) delivery message system. A web server receives and publishes the online status of the target with online tables and graphics on a dedicated COMPASS polarized target information web site. A Siemens programmable logic controller (PLC) powered by an uninterruptable source keeps the cryogenic system safe and stable during the long beam periods by controlling valves and interlocks. This safety feature protects the dilution refrigerator against potential damages in case of power failure.

  19. Solubility of Meloxicam in Mixed Solvent Systems | Babu | Ethiopian ...

    African Journals Online (AJOL)

    The solubility of meloxicam is higher in phosphate buffer (pH 7.4) compared to water, probably due to ionization of the drug. The solubility of meloxicam is marginally enhanced in surfactant systems (Tween 80 and Brij 35) at concentrations higher than cmc, proving the micellar solubilization. Meloxicam solubility studies in ...

  20. Study of equivalent retention among different polymer-solvent systems in thermal field-flow fractionation

    International Nuclear Information System (INIS)

    Kim, Won Suk; Park, Young Hun; Lee, Dai Woon; Moon, Myeong Hee; Yu, Euy Kyung

    1998-01-01

    An equivalent retention has been experimentally observed in thermal field-flow fractionation (ThFF) for different polymer-solvent systems. It is shown that iso-retention between two sets of polymer-solvent systems can be obtained by adjusting the temperature difference (ΔT) according to the difference in the ration of ordinary diffusion coefficient to thermal diffusion coefficient. This method uses a compensation of field strength (ΔT) in ThFFF at a fixed condition of cold wall temperature. It is applied for the calculation of molecular weight of polymers based on a calibration run of different standards obtained at an adjusted ΔT. The polymer standards used in this study are polystyrene (PS), polymethylmethacrylate (PMMA), and polytetrahydrofuran (PTHF). Three carrier solvents, tetrahydrofuran (THF), methylethylketone (MEK) and ethylacetate (ETAc) were employed. Though the accuracy in the calculation of molecular weight is dependent on the difference in the slope of log λ vs. log M which is related to Mark-Houwink constant a, it shows reasonable agreement within about 6% of relative error in molecular weight calculation for the polymer-solvent systems having similar a value

  1. Planetary systems in polarized light: Debris disk observations and instrumentation

    Science.gov (United States)

    Millar-Blanchaer, Maxwell A.

    Understanding planet formation is one of the major challenges of modern astronomy. Polarimetry is a powerful tool with which we can confront this challenge. In particular, polarimetric observations can be useful for imaging debris disks and characterizing exoplanet atmospheres. With that in mind, this thesis has been constructed with two main aspects: i) observational studies of two debris disk systems, beta Pic and HD 157587, using the Gemini Planet Imager and ii) the characterization and testing of a new type of diffraction grating, called a polarization grating, that we plan to use for future observations of exoplanet atmospheres. The Gemini Planet Imager is a high-contrast imager that includes a polarimetry mode designed to image circumstellar disks. Here we detail the development of new data analysis techniques that reduce systematics and noise in processed GPI data. We apply these techniques to observations of the beta Pic and HD 157587 debris disks and then fit each disk image to a geometric disk model. The beta Pic disk model's morphology cannot be explained by interactions with the planet beta Pic b, and the presence of a second planet could be invoked to explain the discrepancy. In the case of HD 157587, the disk model's geometric centre is offset from the location of the star, which could be explained by a perturbing planet. Characterization of the planets' interactions with their debris disks is a critical method to gain more information about these two systems. The second component of this thesis focuses on polarization gratings, thin film optical devices that can simultaneously act as polarizing beam splitters and as spectral dispersive elements. Moreover, they can be designed for high diffraction efficiency across a broad wavelength range. These features make polarization gratings useful for many types of astronomical observations. We have carried out laboratory and on-sky test observations using a polarization grating optimized for visible

  2. Application of acetone acetals as water scavengers and derivatization agents prior to the gas chromatographic analysis of polar residual solvents in aqueous samples.

    Science.gov (United States)

    van Boxtel, Niels; Wolfs, Kris; Van Schepdael, Ann; Adams, Erwin

    2015-12-18

    The sensitivity of gas chromatography (GC) combined with the full evaporation technique (FET) for the analysis of aqueous samples is limited due to the maximum tolerable sample volume in a headspace vial. Using an acetone acetal as water scavenger prior to FET-GC analysis proved to be a useful and versatile tool for the analysis of high boiling analytes in aqueous samples. 2,2-Dimethoxypropane (DMP) was used in this case resulting in methanol and acetone as reaction products with water. These solvents are relatively volatile and were easily removed by evaporation enabling sample enrichment leading to 10-fold improvement in sensitivity compared to the standard 10μL FET sample volumes for a selection of typical high boiling polar residual solvents in water. This could be improved even further if more sample is used. The method was applied for the determination of residual NMP in an aqueous solution of a cefotaxime analogue and proved to be considerably better than conventional static headspace (sHS) and the standard FET approach. The methodology was also applied to determine trace amounts of ethylene glycol (EG) in aqueous samples like contact lens fluids, where scavenging of the water would avoid laborious extraction prior to derivatization. During this experiment it was revealed that DMP reacts quantitatively with EG to form 2,2-dimethyl-1,3-dioxolane (2,2-DD) under the proposed reaction conditions. The relatively high volatility (bp 93°C) of 2,2-DD makes it possible to perform analysis of EG using the sHS methodology making additional derivatization reactions superfluous. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Cochlear condition and olivocochlear system of gas station attendants exposed to organic solvents

    Directory of Open Access Journals (Sweden)

    Tochetto, Tania Maria

    2012-01-01

    Full Text Available Introduction: Organic solvents have been increasingly studied due to its ototoxic action. Objective: Evaluate the conditions of outer hair cells and olivocochlear system in individuals exposed to organic solvents. Method: This is a prospective study. 78 gas station attendants exposed to organic solvents had been evaluated from three gas stations from Santa Maria city, Rio Grande do Sul (RS. After applying the inclusion criteria, the sample was constituted by 24 individuals. The procedures used on the evaluation were audiological anamnesis, Transient otoacoustic emissions (TEOAES and research for the suppressive effect of TEOAES. A group control (GC compounded by 23 individuals was compared to individuals exposed and non-exposed individuals. The data collection has been done in the room of Speech Therapy of Workers Health Reference Center of Santa Maria. Results: The TEOAES presence was major in the left ear in both groups; the average relation of TEOAES signal/noise in both ears was greater in GE; the TEOAES suppressive effect in the right ear was higher in the individual of GE (62,5% and in the left ear was superior in GC (86,96%, with statistically significant difference. The median sign/noise ratio of TEOAES, according to the frequency range, it was higher in GC in three frequencies ranges in the right ear and one in the left ear. Conclusion: It was not found signs of alteration on the outer hair cells neither on the olivocochlear medial system in the individuals exposed to organic solvents.

  4. THE DISTRIBUTION COEFFICIENTS OF ACETIC ACID BETWEEN WATER AND SOLVENT SYSTEMS

    Directory of Open Access Journals (Sweden)

    Mehmet MAHRAMANLIOĞLU

    2001-03-01

    Full Text Available Distribution coefficients of acetic acid between aqueous phase and solvents (water-C6-C10 alcohols, butyl acetate, ether and benzene were studied. Synergetic effect was obtained for alcohol and ester systems. A slightly positive deviation was obtained for benzene–ester mixtures. The best distribution coefficient was obtained for hexanol-butyl acetate systems. The coefficients of Redlisch-Kister equation were obtained for the deviations.

  5. Toward a semisynthetic stress response system to engineer microbial solvent tolerance.

    Science.gov (United States)

    Zingaro, Kyle A; Papoutsakis, Eleftherios Terry

    2012-01-01

    Strain tolerance to toxic metabolites is an important trait for many biotechnological applications, such as the production of solvents as biofuels or commodity chemicals. Engineering a complex cellular phenotype, such as solvent tolerance, requires the coordinated and tuned expression of several genes. Using combinations of heat shock proteins (HSPs), we engineered a semisynthetic stress response system in Escherichia coli capable of tolerating high levels of toxic solvents. Simultaneous overexpression of the HSPs GrpE and GroESL resulted in a 2-fold increase in viable cells (CFU) after exposure to 5% (vol/vol) ethanol for 24 h. Co-overexpression of GroESL and ClpB on coexisting plasmids resulted in 1,130%, 78%, and 25% increases in CFU after 24 h in 5% ethanol, 1% n-butanol, and 1% i-butanol, respectively. Co-overexpression of GrpE, GroESL, and ClpB on a single plasmid produced 200%, 390%, and 78% increases in CFU after 24 h in 7% ethanol, 1% n-butanol, or 25% 1,2,4-butanetriol, respectively. Overexpression of other autologous HSPs (DnaK, DnaJ, IbpA, and IbpB) alone or in combinations failed to improve tolerance. Expression levels of HSP genes, tuned through inducible promoters and the plasmid copy number, affected the effectiveness of the engineered stress response system. Taken together, these data demonstrate that tuned co-overexpression of GroES, GroEL, ClpB, and GrpE can be engaged to engineer a semisynthetic stress response system capable of greatly increasing the tolerance of E. coli to solvents and provides a starting platform for engineering customized tolerance to a wide variety of toxic chemicals. Microbial production of useful chemicals is often limited by the toxicity of desired products, feedstock impurities, and undesired side products. Improving tolerance is an essential step in the development of practical platform organisms for production of a wide range of chemicals. By overexpressing autologous heat shock proteins in Escherichia coli, we have

  6. Co-C Dissociation of Adenosylcobalamin (Coenzyme B-12): Role of Dispersion, Induction Effects, Solvent Polarity, and Relativistic and Thermal Corrections

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2014-01-01

    Quantum-chemical cluster modeling is challenged in the limit of large, soft systems by the effects of dispersion and solvent, and well as other physical interactions. Adenosylcobalamin (AdoCbl, coenzyme B-12), as one of the most complex cofactors in life, constitutes such a challenge. The cleavage...... of its unique organometallic Co-C bond has inspired multiple studies of this cofactor. This paper reports the fully relaxed potential energy surface of Co-C cleavage of Ado Cbl, including for the first time all side-chain interactions with the dissociating Ado group. Various methods and corrections...

  7. Amino-functionalized (meth)acryl polymers by use of a solvent-polarity sensitive protecting group (Br-t-BOC).

    Science.gov (United States)

    Ritter, Helmut; Tabatabai, Monir; Herrmann, Markus

    2016-01-01

    We describe the synthesis of bromo-tert-butyloxycarbonyl (Br-t-BOC)-amino-protected monomers 2-((1-bromo-2-methylpropan-2-yl)oxycarbonylamino)ethyl (meth)acrylate 3a,b. For this purpose, 2-isocyanatoethyl (meth)acrylate 1a,b was reacted with 1-bromo-2-methylpropan-2-ol (2a). The free radical polymerization of (Br-t-BOC)-aminoethyl (meth)acrylates 3a,b yielded poly((Br-t-BOC)-aminoethyl (meth)acrylate) 6a,b bearing protected amino side groups. The subsequent solvolysis of the Br-t-BOC function led to the new polymers poly(2-aminoethyl (meth)acrylate) 8a,b with protonated free amino groups. The monomers and the resulting polymers were thoroughly characterized by (1)H NMR, IR, GPC and DSC methods. The kinetics of the deprotection step was followed by (1)H NMR spectroscopy. The solvent polarity and neighboring group effects on the kinetics of deprotection are discussed.

  8. The early indicators of financial failure: a study of bankrupt and solvent health systems.

    Science.gov (United States)

    Coyne, Joseph S; Singh, Sher G

    2008-01-01

    This article presents a series of pertinent predictors of financial failure based on analysis of solvent and bankrupt health systems to identify which financial measures show the clearest distinction between success and failure. Early warning signals are evident from the longitudinal analysis as early as five years before bankruptcy. The data source includes seven years of annual statements filed with the Securities and Exchange Commission by 13 health systems before they filed bankruptcy. Comparative data were compiled from five solvent health systems for the same seven-year period. Seven financial solvency ratios are included in this study, including four cash liquidity measures, two leverage measures, and one efficiency measure. The results show distinct financial trends between solvent and bankrupt health systems, in particular for the operating-cash-flow-related measures, namely Ratio 1: Operating Cash Flow Percentage Change, from prior to current period; Ratio 2: Operating Cash Flow to Net Revenues; and Ratio 4: Cash Flow to Total Liabilities, indicating sensitivity in the hospital industry to cash flow management. The high dependence on credit from third-party payers is cited as a reason for this; thus, there is a great need for cash to fund operations. Five managerial policy implications are provided to help health system managers avoid financial solvency problems in the future.

  9. Replacement of HCFC-225 Solvent for Cleaning NASA Propulsion Oxygen Systems

    Science.gov (United States)

    Mitchell, Mark A.; Lowrey, Nikki M.

    2015-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon hydrochlorofluorocarbon-225 (HCFC-225) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of HCFC-225, a Class II ODS, was prohibited by the Clean Air Act. In 2012 through 2014, leveraging resources from both the NASA Rocket Propulsion Test Program and the Defense Logistics Agency - Aviation Hazardous Minimization and Green Products Branch, test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a replacement for HCFC-225 that is both an effective cleaner and safe for use with oxygen systems. Candidate solvents were selected and a test plan was developed following the guidelines of ASTM G127, Standard Guide for the Selection of Cleaning Agents for Oxygen Systems. Solvents were evaluated for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Two solvents were determined to be acceptable for cleaning oxygen systems and one was chosen for implementation at NASA's rocket propulsion test facilities. The test program and results are summarized. This project also demonstrated the benefits of cross-agency collaboration in a time of limited resources.

  10. Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor

    International Nuclear Information System (INIS)

    Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno

    2015-01-01

    Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R 2 =0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k L a=4,652-1,9807 h -1

  11. Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor

    Energy Technology Data Exchange (ETDEWEB)

    Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno [University of Zagreb, Zagreb (Croatia)

    2015-06-15

    Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R{sup 2}=0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k{sub L}a=4,652-1,9807 h{sup -1}.

  12. High Performance Polar Decomposition on Distributed Memory Systems

    KAUST Repository

    Sukkari, Dalal E.

    2016-08-08

    The polar decomposition of a dense matrix is an important operation in linear algebra. It can be directly calculated through the singular value decomposition (SVD) or iteratively using the QR dynamically-weighted Halley algorithm (QDWH). The former is difficult to parallelize due to the preponderant number of memory-bound operations during the bidiagonal reduction. We investigate the latter scenario, which performs more floating-point operations but exposes at the same time more parallelism, and therefore, runs closer to the theoretical peak performance of the system, thanks to more compute-bound matrix operations. Profiling results show the performance scalability of QDWH for calculating the polar decomposition using around 9200 MPI processes on well and ill-conditioned matrices of 100K×100K problem size. We study then the performance impact of the QDWH-based polar decomposition as a pre-processing step toward calculating the SVD itself. The new distributed-memory implementation of the QDWH-SVD solver achieves up to five-fold speedup against current state-of-the-art vendor SVD implementations. © Springer International Publishing Switzerland 2016.

  13. Cinnamyl acetate synthesis by lipase-catalyzed transesterification in a solvent-free system.

    Science.gov (United States)

    Geng, Bo; Wang, Mengfan; Qi, Wei; Su, Rongxin; He, Zhimin

    2012-01-01

    Cinnamyl acetate was synthesized using immobilized lipase through transesterification between ethyl acetate and cinnamyl alcohol. In the solvent-free system, ethyl acetate acted as not only the acyl donor but also as the solvent of cinnamyl alcohol. Conversion (90.06%) was achieved after 3 H when transesterification was carried out at ethyl acetate/cinnamyl alcohol 15:1, 2.67 g L of lipase (Novozym 435) loading, and 40°C. Excellent stability and reusability of the enzyme resulted from the moderate reaction system. Kinetic studies showed that the Michaelis constants for ethyl acetate and cinnamyl alcohol and the inhibition constant of cinnamyl alcohol were 2.241, 206.82, and 0.461 mmol L⁻¹, respectively, which indicated that the reaction complied with the Ping-Pong Bi-Bi mechanism, with the inhibition of cinnamyl alcohol on lipase. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  14. Crown ethers as size-selective synergists in solvent extraction systems: a new selectivity parameter

    International Nuclear Information System (INIS)

    Kinard, W.F.; McDowell, W.J.

    1981-01-01

    Mixtures of macrocyclic polyethers (crown ethers) and organic-phase-soluble liquid cation exchangers have been found to produce a synergistic effect in the extraction of metal ions. The synergistic effect is size selective; that is, it tends to be greatest for those ions that best fit the crown ether cavity. The mixtures of a liquid cation exchanger and a crown ether also allow metal ion extraction from common mineral-acid anion systems (NO 3 - , Cl - , SO 4 2- ) that would be impossible with the crown ether alone, because of the difficulty of solubilizing those anions in nonpolar solvents. This cooperation makes the use of crown ethers as size-selective coordinators available for process applications. Size selectivity of compounds such as crown ethers may thus become a useful new parameter in designing selective solvent extraction systems. Results are reported for alkali (including Cs) and alkaline earth (including Sr) extraction by HDEHP mixed with various crown ethers. (author)

  15. Equilibrium solubility of carbon dioxide in the amine solvent system of (triethanolamine + piperazine + water)

    International Nuclear Information System (INIS)

    Chung, P.-Y.; Soriano, Allan N.; Leron, Rhoda B.; Li, M.-H.

    2010-01-01

    In this study, a new set of data for the equilibrium solubility of carbon dioxide in the amine solvent system that consists of triethanolamine (TEA), piperazine (PZ), and water is presented. Equilibrium solubility values were obtained at T = (313.2, 333.2, and 353.2) K and pressures up to 153 kPa using the vapour-recirculation equilibrium cell. The TEA concentrations in the considered ternary (solvent) mixture were (2 and 3) kmol . m -3 and those of PZ's were (0.5, 1.0, and 1.5) kmol . m -3 . The solubility data (CO 2 loading in the amine solution) obtained were correlated as a function of CO 2 partial pressure, system temperature, and amine composition via the modified Kent-Eisenberg model. Results showed that the model applied is generally satisfactory in representing the CO 2 absorption into mixed aqueous solutions of TEA and PZ.

  16. Compact rf polarizer and its application to pulse compression systems

    Directory of Open Access Journals (Sweden)

    Matthew Franzi

    2016-06-01

    Full Text Available We present a novel method of reducing the footprint and increasing the efficiency of the modern multi-MW rf pulse compressor. This system utilizes a high power rf polarizer to couple two circular waveguide modes in quadrature to a single resonant cavity in order to replicate the response of a traditional two cavity configuration using a 4-port hybrid. The 11.424 GHz, high-Q, spherical cavity has a 5.875 cm radius and is fed by the circularly polarized signal to simultaneously excite the degenerate TE_{114} modes. The overcoupled spherical cavity has a Q_{0} of 9.4×10^{4} and coupling factor (β of 7.69 thus providing a loaded quality factor Q_{L} of 1.06×10^{4} with a fill time of 150 ns. Cold tests of the polarizer demonstrated good agreement with the numerical design, showing transmission of -0.05  dB and reflection back to the input rectangular WR 90 waveguide less than -40  dB over a 100 MHz bandwidth. This novel rf pulse compressor was tested at SLAC using XL-4 Klystron that provided rf power up to 32 MW and generated peak output power of 205 MW and an average of 135 MW over the discharged signal. A general network analysis of the polarizer is discussed as well as the design and high power test of the rf pulse compressor.

  17. Selective nonspecific solvation under dielectric saturation and fluorescence spectra of dye solutions in binary solvents.

    Science.gov (United States)

    Bakhshiev, N G; Kiselev, M B

    1991-09-01

    The influence of selective nonspecific solvation on the fluorescence spectra of three substitutedN-methylphthalimides in a binary solvent system consisting of a nonpolar (n-heptane) and a polar (pyridine) component has been studied under conditions close to dielectric saturation. The substantially nonlinearity of the effect is confirmation that the spectral shifts of fluorescence bands depend on the number of polar solvent molecules involved in solvating the dye molecule. The measured fluorescence spectral shifts determined by substituting one nonpolar solvent molecula with a polar one in the proximity of the dye molecule agree quantitatively with the forecasts of the previously proposed semiempirical theory which describes this nonlinear solvation phenomenon.

  18. Design of an unmanned Martian polar exploration system

    Science.gov (United States)

    Baldwin, Curt; Chitwood, Denny; Demann, Brian; Ducheny, Jordan; Hampton, Richard; Kuhns, Jesse; Mercer, Amy; Newman, Shawn; Patrick, Chris; Polakowski, Tony

    1994-01-01

    The design of an unmanned Martian polar exploration system is presented. The system elements include subsystems for transportation of material from earth to Mars, study of the Martian north pole, power generation, and communications. Early next century, three Atlas 2AS launch vehicles will be used to insert three Earth-Mars transfer vehicles, or buses, into a low-energy transfer orbit. Capture at Mars will be accomplished by aerobraking into a circular orbit. Each bus contains four landers and a communications satellite. Six of the twelve total landers will be deployed at 60 deg intervals along 80 deg N, and the remaining six landers at 5 deg intervals along 30 deg E from 65 deg N to 90 deg N by a combination of retrorockets and parachutes. The three communications satellites will be deployed at altitudes of 500 km in circular polar orbits that are 120 deg out of phase. These placements maximize the polar coverage of the science and communications subsystems. Each lander contains scientific equipment, two microrovers, power supplies, communications equipment, and a science computer. The lander scientific equipment includes a microweather station, seismometer, thermal probe, x-ray spectrometer, camera, and sounding rockets. One rover, designed for short-range (less than 2 km) excursions from the lander, includes a mass spectrometer for mineral analysis, an auger/borescope system for depth profiling, a deployable thermal probe, and charge coupled device cameras for terrain visualization/navigation. The second rover, designed for longer-range (2-5 km) excursions from the lander, includes radar sounding/mapping equipment, a seismometer, and laser ranging devices. Power for all subsystems is supplied by a combination of solar cells, Ni-H batteries, and radioisotope thermoelectric generators. Communications are sequenced from rovers, sounding rockets, and remote sensors to the lander, then to the satellites, through the Deep Space Network to and from earth.

  19. Is occupational exposure to solvents associated with an increased risk for developing systemic scleroderma?

    Directory of Open Access Journals (Sweden)

    Drexler Hans

    2006-07-01

    Full Text Available Abstract Background Our study was aimed to investigate in a German collective if there are any hints for an increased occupational or environmental risk to develop systemic sclerosis, especially, focussing on work-related exposure to solvents. Moreover, we tried to evaluate the feasibility of a sampling method addressing support groups. Methods A standardised questionnaire was published in two journals subscribed by members of two different support groups and all members were asked to complete the questionnaire and to return it anonymously. The subjects were not informed on the scientific hypotheses, nor did they know who of them belonged to the case group (scleroderma or to the control group (multiple sclerosis. Results 175 questionnaires could be included in the statistical analysis. As expected, a female predominance was in our collective. In the male subpopulation, the occupational exposure to solvents was higher in the case group than in the control-group (70% versus 45.8%. Based only on the male subgroup, a tendency for an association between occupational exposure to solvents and the risk to develop systemic sclerosis was found. Conclusion According to our experience in this case-control-study exposure misclassification, qualitative or quantitative, was an eminent problem. Within such a setting, it is generally very difficult to establish an exact dose-response relationship due to incomplete, imprecise or missing data concerning duration of exposure, frequency of use and kind of solvent. Additionally, a well-known problem in studies based on self-reported questionnaires is the so-called volunteer bias. Unfortunately, but similar to other studies assessing epidemiologic factors in such a rare disease, our study was of limited power, especially in the subgroups defined by gender.

  20. A comprehensive classification of solvent systems used for natural product purifications in countercurrent and centrifugal partition chromatography.

    Science.gov (United States)

    Skalicka-Woźniak, Krystyna; Garrard, Ian

    2015-11-01

    Using both library paper copies and modern electronic copies, every known, published, English-language journal paper that employs either countercurrent or centrifugal partition chromatography solvent systems for natural product purifications has been studied and the solvent systems classified in a comprehensive database. Papers were studied from the earliest found examples containing natural product separations in 1984 until the end of 2014. In total, 2594 solvent systems have been classified, of which 272 are gradient systems. To observe any trends or patterns in the data, the natural product solutes were divided into 21 classes and the solvent systems into 7 different types. The complete database, sorted according to natural product class, is available for download to assist separation scientists in future liquid-liquid chromatography purifications.

  1. Solvent-Dependent Dual Fluorescence of the Push-Pull System 2-Diethylamino-7-Nitrofluorene

    KAUST Repository

    Larsen, Martin A. B.

    2018-01-31

    The solvent-dependent excited state behavior of the molecular push-pull system 2-diethylamino-7-nitrofluorene has been explored using femtosecond transient absorption spectroscopy in combination with density functional theory calculations. Several excited state minima have been identified computationally, all possessing significant intramolecular charge transfer character. The experimentally observed dual fluorescence is suggested to arise from a planar excited state minimum and another minimum reached by twisting of the aryl-nitrogen bond of the amino group. The majority of the excited state population, however, undergo non-radiative transitions and potential excited deactivation pathways are assessed in the computational investigation. A third excited state conformer, characterized by twisting around the aryl-nitrogen bond of the nitro group, is reasoned to be responsible for the majority of the non-radiative decays and a crossing between the excited state and ground state is localized. Additionally, ultrafast intersystem crossing is observed in the apolar solvent cyclohexane and rationalized to occur via an El-Sayed assisted transition from one of the identified excited state minima. The solvent thus determines more than just the fluorescence lifetime and shapes the potential energy landscape, thereby dictating the available excited state pathways.

  2. System Model of Heat and Mass Transfer Process for Mobile Solvent Vapor Phase Drying Equipment

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2014-01-01

    Full Text Available The solvent vapor phase drying process is one of the most important processes during the production and maintenance for large oil-immersed power transformer. In this paper, the working principle, system composition, and technological process of mobile solvent vapor phase drying (MVPD equipment for transformer are introduced in detail. On the basis of necessary simplification and assumption for MVPD equipment and process, a heat and mass transfer mathematical model including 40 mathematical equations is established, which represents completely thermodynamics laws of phase change and transport process of solvent, water, and air in MVPD technological processes and describes in detail the quantitative relationship among important physical quantities such as temperature, pressure, and flux in key equipment units and process. Taking a practical field drying process of 500 KV/750 MVA power transformer as an example, the simulation calculation of a complete technological process is carried out by programming with MATLAB software and some relation curves of key process parameters changing with time are obtained such as body temperature, tank pressure, and water yield. The change trend of theoretical simulation results is very consistent with the actual production record data which verifies the correctness of mathematical model established.

  3. Rapid Prototyping of Poly(methyl methacrylate) Microfluidic Systems Using Solvent Imprinting and Bonding

    Science.gov (United States)

    Sun, Xiuhua; Peeni, Bridget A.; Yang, Weichun; Becerril, Hector A.

    2011-01-01

    We have developed a method for rapid prototyping of hard polymer microfluidic systems using solvent imprinting and bonding. We investigated the applicability of patterned SU-8 photoresist on glass as an easily fabricated template for solvent imprinting. Poly(methyl methacrylate) (PMMA) exposed to acetonitrile for 2 min then had an SU-8 template pressed into the surface for 10 min, which provided appropriately imprinted channels and a suitable surface for bonding. After a PMMA cover plate had also been exposed to acetonitrile for 2 min, the imprinted and top PMMA pieces could be bonded together at room temperature with appropriate pressure. The total fabrication time was less than 15 min. Under the optimized fabrication conditions, nearly 30 PMMA chips could be replicated using a single patterned SU-8 master with high chip-to-chip reproducibility. Relative standard deviations were 2.3% and 5.4% for the widths and depths of the replicated channels, respectively. Fluorescently labeled amino acid and peptide mixtures were baseline separated using these PMMA microchips in <15 s. Theoretical plate numbers in excess of 5000 were obtained for a ~3 cm separation distance, and the migration time relative standard deviation for an amino acid peak was 1.5% for intra-day and 2.2% for inter-day analysis. This new solvent imprinting and bonding approach significantly simplifies the process for fabricating microfluidic structures in hard polymers such as PMMA. PMID:17466320

  4. Modeling the vapor-liquid equilibria of polymer-solvent mixtures: Systems with complex hydrogen bonding behavior

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios

    2009-01-01

    The vapor–liquid equilibria of binary polymer–solvent systems was modeled using the Non-Random Hydrogen Bonding (NRHB) model. Mixtures of poly(ethylene glycol), poly(propylene glycol), poly(vinyl alcohol) and poly(vinyl acetate) with various solvents were investigated, while emphasis was put...... on hydrogen bonding systems, in which functional groups of the polymer chain can self-associate or cross-associate with the solvent molecules. Effort has been made to explicitly account for all hydrogen bonding interactions. The results reveal that the NRHB model offers a flexible approach to account...

  5. Solvents and solvent effects in organic chemistry

    National Research Council Canada - National Science Library

    Reichardt, C; Welton, T

    2011-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Solute-Solvent Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Solutions...

  6. Polarization mode dispersion in optical fiber transmission systems

    Science.gov (United States)

    Cameron, John Charles

    The birefringence of optical fibers causes pulse broadening in fiber-optic communication systems. This phenomenon is known as polarization mode dispersion (PMD). PMD is one of the most important limiting factors for high capacity fiber-optic systems. A number of aspects of PMD are examined in this thesis. In Chapter 2 an expression is derived for the probability density function of the pulse broadening due to first-order PMD. This result is used to obtain an expression for the system limitation due to PMD. The birefringence of optical fibers is commonly simulated with the waveplate model. In Chapter 3 two standard versions of the waveplate model are introduced. In addition, a novel waveplate model is proposed. The characteristics of the three versions of the waveplate model are examined to confirm their suitability for use in subsequent chapters of the thesis. Simulations with the waveplate model are performed in Chapter 4 for three purposes: (1) to determine the impact of chromatic dispersion on the system limitation due to PMD, (2) to examine the effectiveness of three different PMD compensation techniques in the presence of chromatic dispersion, and (3) to examine the interaction of second-order chromatic dispersion with PMD. The simulations in Chapter 4 reveal that it is possible with one compensation technique to have output pulses that are narrower than the input pulses. In Chapter 5, this anomalous pulse narrowing is demonstrated analytically for a simple model of PMD and through experiment. It is also shown that this pulse narrowing can be explained as an interference phenomenon. Chapter 6 presents measurements of PMD and state of polarization on installed optical fibers. The PMD coefficients of 122 fibers are presented and the results are analyzed in terms of the age of the fibers and the type of cabling. Measurements of the time evolution of PMD and state of polarization are presented for fibers installed in both buried and aerial cables. The uncertainty

  7. Effect of solvent type and content on monomer conversion of a model resin system as a thin film.

    Science.gov (United States)

    Holmes, Robert G; Rueggeberg, Frederick A; Callan, Richard S; Caughman, Frank; Chan, Daniel C N; Pashley, David H; Looney, Stephen W

    2007-12-01

    The purpose of this study was to examine the effect of solvent concentration on the degree of conversion of a model photo-activated resin formulation when placed as a thin film in ambient air. A photo-activated co-monomer mixture (ethoxylated bis-GMA/TEGDMA) (Bisco Inc.) was diluted into six concentrations (from 1.0 to 13.0M) with either acetone or ethanol. A controlled volume of diluted, uncured resin was placed on the horizontal surface of an attenuated reflectance unit and the infrared (IR) spectrum obtained. A light emitting diode light-curing source (Bluephase, Ivoclar/Vivadent) then immediately irradiated the specimen for 10s (n=5). Five minutes after exposure, IR spectra of the cured material were obtained, and monomer conversions were calculated using standard methods that monitored changes in aliphatic-to-aromatic CC absorbance ratios in the uncured and cured states. In the acetone/model resin system, maximum conversion occurred with 2.5-5.0M solvent. In the ethanol/model resin system, conversion peaked at 2.5M solvent. Above 5.0M solvent, conversion values declined rapidly for both solvents. A 13.0-M solution resulted in near 0% conversion for both solvents. At 2.5 and 5.0M acetone, conversions exceeded those of equivalent concentrations of the ethanol-based system. For both an acetone- and ethanol-solvated model resin system, conversion did not immediately decrease with addition of solvent, but instead increased over that of the model resin alone. At higher solvent content (greater than 2.5M ethanol and 5.0M acetone), conversion rapidly declined, with ethanol causing less conversion at equal-molar solvent concentrations.

  8. Magnetospheric convection and current system in the dayside polar cap

    International Nuclear Information System (INIS)

    Nishida, A.; Mukai, T.; Tsuruda, K.; Hayakawa, H.

    1992-01-01

    Field and particle observations on EXOS-D (Akebono) have yielded new information on convection and current system in the dayside polar cap. Convection patterns are distinctly different depending upon whether IMF B z is northward or southward. The number of convection cells is two when B z is southward but four when B z is northward. Lobe cells in which plasma flows sunward in the region of open field lines are observed as a pair (of which one is in the dawn and the other in the dusk sector) for any polarity of IMF B y and B z . Ions in the keV range precipitate not only in the dayside cusp region but also along the sunward directed streamlines of the dawn and dusk lobe cells. These observations require reconsideration on the position and the extent of the reconnection region on the magnetopause. They also suggest that the magnetotail plays a vital role in some phenomena which have been ascribed to dayside magnetopause processes. We have not been able to find evidence to prove the presence of the viscous cell under southward IMF

  9. Massively Parallel Polar Decomposition on Distributed-Memory Systems

    KAUST Repository

    Ltaief, Hatem

    2018-01-01

    We present a high-performance implementation of the Polar Decomposition (PD) on distributed-memory systems. Building upon on the QR-based Dynamically Weighted Halley (QDWH) algorithm, the key idea lies in finding the best rational approximation for the scalar sign function, which also corresponds to the polar factor for symmetric matrices, to further accelerate the QDWH convergence. Based on the Zolotarev rational functions—introduced by Zolotarev (ZOLO) in 1877— this new PD algorithm ZOLO-PD converges within two iterations even for ill-conditioned matrices, instead of the original six iterations needed for QDWH. ZOLO-PD uses the property of Zolotarev functions that optimality is maintained when two functions are composed in an appropriate manner. The resulting ZOLO-PD has a convergence rate up to seventeen, in contrast to the cubic convergence rate for QDWH. This comes at the price of higher arithmetic costs and memory footprint. These extra floating-point operations can, however, be processed in an embarrassingly parallel fashion. We demonstrate performance using up to 102, 400 cores on two supercomputers. We demonstrate that, in the presence of a large number of processing units, ZOLO-PD is able to outperform QDWH by up to 2.3X speedup, especially in situations where QDWH runs out of work, for instance, in the strong scaling mode of operation.

  10. Realisation and Optimization the System of Ridge Waveguide Polarizer by Genetic Algorithms for Telecommunication Satellite Antennas

    OpenAIRE

    BOUSALAH, FAYZA; BOUKLI HACENE, NOUR EDDINE

    2012-01-01

    The ridged waveguide polarizer is considered as the better way to get right-hand and left-hand circular polarization in the antennas of telecommunications satellites. In fact, it is a system of three ports used to feed a square waveguide antenna in order to achieve high purity in the right-hand and left-hand circular polarization. Obtaining a great purity of polarization results by the addition from screw from adaptation and blades from correction. A solution with ...

  11. [Study of Lavoisier morphine chlorhydrate stability in different active perfusion systems after reconstitution in different solvents].

    Science.gov (United States)

    Truelle-Hugon, B; Tourrette, G; Couineaux, B; Gache-Charrette, C

    1997-01-01

    The stability of morphine chlorhydrate injectable solutions with no preservative used for drug delivery system (PCA) was investigated. Many concentrations of morphine chlorhydrate were prepared using different solvents and in several containers: PCA cartridges and plastic syringes stored at 37 degrees C. Assays of drug substance and of degradation products were determined at different time within 14 days. In such conditions, morphine chlorhydrate solutions were stable: degradation products were quantitated less than the usual normal i.e. 2% of the theoric concentration of the drug.

  12. Method to produce biomass-derived compounds using a co-solvent system containing gamma-valerolactone

    Science.gov (United States)

    Dumesic, James A.; Motagamwala, Ali Hussain

    2017-06-27

    A method to produce an aqueous solution of carbohydrates containing C5- and/or C6-sugar-containing oligomers and/or C5- and/or C6-sugar monomers in which biomass or a biomass-derived reactant is reacted with a solvent system having an organic solvent, and organic co-solvent, and water, in the presence of an acid. The method produces the desired product, while a substantial portion of any lignin present in the reactant appears as a precipitate in the product mixture.

  13. "Solvent-in-salt" systems for design of new materials in chemistry, biology and energy research.

    Science.gov (United States)

    Azov, Vladimir A; Egorova, Ksenia S; Seitkalieva, Marina M; Kashin, Alexey S; Ananikov, Valentine P

    2018-02-21

    Inorganic and organic "solvent-in-salt" (SIS) systems have been known for decades but have attracted significant attention only recently. Molten salt hydrates/solvates have been successfully employed as non-flammable, benign electrolytes in rechargeable lithium-ion batteries leading to a revolution in battery development and design. SIS with organic components (for example, ionic liquids containing small amounts of water) demonstrate remarkable thermal stability and tunability, and present a class of admittedly safer electrolytes, in comparison with traditional organic solvents. Water molecules tend to form nano- and microstructures (droplets and channel networks) in ionic media impacting their heterogeneity. Such microscale domains can be employed as microreactors for chemical and enzymatic synthesis. In this review, we address known SIS systems and discuss their composition, structure, properties and dynamics. Special attention is paid to the current and potential applications of inorganic and organic SIS systems in energy research, chemistry and biochemistry. A separate section of this review is dedicated to experimental methods of SIS investigation, which is crucial for the development of this field.

  14. A simple method to optimize the HSCCC two-phase solvent system by predicting the partition coefficient for target compound.

    Science.gov (United States)

    Han, Quan-Bin; Wong, Lina; Yang, Nian-Yun; Song, Jing-Zheng; Qiao, Chun-Feng; Yiu, Hillary; Ito, Yoichiro; Xu, Hong-Xi

    2008-04-01

    A simple method was developed to optimize the solvent ratio of the two-phase solvent system used in the high-speed counter-current chromatography (HSCCC) separation. Some mathematic equations, such as the exponential and the power equations, were established to describe the relationship between the solvent ratio and the partition coefficient. Using this new method, the two-phase solvent system was easily optimized to obtain a proper partition coefficient for the CCC separation of the target compound. Furthermore, this method was satisfactorily applied in determining the two-phase solvent system for the HSCCC preparation of pseudolaric acid B from the Chinese herb Pseudolarix kaempferi Gordon (Pinaceae). The two-phase solvent system of n-hexane/EtOAc/MeOH/H(2)O (5:5:5:5 by volume) was used with a good partition coefficient K = 1.08. As a result, 232.05 mg of pseudolaric acid B was yielded from 0.5 g of the crude extract with a purity of 97.26% by HPLC analysis.

  15. The Need for System Scale Studies in Polar Regions

    Science.gov (United States)

    Hinzman, L. D.; Newman, D.

    2010-12-01

    The understanding of polar regions has advanced tremendously in the past two decades and much of the improved insight into our knowledge of environmental dynamics is due to multidisciplinary and interdisciplinary studies conducted by coordinated and collaborative research programs supported by national funding agencies. Although much remains to be learned with respect to component processes, many of the most urgent scientific, engineering and social questions can only be addressed through the broader perspective of studies on system scales in which these components are coupled to each other. Questions such as quantifying feedbacks, understanding the implications of sea ice loss to adjacent land areas or society, resolving future predictions of ecosystem evolution or population dynamics all require consideration of complex interactions and interdependent linkages among system components. Research that has identified physical controls on biological processes, or quantified impact/response relationships in physical and biological systems is critically important, and must be continued; however we are approaching a limitation in our ability to accurately project how the Arctic and the Antarctic will respond to a continued warming climate. Complex issues, such as developing accurate model algorithms of feedback processes require higher level synthesis of multiple component interactions. Several examples of important questions that may only be addressed through coupled complex systems analyses will be addressed.

  16. Solvent system selectivities in countercurrent chromatography using Salicornia gaudichaudiana metabolites as practical example with off-line electrospray mass-spectrometry injection profiling.

    Science.gov (United States)

    Costa, Fernanda das Neves; Jerz, Gerold; Figueiredo, Fabiana de Souza; Winterhalter, Peter; Leitão, Gilda Guimarães

    2015-03-13

    For the development of an efficient two-stage isolation process for high-speed countercurrent chromatography (HSCCC) with focus on principal metabolites from the ethyl acetate extract of the halophyte plant Salicornia gaudichaudiana, separation selectivities of two different biphasic solvent systems with similar polarities were evaluated using the elution and extrusion approach. Efficiency in isolation of target compounds is determined by the solvent system selectivity and their chronological use in multiple separation steps. The system n-hexane-ethyl acetate-methanol-water (0.5:6:0.5:6, v/v/v/v) resulted in a comprehensive separation of polyphenolic glycosides. The system n-hexane-n-butanol-water (1:1:2, v/v/v) was less universal but was highly efficient in the fractionation of positional isomers such as di-substituted cinnamic acid quinic acid derivatives. Multiple metabolite detection performed on recovered HSCCC tube fractions was done with rapid mass-spectrometry profiling by sequential off-line injections to electrospray mass-spectrometry (ESI-MS/MS). Selective ion traces of metabolites delivered reconstituted preparative HSCCC runs. Molecular weight distribution of target compounds in single HSCCC tube fractions and MS/MS fragment data were available. Chromatographic areas with strong co-elution effects and fractions of pure recoverable compounds were visualized. In total 11 metabolites have been identified and monitored. Result of this approach was a fast isolation protocol for S. gaudichaudiana metabolites using two solvent systems in a strategic sequence. The process could easily be scaled-up to larger lab-scale or industrial recovery. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. LIQUID-LIQUID EQUILIBRIA OF THE ACETIC ACID-WATER-MIXED SOLVENT (CYCLOHEXYL ACETATE-CYCLOHEXANOL SYSTEM

    Directory of Open Access Journals (Sweden)

    S. Çehreli

    2002-03-01

    Full Text Available Mixtures of cyclohexyl acetate and cyclohexanol were used as a mixed solvent to study liquid-liquid equilibria (LLE of the acetic acid-water-cyclohexanol-cyclohexyl acetate quaternary system. The solubility diagram and tie-line data were determined at 298±0.20 K and atmospheric pressure, using various compositions of mixed solvent. Reliability of the data was ascertained by making Othmer-Tobias and Hand plots.

  18. LIQUID-LIQUID EQUILIBRIA OF THE ACETIC ACID-WATER-MIXED SOLVENT (CYCLOHEXYL ACETATE-CYCLOHEXANOL) SYSTEM

    OpenAIRE

    Çehreli S.

    2002-01-01

    Mixtures of cyclohexyl acetate and cyclohexanol were used as a mixed solvent to study liquid-liquid equilibria (LLE) of the acetic acid-water-cyclohexanol-cyclohexyl acetate quaternary system. The solubility diagram and tie-line data were determined at 298±0.20 K and atmospheric pressure, using various compositions of mixed solvent. Reliability of the data was ascertained by making Othmer-Tobias and Hand plots.

  19. On the use of polar coordinate system in the projective graphic drawings

    Directory of Open Access Journals (Sweden)

    Ivashchenko Andrey Viktorovich

    2016-11-01

    Full Text Available Projective graphics is a polyhedra simulation method, which is based on the use of trace diagrams of initial polyhedron. Previously developed computer software allows using Cartesian coordinates. In some cases it is advisable to use polar coordinate system for description of projective graphics drawings. Using the example of icosahedron the authors analyzed the advantages of using projective graphics drawings in the polar coordinate system. The transition to the polar coordinate system is a tool that allows using certain patterns of projective graphics drawings in the process of calculation. When using polar coordinate system the search of Polar correspondence for the directs is simplified. In order to analyze the two lines in the polar coordinate system it is enough to compare the corresponding coefficients of the equations of these lines. The authors consider a diagram of the icosahedron in polar coordinates, and a corresponding fragment of calculation program in the Mathematica system. Some examples of forming based on icosahedrons are offered. Optimization of computer programs using polar coordinate system will simplifies the calculations of projective graphics drawings, accelerates the process of constructing three-dimensional models, which expand the possibilities of selecting original solutions. Finally, the authors conclude that it is appropriate to use the polar coordinate system only in the construction of projective graphics diagrams of the planes system having rich symmetry. All Platonic and Archimedean solids, Catalan solid possess this property.

  20. Theoretical and experimental studies of polarization fluctuations over atmospheric turbulent channels for wireless optical communication systems.

    Science.gov (United States)

    Zhang, Jiankun; Ding, Shengli; Zhai, Huili; Dang, Anhong

    2014-12-29

    In wireless optical communications (WOC), polarization multiplexing systems and coherent polarization systems have excellent performance and wide applications, while its state of polarization affected by atmospheric turbulence is not clearly understood. This paper focuses on the polarization fluctuations caused by atmospheric turbulence in a WOC link. Firstly, the relationship between the polarization fluctuations and the index of refraction structure parameter is introduced and the distribution of received polarization angle is obtained through theoretical derivations. Then, turbulent conditions are adjusted and measured elaborately in a wide range of scintillation indexes (SI). As a result, the root-mean-square (RMS) variation and probability distribution function (PDF) of polarization angle conforms closely to that of theoretical model.

  1. Assessment of Purex solvent cleanup methods using a mixer-settler system

    International Nuclear Information System (INIS)

    Mailen, J.C.; Tallent, O.K.

    1984-11-01

    A test system consisting of three mixer-settlers in series has been used to determine the usefulness of several possible aqueous scrub solutions for cleanup of TBP solvent in fuel reprocessing plants. The simulated solvent that was treated was nominally 0.1 mM zirconium, 0.2 mM uranium, 0.4 mM dibutyl phosphate, and 0.3 mM HNO 3 . Five aqueous scrub solutions - sodium carbonate/tartrate, hydroxylamine/tartaric acid, hydroxylamine/citric acid, hydrazine/oxalic acid, and LiOH/sucrose - were evaluated. The order of effectiveness of these solutions for removal of contaminants was: sodium carbonate/tartrate, hydrazine/oxalic acid, LiOH/sucrose, and the two hydroxylamine solutions. Interfacial crud, which was related to the presence of zirconium and DBP, was observed in all cases except the LiOH/sucrose solution. The recommended system would use sodium carbonate/tartrate. If sodium usage must be minimized, a hydroxylamine-containing scrub followed by a sodium carbonate/tartrate scrub is recommended. 13 references, 11 figures, 21 tables

  2. Lipase Mediated Isoamyl Acetate Synthesis in Solvent-Free System Using Vinyl Acetate as Acyl Donor

    Directory of Open Access Journals (Sweden)

    Annapurna Kumari

    2009-01-01

    Full Text Available Synthesis of isoamyl acetate, a flavour ester extensively used in food industry, has been carried out in a solvent-free system. In the present study, an attempt has been made to enhance the isoamyl acetate synthesis yield by transesterification of isoamyl alcohol with vinyl acetate using immobilized Rhizopus oryzae NRRL 3562 lipase. In the present synthesis, substrates had no inhibitory effect on immobilized lipase. The effects of various reaction parameters on isoamyl acetate synthesis were studied and maximum conversion was achieved at 16 % (by mass per volume of immobilized lipase, 40 °C and 200 rpm. Under these conditions, 8-hour reaction time was sufficient to reach a high ester conversion of 95 % with 0.5 mol/L of isoamyl alcohol. The structure of the transesterified product was confirmed by infrared and nuclear magnetic resonance spectroscopic studies. Immobilized lipase had Km and vmax values of 306.53 mmol/L and 99 µmol/(h·g respectively, for isoamyl acetate synthesis in a solvent-free system.

  3. Satellite Observation Systems for Polar Climate Change Studies

    Science.gov (United States)

    Comiso, Josefino C.

    2012-01-01

    The key observational tools for detecting large scale changes of various parameters in the polar regions have been satellite sensors. The sensors include passive and active satellite systems in the visible, infrared and microwave frequencies. The monitoring started with Tiros and Nimbus research satellites series in the 1970s but during the period, not much data was stored digitally because of limitations and cost of the needed storage systems. Continuous global data came about starting with the launch of ocean color, passive microwave, and thermal infrared sensors on board Nimbus-7 and Synthetic Aperture Radar, Radar Altimeter and Scatterometer on board SeaSat satellite both launched in 1978. The Nimbus-7 lasted longer than expected and provided about 9 years of useful data while SeaSat quit working after 3 months but provided very useful data that became the baseline for follow-up systems with similar capabilities. Over the years, many new sensors were launched, some from Japan Aeronautics and Space Agency (JAXA), some from the European Space Agency (ESA) and more recently, from RuSSia, China, Korea, Canada and India. For polar studies, among the most useful sensors has been the passive microwave sensor which provides day/night and almost all weather observation of the surface. The sensor provide sea surface temperature, precipitation, wind, water vapor and sea ice concentration data that have been very useful in monitoring the climate of the region. More than 30 years of such data are now available, starting with the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7, the Special Scanning Microwave/Imager (SSM/I) on board a Defense Meteorological Satellite Program (DMSP) and the Advanced Microwave Scanning Radiometer on board the EOS/ Aqua satellite. The techniques that have been developed to derive geophysical parameters from data provided by these and other sensors and associated instrumental and algorithm errors and validation techniques

  4. Indole: A model system for one-photon threshold photoionization in polar media

    Science.gov (United States)

    Lee, Jamine; Robinson, G. Wilse

    1984-08-01

    Indole in a sufficiently polar medium, such as water, presents a relatively simple example of the one-photon near-threshold photoionization process in the condensed phase. This photoejection mechanism is the main object of study in this paper. To carry out this study, dynamic processes of indole in its first excited singlet state S1 are explored as a function of temperature in mixed water/methanol solvents. In mixed solvents having high water content, the dominant radiationless transition in the higher temperature regimes is a localized photoejection process. In pure methanol, electron photoejection is unimportant, indicating a distinction between aqueous solvents and other hydrophilic solvents that goes far beyond dielectric constant considerations. A water ``cage,'' composed of 4±1 water molecules, and probably quite close to the parent cation, is the electron acceptor. The apparently unique structure of this water cluster, different from that in normal water, is thought to be responsible for the large activation energy (43.4 kJ/mol-1) for this photoejection mechanism. A Markov random walk matrix method is adopted in order to analyze the photoelectron process in different mixture configurations. Good agreement between observed and theoretical results over the entire solvent concentration range for both the fluorescence decay rates and the fluorescence quantum yields at various temperatures between -15 and +75 °C supports the assumed model. It is interesting to speculate about possible roles of threshold electrons in chemical and biological long range electron transfer reactions.

  5. Solvents and solvent effects in organic chemistry

    National Research Council Canada - National Science Library

    Reichardt, C; Welton, T

    2011-01-01

    .../guest complexation equilibria and reactions in biphasic solvent systems and neoteric solvents, respectively. More than 900 new references have been added, giving preference to review articles, and many older ones have been deleted. New references either replace older ones or are added to the end of the respective reference list of each chapter. Th...

  6. Extraction of Trivalent Actinides and Lanthanides from Californium Campaign Rework Solution Using TODGA-based Solvent Extraction System

    Energy Technology Data Exchange (ETDEWEB)

    Benker, Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delmau, Laetitia Helene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dryman, Joshua Cory [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    This report presents the studies carried out to demonstrate the possibility of quantitatively extracting trivalent actinides and lanthanides from highly acidic solutions using a neutral ligand-based solvent extraction system. These studies stemmed from the perceived advantage of such systems over cationexchange- based solvent extraction systems that require an extensive feed adjustment to make a low-acid feed. The targeted feed solutions are highly acidic aqueous phases obtained after the dissolution of curium targets during a californium (Cf) campaign. Results obtained with actual Cf campaign solutions, but highly diluted to be manageable in a glove box, are presented, followed by results of tests run in the hot cells with Cf campaign rework solutions. It was demonstrated that a solvent extraction system based on the tetraoctyl diglycolamide molecule is capable of quantitatively extracting trivalent actinides from highly acidic solutions. This system was validated using actual feeds from a Cf campaign.

  7. Phase relationships and thermodynamic interactions of isotactic poly(1-butene) and organic solvent systems.

    Science.gov (United States)

    Domańska, Urszula; Kozłowska, Marta Karolina

    2005-01-07

    Isotactic crystalline low-molecular-weight poly(1-butene), iPBu-1, was synthesised by using a metallocene catalyst. The molecular weight was determined by GPC. The chemical structure of iPBu-1 was verified by using high-temperature (13)C NMR spectroscopy and the thermal properties by differential scanning calorimetry (DSC). The (solid+liquid) equilibria, SLE, of iPBu-1 with different hydrocarbons (n-hexadecane, 1-heptene, 1-heptyne, cyclopentane, cyclohexane, cycloheptane, cyclooctane, benzene and propylbenzene) were studied by a dynamic method. By performing these experiments over a large concentration range, the temperature-mole fraction phase diagrams of the polymer-solvent systems could be constructed. From these diagrams it was found that iPBu-1 had the highest solubility in small-ring cycloalkanes and the lowest in n-hexadecane, 1-heptyne and benzene in the mole fraction range measured. The excess Gibbs energy models were used to describe the nonideal behaviour of the liquid phase and to estimate the solubility of iPBu-1 in the whole mole fraction range. Activity coefficients at infinite dilution of polymer and solvent were determined from the solubility measurements and were predicted by using the UNIFAC FV model and molecular Monte Carlo simulations.

  8. Caustic-Side Solvent-Extraction Modeling for Hanford Interim Pretreatment System

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, B.A.; Birdwell, J.F.; Delmau, L. H.; McFarlane, J.

    2008-06-01

    The purpose of this work is to examine the applicability of the Caustic-Side Solvent Extraction (CSSX) process for the removal of cesium from Hanford tank-waste supernatant solutions in support of the Hanford Interim Pretreatment System (IPS). The Hanford waste types are more challenging than those at the Savannah River Site (SRS) in that they contain significantly higher levels of potassium, the chief competing ion in the extraction of cesium. It was confirmed by use of the CSSX model that the higher levels of potassium depress the cesium distribution ratio (DCs), as validated by measurement of DCs values for four of eight specified Hanford waste-simulant compositions. The model predictions were good to an apparent standard error of ±11%. It is concluded from batch distribution experiments, physical-property measurements, equilibrium modeling, flowsheet calculations, and contactor sizing that the CSSX process as currently employed for cesium removal from alkaline salt waste at the SRS is capable of treating similar Hanford tank feeds. For the most challenging waste composition, 41 stages would be required to provide a cesium decontamination factor (DF) of 5000 and a concentration factor (CF) of 5. Commercial contacting equipment with rotor diameters of 10 in. for extraction and 5 in. for stripping should have the capacity to meet throughput requirements, but testing will be required to confirm that the needed efficiency and hydraulic performance are actually obtainable. Markedly improved flowsheet performance was calculated for a new solvent formulation employing the more soluble cesium extractant BEHBCalixC6 used with alternative scrub and strip solutions, respectively 0.1 M NaOH and 10 mM boric acid. The improved system can meet minimum requirements (DF = 5000 and CF = 5) with 17 stages or more ambitious goals (DF = 40,000 and CF = 15) with 19 stages. Potential benefits of further research and development are identified that would lead to reduced costs, greater

  9. Theory and analysis of a large field polarization imaging system with obliquely incident light.

    Science.gov (United States)

    Lu, Xiaotian; Jin, Weiqi; Li, Li; Wang, Xia; Qiu, Su; Liu, Jing

    2018-02-05

    Polarization imaging technology provides information about not only the irradiance of a target but also the polarization degree and angle of polarization, which indicates extensive application potential. However, polarization imaging theory is based on paraxial optics. When a beam of obliquely incident light passes an analyser, the direction of light propagation is not perpendicular to the surface of the analyser and the applicability of the traditional paraxial optical polarization imaging theory is challenged. This paper investigates a theoretical model of a polarization imaging system with obliquely incident light and establishes a polarization imaging transmission model with a large field of obliquely incident light. In an imaging experiment with an integrating sphere light source and rotatable polarizer, the polarization imaging transmission model is verified and analysed for two cases of natural light and linearly polarized light incidence. Although the results indicate that the theoretical model is consistent with the experimental results, the theoretical model distinctly differs from the traditional paraxial approximation model. The results prove the accuracy and necessity of the theoretical model and the theoretical guiding significance for theoretical and systematic research of large field polarization imaging.

  10. Polar On-Line Acquisition Relay and Transmission System (POLARATS)

    Energy Technology Data Exchange (ETDEWEB)

    Yuracko, K.

    2004-07-15

    POLARATS (Polar On-Line Acquisition Relay And Transmission System) is being developed by YAHSGS LLC (YAHSGS) and Oak Ridge National Laboratory (ORNL) to provide remote, unattended monitoring of environmental parameters under harsh environmental conditions. In particular, instrumental design and engineering is oriented towards protection of human health in the Arctic, and with the additional goal of advancing Arctic education and research. POLARATS will obtain and transmit environmental data from hardened monitoring devices deployed in locations important to understanding atmospheric and aquatic pollutant migration as it is biomagnified in Arctic food chains. An Internet- and personal computer (PC)-based educational module will provide real time sensor data, on-line educational content, and will be integrated with workbooks and textbooks for use in middle and high school science programs. The educational elements of POLARATS include an Internet-based educational module that will instruct students in the use of the data and how those data fit into changing Arctic environments and food chains. POLARATS will: (1) Enable students, members of the community, and scientific researchers to monitor local environmental conditions in real time over the Internet; and (2) Provide additional educational benefits through integration with middle- and high-school science curricula. Information will be relayed from POLARATS devices to classrooms and libraries along with custom-designed POLARATS teaching materials that will be integrated into existing curricula to enhance the educational benefits realized from the information obtained.

  11. Adding a Mission to the Joint Polar Satellite System (JPSS) Common Ground System (CGS)

    Science.gov (United States)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions: 1) Command and control and mission management for the Suomi National Polar-orbiting Partnership (S-NPP) mission today, expanding this support to the JPSS-1 satellite and the Polar Free Flyer mission in 2017 2) Data acquisition via a Polar Receptor Network (PRN) for S-NPP, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the Department of Defense (DoD) 3) Data routing over a global fiber Wide Area Network (WAN) for S-NPP, JPSS-1, Polar Free Flyer, GCOM-W1, POES, DMSP, Coriolis/WindSat, the NASA Space Communications and Navigation (SCaN, which includes several Earth Observing System [EOS] missions), MetOp for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the National Science Foundation (NSF) 4) Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 With this established infrastructure and existing suite of missions, the CGS

  12. a Molecular Approach to Electrolyte Solutions: Predicting Phase Behavior and Thermodynamic Properties of Single and Binary-Solvent Systems

    Science.gov (United States)

    Gering, Kevin Leslie

    A molecular formulation based on modern liquid state theory is applied to the properties and phase behavior of electrolyte systems containing volatile species. An electrolyte model based on the exponential modification of the Mean Spherical Approximation (EXP-MSA) is used to describe the cation-cation, cation-anion, and anion-anion distributions of the ionic species. This theory represents an improvement over the nonmodified MSA approach, and goes beyond the usual Debye-Huckel theory and Pitzer correlation for treating concentrated solutions. Electrolyte solutions such as water-salt, ammonia-salt, mixed salts, and mixed -solvent systems are investigated over a wide range of temperatures, pressures, and compositions. The usual salt properties, such as osmotic and mean activity coefficients and other thermodynamic properties (enthalpies), are calculated. The predictions are accurate to saturation limits. In addition, an iterative method is presented that is used to predict vapor-liquid equilibria (VLE) and thermodynamic properties of single-salt multisolvent electrolytes of the form solvent-cosolvent-salt. In this method, a local composition model (LCM) and EXP-MSA theory are combined with traditional phase equilibria relations to estimate the pressures and compositions of a vapor phase in equilibrium with a binary-solvent electrolyte. Also, a pseudo-solvent model is proposed as a means of obtaining a variety of averaged liquid phase electrolyte properties. To predict preferential solvation in mixed solvents, a general framework is developed that is based on predicted solvation numbers of each solvent. Preferential solvation will be shown to influence VLE. Results show that phase equilibria is accurately predicted by the above iterative method. Three mixed-solvent electrolyte systems are investigated: water -ethylene glycol-LiBr, ammonia-water-LiBr, and methanol -water-LiCl. Finally, the above electrolyte model is utilized in predicting design criteria for a single

  13. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Performance for Suomi NPP

    Science.gov (United States)

    Idol, J.; Grant, K. D.; Waas, W.; Austin, J.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will contribute the afternoon orbit component and ground processing system of the restructured National Polar-orbiting Operational Environmental Satellite System (NPOESS). As such, the Joint Polar Satellite System replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by the National Oceanic and Atmospheric Administration and the ground processing component of both Polar-orbiting Operational Environmental Satellites and the Defense Meteorological Satellite Program (DMSP) replacement, previously known as the Defense Weather Satellite System (DWSS), managed by the Department of Defense (DoD). The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS), and consists of a Command, Control, and Communications Segment (C3S) and an Interface Data Processing Segment (IDPS). Both segments are developed by Raytheon Intelligence and Information Systems (IIS). The C3S currently flies the Suomi National Polar Partnership (Suomi NPP) satellite and transfers mission data from Suomi NPP and between the ground facilities. The IDPS processes Suomi NPP satellite data to provide Environmental Data Records (EDRs) to NOAA and DoD processing centers operated by the United States government. When the JPSS-1 satellite is launched in early 2017, the responsibilities of the C3S and the IDPS will be expanded to support both Suomi NPP and JPSS-1. The Suomi NPP launched on October 28, 2011. Launch was followed by a phase of sensor activation, and full volume data traffic is now flowing from the

  14. ICEPOD: A Multidisciplinary Imaging System for Application in Polar Regions

    Science.gov (United States)

    Zappa, C. J.; Frearson, N.

    2012-12-01

    The ICEPOD program is in it's third year of a five-year effort to develop a modular airborne ice imaging system mounted on New York Air National Guard (NYANG) LC-130 aircraft to map the surface and sub-surface topography of ice sheets, ice streams, outlet glaciers, ice-shelves and sea-ice for the NSF Major Research Instrumentation program. The project is funded by the American Recovery and Reinvestment Act. The fundamental goal of the ICEPOD program is to develop an instrumentation package that can capture the dynamics of the changing polar regions, focusing on ice, ice margins and ocean systems. To achieve this the instruments include a Scanning Lidar for precise measurements of the ice surface, Stereo photogrammetry from both a high sensitivity Infra-Red camera and a high resolution Visible Imaging camera to document the ice surface and temperature, sea-ice thickness imaging radar and a deep ice radar used to study interior and basal processes of glaciers, ice streams and ice-sheets. All instrument data sets will be time-tagged and geo-referenced by recording precision GPS satellite data. Aircraft orientation will be corrected using inertial measurement technology integrated into the pod. The vision is that this instrumentation will be operated both on routine flights of the NYANG in the polar regions, such as on missions between McMurdo and South Pole Station and on missions throughout Greenland, and on targeted science missions, from mapping sea ice in marginal ice zones and outlet glaciers such as those surrounding Ross Island or Greenland to quantifying large sub-glacial drainage systems in East Antarctica. Recent years have seen extreme changes in the Arctic. Particularly striking are changes within the Pacific sector of the Arctic Ocean, and especially in the seas north of the Alaskan coast. These areas have experienced record warming, reduced sea ice extent, and loss of ice in areas that had been ice-covered throughout human memory. Even the oldest and

  15. One-Pot Lipase-Catalyzed Enantioselective Synthesis of (R-(−-N-Benzyl-3-(benzylaminobutanamide: The Effect of Solvent Polarity on Enantioselectivity

    Directory of Open Access Journals (Sweden)

    Marina A. Ortega-Rojas

    2017-12-01

    Full Text Available The use of the solvent engineering has been applied for controlling the resolution of lipase-catalyzed synthesis of β-aminoacids via Michael addition reactions. The strategy consisted of the thermodynamic control of products at equilibrium using the lipase CalB as a catalyst. The enzymatic chemo- and enantioselective synthesis of (R-(−-N-benzyl-3-(benzylaminobutanamide is reported, showing the influence of the solvent on the chemoselectivity of the aza-Michael addition and the subsequent kinetic resolution of the Michael adduct; both processes are catalyzed by CalB and both are influenced by the nature of the solvent medium. This approach allowed us to propose a novel one-pot strategy for the enzymatic synthesis of enantiomerically enriched β-aminoesters and β-aminoacids.

  16. Development of a Next Generation Polar Multidisciplinary Airborne Imaging System for the International Polar Year 2007-2009

    Science.gov (United States)

    Bell, R. E.; Studinger, M.; Frearson, N.; Gogineni, P.; Braaten, D.

    2007-12-01

    Key elements in Earth's geodynamic and climatic systems, the polar regions are very sensitive to changing global environmental conditions such as increasing sea surface temperatures and have the potential to trigger significant global sea level rise as large volumes of ice melt. Locked within these icy regions are the records of past global climate shifts and novel ecosystems sealed from open interactions with the atmosphere for millions of years. While satellite missions can image the surface of the polar ice sheet, many of the key processes occur beneath the surface beyond the reach of space based observations. These crucial processes can only be efficiently examined through airborne instrumentation designed to study the vast expanses of snow and ice of the Antarctic continent, the sub-continent of Greenland and the surrounding oceans. The expanding logistical infrastructure associated with the International Polar Year (2007-2009) will enable the scientific community access major new portions of the polar regions. We are developing a state-of-the-art integrated multidisciplinary aerogeophysical instrumentation package for deployment during multi-national expeditions as part of the International Polar Year. This development project brings together the recent developments in radar sounding by the University of Kansas CReSIS (Center for Remote Sensing of Ice Sheets), that now permit the full characterization of the entire ice sheet and the major advances in the accuracy, resolution and efficiency of airborne gravity technology emerging from the private sector. Integrating the full spectrum of ice sheet imaging with high-resolution gravity and magnetics will enable the imaging of the previously invisible world of subglacial hydrodynamics.

  17. Magnetic nanoparticles and high-speed countercurrent chromatography coupled in-line and using the same solvent system for separation of quercetin-3-O-rutinoside, luteoloside and astragalin from a Mikania micrantha extract.

    Science.gov (United States)

    Wang, Juanqiang; Geng, Shan; Wang, Binghai; Shao, Qian; Fang, Yingtong; Wei, Yun

    2017-07-28

    A new in-line method of magnetic nanoparticles (MNPs) coupled with high-speed countercurrent chromatography (HSCCC) using a same solvent system during the whole separation process was established to achieve the rapid separation of flavonoids from Mikania micrantha. The adsorption and desorption capacities of five different MNPs for flavonoid standards and Mikania micrantha crude extract were compared and the most suitable magnetic nanoparticle Fe 3 O 4 @SiO 2 @DIH@EMIMLpro was selected as the in-line MNP column. An in-line separation system was established by combining this MNP column with HSCCC through a six-way valve. The comparison between two solvent systems n-hexane-ethyl acetate-methanol-water (3:5:3:5, v/v) and ethyl acetate-methanol-water (25:1:25, v/v) showed that the latter solvent system was more suitable for simultaneously in-line separating three flavonoids quercetin-3-O-rutinoside, luteoloside and astragalin from Mikania micrantha. The purities of these three compounds with the ethyl acetate-methanol-water solvent system were 95.13%, 98.54% and 98.19% respectively. Results showed the established in-line separation system of MNP-HSCCC was efficient, recyclable and served to isolate potential flavonoids with similar polarities from natural complex mixtures. The in-line combination of magnetic nanoparticles with high-speed countercurrent chromatography eluting with the same solvent system during the whole separation process was established for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Derivation of global vegetation biophysical parameters from EUMETSAT Polar System

    Science.gov (United States)

    García-Haro, Francisco Javier; Campos-Taberner, Manuel; Muñoz-Marí, Jordi; Laparra, Valero; Camacho, Fernando; Sánchez-Zapero, Jorge; Camps-Valls, Gustau

    2018-05-01

    This paper presents the algorithm developed in LSA-SAF (Satellite Application Facility for Land Surface Analysis) for the derivation of global vegetation parameters from the AVHRR (Advanced Very High Resolution Radiometer) sensor on board MetOp (Meteorological-Operational) satellites forming the EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Polar System (EPS). The suite of LSA-SAF EPS vegetation products includes the leaf area index (LAI), the fractional vegetation cover (FVC), and the fraction of absorbed photosynthetically active radiation (FAPAR). LAI, FAPAR, and FVC characterize the structure and the functioning of vegetation and are key parameters for a wide range of land-biosphere applications. The algorithm is based on a hybrid approach that blends the generalization capabilities offered by physical radiative transfer models with the accuracy and computational efficiency of machine learning methods. One major feature is the implementation of multi-output retrieval methods able to jointly and more consistently estimate all the biophysical parameters at the same time. We propose a multi-output Gaussian process regression (GPRmulti), which outperforms other considered methods over PROSAIL (coupling of PROSPECT and SAIL (Scattering by Arbitrary Inclined Leaves) radiative transfer models) EPS simulations. The global EPS products include uncertainty estimates taking into account the uncertainty captured by the retrieval method and input errors propagation. A sensitivity analysis is performed to assess several sources of uncertainties in retrievals and maximize the positive impact of modeling the noise in training simulations. The paper discusses initial validation studies and provides details about the characteristics and overall quality of the products, which can be of interest to assist the successful use of the data by a broad user's community. The consistent generation and distribution of the EPS vegetation products will

  19. Active efflux systems in the solvent-tolerant bacterium Pseudomonas putida S12

    NARCIS (Netherlands)

    Kieboom, J.

    2002-01-01

    The aim of the research presented in this thesis was to study the molecular mechanisms of organic solvent tolerance in Pseudomonas putida S12. This bacterium is capable of growth at saturated solvent concentrations, which are lethal to normal bacteria. Organic

  20. Molecular and supramolecular speciations of solvent extraction systems based on malonamide and/or dialkyl-phosphoric acids for An(III)/Ln(III)

    International Nuclear Information System (INIS)

    Gannaz, B.

    2006-06-01

    The solvent extraction system used in the DIAMEX-SANEX process, developed for the actinide(III)/lanthanide(III) separation, is based on the use of mixtures of the malonamide DMDOHEMA and a dialkyl-phosphoric acid (HDEHP or HDHP), in hydrogenated tetra-propylene. The complexity of these systems urges on a novel approach to improve the conventional methods (thermodynamics, solvent extraction) which hardly explain the macroscopic behaviors observed (3. phase, over-stoichiometry). This approach combines studies on both supramolecular (VPO, SANS, SAXS) and molecular (liquid-liquid extraction, ESI-MS, IR, EXAFS) speciations of single extractant systems (DMDOHEMA or HDHP in in n-dodecane) and their mixture. In spite of safety constraints due to the handling of radio-material, they were used in the studies as much as possible, like for SAXS measurements on americium-containing samples, a worldwide first-time. In each of the investigated systems, actinides(III) and lanthanides(III) are extracted to the organic phase in polar cores of reversed micelles, the inner and outer-sphere compositions of which are proposed. Thus, the 4f and 5f cations are extracted by reversed micelles such as [(DMDOHEMA) 2 M(NO 3 ) 3 ] inn (DMDOHEMA) x (HNO 3 ) z (H 2 O) w ] out and M(DHP) 3 (HDHP) y-3 (H 2 O) w with y = 3 to 6, for the single extractant systems. In the case of the two extractants system, the less concentrated one acts like a co-surfactant regarding the mixed aggregate formation [(DMDOHEMA) 2 M(NO 3 ) 3-v (DHP) v ] inn [(DMDOFIEMA) x (HDHP) y (HNO 3 )z(H 2 O) w ] out . (author)

  1. MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT (MCU) GAMMA MONITORS SYSTEM FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Casella, V

    2005-12-15

    The Department of Energy (DOE) selected Caustic-Side Solvent Extraction (CSSX) as the preferred technology for the removal of radioactive cesium from High-Level Waste (HLW) at the Savannah River Site (SRS). Before the full-scale Salt Waste Processing Facility (SWPF) becomes operational, the Closure Business Unit (CBU) plans to process a portion of dissolved saltcake waste through a Modular CSSX Unit (MCU). This work was derived from Technical Task Request SP-TTR-2004-00013, ''Gamma Monitor for MCU''. The deliverables for this task are the hardware and software for the gamma monitors and a report summarizing the testing and acceptance of this equipment for use in the MCU. Gamma-ray monitors are required to: (1) Measure the Cs-137 concentration in the decontaminated salt solution before entering the DSS (Decontaminated Salt Solution) Hold Tank, (2) Measure the Cs-137 concentration in the strip effluent before entering the Strip Effluent Hold Tank, (3) Verify proper operation of the solvent extraction system by verifying material balance within the process (The DSS Hold Tank Cs-137 concentration will be very low and the Cs-137 concentration in the Strip Effluent Hold Tank will be fifteen times higher than the Cs-137 concentration in the Feed Tank.) Sodium iodide monitors are used to measure the Cs-137 concentration in the piping before the DSS Hold tank, while GM monitors are used for Cs-137 measurements before the Strip Effluent Hold Tank. Tungsten shields were designed using Monte Carlo calculations and fabricated to reduce the process background radiation at the detector positions. These monitors were calibrated with NIST traceable standards that were specially made to be the same as the piping being monitored. Since this gamma ray monitoring system is unique, specially designed software was written and acceptance tested by Savannah River National Laboratory personnel. The software is a LabView-based application that serves as a unified

  2. MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT (MCU) GAMMA MONITORS SYSTEM FINAL REPORT

    International Nuclear Information System (INIS)

    Casella, V

    2005-01-01

    The Department of Energy (DOE) selected Caustic-Side Solvent Extraction (CSSX) as the preferred technology for the removal of radioactive cesium from High-Level Waste (HLW) at the Savannah River Site (SRS). Before the full-scale Salt Waste Processing Facility (SWPF) becomes operational, the Closure Business Unit (CBU) plans to process a portion of dissolved saltcake waste through a Modular CSSX Unit (MCU). This work was derived from Technical Task Request SP-TTR-2004-00013, ''Gamma Monitor for MCU''. The deliverables for this task are the hardware and software for the gamma monitors and a report summarizing the testing and acceptance of this equipment for use in the MCU. Gamma-ray monitors are required to: (1) Measure the Cs-137 concentration in the decontaminated salt solution before entering the DSS (Decontaminated Salt Solution) Hold Tank, (2) Measure the Cs-137 concentration in the strip effluent before entering the Strip Effluent Hold Tank, (3) Verify proper operation of the solvent extraction system by verifying material balance within the process (The DSS Hold Tank Cs-137 concentration will be very low and the Cs-137 concentration in the Strip Effluent Hold Tank will be fifteen times higher than the Cs-137 concentration in the Feed Tank.) Sodium iodide monitors are used to measure the Cs-137 concentration in the piping before the DSS Hold tank, while GM monitors are used for Cs-137 measurements before the Strip Effluent Hold Tank. Tungsten shields were designed using Monte Carlo calculations and fabricated to reduce the process background radiation at the detector positions. These monitors were calibrated with NIST traceable standards that were specially made to be the same as the piping being monitored. Since this gamma ray monitoring system is unique, specially designed software was written and acceptance tested by Savannah River National Laboratory personnel. The software is a LabView-based application that serves as a unified interface for controlling

  3. Modeling the Kelvin polarization force actuation of Micro- and Nanomechanical systems

    DEFF Research Database (Denmark)

    Schmid, Silvan; Hierold, C.; Boisen, Anja

    2010-01-01

    Polarization forces have become of high interest in micro- and nanomechanical systems. In this paper, an analytical model for a transduction scheme based on the Kelvin polarization force is presented. A dielectric beam is actuated by placing it over the gap of two coplanar electrodes. Finite...

  4. Production of low-density poly (4-methyl-1-pentene) foam via phase inversion from binary solvent/nonsovent systems

    Energy Technology Data Exchange (ETDEWEB)

    Simandl, R.F.; Robinson, D.N.; Bolinger, W.L.; Davis, W.E.

    1991-11-01

    Phase inversion from durene/naphthalene, durene/tmpdo, and durene/hexadecanol binary solvent/nonsolvent systems produced well interconnected, radiographically homogeneous, open-celled poly (4- methyl-1-pentene) or pmp foams. These foams ranged in density from 5 to 50 mg/cm{sup 2}. Foam homogeneity and casting efficiency were dependent on casting scheme, durene quality, solvent-to-nonsolvent ratio, and quench temperature. Foam density tracked linearly with dissolved-polymer content. Homogeneous, ultralow-density (5 to 6 mg/cm{sup 3}) foams were produced by using a 49/51 durene/naphthalene solvent eutectic. Foam hardness or firmness tracked somewhat linearly with foam density. Foams with densities above 20 mg/cm{sup 3} were too fragile to handle without damage.

  5. System Development from Organic Solvents to Ionic Liquids for Synthesiz-ing Ascorbyl Esters with Conjugated Linoleic Acids

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Schultz, Lise; Guo, Zheng

    2012-01-01

    The aim of this paper is to screen suitable reaction systems for the modification of antioxidants through enzy-matic synthesis. Enzymatic esterification of ascorbic acid with conjugated linoleic acid (CLA) was investigated as a mod-el. Four organic solvents and five different enzymes were evaluat...

  6. Vapour–Liquid Equilibria in the Polymer + Solvent System Containing Lower Concentrations of Solute at Normal or Reduced Pressures

    Czech Academy of Sciences Publication Activity Database

    Pavlíček, Jan; Bogdanić, Grozdana; Wichterle, Ivan

    2013-01-01

    Roč. 358, 25 NOV (2013), s. 301-303 ISSN 0378-3812 Institutional support: RVO:67985858 Keywords : vapour–liquid equilibrium * experimental data * polymer-solvent system Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.241, year: 2013

  7. Influence of an intermolecular charge-transfer state on excited-state relaxation dynamics: solvent effect on the methylnaphthalene-oxygen system and its significance for singlet oxygen production.

    Science.gov (United States)

    Jensen, Poul-Gudmund; Arnbjerg, Jacob; Tolbod, Lars Poulsen; Toftegaard, Rasmus; Ogilby, Peter R

    2009-09-17

    The extent to which an intermolecular charge-transfer (CT) state can influence excited-state relaxation dynamics is examined for the system wherein 1-methylnaphthalene (MN) interacts with molecular oxygen. The MN-O2 system is ideally suited for such a study because excited states can be independently accessed by (i) irradiation into the discrete MN-O2 CT absorption band, (ii) direct irradiation of MN, and (iii) the photosensitized production of triplet state MN. Changing the solvent in which the MN-O2 system is dissolved influences the MN-dependent photoinduced production of singlet oxygen, O2(a1Delta(g)), which, in turn, yields information about fundamental concepts of state mixing. Results of experiments conducted in the polar solvent acetonitrile differ substantially from those obtained from the nonpolar solvent cyclohexane. The data reflect differences in the energy and behavior of the solvent-equilibrated MN-O2 CT state, CT(SE), and the extent to which this state couples to other states of the MN-O2 system. In particular, the data are consistent with a model where both the MN triplet state and the MN-O2 CT(SE) state are immediate precursors of O2(a1Delta(g)). Although the work reported herein is of direct and practical significance for the wide variety of systems in which O2(a1Delta(g)) can be produced upon irradiation, it also serves as an accessible model for a study of general issues pertinent to state mixing and the solvent-dependent dynamics of CT-mediated excited-state relaxation.

  8. Sorption mechanism of solvent vapors to coals; Sekitan eno yobai joki no shuchaku kiko no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, K.; Takanohashi, T.; Iino, M. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    With an objective to clarify the interactions between micropore structure of coal and solvent reagents, a sorption experiment was carried out under solvent saturated vapor pressure. Low-volatile bituminous coal, Pocahontas No. 3 coal, has the aromatic ring structure developed, and makes solvent more difficult to diffuse into coal, hence sorption amount is small. Methanol has permeated since its polarity is high. High-volatile bituminous coal, Illinois No. 6 coal, makes solvent penetrate easily, and the sorption amount was large with both of aromatic and polar solvents. Since brown coal, Beulah Zap coal, contains a large amount of oxygen, and hydrogen bonding is predominant, sorption amount of cyclohexane and benzene having no polarity is small. Methanol diffuses while releasing hydrogen bond due to its polarity, and its sorption amount is large. A double sorption model is available, which expresses the whole sorption amount as a sum of physical sorption amount and amount of permeation into coal. This model was applied when it explained successfully the sorption behavior of the solvents relative to coals, excepting some of the systems. However, also observed were such abnormal behavior as sorption impediment due to interactions between coal surface and solvents, and permeation impediment due to hydroxyl groups inside the coals. 1 ref., 10 figs., 2 tabs.

  9. Ionization and thermodynamic constants of 6-methylquinoline by potentiometry in aqueous and mixed organic-water solvent systems

    International Nuclear Information System (INIS)

    Hafiz, A; Indhar, B.; Khanzada, A.W.K.

    2000-01-01

    The ionization constant pKa and Gibbs's free energy DG of 6-methylquinoline are determined in aqueous solution at different temperatures and in three mixed organic-water solvent systems at 25 deg. C. It is observed that dissociation constant of 6-methylquinoline in aqueous system decreases with the increase of temperature. The curve is a parabolic. It is noted that pKa values of this compound are higher than those of quinoline and 8-methylquinoline. In case of mixed organic-water solvent systems, the influence of these solvents on the ionization equilibria of NH/sub 2/ group has been observed. The pK M/A and pK T/A values versus percent composition decrease gradually with increase in percent of organic solvents The curve of the pK/sub a/ versus percent composition is a distorted parabola. The data have been obtained potentiometrically by titrating 6-methylquinoline solutions with HCl. The values of dissociation constant were obtained from these data by a computer program written in GW-BASIC. From pKa values Gibbs's free energies DG for the respective pKa values have also been calculated. (author)

  10. In vitro dissolution of curium oxide using a phagolysosomal simulant solvent system

    International Nuclear Information System (INIS)

    Helfinstine, S.Y.; Guilmette, R.A.; Schlapper, G.A.

    1992-01-01

    Detailed study of actinide oxide behavior in alveolar macrophages (AM) in vitro is limited because of the short life span of these cells in culture. We created an in vitro dissolution system that could mimic the acidic phagolysosomal environment for the actinide and be maintained for an indefinite period so that dissolution of more insoluble materials could be measured. The dissolution system for this investigation, consisting of nine different solutions of HCl and the chelating agent diethylenetriamine pentaacetate (DTPA) in distilled water, is called the phagolysosomal simulant solvent (PSS). In this system, both the pH and the amount of DTPA were varied. We could observe the effect of altering pH within a range of 4.0-6.0 (similar to that of the phagolysosome) and the effect of the molar ratio of DTPA to curium at 1000: 1, 100;1, or 10:1. We chose curium sesquioxide ( 244 Cm 2 O 3 ) to validate the PSS for actinide dissolution versus that occurring in AM in vitro because it dissolves significantly in less than 1 week. The polydisperse 244 Cm 2 O 3 aerosol was generated, collected on filters, resuspended, and added to the PSS solutions and to cultured canine AM. By comparing dissolution in the two systems directly, we hoped to arrive at an optimum PSS for future dissolution studies. PSS and cell culture samples were taken daily for 7 days after exposure and tested for the solubilized curium. The amount of soluble material was determined by ultracentrifugation to separate the insoluble CM 2 O 3 from the soluble curium in the PSS solutions and filtration for the cell-containing material. After separating the soluble and insoluble fractions, the samples were analyzed using alpha liquid scintillation counting. Time-dependent dissolution measurements from the PSS/AM showed that the CM 2 O 3 dissolution was similar for both the PSS solutions and the cultured AM. 13 refs., 4 tabs

  11. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Overview and Architectural Tenets

    Science.gov (United States)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence and Information Systems (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions: 1) Command and control and mission management for the Suomi National Polar Partnership (S-NPP) mission today, expanding this support to the JPSS-1 satellite and the Polar Free Flyer mission in 2017 2) Data acquisition via a Polar Receptor Network (PRN) for S-NPP, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the Department of Defense (DoD) 3) Data routing over a global fiber Wide Area Network (WAN) for S-NPP, JPSS-1, Polar Free Flyer, GCOM-W1, POES, DMSP, Coriolis/WindSat, the NASA Space Communications and Navigation (SCaN, which includes several Earth Observing System [EOS] missions), MetOp for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the National Science Foundation (NSF) 4) Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 The CGS architecture will receive a technology refresh in 2015 to satisfy several key

  12. Joint Polar Satellite System (JPSS) System Architecture: Suomi-NPP to the Future

    Science.gov (United States)

    Furgerson, J.; Layns, A.; Feeley, J. H.; Griffin, A.; Trumbower, G.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is acquiring the next-generation weather and environmental satellite system, named the Joint Polar Satellite System (JPSS). NOAA has overall responsibility for the system including funding and requirements while the National Aeronautics and Space Administration (NASA) serves as the acquisition and development agent. The Suomi National Polar-orbiting Partnership (S-NPP) satellite was launched on 28 October, 2011, and is a pathfinder for JPSS and provides continuity for the NASA Earth Observation System and the NOAA Polar-orbiting Operational Environmental Satellite (POES) system. S-NPP and the follow-on JPSS satellites will operate in the 1330 LTAN orbit. JPSS-1 is scheduled to launch in early 2017. NASA is developing the Common Ground System which will process JPSS data and has the flexibility to process data from other satellites. This poster will provide a top level status update of the program, as well as an overview of the JPSS system architecture. The space segment carries a suite of sensors that collect meteorological, oceanographic, and climatological observations of the earth and atmosphere. The system design allows centralized mission management and delivers high quality environmental products to military, civil and scientific users through a Command, Control, and Communication Segment (C3S). The data processing for S-NPP/JPSS is accomplished through an Interface Data Processing Segment (IDPS)/Field Terminal Segment (FTS) that processes S-NPP/JPSS satellite data to provide environmental data products to U.S. and international partners as well as remote terminal users throughout the world.

  13. A Monitoring system for the Copper Solvent Extraction-Electrowinning Process

    OpenAIRE

    Suontaka, Ville; Saloheimo, Kari; Marttila, Tom; Jämsä-Jounela, Sirkka-Liisa

    2003-01-01

    In this paper the current status of the modeling, simulation and control of the copper-leaching, solvent-extraction and electrowinning process (LX/SX/EW) is investigated. No implementations of advanced process control in the copper LX/SX/EW process have so far been reported. However, model-based control has been successfully applied to solvent extraction processes in the chemical industry, as well as to some other electrowinning processes. A prototype of a process monitoring application based...

  14. Rational Design of Molecular Gelator - Solvent Systems Guided by Solubility Parameters

    Science.gov (United States)

    Lan, Yaqi

    Self-assembled architectures, such as molecular gels, have attracted wide interest among chemists, physicists and engineers during the past decade. However, the mechanism behind self-assembly remains largely unknown and no capability exists to predict a priori whether a small molecule will gelate a specific solvent or not. The process of self-assembly, in molecular gels, is intricate and must balance parameters influencing solubility and those contrasting forces that govern epitaxial growth into axially symmetric elongated aggregates. Although the gelator-gelator interactions are of paramount importance in understanding gelation, the solvent-gelator specific (i.e., H-bonding) and nonspecific (dipole-dipole, dipole-induced and instantaneous dipole induced forces) intermolecular interactions are equally important. Solvent properties mediate the self-assembly of molecular gelators into their self-assembled fibrillar networks. Herein, solubility parameters of solvents, ranging from partition coefficients (logP), to Henry's law constants (HLC), to solvatochromic ET(30) parameters, to Kamlet-Taft parameters (beta, alpha and pi), to Hansen solubility parameters (deltap, deltad, deltah), etc., are correlated with the gelation ability of numerous classes of molecular gelators. Advanced solvent clustering techniques have led to the development of a priori tools that can identify the solvents that will be gelled and not gelled by molecular gelators. These tools will greatly aid in the development of novel gelators without solely relying on serendipitous discoveries.

  15. System of polarization phasometry of polycrystalline blood plasma networks in mammary gland pathology diagnostics

    Science.gov (United States)

    Zabolotna, Natalia I.; Oliinychenko, Bogdan P.; Radchenko, Kostiantyn O.; Krasnoshchoka, Anastasiia K.; Shcherba, Olga K.

    2015-09-01

    The polarizing phase meter system of polycrystalline networks of human blood plasma which is used for the mammary gland pathology diagnostics was proposed in this paper. Increasing the accuracy of the phase value determination was achieved using a combination of low coherent source of radiation and circularly polarized probing of biological object. Thus, high informativity of polarizing phase meter system for the diagnosis of breast pathology using the phase mapping of the human blood plasma films were determined, thereafter statistical, correlational, fractal structure analysis of the obtained phase maps was carried out and the quantitative criterias of the phase diagnostics and differentiation of the breast pathological conditions were determined too.

  16. Antigenic properties of the envelope of influenza virus rendered soluble by surfactant-solvent systems

    Science.gov (United States)

    Larin, N. M.; Gallimore, P. H.

    1971-01-01

    Dissociating chemical treatments employing surfactant-solvent systems were applied to purified influenza A and B viruses to obtain viral preparations possessing a significantly higher or lower haemagglutinating activity than the intact virus. All preparations, whether with high or low haemagglutinating activity, with the exception of envelope protein solubilized by Triton X-100, were significantly lacking in the ability to excite the formation of haemagglutination-inhibiting and virus-neutralizing antibodies in inoculated ferrets. In contrast to other treatments, Triton X-100 treatment of virus significantly enhanced the antigenicity of viral protein as judged by virus neutralization and haemagglutination inhibition tests. Yet the haemagglutinating activity of the envelope protein solubilized with Triton X-100 was about 1% that of the intact virus. Results suggest that the correlation assumed to exist between the haemagglutinating activity of influenza virus and its ability to excite the formation of humoral antibodies is coincidental. Another important point is that the specific antigenicity of viral protein may be lost or enhanced owing to effects, other than solubilization, by surface-active agents. PMID:5291750

  17. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Current Technical Performance Measures

    Science.gov (United States)

    Cochran, S.; Panas, M.; Jamilkowski, M. L.; Miller, S. W.

    2015-12-01

    ABSTRACT The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture is being upgraded to Block 2.0 in 2015 to "operationalize" S-NPP, leverage lessons learned to date in multi-mission support, take advantage of more reliable and efficient technologies, and satisfy new requirements and constraints in the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 49 Technical Performance Measures (TPMs) across 10 categories, such as data latency, operational availability and scalability. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 10 TPM categories listed above. We will provide updates on how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  18. Tri Band Dual Polarized Patch Antenna System For Next Generation Cellular Networks

    Directory of Open Access Journals (Sweden)

    Syed Daniyal Ali Shah

    2017-12-01

    Full Text Available In fifth generation networks much emphasis is given to reduce the handset and base station sizes while incorporating even more features for ubiquitous connectivity. Polarization diversity is one of the methods in which a single multi-polarized antenna brings the advantages of antenna diversity. The multiband handset antennas can be made dual-polarized for improved compensation of fading effects of propagation environment especially in terrestrial bands. This paper focuses on the outcomes of the development of a horizontal and vertical polarized patch antenna scheme that operates on 3 bands 900 MHz 1.8 GHz and 2.4 GHz. The antenna system is tested for gain directivity reflection loss polarization radiation pattern and other parameters. The results are published and found are found to satisfy the requirements of cellular and data communication networks in the specified bands.

  19. Separation of three polar compounds from Rheum tanguticum by high-speed countercurrent chromatography with an ethyl acetate/glacial acetic acid/water system.

    Science.gov (United States)

    Chen, Tao; Wang, Ping; Wang, Nana; Sun, Chongyang; Yang, Xue; Li, Hongmei; Zhou, Guoying; Li, Yulin

    2018-01-13

    The separation of polar compounds by high-speed countercurrent chromatography is still regarded as a challenge. In this study, an efficient strategy for the separation of three polar compounds from Rheum tanguticum has been successfully conducted by using high-speed countercurrent chromatography. X-5 macroporous resin chromatography was used for the fast enrichment of the target compounds. Then, the target fraction was directly introduced into high-speed countercurrent chromatography for separation using ethyl acetate/glacial acetic acid/water (100:1:100, v/v/v) as the solvent system. Consequently, three polar compounds including gallic acid, catechin, and gallic acid 4-O-β-d-(6'-O-galloyl) glucoside were obtained with purities higher than 98%. The results showed glacial acetic acid could be such an appropriate regulator for the ethyl acetate/water system. This study provides a reference for the separation of polar compounds from natural products by high-speed countercurrent chromatography. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Flexible, Polarization-Diverse UWB Antennas for Implantable Neural Recording Systems.

    Science.gov (United States)

    Bahrami, Hadi; Mirbozorgi, S Abdollah; Ameli, Reza; Rusch, Leslie A; Gosselin, Benoit

    2016-02-01

    Implanted antennas for implant-to-air data communications must be composed of material compatible with biological tissues. We design single and dual-polarization antennas for wireless ultra-wideband neural recording systems using an inhomogeneous multi-layer model of the human head. Antennas made from flexible materials are more easily adapted to implantation; we investigate both flexible and rigid materials and examine performance trade-offs. The proposed antennas are designed to operate in a frequency range of 2-11 GHz (having S11 below -10 dB) covering both the 2.45 GHz (ISM) band and the 3.1-10.6 GHz UWB band. Measurements confirm simulation results showing flexible antennas have little performance degradation due to bending effects (in terms of impedance matching). Our miniaturized flexible antennas are 12 mm×12 mm and 10 mm×9 mm for single- and dual-polarizations, respectively. Finally, a comparison is made of four implantable antennas covering the 2-11 GHz range: 1) rigid, single polarization, 2) rigid, dual polarization, 3) flexible, single polarization and 4) flexible, dual polarization. In all cases a rigid antenna is used outside the body, with an appropriate polarization. Several advantages were confirmed for dual polarization antennas: 1) smaller size, 2) lower sensitivity to angular misalignments, and 3) higher fidelity.

  1. Extracción de Sustancias Hidrofóbicas de Andisols Repelentes al Agua del Oriente Antioqueño, con Solventes Polares

    OpenAIRE

    Jaramillo J. Daniel F.; Ortiz G Carlos; Peláez J. Carlos A.; Zapata H. Raúl Darío; Uribe B. Carmenza

    1997-01-01

    Muestras de Andisols repelentes al agua fueron sometidas a extracciones con mezclas de solventes orgánicos de diferentes polaridaddes; los lavados con mezclas de polaridades 5 y 6 removieron completamente la hidrofobicidad del suelo, sin importar el orden en el cual se hicieron. Del comportamiento del suelo frente a las secuencias de extracción se pudo concluir que los compuestos orgánicos del suelo se acumulan en él en forma de capas, las cuales pueden presentar alternancia de compuest...

  2. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Block 3.0 Communications Strategies

    Science.gov (United States)

    Miller, S. W.; Grant, K. D.; Ottinger, K.

    2015-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The JPSS program is the follow-on for both space and ground systems to the Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a globally distributed, multi-mission system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. In a highly successful international partnership between NOAA and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), the CGS currently provides data routing from McMurdo Station in Antarctica to the EUMETSAT processing center in Darmstadt, Germany. Continuing and building upon that partnership, NOAA and EUMETSAT are collaborating on the development of a new path forward for the 2020's. One approach being explored is a concept of operations where each organization shares satellite downlink resources with the other. This paper will describe that approach, as well as modeling results that demonstrate its feasibility and expected performance.

  3. FM-AM Conversion Induced by Polarization Mode Dispersion in Fiber Systems

    International Nuclear Information System (INIS)

    Xiao-Dong, Huang; Sheng-Zhi, Zhao; Jian-Jun, Wang; Ming-Zhong, Li; Dang-Peng, Xu; Hong-Huan, Lin; Rui, Zhang; Ying, Deng; Xiao-Min, Zhang

    2010-01-01

    The conversion of the frequency modulated pulse induced from frequency modulation (FM) to amplitude modulation (AM) by the polarization mode dispersion (PMD) is theoretically and experimentally investigated. When there is no polarizer at the output end of a fiber system, the amplitude modulation depth is stable by 8%. Random amplitude modulation is observed when a polarizer is placed at the output end of the fiber system. The observed minimum and maximum modulation depths in our experiment are 5% and 80%, respectively. Simulation results show that the amplitude modulation is stable by 4% induced mainly by group velocity dispersion (GVD) when there is no polarizer, and the amplitude modulation depth displays the random variation character induced by the GVD and PMD. Lastly, a new fiber system scheme is proposed and little amplitude modulation is observed at the top of the output pulse

  4. Diluent effects in solvent extraction. The Effects of Diluents in Solvent Extraction - a literature study

    International Nuclear Information System (INIS)

    Loefstroem-Engdahl, Elin; Aneheim, Emma; Ekberg, Christian; Foreman, Mark; Skarnemark, Gunnar

    2010-01-01

    The fact that the choice of organic diluent is important for a solvent extraction process goes without saying. Several factors, such as e.g. price, flash point, viscosity, polarity etc. each have their place in the planning of a solvent extraction system. This high number of variables makes the lack of compilations concerning diluent effects to an interesting topic. Often the interest for the research concerning a specific extraction system focuses on the extractant used and the complexes built up during an extraction. The diluents used are often classical ones, even if it has been shown that choice of diluent can affect extraction as well as separation in an extraction system. An attempt to point out important steps in the understanding of diluent effects in solvent extraction is here presented. This large field is, of course, not summarized in this article, but an attempt is made to present important steps in the understanding of diluents effects in solvent extraction. Trying to make the information concerning diluent effects and applications more easily accessible this review offers a selected summarizing of literature concerning diluents effects in solvent extraction. (authors)

  5. Deasphalting solvents

    International Nuclear Information System (INIS)

    Carrillo, J. A; Caceres, J; Vela, G; Bueno, H

    1996-01-01

    This paper describes how the deasphalted oil (DMO) or demetalized oil (DMO) quality (CCR, Ni, V end asphaltenes contents) changes with: DAO or DMO yield, solvent/feed ratio, type of vacuum reside (from paraffinic to blends with vis breaking bottoms), extraction temperature and extraction solvent (propane, propylene, n-butane and I butane)

  6. Phase equilibrium data for systems composed of oregano essential oil compounds and hydroalcoholic solvents at T = 298.2 K

    International Nuclear Information System (INIS)

    Capellini, Maria C.; Carvalho, Fernanda H.; Koshima, Cristina C.; Aracava, Keila K.; Gonçalves, Cintia B.; Rodrigues, Christianne E.C.

    2015-01-01

    Highlights: • (Liquid + liquid) equilibrium data for p-cymene, thymol, terpinen-4-ol, α-terpineol, ethanol and water were determined. • Complete second order models were fitted to the experimental data. • Distribution coefficients of thymol, terpinen-4-ol and α-terpineol in pure and mixed solute were evaluated. • Mass fractions of oxygenated compounds and water influenced the distribution coefficients of the essential oil components. • NRTL and UNIQUAC thermodynamic models satisfactorily describe the partition of components and solvent selectivity. - Abstract: The deterpenation process of essential oils consists of terpene removal and a consequent concentration of oxygenated compounds, which increases the sensorial quality, the aromatic potential and the oxidative stability of the oil. Deterpenation of oregano (Origanum vulgare L., Lamiaceae) essential oil, which has been used extensively as a popular medication and as an antimicrobial, antifungal, antimutagenic and a powerful antioxidant agent, can be performed by (liquid + liquid) extraction using hydroalcoholic solvents. This research presents (liquid + liquid) equilibrium data for model systems composed of p-cymene, thymol, terpinen-4-ol and α-terpineol, some of the main components of oregano essential oil, using hydrous ethanol as the solvent with the water mass fraction ranging from 0.28 to 0.41 at T = (298.2 ± 0.1) K. The results show that an increase in the hydration of the alcoholic solvent causes a negative influence on the values of the distribution coefficient for the three oxygenated compounds (thymol, terpinen-4-ol and α-terpineol), with an increase in solvent selectivity. An increase in the content of oxygenated compounds in the terpene-rich phase reduces their distribution coefficients and the selectivity values. In addition, binary interaction parameters were estimated correlating the experimental data using the NRTL and UNIQUAC thermodynamic models, and the global deviations were

  7. Novel Solvent System for Post Combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Alfred; Brown, Nathan

    2013-09-30

    The purpose of this project was to evaluate the performance of ION’s lead solvent and determine if ION’s solvent candidate could potentially meet DOE’s target of achieving 90% CO{sub 2} Capture from a 550 MWe Pulverized Coal Plant without resulting in an increase in COE greater than 35%. In this project, ION’s lead solvent demonstrated a 65% reduction in regeneration energy and a simultaneous 35% reduction in liquid to gas ratio (L/G) in comparison to aqMEA at 90% CO{sub 2} capture using actual flue gas at 0.2 MWe. Results have clearly demonstrated that the ION technology is in line with DOE performance expectations and has the potential to meet DOE’s performance targets in larger scale testing environments.

  8. Effect of Nd:YAG laser on the solvent evaporation of adhesive systems.

    Science.gov (United States)

    Batista, Graziela Ribeiro; Barcellos, Daphne Câmara; Rocha Gomes Torres, Carlos; Damião, Álvaro José; de Oliveira, Hueder Paulo Moisés; de Paiva Gonçalves, Sérgio Eduardo

    2015-01-01

    This study evaluated the influence of Nd:YAG laser on the evaporation degree (ED) of the solvent components in total-etch and self-etch adhesives. The ED of Gluma Comfort Bond (Heraeus-Kulzer) one-step self-etch adhesive, and Adper Single Bond 2 (3M ESPE), and XP Bond (Dentsply) total-etch adhesives was determined by weight alterations using two techniques: Control--spontaneous evaporation of the solvent for 5 min; Experimental--Nd:YAG laser irradiation for 1 min, followed by spontaneous evaporation for 4 min. The weight loss due to evaporation of the volatile components was measured at baseline and after 10 s, 20 s, 30 s, 40 s, 50 s, 60 s, 70 s, 80 s, 90 s, 100 s, 110 s, 2 min, 3 min, 4 min, and 5 min. Evaporation of solvent components significantly increased with Nd:YAG laser irradiation for all adhesives investigated. Gluma Comfort Bond showed significantly higher evaporation of solvent components than Adper Single Bond 2 and XP Bond. All the adhesives lost weight quickly during the first min of Nd:YAG laser irradiation. The application of Nd:YAG laser on adhesives before light curing had a significant effect on the evaporation of the solvent components, and the ED of Gluma Comfort Bond one-step self-etch adhesive was significantly higher than with Adper Single Bond 2 and XP Bond total-etch adhesives. The use of the Nd:YAG laser on the uncured adhesive technique can promote a greater ED of solvents, optimizing the longevity of the adhesive restorations.

  9. Spectrally efficient polarization multiplexed direct-detection OFDM system without frequency gap.

    Science.gov (United States)

    Wei, Chia-Chien; Zeng, Wei-Siang; Lin, Chun-Ting

    2016-01-25

    We experimentally demonstrate a spectrally efficient direct-detection orthogonal frequency-division multiplexing (DD-OFDM) system. In addition to polarization-division multiplexing, removing the frequency gap further improves the spectral efficiency of the OFDM system. The frequency gap between a reference carrier and OFDM subcarriers avoids subcarrier-to-subcarrier beating interference (SSBI) in traditional DD-OFDM systems. Without dynamic polarization control, the resulting interference after square-law direct detection in the proposed gap-less system is polarization-dependent and composed of linear inter-carrier interference (ICI) and nonlinear SSBI. Thus, this work proposes an iterative multiple-input multiple-output detection scheme to remove the mixed polarization-dependent interference. Compared to the previous scheme, which only removes ICI, the proposed scheme can further eliminate SSBI to achieve the improvement of ∼ 7 dB in signal-to-noise ratio. Without the need for polarization control, we successfully utilize 7-GHz bandwidth to transmit a 39.5-Gbps polarization multiplexed OFDM signal over 100 km.

  10. Computational Evaluation of Mixtures of Hydrofluorocarbons and Deep Eutectic Solvents for Absorption Refrigeration Systems.

    Science.gov (United States)

    Abedin, Rubaiyet; Heidarian, Sharareh; Flake, John C; Hung, Francisco R

    2017-10-24

    We used computational tools to evaluate three working fluid mixtures for single-effect absorption refrigeration systems, where the generator (desorber) is powered by waste or solar heat. The mixtures studied here resulted from combining a widely used hydrofluorocarbon (HFC) refrigerant, R134a, with three common deep eutectic solvents (DESs) formed by mixing choline chloride (hydrogen bond acceptor, HBA) with urea, glycerol, or ethylene glycol as the hydrogen bond donor (HBD) species. The COSMOtherm/TmoleX software package was used in combination with refrigerant data from NIST/REFPROP, to perform a thermodynamic evaluation of absorption refrigeration cycles using the proposed working fluid mixtures. Afterward, classical MD simulations of the three mixtures were performed to gain insight on these systems at the molecular level. Larger cycle efficiencies are obtained when R134a is combined with choline chloride and ethylene glycol, followed by the system where glycerol is the HBD, and finally that where the HBD is urea. MD simulations indicate that the local density profiles of all species exhibit very sharp variations in systems containing glycerol or urea; furthermore, the Henry's law constants of R134a in these two systems are larger than those observed for the HFC in choline chloride and ethylene glycol, indicating that R134a is more soluble in the latter DES. Interaction energies indicate that the R134a-R134a interactions are weaker in the system where ethylene glycol is the HBD, as compared to in the other DES. Radial distribution functions confirm that in all systems, the DES species do not form strong directional interactions (e.g., hydrogen bonds) with the R134a molecules. Relatively strong interactions are observed between the Cl anions and the hydrogen atoms in R134a; however, the atom-atom interactions between R134a and the cation and HBD species are weaker and do not play a significant role in the solvation of the refrigerant. In all systems, R134a has

  11. Degree of conversion of simplified contemporary adhesive systems as influenced by extended air-activated or passive solvent volatilization modes.

    Science.gov (United States)

    Borges, Boniek C D; Souza-Junior, Eduardo Jose; Brandt, William C; Loguercio, Alessandro D; Montes, Marcos A J R; Puppin-Rontani, Regina M; Sinhoreti, Mario Alexandre Coelho

    2012-01-01

    This study evaluated the effect of five methods of solvent volatilization on the degree of conversion (DC) of nine one-bottle adhesive systems using Fourier transform infrared/attenuated total reflectance (FTIR/ATR) analysis. Nine adhesives were tested: Adper Single Bond 2 (SB), Adper Easy One (EO), One Up Bond F Plus (OUP), One Coat Bond SL (OC), XP Bond (XP), Ambar (AM), Natural Bond (NB), GO, and Stae. The adhesive systems were applied to a zinc-selenide pellet and 1) cured without solvent volatilization, 2) left undisturbed for 10 seconds before curing, 3) left undisturbed for 60 seconds before curing, 4) air-dried with an air stream for 10 seconds before curing, and 5) air-dried with an air stream for 60 seconds before curing. FTIR/ATR spectra were obtained, and the DC was calculated by comparing the aliphatic bonds/reference peaks before and after light activation for 10 seconds (FlashLite 1401). The DC means of each material were analyzed by one-way analysis of variance and post hoc Tukey test (pStae adhesive systems was not affected by the five evaporation conditions. Air-drying for 60 seconds before curing yielded the highest DC for SB, EO, and OC. Extended solvent volatilization time (60 seconds) either with or without air-drying before curing provided the highest DC for AM, NB, XP, and OUP. Thus, the monomer conversion of adhesive systems was material dependent. In general, the 60-second passive or active air-drying modes to volatilize solvents before curing enhanced the degree of conversion for the one-bottle simplified adhesive systems.

  12. Phase equilibria for ternary liquid systems of (water + tetrahydrofuran + nonprotic aromatic solvent) at T = 298.2 K

    Energy Technology Data Exchange (ETDEWEB)

    Senol, Aynur [Istanbul University, Faculty of Engineering, Department of Chemical Engineering, 34320 Avcilar, Istanbul (Turkey)]. E-mail: senol@istanbul.edu.tr; Sevgili, Lutfullah [Istanbul University, Faculty of Engineering, Department of Chemical Engineering, 34320 Avcilar, Istanbul (Turkey)

    2006-05-15

    (Liquid + liquid) equilibrium (LLE) data of the solubility curves and tie-line end compositions are presented for mixtures of {l_brace}water (1) + tetrahydrofuran (2) + xylene or chlorobenzene or benzyl ether (3){r_brace} at T = 298.2 K and P = (101.3 {+-} 0.7) kPa. Among the studied C6 ring-containing aromatic solvents, xylene gives the largest distribution ratio and separation factors for extraction of tetrahydrofuran. A solvation energy relation (SERLAS) has been used to estimate the (liquid + liquid) equilibria of associated systems containing a nonprotic solvent. The tie-lines were also predicted using the UNIFAC-original model. The reliability of both models has been analyzed against the LLE data with respect to the distribution ratio and separation factor. SERLAS matches LLE data accurately, yielding a mean error of 9.9% for all the systems considered.

  13. The effect of solvents and hydrophilic additive on stable coating and controllable sirolimus release system for drug-eluting stent.

    Science.gov (United States)

    Kim, Seong Min; Park, Sung-Bin; Bedair, Tarek M; Kim, Man-Ho; Park, Bang Ju; Joung, Yoon Ki; Han, Dong Keun

    2017-09-01

    Various drug-eluting stents (DESs) have been developed to prevent restenosis after stent implantation. However, DES still needs to improve the drug-in-polymer coating stability and control of drug release for effective clinical treatment. In this study, the cobalt-chromium (CoCr) alloy surface was coated with biodegradable poly(D,L-lactide) (PDLLA) and sirolimus (SRL) mixed with hydrophilic Pluronic F127 additive by using ultrasonic spray coating system in order to achieve a stable coating surface and control SRL release. The degradation of PDLLA/SRL coating was studied under physiological solution. It was found that adding F127 reduced the degradation of PDLLA and improved the coating stability during 60days. The effects of organic solvent such as chloroform and tetrahydrofuran (THF) on the coating uniformity were also examined. It was revealed that THF produced a very smooth and uniform coating compared to chloroform. The patterns of in vitro drug release according to the type of organic solvent and hydrophilic additive proposed the possibility of controllable drug release design in DES. It was found that using F127 the drug release was sustained regardless of the organic solvent used. In addition, THF was able to get faster and controlled release profile when compared to chloroform. The structure of SRL molecules in different organic solvents was investigated using ultra-small angle neutron scattering. Furthermore, the structure of SRL is concentration-dependent in chloroform with tight nature under high concentration, but concentration-independent in THF. These results strongly demonstrated that coating stability and drug release patterns can be changed by physicochemical properties of various parameters such as organic solvents, additive, and coating strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Verification of global numerical weather forecasting systems in polar regions using TIGGE data

    OpenAIRE

    Jung, Thomas; Matsueda, Mio

    2016-01-01

    High-latitude climate change is expected to increase the demand for reliable weather and environmental forecasts in polar regions. In this study, a quantitative assessment of the skill of state-of-the-art global weather prediction systems in polar regions is given using data from the THORPEX Interactive Grand Global Ensemble (TIGGE) for the period 2006/2007 – 2012/2013. Forecast skill in the Arctic is comparable to that found in the North- ern Hemisphere ...

  15. Efficacy of two rotary retreatment systems in removing Gutta-percha and sealer during endodontic retreatment with or without solvent: A comparativein vitrostudy.

    Science.gov (United States)

    Bhagavaldas, Moushmi Chalakkarayil; Diwan, Abhinav; Kusumvalli, S; Pasha, Shiraz; Devale, Madhuri; Chava, Deepak Chowdary

    2017-01-01

    The aim of this in vitro study was to compare the efficacy of two retreatment rotary systems in the removal of Gutta-percha (GP) and sealer from the root canal walls with or without solvent. Forty-eight extracted human mandibular first premolars were prepared and obturated with GP and AH Plus sealer. Samples were then randomly divided into four groups. Group I was retreated with MtwoR rotary system without solvent, Group II was retreated with MtwoR rotary system with Endosolv R as the solvent, Group III with D-RaCe rotary system without solvent, and Group IV with D-RaCe rotary system and Endosolv R solvent. The cleanliness of canal walls was determined by stereomicroscope (×20) and AutoCAD software. Kruskal-Wallis test and Mann-Whitney U-test were used to compare the data. Results showed that none of the retreatment systems used in this study was able to completely remove the root canal filling material. D-RaCe with or without solvent showed significantly ( P > 0.05) less filling material at all levels compared to MtwoR with/without solvent. Within the limitation of the current study, D-RaCe rotary retreatment system is more effective in removing filling material from root canal walls when compared to MtwoR rotary retreatment system.

  16. Study of solvent-conjugated polymer interactions by polarized spectroscopy: MEH-PPV and Poly(9,9'-dioctylfluorene-2,7-diyl)

    International Nuclear Information System (INIS)

    Cossiello, Rafael F.; Susman, Mariano D.; Aramendia, Pedro F.; Atvars, Teresa D.Z.

    2010-01-01

    Absorption, emission, and anisotropy measurements were performed on poly-[2-methoxy-5(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and poly-(9,9'-dioctylfluorene-2,7-diyl) (PF) solutions of various solvents, and in thin films deposited from them. The good correlation of MEH-PPV absorption and emission energy with Hildebrandt's dispersive parameter indicate that dispersive forces regulate the effective extent of the luminophore. The excitation and the emission spectra of α and β chains can be distinguished in PF solutions using the steady-state anisotropy. PF films show greater memory effect from the solutions from which they were spun than MEH-PPV. Anisotropy of MEH-PPV is very low, both in solutions and in films reflecting efficient energy migration. Anisotropy of PF in solutions and films demonstrates great differences in energy transfer efficiency within the α and β phases, while there is no energy transfer between these chain conformations.

  17. Solvent substitution

    International Nuclear Information System (INIS)

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general ''Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated

  18. Solvent substitution

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated.

  19. X-ray studies of interfacial strontium-extractant complexes in a model solvent extraction system.

    Science.gov (United States)

    Bu, Wei; Mihaylov, Miroslav; Amoanu, Daniel; Lin, Binhua; Meron, Mati; Kuzmenko, Ivan; Soderholm, L; Schlossman, Mark L

    2014-10-30

    The interfacial behavior of a model solvent extraction liquid-liquid system, consisting of solutions of dihexadecyl phosphate (DHDP) in dodecane and SrCl2 in water, was studied to determine the structure of the interfacial ion-extractant complex and its variation with pH. Previous experiments on a similar extraction system with ErCl3 demonstrated that the kinetics of the extraction process could be greatly retarded by cooling through an adsorption transition, thus providing a method to immobilize ion-extractant complexes at the interface and further characterize them with X-ray interface-sensitive techniques. Here, we use this same method to study the SrCl2 system. X-ray reflectivity and fluorescence near total reflection measured the molecular-scale interfacial structure above and below the adsorption transition for a range of pH. Below the transition, DHDP molecules form a homogeneous monolayer at the interface with Sr(2+) coverage increasing from zero to saturation (one Sr(2+) per two DHDP) within a narrow range of pH. Experimental values of Sr(2+) interfacial density determined from fluorescence measurements are larger than those from reflectivity measurements. Although both techniques probe Sr(2+) bound to DHDP, only the fluorescence provides adequate sensitivity to Sr(2+) in the diffuse double layer. A Stern equation determines the Sr(2+) binding constant from the reflectivity measurements and the additional Sr(2+) measured in the diffuse double layer is accounted for by Gouy-Chapman theory. Above the transition temperature, a dilute concentration of DHDP-Sr complexes resides at the interface, even for temperatures far above the transition. A comparison is made of the structure of the interfacial ion-extractant complex for this divalent metal ion to recent results on trivalent Er(3+) metal ions, which provides insight into the role of metal ion charge on the structure of interfacial ion-extractant complexes, as well as implications for extraction of these two

  20. In-line polarization holographic memory system using PQ doped PMMA photopolymer (Conference Presentation)

    Science.gov (United States)

    Lin, Shiuan-Huei; Lin, Lun Kuang; Marinova, Vera; Hsu, Ken-Yuh

    2016-09-01

    Polarization hologram provides some unique features over classical phase or amplitude hologram. One of the most important features is that the photo-induced anisotropy in those materials leads to the polarization-dependent diffraction from the hologram. This property is useful for many applications, such as optical interconnection, holographic data storage and bio-imaging …etc. Recently, the 9, 10-phenanthrenequinone -doped poly(methyl methacrylate) (PQ/PMMA) photopolymer with cm thickness has attracted intense research interesting for the volume holographic applications because the experiments demonstrated that PQ/PMMA photopolymers possess not only high optical quality but also negligible shrinkage effect under light exposure [3-5]. Additionally, in terms of chemical formula, the PQ/PMMA consists of planar structures PQ molecules dispersed in amorphous PMMA polymer so that it is possible to be oriented if irradiated with polarized light, resulting in a photoinduced birefringence. This phenomenon makes it capable for permanent polarization holographic recording via photochemical reaction. Thus, combining these two properties may make PQ/PMMA photopolymer attractive for volume polarization holographic applications. In this paper, we particularly characterize polarization holographic recording in our materials for high-density data storage. Then, we will demonstrate a in-line polarization holographic memory system using PQ/PMMA photopolymer.

  1. Solvents level dipole moments.

    Science.gov (United States)

    Liang, Wenkel; Li, Xiaosong; Dalton, Larry R; Robinson, Bruce H; Eichinger, Bruce E

    2011-11-03

    The dipole moments of highly polar molecules measured in solution are usually smaller than the molecular dipole moments that are calculated with reaction field methods, whereas vacuum values are routinely calculated in good agreement with available vapor phase data. Whether from Onsager's theory (or variations thereof) or from quantum mechanical methods, the calculated molecular dipoles in solution are found to be larger than those measured. The reason, of course, is that experiments measure the net dipole moment of solute together with the polarized (perturbed) solvent "cloud" surrounding it. Here we show that the reaction field charges that are generated in the quantum mechanical self-consistent reaction field (SCRF) method give a good estimate of the net dipole moment of the solute molecule together with the moment arising from the reaction field charges. This net dipole is a better description of experimental data than the vacuum dipole moment and certainly better than the bare dipole moment of the polarized solute molecule.

  2. High-throughput determination of quantitative structure-property relationships using a resonant multisensor system: solvent resistance of bisphenol a polycarbonate copolymers.

    Science.gov (United States)

    Potyrailo, Radislav A; McCloskey, Patrick J; Wroczynski, Ronald J; Morris, William G

    2006-05-01

    Polymers are important materials for sensor, microfluidic, and other demanding applications. High-throughput screening methodology has been applied for the evaluation of the solvent resistance of a family of polycarbonate copolymers prepared from the reaction of bisphenol A (BPA), hydroquinone (HQ), and resorcinol (RS) in different solvents of practical importance, such as chloroform, tetrahydrofuran (THF), and methyl ethyl ketone (MEK). We employed a 24-channel acoustic-wave sensor system that provided previously unavailable capabilities for parallel evaluation of polymer solvent resistance. This high-throughput polymer evaluation approach assisted in construction of detailed solvent-resistance maps of polycarbonate copolymers and in determination of quantitative structure-property relationships. The best absolute solvent resistance of all studied copolymers was achieved in MEK, followed by chloroform and THF. A D-optimal mixture design was employed to explore the relationship between the copolymer compositions and their solvent resistance. The applied special cubic model for each solvent took into account the primary mixture terms such as BPA, HQ, and RS; binary interaction terms such as BPA-HQ, BPA-RS, and HQ-RS; and a ternary interaction term BPA-HQ-RS. A combination of the normal distribution of the model residuals and the very high values of adjusted R2 (0.97-0.99) demonstrated a good quality of the model. At a HQ concentration of 40 mol %, the solvent resistance was the highest for all tested solvents, and different concentrations of BPA (40 and 60 mol %) and RS (0 and 20 mol %) did not affect the solvent resistance. Without HQ, solvent resistance was decreasing with an increase of RS and decrease of BPA. Overall, with an increase of HQ concentration from 0 to 40 mol %, the solvent resistance of BPA-HQ-RS copolymers was improved by up to 3 times in THF, by 21 times in chloroform, and by 32 times in MEK.

  3. Fractionation of lemon essential oil by solvent extraction: Phase equilibrium for model systems at T = 298.2 K

    International Nuclear Information System (INIS)

    Koshima, Cristina C.; Capellini, Maria C.; Geremias, Ivana M.; Aracava, Keila K.; Gonçalves, Cintia B.; Rodrigues, Christianne E.C.

    2012-01-01

    Highlights: ► Deterpenation of lemon oil by solvent extraction using hydrous ethanol. ► Limonene, γ-terpinene, β-pinene, and citral were used to simulate the oil. ► Citral shows a higher distribution coefficient than the hydrocarbons. ► Terpenic hydrocarbons exhibit very similar phase separation behaviour. ► NRTL and UNIQUAC models provided a good description of the phase equilibrium. - Abstract: The fractioning of lemon essential oil can be performed by liquid–liquid extraction using hydrous ethanol as a solvent. A quaternary mixture composed of limonene, γ-terpinene, β-pinene, and citral was used to simulate lemon essential oil. In this paper, we present (liquid + liquid) equilibrium data that were experimentally determined for systems containing essential oil compounds, ethanol, and water at T = 298.2 K. The experimental data were correlated using the NRTL and UNIQUAC models, and the mean deviations between calculated and experimental data were less than 0.0053 in all systems, indicating the accuracy of these molecular models in describing our systems. The results show that as the water content in the solvent phase increased, the values of the distribution coefficients decreased, regardless of the type of compound studied. However, the oxygenated compound always showed the highest distribution coefficient among the components of the essential oil, thus making deterpenation of the lemon essential oil a feasible process.

  4. Ethyl acetate-n-butanol gradient solvent system for high-speed countercurrent chromatography to screen bioactive substances in okra.

    Science.gov (United States)

    Ying, Hao; Jiang, Heyuan; Liu, Huan; Chen, Fangjuan; Du, Qizhen

    2014-09-12

    High-speed countercurrent chromatographic separation (HSCCC) possesses the property of zero-loss of sample, which is very useful for the screening of bioactive components. In the present study, the ethyl acetate-n-butanol gradient HSCCC solvent system composed of n-hexane-ethyl acetate-n-butanol-water was investigated for the screening of bioactive substances. To screen the antiproliferative compounds in okra extract, we used the stationary phase ethyl acetate-n-butanol-water (1:1:10) as the stationary phase, and eluted the antiproliferative components by 6-steps of gradient using mobile phases n-hexane-ethyl acetate (1:2), n-hexane-ethyl acetate (1:4), n-hexane-ethyl acetate (0:4), n-butanol-ethyl acetate (1:4) n-butanol-ethyl acetate (1:2), n-butanol-ethyl acetate (2:2), and n-butanol-ethyl acetate (2:1). The fractions collected from HSCCC separation with the gradient solvent system were assayed for antiproliferative activity against cancer cells. Bioactive components were identified: a major anti-cancer compound, 4'-hydroxy phenethyl trans-ferulate, with middle activity, and a minor anti-cancer compound, carolignan, with strong activity. The result shows that the gradient solvent system is potential for the screening of bioactive compounds from natural products. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Bidirectional fiber-IVLLC and fiber-wireless convergence system with two orthogonally polarized optical sidebands.

    Science.gov (United States)

    Lu, Hai-Han; Wu, Hsiao-Wen; Li, Chung-Yi; Ho, Chun-Ming; Yang, Zih-Yi; Cheng, Ming-Te; Lu, Chang-Kai

    2017-05-01

    A bidirectional fiber-invisible laser light communication (IVLLC) and fiber-wireless convergence system with two orthogonally polarized optical sidebands for hybrid cable television (CATV)/millimeter-wave (MMW)/baseband (BB) signal transmission is proposed and experimentally demonstrated. Two optical sidebands generated by a 60-GHz MMW signal are orthogonally polarized and separated into different polarizations. These orthogonally polarized optical sidebands are delivered over a 40-km single-mode fiber (SMF) transport to effectually reduce the fiber dispersion induced by a 40-km SMF transmission and the distortion caused by the parallel polarized optical sidebands. To the best of our knowledge, this work is the first to adopt two orthogonally polarized optical sidebands in a bidirectional fiber-IVLLC and fiber-wireless convergence system to reduce fiber dispersion and distortion effectually. Good carrier-to-noise ratio, composite second order, composite triple beat, and bit error rate (BER) are achieved for downlink transmission at a 40-km SMF operation and a 100-m free-space optical (FSO) link/3-m RF wireless transmission. For up-link transmission, good BER performance is acquired over a 40-km SMF transport and a 100-m FSO link. The approach presented in this work signifies the advancements in the convergence of SMF-based backbone and optical/RF wireless-based feeder.

  6. Extracción de Sustancias Hidrofóbicas de Andisols Repelentes al Agua del Oriente Antioqueño, con Solventes Polares

    Directory of Open Access Journals (Sweden)

    Jaramillo J. Daniel F.

    1997-12-01

    Full Text Available Muestras de Andisols repelentes al agua fueron sometidas a extracciones con mezclas de solventes orgánicos de diferentes polaridaddes; los lavados con mezclas de polaridades 5 y 6 removieron completamente la hidrofobicidad del suelo, sin importar el orden en el cual se hicieron. Del comportamiento del suelo frente a las secuencias de extracción se pudo concluir que los compuestos orgánicos del suelo se acumulan en él en forma de capas, las cuales pueden presentar alternancia de compuestos hidrofóbicos con compuestos hidrofílicos; además, los compuestos más hidrofóbicos son removidos por las mezclas de solventes de mayor grado de polaridad. Se plantea la existencia de dos tipos básicos de hidrofobicidad en los compuestos orgánicos del suelo: una "hidrofobicidad posible ": la que se manifiesta cuando la arena desarrolla repelencia al agua al recibir los extractos y que detecta la presencia de compuestos hidrofóbicos en ellos. La otra, la "hidrofobicidad activa": la que se produce en suelos humectables cuando reciben extractos hidrofóbicos y muestra, no sólo la presencia de los compuestos hidrofóbicos en ellos, sino también que se están presentando las condiciones para que ellos interactúen con los componentes originales del suelo y se desarrolle la hidrofobicidad en el mismo. Extractos obtenidos por lavado de raíces finas y acículas recién caídas de Pinus patula, con mezclas de polaridades 5 y 6, no indugeron repelencia apreciable al agua, ni en suelos humectables ni en arena lavada, cuando se aplicaron en concentraciones menores de 0.4%, lo que sugiere que estos materiales deben tener algún grado de transformación para que le impriman al suelo la hidrofobicidad; además, las raíces tienen una mayor hidrofobicidad potencial que las acículas.

  7. Realisation and Optimization the System of Ridge WaveguidePolarizer by Genetic Algorithms for Telecommunication Satellite Antennas

    OpenAIRE

    BOUSALAH1, FAYZA; NOUR EDDINE2; BOUKLI HACENE

    2013-01-01

    The ridged waveguide polarizer is considered as the better way to get right-hand and left-hand circular polarization in the antennas of telecommunications satellites. In fact, it is a system of three ports used to feed a square waveguide antenna in order to achieve high purity in the right-hand and left-hand circular polarization. Obtaining a great purity of polarization results by the addition from screw from adaptation and blades from correction. A solution with this pr...

  8. Spin-orbital dynamics in a system of polar molecules

    Science.gov (United States)

    Syzranov, Sergey V.; Wall, Michael L.; Gurarie, Victor; Rey, Ana Maria

    2014-11-01

    Spin-orbit coupling in solids normally originates from the electron motion in the electric field of the crystal. It is key to understanding a variety of spin-transport and topological phenomena, such as Majorana fermions and recently discovered topological insulators. Implementing and controlling spin-orbit coupling is thus highly desirable and could open untapped opportunities for the exploration of unique quantum physics. Here we show that dipole-dipole interactions can produce an effective spin-orbit coupling in two-dimensional ultracold polar molecule gases. This spin-orbit coupling generates chiral excitations with a non-trivial Berry phase 2π. These excitations, which we call chirons, resemble low-energy quasiparticles in bilayer graphene and emerge regardless of the quantum statistics and for arbitrary ratios of kinetic to interaction energies. Chirons manifest themselves in the dynamics of the spin density profile, spin currents and spin coherences, even for molecules pinned in a deep optical lattice and should be observable in current experiments.

  9. A High-Resolution Continuous Flow Analysis System for Polar Ice Cores

    DEFF Research Database (Denmark)

    Dallmayr, Remi; Goto-Azuma, Kumiko; Kjær, Helle Astrid

    2016-01-01

    signals of abrupt climate change in deep polar ice cores. To test its performance, we used the system to analyze different climate intervals in ice drilled at the NEEM (North Greenland Eemian Ice Drilling) site, Greenland. The quality of our continuous measurement of stable water isotopes has been...... of Polar Research (NIPR) in Tokyo. The system allows the continuous analysis of stable water isotopes and electrical conductivity, as well as the collection of discrete samples from both inner and outer parts of the core. This CFA system was designed to have sufficiently high temporal resolution to detect...

  10. Managed and Supported Missions in the Joint Polar Satellite System (JPSS) Common Ground System (CGS)

    Science.gov (United States)

    Jamilkowski, M. L.; Grant, K. D.; Miller, S. W.; Cochran, S.

    2015-12-01

    NOAA & NASA are acquiring the next-generation civilian operational weather satellite: Joint Polar Satellite System (JPSS). Replacing the p.m. orbit & ground system (GS) of POES satellites, JPSS sensors will collect weather, ocean & climate data. JPSS's Common Ground System (CGS), made up of C3 & IDP parts and developed by Raytheon, now flies the Suomi National Polar-orbiting Partnership (S-NPP) satellite, transfers data between ground facilities, processes them into Environmental Data Records for NOAA's weather centers and evolves to support JPSS-1 in 2017. CGS processed S-NPP data creates many TBs/day across >2 dozen environmental data products (EDPs), doubling after JPSS launch. But CGS goes beyond this by providing data routing to other missions: GCOM-W1, Coriolis/Windsat, EOS, NSF's McMurdo Station, Defense Meteorological Satellite Program, and POES & MetOp satellites. Each system orbits 14 times/day, downlinking data 1-2 times/orbit at up to 100s of MBs/sec, to support the creation of 10s of TBs of data/day across 100s of EDPs. CGS's flexible, multimission capabilities offer major chances for cost reduction & improved information integration across the missions. CGS gives a vital flexible-expandable-virtualized modern GS architecture. Using 5 global ground stations to receive S-NPP & JPSS-1 data, CGS links with high-bandwidth commercial fiber to rapidly move data to the IDP for EDP creation & delivery and leverages these networks to provide added support to more missions. CGS data latency will be < 80 minutes. JPSS CGS is a mature, tested solution for support to operational weather forecasting for civil, military and international partners and climate research. It features a flexible design handling order-of-magnitude increases in data over legacy systems and meets tough science accuracy needs. The Raytheon-built CGS gives the full GS capability, from design & development through operations & sustainment, facilitating future evolution to support more missions.

  11. Sensing system with USB camera for experiments of polarization of the light

    Directory of Open Access Journals (Sweden)

    José Luís Fabris

    2017-08-01

    Full Text Available This work shows a sensor system for educational experiments, composed of a USB camera and a software developed and provided by the authors. The sensor system is suitable for the purpose of studying phenomena related to the polarization of the light. The system was tested in experiments performed to verify the Malus’ Law and the spectral efficiency of polarizers. Details of the experimental setup are shown. The camera captures the light in the visible spectral range from a LED that illuminates a white screen after passing through two polarizers. The software uses the image captured by the camera to provide the relative intensity of the light. With the use of two rotating H-sheet linear polarizers, a linear fitting of the Malus’s Law to the transmitted light intensity data resulted in correlation coefficients R larger than 0.9988. The efficiency of the polarizers in different visible spectral regions was verified with the aid of color filters added to the experimental setup. The system was also used to evaluate the intensity time stability of a white LED.

  12. Space-Time Block Coding with Beamforming for Triple-Polarized Uniform Linear Array Systems

    Directory of Open Access Journals (Sweden)

    Xin Su

    2015-01-01

    Full Text Available Generally, space-time block coding (STBC and beamforming (BF gains cannot be obtained simultaneously because the former performs well under a low correlated MIMO channel, and the latter works efficiently in an environment with high correlation. However, array systems with antenna polarization have the potential to achieve gains with both techniques simultaneously because the cross-branch links in the system are usually uncorrelated. The cross-array links, on the other hand, can be highly correlated by setting the array element space equal to, or less than, a half-wavelength. This paper proposes a scheme to explore STBC and BF simultaneously via a triple-polarized uniform linear array (TPULA system. The proposed scheme was verified based on the Long Term Evolution-Advanced (LTE-A specification under a polarized MIMO (PMIMO channel model, and therewith, the simulation results confirmed the validity of our proposed scheme.

  13. Polarized Uniform Linear Array System: Beam Radiation Pattern, Beamforming Diversity Order, and Channel Capacity

    Directory of Open Access Journals (Sweden)

    Xin Su

    2015-01-01

    Full Text Available There have been many studies regarding antenna polarization; however, there have been few publications on the analysis of the channel capacity for polarized antenna systems using the beamforming technique. According to Chung et al., the channel capacity is determined by the density of scatterers and the transmission power, which is obtained based on the assumption that scatterers are uniformly distributed on a 3D spherical scattering model. However, it contradicts the practical scenario, where scatterers may not be uniformly distributed under outdoor environment, and lacks the consideration of fading channel gain. In this study, we derive the channel capacity of polarized uniform linear array (PULA systems using the beamforming technique in a practical scattering environment. The results show that, for PULA systems, the channel capacity, which is boosted by beamforming diversity, can be determined using the channel gain, beam radiation pattern, and beamforming diversity order (BDO, where the BDO is dependent on the antenna characteristics and array configurations.

  14. Rotatable high-resolution ARPES system for tunable linear-polarization geometry.

    Science.gov (United States)

    Iwasawa, H; Shimada, K; Schwier, E F; Zheng, M; Kojima, Y; Hayashi, H; Jiang, J; Higashiguchi, M; Aiura, Y; Namatame, H; Taniguchi, M

    2017-07-01

    A rotatable high-resolution angle-resolved photoemission spectroscopy (ARPES) system has been developed to utilize tunable linear-polarization geometries on the linear undulator beamline (BL-1) at Hiroshima Synchrotron Radiation Center. By rotating the whole ARPES measurement system, the photoelectron detection plane can be continuously changed from parallel to normal against the electric field vector of linearly polarized undulator radiation. This polarization tunability enables us to identify the symmetry of the initial electronic states with respect to the mirror planes, and to selectively observe the electronic states based on the dipole selection rule in the photoemission process. Specifications of the rotatable high-resolution ARPES system are described, as well as its capabilities with some representative experimental results.

  15. Solvent Oligomerization during SEI Formation on Model Systems for Li-Ion Battery Anodes

    Energy Technology Data Exchange (ETDEWEB)

    Tavassol, Hadi; Buthker, Joseph W.; Ferguson, Glen A.; Curtiss, Larry A.; Gewirth, Andrew A.

    2012-01-01

    We report the results of electrochemical quartz crystal microbalance (EQCM), and matrix assisted laser desorption ionization (MALDI) time of flight (TOF) mass spectrometry (MS) measurements along with detailed calculations examining the formation of the solid electrolyte interphase (SEI) on battery anode electrodes. EQCM analysis of Au and Sn surfaces in propylene carbonate (PC) and a 1:1 mixture of ethylene carbonate and dimethyl carbonate (EC:DMC) showed major irreversible mass uptake by the electrode surface especially during the first five cycles between +2 and 0.1 V vs. Li/Li+. MALDI-MS on emersed electrodes showed that long chain (m/z = 3000 on PC) oligomerized species were present on Au surfaces in PC and EC:DMC solvents, where oligomerized species formed in PC solutions showed higher mass ratios. The repeating units of the oligomer, visible as oscillations in the MALDI-MS, vary with the type of the solvent and electrode material. Sn surfaces initially showed formation of long chain polymers, but this material was not in evidence on electrode emersed after five cycles, which likely arises as a consequence of the catalytic involvement of Sn in decomposition of initially formed species. Density functional theory (DFT) calculations of cyclic solvent molecules suggested a radical initiated polymerization mechanism and predict oligomer subunits consistent with the experimental results.

  16. Some regularities in formation and solvent extraction of complexes in metal-salicylic acid or its derivative- organic base systems

    International Nuclear Information System (INIS)

    Alimarin, I.P.; Fadeeva, V.I.; Tikhomirova, T.I.

    1982-01-01

    The influence of concentrations of the reagents, pH and solvent on the conditions for the formation and extraction of Sc, Ti, Zr, Hf, Th complexes has been examined in salicylic acid (H 2 Sal)-heterocyclic amine systems. The extraction chemism and factors, which affect the reactions between the metal ions and the ligands, are discussed. It has been shown that Zr, Hf, Ti form species of ion associate type, Sc and Th form different-ligand complexes under conditions for interphase equilibrium in a Me-H 2 Sal-heterocyclic amine system

  17. Design and Performance Analysis of 2D OCDMA System with Polarization States

    Science.gov (United States)

    Bharti, Manisha; Sharma, Ajay K.; Kumar, Manoj

    2016-12-01

    This paper focuses on increasing the number of subscribers in optical code-division multiple access (OCDMA) system by using one of the features of light signal that it can be propagated in two polarization states. The performance of two-dimensional (2D) OCDMA system based on wavelength-time coding scheme by adding polarization state is investigated at varying data rates from 1 GHz to 6 GHz and for various modulation formats. It is reported that with increase in data rate of system, the performance of the system deteriorates due to polarization mode dispersion. Non-return to-zero (RZ), return to-zero (RZ), carrier suppressed return-to-zero (CSRZ) and differential phase shift keying (DPSK) modulation formats are simulated for a single user system with polarization. Investigations reveal that differential phase shift keying (DPSK) modulation format suits best to the proposed system and exhibit the potential to improve the flexibility of system for more number of users. The investigations are reported in terms of Q-factor, BER, received optical power (ROP) and eye diagrams.

  18. A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films

    Energy Technology Data Exchange (ETDEWEB)

    Noel, Nakita K.; Habisreutinger, Severin N.; Wenger, Bernard; Klug, Matthew T.; Hörantner, Maximilian T.; Johnston, Michael B.; Nicholas, Robin J.; Moore, David T.; Snaith, Henry J.

    2017-01-01

    Perovskite-based photovoltaics have, in recent years, become poised to revolutionise the solar industry. While there have been many approaches taken to the deposition of this material, one-step spin-coating remains the simplest and most widely used method in research laboratories. Although spin-coating is not recognised as the ideal manufacturing methodology, it represents a starting point from which more scalable deposition methods, such as slot-dye coating or ink-jet printing can be developed. Here, we introduce a new, low-boiling point, low viscosity solvent system that enables rapid, room temperature crystallisation of methylammonium lead triiodide perovskite films, without the use of strongly coordinating aprotic solvents. Through the use of this solvent, we produce dense, pinhole free films with uniform coverage, high specularity, and enhanced optoelectronic properties. We fabricate devices and achieve stabilised power conversion efficiencies of over 18% for films which have been annealed at 100 degrees C, and over 17% for films which have been dried under vacuum and have undergone no thermal processing. This deposition technique allows uniform coating on substrate areas of up to 125 cm2, showing tremendous promise for the fabrication of large area, high efficiency, solution processed devices, and represents a critical step towards industrial upscaling and large area printing of perovskite solar cells.

  19. Mid-infrared imaging system based on polarizers for detecting marine targets covered in sun glint.

    Science.gov (United States)

    Zhao, Huijie; Ji, Zheng; Zhang, Ying; Sun, Xiaofeng; Song, Pengfei; Li, Yansong

    2016-07-25

    When a marine target is detected by a mid-infrared detector on a sunny day, the target's information could be lost if it is located in sun glint. Therefore, we developed a new mid-infrared imaging system capable of effectively detecting marine targets in regions of strong sun glint, which is presented in this report. Firstly, the theory of the analysis methods employed in different detection scenarios is briefly described to establish whether one or two polarizers should be utilized to suppress further the p-polarized component of sun glint. Secondly, for the case in which a second polarizer is employed, the formula for the optimum angle between the two polarizers is given. Then, the results of our field experiment are presented, demonstrating that the developed system can significantly reduce sun glint and can enhance the contrast of target images. A commonly used image processing algorithm proved capable of identifying a target in sun glint, confirming the effectiveness of our proposed mid-infrared polarization imaging system.

  20. An Improved Apparatus for Vapour-Liquid Equilibria Measurement in Polymer + Solvent Systems at Higher Temperatures: a Study of the Water + Poly(ethylene glycol) System.

    Czech Academy of Sciences Publication Activity Database

    Pavlíček, Jan; Bogdanić, Grozdana; Wichterle, Ivan

    2017-01-01

    Roč. 454, 25 DEC (2017), s. 111-115 ISSN 0378-3812 R&D Projects: GA ČR GA15-19542S Institutional support: RVO:67985858 Keywords : correlation * experimental data * polymer-solvent system Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.473, year: 2016

  1. A simple polarized-based diffused reflectance colour imaging system

    African Journals Online (AJOL)

    The system uses a commercial web camera and a halogen lamp that makes it relatively simple and less expensive for diagnostic research and teaching. The system has been used to demonstrate ... Predicting the area of the sample using a method of counting dark pixels is presented. This method avoids complex and more ...

  2. Solvent substitutes

    International Nuclear Information System (INIS)

    Evanoff, S.P.

    1995-01-01

    The environmental and industrial hygiene regulations promulgated since 1980, most notably the Superfund Amendments and Reauthorization Act (SARA), the Hazardous and Solid Waste Amendments to the Resources Conservation and Recovery Act (RCRA), and the Clean Air Act Amendments of 1990, have brought about an increased emphasis on user exposure, hazardous waste generation, and air emissions. As a result, industry is performing a fundamental reassessment of cleaning solvents, processes, and procedures. The more progressive organizations have made their goal the elimination of solvents that may pose significant potential human health and environmental hazards. This chapter discusses solvent cleaning in metal-finishing, metal-manufacturing, and industrial maintenance applications; precision cleaning; and electronics manufacturing. Nonmetallic cleaning, adhesives, coatings, inks, and aerosols also will be addressed, but in a more cursory manner

  3. Green solvents and technologies for oil extraction from oilseeds

    OpenAIRE

    Kumar, S. P. Jeevan; Prasad, S. Rajendra; Banerjee, Rintu; Agarwal, Dinesh K.; Kulkarni, Kalyani S.; Ramesh, K. V.

    2017-01-01

    Oilseeds are crucial for the nutritional security of the global population. The conventional technology used for oil extraction from oilseeds is by solvent extraction. In solvent extraction, n-hexane is used as a solvent for its attributes such as simple recovery, non-polar nature, low latent heat of vaporization (330?kJ/kg) and high selectivity to solvents. However, usage of hexane as a solvent has lead to several repercussions such as air pollution, toxicity and harmfulness that prompted to...

  4. Design of a polarization-controlled launcher for the ECH system on J-TEXT

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.H.; Xia, D.H., E-mail: xiadh@hust.edu.cn; Sun, D.L.; Wang, Z.J.; Xiao, J.X.; Zeng, Z.; Cui, F.T.; Yu, Z.X.; Zhuang, G.

    2016-11-15

    Highlights: • A polarization-controlled launcher is designed for the ECH system on J-TEXT. • The coordinate transformation method is used for the polarizer design of the launcher. • O-mode purity of no less than 97% for all possible injection can be achieved with this launcher. - Abstract: Based on main components including gyrotrons, magnets, auxiliary power supplies, transmission parts, etc. donated by the Culham Science Center, an electron cyclotron heating (ECH) system with four 60 GHz/200 kW/0.5 s subunits is being developed on J-TEXT for effective plasma heating and MHD studies. A launcher has been designed to inject the beam of the first subunit into plasma with the desired polarization and direction. The launcher mainly consists of a polarizer, an ellipsoidal mirror, a steerable flat mirror and a gate valve. When the beam arrives at the launcher, it is firstly diffracted by the polarizer and then focused by the ellipsoidal mirror. Finally, the beam is delivered to plasma by the steerable mirror. Owing to the limited space of the port for beam injection, the scanning range in both the toroidal and poloidal direction is about −8° to 8°. With optimization design, the available mode purity for all possible injection is no less than 97% and the beam radius at the center of plasma is about 38 mm, making it possible for high efficient coupling and localized absorption of the wave power.

  5. Photodegradation of bifenthrin and deltamethrin-effect of copper amendment and solvent system.

    Science.gov (United States)

    Tariq, Saadia Rashid; Ahmed, Dildar; Farooq, Amna; Rasheed, Sonia; Mansoor, Mubarkah

    2017-02-01

    The photodegradation of bifenthrin and deltamethrin was studied in the presence of Cu salts and two different solvents, methanol and acetonitrile. Results of the study showed that in the absence of any metal salt, the two pesticides degraded more rapidly in acetonitrile than in methanol. After 24 h of UV irradiation, 70% of deltamethrin had degraded in acetonitrile, while only 41% bifenthrin degraded in this solvent. In methanol, bifenthrin degraded at a much enhanced rate than in acetonitrile while the rate of degradation of deltamethrin was comparable to that in acetonitrile. The photodegradation was further enhanced by the addition of copper to the solution of bifenthrin and deltamethrin in acetonitrile. The rate of photodegradation of deltamethrin increased from 2.4 × 10 -2 to 3.5 × 10 -2  h -1 in acetonitrile and 2.5 × 10 -2 to 3.4 × 10 -2  h -1 in methanol after the addition of copper. Similarly, the rate of photodegradation of bifenthrin was increased from 5.0 × 10 -3 to 9.0 × 10 -3  h -1 in acetonitrile and 7.0 × 10 -3 to 9.05 × 10 -3  h -1 in methanol with the addition of copper. Thus, copper has the potential to enhance the photodegradation of bifenthrin and deltamethrin in both the solvents.

  6. Diversity and Multiplexing Technologies by 3D Beams in Polarized Massive MIMO Systems

    Directory of Open Access Journals (Sweden)

    Xin Su

    2016-01-01

    Full Text Available Massive multiple input, multiple output (M-MIMO technologies have been proposed to scale up data rates reaching gigabits per second in the forthcoming 5G mobile communications systems. However, one of crucial constraints is a dimension in space to implement the M-MIMO. To cope with the space constraint and to utilize more flexibility in 3D beamforming (3D-BF, we propose antenna polarization in M-MIMO systems. In this paper, we design a polarized M-MIMO (PM-MIMO system associated with 3D-BF applications, where the system architectures for diversity and multiplexing technologies achieved by polarized 3D beams are provided. Different from the conventional 3D-BF achieved by planar M-MIMO technology to control the downtilted beam in a vertical domain, the proposed PM-MIMO realizes 3D-BF via the linear combination of polarized beams. In addition, an effective array selection scheme is proposed to optimize the beam-width and to enhance system performance by the exploration of diversity and multiplexing gains; and a blind channel estimation (BCE approach is also proposed to avoid pilot contamination in PM-MIMO. Based on the Long Term Evolution-Advanced (LTE-A specification, the simulation results finally confirm the validity of our proposals.

  7. Polarization and charge-transfer effects in aqueous solution via ab initio QM/MM simulations.

    Science.gov (United States)

    Mo, Yirong; Gao, Jiali

    2006-02-23

    Combined ab initio quantum mechanical and molecular mechanical (QM/MM) simulations coupled with the block-localized wave function energy decomposition (BLW-ED) method have been conducted to study the solvation of two prototypical ionic systems, acetate and methylammonium ions in aqueous solution. Calculations reveal that the electronic polarization between the targeted solutes and water is the primary many-body effect, whereas the charge-transfer term only makes a small fraction of the total solute-solvent interaction energy. In particular, the polarization effect is dominated by the solvent (water) polarization.

  8. Optimization and modeling of extraction equilibria of the type 2 ternary systems containing (water + isovaleric acid + solvent)

    International Nuclear Information System (INIS)

    Senol, Aynur

    2015-01-01

    Highlights: • LLE of water + isovaleric acid + solvent (type 2 system) were determined. • Several optimization factors were proposed for prediction of optimum extraction. • A derivative variation method was executed to identify the optimum point. • SERLAS model involving six descriptors and UNIFAC model were performed. • The observed optimum conditions were predicted through six-parameter two models. - Abstract: The extraction equilibria of the type 2 ternary systems containing (water + isovaleric acid + solvent) have been investigated at T = (298.2 ± 0.1) K and P = (101.3 ± 0.7) kPa. Aromatic solvents xylene, chlorobenzene and benzyl ether give the largest distribution ratios and separation factors, as compared to 1-phenyl ethanol, cyclohexanol and 1-decanol. The distribution data have been subjected to formulation of an optimization structure for an effective acid separation. The optimization approach uses a derivative variation method to efficiently identify the optimization range through analyzing the first order derivatives of the optimized quantity and the non-linear deviation profile of the derivative value. Some aspects of selection of an appropriate criterion for designing optimum extraction are discussed. Modeling efforts based on the LSER (linear solvation energy relation) principles have shown considerable success. The proposed SERLAS model using six physical descriptors of the components has provided relatively reliable fits with a mean relative error of 10.1% and satisfies have established limiting behavior of the physical event. As well, the tie-lines of relevant systems have been predicted by the UNIFAC-original model.

  9. Radar systems for a polar mission, volume 1

    Science.gov (United States)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Komen, M. J.; Mccauley, J.; Mcmillan, S. B.; Parashar, S. K.

    1977-01-01

    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources is examined. Synthetic aperture radars form a class of side-looking airborne radar, often referred to as coherent SLAR, which permits fine-resolution radar imagery to be generated at long operating ranges by the use of signal processing techniques. By orienting the antenna beam orthogonal to the motion of the spacecraft carrying the radar, a one-dimensional imagery ray system is converted into a two-dimensional or terrain imaging system. The radar's ability to distinguish - or resolve - closely spaced transverse objects is determined by the length of the pulse. The transmitter components receivers, and the mixer are described in details.

  10. Coupled Atom-Polar Molecule Condensate Systems: A Theoretical Adventure

    Science.gov (United States)

    2014-07-14

    Bose gases 6 VI. Landau-Ginzburg Perspective of Finite-Temperature Phase Diagrams of a Two-Component Fermi-Bose Mixture 8 VII. Collective Excitations and...state, while the latter is a tightly bound state. It is then, in principle, di¢ cult to locate a single excited state, capable of a large spatial...chain of systems. In this project, we aim to generalize the idea of chainwise stimulated Raman adiabatic passage (STI- RAP ) [Kuznetsova et al., Phys

  11. Automated system to acquire fluorescence, polarization and anisotropy maps within liquid flows.

    Science.gov (United States)

    Quintella, Cristina M; Gonçalves, Cristiane C; Pepe, Iuri; Lima, Angelo M V; Musse, Ana Paula S

    2002-01-01

    Maps of polarization and anisotropy can be helpful for flow analysis systems (FIA, CFA, etc.) with reactions dependent on the intermolecular alignment as well as for dispersion control. Maps can be acquired manually, but when a scan over a sample area is required, the acquisition becomes tiresome and has low precision. The paper describes an automatic flexible system for high-precision sample positioning with closed loop self control, remote data acquisition and storage controlled by a BASIC program. The system was developed to acquire maps up to 850 mm(2) of the sample (liquid flows, solids, interfaces, etc.), with up to 100 mum(2) precision. To evaluate the equipment, performance is presented as the scan of a thin liquid film of monoethylene glycol (MEG) flowing on borosilicate. Tests were performed with and without surfactantes at submicellar concentrations: two concentrations of sodium dodecyl sulphate (SDS) and one of polyethylene oxide (PEO). For pure MEG, the intermolecular alignment initially increased, then decreased. When SDS was added, both polarization and anisotropy only increased progressively with the flow. This might be explained by the surfactant decrease of interfacial interaction. When PEO was added, both polarization and anisotropy decreased pronouncedly over the entire map, which might be due to macromolecular aggregates within the bulk generating misaligned molecular domains. The system presented as sample positioning repeatability of 0.1% and a high polarization reproducibility (error margin < 6 in 1000).

  12. Moving systems of polar dimeric capsules out of thermal equilibrium by light irradiation.

    Science.gov (United States)

    Díaz-Moscoso, Alejandro; Arroyave, Frank A; Ballester, Pablo

    2016-02-18

    Heterodimeric capsules self-assembled from tetraurea calix[4]pyrrole and tetraurea calix[4]arene provide unique molecular containers for the organised inclusion of small polar molecules. By inserting stimuli-responsive groups (azobenzene) in the heterocapsule structure, we are able to modify the equilibrium state of the system or the exchange between different host-guest assemblies in a reversible manner.

  13. A method to evaluate residual phase error for polar formatted synthetic aperture radar systems

    Science.gov (United States)

    Musgrove, Cameron; Naething, Richard

    2013-05-01

    Synthetic aperture radar systems that use the polar format algorithm are subject to a focused scene size limit inherent to the polar format algorithm. The classic focused scene size limit is determined from the dominant residual range phase error term. Given the many sources of phase error in a synthetic aperture radar, a system designer is interested in how much phase error results from the assumptions made with the polar format algorithm. Autofocus algorithms have limits to the amount and type of phase error that can be corrected. Current methods correct only one or a few terms of the residual phase error. A system designer needs to be able to evaluate the contribution of the residual or uncorrected phase error terms to determine the new focused scene size limit. This paper describes a method to estimate the complete residual phase error, not just one or a few of the dominant residual terms. This method is demonstrated with polar format image formation, but is equally applicable to other image formation algorithms. A benefit for the system designer is that additional correction terms can be added or deleted from the analysis as necessary to evaluate the resulting effect upon image quality.

  14. Quantum entropy and polarization measurements of the two-photon system

    Science.gov (United States)

    Alexanian, Moorad; Mkrtchian, Vanik E.

    2018-02-01

    We consider the bipartite state of a two-photon polarization system and obtain the exact analytical expression for the von Neumann entropy in the particular case of a five-parameter polarization density matrix. We investigate and graphically illustrate the dependence of the entropy on these five parameters, in particular, the existence of exotic, transition from exotic to nonexotic, and nonexotic states, where the quantum conditional entropy is negative, both positive and negative, and positive, respectively. We study the "cooling" or "heating" effect that follows from the reduced density of photon 2 when a measurement is performed on photon 1.

  15. High-automated system of film data mathematical processing for polarized deuteron experiments

    International Nuclear Information System (INIS)

    Balgansuren, Ya.; Buzdavina, N.A.; Glagolev, V.V.

    1986-01-01

    A specialized software system which allowed to reduce essentially the time of experimental data analysis has been developed in order to provide timely processing of film information in polarized deuteron experiments. With its help preliminary data on deuteron polarization has been obtained in a few months after experiment start up, and the total data processing (15 thousand events) has been carried out in less than in a year from the chamber irradiation time. High rate of data processing has been achieved due to complex automation of all stages of processing

  16. Dynamical model of coherent circularly polarized optical pulse interactions with two-level quantum systems

    International Nuclear Information System (INIS)

    Slavcheva, G.; Hess, O.

    2005-01-01

    We propose and develop a method for theoretical description of circularly (elliptically) polarized optical pulse resonant coherent interactions with two-level atoms. The method is based on the time-evolution equations of a two-level quantum system in the presence of a time-dependent dipole perturbation for electric dipole transitions between states with total angular-momentum projection difference (ΔJ z =±1) excited by a circularly polarized electromagnetic field [Feynman et al., J. Appl. Phys. 28, 49 (1957)]. The adopted real-vector representation approach allows for coupling with the vectorial Maxwell's equations for the optical wave propagation and thus the resulting Maxwell pseudospin equations can be numerically solved in the time domain without any approximations. The model permits a more exact study of the ultrafast coherent pulse propagation effects taking into account the vector nature of the electromagnetic field and hence the polarization state of the optical excitation. We demonstrate self-induced transparency effects and formation of polarized solitons. The model represents a qualitative extension of the well-known optical Maxwell-Bloch equations valid for linearly polarized light and a tool for studying coherent quantum control mechanisms

  17. Polarization Monitoring of the Lens System JVAS B0218+357

    Directory of Open Access Journals (Sweden)

    Andrew Biggs

    2017-10-01

    Full Text Available Monitoring of the lens system JVAS B0218+357 with the Fermi Gamma-ray Space Telescope measured a different time delay to that derived from radio observations. We have re-analysed three months of archival Very Large Array data to produce variability curves with an average sampling of one epoch per day in total flux, polarized flux and polarization position angle (PPA at 15, 8.4 and 5 GHz. The variability is particularly strong in polarized flux. Dense sampling and improved subtraction of the Einstein ring has allowed us to produce superior variability curves and a preliminary analysis has resulted in a time delay (11.5 days which agrees well with the γ -ray value. Both images of 0218+357 are subject to strong Faraday rotation and depolarization as a result of the radio waves passing through the interstellar medium of the spiral lens galaxy. Our data reveal frequency-dependent variations in the PPA that are different in each image and which must therefore result from variable Faraday rotation in the lens galaxy on timescales of a few days. Our analysis has revealed systematic errors in the polarization position angle measurements that strongly correlate with hour angle. Although we have been able to correct for these, we caution that all VLA polarization observations are potentially affected.

  18. NOAA's Joint Polar Satellite System's Proving Ground and Risk Reduction Program - Bringing New Capabilities to Operations!

    Science.gov (United States)

    Sjoberg, B.

    2015-12-01

    This presentation will focus on the NOAA Joint Polar Satellite System (JPSS) Program's Proving Ground and Risk Reduction (PGRR) initiative and how it has prepared NOAA users to effectively utilize new polar-orbiting capabilities. The PGRR Program was established in 2012, following the launch of the Suomi National Polar Partnership (SNPP) satellite. Two sets of PGRR Projects have been established grouped together in thirteen different initiatives. Details about how these projects have been continually tailored through the years to meet user requirements, will be highlighted. The presenter will focus on how the success of the first set of PGRR projects have been used to evaluate a follow-on set of projects and focus on exactly what the JPSS user community needs to meet their mission requirements. Details on the Dec 2014 PGRR Call-for-Proposals and the projects selected for funding will be discussed.

  19. Continuous flow solvent extraction system for the determination of trace amounts of uranium in nuclear waste reprocessing solutions

    International Nuclear Information System (INIS)

    Atallah, R.H.; Christian, G.D.

    1988-01-01

    A system is described for the continuous flow solvent extraction of uranium using isobutyl methyl ketone (IBMK) in the presence of a salting-out solution. This is used as a pre-step to spectrophotometric determination with 2-(5-bromo-2-pyridylazo)-5-(diethylamino)phenol (Br-PADAP) in methanol. The method utilises an on-line solvent extraction unit, interfaced to a spectrophotometric flow injection analysis (FIA) detection system. The extraction unit can be operated in two ways. In the first, 0.6 ml of a sample was loaded (injected) and then the separated organic phase was mixed directly with the reagent. This permits the handling of 20 samples per hour and a limit of determination of 0.2 p.p.m. of uranium. In the second method, a continuously pumped sample was brought into contact with a fixed volume of the organic phase, which was recirculated in a closed loop. Recirculation results in the extraction of more analyte with the same volume of the organic phase present in the loop. For a sample loading volume of 3 ml, an enrichment factor of 4 was obtained. The determination of uranium at the 50 p.p.b. level can be achieved using this automated liquid - liquid extraction system. Lower concentrations of uranium can also be measured by further increasing the sample volume. This method was tested on a synthetic nuclear waste solution. (author)

  20. Comparison of solvent/derivatization agent systems for determination of extractable toluene diisocyanate from flexible polyurethane foam.

    Science.gov (United States)

    Vangronsveld, Erik; Berckmans, Steven; Spence, Mark

    2013-06-01

    Flexible polyurethane foam (FPF) is produced from the reaction of toluene diisocyanate (TDI) and polyols. Limited and conflicting results exist in the literature concerning the presence of unreacted TDI remaining in FPF as determined by various solvent extraction and analysis techniques. This study reports investigations into the effect of several solvent/derivatization agent combinations on extractable TDI results and suggests a preferred method. The suggested preferred method employs a syringe-based multiple extraction of foam samples with a toluene solution of 1-(2-methoxyphenyl)-piperazine. Extracts are analyzed by liquid chromatography using an ion trap mass spectrometry detection technique. Detection limits of the method are ~10ng TDI g(-1) foam (10 ppb, w/w) for each TDI isomer (i.e. 2,4-TDI and 2,6-TDI). The method was evaluated by a three-laboratory interlaboratory comparison using two representative foam samples. The total extractable TDI results found by the three labs for the two foams were in good agreement (relative standard deviation of the mean of 30-40%). The method has utility as a basis for comparing FPFs, but the interpretation of extractable TDI results using any solvent as the true value for 'free' or 'unreacted' TDI in the foam is problematic, as demonstrated by the difference in the extracted TDI results from the different extraction systems studied. Further, a consideration of polyurethane foam chemistry raises the possibility that extractable TDI may result from decomposition of parts of the foam structure (e.g. dimers, biurets, and allophanates) by the extraction system.

  1. Effect of different gutta-percha solvents on the microtensile bond strength of various adhesive systems to pulp chamber dentin.

    Science.gov (United States)

    Demırbuga, Sezer; Pala, Kanşad; Topçuoğlu, Hüseyin Sinan; Çayabatmaz, Muhammed; Topçuoğlu, Gamze; Uçar, Ebru Nur

    2017-03-01

    The aim of this study was to evaluate the effect of different endodontic solvents on the microtensile bond strength (μTBS) of various adhesives to pulp chamber dentin. A total of 120 human third molars were selected. Canals were prepared with the ProTaper Universal system and obturated. The access cavities were then restored with resin composite. After 1 week, a retreatment procedure was applied as follows: control, no solvent was applied to the pulp chamber and experimental groups, three different solvents (chloroform, eucalyptol, and orange oil) were applied to the pulp chamber for 2 min. The canal filling was removed and calcium hydroxide (Ca[OH] 2 ) was placed into the canals. After 7 days, the Ca(OH) 2 was removed from the canals and the canals were re-obturated. Teeth were then divided into three subgroups according to the adhesive used. The samples were restored with a nanohybrid resin composite using three different adhesives: Clearfil SE Bond (CSE), Adper Easy One (AEO), and Single Bond 2 (SB2). The samples were aged with thermocycling. Teeth were sectioned, and a total of 20 dentin sticks were obtained for each subgroup. μTBS testing was then performed. The debonded surfaces were evaluated using scanning electron microscopy (SEM) analysis. Data were analyzed using two-way ANOVA and Tukey's post hoc tests. Chloroform showed statistically lower mean μTBS values (14 ± 7.2 MPa) than control group did (19.2 ± 6.1 MPa) (p  0.05). Chloroform showed significantly lower bond strength for all adhesives (p adhesive systems significantly (p > 0.05), eucalyptol reduced the μTBS values of all the groups, but the results were only statistically significant for SB2 (p  0.05). According to the SEM analysis of the debonded surfaces, adhesive failures were the most common type in all the groups, followed by mixed failures. While chloroform reduced the mean bond strength of the adhesive resins, orange oil did not affect the bond strength of the

  2. Studies on polar high-speed counter-current chromatographic systems in separation of amaranthine-type betacyanins from Celosia species.

    Science.gov (United States)

    Spórna-Kucab, Aneta; Milo, Angelika; Kumorkiewicz, Agnieszka; Wybraniec, Sławomir

    2018-01-15

    Betacyanins, natural plant pigments exhibiting antioxidant and chemopreventive properties, were extracted from Celosia spicata (Thouars) Spreng. inflorescences and separated by high-speed counter-current chromatography (HSCCC) in two polar solvent systems composed of: TBME - 1-BuOH - ACN - H 2 O (0.7% HFBA, 2:2:1:5, v/v/v/v) (system I) and EtOH - ACN - 1-PrOH - (NH 4 ) 2 SO 4satd.soln - H 2 O (0.5:0.5:0.5:1.2:1, v/v/v/v/v) (system II). The systems were used in the head-to-tail (system I) and tail-to-head (system II) mode. The flow rate of the mobile phase was 2.0 ml/min and the column rotation speed was 860 rpm. The retention of the stationary phase was 73.5% (system I) and 80.0% (system II). For the identification of separated betacyanins in the crude extract as well as in the HSCCC fractions, LC-DAD-ESI-MS/MS analyses were performed. Depending on the target compounds, each of the systems exhibit meaningfully different selectivity and applicability. For the pairs of amaranthines (1/1') and betanins (2/2'), the best choice is the system II, but the acylated amaranthine pairs (3/3' and 4/4') can be resolved only in the ion-pair system I. For the indication of the most suitable solvent system for Celosia plumosa hort., Celosia cristata L. and Celosia spicata (Thouars) Spreng. species, the profiles of betacyanins in different plant parts were studied. Copyright © 2017. Published by Elsevier B.V.

  3. Atomically abrupt silicon-germanium axial heterostructure nanowires synthesized in a solvent vapor growth system.

    Science.gov (United States)

    Geaney, Hugh; Mullane, Emma; Ramasse, Quentin M; Ryan, Kevin M

    2013-04-10

    The growth of Si/Ge axial heterostructure nanowires in high yield using a versatile wet chemical approach is reported. Heterostructure growth is achieved using the vapor zone of a high boiling point solvent as a reaction medium with an evaporated tin layer as the catalyst. The low solubility of Si and Ge within the Sn catalyst allows the formation of extremely abrupt heterojunctions of the order of just 1-2 atomic planes between the Si and Ge nanowire segments. The compositional abruptness was confirmed using aberration corrected scanning transmission electron microscopy and atomic level electron energy loss spectroscopy. Additional analysis focused on the role of crystallographic defects in determining interfacial abruptness and the preferential incorporation of metal catalyst atoms near twin defects in the nanowires.

  4. Synthesis of LiMnPO4 porous structures under mixed solvents system.

    Science.gov (United States)

    Pei, Zhenzhao; Zhang, Xia; Gao, Xiang

    2013-04-01

    Porous structure LiMnPO4 with pore size from 4 to 9 nm was successfully synthesized in mixed solvents. By changing ratios of glycerol to distilled water and stirring time, LiMnPO4 morphologies were adjusted. Shuttles with different sizes and porous structure of LiMnPO4 were formed in sequence. Ratio of glycerol to distilled water influences the solubility of LiMnPO4 and solutions viscosity. This factor and stirring time are both causes influencing the nucleation rate and diffusion rate of the initial formed particles of final products. Through adjusting these factors, chemicals with specific morphology can be obtained. The phase composition was investigated by X-ray diffraction (XRD), and the microstructure was verified by transmission electron microscopy (TEM). This synthetic method provides us a new idea to obtain new structure materials.

  5. Morphogenesis and Optoelectronic Properties of Supramolecular Assemblies of Chiral Perylene Diimides in a Binary Solvent System.

    Science.gov (United States)

    Shang, Xiaobo; Song, Inho; Ohtsu, Hiroyoshi; Tong, Jiaqi; Zhang, Haoke; Oh, Joon Hak

    2017-07-14

    Chiral supramolecular structures are attracting great attention due to their specific properties and high potential in chiral sensing and separation. Herein, supramolecular assembling behaviors of chiral perylene diimides have been systematically investigated in a mixed solution of tetrahydrofuran and water. They exhibit remarkably different morphologies and chiral aggregation behaviors depending on the mixing ratio of the solvents, i.e., the fraction of water. The morphogenesis and optoelectronic properties of chiral supramolecular structures have been thoroughly studied using a range of experimental and theoretical methods to investigate the morphological effects of chiral supramolecular assemblies on the electrical performances and photogenerated charge-carrier behaviors. In addition, chiral perylene diimides have been discriminated by combining vibrational circular dichroism with theoretical calculations, for the first time. The chiral supramolecular nanostructures developed herein strongly absorb visible spectral region and exhibit high photoresponsivity and detectivity, opening up new opportunities for practical applications in optoelectronics.

  6. Experimental demonstration of polar coded IM/DD optical OFDM for short reach system

    Science.gov (United States)

    Fang, Jiafei; Xiao, Shilin; Liu, Ling; Bi, Meihua; Zhang, Lu; Zhang, Yunhao; Hu, Weisheng

    2017-11-01

    In this paper, we propose a novel polar coded intensity modulation direct detection (IM/DD) optical orthogonal frequency division multiplexing (OFDM) system for short reach system. A method of evaluating the channel signal noise ratio (SNR) is proposed for soft-demodulation. The experimental results demonstrate that, compared to the conventional case, ∼9.5 dB net coding gain (NCG) at the bit error rate (BER) of 1E-3 can be achieved after 40-km standard single mode fiber (SSMF) transmission. Based on the experimental result, (512,256) polar code with low complexity and satisfactory BER performance meets the requirement of low latency in short reach system, which is a promising candidate for latency-stringent short reach optical system.

  7. Multiplexed polarization OTDR system with high DOP and ability of multi-event detection.

    Science.gov (United States)

    Wang, Xuefeng; Wang, Chaodong; Tang, Ming; Fu, Songnian; Shum, Perry

    2017-05-01

    A novel polarization optical time domain reflectometry (POTDR) with high degree of polarization is proposed for multi-event detection. By employing multiple 2×2 optical fiber couplers and fiber mirrors, an arbitrary number and customized length of sensing fiber can be multiplexed into the system without modification of the other components, e.g., the light source, photodetector, signal processing device, etc. More importantly, the signal-to-noise ratio of this system is significantly improved, and the temporal depolarization effect can be almost completely suppressed. Additionally, the system response time is considerably reduced by dispensing with data averaging, so that intrusion events such as touching and moving fiber can be detected instantaneously and precisely located. Experiments have been conducted that proved the capability of multi-event simultaneous detection and vibration frequency measurement. This system promises application potential in multi-zone perimeter security and physical field measurement.

  8. (Liquid + liquid) equilibrium data of (water + phosphoric acid + solvents) systems at T = (308.2 and 318.2) K

    International Nuclear Information System (INIS)

    Ghanadzadeh Gilani, H.; Ghanadzadeh Gilani, A.; Shekarsaraee, S.; Uslu, H.

    2012-01-01

    Highlights: ► Phase equilibria of the (water + PA + solvents) systems were investigated. ► Experimental LLE data were correlated with NRTL and UNIQUAC models. ► Distribution coefficients and separation factors were evaluated. - Abstract: Ternary equilibrium data for the mixtures of {water + phosphoric acid + organic solvent (cyclohexane, methylcyclohexane, and toluene)} were determined at T = (308.2 and 318.2) K and atmospheric pressure. Solubility data were determined by the cloud-point titration method. In order to obtain the tie-line data, the concentration of each phase was determined by acidimetric titration, the Karl–Fischer technique, and refractive index measurements. The experimental tie-line data were correlated using the UNIQUAC and NRTL models. The reliability of the experimental data was determined through the Othmer–Tobias and Hand plots. Distribution coefficients and separation factors were evaluated over the immiscibility regions. The Katritzky LSER model was applied to correlate distribution coefficients and separation factors in these ternary systems.

  9. Solvent extraction technology of 90Mo-sup(99m)Tc system: design and operational considerations

    International Nuclear Information System (INIS)

    Noronha, O.P.D.; Sewatkar, A.B.

    1983-01-01

    The design features of 99 Mo-sup(99m)Tc solvent extraction system have been reviewed. An improved semi-automated system has been improvised using the basic equipment of an indigenous unit along with other accessories, and with an added element of radiation protection to handle daily about 300-600 millicurie amounts of reactor-produced very low specific activity 99 Mo. The system has been used routinely for obtaining sup(99m)TcO 4 - - required for diagnostic purposes in nuclear medicine for the last twelve years. The performance characteristics of this unit with respect to yield and purity of 99 TcO 4 - - consistency of the process, the radiation dose to personnel and related health physics aspects have been evaluated. (author)

  10. Introducing a standard method for experimental determination of the solvent response in laser pump, x-ray probe time-resolved wide-angle x-ray scattering experiments on systems in solution

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Brandt van Driel, Tim; Kehres, Jan

    2013-01-01

    In time-resolved laser pump, X-ray probe wide-angle X-ray scattering experiments on systems in solution the structural response of the system is accompanied by a solvent response. The solvent response is caused by reorganization of the bulk solvent following the laser pump event, and in order...... response-the solvent term-experimentally when applying laser pump, X-ray probe time-resolved wide-angle X-ray scattering. The solvent term describes difference scattering arising from the structural response of the solvent to changes in the hydrodynamic parameters: pressure, temperature and density. We...... is demonstrated to exhibit first order behaviour with respect to the amount of energy deposited in the solution. We introduce a standardized method for recording solvent responses in laser pump, X-ray probe time-resolved X-ray wide-angle scattering experiments by using dye mediated solvent heating. Furthermore...

  11. Understanding the effects of electronic polarization and delocalization on charge-transport levels in oligoacene systems

    KAUST Repository

    Sutton, Christopher

    2017-06-13

    Electronic polarization and charge delocalization are important aspects that affect the charge-transport levels in organic materials. Here, using a quantum mechanical/ embedded-charge (QM/EC) approach based on a combination of the long-range corrected omega B97X-D exchange-correlation functional (QM) and charge model 5 (CM5) point-charge model (EC), we evaluate the vertical detachment energies and polarization energies of various sizes of crystalline and amorphous anionic oligoacene clusters. Our results indicate that QM/EC calculations yield vertical detachment energies and polarization energies that compare well with the experimental values obtained from ultraviolet photoemission spectroscopy measurements. In order to understand the effect of charge delocalization on the transport levels, we considered crystalline naphthalene systems with QM regions including one or five-molecules. The results for these systems show that the delocalization and polarization effects are additive; therefore, allowing for electron delocalization by increasing the size of the QM region leads to the additional stabilization of the transport levels. Published by AIP Publishing.

  12. Replacement of Hydrochlorofluorocarbon (HCFC) -225 Solvent for Cleaning and Verification Sampling of NASA Propulsion Oxygen Systems Hardware, Ground Support Equipment, and Associated Test Systems

    Science.gov (United States)

    Mitchell, Mark A.; Lowrey, Nikki M.

    2015-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon hydrochlorofluorocarbon-225 (HCFC-225) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of HCFC-225, a Class II ODS, was prohibited by the Clean Air Act. In 2012 through 2014, leveraging resources from both the NASA Rocket Propulsion Test Program and the Defense Logistics Agency - Aviation Hazardous Minimization and Green Products Branch, test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a replacement for HCFC-225 that is both an effective cleaner and safe for use with oxygen systems. Candidate solvents were selected and a test plan was developed following the guidelines of ASTM G127, Standard Guide for the Selection of Cleaning Agents for Oxygen Systems. Solvents were evaluated for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Two solvents were determined to be acceptable for cleaning oxygen systems and one was chosen for implementation at NASA's rocket propulsion test facilities. The test program and results are summarized. This project also demonstrated the benefits of cross-agency collaboration in a time of limited resources.

  13. Excited state charge transfer reaction in (mixed solvent+ electrolyte ...

    Indian Academy of Sciences (India)

    The reaction time constant in low polar mixtures, which becomes faster on addition of electrolyte, lengthens on increasing the mole fraction of the relatively less polar solvent component of the mixture. These observations have been qualitatively explained in terms of the measured solvent reorganization energy and reaction ...

  14. Effect of Solvents on the Product Distribution and Reaction Rate of a Buchwald-Hartwig Amination Reaction

    DEFF Research Database (Denmark)

    Christensen, H.; Kiil, Søren; Dam-Johansen, Kim

    2006-01-01

    The Buchwald-Hartwig amination reaction between p-bromotoluene and piperazine in the presence of the homogeneous catalytic system Pd(dba)(2)/(+/-)-BINAP and the base NaO-t-Bu was investigated in two different classes of solvents: aprotic, nonpolar and aprotic, polar. The reaction was carried out...... solvent for the Buchwald-Hartwig amination reaction under the conditions applied was m-xylene....

  15. Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass.

    Science.gov (United States)

    Ansari, Faiz Ahmad; Gupta, Sanjay Kumar; Shriwastav, Amritanshu; Guldhe, Abhishek; Rawat, Ismail; Bux, Faizal

    2017-06-01

    Microalgae have tremendous potential to grow rapidly, synthesize, and accumulate lipids, proteins, and carbohydrates. The effects of solvent extraction of lipids on other metabolites such as proteins and carbohydrates in lipid-extracted algal (LEA) biomass are crucial aspects of algal biorefinery approach. An effective and economically feasible algae-based oil industry will depend on the selection of suitable solvent/s for lipid extraction, which has minimal effect on metabolites in lipid-extracted algae. In current study, six solvent systems were employed to extract lipids from dry and wet biomass of Scenedesmus obliquus. To explore the biorefinery concept, dichloromethane/methanol (2:1 v/v) was a suitable solvent for dry biomass; it gave 18.75% lipids (dry cell weight) in whole algal biomass, 32.79% proteins, and 24.73% carbohydrates in LEA biomass. In the case of wet biomass, in order to exploit all three metabolites, isopropanol/hexane (2:1 v/v) is an appropriate solvent system which gave 7.8% lipids (dry cell weight) in whole algal biomass, 20.97% proteins, and 22.87% carbohydrates in LEA biomass. Graphical abstract: Lipid extraction from wet microalgal biomass and biorefianry approach.

  16. Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a nonsolvent

    NARCIS (Netherlands)

    Altena, Frank W.; Smolders, C.A.

    1982-01-01

    A numerical method for the calculation of the binodal of liquid-liquid phase separation in a ternary system is described. The Flory-Huggins theory for three-component systems is used. Binodals are calculated for polymer/solvent/nonsolvent systems which are used in the preparation of asymmetric

  17. Issue evolution and partisan polarization in a European multiparty system: Elite and mass repositioning in Denmark 1968–2011

    DEFF Research Database (Denmark)

    Arndt, Christoph

    2016-01-01

    Issue evolution is a well-established theoretical perspective in the analysis of long-term party competition and partisanship in the US. However, this perspective has rarely been used to analyze political elite effects on partisan polarization in European multiparty systems. Consequently, I apply...... the issue evolution perspective to polarization in a European multiparty system. I find an emergence of cultural issues in Denmark, where mass level polarization on cultural issues followed elite level polarization. Unlike two-party systems, niche parties drive issue evolution on the elite level, which...... is then followed by niche partisan polarization and, finally, mainstream party adaption. The findings illustrate the mechanisms of issue evolution in a European-style multiparty system and the role of niche parties....

  18. Phase equilibria for ternary liquid systems of (water + levulinic acid + cyclic solvent) at T = 298.2 K: Thermodynamic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Senol, Aynur [Istanbul University, Faculty of Engineering, Department of Chemical Engineering, 34320 Avcilar, Istanbul (Turkey)]. E-mail: senol@istanbul.edu.tr

    2005-10-15

    (Liquid + liquid) equilibrium (LLE) data of the solubility curves and tie-line end compositions are presented for mixtures of {l_brace}water (1) + levulinic acid (2) + methylcyclohexanol, or cyclohexanone, or cyclohexyl acetate (3){r_brace} at T = 298.2 K and P = (101.3 {+-} 0.7) kPa. Among the studied C6 ring-containing cyclic solvents, methylcyclohexanol and cyclohexyl acetate give the largest distribution ratio and separation factors for extraction of levulinic acid. A solvation energy relation (SERLAS) has been used to estimate the (liquid + liquid) equilibria of associated systems containing components capable of a physical interaction through hydrogen bonding. The tie-lines were also predicted using the UNIFAC-original model. The reliability of both models has been analyzed against the LLE data with respect to the distribution ratio and separation factor. SERLAS matches LLE data quite accurately, yielding a mean error of 3.6% for all the systems considered.

  19. Tunable 13C/1H dual channel matching circuit for dynamic nuclear polarization system with cross-polarization

    DEFF Research Database (Denmark)

    Rybalko, Oleksandr; Bowen, Sean; Zhurbenko, Vitaliy

    2016-01-01

    In this paper we report initial results of design and practical implementation of tuning and matching circuit to estimate a performance of Dynamic Nuclear Polarization (DNP) at a magnetic field of 6.7 T. It is shown that developed circuit for signal observation is compact, easy to make and provides...

  20. The effect of organic solvents on the equilibrium position of enzymatic acylglycerol synthesis.

    Science.gov (United States)

    Janseen, A E; Van der Padt, A; Van Sonsbeek, H M; Van't Riet, K

    1993-01-05

    The effect of organic solvents on the equilibrium position of lipase-catalyzed esterification of glycerol and decanoic acid has been investigated. The reaction is carried out in an aqueous-organic two-phase system. In polar solvents, high mole fractions of monoacylglycerol and low mole fractions of triacylglycerol and measured, while in nonpolar solvents, the measured differences in the mole fractions of monodi-, and triacylglycerols are less. There is a good correlation between the ester mole fractions at equilibrium and the log P of the solvent (partition coefficient in n-octanolwater), however, only if the group of tertiary alcohols is excluded. In the plot of the easter mole fractions as a function of the logarithm of hte solubility of water in the organic solvent, the tertiary alcohols can be included; however, in this case other deviations appear.For the prediction of the effect of organic solvents on the ester mole fractions at reaction equilibrium in nondilute reaction systems with a water activity below 1, the program TREP (Two-phase Reaction Equilibrium Prediction) is developed, which is based on the UNIFAC group contribution method. With this model the equilibrium data are essentially predicted from basic thermodynamic data. The required equilibrium constants are estimated from experiments without an organic solvent in the reaction medium. The mole fractions calculated by TREP show the same trends as the experimentally measured mole fractions; however, some variation is observed in the absolute values. These deviations may be due to inaccuracies in the UNIFAC group contribution method. TREP is found to be a correct method to predict within some limits the ester mole fractions at equilibrium for all mixtures of solvents, substrates, and products. The production of monoester can be enhanced in reaction system with a sufficient high concentration of a polar solvent. In experiments with a triglymeto-decanoic acid ratio of 5, almost no di-and triesters can be

  1. Physicochemical studies of the carbamate-CO/sub 2/-solvent system

    Energy Technology Data Exchange (ETDEWEB)

    Prencipe, M.; Ishida, T.

    1977-08-01

    The formation of carbamate from CO/sub 2/ and the various amine solutions has been investigated for the purpose of elucidating the structure of the species generated in the reaction. The amine solutions used were 1 and 2 molar solutions of di-n-butylamine (DNBA) in triethylamine (TEA), pure DNBA and pure TEA. It has been found that the nonaqueous solvent participates in the formation of carbamate in 1 and 2M-DNBA/TEA solutions as a proton acceptor in DNBA-carbamate formation. However, due to the high concentration of the solutions and the basicities of the amines, a significant amount of DNBA which does not form the DNBA-carbamate anion is also found to be participating as a proton acceptor. Pure TEA absorbs only /sup 1///sub 60/ of the absorption by pure DNBA. The extent of TEA participation in the CO/sub 2/-absorption process other than as a proton acceptor in DNBA-carbamate is negligible. The formation of carbamic acid and zwitterion have been found unlikely. 7 tables, 15 figs.

  2. Improvement of Anion Transport Systems by Modulation of Chalcogen Interactions: The influence of solvent.

    Science.gov (United States)

    Sánchez-Sanz, Goar; Trujillo, Cristina

    2018-02-08

    A series of potential anion transporters, dithieno[3,2-b;2',3'-d]thiophenes (DTT), involving anion-chalcogen interactions have been studied by analyzing the interaction energy, geometry, and charge transfer. It was found that gas phase calculations show very negative interaction energies with short anion-chalcogen distances, but when solvent effects are considered, the interaction energy values decreased drastically concomitantly with an elongation on the interatomic distances. To enhance the chalcogen interaction between the DTT derivatives and the anion, increasing the anion transporter capacity, bisisothioazole moiety was considered; i.e., the σ-hole of the chalcogen atom was modulated by substitution of the adjacent carbon by a nitrogen atom in the S-C axis, increasing the depth of the σ-hole and therefore the interaction between the chalcogen and anion. Finally, different anions were analyzed within the complexes, finding that F - and NO 3 - would be the best candidates to form complexes and possibly displace other anions such as Cl - or Br - .

  3. Impact of injection solvents on supercritical fluid chromatography.

    Science.gov (United States)

    Abrahamsson, Victor; Sandahl, Margareta

    2013-09-06

    Even though there has been a rapid development in instrumentation and applications of supercritical fluid chromatography (SFC), relatively little is known about retention mechanisms compared to high-performance liquid chromatography (HPLC). Much effort has been made to characterize the influence of injection solvents on chromatographic efficiency in HPLC, however has been left rather uninvestigated in the domain of SFC. In this study properties of different injection solvents have been studied and correlated with properties of seven various analytes on three different columns, a C18, a 2-ethylpyridine and a bare-silica column. Aided by calculations of correlation coefficients and principal component analysis (PCA), the physical properties of injection solvents and the interactions between injection solvent, solute and stationary phase were investigated. The findings of this work shows that interactions capable of masking accessible silanol groups on a C18 column are of importance in order to maximize the plate number. While solvents with dipolar and hydrogen bond interaction properties are associated negatively with chromatographic efficiency using polar columns. Properties such as molar density, vapor pressure and boiling point were related to sharper peaks, mostly likely because of solubility issues of the injection solvent into the methanol-modified carbon dioxide. However, no additional solubility due to hydrogen interactions between the injection solvent and the carbon dioxide in SFC was observed. Surface tension and viscosity was not particularly associated with a decrease in plate numbers. By increasing the injection volume a stronger correlation between solubility related properties and plate numbers were obtained. Additional experiments showed that the resistance in solubility became an issue when performing partial-loop injection where additional washing solvent entered the system, thus providing broadened peaks. Copyright © 2013 Elsevier B.V. All rights

  4. Research on Polarization Cancellation of Nonstationary Ionosphere Clutter in HF Radar System

    Directory of Open Access Journals (Sweden)

    Xingpeng Mao

    2015-01-01

    Full Text Available Oblique projection polarization filter (OPPF can be applied as an effective approach for interference cancellation in high-frequency surface wave radar (HFSWR and other systems. In order to suppress the nonstationary ionosphere clutter further, a novel OPPF based clutter suppressing scheme is proposed in this paper. The polarization and nonstationary characteristic of the clutter are taken into account in the algorithms referred to as range-Doppler domain polarization suppression (RDDPS and the range-time domain polarization suppression (RTDPS method, respectively. The RDDPS is designed for weak ionosphere clutter and implemented in the range-Doppler domain directly, whereas the RTDPS algorithm is designed to suppress the powerful ionosphere clutter with a multisegment estimation and suppression scheme. About 15–23 dB signal to interference ratio (SIR improvement can be excepted when using the proposed method, whereas the targets can be more easily detected in the range-Doppler map. Experimental results demonstrate that the scheme proposed is effective for nonstationary ionosphere clutter and is proven to be a practical interference cancellation technique for HFSWR.

  5. A portable liquid crystal-based polarized light system for the detection of organophosphorus nerve gas

    Science.gov (United States)

    He, Feng Jie; Liu, Hui Long; Chen, Long Cong; Xiong, Xing Liang

    2018-03-01

    Liquid crystal (LC)-based sensors have the advantageous properties of being fast, sensitive, and label-free, the results of which can be accessed directly only through the naked eye. However, the inherent disadvantages possessed by LC sensors, such as relying heavily on polarizing microscopes and the difficulty to quantify, have limited the possibility of field applications. Herein, we have addressed these issues by constructing a portable polarized detection system with constant temperature control. This system is mainly composed of four parts: the LC cell, the optics unit, the automatic temperature control unit, and the image processing unit. The LC cell was based on the ordering transitions of LCs in the presence of analytes. The optics unit based on the imaging principle of LCs was designed to substitute the polarizing microscope for the real-time observation. The image processing unit is expected to quantify the concentration of analytes. The results have shown that the presented system can detect dimethyl methyl phosphonate (a stimulant for organophosphorus nerve gas) within 25 s, and the limit of detection is about 10 ppb. In all, our portable system has potential in field applications.

  6. Use of the Polarized Radiance Distribution Camera System in the RADYO Program

    Science.gov (United States)

    2011-01-28

    polarizer’s (Melles Griot , 03 FPG 019). Polarizer’s are orientated at 0 deg, 60 deg, and 120 deg (angles relative to the first polarizer). The combination...combination of a broadband mica quarter wave plate (Melles Griot , 02 WRM001) and a polarizer to form a circular polarization analyzer. The combination of the

  7. Lateral refraction and reflection of light polarized lenses principle. Coplanar lens systems

    International Nuclear Information System (INIS)

    Miranda, L.

    2012-01-01

    Studying the behavior of the linearly polarized light to impact a lens and in the lens itself, resulted in the discovery of a physical principle of optics, not mentioned or used so far. This phenomenon is very useful in practice. Perhaps the manifestation of the phenomenon occurs in the plane perpendicular to the road or optical axis, is due the reason that was not seen before, but it has always been there when polarized light passes through a lens. Known and mastered the principle has been manipulated for better research results, using for the first time a planar lens system, which according to the placement of the lens allows for accurate lags between the light beams ar the exits the system. (Author)

  8. Symmetry evaluation for an interferometric fiber optic gyro coil utilizing a bidirectional distributed polarization measurement system.

    Science.gov (United States)

    Peng, Feng; Li, Chuang; Yang, Jun; Hou, Chengcheng; Zhang, Haoliang; Yu, Zhangjun; Yuan, Yonggui; Li, Hanyang; Yuan, Libo

    2017-07-10

    We propose a dual-channel measurement system for evaluating the optical path symmetry of an interferometric fiber optic gyro (IFOG) coil. Utilizing a bidirectional distributed polarization measurement system, the forward and backward transmission performances of an IFOG coil are characterized simultaneously by just a one-time measurement. The simple but practical configuration is composed of a bidirectional Mach-Zehnder interferometer and multichannel transmission devices connected to the IFOG coil under test. The static and dynamic temperature results of the IFOG coil reveal that its polarization-related symmetric properties can be effectively obtained with high accuracy. The optical path symmetry investigation is highly beneficial in monitoring and improving the winding technology of an IFOG coil and reducing the nonreciprocal effect of an IFOG.

  9. An IIR adaptive electronic equalizer for polarization multiplexed fiber optic communication systems

    Science.gov (United States)

    Zeng, Xiang-Ye; Liu, Jian-Fei; Zhao, Qi-Da

    2011-09-01

    An electronic digital equalizer for polarization multiplex coherent fiber optic communication systems is designed to compensate polarization mode dispersion (PMD) and residual chromatic dispersion (CD) of transmission channel. The proposed equalizer is realized with fraction spaced infinite impulse response (IIR) butterfly structure with 21 feedforward taps and 2 feedback taps. Compared with finite impulse response (FIR) structure, this structure can reduce implementation complexity of hardware under the same condition. To keep track of the random variation of channel characteristics, the filter weights are updated by least mean square (LMS) algorithm. The simulation results show that the proposed equalizer can compensate residual chromatic dispersion (CD) of 1600 ps/nm and differential group delay (DGD) of 90 ps simultaneously, and also can increase the PMD and residual CD tolerance of the whole communication system.

  10. Activities and Issues of a Developed Information System for the Italian Polar Research

    Directory of Open Access Journals (Sweden)

    A Damiani

    2010-02-01

    Full Text Available Activities performed to develop an information system for the diffusion of Italian polar research (SIRIA project are here described. The system collects and shares information related to research projects carried out in both the Antarctic (since 1985 and Arctic (since 1997 regions. It is addressed primarily to dedicated users in order to foster interdisciplinary research but non-specialists may also be interested in the major results. SIRIA is in charge of managing the National Antarctic Data Center of Italy and confers its metadata to the Antarctic Master Directory. Since 2003, the National Antarctic Research Program has funded this project, which, by restyling its tasks, databases, and web site, is becoming the portal of Italian polar research. Issues concerning data management and policy in Italy are also covered.

  11. Development of a New Binary Solvent System Using Ionic Liquids as Additives to Improve Rotenone Extraction Yield from Malaysia Derris sp.

    Directory of Open Access Journals (Sweden)

    Zetty Shafiqa Othman

    2015-01-01

    Full Text Available Rotenone is one of the prominent insecticidal isoflavonoid compounds which can be isolated from the extract of Derris sp. plant. Despite being an effective compound in exterminating pests in a minute concentration, procuring a significant amount of rotenone in the extracts for commercialized biopesticides purposes is a challenge to be attained. Therefore, the objective of this study was to determine the best ionic liquid (IL which gives the highest yield of rotenone. The normal soaking extraction (NSE method was carried out for 24 hrs using five different types of binary solvent systems comprising a combination of acetone and five respective ionic liquids (ILs of (1 [BMIM] Cl; (2 [BMIM] OAc; (3 [BMIM] NTf2; (4 [BMIM] OTf; and (5 [BMPy] Cl. Next, the yield of rotenone, % (w/w, and its concentration (mg/mL in dried roots were quantitatively determined by means of RP-HPLC and TLC. The results showed that a binary solvent system of [BMIM] OTf + acetone was the best solvent system combination as compared to other solvent systems (P<0.05. It contributed to the highest rotenone content of 2.69 ± 0.21% (w/w (4.04 ± 0.34 mg/mL at 14 hrs of exhaustive extraction time. In conclusion, a combination of the ILs with a selective organic solvent has been proven to increase a significant amount of bioactive constituents in the phytochemical extraction process.

  12. Two-dimensional spatially ordered system of nickel nanowires probed by polarized SANS

    International Nuclear Information System (INIS)

    Napolskii, K.S.; Chumakov, A.P.; Grigoriev, S.V.; Grigoryeva, N.A.; Eckerlebe, H.; Eliseev, A.A.; Lukashin, A.V.; Tretyakov, Yu.D.

    2009-01-01

    Structural and magnetic properties of two-dimensional spatially ordered system of ferromagnetic nickel nanowires embedded into Al 2 O 3 matrix have been studied using polarized small-angle neutron scattering. The small-angle diffraction pattern exhibits many diffraction peaks, which corresponds to the scattering from highly correlated hexagonal structure of pores and magnetic nanowires. Magnetic contribution to the scattering has complex behavior and cannot be explained without taking into account stray fields located between magnetized nanowires.

  13. Apparatus and Method for Elimination of Polarization-Induced Fading in Fiber-optic Sensor System

    Science.gov (United States)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    The invention is an apparatus and method of eliminating polarization-induced fading in interferometric fiber-optic sensor system having a wavelength-swept laser optical signal. The interferometric return signal from the sensor arms are combined and provided to a multi-optical path detector assembly and ultimately to a data acquisition and processing unit by way of a switch that is time synchronized with the laser scan sweep cycle.

  14. Introduction to the next generation EUMETSAT Polar System (EPS-SG) observation missions

    Science.gov (United States)

    Schlüssel, Peter; Kayal, Gökhan

    2017-09-01

    EUMETSAT is conducting the activities for the development of the second generation EUMETSAT Polar System Second Generation (EPS-SG), to replace the current EPS from 2021 onwards and contribute to the Joint Polar System to be set up with NOAA. EPS-SG covers nine observation missions in support of operational meteorology and climate monitoring. The observation missions will be supported by ten instruments that will be carried by a two-satellite system. The Metop Second Generation (Metop-SG) satellites will occupy the same orbit as their Metop predecessors in a Sun synchronous, low earth orbit at 820 km altitude and 09:30 descending equatorial crossing time. The observation missions will be implemented by multi-spectral optical and polarisation imaging, atmospheric sounding in the optical and microwave spectral domains, radio occultation sounding, scatterometry as well as microwave and sub-millimetre-wave imaging. Two polar ground stations will receive global data from both satellites. A network of direct-broadcast reception stations will allow to support a North-Atlantic/European regional mission with high timeliness. Additionally, raw mission data are continuously broadcasted to local users world-wide. Global and regional data will be processed at EUMETSAT into well-calibrated and geo-located sensor data, and further on into geophysical products. All data will be disseminated to users in near-real time and archived in the EUMETSAT Data Centre for later retrieval by users.

  15. Feeding and wounding responses in Hydra suggest functional and structural polarization of the tentacle nervous system.

    Science.gov (United States)

    Shimizu, H

    2002-03-01

    The nervous system of Hydra, a freshwater cnidaria, occurs as dispersed, or diffuse, nerve net throughout the animal. It is widely accepted that in a diffuse nervous system an external stimulus is conducted in all directions over the net. Here I report observations that hydra tentacles respond to feeding and wounding stimuli in a unidirectional manner. Upon contact of a tentacle with a brine shrimp larva during feeding, tissue on the proximal side of the point of contact contracted strongly, whereas tissue on the distal side contracted only very weakly. Feeding a tentacle to which a second tentacle was grafted to the proximal end in the reversed orientation showed that unidirectional conduction, once initiated, was blocked by the reversal of polarity, demonstrating that the distal to proximal polarity of tissue is crucial for unidirectional conduction. Unidirectional conduction was obtained also by mechanically pinching the tissue. The response of tentacles devoid of neurons examined was bidirectional, demonstrating that the nervous system is responsible for the unidirectional responses. These observations suggest that polarized property of the nerve net in hydra tentacles is responsible for the unidirectional tentacle contraction.

  16. System for producing high-resolution polarized and unpolarized beams with a tandem accelerator

    International Nuclear Information System (INIS)

    Westerfeldt, C.R.; Bilpuch, E.G.; Bleck, M.E.; Outlaw, D.A.; Wells, W.K.; Wilkerson, J.F.; Clegg, T.B.

    1983-01-01

    A tandem accelerator beam energy stabilizer, which utilizes an optically coupled fast feedback loop to the accelerator terminal stripper, is described. Emphasis is placed on the components of the feedback system and on the application of this system to production of high energy-resolution beams. This system produces beam energy spreads ranging from 450 to 600 eV FWHM for 2 to 16 MeV unpolarized protons. Polarized beam energy spreads range from 550 to 700 eV FWHM, for the same beam energy range

  17. Orthonormal polynomials describing polarization aberration for M-fold optical systems.

    Science.gov (United States)

    Xu, Xiangru; Huang, Wei; Xu, Mingfei

    2016-03-07

    Polarization aberration (PA) is a serious issue that affects imaging quality for optical systems with high numerical aperture. Numerous studies have focused on the distribution rule of PA on the pupil, but the field remains poorly studied. We previously developed an orthonormal set of polynomials to reveal the pupil and field dependences of PA in rotationally symmetric optical systems. However, factors, such as intrinsic birefringence of cubic crystalline material in deep ultraviolet optics and tolerance, break the rotational symmetry of PA. In this paper, we extend the polynomials from rotationally symmetric to M-fold to describe the PA of M-fold optical systems. Two examples are presented to verify the polynomials.

  18. Solvent effects in the nucleophilic substitutions of tetrahydropyran acetals promoted by trimethylsilyl trifluoromethanesulfonate: trichloroethylene as solvent for stereoselective C- and O-glycosylations.

    Science.gov (United States)

    Kendale, Joanna C; Valentín, Elizabeth M; Woerpel, K A

    2014-07-18

    The selectivities of nucleophilic substitution reactions of tetrahydropyran acetals promoted by trimethylsilyl trifluoromethanesulfonate depend upon the reaction solvent. Polar solvents favor the formation of S(N)1 products, while nonpolar solvents favor S(N)2 products. Trichloroethylene was identified as the solvent most likely to give S(N)2 products in both C- and O-glycosylation reactions.

  19. Phase equilibria of carbohydrates in polar solvents

    DEFF Research Database (Denmark)

    Jonsdottir, Svava Osk; Rasmussen, Peter

    1999-01-01

    A method for calculating interaction energies and interaction parameters with molecular mechanics methods is extended to predict solid-liquid equilibria (SLE) for saccharides in aqueous solution, giving results in excellent agreement with experimental values. Previously, the method has been shown...

  20. Development of Switchable Polarity Solvent Draw Solutes

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Aaron D.

    2016-11-01

    Results of a computational fluid dynamic (CFD) study of flow and heat transfer in a printed circuit heat exchanger (PCHE) geometry are presented. CFD results obtained from a two-plate model are compared to corresponding experimental results for the validation. This process provides the basis for further application of the CFD code to PCHE design and performance analysis in a variety of internal flow geometries. As a part of the code verification and validation (V&V) process, CFD simulation of a single semicircular straight channel under laminar isothermal conditions was also performed and compared to theoretical results. This comparison yielded excellent agreement with the theoretical values. The two-plate CFD model based on the experimental PCHE design overestimated the effectiveness and underestimated the pressure drop. However, it is found that the discrepancy between the CFD result and experimental data was mainly caused by the uncertainty in the geometry of heat exchanger during the fabrication. The CFD results obtained using a slightly smaller channel diameter yielded good agreement with the experimental data. A separate investigation revealed that the average channel diameter of the OSU PCHE after the diffusion-bonding was 1.93 mm on the cold fluid side and 1.90 mm on the hot fluid side which are both smaller than the nominal design value. Consequently, the CFD code was shown to have sufficient capability to evaluate the heat exchanger thermal-hydraulic performance.

  1. Thermodynamics of solvent extraction on (C8H17)3N-C6H5CH3-UO2Cl2-HCl system

    International Nuclear Information System (INIS)

    Yigui Li; Jiufang Lu; Xunan Zhou; Teng Teng

    1988-01-01

    Solvent extraction thermodynamics in the system n-trioctylamine-toluene-UO 2 CL 2 -HCl-water was considered. Pitzer equation and improved Frank-Thompson equation were used to calculate coefficients of electrolyte activity in aqueous phase. Activity coefficients of all components in organic phase were measured or calculated. Thermodynamic equilibrium constants of studied system were obtained

  2. Symmetry- and solvent-dependent photophysics of fluorenes containing donor and acceptor groups.

    Science.gov (United States)

    Stewart, David J; Dalton, Matthew J; Swiger, Rachel N; Fore, Jennifer L; Walker, Mark A; Cooper, Thomas M; Haley, Joy E; Tan, Loon-Seng

    2014-07-17

    Three two-photon absorption (2PA) dyes (donor-π-donor (DPA2F), donor-π-acceptor (AF240), and acceptor-π-acceptor (BT2F); specifically, D is Ph2N-, A is 2-benzothiazoyl, and the π-linker is 9,9-diethylfluorene) are examined in a variety of aprotic solvents. Because the 2PA cross section is sensitive to the polarity of the local environment, this report examines the solvent-dependent linear photophysics of the dyes, which are important to understand before probing more complex solid-state systems. The symmetrical dyes show little solvent dependence; however, AF240 has significant solvatochromism observed in the fluorescence spectra and lifetimes and also the transient absorption spectra. A 114 nm bathochromic shift is observed in the fluorescence maximum when going from n-hexane to acetonitrile, whereas the lifetimes increase from 1.25 to 3.12 ns. The excited-state dipole moment for AF240 is found to be 20.1 D using the Lippert equation, with smaller values observed for the symmetrical dyes. Additionally, the femtosecond transient absorption (TA) spectra at time zero show little solvent dependence for DPA2F or BT2F, but AF240 shows a 52 nm hypsochromic shift from n-hexane to acetonitrile. Coupled with the solvatochromism in the fluorescence and large excited-state dipole moment, this is attributed to formation of an intramolecular charge-transfer (ICT) state in polar solvents. By 10 ps in AF240, the maximum TA in acetonitrile has shifted 30 nm, providing direct evidence of a solvent-stabilized ICT state, whose formation occurs in 0.85-2.71 ps, depending on solvent. However, AF240 in nonpolar solvents and the symmetrical dyes in all solvents show essentially no shifts due to a predominantly locally excited (LE) state. Preliminary temperature-dependent fluorescence using frozen glass media supports significant solvent reorganization around the AF240 excited state in polar solvents, and may also support a twisted intramolecular charge-transfer (TICT

  3. Latency features of SafetyNet ground systems architecture for the National Polar-orbiting Operational Environmental Satellite System (NPOESS)

    Science.gov (United States)

    Duda, James L.; Mulligan, Joseph; Valenti, James; Wenkel, Michael

    2005-01-01

    A key feature of the National Polar-orbiting Operational Environmental Satellite System (NPOESS) is the Northrop Grumman Space Technology patent-pending innovative data routing and retrieval architecture called SafetyNetTM. The SafetyNetTM ground system architecture for the National Polar-orbiting Operational Environmental Satellite System (NPOESS), combined with the Interface Data Processing Segment (IDPS), will together provide low data latency and high data availability to its customers. The NPOESS will cut the time between observation and delivery by a factor of four when compared with today's space-based weather systems, the Defense Meteorological Satellite Program (DMSP) and NOAA's Polar-orbiting Operational Environmental Satellites (POES). SafetyNetTM will be a key element of the NPOESS architecture, delivering near real-time data over commercial telecommunications networks. Scattered around the globe, the 15 unmanned ground receptors are linked by fiber-optic systems to four central data processing centers in the U. S. known as Weather Centrals. The National Environmental Satellite, Data and Information Service; Air Force Weather Agency; Fleet Numerical Meteorology and Oceanography Center, and the Naval Oceanographic Office operate the Centrals. In addition, this ground system architecture will have unused capacity attendant with an infrastructure that can accommodate additional users.

  4. Optical polarization modulation by competing atomic coherence effects in a degenerate four-level Yb atomic system

    International Nuclear Information System (INIS)

    Park, Sung Jong; Park, Chang Yong; Yoon, Tai Hyun

    2005-01-01

    A scheme of optical polarization modulation of a linearly polarized infrared probe field is studied in a degenerate four-level Yb atomic system. We have observed an anomalous transmission spectra of two circular polarization components of the probe field exhibiting an enhanced two-photon absorption and a three-photon gain with comparable magnitude, leading to the lossless transmission and enhanced circular dichroism. We carried out a proof-of-principle experiment of fast optical polarization modulation in such a system by modulating the polarization state of the coupling field. The observed enhanced two-photon absorption and three-photon gain of the probe field are due to the result of competing atomic coherence effects

  5. Spin temperatures under dynamic polarization in a one-dimensional system, the TANOL

    International Nuclear Information System (INIS)

    Barjhoux, Yves.

    1974-01-01

    A quantitative model of Tanol submitted to dynamic polarization has been developed. The spin systems are described using a network of interconnected reservoirs. The model involves six (or ten) Zeeman nuclear reservoirs mutually coupled by nuclear-nuclear dipole interactions and coupled to electron spins by hyperfine interactions. When the electronic line is saturated, different nuclear temperatures appear in the molecule. These temperatures have been calculated as a function of the magnetic field orientation against the crystallographic axes. Experimental results are correctly reproduced. A quantitative agreement is obtained for the anisotropy of total polarization. The calculation also shows that, in certain directions, positive and negative spin temperatures simultaneously appear, that explains the complex shape of the signals observed. Nuclear relaxation processes involving two electron spins of the same exchange chain are taken into account for the calculation. The different possible chain directions (a, a+c, or c vectors) were envisaged. Only the c-vector hypothesis succeeded in interpreting experimental results [fr

  6. Joint Polar Satellite System's Operational and Research Applications from Suomi NPP

    Science.gov (United States)

    Goldberg, M.

    2014-12-01

    The Joint Polar Satellite System is NOAA's new operational satellite program and includes the Suomi National Polar-orbiting Partnership (S-NPP) as a bridge between NOAA's operational Polar Orbiting Environmental Satellite (POES) series, which began in 1978, and the first JPSS operational satellite scheduled for launch in 2017. JPSS provides critical data for key operational and research applications, and includes: 1) Weather forecasting - data from the JPSS Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) are needed to forecast weather events out to 7 days. Nearly 85% of all data used in weather forecasting are from polar orbiting satellites. 2) Environmental monitoring - data from the JPSS Visible Infrared Imager Radiometer Suite (VIIRS) are used to monitor the environment including the health of coastal ecosystems, drought conditions, fire, smoke, dust, snow and ice, and the state of oceans, including sea surface temperature and ocean color. 3) Climate monitoring - data from JPSS instruments, including OMPS and CERES will provide continuity to climate data records established using NOAA POES and NASA Earth Observing System (EOS) satellite observations. These data records provide a unified and coherent long-term observation of the environment; the records and products are critical to climate modelers, scientists, and decision makers concerned with advancing climate change understanding, prediction, mitigation and adaptation strategies, and policies. To bridge the gap between products and applications, the JPSS Program has established a proving ground program to optimize the use of JPSS data with other data sources to improve key products and services. A number of operational and research applications will be discussed, including the use of CrIS and ATMS for improved weather forecasting, the use of VIIRS for environmental monitoring of sea ice, smoke, fire, floods, droughts, coastal water quality (e.g. harmful algal blooms

  7. Gas separation by composite solvent-swollen membranes

    Science.gov (United States)

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1989-01-01

    There is disclosed a composite immobulized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorous or sulfur atom, and having a boiling point of at least 100.degree. C. and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation.

  8. Real time polarization sensor image processing on an embedded FPGA/multi-core DSP system

    Science.gov (United States)

    Bednara, Marcus; Chuchacz-Kowalczyk, Katarzyna

    2015-05-01

    Most embedded image processing SoCs available on the market are highly optimized for typical consumer applications like video encoding/decoding, motion estimation or several image enhancement processes as used in DSLR or digital video cameras. For non-consumer applications, on the other hand, optimized embedded hardware is rarely available, so often PC based image processing systems are used. We show how a real time capable image processing system for a non-consumer application - namely polarization image data processing - can be efficiently implemented on an FPGA and multi-core DSP based embedded hardware platform.

  9. Stokes image reconstruction for two-color microgrid polarization imaging systems.

    Science.gov (United States)

    Lemaster, Daniel A

    2011-07-18

    The Air Force Research Laboratory has developed a new microgrid polarization imaging system capable of simultaneously reconstructing linear Stokes parameter images in two colors on a single focal plane array. In this paper, an effective method for extracting Stokes images is presented for this type of camera system. It is also shown that correlations between the color bands can be exploited to significantly increase overall spatial resolution. Test data is used to show the advantages of this approach over bilinear interpolation. The bounds (in terms of available reconstruction bandwidth) on image resolution are also provided.

  10. A novel method for determining the solubility of small molecules in aqueous media and polymer solvent systems using solution calorimetry.

    Science.gov (United States)

    Fadda, Hala M; Chen, Xin; Aburub, Aktham; Mishra, Dinesh; Pinal, Rodolfo

    2014-07-01

    To explore the application of solution calorimetry for measuring drug solubility in experimentally challenging situations while providing additional information on the physical properties of the solute material. A semi-adiabatic solution calorimeter was used to measure the heat of dissolution of prednisolone and chlorpropamide in aqueous solvents and of griseofulvin and ritonavir in viscous solutions containing polyvinylpyrrolidone and N-ethylpyrrolidone. Dissolution end point was clearly ascertained when heat generation stopped. The heat of solution was a linear function of dissolved mass for all drugs (solution of 9.8 ± 0.8, 28.8 ± 0.6, 45.7 ± 1.6 and 159.8 ± 20.1 J/g were obtained for griseofulvin, ritonavir, prednisolone and chlorpropamide, respectively. Saturation was identifiable by a plateau in the heat signal and the crossing of the two linear segments corresponds to the solubility limit. The solubilities of prednisolone and chlopropamide in water by the calorimetric method were 0.23 and 0.158 mg/mL, respectively, in agreement with the shake-flask/HPLC-UV determined values of 0.212 ± 0.013 and 0.169 ± 0.015 mg/mL, respectively. For the higher solubility and high viscosity systems of griseofulvin and ritonavir in NEP/PVP mixtures, respectively, solubility values of 65 and 594 mg/g, respectively, were obtained. Solution calorimetry offers a reliable method for measuring drug solubility in organic and aqueous solvents. The approach is complementary to the traditional shake-flask method, providing information on the solid properties of the solute. For highly viscous solutions, the calorimetric approach is advantageous.

  11. 2x2 MIMO-OFDM Gigabit fiber-wireless access system based on polarization division multiplexed WDM-PON

    DEFF Research Database (Denmark)

    Deng, Lei; Pang, Xiaodan; Zhao, Ying

    2012-01-01

    We propose a spectral efficient radio over wavelength division multiplexed passive optical network (WDM-PON) system by combining optical polarization division multiplexing (PDM) and wireless multiple input multiple output (MIMO) spatial multiplexing techniques. In our experiment, a training...

  12. A novel variable field system for field-cycled dynamic nuclear polarization spectroscopy

    Science.gov (United States)

    Shet, Keerthi; Caia, George L.; Kesselring, Eric; Samouilov, Alexandre; Petryakov, Sergey; Lurie, David J.; Zweier, Jay L.

    2010-08-01

    Dynamic nuclear polarization (DNP) is an NMR-based technique which enables detection and spectral characterization of endogenous and exogenous paramagnetic substances measured via transfer of polarization from the saturated unpaired electron spin system to the NMR active nuclei. A variable field system capable of performing DNP spectroscopy with NMR detection at any magnetic field in the range 0-0.38 T is described. The system is built around a clinical open-MRI system. To obtain EPR spectra via DNP, partial cancellation of the detection field B0NMR is required to alter the evolution field B0EPR at which the EPR excitation is achieved. The addition of resistive actively shielded field cancellation coils in the gap of the primary magnet provides this field offset in the range of 0-100 mT. A description of the primary magnet, cancellation coils, power supplies, interfacing hardware, RF electronics and console are included. Performance of the instrument has been evaluated by acquiring DNP spectra of phantoms with aqueous nitroxide solutions (TEMPOL) at three NMR detection fields of 97 G, 200 G and 587 G corresponding to 413 kHz, 851.6 kHz and 2.5 MHz respectively and fixed EPR evolution field of 100 G corresponding to an irradiation frequency of 282.3 MHz. This variable-field DNP system offers great flexibility for the performance of DNP spectroscopy with independent optimum choice of EPR excitation and NMR detection fields.

  13. Dual-Polarized On-Chip Antenna for 300 GHz Full-Duplex Communication System

    Directory of Open Access Journals (Sweden)

    Linyan Guo

    2017-01-01

    Full Text Available This paper presents a novel design of compact orthogonally polarized on-chip antenna to realize 300 GHz full-duplex communication system with high isolation. It consists of a dipole antenna for horizontal polarization and a disk-loaded monopole antenna for vertical polarization. They are in good cross-polarization state with more than 90 dB of self-interference suppression and then can be used to achieve good isolation between transmitting and receiving antennas. In addition, two dual-polarized antennas have been adopted in two separated transceivers to study their isolation performance. Furthermore, this compact antenna only occupies an active area of 390 μm × 300 μm × 78 μm and can be used for multiple-input multiple-output application as well.

  14. Solvent induced supramolecular anisotropy in molecular gels

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Michael A., E-mail: mroger09@uoguelph.ca [Department of Food Science, University of Guelph, Guelph, Ontario, N3C3X9 (Canada); Corradini, Maria G. [Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003 (United States); Emge, Thomas [Department of Chemistry and Biochemistry, Rutgers University, New Brunswick, NJ, 08901 (United States)

    2017-06-15

    Herein is the first report of solvent induced anisotropy in 12-hydroxystearic acid self-assembled fibrillar networks. Increasing the chain length of polar solvent, such as nitriles and ketones, tailored the anisotropy of the fibrillar aggregates. 12HSA molecular gels, comprised of alkanes, exhibited an isotropic fibrillar network irrespective of the alkane chain length. In polar solvents, anisotropy, observed using 2D powder x-ray diffraction profiles, is correlated to a fibrillar supramolecular morphologies in long chain nitriles and ketones while sphereulitic crystals are correlated to x-ray diffraction patterns with an isotropic scatter intensity in short chain ketones and nitriles. These changes directly modify the final physical properties of the gels. - Highlights: • 12-HSA self-assembles into crystalline supramolecular morphologies depending on the solvent. • Alkanes, short chain nitriles and ketones led to 12-HSA displaying supramolecular isotropy. • In long chain nitriles and ketones, 12-HSA displays supramolecular anisotropy.

  15. Solvent induced supramolecular anisotropy in molecular gels

    International Nuclear Information System (INIS)

    Rogers, Michael A.; Corradini, Maria G.; Emge, Thomas

    2017-01-01

    Herein is the first report of solvent induced anisotropy in 12-hydroxystearic acid self-assembled fibrillar networks. Increasing the chain length of polar solvent, such as nitriles and ketones, tailored the anisotropy of the fibrillar aggregates. 12HSA molecular gels, comprised of alkanes, exhibited an isotropic fibrillar network irrespective of the alkane chain length. In polar solvents, anisotropy, observed using 2D powder x-ray diffraction profiles, is correlated to a fibrillar supramolecular morphologies in long chain nitriles and ketones while sphereulitic crystals are correlated to x-ray diffraction patterns with an isotropic scatter intensity in short chain ketones and nitriles. These changes directly modify the final physical properties of the gels. - Highlights: • 12-HSA self-assembles into crystalline supramolecular morphologies depending on the solvent. • Alkanes, short chain nitriles and ketones led to 12-HSA displaying supramolecular isotropy. • In long chain nitriles and ketones, 12-HSA displays supramolecular anisotropy.

  16. An analysis of the electromagnetic field in multi-polar linear induction system

    International Nuclear Information System (INIS)

    Chervenkova, Todorka; Chervenkov, Atanas

    2002-01-01

    In this paper a new method for determination of the electromagnetic field vectors in a multi-polar linear induction system (LIS) is described. The analysis of the electromagnetic field has been done by four dimensional electromagnetic potentials in conjunction with theory of the magnetic loops . The electromagnetic field vectors are determined in the Minkovski's space as elements of the Maxwell's tensor. The results obtained are compared with those got from the analysis made by the finite elements method (FEM).With the method represented in this paper one can determine the electromagnetic field vectors in the multi-polar linear induction system using four-dimensional potential. A priority of this method is the obtaining of analytical results for the electromagnetic field vectors. These results are also valid for linear media. The dependencies are valid also at high speeds of movement. The results of the investigated linear induction system are comparable to those got by the finite elements method. The investigations may be continued in the determination of other characteristics such as drag force, levitation force, etc. The method proposed in this paper for an analysis of linear induction system can be used for optimization calculations. (Author)

  17. Generalized equation for calculation of fractional recoveries and presentation of data for solvent extraction systems

    International Nuclear Information System (INIS)

    Rawajfeh, M. K.; Al-Matar, A.

    2000-01-01

    A generalized equation relating equilibrium data, phase ratio and fractional recovery is developed. The use of this equation reduces the presentation of these data to a single dimensionless curve independent of the system and the operating conditions. The validity of this equation is tested using experimental data for different liquid - liquid systems at various condition. a reasonable agreement between experimental results and predicated ones was obtained. The use of this equation in investigating the effect of phase ratio on the fractional recovery is illustrated. (authors). 6 refs., 4 figs., 3 tabs

  18. H 2 O 2-HBr: A metal-free and organic solvent-free reagent system ...

    Indian Academy of Sciences (India)

    A novel, practical and environmentally benign approach has been developed for the oxidation of methylarenes using H2O2-HBr system in water. Arylaldehydes containing electon-withdrawing groups are isolated in good to high yields. Methylarenes containing electon-donating groups, in contrast, are transformed into ...

  19. SAGE SOLVENT ALTERNATIVES GUIDE: SYSTEM IMPROVEMENTS FOR SELECTING INDUSTRIAL SURFACE CLEANING ALTERNATIVES

    Science.gov (United States)

    The paper describes computer software, called SAGE, that can provide not only cleaning recommendations but also general information on various surface cleaning options. In short, it is an advisory system which can provide users with vital information on the cleaning process optio...

  20. Organic solvent topical report

    Energy Technology Data Exchange (ETDEWEB)

    COWLEY, W.L.

    1999-05-13

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an organic solvent fire is within risk evaluation guidelines. This report updates information contained in Analysis of Consequences of Postulated Solvent Fires in Hanford Site Waste Tanks. WHC-SD-WM-CN-032. Rev. 0A (Cowley et al. 1996). However, this document will not replace Cowley et al (1996) as the primary reference for the Basis for Interim Operation (BIO) until the recently submitted BIO amendment (Hanson 1999) is approved by the US Department of Energy. This conclusion depends on the use of controls for preventing vehicle fuel fires and for limiting the use of flame cutting in areas where hot metal can fall on the waste surface.The required controls are given in the Tank Waste Remediation System Technical Safety Requirements (Noorani 1997b). This is a significant change from the conclusions presented in Revision 0 of this report. Revision 0 of this calcnote concluded that some organic solvent fire scenarios exceeded risk evaluation guidelines, even with controls imposed.

  1. The EUMETSAT Polar System - Second Generation (EPS-SG) micro-wave imaging (MWI) mission

    Science.gov (United States)

    Bojkov, B. R.; Accadia, C.; Klaes, D.; Canestri, A.; Cohen, M.

    2017-12-01

    The EUMETSAT Polar System (EPS) will be followed by a second generation system called EPS-SG. This new family of missions will contribute to the Joint Polar System being jointly set up with NOAA in the timeframe 2020-2040. These satellites will fly, like Metop (EPS), in a sun synchronous, low earth orbit at 830 km altitude and 09:30 local time descending node, providing observations over the full globe with revisit times of 12 hours. EPS-SG consists of two different satellites configurations, the EPS-SGa series dedicated to IR and MW sounding, and the EPS-SGb series dedicated to microwave imaging and scatterometry. The EPS-SG family will consist of three successive launches of each satellite-type. The Microwave Imager (MWI) will be hosted on Metop-SGb series of satellites, with the primary objective of supporting Numerical Weather Prediction (NWP) at regional and global scales. Other applications will be observation of surface parameters such as sea ice concentration and hydrology applications. The 18 MWI instrument frequencies range from 18.7 GHz to 183 GHz. All MWI channels up to 89 GHz will measure V- and H polarizations. The MWI was also designed to provide continuity of measurements for select heritage microwave imager channels (e.g. SSM/I, AMSR-E). The additional sounding channels such as the 50-55 and 118 GHz bands will provide additional cloud and precipitation information over sea and land. This combination of channels was successfully tested on the NPOESS Aircraft Sounder Testbed - Microwave Sounder (NAST-M) airborne radiometer, and it is the first time that will be implemented in a conical scanning configuration in a single instrument. An overview of the EPS-SG programme and the MWI instrument will be presented.

  2. Solvents interactions with thermochromic print

    Directory of Open Access Journals (Sweden)

    Mirela Rožić

    2017-12-01

    Full Text Available In this study, the interactions between different solvents (benzene, acetone, cyclohexanone, various alcohols and water and thermochromic printing ink were investigated. Thermochromic printing ink was printed on metal surface. Components of thermochromic printing inks are polymeric microcapsules and classic yellow offset printing ink. Below its activation temperature, dye and developer within the microcapsules form a blue coloured complex. Therefore, thermochromic print is green. By heating above the activation temperature, blue colour of the complex turns into the leuco dye colourless state and the green colour of the prints turns into the yellow colour of the classic offset pigment. The results of the interaction with various solvents show that the thermochromic print is stable in all tested solvents except in ethanol, acetone and cyclohexanone. In ethanol, the green colour of the print becomes yellow. SEM analysis shows that microcapsules are dissolved. In acetone and cyclohexanone, the green colour of the print turns into blue, and the microcapsules become significantly more visible. Thus, the yellow pigment interacts with examined ketones. Based on the obtained interactions it can be concluded that the microcapsules have more polar nature than the classical pigment particles. Solvent-thermocromic print interactions were analysed using Hansen solubility parameters that rank the solvents based on their estimated interaction capabilities.

  3. A Novel Method for Performance Analysis of OFDM Polarization Diversity System in Ricean Fading Environment

    DEFF Research Database (Denmark)

    Ilic-Delibasic, M.; Pejanovic-Djurisic, M.; Prasad, R.

    2012-01-01

    OFDM (Orthogonal Frequency Division Multiplexing) is proven to be a very effective modulation and multiple access technique that enables high data rate transmission. Due to its good performance it is already implemented in several standardized technologies, and it is very promising technique...... conditions. In order to calculate BER (Bit Error Rate) for the considered OFDM polarization diversity system with a certain level of the received signals correlation, we propose a novel analytical method. The obtained results are compared with the ones attained by simulation....

  4. High Speed Inter-Satellite Communication System by Incorporating Hybrid Polarization-Wavelength Division Multiplexing Scheme

    Science.gov (United States)

    Chaudhary, Sushank; Chaudhary, Neha; Sharma, Saurabh; Choudhary, BC

    2017-12-01

    Inter-Satellite communication is one of remarkable technologies that can be used to communicate between satellites. This work is focused to carry out the investigations of polarization scheme by incorporating dense wavelength division multiplexing (DWDM) scheme in inter-satellite communication system. A 20×6 Gbps data are transported over inter-satellite optical link having span of 5,000 km to realize the total data transmission of 120 Gbps. Moreover, results are also reported with the effect of RZ and NRZ modulation schemes. The performance of proposed inter-satellite communication link is measured in terms of signal-to-noise ratio, received power and eye diagrams.

  5. Self-organization of the climate system: Synchronized polar and oceanic teleconnections

    Science.gov (United States)

    Reischmann, Elizabeth Piccard

    Synchronization is a widespread phenomenon in nonlinear, physical systems. It describes the phenomena of two or more weakly interacting, nonlinear oscillators adjust their natural frequencies until they come into phase and frequency lock. This behavior has been observed in biological, chemical and electronic systems, including neurons, fireflies, and computers, but has not been widely studied in climate. This thesis presents a study of several major examples of synchronized climatic systems, starting with ice age timings seemingly caused by the global climate's gradual synchronization to the Earth's 413kyr orbital eccentricity band, which may be responsible for the shift of ice age timings and amplitudes at the Mid-Pleistocene transition. The focus of the thesis, however, is centered the second major example of stable synchronization in the climate system: the continuous, 90 degree phase relationship of the polar climate signals for the entirety of the available ice record. The existence of a relationship between polar climates has been widely observed since ice core proxies became available in both Greenland and Antarctica. However, my work focuses on refining this phase relationship, utilizing it's linear nature to apply deconvolution and establish an energy transfer function. This transfer function shows a distinctly singular frequency, suggesting that climate signal is predominately communicated north to south with a period of 1.6kyrs. This narrows down possible mechanisms of polar connection dramatically, and is further investigated via a collection of intermediate proxy datasets and a set of more contemporary, synchronized, sea surface temperature dipoles. While the former fails to show any strong indication of the nature of the polar signal due in part to the overwhelming uncertainties present on the centennial and millennial scales, the latter demonstrates a large set of synchronized climate oscillations exist, communicate in a variety of networks, and have

  6. Optical code division multiple access secure communications systems with rapid reconfigurable polarization shift key user code

    Science.gov (United States)

    Gao, Kaiqiang; Wu, Chongqing; Sheng, Xinzhi; Shang, Chao; Liu, Lanlan; Wang, Jian

    2015-09-01

    An optical code division multiple access (OCDMA) secure communications system scheme with rapid reconfigurable polarization shift key (Pol-SK) bipolar user code is proposed and demonstrated. Compared to fix code OCDMA, by constantly changing the user code, the performance of anti-eavesdropping is greatly improved. The Pol-SK OCDMA experiment with a 10 Gchip/s user code and a 1.25 Gb/s user data of payload has been realized, which means this scheme has better tolerance and could be easily realized.

  7. Scaling of the polarization amplitude in quantum many-body systems in one dimension

    Science.gov (United States)

    Kobayashi, Ryohei; Nakagawa, Yuya O.; Fukusumi, Yoshiki; Oshikawa, Masaki

    2018-04-01

    Resta proposed a definition of the electric polarization in one-dimensional systems in terms of the ground-state expectation value of the large gauge transformation operator. Vanishing of the expectation value in the thermodynamic limit implies that the system is a conductor. We study Resta's polarization amplitude (expectation value) in the S =1 /2 XXZ chain and its several generalizations, in the gapless conducting Tomonaga-Luttinger liquid phase. We obtain an analytical expression in the lowest-order perturbation theory about the free fermion point (XY chain) and an exact result for the Haldane-Shastry model with long-range interactions. We also obtain numerical results, mostly using the exact diagonalization method. We find that the amplitude exhibits a power-law scaling in the system size (chain length) and vanishes in the thermodynamic limit. On the other hand, the exponent depends on the model even when the low-energy limit is described by the Tomonaga-Luttinger liquid with the same Luttinger parameter. We find that a change in the exponent occurs when the Umklapp term(s) are eliminated, suggesting the importance of the Umklapp terms.

  8. Monitoring tooth demineralization using a cross polarization optical coherence tomographic system with an integrated MEMS scanner

    Science.gov (United States)

    Fried, Daniel; Staninec, Michal; Darling, Cynthia; Kang, Hobin; Chan, Kenneth

    2012-01-01

    New methods are needed for the nondestructive measurement of tooth demineralization and remineralization to monitor the progression of incipient caries lesions (tooth decay) for effective nonsurgical intervention and to evaluate the performance of anti-caries treatments such as chemical treatments or laser irradiation. Studies have shown that optical coherence tomography (OCT) has great potential to fulfill this role since it can be used to measure the depth and severity of early lesions with an axial resolution exceeding 10-μm, it is easy to apply in vivo and it can be used to image the convoluted topography of tooth occlusal surfaces. In this paper we present early results using a new cross-polarization OCT system introduced by Santec. This system utilizes a swept laser source and a MEMS scanner for rapid acquisition of cross polarization images. Preliminary studies show that this system is useful for measurement of the severity of demineralization on tooth surfaces and for showing the spread of occlusal lesions under the dentinal-enamel junction.

  9. National Polar-orbiting Operational Environmental Satellite System (NPOESS) Design and Architecture

    Science.gov (United States)

    Hinnant, F.

    2008-12-01

    The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system - the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS will replace the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD and will provide continuity for the NASA Earth Observing System (EOS) with the launch of the NPOESS Preparatory Project (NPP). This poster will provide an overview of the NPOESS architecture, which includes four segments. The space segment includes satellites in two orbits that carry a suite of sensors to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the Earth, atmosphere, and near-Earth space environment. The NPOESS design allows centralized mission management and delivers high quality environmental products to military, civil and scientific users through a Command, Control, and Communication Segment (C3S). The data processing for NPOESS is accomplished through an Interface Data Processing Segment (IDPS)/Field Terminal Segment (FTS) that processes NPOESS satellite data to provide environmental data products to NOAA and DoD processing centers operated by the United States government as well as to remote terminal users. The Launch Support Segment completes the four segments that make up NPOESS that will enhance the connectivity between research and operations and provide critical operational and scientific environmental measurements to military, civil, and scientific users until 2026.

  10. Cirlularly Polarized Proximity- Fed Microstrip Array Antenna for LAPAN TUBSAT Micro Satellite System

    Directory of Open Access Journals (Sweden)

    Endra Wijaya

    2013-11-01

    Full Text Available The design microstrip of array antenna circular polarization characteristic developed for support LAPAN TUBSAT micro satellite system. The antenna on the micro satellite systems transmit data to ground stations operating at S band frequencies.The antenna is designed for impedance matching at frequencies of 2:25 GHz.The four elements of the square patch antenna array composed using linear methods, where the design of the transmission lines used by federal corporate structure model network consisting of three elements of the quarter wave transformer of a power divider. The feeding techniques for antenna designed using proximity coupling method, which for the type of substrate material used is similar. Circularly polarized antenna characteristics are influenced by the truncated corner pieces on the patch. To design the overall antenna used simulated method of moments in microwave office software applications. The results of measurements and simulations obtained antenna parameters, such as: bandwidth of return loss under 10 dB is 200 MHz (shifted 35%, bandwidth of axial ratio under 3dB is 1.7% and maximum gain directivity is 9 dB. Overall results obtained antenna parameters to meet the specifications of LAPAN TUBSAT micro satellite system.

  11. Analysis of Performance for 100 Gbit/s Dual-Polarization QPSK Modulation Format System

    Science.gov (United States)

    Li, Li; Xiao-bo, Guo; Jing, Li

    2016-03-01

    This article introduces modulation technology, coherent reception technology, the overall design and other key issues for 100 Gbit/s dual-polarization quadrature phase shift keying (DP-QPSK) modulation. Using the technologies based on digital signal processing (DSP), it realizes the long-range transmissions of 100 Gbit/s optical systems to achieve optical signal dispersion compensation, polarized solution reuse and phase estimation. The effect of this scheme is verified with OptiSystem, and the simulation results indicate, with the help of DSP module for processing of the received signal, that the last constellation is ideal and the data transmission error rate is less than 1.3 e-4. The scheme is implemented simply and has high reliability, and it also has reference significance for the optimization of coherent optical detection hardware. As they feature in high spectrum efficiency and large dispersion and PMD tolerances, the DP-QPSK modulation can improve the line efficiency, and maximize the spectral efficiency of the dense wavelength division multiplexing systems. The quality of eye diagram is high, which is clean and has decent open degree.

  12. Hansen Cleaning Solvent Research

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental regulation will force current baseline precision cleaning solvent (AK-225) to be phased out starting 2015; we plan to develop a new solvent or solvent...

  13. Non-Ideality in Solvent Extraction Systems: PNNL FY 2014 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Levitskaia, Tatiana G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chatterjee, Sayandev [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pence, Natasha K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-30

    The overall objective of this project is to develop predictive modeling capabilities for advanced fuel cycle separation processes by gaining a fundamental quantitative understanding of non-ideality effects and speciation in relevant aqueous and organic solutions. Aqueous solutions containing actinides and lanthanides encountered during nuclear fuel reprocessing have high ionic strength and do not behave as ideal solutions. Activity coefficients must be calculated to take into account the deviation from ideality and predict their behavior. In FY 2012-2013, a convenient method for determining activity effects in aqueous electrolyte solutions was developed. Our initial experiments demonstrated that water activity and osmotic coefficients of the electrolyte solutions can be accurately measured by the combination of two techniques, a Water Activity Meter and Vapor Pressure Osmometry (VPO). The water activity measurements have been conducted for binary lanthanide solutions in wide concentration range for all lanthanides (La-Lu with the exception of Pm). The osmotic coefficients and Pitzer parameters for each binary system were obtained by the least squares fitting of the water activity data. However, application of Pitzer model for the quantitative evaluation of the activity effects in the multicomponent mixtures is difficult due to the large number of the required interaction parameters. In FY 2014, the applicability of the Bromley model for the determination of the Ln(NO3)3 activity coefficients was evaluated. The new Bromley parameters for the binary Ln(NO3)3 electrolytes were obtained based on the available literature and our experimental data. This allowed for the accurate prediction of the Ln(NO3)3 activity coefficients for the binary Ln(NO3)3 electrolytes. This model was then successfully implemented for the determination of the Ln(NO3)3 activity

  14. Liquid heat capacity of the solvent system (piperazine + n-methyldiethanolamine + water)

    International Nuclear Information System (INIS)

    Chen, Y.-R.; Caparanga, Alvin R.; Soriano, Allan N.; Li, M.-H.

    2010-01-01

    A new set of values for the heat capacity of aqueous mixtures of piperazine (PZ) and n-methyldiethanolamine (MDEA) at different concentrations and temperatures are reported in this paper. The differential scanning calorimetry technique was used to measure the property over the range T = 303.2 K to T = 353.2 K for mixtures containing 0.60 to 0.90 mole fraction water with 15 different concentrations of the system (PZ + MDEA + H 2 O). Heat capacity for four concentrations of the binary system (PZ + MDEA) was also measured. A Redlich-Kister-type equation was adopted to estimate the excess molar heat capacity, which was used to predict the value of the molar heat capacity at a particular concentration and temperature, which would then be compared against the measured value. A total of 165 data points fit into the model resulted in a low overall average absolute deviation of 4.6% and 0.3% for the excess molar heat capacity and molar heat capacity, respectively. Thus, the results presented here are of acceptable accuracy for use in engineering process design.

  15. Determination of Quantitative Structure-Property Relationships of Solvent Resistance of Polycarbonate Copolymers Using a Resonant Multisensor System

    Science.gov (United States)

    Potyrailo, Radislav A.; Wroczynski, Ronald J.; McCloskey, Patrick J.; Morris, William G.

    In sensor and microfluidic applications, the need is to have an adequate solvent resistance of polymers to prevent degradation of the substrate surface upon deposition of sensor formilations, to prevent contamination of the solvent-containing sensor formulations or contamination of organic liquid reactions in microfluidic channels. Unfortunately, no comprehensive quantitative reference solubility data of unstressed copolymers is available to date. In this study, we evaluate solvent-resistance of several polycarbonate copolymers prepared from the reaction of hydroquinone (HQ), resorcinol (RS), and bisphenol A (BPA). Our high-throughput polymer evaluation approach permitted the construction of detailed solvent-resistance maps, the development of quantitative structure-property relationships for BPA-HQ-RS copolymers and provided new knowledge for the further development of the polymeric sensor and microfluidic components.

  16. Monoglycerides and Diglycerides Synthesis in a Solvent-Free System by Lipase-Catalyzed Glycerolysis

    Science.gov (United States)

    Fregolente, Patricia Bogalhos Lucente; Fregolente, Leonardo Vasconcelos; Pinto, Gláucia Maria F.; Batistella, Benedito César; Wolf-Maciel, Maria Regina; Filho, Rubens Maciel

    Five lipases were screened (Thermomyces lanuginosus free and immobilized forms, Candida antarctica B, Candida rugosa, Aspergillus niger, and Rhizomucor miehei) to study their ability to produce monoglycerides (MG) and diglycerides (DG) through enzymatic glycerolysis of soybean oil. Lipase from C. antarctica was further studied to verify the enzyme load (wt% of oil mass), the molar ratio glycerol/oil, and the water content (wt% of glycerol) on the glycerolysis reaction. The best DG and MG productions were in the range 45-48% and 28-30% (w/w, based on the total oil), respectively. Using immobilized lipases, the amount of free fatty acids (FFA) produced was about 5%. However, the amount of FFA produced when using free lipases, with 3.5% extra water in the system, is equivalent to the MG yield, about 23%. The extra water content provides a competition between hydrolysis and glycerolysis reactions, increasing the FFA production.

  17. Factors influencing phase-disengagement rates in solvent-extraction systems employing tertiary amine extractants

    International Nuclear Information System (INIS)

    Moyer, B.A.; McDowell, W.J.

    1981-01-01

    The primary purpose of the present investigation was to examine the effects of amine size and structure on phase disengagement. Nine commercial tertiary amines were tested together with four laboratory-quality amines for uranium extraction and both organic-continuous (OC) and aqueous-continuous (AC) phase disengagement under Amex-type conditions. Synthetic acid sulfate solutions with and without added colloidal silica and actual ore leach solutions were used as the aqueous phases. Phase disengagement results were correlated with amine size and branching and solution wetting behavior on a silicate (glass) surface. The results suggest that the performance of some Amex systems may be improved by using branched chain tertiary amine extractants of higher molecular weight than are now normally used

  18. New Organic Solvent Free Three-Component Waterproof Epoxy-Polyamine Systems

    Directory of Open Access Journals (Sweden)

    C. M. LACNJEVAC

    2010-08-01

    Full Text Available The unmodified GY epoxy resin (Vantico AG was crosslinked by the aliphatic and cycloaliphatic EH polyamine adduct (Solutia-Vianova in the different stoichiometric ratio. The optimal time of total crosslinking was determined by indirect measuring of the film hardness. The degree of the epoxy resin crosslinking and the quantity of unreacted epoxy groups have been monitored by the spectroscopic FT-IR method. The content and intensity changes of hydroxy group were correlated to the extent of epoxy reaction and crosslinking degree. By the parameters correlation and a period of resins application, optimal resin/hardeners stoichiometric ratio was defined. It was prerequisite for three-component epoxy system forming which is comparatively more elastic, adhesion and waterproof.

  19. A polarized multispectral imaging system for quantitative assessment of hypertrophic scars.

    Science.gov (United States)

    Ghassemi, Pejhman; Travis, Taryn E; Moffatt, Lauren T; Shupp, Jeffrey W; Ramella-Roman, Jessica C

    2014-10-01

    Hypertrophic scars (HTS) are a pathologic reaction of the skin and soft tissue to burn or other traumatic injury. Scar tissue can cause patients serious functional and cosmetic issues. Scar management strategies, specifically scar assessment techniques, are vital to improve clinical outcome. To date, no entirely objective method for scar assessment has been embraced by the medical community. In this study, we introduce for the first time, a novel polarized multispectral imaging system combining out-of-plane Stokes polarimetry and Spatial Frequency Domain Imaging (SFDI). This imaging system enables us to assess the pathophysiology (hemoglobin, blood oxygenation, water, and melanin) and structural features (cellularity and roughness) of HTS. To apply the proposed technique in an in vivo experiment, dermal wounds were created in a porcine model and allowed to form into scars. The developed scars were then measured at various time points using the imaging system. Results showed a good agreement with clinical Vancouver Scar Scale assessment and histological examinations.

  20. Design of FBG En/decoders in Coherent 2-D Time-polarization OCDMA Systems

    Science.gov (United States)

    Hou, Fen-fei; Yang, Ming

    2012-12-01

    A novel fiber Bragg grating (FBG)-based en/decoder for the two-dimensional (2-D) time-spreading and polarization multiplexer optical coding is proposed. Compared with other 2-D en/decoders, the proposed en/decoding for an optical code-division multiple-access (OCDMA) system uses a single phase-encoded FBG and coherent en/decoding. Furthermore, combined with reconstruction-equivalent-chirp technology, such en/decoders can be realized with a conventional simple fabrication setup. Experimental results of such en/decoders and the corresponding system test at a data rate of 5 Gbit/s demonstrate that this kind of 2-D FBG-based en/decoders could improve the performances of OCDMA systems.

  1. Process for preparing organoclays for aqueous and polar-organic systems

    Science.gov (United States)

    Chaiko, David J.

    2001-01-01

    A process for preparing organoclays as thixotropic agents to control the rheology of water-based paints and other aqueous and polar-organic systems. The process relates to treating low-grade clay ores to achieve highly purified organoclays and/or to incorporate surface modifying agents onto the clay by adsorption and/or to produce highly dispersed organoclays without excessive grinding or high shear dispersion. The process involves the treatment of impure, or run-of-mine, clay using an aqueous biphasic extraction system to produce a highly dispersed clay, free of mineral impurities and with modified surface properties brought about by adsorption of the water-soluble polymers used in generating the aqueous biphasic extraction system. This invention purifies the clay to greater than 95%.

  2. Formation of zinc-peptide spherical microparticles during lyophilization from tert-butyl alcohol/water co-solvent system.

    Science.gov (United States)

    Qian, Feng; Ni, Nina; Chen, Jia-Wen; Desikan, Sridhar; Naringrekar, Vijay; Hussain, Munir A; Barbour, Nancy P; Smith, Ronald L

    2008-12-01

    To understand the mechanism of spherical microparticle formation during lyophilizing a tert-Butyl alcohol (TBA)/water solution of a zinc peptide adduct. A small peptide, PC-1, as well as zinc PC-1 at (3:2) and (3:1) ratios, were dissolved in 44% (wt.%) of TBA/water, gradually frozen to -50 degrees C over 2 h ("typical freezing step"), annealed at -20 degrees C for 6 h ("annealing step"), and subsequently lyophilized with primary and secondary drying. Zinc peptide (3:1) lyophile was also prepared with quench cooling instead of the typical freezing step, or without the annealing step. Other TBA concentrations, i.e., 25%, 35%, 54% and 65%, were used to make the zinc peptide (3:1) adduct lyophile with the typical freezing and annealing steps. The obtained lyophile was analyzed by Scanning Electron Microscopy (SEM). The zinc peptide solutions in TBA/water were analyzed by Differential Scanning Calorimeter (DSC). The surface tension of the TBA/water co-solvent system was measured by a pendant drop shape method. With typical freezing and annealing steps, the free peptide lyophile showed porous network-like structure that is commonly seen in lyophilized products. However, with increasing the zinc to peptide ratio, uniform particles were gradually evolved. Zinc peptide (3:1) adduct lyophiles obtained from 25%, 35% and 44% TBA exhibit a distinctive morphology of uniform and spherical microparticles with diameters of approximately 3-4 microm, and the spherical zinc peptide particles are more predominant when the TBA level approaches 20%. Adopting quench cooling in the lyophilization cycle leads to irregular shape fine powders, and eliminating the annealing step causes rough particles surface. When TBA concentration increases above 54%, the lyophiles demonstrate primarily irregular shape particles. A proposed mechanism of spherical particle formation of the 3:1 zinc peptide encompasses the freezing of a TBA/water solution (20-70% TBA) causing the formation of a TBA hydrate

  3. Kinetic study of lipase-catalyzed glycerolysis of palm olein using Lipozyme TLIM in solvent-free system.

    Directory of Open Access Journals (Sweden)

    Thomas Shean Yaw Choong

    Full Text Available Diacylglycerol (DAG and monoacylglycerol (MAG are two natural occurring minor components found in most edible fats and oils. These compounds have gained increasing market demand owing to their unique physicochemical properties. Enzymatic glycerolysis in solvent-free system might be a promising approach in producing DAG and MAG-enriched oil. Understanding on glycerolysis mechanism is therefore of great importance for process simulation and optimization. In this study, a commercial immobilized lipase (Lipozyme TL IM was used to catalyze the glycerolysis reaction. The kinetics of enzymatic glycerolysis reaction between triacylglycerol (TAG and glycerol (G were modeled using rate equation with unsteady-state assumption. Ternary complex, ping-pong bi-bi and complex ping-pong bi-bi models were proposed and compared in this study. The reaction rate constants were determined using non-linear regression and sum of square errors (SSE were minimized. Present work revealed satisfactory agreement between experimental data and the result generated by complex ping-pong bi-bi model as compared to other models. The proposed kinetic model would facilitate understanding on enzymatic glycerolysis for DAG and MAG production and design optimization of a pilot-scale reactor.

  4. Optimization and application of homogeneous liquid-liquid extraction in preconcentration of copper (II) in a ternary solvent system.

    Science.gov (United States)

    Farajzadeh, Mir Ali; Bahram, Morteza; Zorita, Saioa; Mehr, Behzad Ghorbani

    2009-01-30

    In this study a homogeneous liquid-liquid extraction based on the Ph-dependent phase-separation process was investigated using a ternary solvent system (water-acetic acid-chloroform) for the preconcentration of Cu(2+) ions. 8-Hydroxy quinoline was used as the chelating agent prior to its extraction. Flame atomic absorption spectrophotometry using acetylene-air flame was used for the quantitation of analyte after preconcentration. The effect of various experimental parameters in extraction step was investigated using two optimization methods, one variable at a time and central composite design. The experimental design was done at five levels of operating parameters. Nearly the same optimized results were obtained using both methods: sample size, 5 mL; volume of NaOH 10 M, 2 mL; chloroform volume, 300 microL; 8-hydroxy quinoline concentration more than 0.01 M and salt amount did not affect the extraction significantly. Under the optimum conditions the calibration graph was linear over the range 10-2000 microg L(-1). The relative standard deviation was 7.6% for six repeated determinations (C = 500 microg L(-1)). Furthermore, the limit of detection (S/N=3) and limit of quantification (S/N=10) of the method were obtained as 1.74 and 6 microg L(-1), respectively.

  5. A computer code for calculation of solvent-extraction separation in a multicomponent system with reference to nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Carassiti, F.; Liuzzo, G.; Morelli, A.

    1982-01-01

    Nuclear technology development pointed out the need for a new assessment of the fuel cycle back-end. Treatment and disposal of radioactive wastes arising from nuclear fuel reprocessing is known as one of the problems not yet satisfactorily solved, together with separation process of uranium and plutonium from fission products in highly irradiated fuels. Aim of this work is to present an improvement of the computer code for solvent extraction process calculation previously designed by the authors. The modeling of the extraction system has been modified by introducing a new method for calculating the distribution coefficients. The new correlations were based on deriving empirical functions for not only the apparent equilibrium constants, but also the solvation number. The mathematical model derived for calculating separation performance has been then tested for up to ten components and twelve theoretical stages with minor modifications to the convergence criteria. Suitable correlations for the calculation of the distribution coefficients of Uranium, Plutonium, Nitric Acid and fission products were constructed and used to successfully simulate several experimental conditions. (Author)

  6. Green and Sustainable Solvents in Chemical Processes.

    Science.gov (United States)

    Clarke, Coby J; Tu, Wei-Chien; Levers, Oliver; Bröhl, Andreas; Hallett, Jason P

    2018-01-24

    Sustainable solvents are a topic of growing interest in both the research community and the chemical industry due to a growing awareness of the impact of solvents on pollution, energy usage, and contributions to air quality and climate change. Solvent losses represent a major portion of organic pollution, and solvent removal represents a large proportion of process energy consumption. To counter these issues, a range of greener or more sustainable solvents have been proposed and developed over the past three decades. Much of the focus has been on the environmental credentials of the solvent itself, although how a substance is deployed is as important to sustainability as what it is made from. In this Review, we consider several aspects of the most prominent sustainable organic solvents in use today, ionic liquids, deep eutectic solvents, supercritical fluids, switchable solvents, liquid polymers, and renewable solvents. We examine not only the performance of each class of solvent within the context of the reactions or extractions for which it is employed, but also give consideration to the wider context of the process and system within which the solvent is deployed. A wide range of technical, economic, and environmental factors are considered, giving a more complete picture of the current status of sustainable solvent research and development.

  7. Temperature and humidity compensation in the determination of solvent vapors with a microsensor system.

    Science.gov (United States)

    Park, J; Zellers, E T

    2000-10-01

    Accounting for changes in temperature and ambient humidity is critical to the development of practical field vapor-monitoring instrumentation employing microfabricated sensor arrays. In this study, responses to six organic vapors were collected from two prototype field instruments over a range of ambient temperatures and relative humidities (RH). Each instrument contains an array of three unthermostated polymer-coated surface acoustic wave (SAW) resonators, a thermally desorbed adsorbent preconcentrator bed, a reversible pump and a small scrubber cartridge. Negligible changes in the vapor sensitivities with atmospheric RH were observed owing, in large part, to the temporal separation of co-adsorbed water from the organic vapor analytes upon thermal desorption of preconcentrated air samples. As a result, calibrations performed at one RH level could be used to determine vapors at any other RH without corrections using standard pattern recognition methods. Negative exponential temperature dependences that agreed reasonably well with those predicted from theory were observed for many of the vapor-sensor combinations. It was possible to select a subset of sensors with structurally diverse polymer coatings whose sensitivities to all six test vapors and selected binary vapor mixtures had similar temperature dependences. Thus, vapor recognition could be rendered independent of temperature and vapor quantification could be corrected for temperature with sufficient accuracy for most applications. The results indicate that active temperature control is not necessary and that temperature and RH compensation is achievable with a relatively simple microsensor system.

  8. Solution processing of chalcogenide materials using thiol-amine "alkahest" solvent systems.

    Science.gov (United States)

    McCarthy, Carrie L; Brutchey, Richard L

    2017-05-02

    Macroelectronics is a major focus in electronics research and is driven by large area applications such as flat panel displays and thin film solar cells. Innovations for these technologies, such as flexible substrates and mass production, will require efficient and affordable semiconductor processing. Low-temperature solution processing offers mild deposition methods, inexpensive processing equipment, and the possibility of high-throughput processing. In recent years, the discovery that binary "alkahest" mixtures of ethylenediamine and short chain thiols possess the ability to dissolve bulk inorganic materials to yield molecular inks has lead to the wide study of such systems and the straightforward recovery of phase pure crystalline chalcogenide thin films upon solution processing and mild annealing of the inks. In this review, we recount the work that has been done toward elucidating the scope of this method for the solution processing of inorganic materials for use in applications such as photovoltaic devices, electrocatalysts, photodetectors, thermoelectrics, and nanocrystal ligand exchange. We also take stock of the wide range of bulk materials that can be used as soluble precursors, and discuss the work that has been done to reveal the nature of the dissolved species. This method has provided a vast toolbox of over 65 bulk precursors, which can be utilized to develop new routes to functional chalcogenide materials. Future studies in this area should work toward a better understanding of the mechanisms involved in the dissolution and recovery of bulk materials, as well as broadening the scope of soluble precursors and recoverable functional materials for innovative applications.

  9. Development of novel solvent extraction system by utilizing the metal ions excitation with ultraviolet pulse laser

    International Nuclear Information System (INIS)

    Saeki, Morihisa; Sasaki, Yuji; Yokoyama, Atsushi

    2010-01-01

    Novel liquid-liquid extraction technique was developed using ultraviolet pulse laser. The liquid-liquid system was composed of pure water and the 1-octanol solution of EuCl 3 and TODGA (TODGA = N,N,N',N'-tetraoctyl-diglycolamide). The Eu 3+ ion, which was formed to be the Eu 3+ (TODGA) n complex in 1-octanol, was reduced to Eu 2+ by irradiation of fourth harmonic of Nd:YAG laser (266 nm). The Eu 2+ ion was stabilized by addition of 15-Crown-5 (15C5). The observation by in-situ emission spectroscopy showed that the Eu 2+ ion reduced by the 266 nm-laser irradiation resulted in back-extraction of Eu from the 1-octanol solution to the water. The emission spectrum observed in 1-octanol suggested the change from the Eu 3+ (TODGA) n to the Eu 2+ (15C5) m complex after the reduction by the 266 nm laser. Time dependence of the concentration of Eu 2+ (15C5) m was investigated at the aqueous phase, the organic one and their interface. The results suggest that (1) rapid formation of Eu 2+ (15C5) m in 1-octanol after the irradiation of the 266 nm laser, (2) slow diffusion of Eu 2+ (15C5) m in 1-octanol, and (3) existence of time-lag between the formation of Eu 2+ (15C5) m in 1-octanol and its back-extraction to the water. (author)

  10. Quantum mechanical systems interacting with different polarizations of gravitational waves in noncommutative phase space

    Science.gov (United States)

    Saha, Anirban; Gangopadhyay, Sunandan; Saha, Swarup

    2018-02-01

    Owing to the extreme smallness of any noncommutative scale that may exist in nature, both in the spatial and momentum sector of the quantum phase space, a credible possibility of their detection lies in the gravitational wave (GW) detection scenario, where one effectively probes the relative length-scale variations ˜O [10-20-10-23] . With this motivation, we have theoretically constructed how a free particle and a harmonic oscillator will respond to linearly and circularly polarized gravitational waves if their quantum mechanical phase space has a noncommutative structure. We critically analyze the formal solutions which show resonance behavior in the responses of both free particle and HO systems to GW with both kind of polarizations. We discuss the possible implications of these solutions in detecting noncommutativity in a GW detection experiment. We use the currently available upper-bound estimates on various noncommutative parameters to anticipate the relative importance of various terms in the solutions. We also argue how the quantum harmonic oscillator system we considered here can be very relevant in the context of the resonant bar detectors of GW which are already operational.

  11. Effects of astigmatism on spectra, coherence and polarization of stochastic electromagnetic beams passing through an astigmatic optical system.

    Science.gov (United States)

    Pan, Liuzhan; Sun, Mengle; Ding, Chaoliang; Zhao, Zhiguo; Lü, Baida

    2009-04-27

    Analytical formulas for the cross-spectral density matrix of stochastic electromagnetic Gaussian Schell-model (EGSM) beams passing through an astigmatic optical system are derived. We show both analytically and by numerical examples the effects of astigmatism on spectra, coherence and polarization of stochastic electromagnetic EGSM beams propagating through an astigmatic lens. A comparison with the aberration-free case is made, and shows that the astigmatism has significant effect on the spectra, coherence and polarization.

  12. Power Polarity In The Far Eastern World System, 1025 BC–AD 1850: Narrative And 25-Year Interval Data

    Directory of Open Access Journals (Sweden)

    David Wikinson

    2015-08-01

    Full Text Available Power polarity in the Far Eastern macro-social system is assessed at twenty five year intervals 1050 BC-AD 1850. Consistent with analysis of Indic system data, there is no support for the theory that the normal world-system power configuration is multipolar, hegemonic, or universal-empire. Instead several different "stability epochs" are discerned.

  13. Luminescent systems based on the isolation of conjugated PI systems and edge charge compensation with polar molecules on a charged nanostructured surface

    Science.gov (United States)

    Ivanov, Ilia N.; Puretzky, Alexander A.; Zhao, Bin; Geohegan, David B.; Styers-Barnett, David J.; Hu, Hui

    2014-07-15

    A photoluminescent or electroluminescent system and method of making a non-luminescent nanostructured material into such a luminescent system is presented. The method of preparing the luminescent system, generally, comprises the steps of modifying the surface of a nanostructured material to create isolated regions to act as luminescent centers and to create a charge imbalance on the surface; applying more than one polar molecule to the charged surface of the nanostructured material; and orienting the polar molecules to compensate for the charge imbalance on the surface of the nanostructured material. The compensation of the surface charge imbalance by the polar molecules allows the isolated regions to exhibit luminescence.

  14. First Measurements of Polar Mesospheric Summer Echoes by a Tri-static Radar System

    Science.gov (United States)

    La Hoz, C.

    2015-12-01

    Polar Mesospheric Summer Echoes (PMSE) have been observed for the first time by a tri-static radar system comprising the EISCAT VHF (224 MHz, 0.67 m Bragg wavelength) active radar in Tromso (Norway) and passive receiving stations in Kiruna, (Sweden) and Sodankyla (Finland). The antennas at the receiving stations, originally part of the EISCAT tri-static UHF radar system at 930 MHz, have been refitted with new feeder systems at the VHF frequency of the transmitter in Tromso. The refitted radar system opens new opportunities to study PMSE for its own sake and as a tracer of the dynamics of the polar mesosphere, a region that is difficult to investigate by other means. The measurements show that very frequently both remote receiving antennas detect coherent signals that are much greater than the regular incoherent scattering due to thermal electrons and coinciding in time and space with PMSE measured by the transmitter station in Tromso. This represents further evidence that PMSE is not aspect sensitive, as was already indicated by a less sensitive radar system in a bi-static configuration, and implying that the underlying atmospheric turbulence, at least at sub-meter scales, is isotropic in agreement with Kolmogorov's hypothesis. Measurements also show that the vertical rate of fall of persistent features of PMSE is the same as the vertical line of sight velocity inferred from the doppler shift of the PMSE signals. This equivalence forms the basis for using PMSE as a tracer of the dynamics of the background mesosphere. Thus, it is possible to measure the 3-dimensional velocity field in the PMSE layer over the intersection volume of the three antennas. Since the signals have large signal-to-noise ratios (up to 30 dB), the inferred velocities have high accuracies and good time resolutions. This affords the possibility to make estimates of momentum flux in the mesosphere deposited by overturning gravity waves. Gravity wave momentum flux is believed to be the engine of a

  15. Waveguide transition with vacuum window for multiband dynamic nuclear polarization systems

    DEFF Research Database (Denmark)

    Rybalko, Oleksandr; Bowen, Sean; Zhurbenko, Vitaliy

    2016-01-01

    broadband than commercially available windows, which are usually optimized for single band operation. It is demonstrated that high-density polyethylene with urethane adhesive can be used as a low loss microwave vacuum window in multiband DNP systems. The overall assembly performance and dimensions are found......A low loss waveguide transition section and oversized microwave vacuum window covering several frequency bands (94 GHz, 140 GHz, 188 GHz) is presented. The transition is compact and was optimized for multiband Dynamic Nuclear Polarization (DNP) systems in a full-wave simulator. The window is more...... using full-wave simulations. The practical aspects of the window implementation in the waveguide are discussed. To verify the design and simulation results, the window is tested experimentally at the three frequencies of interest....

  16. Solvent-assisted multistage nonequilibrium electron transfer in rigid supramolecular systems: Diabatic free energy surfaces and algorithms for numerical simulations

    Science.gov (United States)

    Feskov, Serguei V.; Ivanov, Anatoly I.

    2018-03-01

    An approach to the construction of diabatic free energy surfaces (FESs) for ultrafast electron transfer (ET) in a supramolecule with an arbitrary number of electron localization centers (redox sites) is developed, supposing that the reorganization energies for the charge transfers and shifts between all these centers are known. Dimensionality of the coordinate space required for the description of multistage ET in this supramolecular system is shown to be equal to N - 1, where N is the number of the molecular centers involved in the reaction. The proposed algorithm of FES construction employs metric properties of the coordinate space, namely, relation between the solvent reorganization energy and the distance between the two FES minima. In this space, the ET reaction coordinate zn n' associated with electron transfer between the nth and n'th centers is calculated through the projection to the direction, connecting the FES minima. The energy-gap reaction coordinates zn n' corresponding to different ET processes are not in general orthogonal so that ET between two molecular centers can create nonequilibrium distribution, not only along its own reaction coordinate but along other reaction coordinates too. This results in the influence of the preceding ET steps on the kinetics of the ensuing ET. It is important for the ensuing reaction to be ultrafast to proceed in parallel with relaxation along the ET reaction coordinates. Efficient algorithms for numerical simulation of multistage ET within the stochastic point-transition model are developed. The algorithms are based on the Brownian simulation technique with the recrossing-event detection procedure. The main advantages of the numerical method are (i) its computational complexity is linear with respect to the number of electronic states involved and (ii) calculations can be naturally parallelized up to the level of individual trajectories. The efficiency of the proposed approach is demonstrated for a model

  17. Comprehensive separation of secondary metabolites in natural products by high-speed counter-current chromatography using a three-phase solvent system.

    Science.gov (United States)

    Yanagida, Akio; Yamakawa, Yutaka; Noji, Ryoko; Oda, Ako; Shindo, Heisaburo; Ito, Yoichiro; Shibusawa, Yoichi

    2007-06-01

    High-speed counter-current chromatography (HSCCC) using the three-phase solvent system n-hexane-methyl acetate-acetonitrile-water at a volume ratio of 4:4:3:4 was applied to the comprehensive separation of secondary metabolites in several natural product extracts. A wide variety of secondary metabolites in each natural product was effectively extracted with the three-phase solvent system, and the filtered extract was directly submitted to the HSCCC separation using the same three-phase system. In the HSCCC profiles of crude natural drugs listed in the Japanese Pharmacopoeia, several physiologically active compounds were clearly separated from other components in the extracts. The HSCCC profiles of several tea products, each manufactured by a different process, clearly showed their compositional difference in main compounds such as catechins, caffeine, and pigments. These HSCCC profiles also provide useful information about hydrophobic diversity of whole components present in each natural product.

  18. Polarization tracking system for free-space optical communication, including quantum communication

    Science.gov (United States)

    Nordholt, Jane Elizabeth; Newell, Raymond Thorson; Peterson, Charles Glen; Hughes, Richard John

    2018-01-09

    Quantum communication transmitters include beacon lasers that transmit a beacon optical signal in a predetermined state of polarization such as one of the states of polarization of a quantum communication basis. Changes in the beacon polarization are detected at a receiver, and a retarder is adjusted so that the states of polarization in a received quantum communication optical signal are matched to basis polarizations. The beacon and QC signals can be at different wavelengths so that the beacon does not interfere with detection and decoding of the QC optical signal.

  19. Polarization Optics

    OpenAIRE

    Fressengeas, Nicolas

    2010-01-01

    The physics of polarization optics *Polarized light propagation *Partially polarized light; DEA; After a brief introduction to polarization optics, this lecture reviews the basic formalisms for dealing with it: Jones Calculus for totally polarized light and Stokes parameters associated to Mueller Calculus for partially polarized light.

  20. Physicochemical properties of ammonium-based deep eutectic solvents and their electrochemical evaluation using organometallic reference redox systems

    International Nuclear Information System (INIS)

    Bahadori, Laleh; Chakrabarti, Mohammed Harun; Mjalli, Farouq Sabri; AlNashef, Inas Muen; Manan, Ninie Suhana Abdul; Hashim, Mohd Ali

    2013-01-01

    Highlights: • Physicochemical properties of seven deep eutectic solvents as electrolytes measured. • Walden plot showed ideal ammonium-based deep eutectic solvents. • Potential windows of all deep eutectic solvents determined. • Diffusion coefficients and rate constants of organometallic redox couples measured. • Rate constants of deep eutectic solvents were lower than those of ionic liquids. -- Abstract: Seven deep eutectic solvents (DESs) containing ammonium based salts are prepared by means of hydrogen bonding with acid, amine, amide and nitrate based compounds. The major physicochemical properties of the DESs in terms of density, viscosity, electrical conductivity, molar conductivity and pH are investigated prior to ascertaining their electrochemical characteristics by means of cyclic voltammetry and chronoamperometry. Nitrate based DESs exhibit higher conductivities but lower viscosities than other DESs, whereas the amide based DES displays the widest electrochemical potential window. Diffusion coefficient, D, of two organometallic redox couples, Fc/Fc + (ferrocene/ferrocenium) and Cc/Cc + (cobaltocene/cobaltocenium) is found to be of the order of 10 −9 to 10 −8 cm 2 s −1 in all studied DESs while the heterogeneous rate constant for electron transfer across the electrode/DES interface is of the order of 10 −4 cm s −1 . The Stokes–Einstein products of Fc and Cc + in the DESs have also been determined

  1. Small-Molecule Organic Photovoltaic Modules Fabricated via Halogen-Free Solvent System with Roll-to-Roll Compatible Scalable Printing Method.

    Science.gov (United States)

    Heo, Youn-Jung; Jung, Yen-Sook; Hwang, Kyeongil; Kim, Jueng-Eun; Yeo, Jun-Seok; Lee, Sehyun; Jeon, Ye-Jin; Lee, Donmin; Kim, Dong-Yu

    2017-11-15

    For the first time, the photovoltaic modules composed of small molecule were successfully fabricated by using roll-to-roll compatible printing techniques. In this study, blend films of small molecules, BTR and PC 71 BM were slot-die coated using a halogen-free solvent system. As a result, high efficiencies of 7.46% and 6.56% were achieved from time-consuming solvent vapor annealing (SVA) treatment and roll-to-roll compatible solvent additive approaches, respectively. After successful verification of our roll-to-roll compatible method on small-area devices, we further fabricated large-area photovoltaic modules with a total active area of 10 cm 2 , achieving a power conversion efficiency (PCE) of 4.83%. This demonstration of large-area photovoltaic modules through roll-to-roll compatible printing methods, even based on a halogen-free solvent, suggests the great potential for the industrial-scale production of organic solar cells (OSCs).

  2. Aqueous solutions that model the cytosol : studies on polarity, chemical reactivity and enzyme kinetics

    NARCIS (Netherlands)

    Asaad, N.; den Otter, M.J.; Engberts, J.B.F.N.

    2004-01-01

    Concentrated solutions of a series of organic compounds have been prepared and the effects of these solutes on the properties of the solvent system assessed as a function of their concentration and nature. Polarity, as measured by Reichardt's E-T(30) probe, exhibits a linear variation with both

  3. Improved levulinic acid production from agri-residue biomass in biphasic solvent system through synergistic catalytic effect of acid and products.

    Science.gov (United States)

    Kumar, Sandeep; Ahluwalia, Vivek; Kundu, Pranati; Sangwan, Rajender S; Kansal, Sushil K; Runge, Troy M; Elumalai, Sasikumar

    2018-03-01

    In this study, levulinic acid (LA) was produced from rice straw biomass in co-solvent biphasic reactor system consisting of hydrochloric acid and dichloromethane organic solvent. The modified protocol achieved a 15% wt LA yield through the synergistic effect of acid and acidic products (auto-catalysis) and the designed system allowed facile recovery of LA to the organic phase. Further purification of the resulting extractant was achieved through traditional column chromatography, which yielded a high purity LA product while recovering ∼85% wt. Upon charcoal treatment of the resultant fraction generated an industrial grade target molecule of ∼99% purity with ∼95% wt recovery. The system allows the solvent to be easily recovered, in excess of 90%, which was shown to be able to be recycled up to 5 runs without significant loss of final product concentrations. Overall, this system points to a method to significantly reduce manufacturing cost during large-scale LA preparation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Giant vesicles (GV) in colloidal system under the optical polarization microscope (OPM).

    Science.gov (United States)

    Khalid, Khalisanni; Noh, Muhammad Azri Mohd; Khan, M Niyaz; Ishak, Ruzaina; Penney, Esther; Chowdhury, Zaira Zaman; Hamzah, Mohammad Hafiz; Othman, Maizatulnisa

    2017-09-01

    This paper discusses the unprecedented microscopic findings of micellar growth in colloidal system (CS) of catalyzed piperidinolysis of ionized phenyl salicylate (PS - ). The giant vesicles (GV) was observed under the optical polarization microscope (OPM) at [NaX]=0.1M where X=3-isopropC 6 H 4 O - . The conditions were rationalized from pseudo-first-order rate constant, k obs of PS - of micellar phase at 31.1×10 -3 s -1 reported in previous publication. The overall diameter of GV (57.6μm) in CS (CTABr/NaX/H 2 O)-catalyzed piperidinolysis (where X=3-isopropC 6 H 4 O) of ionized phenyl salicylate were found as giant unilamellar vesicles (GUV) and giant multilamellar vesicles (GMV). The findings were also validated by means of rheological analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Continuum treatment of electronic polarization effect.

    Science.gov (United States)

    Tan, Yu-Hong; Luo, Ray

    2007-03-07

    A continuum treatment of electronic polarization has been explored for in molecular mechanics simulations in implicit solvents. The dielectric constant for molecule interior is the only parameter in the continuum polarizable model. A value of 4 is found to yield optimal agreement with high-level ab initio quantum mechanical calculations for the tested molecular systems. Interestingly, its performance is not sensitive to the definition of molecular volume, in which the continuum electronic polarization is defined. In this model, quantum mechanical electrostatic field in different dielectric environments from vacuum, low-dielectric organic solvent, and water can be used simultaneously in atomic charge fitting to achieve consistent treatment of electrostatic interactions. The tests show that a single set of atomic charges can be used consistently in different dielectric environments and different molecular conformations, and the atomic charges transfer well from training monomers to tested dimers. The preliminary study gives us the hope of developing a continuum polarizable force field for more consistent simulations of proteins and nucleic acids in implicit solvents.

  6. Continuum treatment of electronic polarization effect

    Science.gov (United States)

    Tan, Yu-Hong; Luo, Ray

    2007-03-01

    A continuum treatment of electronic polarization has been explored for in molecular mechanics simulations in implicit solvents. The dielectric constant for molecule interior is the only parameter in the continuum polarizable model. A value of 4 is found to yield optimal agreement with high-level ab initio quantum mechanical calculations for the tested molecular systems. Interestingly, its performance is not sensitive to the definition of molecular volume, in which the continuum electronic polarization is defined. In this model, quantum mechanical electrostatic field in different dielectric environments from vacuum, low-dielectric organic solvent, and water can be used simultaneously in atomic charge fitting to achieve consistent treatment of electrostatic interactions. The tests show that a single set of atomic charges can be used consistently in different dielectric environments and different molecular conformations, and the atomic charges transfer well from training monomers to tested dimers. The preliminary study gives us the hope of developing a continuum polarizable force field for more consistent simulations of proteins and nucleic acids in implicit solvents.

  7. Polar Gateways Arctic Circle Sunrise Conference 2008, Barrow, Alaska: IHY-IPY Outreach on Exploration of Polar and Icy Worlds in The Solar System

    Science.gov (United States)

    Cooper, John F.; Kauristie, K.; Weatherwax, A. T.; Sheehan, G. W.; Smith, R. W.; Sandahl, I.; Østgaard, N.; Chernouss, S.; Moore, M. H.; Peticolas, L. M.; Senske, D. A.; Thompson, B. J.; Tamppari, L. K.; Lewis, E. M.

    2008-09-01

    Polar, heliophysical, and planetary science topics related to the International Heliophysical and Polar Years 2007-2009 were addressed during this circumpolar video conference hosted January 23-29, 2008 at the new Barrow Arctic Research Center of the Barrow Arctic Science Consortium in Barrow, Alaska. This conference was planned as an IHY-IPY event science outreach event bringing together scientists and educational specialists for the first week of sunrise at subzero Arctic temperatures in Barrow. Science presentations spanned the solar system from the polar Sun to Earth, Moon, Mars, Jupiter, Saturn, and the Kuiper Belt. On-site participants experienced look and feel of icy worlds like Europa and Titan by being in the Barrow tundra and sea ice environment and by going "on the ice" during snowmobile expeditions to the near-shore sea ice environment and to Point Barrow, closest geographic point in the U.S. to the North Pole. Many science presentations were made remotely via video conference or teleconference from Sweden, Norway, Russia, Canada, Antarctica, and the United States, spanning up to thirteen time zones (Alaska to Russia) at various times. Extensive educational outreach activities were conducted with the local Barrow and Alaska North Slope communities and through the NASA Digital Learning Network live from the "top of the world" at Barrow. The Sun-Earth Day team from Goddard, and a videographer from the Passport to Knowledge project, carried out extensive educational interviews with many participants and native Inupiaq Eskimo residents of Barrow. Video and podcast recordings of selected interviews are available at http://sunearthday.nasa.gov/2008/multimedia/podcasts.php. Excerpts from these and other interviews will be included in a new high definition video documentary called "From the Sun to the Stars: The New Science of Heliophysics" from Passport to Knowledge that will later broadcast on NASA TV and other educational networks. Full conference

  8. Single Molecule Force Spectroscopy of self complementary hydrogen-bonded supramolecular systems: dimers, polymers and solvent effects

    NARCIS (Netherlands)

    Embrechts, A.

    2011-01-01

    The work described in this Thesis aimed at a better understanding of the structure-property relationships of supramolecular assemblies with a specific focus on hydrogen-bond dimers and polymers. The hydrogen-bond strength of (supra)molecular complexes in different solvents is usually determined by

  9. Optimized design of polarizers with low ohmic loss and any polarization state for the 28 GHz QUEST ECH/ECCD system

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Toru Ii, E-mail: tsujimura.tohru@nifs.ac.jp [National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292 (Japan); Idei, Hiroshi [Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan); Kubo, Shin; Kobayashi, Sakuji [National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292 (Japan)

    2017-01-15

    Highlights: • Ohmic loss was calculated on the grooved mirror surface in simulated polarizers. • Polarizers with a low ohmic loss feature were optimally designed for 28 GHz. • Smooth rounded-rectangular grooves were made by mechanical machining. • The designed polarizers can realize all polarization states. - Abstract: In a high-power long-pulse millimeter-wave transmission line for electron cyclotron heating and current drive (ECH/ECCD), the ohmic loss on the grooved mirror surface of polarizers is one of the important issues for reducing the transmission loss. In this paper, the ohmic loss on the mirror surface is evaluated in simulated real-scale polarizer miter bends for different groove parameters under a linearly-polarized incident wave excitation. The polarizers with low ohmic loss are optimally designed for a new 28 GHz transmission line on the QUEST spherical tokamak. The calculated optimum ohmic loss is restricted to only less than 1.5 times as large as the theoretical loss for a copper flat mirror at room temperature. The copper rounded-rectangular grooves of the polarizers were relatively easy to make smooth in mechanical machining and the resultant surface roughness was not more than 0.15 μm, which is only 0.38 times as large as the skin depth. The combination of the designed elliptical polarizer and the polarization rotator can also realize any polarization state of the reflected wave.

  10. High Spectrum Narrowing Tolerant 112 Gb/s Dual Polarization QPSK Optical Communication Systems Using Digital Adaptive Channel Estimation

    DEFF Research Database (Denmark)

    Zhang, Xu; Pang, Xiaodan; Dogadaev, Anton Konstantinovich

    2012-01-01

    We experimentally demonstrate high spectrum narrowing tolerant 112-Gb/s QPSK polarization multiplex system based on digital adaptive channel estimation method. The proposed algorithm is able to detect severe spectrum-narrowed signal even with 20GHz 3dB bandwidth.......We experimentally demonstrate high spectrum narrowing tolerant 112-Gb/s QPSK polarization multiplex system based on digital adaptive channel estimation method. The proposed algorithm is able to detect severe spectrum-narrowed signal even with 20GHz 3dB bandwidth....

  11. Investigation of an inventory calculation model for a solvent extraction system and the development of its computer programme - SEPHIS-J

    International Nuclear Information System (INIS)

    Ihara, Hitoshi; Nishimura, Hideo; Ikawa, Koji; Ido, Masaru.

    1986-11-01

    In order to improve the applicability of near-real-time materials accountancy (N.R.T.MA) to a reprocessing plant, it is necessary to develop an estimation method for the nuclear material inventory at a solvent extraction system under operation. For designing the solvent extraction system, such computer codes as SEPHIS, SOLVEX and TRANSIENTS had been used. Accuracy of these codes in tracing operations and predicting inventories in the extraction system had been discussed. Then, much better codes, e.g., SEPHIS Mod4 and PUBG, were developed. Unfortunately, SEPHIS Mod4 was not available in countries other than the USA and PUBG was not suitable for use with a mini-computer which would be practical as a field computer because of quite a lot of computing time needed. The authors investigated an inventory estimation model compatible with PUBG in functions and developed the corresponding computer programme, SEPHIS-J, based on the SEPHIS Mod3 code, resulting in a third of computing time compared with PUBG. They also validated the programme by calculating a static state as well as a dynamic one of the solvent extraction process and by comparing them among the programme, SEPHIS Mod3 and PUBG. Using the programme, it was shown that the inventory changes due to changes of feed flow and concentration were not so small that they might be neglected although the changes of feed flow and concentration were within measurement errors. (author)

  12. Selective Single-Step Separation of a Mixture of Three Metal Ions by a Triphasic Ionic-Liquid-Water-Ionic-Liquid Solvent Extraction System.

    Science.gov (United States)

    Vander Hoogerstraete, Tom; Blockx, Jonas; De Coster, Hendrik; Binnemans, Koen

    2015-08-10

    In a conventional solvent extraction system, metal ions are distributed between two immiscible phases, typically an aqueous and an organic phase. In this paper, the proof-of-principle is given for the distribution of metal ions between three immiscible phases, two ionic liquid phases with an aqueous phase in between them. Three-liquid-phase solvent extraction allows separation of a mixture of three metal ions in a single step, whereas at least two steps are required to separate three metals in the case of two-liquid-phase solvent extraction. In the triphasic system, the lower organic phase is comprised of the ionic liquid betainium- or choline bis(trifluoromethylsulfonyl)imide, whereas the upper organic phase is comprised of the ionic liquid trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide. The triphasic system was used for the separation of a mixture of tin(II), yttrium(III), and scandium(III) ions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Total milk fat extraction and quantification of polar and neutral lipids of cow, goat, and ewe milk by using a pressurized liquid system and chromatographic techniques.

    Science.gov (United States)

    Castro-Gómez, M P; Rodriguez-Alcalá, L M; Calvo, M V; Romero, J; Mendiola, J A; Ibañez, E; Fontecha, J

    2014-11-01

    Although milk polar lipids such as phospholipids and sphingolipids located in the milk fat globule membrane constitute 0.1 to 1% of the total milk fat, those lipid fractions are gaining increasing interest because of their potential beneficial effects on human health and technological properties. In this context, the accurate quantification of the milk polar lipids is crucial for comparison of different milk species, products, or dairy treatments. Although the official International Organization for Standardization-International Dairy Federation method for milk lipid extraction gives satisfactory results for neutral lipids, it has important disadvantages in terms of polar lipid losses. Other methods using mixtures of solvents such as chloroform:methanol are highly efficient for extracting polar lipids but are also associated with low sample throughput, long time, and large solvent consumption. As an alternative, we have optimized the milk fat extraction yield by using a pressurized liquid extraction (PLE) method at different temperatures and times in comparison with those traditional lipid extraction procedures using 2:1 chloroform:methanol as a mixture of solvents. Comparison of classical extraction methods with the developed PLE procedure were carried out using raw whole milk from different species (cows, ewes, and goats) and considering fat yield, fatty acid methyl ester composition, triacylglyceride species, cholesterol content, and lipid class compositions, with special attention to polar lipids such as phospholipids and sphingolipids. The developed PLE procedure was validated for milk fat extraction and the results show that this method performs a complete or close to complete extraction of all lipid classes and in less time than the official and Folch methods. In conclusion, the PLE method optimized in this study could be an alternative to carry out milk fat extraction as a routine method. Copyright © 2014 American Dairy Science Association. Published by

  14. Analysis of the polarization characteristic of a satellite-to-ground laser communication optical system

    Science.gov (United States)

    Wang, Chao; Jiang, Lun; An, Yan; Doug, Ke-yan; Zhang, Ya-lin

    2015-10-01

    We present three rotation symmetric planar metamaterials and consist of 3, 4 and 6 split resonant rings (SRRs) respectively, proved that they are polarization-insensitive. The modulation characters constructed by the three planar metamaterials are also studied and compared to demonstrate that the structure with more even rotation symmetry is much more beneficial to be polarization-independence. Furthermore, the influencing rules of the electrodes on the polarization character of metamaterials are obtained. The polarization character can be converted by tailoring the electrodes which provides a guide to construct and design novel terahertz polarimetirc devices for potential applications.

  15. Expanded solubility parameter approach. I: Naphthalene and benzoic acid in individual solvents.

    Science.gov (United States)

    Beerbower, A; Wu, P L; Martin, A

    1984-02-01

    An expanded solubility parameter system was tested in conjunction with the extended Hansen solubility approach and the UNIFAC method to calculate the solubilities of naphthalene and benzoic acid in polar and nonpolar solvents. The expanded parameter system is characterized by delta d for the dispersion force, delta p for dipolar forces, a basic or electron-donor parameter, delta b, and an acidic or electron-acceptor parameter delta a. The correlation between the calculated and observed solubilities of benzoic acid was increased by use of the four-parameter system. An indicator variable was required to bring the solubilities into line in strongly dipolar solvents such as N,N-dimethylformamide. For naphthalene, use of the four-parameter approach proved not to be an improvement over the three-parameter extended Hansen solubility approach. The UNIFAC method was not successful in calculating solubilities of benzoic acid in the 40 polar and nonpolar solvents. A triangular plot of the three Hansen parameters for benzoic acid, p-hydroxybenzoic acid, and methyl p-hydroxybenzoate illustrated the contributions of dispersion, dipolar, and Lewis acid-base (hydrogen bonding) interaction forces among the three benzoic acid compounds and the various classes of solvents. A multiple regression procedure for calculating the four partial solubility parameters of drug solutes was developed.

  16. A Polar Fuzzy Control Scheme for Hybrid Power System Using Vehicle-To-Grid Technique

    Directory of Open Access Journals (Sweden)

    Mohammed Elsayed Lotfy

    2017-07-01

    Full Text Available A novel polar fuzzy (PF control approach for a hybrid power system is proposed in this research. The proposed control scheme remedies the issues of system frequency and the continuity of demand supply caused by renewable sources’ uncertainties. The hybrid power system consists of a wind turbine generator (WTG, solar photovoltaics (PV, a solar thermal power generator (STPG, a diesel engine generator (DEG, an aqua-electrolyzer (AE, an ultra-capacitor (UC, a fuel-cell (FC, and a flywheel (FW. Furthermore, due to the high cost of the battery energy storage system (BESS, a new idea of vehicle-to-grid (V2G control is applied to use the battery of the electric vehicle (EV as equivalent to large-scale energy storage units instead of small batteries to improve the frequency stability of the system. In addition, EV customers’ convenience is taken into account. A minimal-order observer is used to estimate the supply error. Then, the area control error (ACE signal is calculated in terms of the estimated supply error and the frequency deviation. ACE is considered in the frequency domain. Two PF approaches are utilized in the intended system. The mission of each controller is to mitigate one frequency component of ACE. The responsibility for ACE compensation is shared among all parts of the system according to their speed of response. The performance of the proposed control scheme is compared to the conventional fuzzy logic control (FLC. The effectiveness and robustness of the proposed control technique are verified by numerical simulations under various scenarios.

  17. Plasma drifts associated with a system of sun-aligned arcs in the polar cap

    International Nuclear Information System (INIS)

    Mende, S.B.; Doolittle, J.H.; Robinson, R.M.; Vondrak, R.R.; Rich, F.J.

    1988-01-01

    A series of four sun-aligned arcs passed over Sondre Stromfjord, Greenland, on the night of the 17th and 18th of February, 1985. Observations of these arcs were made using the Sondrestrom incoherent scatter radar and an intensified all-sky imaging TV system that was operated at the radar site. The first of the four arcs crossed the Sondre Stromfjord meridian just before local midnight moving westward, and the other three arcs followed at approximately half-hour intervals. When we account for the earth's rotation, the arc drift in an inertial frame was eastward, or dusk to dawn. The half-hour interval between meridian crossings of the arcs implies that the mean spacing between the arcs was 180 km. A Defense Meteorological Satellite Program (DMSP) F6 satellite pass at 0110 UT revealed the presence of highly structured electron and ion precipitation throughout the polar cap. The DMSP visible imager detected a single, sun-aligned arc associated with the largest peak in precipitating electron flux. This arc was also observed at Thule, Greenland, with an intensified film camera. These observations suggest that at least one of the arcs that were observed at Sondre Stromfjord extended across a large part of the polar cap. The radar at Sondre Stromfjord measured electron density and ion drift velocities associated with the four arcs. The radar drift measurements were superimposed on the all-sky video images to determine the location of the measurements relative to the arcs. Plasma drifts outside the arcs were found to be both sunward and antisunward, while within the arcs the drifts were predominantly antisunward. The variability of the drifts in the direction parallel to the arcs indicates that the electric fields were highly structured even though the configuration and motion of the arcs were well behaved

  18. Analysis of Compounds Dissolved in Nonpolar Solvents by Electrospray Ionization on Conductive Nanomaterials

    Science.gov (United States)

    Xia, Bing; Gao, Yuanji; Ji, Baocheng; Ma, Fengwei; Ding, Lisheng; Zhou, Yan

    2018-03-01

    Electrospray ionization mass spectrometry (ESI-MS) technique has limitations in analysis of compounds that are dissolved in nonpolar solvents. In this study, ambient ionization of compounds in solvents that are not "friendly" to electrospray ionization, such as n-hexane, is achieved by conductive nanomaterials spray ionization (CNMSI) on nanomaterial emitters, including carbon nanotubes paper and mesodendritic silver covered metal, which applies high voltages to emitters made of these materials without the assistance of polar solvents. Although the time intensity curves (TIC) commonly vary from 4.5% to 23.7% over analyses, protonated molecular ions were found to be the most abundant species, demonstrating good reproducibility of the technique in terms of ionized species. Higher mass spectrometric responses are observed in analyzing nonpolar systems than polar systems. 2-Methoxyacetophenone, 4-methylacetophenone, benzothiazole, quinolone, and cycloheptanone as low as 2 pg in n-hexane can be directly detected using the developed method. The developed technique expands the analysis capability of ESI-MS for direct, online analysis of nonpolar systems, such as low polarity extracts, normal phase liquid chromatography eluates, and synthetic mixtures. [Figure not available: see fulltext.

  19. Polar Cyclone Identification from 4D Climate Data in a Knowledge-Driven Visualization System

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2016-09-01

    Full Text Available Arctic cyclone activity has a significant association with Arctic warming and Arctic ice decline. Cyclones in the North Pole are more complex and less developed than those in tropical regions. Identifying polar cyclones proves to be a task of greater complexity. To tackle this challenge, a new method which utilizes pressure level data and velocity field is proposed to improve the identification accuracy. In addition, the dynamic, simulative cyclone visualized with a 4D (four-dimensional wind field further validated the identification result. A knowledge-driven system is eventually constructed for visualizing and analyzing an atmospheric phenomenon (cyclone in the North Pole. The cyclone is simulated with WebGL on in a web environment using particle tracing. To achieve interactive frame rates, the graphics processing unit (GPU is used to accelerate the process of particle advection. It is concluded with the experimental results that: (1 the cyclone identification accuracy of the proposed method is 95.6% when compared with the NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data; (2 the integrated knowledge-driven visualization system allows for streaming and rendering of millions of particles with an interactive frame rate to support knowledge discovery in the complex climate system of the Arctic region.

  20. Development and fabrication of the vacuum systems for an elliptically polarized undulator at Taiwan Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chin-Chun, E-mail: chinchun@nsrrc.org.tw; Chan, Che-Kai; Wu, Ling-Hui; Shueh, Chin; Shen, I.-Ching; Cheng, Chia-Mu; Yang, I.-Chen

    2017-05-01

    Three sets of a vacuum system were developed and fabricated for elliptically polarized undulators (EPU) of a 3-GeV synchrotron facility. These chambers were shaped with low roughness extrusion and oil-free machining; the design combines aluminium and stainless steel. The use of a bimetallic material to connect the EPU to the vacuum system achieves the vacuum sealing and to resolve the leakage issue due to bake process induced thermal expansion difference. The interior of the EPU chamber consists of a non-evaporable-getter strip pump in a narrow space to absorb photon-stimulated desorption and to provide a RF bridge design to decrease impedance effect in the two ends of EPU chamber. To fabricate these chambers and to evaluate the related performance, we performed a computer simulation to optimize the structure. During the machining and welding, the least deformation was achieved, less than 0.1 mm near 4 m. In the installation, the linear slider can provide a stable and precision moved along parallel the electron beam direction smoothly for the EPU chamber to decrease the twist issue during baking process. The pressure of the EPU chamber attained less than 2×10{sup −8} Pa through baking. These vacuum systems of the EPU magnet have been installed in the electron storage ring of Taiwan Photon Source in 2015 May and have normally operated at 300 mA continuously since, and to keep beam life time achieved over than 12 h.

  1. Development of an in situ polarization-dependent total-reflection fluorescence XAFS measurement system.

    Science.gov (United States)

    Chun, W J; Tanizawa, Y; Shido, T; Iwasawa, Y; Nomura, M; Asakura, K

    2001-03-01

    An in situ polarization-dependent total-reflection fluorescence X-ray absorption fine structure (PTRF-XAFS) spectroscopy system has been developed, which enables PTRF-XAFS experiments to be performed in three different orientations at various temperatures (273-600 K) and pressures (10(-10) approximately 760 torr). The system consists of a measurement chamber and a preparation chamber. The measurement chamber has a high-precision six-axis goniometer and a multielement solid-state detector. Using a transfer chamber, also operated under ultra-high-vacuum conditions, the sample can be transferred to the measurement chamber from the preparation chamber, which possesses low-energy electron diffraction, Auger electron spectroscopy and X-ray photoelectron spectroscopy facilities, as well as a sputtering gun and an annealing system. The in situ PTRF-EXAFS for Cu species on TiO2 (110) has been measured in three different orientations, revealing anisotropic growth of Cu under the influence of the TiO2 (110) surface.

  2. Density and vapour pressure of mixed-solvent desiccant systems (propylene glycol or dipropylene glycol or tripropylene glycol + magnesium chloride + water)

    International Nuclear Information System (INIS)

    Chen, Shang-Yi; Soriano, Allan N.; Leron, Rhoda B.; Li, Meng-Hui

    2014-01-01

    In this present work, new experimental data for density and vapour pressure of the mixed-solvent desiccant systems containing {40 wt% glycol (propylene or dipropylene or tripropylene) + (4 or 9 or 16 wt%) magnesium chloride salt + water} were reported for temperatures up to 343.15 K at normal atmospheric condition. The density and vapour pressure data obtained are presented as a function of temperature and composition. An empirical equation was used to correlate the temperature and compositional dependence of the density values. A model based on the mean spherical approximation for aqueous electrolyte solutions incorporating the pseudo-solvent approach was used to represent the vapour pressure as a function of temperature and composition. Satisfactory results were obtained for both density and vapour pressure calculations

  3. Densities and vapor pressures of mixed-solvent desiccant systems containing {l_brace}glycol (diethylene, or triethylene, or tetraethylene glycol) + salt (magnesium chloride) + water{r_brace}

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shangyi [R and D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China); Soriano, Allan N. [R and D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China); School of Chemical Engineering and Chemistry, Mapua Institute of Technology, Manila 1002 (Philippines); Li Menghui, E-mail: mhli@cycu.edu.t [R and D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China)

    2010-09-15

    In this present work, new experimental data for density and vapor pressure of the mixed-solvent desiccant systems containing {l_brace}(40.0 wt%) glycol + salt + water{r_brace} were reported for temperatures up to 343.15 K at normal atmospheric condition. The considered glycols were diethylene, triethylene, and tetraethylene glycol; and the salt is magnesium chloride (wt% = 4.0, 9.0, and 16.0). The density and vapor pressure were presented as functions of temperature and compositions. An empirical equation was used to correlate the temperature and compositional dependence of the present density data and a model based on the mean spherical approximation for aqueous electrolyte solutions incorporating the pseudo-solvent approach was used to represent the measured vapor pressure as functions of temperature and composition. Satisfactory results were obtained for both density and vapor pressure calculations.

  4. Fabrication of porous ethyl cellulose microspheres based on the acetone-glycerin-water ternary system: Controlling porosity via the solvent-removal mode.

    Science.gov (United States)

    Murakami, Masahiro; Matsumoto, Akihiro; Watanabe, Chie; Kurumado, Yu; Takama, Masashi

    2015-08-01

    Porous ethyl cellulose (EC) microspheres were prepared from the acetone-glycerin-water ternary system using an oil/water (O/W)-type emulsion solvent extraction method. The O/ W type emulsion was prepared using acetone dissolved ethyl cellulose as an oil phase and aqueous glycerin as a water phase. The effects of the different solvent extraction modes on the porosity of the microspheres were investigated. The specific surface area of the porous EC microspheres was estimated by the gas adsorption method. When the solvent was extracted rapidly by mixing the emulsion with water instantaneously, porous EC microspheres with a maximum specific surface area of 40.7±2.1 m2/g were obtained. On the other hand, when water was added gradually to the emulsion, the specific surface area of the fabricated microspheres decreased rapidly with an increase in the infusion period, with the area being 25-45% of the maximum value. The results of an analysis of the ternary phase diagram of the system suggested that the penetration of water and glycerin from the continuous phase to the dispersed phase before solidification affected the porosity of the fabricated EC microspheres.

  5. On-line micro-volume introduction system developed for lower density than water extraction solvent and dispersive liquid-liquid microextraction coupled with flame atomic absorption spectrometry.

    Science.gov (United States)

    Anthemidis, Aristidis N; Mitani, Constantina; Balkatzopoulou, Paschalia; Tzanavaras, Paraskevas D

    2012-07-06

    A simple and fast preconcentration/separation dispersive liquid-liquid micro extraction (DLLME) method for metal determination based on the use of extraction solvent with lower density than water has been developed. For this purpose a novel micro-volume introduction system was developed enabling the on-line injection of the organic solvent into flame atomic absorption spectrometry (FAAS). The effectiveness and efficiency of the proposed system were demonstrated for lead and copper preconcentration in environmental water samples using di-isobutyl ketone (DBIK) as extraction solvent. Under the optimum conditions the enhancement factor for lead and copper was 187 and 310 respectively. For a sample volume of 10 mL, the detection limit (3 s) and the relative standard deviation were 1.2 μg L(-1) and 3.3% for lead and 0.12 μg L(-1) and 2.9% for copper respectively. The developed method was evaluated by analyzing certified reference material and it was applied successfully to the analysis of environmental water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Stepwise elution of a three-phase solvent system in centrifugal partition extraction: a new strategy for the fractionation and phytochemical screening of a crude bark extract.

    Science.gov (United States)

    Hamzaoui, Mahmoud; Renault, Jean-Hugues; Nuzillard, Jean-Marc; Reynaud, Romain; Hubert, Jane

    2013-01-01

    Tree bark represents an interesting source of bioactive molecules for the discovery of new pharmaceutical agents. However, the detailed screening of secondary metabolites in crude bark extracts is often hampered by the presence of tannins, which are difficult to separate from other plant constituents. In the present study, a new centrifugal partition extraction (CPE) method was developed in order to fractionate a crude bark extract of Anogeissus leiocarpus Guill. & Perr. (Combretaceae). A three-phase solvent system composed of n-heptane, methyl tert-butyl ether, acetonitrile and water was optimised for the stepwise elution at 20 mL/min of different phytochemical classes according to their hydrophobicity. Onedimensional and two-dimensional NMR analyses of the simplified fractions were then performed in order to characterise potentially interesting metabolites. In one step, 5 g of the initial crude extract were efficiently fractionated to yield highly simplified fractions that contained triterpenes, ellagic acid derivatives, flavonoids and phenolic compounds. All undesired compounds, that is, the highly abundant water-soluble tannins (78.8%), were totally removed and each run was rapidly achieved in 90 min on a the multi-gram scale and with low solvent volumes. Centrifugal partition extraction in the elution mode using a three-phase solvent system can thus be proposed as an efficient and cost-effective alternative for a rapid fractionation of crude bark extracts and for an effective screening of potentially active secondary metabolites. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Circularly polarized light emission in scanning tunneling microscopy of magnetic systems

    International Nuclear Information System (INIS)

    Apell, S.P.; Penn, D.R.; Johansson, P.

    2000-01-01

    Light is produced when a scanning tunneling microscope is used to probe a metal surface. Recent experiments on cobalt utilizing a tungsten tip found that the light is circularly polarized; the sense of circular polarization depends on the direction of the sample magnetization, and the degree of polarization is of order 10%. This raises the possibility of constructing a magnetic microscope with very good spatial resolution. We present a theory of this effect for iron and cobalt and find a degree of polarization of order 0.1%. This is in disagreement with the experiments on cobalt as well as previous theoretical work which found order of magnitude agreement with the experimental results. However, a recent experiment on iron showed 0.0±2%. We predict that the use of a silver tip would increase the degree of circular polarization for a range of photon energies

  8. Nanoscale switch for vortex polarization mediated by Bloch core formation in magnetic hybrid systems

    Science.gov (United States)

    Wohlhüter, Phillip; Bryan, Matthew Thomas; Warnicke, Peter; Gliga, Sebastian; Stevenson, Stephanie Elizabeth; Heldt, Georg; Saharan, Lalita; Suszka, Anna Kinga; Moutafis, Christoforos; Chopdekar, Rajesh Vilas; Raabe, Jörg; Thomson, Thomas; Hrkac, Gino; Heyderman, Laura Jane

    2015-01-01

    Vortices are fundamental magnetic topological structures characterized by a curling magnetization around a highly stable nanometric core. The control of the polarization of this core and its gyration is key to the utilization of vortices in technological applications. So far polarization control has been achieved in single-material structures using magnetic fields, spin-polarized currents or spin waves. Here we demonstrate local control of the vortex core orientation in hybrid structures where the vortex in an in-plane Permalloy film coexists with out-of-plane maze domains in a Co/Pd multilayer. The vortex core reverses its polarization on crossing a maze domain boundary. This reversal is mediated by a pair of magnetic singularities, known as Bloch points, and leads to the transient formation of a three-dimensional magnetization structure: a Bloch core. The interaction between vortex and domain wall thus acts as a nanoscale switch for the vortex core polarization. PMID:26238042

  9. Enthalpies of solvation of ethylene oxide oligomers CH3O(CH2CH2O)nCH3 (n = 1 to 4) in different H-bonding solvents: Methanol, chloroform, and water. Group contribution method as applied to the polar oligomers

    International Nuclear Information System (INIS)

    Barannikov, Vladimir P.; Guseynov, Sabir S.; Vyugin, Anatoliy I.

    2011-01-01

    Highlights: → Solvation enthalpy is found for ethylene oxide oligomers in chloroform and methanol. → Coefficients of solute-solute interaction are determined for oligomers in methanol. → Enthalpies of hydrogen bonding of oligomers with chloroform and water are estimated. → Additivity scheme is developed for describing enthalpies of solvation of oligomers. - Abstract: The enthalpies of solution and solvation of ethylene oxide oligomers CH 3 O(CH 2 CH 2 O) n CH 3 (n = 1 to 4) in methanol and chloroform have been determined from calorimetric measurements at T = 298.15 K. The enthalpic coefficients of pairwise solute-solute interaction for methanol solutions have been calculated. The enthalpic characteristics of the oligomers in methanol, chloroform, water and tetrachloromethane have been compared. The hydrogen bonding of the oligomers with chloroform and water molecules is exhibited in the values of solvation enthalpy and coefficient of solute-solute interaction. This effect is not observed for methanol solvent. The thermochemical data evidence an existence of multi-centred hydrogen bonds in associates of polyethers with the solvent molecules. Enthalpies of hydrogen bonding of the oligomers with chloroform and water have been estimated. The additivity scheme has been developed to describe the enthalpies of solvation of ethylene oxide oligomers, unbranched monoethers and n-alkanes in chloroform, methanol, water, and tetrachloromethane. The correction parameters for contribution of repeated polar groups and correction term for methoxy-compounds have been introduced. The obtained group contributions permit to describe the enthalpies of solvation of unbranched monoethers and ethylene oxide oligomers in the solvents with standard deviation up to 0.6 kJ . mol -1 . The values of group contributions and corrections are strongly influenced by solvent properties.

  10. Enthalpies of solvation of ethylene oxide oligomers CH{sub 3}O(CH{sub 2}CH{sub 2}O){sub n}CH{sub 3} (n = 1 to 4) in different H-bonding solvents: Methanol, chloroform, and water. Group contribution method as applied to the polar oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Barannikov, Vladimir P., E-mail: vpb@isc-ras.ru [Institute of Solution Chemistry, Russian Academy of Sciences, Academicheskaya Str. 1, Ivanovo 153045 (Russian Federation); Guseynov, Sabir S.; Vyugin, Anatoliy I. [Institute of Solution Chemistry, Russian Academy of Sciences, Academicheskaya Str. 1, Ivanovo 153045 (Russian Federation)

    2011-12-15

    Highlights: > Solvation enthalpy is found for ethylene oxide oligomers in chloroform and methanol. > Coefficients of solute-solute interaction are determined for oligomers in methanol. > Enthalpies of hydrogen bonding of oligomers with chloroform and water are estimated. > Additivity scheme is developed for describing enthalpies of solvation of oligomers. - Abstract: The enthalpies of solution and solvation of ethylene oxide oligomers CH{sub 3}O(CH{sub 2}CH{sub 2}O){sub n}CH{sub 3} (n = 1 to 4) in methanol and chloroform have been determined from calorimetric measurements at T = 298.15 K. The enthalpic coefficients of pairwise solute-solute interaction for methanol solutions have been calculated. The enthalpic characteristics of the oligomers in methanol, chloroform, water and tetrachloromethane have been compared. The hydrogen bonding of the oligomers with chloroform and water molecules is exhibited in the values of solvation enthalpy and coefficient of solute-solute interaction. This effect is not observed for methanol solvent. The thermochemical data evidence an existence of multi-centred hydrogen bonds in associates of polyethers with the solvent molecules. Enthalpies of hydrogen bonding of the oligomers with chloroform and water have been estimated. The additivity scheme has been developed to describe the enthalpies of solvation of ethylene oxide oligomers, unbranched monoethers and n-alkanes in chloroform, methanol, water, and tetrachloromethane. The correction parameters for contribution of repeated polar groups and correction term for methoxy-compounds have been introduced. The obtained group contributions permit to describe the enthalpies of solvation of unbranched monoethers and ethylene oxide oligomers in the solvents with standard deviation up to 0.6 kJ . mol{sup -1}. The values of group contributions and corrections are strongly influenced by solvent properties.

  11. The Effects of GABAergic Polarity Changes on Episodic Neural Network Activity in Developing Neural Systems

    Directory of Open Access Journals (Sweden)

    Wilfredo Blanco

    2017-09-01

    Full Text Available Early in development, neural systems have primarily excitatory coupling, where even GABAergic synapses are excitatory. Many of these systems exhibit spontaneous episodes of activity that have been characterized through both experimental and computational studies. As development progress the neural system goes through many changes, including synaptic remodeling, intrinsic plasticity in the ion channel expression, and a transformation of GABAergic synapses from excitatory to inhibitory. What effect each of these, and other, changes have on the network behavior is hard to know from experimental studies since they all happen in parallel. One advantage of a computational approach is that one has the ability to study developmental changes in isolation. Here, we examine the effects of GABAergic synapse polarity change on the spontaneous activity of both a mean field and a neural network model that has both glutamatergic and GABAergic coupling, representative of a developing neural network. We find some intuitive behavioral changes as the GABAergic neurons go from excitatory to inhibitory, shared by both models, such as a decrease in the duration of episodes. We also find some paradoxical changes in the activity that are only present in the neural network model. In particular, we find that during early development the inter-episode durations become longer on average, while later in development they become shorter. In addressing this unexpected finding, we uncover a priming effect that is particularly important for a small subset of neurons, called the “intermediate neurons.” We characterize these neurons and demonstrate why they are crucial to episode initiation, and why the paradoxical behavioral change result from priming of these neurons. The study illustrates how even arguably the simplest of developmental changes that occurs in neural systems can present non-intuitive behaviors. It also makes predictions about neural network behavioral changes

  12. A transportable hybrid antenna-transmitter system for the generation of elliptically polarized waves for NVIS propagation research

    NARCIS (Netherlands)

    Witvliet, Ben A.; Laanstra, Geert J.; van Maanen, Erik; Alsina-Pagès, Rosa M.; Bentum, Marinus Jan; Slump, Cornelis H.; Schiphorst, Roelof

    2016-01-01

    For empirical research on Near Vertical Incidence Skywave (NVIS) characteristic wave propagation, a beacon transmitter system is needed that can be programmed to emit precisely defined elliptically and circularly polarized waves at high elevation angles. This paper proposes a novel hybrid

  13. Canyon solvent cleaning

    International Nuclear Information System (INIS)

    Reif, D.J.

    1986-01-01

    The HM Process at the Savannah River Plant (SRP) uses 7.5% tributylphosphate in n-paraffin as an extraction solvent. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials that influence product losses, produce decontamination, and separation efficiencies. Laboratory studies to improve online solvent cleaning have shown the carbonate washing, although removing residual solvent activity does not remove binding ligands that hold fission products in the solvent. Treatment of solvent by an alumina adsorption process removes binding ligands and significantly improves recycle solvent performance. Both laboratory work defining a full-scale alumina adsorption process and the use of the process to clean HM Process first cycle solvent are presented

  14. Effect of geometry on concentration polarization in realistic heterogeneous permselective systems.

    Science.gov (United States)

    Green, Yoav; Shloush, Shahar; Yossifon, Gilad

    2014-04-01

    This study extends previous analytical solutions of concentration polarization occurring solely in the depleted region, to the more realistic geometry consisting of a three-dimensional (3D) heterogeneous ion-permselective medium connecting two opposite microchambers (i.e., a three-layer system). Under the local electroneutrality approximation, the separation of variable methods is used to derive an analytical solution of the electrodiffusive problem for the two opposing asymmetric microchambers. The assumption of an ideal permselective medium allows for the analytic calculation of the 3D concentration and electric potential distributions as well as a current-voltage relation. It is shown that any asymmetry in the microchamber geometries will result in current rectification. Moreover, it is demonstrated that for non-negligible microchamber resistances, the conductance does not exhibit the expected saturation at low concentrations but instead shows a continuous decrease. The results are intended to facilitate a more direct comparison between theory and experiments, as now the voltage drop is across a realistic 3D and three-layer system.

  15. Thermodynamically based solvent design for enzymatic saccharide acylation with hydroxycinnamic acids in non-conventional media.

    Science.gov (United States)

    Zeuner, Birgitte; Kontogeorgis, Georgios M; Riisager, Anders; Meyer, Anne S

    2012-02-15

    Enzyme-catalyzed synthesis has been widely studied with lipases (EC 3.1.1.3), but feruloyl esterases (FAEs; EC 3.1.1.73) may provide advantages such as higher substrate affinity and regioselectivity in the synthesis of hydroxycinnamate saccharide esters. These compounds are interesting because of their amphiphilicity and antioxidative potential. Synthetic reactions using mono- or disaccharides as one of the substrates may moreover direct new routes for biomass upgrading in the biorefinery. The paper reviews the available data for enzymatic hydroxycinnamate saccharide ester synthesis in organic solvent systems as well as other enzymatic hydroxycinnamate acylations in ionic liquid systems. The choice of solvent system is highly decisive for enzyme stability, selectivity, and reaction yields in these synthesis reactions. To increase the understanding of the reaction environment and to facilitate solvent screening as a crucial part of the reaction design, the review explores the use of activity coefficient models for describing these systems and - more importantly - the use of group contribution model UNIFAC and quantum chemistry based COSMO-RS for thermodynamic predictions and preliminary solvent screening. Surfactant-free microemulsions of a hydrocarbon, a polar alcohol, and water are interesting solvent systems because they accommodate different substrate and product solubilities and maintain enzyme stability. Ionic liquids may provide advantages as solvents in terms of increased substrate and product solubility, higher reactivity and selectivity, as well as tunable physicochemical properties, but their design should be carefully considered in relation to enzyme stability. The treatise shows that thermodynamic modeling tools for solvent design provide a new toolbox to design enzyme-catalyzed synthetic reactions from biomass sources. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Reusing Joint Polar Satellite System (jpss) Ground System Components to Process AURA Ozone Monitoring Instrument (omi) Science Products

    Science.gov (United States)

    Moses, J. F.; Jain, P.; Johnson, J.; Doiron, J. A.

    2017-12-01

    New Earth observation instruments are planned to enable advancements in Earth science research over the next decade. Diversity of Earth observing instruments and their observing platforms will continue to increase as new instrument technologies emerge and are deployed as part of National programs such as Joint Polar Satellite System (JPSS), Geostationary Operational Environmental Satellite system (GOES), Landsat as well as the potential for many CubeSat and aircraft missions. The practical use and value of these observational data often extends well beyond their original purpose. The practicing community needs intuitive and standardized tools to enable quick unfettered development of tailored products for specific applications and decision support systems. However, the associated data processing system can take years to develop and requires inherent knowledge and the ability to integrate increasingly diverse data types from multiple sources. This paper describes the adaptation of a large-scale data processing system built for supporting JPSS algorithm calibration and validation (Cal/Val) node to a simplified science data system for rapid application. The new configurable data system reuses scalable JAVA technologies built for the JPSS Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) system to run within a laptop environment and support product generation and data processing of AURA Ozone Monitoring Instrument (OMI) science products. Of particular interest are the root requirements necessary for integrating experimental algorithms and Hierarchical Data Format (HDF) data access libraries into a science data production system. This study demonstrates the ability to reuse existing Ground System technologies to support future missions with minimal changes.

  17. Evaluation of phytochemical constituents and antioxidant activities of successive solvent extracts of leaves of Indigofera caerulea Roxb using various in vitro antioxidant assay systems

    Directory of Open Access Journals (Sweden)

    Ponmari Guruvaiah

    2012-05-01

    Full Text Available Objective: To evaluate the phytochemical constituents and antioxidant activities of successive solvent extracts of Indigofera caerulea Roxb using various in vitro antioxidant assay systems. Methods: Total phenol and antioxidant activity of different solvent extracts of Indigofera caerulea Roxb leaves were investigated. Extraction was done sequentially in soxhlet apparatus using various solvents (Petroleum ether, Ethyl acetate and Methanol. Antioxidant activity was evaluated by 2, 2-diphenyl-1-picryl hydrazyl free radical scavenging assay, hydroxyl radical scavenging assay, superoxide anion radical scavenging assay and Total ion reducing power assay. Total phenol and flavonoid contents were also measured. Results: Methanolic extract had more total phenol content and more antioxidant activities, confirming to the hypothesis that phenol content and antioxidant activity has a direct correlation. Conclusions: All the results of the in vitro antioxidant assays revealed that the methanolic extract of Indigofera caerulea Roxb leaves had notable antioxidant and free radical scavenging activity. The results obtained appeared to confirm the antioxidant and free radical scavenging potential of Indigofera caerulea Roxb.

  18. Preparing for Operational Use of High Priority Products from the Joint Polar Satellite System (JPSS) in Numerical Weather Prediction

    Science.gov (United States)

    Nandi, S.; Layns, A. L.; Goldberg, M.; Gambacorta, A.; Ling, Y.; Collard, A.; Grumbine, R. W.; Sapper, J.; Ignatov, A.; Yoe, J. G.

    2017-12-01

    This work describes end to end operational implementation of high priority products from National Oceanic and Atmospheric Administration's (NOAA) operational polar-orbiting satellite constellation, to include Suomi National Polar-orbiting Partnership (S-NPP) and the Joint Polar Satellite System series initial satellite (JPSS-1), into numerical weather prediction and earth systems models. Development and evaluation needed for the initial implementations of VIIRS Environmental Data Records (EDR) for Sea Surface Temperature ingestion in the Real-Time Global Sea Surface Temperature Analysis (RTG) and Polar Winds assimilated in the National Weather Service (NWS) Global Forecast System (GFS) is presented. These implementations ensure continuity of data in these models in the event of loss of legacy sensor data. Also discussed is accelerated operational implementation of Advanced Technology Microwave Sounder (ATMS) Temperature Data Records (TDR) and Cross-track Infrared Sounder (CrIS) Sensor Data Records, identified as Key Performance Parameters by the National Weather Service. Operational use of SNPP after 28 October, 2011 launch took more than one year due to the learning curve and development needed for full exploitation of new remote sensing capabilities. Today, ATMS and CrIS data positively impact weather forecast accuracy. For NOAA's JPSS initial satellite (JPSS-1), scheduled for launch in late 2017, we identify scope and timelines for pre-launch and post-launch activities needed to efficiently transition these capabilities into operations. As part of these alignment efforts, operational readiness for KPPs will be possible as soon as 90 days after launch. The schedule acceleration is possible because of the experience with S-NPP. NOAA operational polar-orbiting satellite constellation provides continuity and enhancement of earth systems observations out to 2036. Program best practices and lessons learned will inform future implementation for follow-on JPSS-3 and -4

  19. The effect of pressure, isotopic (H/D) substitution, and other variables on miscibility in polymer-solvent systems. The nature of the demixing process; dynamic light scattering and small angle neutron scattering studies. Final report

    International Nuclear Information System (INIS)

    Van Hook, W.A.

    2000-01-01

    A research program examining the effects of pressure, isotope substitution and other variables on miscibility in polymer solvent systems is described. The techniques employed included phase equilibrium measurements and dynamic light scattering and small angle neutron scattering

  20. Green solvents and technologies for oil extraction from oilseeds.

    Science.gov (United States)

    Kumar, S P Jeevan; Prasad, S Rajendra; Banerjee, Rintu; Agarwal, Dinesh K; Kulkarni, Kalyani S; Ramesh, K V

    2017-01-01

    Oilseeds are crucial for the nutritional security of the global population. The conventional technology used for oil extraction from oilseeds is by solvent extraction. In solvent extraction, n -hexane is used as a solvent for its attributes such as simple recovery, non-polar nature, low latent heat of vaporization (330 kJ/kg) and high selectivity to solvents. However, usage of hexane as a solvent has lead to several repercussions such as air pollution, toxicity and harmfulness that prompted to look for alternative options. To circumvent the problem, green solvents could be a promising approach to replace solvent extraction. In this review, green solvents and technology like aqueous assisted enzyme extraction are better solution for oil extraction from oilseeds. Enzyme mediated extraction is eco-friendly, can obtain higher yields, cost-effective and aids in obtaining co-products without any damage. Enzyme technology has great potential for oil extraction in oilseed industry. Similarly, green solvents such as terpenes and ionic liquids have tremendous solvent properties that enable to extract the oil in eco-friendly manner. These green solvents and technologies are considered green owing to the attributes of energy reduction, eco-friendliness, non-toxicity and non-harmfulness. Hence, the review is mainly focussed on the prospects and challenges of green solvents and technology as the best option to replace the conventional methods without compromising the quality of the extracted products.

  1. Electrode polarization studies in hot corrosion systems. Progress report, 1 July 1978--31 May 1979

    Energy Technology Data Exchange (ETDEWEB)

    Devereux, O.F.

    1979-02-01

    Work is reported on thermodynamic analysis of gasifier models, equilibrium calculations performed on two and thre phase equilibrium involving components of coal gas, sodium salts, and carbon. Electrode polarization studies in molten sodium carbonate and polarization tests were performed on iron, steel, nickel, and on 304 and 316 stainless steel in molten sodium carbonate under a variety of exploratory environments. Gas/metal reactions studies, initial evaluation studies iron in hydrogen-hydrogen sulfide mixtures, pertaining to a new gravimetric facility are presented. Evaluation was made of reaction kinetics from polarization. A visual regression procedure utilizing interactive computer graphics is described for the fitting of multiparameter, nonlinear equations to experimental curves.

  2. Is Water a Universal Solvent for Life?

    Science.gov (United States)

    Pohorill, Andrew

    2012-01-01

    There are strong reasons to believe that the laws, principles and constraints of physics and chemistry are universal. It is much less clear how this universality translates into our understanding of the origins of life. Conventionally, discussions of this topic focus on chemistry that must be sufficiently rich to seed life. Although this is clearly a prerequisite for the emergence of living systems, I propose to focus instead on self-organization of matter into functional structures capable of reproduction, evolution and responding to environmental changes. In biology, most essential functions are largely mediated by noncovalent interactions (interactions that do not involve making or breaking chemical bonds). Forming chemical bonds is only a small part of what living systems do. There are specific implications of this point of view for universality. I will concentrate on one of these implications. Strength of non-covalent interactions must be properly tuned. If they were too weak, the system would exhibit undesired, uncontrolled response to natural fluctuations of physical and chemical parameters. If they were too strong kinetics of biological processes would be slow and energetics costly. This balance, however, is not a natural property of complex chemical systems. Instead, it has to be achieved with the aid of an appropriate solvent for life. In particular, potential solvents for life must be characterized by a high dielectric constant to ensure solubility of polar species and sufficient flexibility of biological structures stabilized by electrostatic interactions. Among these solvents, water exhibits a remarkable trait that it also promotes solvophobic (hydrophobic) interactions between non-polar species, typically manifested by a tendency of these species to aggregate and minimize their contacts with the aqueous solvent. Hydrophobic interactions are responsible, at least in part, for many self-organization phenomena in biological systems, such as the formation

  3. Predicting the Solubility of Pharmaceutical Cocrystals in Solvent/Anti-Solvent Mixtures

    Directory of Open Access Journals (Sweden)

    Linda Lange

    2016-05-01

    Full Text Available In this work, the solubilities of pharmaceutical cocrystals in solvent/anti-solvent systems were predicted using PC-SAFT in order to increase the efficiency of cocrystal formation processes. Modeling results and experimental data were compared for the cocrystal system nicotinamide/succinic acid (2:1 in the solvent/anti-solvent mixtures ethanol/water, ethanol/acetonitrile and ethanol/ethyl acetate at 298.15 K and in the ethanol/ethyl acetate mixture also at 310.15 K. The solubility of the investigated cocrystal slightly increased when adding small amounts of anti-solvent to the solvent, but drastically decreased for high anti-solvent amounts. Furthermore, the solubilities of nicotinamide, succinic acid and the cocrystal in the considered solvent/anti-solvent mixtures showed strong deviations from ideal-solution behavior. However, by accounting for the thermodynamic non-ideality of the components, PC-SAFT is able to predict the solubilities in all above-mentioned solvent/anti-solvent systems in good agreement with the experimental data.

  4. Development of an anhydrotetracycline-inducible gene expression system for solvent-producing Clostridium acetobutylicum: A useful tool for strain engineering.

    Science.gov (United States)

    Dong, Hongjun; Tao, Wenwen; Zhang, Yanping; Li, Yin

    2012-01-01

    Clostridium acetobutylicum is an important solvent (acetone-butanol-ethanol) producing bacterium. However, a stringent, effective, and convenient-to-use inducible gene expression system that can be used for regulating the gene expression strength in C. acetobutylicum is currently not available. Here, we report an anhydrotetracycline-inducible gene expression system for solvent-producing bacterium C. acetobutylicum. This system consists of a functional chloramphenicol acetyltransferase gene promoter containing tet operators (tetO), Pthl promoter (thiolase gene promoter from C. acetobutylicum) controlling TetR repressor expression cassette, and the chemical inducer anhydrotetracycline (aTc). The optimized system, designated as pGusA2-2tetO1, allows gene regulation in an inducer aTc concentration-dependent way, with an inducibility of over two orders of magnitude. The stringency of TetR repression supports the introduction of the genes encoding counterselective marker into C. acetobutylicum, which can be used to increase the mutant screening efficiency. This aTc-inducible gene expression system will thus increase the genetic manipulation capability for engineering C. acetobutylicum. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Periodicities of polar mesospheric clouds inferred from a meteorological analysis and forecast system

    Science.gov (United States)

    Stevens, M. H.; Lieberman, R. S.; Siskind, D. E.; McCormack, J. P.; Hervig, M. E.; Englert, C. R.

    2017-04-01

    There is currently an ambiguity in what controls polar mesospheric cloud (PMC) periodicities near 83 km altitude. This is primarily because satellite and ground-based data sets cannot resolve global mesospheric temperature variability over the diurnal cycle. To address this limitation, we employ a global meteorological analysis and forecast system that assimilates mesospheric satellite data with two significant advances. The first is that we use output at a more rapid one hourly cadence, allowing for a quantitative description of diurnal (24 h), semidiurnal (12 h), and terdiurnal oscillations. The second is that the output drives a simple PMC parameterization which depends only on the local temperature, pressure, and water vapor concentrations. Our study focuses on results from July 2009 in the Northern Hemisphere and January 2008 in the Southern Hemisphere. We find that the 24 h migrating temperature tide as well as the 12 h and 24 h nonmigrating tides dominate northern PMC oscillations whereas the 12 h and 24 h nonmigrating tides dominate southern oscillations. Monthly averaged amplitudes for each of these components are generally 2-6 K with the larger amplitudes at lower PMC latitudes (50°). The 2 day and 5 day planetary waves also contribute in both hemispheres, with monthly averaged amplitudes from 1 to 3 K although these amplitudes can be as high as 4-6 K on some days. Over length scales of 1000 km and timescales of 1 week, we find that local temperature oscillations adequately describe midlatitude PMC observations.

  6. Screening for Antifibrotic Compounds Using High Throughput System Based on Fluorescence Polarization

    Directory of Open Access Journals (Sweden)

    Branko Stefanovic

    2014-04-01

    Full Text Available Fibroproliferative diseases are one of the leading causes of death worldwide. They are characterized by reactive fibrosis caused by uncontrolled synthesis of type I collagen. There is no cure for fibrosis and development of therapeutics that can inhibit collagen synthesis is urgently needed. Collagen α1(I mRNA and α2(I mRNA encode for type I collagen and they have a unique 5' stem-loop structure in their 5' untranslated regions (5'SL. Collagen 5'SL binds protein LARP6 with high affinity and specificity. The interaction between LARP6 and the 5'SL is critical for biosynthesis of type I collagen and development of fibrosis in vivo. Therefore, this interaction represents is an ideal target to develop antifibrotic drugs. A high throughput system to screen for chemical compounds that can dissociate LARP6 from 5'SL has been developed. It is based on fluorescence polarization and can be adapted to screen for inhibitors of other protein-RNA interactions. Screening of 50,000 chemical compounds yielded a lead compound that can inhibit type I collagen synthesis at nanomolar concentrations. The development, characteristics, and critical appraisal of this assay are presented.

  7. Solvent recycle/recovery

    Energy Technology Data Exchange (ETDEWEB)

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

    1990-09-01

    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  8. Kinetic solvent effects on 1,3-dipolar cycloadditions of benzonitrile oxide

    NARCIS (Netherlands)

    Rispens, T; Engberts, JBFN

    The kinetics of 1,3-dipolar cycloadditions of benzonitrile oxide with a series of N-substituted maleimides and with cyclopentene are reported for water, a wide range of organic solvents and binary solvent mixtures. The results indicate the importance of both solvent polarity and specific

  9. The chemistry of nonaqueous solvents v.4 solution phenomena and aprotic solvents

    CERN Document Server

    Lagowski, J J

    1976-01-01

    The Chemistry of Nonaqueous Solvents, Volume IV: Solution Phenomena and Aprotic Solvents focuses on the chemistry of nonaqueous solvents, with emphasis on solution phenomena and aprotic solvents such as tetramethylurea, inorganic acid chlorides, cyclic carbonates, and sulfolane. This book is organized into seven chapters and begins with an overview of the theory of electrical conductivity and elementary experimental considerations, along with some of the interesting research on nonaqueous solvents. It then turns to a discussion on hydrogen bonding phenomena in nonaqueous systems as probed

  10. Influence of molar mass of polymer on the solvent activity for binary system of poly N-vinylcaprolactam and water

    Energy Technology Data Exchange (ETDEWEB)

    Foruotan, Masumeh [Department of Physical Chemistry, Faculty of Chemistry, Collage of Science, University of Tehran, Tehran (Iran, Islamic Republic of)], E-mail: foroutan@khayam.ut.ac.ir; Zarrabi, Mona [Department of Physical Chemistry, Faculty of Chemistry, Collage of Science, University of Tehran, Tehran (Iran, Islamic Republic of)

    2009-04-15

    The water activity in aqueous solution of poly N-vinyl caprolactam with different molecular weights is measured by isopiestic method at T = 308.15 K. The results show that water activity and vapour pressure of poly N-vinylcaprolactam solution increases with increasing the molecular weight. The Flory-Huggins model, the modified Flory-Huggins model and Freed Flory-Huggins equation + NRTL model are used for correlation of the experimental solvent activity. It is found that the Freed Flory-Huggins + NRTL model is better than the others.

  11. Influence of molar mass of polymer on the solvent activity for binary system of poly N-vinylcaprolactam and water

    International Nuclear Information System (INIS)

    Foruotan, Masumeh; Zarrabi, Mona

    2009-01-01

    The water activity in aqueous solution of poly N-vinyl caprolactam with different molecular weights is measured by isopiestic method at T = 308.15 K. The results show that water activity and vapour pressure of poly N-vinylcaprolactam solution increases with increasing the molecular weight. The Flory-Huggins model, the modified Flory-Huggins model and Freed Flory-Huggins equation + NRTL model are used for correlation of the experimental solvent activity. It is found that the Freed Flory-Huggins + NRTL model is better than the others

  12. On the performance of telemedicine system using 17-GHz orthogonally polarized microwave links under the influence of heavy rainfall.

    Science.gov (United States)

    Fong, Bernard; Fong, A C M; Hong, G Y

    2005-09-01

    This paper describes the design of a telemedicine system based on next-generation wireless local area networks (WLANs) operating at 17 GHz. Seventeen gigahertz is proposed for next-generation WLAN services offering numerous advantages over traditional IEEE 802.11 networks that operate in the range of 2.4-5 GHz. Orthogonal polarization is often used to increase spectrum efficiency by utilizing signal paths of horizontal and vertical polarization. Radio waves exceeding 10 GHz are particularly vulnerable to signal degradation under the influence of rain which causes an effective reduction in isolation between polarized signal paths. This paper investigates the influence of heavy rain in a tropical region on wide-band microwave signals at 17 GHz using two links provided by a fixed broad-band wireless access system for two-way data exchange between paramedics attending an accident scene and the hospital via microwave equipment installed in the ambulance. We also study the effects of cross polarization and phase rotation due to persistent heavy rainfall in tropical regions.

  13. Polarization at SLC

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-07-01

    The SLAC Linear Collider has been designed to readily accommodate polarized electron beams. Considerable effort has been made to implement a polarized source, a spin rotation system, and a system to monitor the beam polarization. Nearly all major components have been fabricated. At the current time, several source and polarimeter components have been installed. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. It is expected that a beam polarization of 45% will be achieved with no loss in luminosity. 13 refs., 15 figs

  14. Behaviour of europium (III) and its hydroxo and carbonate complexes in a solvent extraction system with HDBM in 2 M NaCl at 303 K

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Reyes, M. [Inst. Nacional de Investigaciones Nucleares, Dept. de Quimica, Mexico, D. F. (Mexico); Univ. Autonoma Metropolitana-Iztapalapa, Area de Electroquimica, Mexico, D. F. (Mexico); Solache-Rios, M. [Inst. Nacional de Investigaciones Nucleares, Dept. de Quimica, Mexico, D. F. (Mexico); Rojas-Hernandez, A. [Univ. Autonoma Metropolitana-Iztapalapa, Area de Electroquimica, Mexico, D. F. (Mexico)

    1999-07-01

    The behaviour of europium in the solvent extraction system Eu{sup 3+}-water-2 M NaCl-HDBM-benzene was studied, taking into account the pC{sub H} and the carbonate ion concentration in the solutions. The stability constants for the hydrolysis and carbonate complexes of europium were determined at 303 K in the same medium by pH titration followed by a computational refinement. The obtained data were: log {beta}{sub Eu,H} = -8.29 {+-} 0.02, log {beta}{sub Eu,2H} = -16.37 {+-} 0.02, log {beta}{sub Eu,3H} = -24.54 {+-} 0.11, log {beta}{sub Eu,4H} = -34.91 {+-} 0.26, log {beta}{sub CO{sub 2}{sup 2-},H} = 9.30 {+-} 0.05, log {beta}{sub Eu,CO{sub 3}{sup 2-}} = 5.96 {+-} 0.03, log {beta}{sub Eu,CO{sub 3}{sup 2-},H} = -1.24 {+-} 0.05 and log {beta}{sub Eu,CO{sub 3}{sup 2-},2H} = -11.39 {+-} 0.11. Log K{sub W} was -13.78 {+-} 0.06. The behaviour of europium in this solvent extraction system was simulated, taking into account the hydrolysis and carbonate complexes plus the formation of Eu(DBM){sub 3}(OH){sup 1-} and Eu(DBM){sub 3}(CO{sub 3}){sup 2-} in the aqueous phase. The only europium species considered in the organic phase was Eu(DBM){sub 3}. The first hydrolysis constant of europium was also determined by using this solvent extraction system under the same conditions. A good conformity was found with the results obtained by both techniques. (orig.)

  15. First Measurements of Aspect Sensitivity of Polar Mesospheric Summer Echoes by a Bistatic Radar System

    Science.gov (United States)

    La Hoz, C.; Pinedo, H.; Havnes, O.; Kosch, M. J.; Senior, A.; Rietveld, M. T.

    2014-12-01

    Polar Mesospheric Summer Echoes (PMSE) have been observed for the first time by a bistatic radar system comprising the EISCAT VHF (224 MHz) active radar in Tromso (Norway) and the receiving EISCAT_3D demonstrator array located in Kiruna, (Sweden). The receiving system is 234 km southeast from the transmitting radar and its line of sight to the mesosphere above Tromso has an elevation angle of 21 degrees implying an aspect angle of the scattered signals in that direction of 69 degrees. This is the first time that a truly bistatic configuration has been employed to measure the angle dependence of the scattering mechanism of PMSE which otherwise has been measured only in monostatic configurations. The bistatic configuration is unencumbered by drawbacks of the monostatic configuration that cannot reach angles greater than about 20 degrees due to antenna beam pattern degradation and the use of models to extrapolate the angle dependence of the scattered signals. Strong scattering was observed over prolonged periods on several days by the demonstrator array in July of 2011. These measurements are at variance with previous aspect angle measurements that have reported aspect angles no greater than about 15 degrees. These results indicate that the turbulent irregularities that produce the scattering have a high degree of isotropy, which is more in line with Kolmogorov's hypothesis of a universal scaling of turbulence based on the assumption of homogeneity and isotropy in the inertial regime of turbulence which applies also to the Batchelor regime (due to large Schmidt numbers) believed to be the case for PMSE.

  16. Design of magnetic system to produce intense beam of polarized molecules of H2 and D2

    Science.gov (United States)

    Yurchenko, A. V.; Nikolenko, D. M.; Rachek, I. A.; Shestakov, Yu V.; Toporkov, D. K.; Zorin, A. V.

    2017-12-01

    A magnetic-separating system is designed to produce polarized molecular high-density beams of H2/D2. The distribution of the magnetic field inside the aperture of the multipole magnet was calculated using the Mermaid software package. The calculation showed that the characteristic value of the magnetic field is 40 kGs, the field gradient is about 60 kGs/cm. A numerical calculation of the trajectories of the motion of molecules with different spin projections in this magnetic system is performed. The article discusses the possibility of using the magnetic system designed for the creation of a high-intensity source of polarized molecules. The expected intensity of this source is calculated. The expected flux of molecules focused in the receiver tube is 3.5·1016 mol/s for the hydrogen molecule and 2.0·1015 mol/s for the deuterium molecule.

  17. Improved digital backward propagation for the compensation of inter-channel nonlinear effects in polarization-multiplexed WDM systems.

    Science.gov (United States)

    Mateo, Eduardo F; Zhou, Xiang; Li, Guifang

    2011-01-17

    An improved split-step method (SSM) for digital backward propagation (DBP) applicable to wavelength-division multiplexed (WDM) transmission with polarization-division multiplexing (PDM) is presented. A coupled system of nonlinear partial differential equations, derived from the Manakov equations, is used for DBP. The above system enables the implementation of DBP on a channel-by-channel basis, where only the effect of phase-mismatched four-wave mixing (FWM) is neglected. A novel formulation of the SSM for PDM-WDM systems is presented where new terms are included in the nonlinear step to account for inter-polarization mixing effects. In addition, the effect of inter-channel walk-off is included. This substantially reduces the computational load compared to the conventional SSM.

  18. Modeling of the Mixed Solvent Electrolyte System CO2-Na2CO3-NaHCO3-Monoethylene Glycol-Water

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Thomsen, Kaj; Stenby, Erling Halfdan

    2009-01-01

    The extended UNIQUAC electrolyte activity coefficient model has been correlated to 751 experimental solid−liquid equilibrium (SLE), vapor−liquid equilibrium (VLE), and excess enthalpy data for the mixed solvent CO2−NaHCO3−Na2CO3−monoethylene glycol(MEG)−H2O electrolyte system. The model...... was validated by predicting the excess heat capacity. The model is consistent, and one set of binary interaction parameters are used for calculating all the properties between −50 and 90 °C. The model is compared to experimental data of infinite dilution activity coefficient measurements of MEG and may be used...

  19. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Technical Performance Measures of the Block 2 Architecture

    Science.gov (United States)

    Grant, K. D.; Panas, M.

    2016-12-01

    NOAA and NASA are jointly acquiring the next-generation civilian weather satellite system: the Joint Polar Satellite System (JPSS). JPSS replaced the afternoon orbit component and ground processing of NOAA's old POES system. JPSS satellites carry sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a globally distributed, multi-mission system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture has been upgraded to Block 2.0 to satisfy several key objectives, including: "operationalizing" the first satellite, Suomi NPP, which originally was a risk reduction mission; leveraging lessons learned in multi-mission support, taking advantage of newer, more reliable and efficient technologies and satisfying constraints due of the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 48 Technical Performance Measures (TPMs) across 9 categories: Data Availability, Data Latency, Operational Availability, Margin, Scalability, Situational Awareness, Transition (between environments and sites), WAN Efficiency, and Data Recovery Processing. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 9 TPM categories listed above. We will describe how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  20. Molecular and supramolecular speciations of solvent extraction systems based on malonamide and/or dialkyl-phosphoric acids for An(III)/Ln(III); Speciations moleculaire et supramoleculaire de systemes d'extraction liquide-liquide a base de malonamide et/ou d'acides dialkylphosphoriques pour la separation An(III)/Ln(III)

    Energy Technology Data Exchange (ETDEWEB)

    Gannaz, B

    2006-06-15

    The solvent extraction system used in the DIAMEX-SANEX process, developed for the actinide(III)/lanthanide(III) separation, is based on the use of mixtures of the malonamide DMDOHEMA and a dialkyl-phosphoric acid (HDEHP or HDHP), in hydrogenated tetra-propylene. The complexity of these systems urges on a novel approach to improve the conventional methods (thermodynamics, solvent extraction) which hardly explain the macroscopic behaviors observed (3. phase, over-stoichiometry). This approach combines studies on both supramolecular (VPO, SANS, SAXS) and molecular (liquid-liquid extraction, ESI-MS, IR, EXAFS) speciations of single extractant systems (DMDOHEMA or HDHP in in n-dodecane) and their mixture. In spite of safety constraints due to the handling of radio-material, they were used in the studies as much as possible, like for SAXS measurements on americium-containing samples, a worldwide first-time. In each of the investigated systems, actinides(III) and lanthanides(III) are extracted to the organic phase in polar cores of reversed micelles, the inner and outer-sphere compositions of which are proposed. Thus, the 4f and 5f cations are extracted by reversed micelles such as [(DMDOHEMA){sub 2}M(NO{sub 3}){sub 3}]{sub inn} (DMDOHEMA){sub x}(HNO{sub 3}){sub z}(H{sub 2}O){sub w}]{sub out} and M(DHP){sub 3}(HDHP){sub y-3}(H{sub 2}O){sub w} with y = 3 to 6, for the single extractant systems. In the case of the two extractants system, the less concentrated one acts like a co-surfactant regarding the mixed aggregate formation [(DMDOHEMA){sub 2}M(NO{sub 3}){sub 3-v}(DHP){sub v}]{sub inn} [(DMDOFIEMA){sub x}(HDHP){sub y}(HNO{sub 3})z(H{sub 2}O){sub w}]{sub out}. (author)

  1. Power-scalable, polarization-stable, dual-colour DFB fibre laser system for CW terahertz imaging

    DEFF Research Database (Denmark)

    Eichhorn, Finn; Pedersen, Jens Engholm; Jepsen, Peter Uhd

    Imaging with electromagnetic radiation in the terahertz (THz) range has received a large amount of attention during recent years. THz imaging systems have diverse potential application areas such as security screening, medical diagnostics and non-destructive testing. We will discuss a power...... and is an alternative to pulsed THz systems using femtosecond lasers. The laser system generates output powers up to several hundred mW, has a 25 kHz linewidth and a polarization extinction ratio of better than 20 dB. Since the output power reaches the Watt-level, the laser system is a suitable candidate for future...

  2. The separation of flavonoids from Pongamia pinnata using combination columns in high-speed counter-current chromatography with a three-phase solvent system.

    Science.gov (United States)

    Yin, Hao; Zhang, Si; Long, Lijuan; Yin, Hang; Tian, Xinpeng; Luo, Xiongming; Nan, Haihan; He, Sha

    2013-11-08

    The mangrove plant Pongamia pinnata (Leguminosae) is well known as a plant pesticide. Previous studies have indicated that the flavonoids are responsible of the biological activities of the plant. A new high-speed counter-current chromatography (HSCCC) method for the separation of three flavonoids, karanjin (1), pinnatin (2), and pongaflavone (3), from P. pinnata was developed in the present study. The lower and intermediate phase (LP and IP) of a new three-phase solvent system, n-hexane-acetonitrile-dichloromethane-water, at a volume ratio of 5:5:1:5, were used as the stationary phases, while the upper phase (UP) was used as the mobile phase, and the volume ratio between the stationary phases in the CCC column could be tuned by varying the initial pumped volume ratio of the stationary phases. The CCC columns containing all three phases of the solvent system were considered combination columns. According to the theories of combination column, it is possible to optimize the retention time of the target compounds by varying the volume ratio of the stationary phases in the HSCCC combination columns, as well as the suitable volume ratios of the stationary phases for the separation of the target compounds were predicted from the partition coefficients of the compounds in the three-phase solvent system. Then, three HSCCC separations using the combination columns with initial pumped LP:IP volume ratios of 1:0, 0.9:0.1, and 0.7:0.3 were performed separately based on the prediction. Three target compounds were prepared with high purity when the initial pumped volume ratio of the stationary phases was 0.9:0.1. The baseline separation of compounds 2 and 3 was achieved on the combination column with an initial pumped volume ratio of 0.7:0.3. Furthermore, the three experiments clearly demonstrated that the retentions and resolutions of the target compounds increased with an increasing volume ratio of IP, which is consistent with the prediction for the retention times for the

  3. Polarization of TH2 response is decreased during pregnancy in systemic lupus erythematosus.

    Science.gov (United States)

    Iaccarino, L; Ghirardello, A; Zen, M; Villalta, D; Tincani, A; Punzi, L; Doria, A

    2012-12-11

    This study evaluated some cytokines involved in the Th1-Th2 shift during pregnancy in patients with systemic lupus erythematosus (SLE) and healthy women. Twenty-seven consecutive successful pregnancies in 26 SLE patients and 28 pregnancies in 28 matched healthy subjects, as controls, were enrolled and prospectively studied. Sera obtained at first and third trimesters of pregnancy were tested for IL-1α, IL-1β, IL-2, IL-6, IL-8, IL-10, IL-12p70, INF-γ, and TNF-α with a highly sensitive, multiplexed sandwich ELISA (SearchLight Human Inflammatory Cytokine Array). Statistics were performed by SPSS package. IL-8 serum levels were higher in the first (P<0.0001) and third (P=0.003) trimesters of pregnancy in SLE patients compared with controls, INF-γ serum levels in the third trimester (P=0.009), and IL-10 serum levels in the first and third trimesters (P=0.055 and P<0.0001, respectively). IL-2 (r=0.524 P=0.010), IL-12 (r=0.549 P=0.007), IFN-γ (r=0.492 P=0.017), and IL-6 (r=0.515 P=0.020) serum levels correlated with disease activity in SLE patients in the first trimester of pregnancy. Cytokine profile was similar in patients with and without lupus nephritis both in the first and in the third trimesters of pregnancy. IL-8 serum levels were lower in patients with a previous diagnosis of antiphospholipid antibody syndrome compared with those without, both in the first and in the third trimesters of pregnancy. In SLE patients, a lower than expected decrease in Th1 cytokine serum levels was observed in the third trimester of gestation which could contribute to a lower Th2 cytokine polarization during pregnancy.

  4. Molecular Thermodynamic Modeling of Mixed Solvent Solubility

    DEFF Research Database (Denmark)

    Ellegaard, Martin Dela; Abildskov, Jens; O’Connell, John P.

    2010-01-01

    A method based on statistical mechanical fluctuation solution theory for composition derivatives of activity coefficients is employed for estimating dilute solubilities of 11 solid pharmaceutical solutes in nearly 70 mixed aqueous and nonaqueous solvent systems. The solvent mixtures range from ne...

  5. First and second dissociation constants and related thermodynamic functions of adipic acid in various binary methanol/solvent systems.

    Science.gov (United States)

    El-Naggar, G A

    1998-11-01

    The First and second dissociation constants of adipic acid were determined by EMF measurements in water/methanol mixtures with 0, 30, 50 and 70 wt% organic cosolvent. Measurements were made at four different temperatures (ranging from 30 to 60 degrees C) using the cell: glass electrode/HCL (m(1)), H(2)L (m(2)), Na(2)CO(3) (m(3))/AgCl ((S)), Ag. The computations of these dissociation constants were based on the method of successive approximation by means of basic programmes. The thermodynamic properties (DeltaG degrees , DeltaH degrees and DeltaS degrees ) for first and second dissociation reactions of the acid under study, were computed, analyzed and discussed in terms of solute-solvent interactions.

  6. In-line Fiber Polarizer

    OpenAIRE

    Perumalsamy, Priya

    1998-01-01

    Polarizers and polarization devices are important components in fiber optic communication and sensor systems. There is a growing need for efficient low loss components that are compatible with optical fibers. An all fiber in-line polarizer is a more desirable alternative that could be placed at appropriate intervals along communication links. An in-line fiber polarizer was fabricated and tested. The in-line fiber polarizer operates by coupling optical energy propagatin...

  7. The use of solvent extractions and solubility theory to discern hydrocarbon associations in coal, with application to the coal-supercritical CO2 system

    Science.gov (United States)

    Kolak, Jonathan J.; Burruss, Robert A.

    2014-01-01

    Samples of three high volatile bituminous coals were subjected to parallel sets of extractions involving solvents dichloromethane (DCM), carbon disulfide (CS2), and supercritical carbon dioxide (CO2) (40 °C, 100 bar) to study processes affecting coal–solvent interactions. Recoveries of perdeuterated surrogate compounds, n-hexadecane-d34 and four polycyclic aromatic hydrocarbons (PAHs), added as a spike prior to extraction, provided further insight into these processes. Soxhlet-DCM and Soxhlet-CS2 extractions yielded similar amounts of extractable organic matter (EOM) and distributions of individual hydrocarbons. Supercritical CO2 extractions (40 °C, 100 bar) yielded approximately an order of magnitude less EOM. Hydrocarbon distributions in supercritical CO2 extracts generally mimicked distributions from the other solvent extracts, albeit at lower concentrations. This disparity increased with increasing molecular weight of target hydrocarbons. Five- and six-ring ring PAHs generally were not detected and no asphaltenes were recovered in supercritical CO2 extractions conducted at 40 °C and 100 bar. Supercritical CO2 extraction at elevated temperature (115 °C) enhanced recovery of four-ring and five-ring PAHs, dibenzothiophene (DBT), and perdeuterated PAH surrogate compounds. These results are only partially explained through comparison with previous measurements of hydrocarbon solubility in supercritical CO2. Similarly, an evaluation of extraction results in conjunction with solubility theory (Hildebrand and Hansen solubility parameters) does not fully account for the hydrocarbon distributions observed among the solvent extracts. Coal composition (maceral content) did not appear to affect surrogate recovery during CS2 and DCM extractions but might affect supercritical CO2 extractions, which revealed substantive uptake (partitioning) of PAH surrogates into the coal samples. This uptake was greatest in the sample (IN-1) with the highest vitrinite content. These

  8. Recent improvements of a mobile polarizer system for {sup 129}Xe

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Vanessa; Heil, Werner; Karpuk, Sergei; Bluemler, Peter; Repetto, Maricel; Niederlaender, Benjamin; Braun, Manuel; Fuchs, Martin [Institut fuer Physik, Universitaet Mainz (Germany); Muennemann, Kerstin; Spiess, Hans [Max Planck Institute for Polymer Research Mainz (Germany)

    2013-07-01

    (HP){sup 129}Xe has numerous applications both in fundamental physics like nuclear spin clocks and in medical research, e.g. in lung MRI. We report on a compact mobile {sup 129}Xe polarizer built in order to achieve high polarization degrees operating in counter flow. The optical pumping scheme is optimized in terms of magnetic field homogeneity, rubidium saturation, freeze-thaw method, gas-transport and its storage in special vessels with low wall relaxation. This talk will cover different aspects of HP gas production, manipulation and minimization of losses due to relaxation.

  9. The effect of white or grey PVC pipe and its joint solvents (primer and cement) on odour problems in drinking water distribution systems.

    Science.gov (United States)

    Wiesenthal, K E; Suffet, I H

    2007-01-01

    A study of the production of odour-causing compounds was conducted from the leaching of polyvinylchloride (PVC) pipe and its joints, primer and cement, into drinking water distribution systems. Flavour Profile Analysis (FPA), closed-loop stripping analysis--gas chromatography/mass spectrometry (CLSA-GC/MS) and sensory-GC analysis of white or grey PVC alone found no odour-causing compounds produced during the leaching experiments. FPA analysis of the PVC's primer and cement leached alone and/or when applied to grey or white PVC pipes produced a glue/varnish odour. A sweet/phenolic odour replaced the glue/varnish odour after the leached media were diluted with Milli-Q water to threshold odour intensity. Three compounds were responsible for the sweet/phenolic odour and were observed by sensoryGC analysis. The leaching study of the PVC pipe with its joint solvents (primer and cement) concluded that the original solvent compounds, and their reaction products that formed during the bonding process on the PVC pipe, were a primary source of the glue/varnish odour. The original compounds of the PVC primer and cement were not detected by CLSA-GC/MS, due to their high volatility during the CLSA extraction method and/or these compounds appeared in a solvent peak of the GC/MS analysis. However, the original primer and cement chemicals (acetone, tetrahydrofuran, methyl ethyl ketone, and cyclohexanone) had a glue/varnish odour. A total of nine odorous GC peaks were produced as reaction products from leaching of primer in water and white or grey PVC pipe with primer and cement, and white or grey PVC with primer only. None of these compounds were among the chemical ingredients in the original primer or cement. Four GC peaks with a sweet/phenolic odour were present due to the reaction products of the cement leached with white or grey PVC. None of these compounds were positively identified.

  10. Polarization feedback laser stabilization

    Science.gov (United States)

    Esherick, P.; Owyoung, A.

    1987-09-28

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other. 4 figs.

  11. Streamlining On-Demand Access to Joint Polar Satellite System (JPSS) Data Products for Weather Forecasting

    Science.gov (United States)

    Evans, J. D.; Tislin, D.

    2017-12-01

    Observations from the Joint Polar Satellite System (JPSS) support National Weather Service (NWS) forecasters, whose Advanced Weather Interactive Processing System (AWIPS) Data Delivery (DD) will access JPSS data products on demand from the National Environmental Satellite, Data, and Information Service (NESDIS) Product Distribution and Access (PDA) service. Based on the Open Geospatial Consortium (OGC) Web Coverage Service, this on-demand service promises broad interoperability and frugal use of data networks by serving only the data that a user needs. But the volume, velocity, and variety of JPSS data products impose several challenges to such a service. It must be efficient to handle large volumes of complex, frequently updated data, and to fulfill many concurrent requests. It must offer flexible data handling and delivery, to work with a diverse and changing collection of data, and to tailor its outputs into products that users need, with minimal coordination between provider and user communities. It must support 24x7 operation, with no pauses in incoming data or user demand; and it must scale to rapid changes in data volume, variety, and demand as new satellites launch, more products come online, and users rely increasingly on the service. We are addressing these challenges in order to build an efficient and effective on-demand JPSS data service. For example, on-demand subsetting by many users at once may overload a server's processing capacity or its disk bandwidth - unless alleviated by spatial indexing, geolocation transforms, or pre-tiling and caching. Filtering by variable (/ band / layer) may also alleviate network loads, and provide fine-grained variable selection; to that end we are investigating how best to provide random access into the variety of spatiotemporal JPSS data products. Finally, producing tailored products (derivatives, aggregations) can boost flexibility for end users; but some tailoring operations may impose significant server loads

  12. Substituent and solvent effects on spectroscopic properties of 2-amino-1,3-dicyano-5,6,7,8-tetrahydronaphthalene derivatives

    International Nuclear Information System (INIS)

    Józefowicz, M.; Bajorek, A.; Pietrzak, M.; Heldt, J.R.; Heldt, J.

    2014-01-01

    In this article, we report the photophysical properties of six, newly synthesized donor-substituted 2-amino-1,3-dicyano-5,6,7,8-tetrahydronaphthalene fluorophores. The steady-state and time-resolved spectroscopic experiments have been used to investigate the substituent and solvent effects on the locally excited (LE) and intramolecular charge transfer (ICT) emission. We demonstrate that the spectroscopic characteristics (fluorescence quantum yields, fluorescence decay times, radiative rate constants, and ground and excited state dipole moments) of the studied D–A dyes, as well as the reorganization energies characterizing the solute–solvent interactions and intramolecular torsion motions greatly depend on different substituents and microenvironment. On the basis of the experimental results and our previous quantum-chemical calculations, it was shown that two emitting charge transfer states: non-relaxed (ICT) NR and relaxed (ICT) R exist in six biphenyl derivatives dissolved in polar solvents (e.g., THF), whereas in non-polar medium (MCH) the existence of two emissive states have been attributed to non-relaxed and relaxed, locally excited state ((LE) NR , (LE) R ). - Highlights: • Spectroscopic properties greatly depend on different substituents and microenvironment. • Investigated dyes form a typically spectrally inhomogeneous system. • Two emitting charge transfer states (ICT) NR and (ICT) R exist in polar solvents. • In non-polar medium locally excited fluorescence is possible from (LE) NR and (LE) R states

  13. Solvent Extraction of Chemical Attribution Signature Compounds from Painted Wall Board: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, Jon H.; Colburn, Heather A.

    2009-10-29

    This report summarizes work that developed a robust solvent extraction procedure for recovery of chemical attribution signature (CAS) compound dimethyl methyl phosphonate (DMMP) (as well as diethyl methyl phosphonate (DEMP), diethyl methyl phosphonothioate (DEMPT), and diisopropyl methyl phosphonate (DIMP)) from painted wall board (PWB), which was selected previously as the exposed media by the chemical attribution scientific working group (CASWG). An accelerated solvent extraction approach was examined to determine the most effective method of extraction from PWB. Three different solvent systems were examined, which varied in solvent strength and polarity (i.e., 1:1 dichloromethane : acetone,100% methanol, and 1% isopropanol in pentane) with a 1:1 methylene chloride : acetone mixture having the most robust and consistent extraction for four original target organophosphorus compounds. The optimum extraction solvent was determined based on the extraction efficiency of the target analytes from spiked painted wallboard as determined by gas chromatography x gas chromatography mass spectrometry (GCxGC-MS) analysis of the extract. An average extraction efficiency of approximately 60% was obtained for these four compounds. The extraction approach was further demonstrated by extracting and detecting the chemical impurities present in neat DMMP that was vapor-deposited onto painted wallboard tickets.

  14. Millennial scale system impulse response of polar climates - deconvolution results between δ 18O records from Greenland and Antarctica

    Science.gov (United States)

    Reischmann, E.; Yang, X.; Rial, J. A.

    2013-12-01

    Deconvolution has long been used in science to recover real input given a system's impulse response and output. In this study, we applied spectral division deconvolution to select, polar, δ 18O time series to investigate the possible relationship between the climates of the Polar Regions, i.e. the equivalent to a climate system's ';impulse response.' While the records may be the result of nonlinear processes, deconvolution remains an appropriate tool because the two polar climates are synchronized, forming a Hilbert transform pair. In order to compare records, the age models of three Greenland and four Antarctica records have been matched via a Monte Carlo method using the methane-matched pair GRIP and BYRD as a basis for the calculations. For all twelve polar pairs, various deconvolution schemes (Wiener, Damped Least Squares, Tikhonov, Kalman filter) give consistent, quasi-periodic, impulse responses of the system. Multitaper analysis reveals strong, millennia scale, quasi-periodic oscillations in these system responses with a range of 2,500 to 1,000 years. These are not symmetric, as the transfer function from north to south differs from that of south to north. However, the difference is systematic and occurs in the predominant period of the deconvolved signals. Specifically, the north to south transfer function is generally of longer period than the south to north transfer function. High amplitude power peaks at 5.0ky to 1.7ky characterize the former, while the latter contains peaks at mostly short periods, with a range of 2.5ky to 1.0ky. Consistent with many observations, the deconvolved, quasi-periodic, transfer functions share the predominant periodicities found in the data, some of which are likely related to solar forcing (2.5-1.0ky), while some are probably indicative of the internal oscillations of the climate system (1.6-1.4ky). The approximately 1.5 ky transfer function may represent the internal periodicity of the system, perhaps even related to the

  15. Apical polarity in three-dimensional culture systems: where to now?

    Energy Technology Data Exchange (ETDEWEB)

    Inman, J.L.; Bissell, Mina

    2010-01-21

    Delineation of the mechanisms that establish and maintain the polarity of epithelial tissues is essential to understanding morphogenesis, tissue specificity and cancer. Three-dimensional culture assays provide a useful platform for dissecting these processes but, as discussed in a recent study in BMC Biology on the culture of mammary gland epithelial cells, multiple parameters that influence the model must be taken into account.

  16. Hyperpolarized xenon by d-DNP using the clinical GE SpinLab polarizer system

    DEFF Research Database (Denmark)

    Mariager, Christian Østergaard; Ringgaard, Steffen; Ardenkjær-Larsen, Jan Henrik

    2017-01-01

    Hyperpolarized (HP) 129Xe have been demonstrated as a useful probe for magnetic resonance (MR) lung imaging and show promise for in vivo perfusion imaging and brown adipose tissue characterization. Reports of large polarization enhancements for 129Xe using dynamic nuclearpolarization (DNP) have...

  17. UAH mathematical model of the variable polarity plasma ARC welding system calculation

    Science.gov (United States)

    Hung, R. J.

    1994-01-01

    Significant advantages of Variable Polarity Plasma Arc (VPPA) welding process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. A mathematical model is presented to analyze the VPPA welding process. Results of the mathematical model were compared with the experimental observation accomplished by the GDI team.

  18. Study of the polar current systems using the IMS meridian chains of magnetometers. Pt. 1. Alaska meridian chain

    Energy Technology Data Exchange (ETDEWEB)

    Akasofu, S.I.; Ahn, B.H.; Romick, G.J. (Alaska Univ., Fairbanks (USA). Geophysical Inst.)

    1983-12-01

    Magnetic field data from a meridian chain of observatories and the recently developed computer codes constitute a powerful tool in studying substorm current systems in the polar region. In this paper, we summarize some of the results obtained from the IMS Alaska meridian chain of observatories. The basic data are the average daily magnetic field variations for 50 successive days (March 9- April 27, 28) which represent a moderately disturbed period. With the aid of the two computer codes, we obtained the distribution of the following quantities in the polar ionosphere in invariant-MLT coordinates: the total ionospheric current; the Pedersen current; the Hall current; the field-aligned currents; the Pedersen-associated field-aligned currents; the Hall-associated field-aligned currents; the electric potential; the Joule heat production rate; the auroral particle energy injection rate; the total energy dissipation rate. All these quantities are related to each other self-consistently at every point under the initial assumptions used in the computation. By using a model of the magnetosphere, the following quantities in the polar ionosphere are projected onto the equatorial plane and the Y-Z plane at X = -20 Rsub(E): the Pedersen current counterpart; the Hall current counterpart; the electric potential; the Pedersen-associated field-aligned currents; the Hall-associated field-aligned currents. These distributions patterns serve as an important basis for studying the generation mechanisms of substorm current systems and the magnetosphere-ionosphere coupling process.

  19. 5-Hydroxymethylfurfural (5-HMF Production from Hexoses: Limits of Heterogeneous Catalysis in Hydrothermal Conditions and Potential of Concentrated Aqueous Organic Acids as Reactive Solvent System

    Directory of Open Access Journals (Sweden)

    Nadine Essayem

    2012-09-01

    Full Text Available 5-Hydroxymethylfurfural (5-HMF is an important bio-sourced intermediate, formed from carbohydrates such as glucose or fructose. The treatment at 150–250 °C of glucose or fructose in pure water and batch conditions, with catalytic amounts of most of the usual acid-basic solid catalysts, gave limited yields in 5-HMF, due mainly to the fast formation of soluble oligomers. Niobic acid, which possesses both Lewis and Brønsted acid sites, gave the highest 5-HMF yield, 28%, when high catalyst/glucose ratio is used. By contrast, we disclose in this work that the reaction of fructose in concentrated aqueous solutions of carboxylic acids, formic, acetic or lactic acids, used as reactive solvent media, leads to the selective dehydration of fructose in 5-HMF with yields up to 64% after 2 hours at 150 °C. This shows the potential of such solvent systems for the clean and easy production of 5-HMF from carbohydrates. The influence of adding solid catalysts to the carboxylic acid media was also reported, starting from glucose.

  20. [Review] Polarization and Polarimetry

    Science.gov (United States)

    Trippe, Sascha

    2014-02-01

    Polarization is a basic property of light and is fundamentally linked to the internal geometry of a source of radiation. Polarimetry complements photometric, spectroscopic, and imaging analyses of sources of radiation and has made possible multiple astrophysical discoveries. In this article I review (i) the physical basics of polarization: electromagnetic waves, photons, and parameterizations; (ii) astrophysical sources of polarization: scattering, synchrotron radiation, active media, and the Zeeman, Goldreich-Kylafis, and Hanle effects, as well as interactions between polarization and matter (like birefringence, Faraday rotation, or the Chandrasekhar-Fermi effect); (iii) observational methodology: on-sky geometry, influence of atmosphere and instrumental polarization, polarization statistics, and observational techniques for radio, optical, and X/γ wavelengths; and (iv) science cases for astronomical polarimetry: solar and stellar physics, planetary system bodies, interstellar matter, astrobiology, astronomical masers, pulsars, galactic magnetic fields, gamma-ray bursts, active galactic nuclei, and cosmic microwave background radiation.

  1. Synthesis of an O-acyl isopeptide by using native chemical ligation in an aqueous solvent system.

    Science.gov (United States)

    Kawashima, Hiroyuki; Kuruma, Tomomi; Yamashita, Masayuki; Sohma, Youhei; Akaji, Kenichi

    2014-05-01

    O-Acyl isopeptides, in which the N-acyl linkage on the hydroxyamino acid residue (e.g. Ser and Thr) is replaced by an O-acyl linkage, generally suppress unfavorable aggregation properties derived from the corresponding parent peptides. Here, we report the synthesis of an O-acyl isopeptide of 34-mer pyroGlu-ADan (2), a component of amyloid deposits in hereditary familial Danish dementia, by using native chemical ligation. Native chemical ligation of pyroGlu(1) -ADan(1-21)-SCH2 CH2 SO3 (-) Na(+) (3) and Cys(22) -O-acyl isopeptide (4), in which the amino group of the Ser(29) residue at the isopeptide moiety was protected by an allyloxycarbonyl group, proceeded well in an aqueous solvent to yield a ligated O-acyl isopeptide (5). Subsequent disulfide bond formation and deprotection of the allyloxycarbonyl group followed by HPLC purification gave 2 with a reasonable overall yield. 2 was converted to the parent peptide 1 via an O-to-N acyl migration reaction. The sequential method, namely (i) native chemical ligation of the O-acyl isopeptide, (ii) HPLC purification as the O-acyl isopeptide form, and (iii) O-to-N acyl migration into the desired polypeptide, would be helpful to solve problems with HPLC purification of hydrophobic polypeptides in the process of chemical protein synthesis. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  2. Polarity controlled reaction path and kinetics of thermal cis-to-trans isomerization of 4-aminoazobenzene.

    Science.gov (United States)

    Joshi, Neeraj Kumar; Fuyuki, Masanori; Wada, Akihide

    2014-02-20

    Spectral and kinetic behavior of thermal cis-to-trans isomerization of 4-aminoazobenzene (AAB) is examined in various solvents of different polarities. In contrast to azobenzene (AB), it is found the rate of thermal isomerization of AAB is highly dependent on solvent polarity. Accelerated rates are observed in polar solvents as compared to nonpolar solvents. Moreover, a decrease in the barrier height with an increase in medium polarity is observed. Our observations suggest that inversion is the preferred pathway in cis-to-trans thermal isomerization in a nonpolar medium; however, in a polar medium, the isomerization path deviates from the inversion route and rotational behavior is incorporated. Differences in the kinetics and in mechanisms of isomerization in different media are rationalized in terms of modulation in barrier height by polarity of the medium and solute-solvent interaction. It is found that kinetics as well as the mechanism of thermal isomerization in AAB is controlled by the polarity of the medium.

  3. Spectroscopic and DFT study of solvent effects on the electronic absorption spectra of sulfamethoxazole in neat and binary solvent mixtures.

    Science.gov (United States)

    Almandoz, M C; Sancho, M I; Blanco, S E

    2014-01-24

    The solvatochromic behavior of sulfamethoxazole (SMX) was investigated using UV-vis spectroscopy and DFT methods in neat and binary solvent mixtures. The spectral shifts of this solute were correlated with the Kamlet and Taft parameters (α, β and π(*)). Multiple lineal regression analysis indicates that both specific hydrogen-bond interaction and non specific dipolar interaction play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra using TD-DFT methods were in good agreement with the experimental ones. Binary mixtures consist of cyclohexane (Cy)-ethanol (EtOH), acetonitrile (ACN)-dimethylsulfoxide (DMSO), ACN-dimethylformamide (DMF), and aqueous mixtures containing as co-solvents DMSO, ACN, EtOH and MeOH. Index of preferential solvation was calculated as a function of solvent composition and non-ideal characteristics are observed in all binary mixtures. In ACN-DMSO and ACN-DMF mixtures, the results show that the solvents with higher polarity and hydrogen bond donor ability interact preferentially with the solute. In binary mixtures containing water, the SMX molecules are solvated by the organic co-solvent (DMSO or EtOH) over the whole composition range. Synergistic effect is observed in the case of ACN-H2O and MeOH-H2O, indicating that at certain concentrations solvents interact to form association complexes, which should be more polar than the individual solvents of the mixture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Insect remote sensing using a polarization sensitive cw lidar system in chinese rice fields

    Directory of Open Access Journals (Sweden)

    Zhu Shiming

    2018-01-01

    Full Text Available A joint Chinese-Swedish field campaign of Scheimpflug continuous-wave lidar monitoring of rice-field flying pest insects was pursued in very hot July weather conditions close to Guangzhou, China. The occurrence of insects, birds and bats with almost 200 hours of round-the-clock polarization-sensitive recordings was studied. Wing-beat frequency recordings and depolarization properties were used for target classification. Influence of weather conditions on the flying fauna was also investigated.

  5. Effect of reaction solvent on hydroxyapatite synthesis in sol-gel process.

    Science.gov (United States)

    Nazeer, Muhammad Anwaar; Yilgor, Emel; Yagci, Mustafa Baris; Unal, Ugur; Yilgor, Iskender

    2017-12-01

    Synthesis of hydroxyapatite (HA) through sol-gel process in different solvent systems is reported. Calcium nitrate tetrahydrate (CNTH) and diammonium hydrogen phosphate (DAHP) were used as calcium and phosphorus precursors, respectively. Three different synthesis reactions were carried out by changing the solvent media, while keeping all other process parameters constant. A measure of 0.5 M aqueous DAHP solution was used in all reactions while CNTH was dissolved in distilled water, tetrahydrofuran (THF) and N , N -dimethylformamide (DMF) at a concentration of 0.5 M. Ammonia solution (28-30%) was used to maintain the pH of the reaction mixtures in the 10-12 range. All reactions were carried out at 40 ± 2°C for 4 h. Upon completion of the reactions, products were filtered, washed and calcined at 500°C for 2 h. It was clearly demonstrated through various techniques that the dielectric constant and polarity of the solvent mixture strongly influence the chemical structure and morphological properties of calcium phosphate synthesized. Water-based reaction medium, with highest dielectric constant, mainly produced β-calcium pyrophosphate (β-CPF) with a minor amount of HA. DMF/water system yielded HA as the major phase with a very minor amount of β-CPF. THF/water solvent system with the lowest dielectric constant resulted in the formation of pure HA.

  6. Effect of reaction solvent on hydroxyapatite synthesis in sol-gel process

    Science.gov (United States)

    Nazeer, Muhammad Anwaar; Yilgor, Emel; Yagci, Mustafa Baris; Unal, Ugur; Yilgor, Iskender

    2017-12-01

    Synthesis of hydroxyapatite (HA) through sol-gel process in different solvent systems is reported. Calcium nitrate tetrahydrate (CNTH) and diammonium hydrogen phosphate (DAHP) were used as calcium and phosphorus precursors, respectively. Three different synthesis reactions were carried out by changing the solvent media, while keeping all other process parameters constant. A measure of 0.5 M aqueous DAHP solution was used in all reactions while CNTH was dissolved in distilled water, tetrahydrofuran (THF) and N,N-dimethylformamide (DMF) at a concentration of 0.5 M. Ammonia solution (28-30%) was used to maintain the pH of the reaction mixtures in the 10-12 range. All reactions were carried out at 40 ± 2°C for 4 h. Upon completion of the reactions, products were filtered, washed and calcined at 500°C for 2 h. It was clearly demonstrated through various techniques that the dielectric constant and polarity of the solvent mixture strongly influence the chemical structure and morphological properties of calcium phosphate synthesized. Water-based reaction medium, with highest dielectric constant, mainly produced β-calcium pyrophosphate (β-CPF) with a minor amount of HA. DMF/water system yielded HA as the major phase with a very minor amount of β-CPF. THF/water solvent system with the lowest dielectric constant resulted in the formation of pure HA.

  7. Efficient cellulose solvent: quaternary ammonium chlorides.

    Science.gov (United States)

    Kostag, Marc; Liebert, Tim; El Seoud, Omar A; Heinze, Thomas

    2013-10-01

    Pure quaternary tetraalkylammonium chlorides with one long alkyl chain dissolved in various organic solvents constitute a new class of cellulose solvents. The electrolytes are prepared in high yields and purity by Menshutkin quaternization, an inexpensive and easy synthesis route. The pure molten tetraalkylammonium chlorides dissolve up to 15 wt% of cellulose. Cosolvents, including N,N-dimethylacetamide (DMA), may be added in large excess, leading to a system of decreased viscosity. Contrary to the well-established solvent DMA/LiCl, cellulose dissolves in DMA/quaternary ammonium chlorides without any pretreatment. Thus, the use of the new solvent avoids some disadvantages of DMA/LiCl and ionic liquids, the most extensively employed solvents for homogeneous cellulose chemistry. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Development of a cross-polarization scattering system for the measurement of internal magnetic fluctuations in the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, T. L., E-mail: trhodes@ucla.edu; Peebles, W. A.; Crocker, N. A.; Nguyen, X. [Physics and Astronomy Department, University of California, Los Angeles, California 90098 (United States)

    2014-11-15

    The design and performance of a new cross-polarization scattering (CPS) system for the localized measurement of internal magnetic fluctuations is presented. CPS is a process whereby magnetic fluctuations scatter incident electromagnetic radiation into a perpendicular polarization which is subsequently detected. A new CPS design that incorporates a unique scattering geometry was laboratory tested, optimized, and installed on the DIII-D tokamak. Plasma tests of signal-to-noise, polarization purity, and frequency response indicate proper functioning of the system. CPS data show interesting features related to internal MHD perturbations known as sawteeth that are not observed on density fluctuations.

  9. Method for Predicting Solubilities of Solids in Mixed Solvents

    DEFF Research Database (Denmark)

    Ellegaard, Martin Dela; Abildskov, Jens; O'Connell, J. P.

    2009-01-01

    are made for a single parameter characterizing solute/solvent interactions. Comparisons with available data show that the method is successful in describing a variety of observed mixed solvent solubility behavior, including nearly ideal systems with small excess solubilities, systems with solute......-independent excess solubilities, and systems deviating from these simple rules. Successful predictions for new solvent mixtures cat? be made using limited data from other mixtures.......A method is presented for predicting solubilities of solid solutes in mixed solvents, based on excess Henry's law constants. The basis is statistical mechanical fluctuation solution theory for composition derivatives of solute/solvent infinite dilution activity coefficients. Suitable approximations...

  10. METimage: an innovative multi-spectral imaging radiometer for the EUMETSAT polar system follow-on satellite mission

    Science.gov (United States)

    Alpers, Matthias; Brüns, Christian; Pillukat, Alexander

    2017-11-01

    The evolving needs of the meteorological community concerning the EUMETSAT Polar System follow-on satellite mission (Post-EPS) require the development of a high-performance multi-spectral imaging radiometer. Recognizing these needs, Jena Optronik GmbH proposed an innovative instrument concept, which comprises a high flexibility to adapt to user requirements as a very important feature. Core parameters like ground sampling distance (GSD), number and width of spectral channels, signal-to-noise ratio, polarization control and calibration facilities can be chosen in a wide range without changing the basic instrument configuration. Core item of the METimage instrument is a rotating telescope scanner to cover the large swath width of about 2800 km, which all polar platforms need for global coverage. The de-rotated image facilitates use of in-field spectral channel separation, which allows tailoring individual channel GSD (ground sampling distance) and features like TDI (time delay and integration). State-of-the-art detector arrays and readout electronics can easily be employed. Currently, the German DLR Space Agency, Jena- Optronik GmbH and AIM Infrarot Module GmbH work together implementing core assemblies of METimage: the rotating telescope scanner and the infrared detectors. The METimage instrument phase B study was kicked-off in September 2008. Germany intents to provide METimage as an in-kind contribution of the first METimage flight model to the EUMETSAT Post-EPS Programme.

  11. Damage to the central nervous system caused by heterogeneous solvent mixtures. Schaedigung des zentralen Nervensystems durch heterogene Loesungsmittelgemische

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, H.; Weber, E.; Buchter, A.; Jablonski, M. (Universitaet des Saarlandes, Homburg/Saar (Germany). Inst. fuer Arbeitsmedizin); Omlor, A.; Haass, A. (Universitaet des Saarlandes, Homburg/Saar (Germany). Universitaets-Nervenklinik); Steigerwald, F. (Universitaetskliniken des Saarlandes, Homburg/Saar (Germany). Medizinische und Klinische Psychologie)

    1991-09-01

    Eight male patients and one female patient were given exhaustive clinical examinations following one- to fourteen-your-long exposure to, above all, the solvents dichloromethane, trichlorofluormethane und diphenylmethane-4, 4-diisocyanate, gasolines, 1.1.1-trichloroethane. The patients complained almost without exception of disturbances of concentration, memory, and emotion. In more than half of the cases there were corresponding symptoms with regard to gastrointestinal disorders, headaches or head congestion, dizziness, hyperhidrosis, sleep disturbances, loss of interest, lack of drive, tendency toward social withdrawal, alcohol intolerance, tremors, and hearing loss. The internal medical examination disclosed high blood pressure and an increase in radiological patterns in the lower parts of the lungs where six of the patients were concerned. Laboratory chemical tests showed increased plasma viscosity values in over 50% of the cases. In the area of neurology, two-thirds of the patients evidenced an at times laterally accentuated tremor, primarily of the proximal extremities. Impaired coordination was present in over 50% of the cases and perception disorders were noted in nearly 50% of the cases. The spin and computerized tomograhy showed unmistakeable signs of brain in eight of the nine patients. Psycho-pathological peculiarities were present in all patients with regard to emotional disturbances. Mnesic disturbances, drive disturbances, and a slowing of thought processes impressed in over 50% of the cases. The psychometric test procedures delivered telling, positive results with regard to acquired cerebro-organic decreases in functional capacity and personality changes. The results of ECGs, pulmonary function tests, EMG, nerve conduction velocity, VEP, and SEP were without significant pathological findings. (orig./MG).

  12. Photo-physical and interactional behavior of two members of group B vitamins in different solvent media

    Science.gov (United States)

    Zakerhamidi, M. S.; Zare Haghighi, L.; Seyed Ahmadian, S. M.

    2017-09-01

    In this paper, absorption and fluorescence spectra of vitamin B12 (cyanocobalamin) and vitamin B6 (pyridoxine) were recorded in solvents with different polarity, at room temperature. These vitamins' photo-physical behavior depends strongly on the solvent's nature along with different attached groups in their structures. In order to investigate the solvent-solute interactions and environmental effect on spectral variations, linear solvation energy relationships concept, suggested by Kamlet and Taft was used. Solvatochromic method was also used for measuring the ground and excited state dipole moments of these vitamins. According to our experimental results, dipole moment of these groups of vitamins in excited state is larger than ground state. Furthermore, obtained photo-physical and interactional properties of used vitamins can give important information on how this group of vitamins behaves in biological systems.

  13. Computer-aided solvent screening for biocatalysis

    NARCIS (Netherlands)

    Abildskov, J.; Leeuwen, van M.B.; Boeriu, C.G.; Broek, van den L.A.M.

    2013-01-01

    A computer-aidedsolventscreening methodology is described and tested for biocatalytic systems composed of enzyme, essential water and substrates/products dissolved in a solvent medium, without cells. The methodology is computationally simple, using group contribution methods for calculating

  14. Facile and rapid synthesis of divers xanthene derivatives using lanthanum(III chloride/chloroacetic acid as an efficient and reusable catalytic system under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Pouramiri Behjat

    2017-01-01

    Full Text Available LaCl3/ClCH2COOH was used as an efficient, and recyclable catalytic system for synthesis of 11H-benzo[a]xanthene-11-one, hexahydro-1H-xanthene- 1,8(2H-dione and 11-aryl-10H-diindeno[1,2-b:2′,1′-e]pyran-10,12(11H-dione derivatives via a one-pot three-component reaction of aldehydes, 2-naphthol, and cyclic 1,3-dicarbonyl compounds. The reactions proceeded rapidly at 70°C under solvent-free conditions and the desired products were obtained in good to excellent yields.

  15. Effect of Organic Solvents on the Yield of Solvent-Tolerant Pseudomonas putida S12

    Science.gov (United States)

    Isken, Sonja; Derks, Antoine; Wolffs, Petra F. G.; de Bont, Jan A. M.

    1999-01-01

    Solvent-tolerant microorganisms are useful in biotransformations with whole cells in two-phase solvent-water systems. The results presented here describe the effects that organic solvents have on the growth of these organisms. The maximal growth rate of Pseudomonas putida S12, 0.8 h−1, was not affected by toluene in batch cultures, but in chemostat cultures the solvent decreased the maximal growth rate by nearly 50%. Toluene, ethylbenzene, propylbenzene, xylene, hexane, and cyclohexane reduced the biomass yield, and this effect depended on the concentration of the solvent in the bacterial membrane and not on its chemical structure. The dose response to solvents in terms of yield was linear up to an approximately 200 mM concentration of solvent in the bacterial membrane, both in the wild type and in a mutant lacking an active efflux system for toluene. Above this critical concentration the yield of the wild type remained constant at 0.2 g of protein/g of glucose with increasing concentrations of toluene. The reduction of the yield in the presence of solvents is due to a maintenance higher by a factor of three or four as well as to a decrease of the maximum growth yield by 33%. Therefore, energy-consuming adaptation processes as well as the uncoupling effect of the solvents reduce the yield of the tolerant cells. PMID:10347053

  16. Surveying glacier bedrock topography with a helicopter-borne dual-polarization ground-penetrating radar system

    Science.gov (United States)

    Langhammer, L.; Rabenstein, L.; Schmid, L.; Bauder, A.; Schaer, P.; Maurer, H.

    2017-12-01

    Glacier mass estimations are crucial for future run-off projections in the Swiss Alps. Traditionally, ice thickness modeling approaches and ground-based radar transects have been the tools of choice for estimating glacier volume in high mountain areas, but these methods either contain high uncertainties or are logistically expensive and offer mostly only sparse subsurface information. We have developed a helicopter-borne dual-polarization ground-penetrating radar (GPR) system, which enhances operational feasibility in rough, high-elevation terrain and increases the data output per acquisition campaign significantly. Our system employs a prototype pulseEKKO device with two broadside 25-MHz antenna pairs fixed to a helicopter-towed wooden frame. Additionally attached to the system are a laser altimeter for measuring the flight height above ground, three GPS receivers for accurate positioning and a GoPro camera for obtaining visual images of the surface. Previous investigations have shown the significant impact of the antenna dipole orientation on the detectability of the bedrock reflection. For optimal results, the dipoles of the GPR should be aligned parallel to the strike direction of the surrounding mountain walls. In areas with a generally unknown bedrock topography, such as saddle areas or diverging zones, a dual-polarization system is particularly useful. This could be demonstrated with helicopter-borne GPR profiles acquired on more than 25 glaciers in the Swiss Alps. We observed significant differences in ice-bedrock interface visibility depending on the orientation of the antennas.

  17. The AGBNP implicit solvent model: recent advances and applications to biological macromolecules

    Science.gov (United States)

    Gallicchio, Emilio

    2008-03-01

    The Analytical Generalized Born plus Non-Polar (AGBNP) model is an analytical implicit water model suitable for molecular dynamics simulations of small molecules and macromolecules. It is based on an analytical pairwise descreening implementation of the continuum dielectric Generalized Born (GB) model and a non-polar hydration free energy model. AGBNP computes the descreening scaling factors that account for atomic overlaps from the geometry of the solute rather than treating them as geometry-independent parameters fit to numerical or experimental data. The non-polar hydration free energy model is decomposed into a cavity component based on the solute surface area and a solute-solvent van der Waals dispersion energy estimator. The aim of the model is to achieve atomic-resolution accuracy for modelling the many biological systems in which global conformational features are regulated by small and localized control elements. Since its introduction AGBNP has been employed to study a variety of biological problems ranging from peptide conformational propensity and folding, protein allostery, conformational equilibria of protein-ligand complexes, binding affinity prediction, and, more recently, to intrinsically disordered proteins, protein aggregation, the design of virus vaccine carriers, and macromolecular X-ray structure refinement. Recent development work has focused on computational performance enhancements and on improving the accuracy of the model with respect to explicit solvent simulation results. By comparing the details of the solvent potentials of mean force of several peptides calculated with explicit and implicit solvation, we have identified some aspects of the AGBNP model in need of improvement. We are exploring several strategies to address them including the adoption of a molecular surface description of the solute volume, the modelling of high-occupancy hydration sites, and the optimization of the non-polar free energy model.

  18. Light-free magnetic resonance force microscopy for studies of electron spin polarized systems

    International Nuclear Information System (INIS)

    Pelekhov, Denis V.; Selcu, Camelia; Banerjee, Palash; Chung Fong, Kin; Chris Hammel, P.; Bhaskaran, Harish; Schwab, Keith

    2005-01-01

    Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its excellent sensitivity opens the possibility for magnetic resonance studies of spin accumulation resulting from the injection of spin polarized currents into a para-magnetic collector. The method is based on mechanical detection of magnetic resonance which requires low noise detection of cantilever displacement; so far, this has been accomplished using optical interferometry. This is undesirable for experiments on doped silicon, where the presence of light is known to enhance spin relaxation rates. We report a non-optical displacement detection scheme based on sensitive microwave capacitive readout

  19. Storage of polarization-encoded cluster states in an atomic system

    Science.gov (United States)

    Yuan, Chun-Hua; Chen, Li-Qing; Zhang, Weiping

    2009-05-01

    We present a scheme for entanglement of macroscopic atomic ensembles which are four spatially separate regions of an atomic cloud using cluster-correlated beams. We show that the cluster-type polarization-encoded entanglement could be mapped onto the long-lived collective ground state of the atomic ensembles, and the stored entanglement could be retrieved based on the technique of electromagnetically induced transparency. We also discuss the efficiency of, the lifetime of, and some quantitative restrictions to the proposed quantum memory.

  20. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist