WorldWideScience

Sample records for polar solvent ethyl

  1. Recycling Solvent Mixtures of Ethyl Acetate and Hexanes

    Science.gov (United States)

    Wilkinson, Timothy J.

    1998-12-01

    A method to recycle ethyl acetate-hexanes mixtures from thin-layer or column chromatography experiments is described. The procedure consists of co-distillation of the mixture followed by estimation of the composition by reference to an Rf vs percent composite graph. The mixture is then diluted with the appropriate solvent to achieve the desired composition.

  2. The effect of different solvent polarity on the precipitation of heavy ...

    African Journals Online (AJOL)

    The precipitation of heavy organics (Saturates, Aromatics, Resins and Asphaltenes) from the Niger delta (Atan crude oil residue) was studied. Two C4 organic polar solvents (ethyl acetate and butanone) were used to investigate the effect of polarity of the precipitating solvents. The heavy organics precipitated from Antan ...

  3. Solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents

    International Nuclear Information System (INIS)

    Fan, Jie-Ping; Yang, Dan; Xu, Xiao-Kang; Guo, Xiao-Jie; Zhang, Xue-Hong

    2015-01-01

    Highlights: • The solubilities of daidzin were measured in various solvents. • The solubility data were correlated by three models. • The thermodynamic properties of the dissolution process were also determined. - Abstract: The solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents was measured by high performance liquid chromatography (HPLC) analysis method from T = (283.2 to 323.2) K at atmosphere pressure. The results show that at higher temperature more daidzin dissolves, and moreover, the solubility increases with the ethyl alcohol mole fraction increase in the (ethyl alcohol + water) mixed solvents. The experimental solubility values were correlated by a simplified thermodynamic equation, λh equation and modified Apelblat equation. Based on the solubility of daidzin, the enthalpy and entropy of solution were also evaluated by van’t Hoff equation. The results illustrated that the dissolution process of daidzin is endothermic and entropy driven

  4. Solubility determination and thermodynamic models for dehydroepiandrosterone acetate in mixed solvents of (ethyl acetate + methanol), (ethyl acetate + ethanol) and (ethyl acetate + isopropanol)

    International Nuclear Information System (INIS)

    Cheng, Chao; Cong, Yang; Du, Cunbin; Wang, Jian; Yao, Ganbing; Zhao, Hongkun

    2016-01-01

    Highlights: • Solubilities of dehydroepiandrosterone acetate in mixed solvents were determined. • The measured solubility data were correlated with three thermodynamic models. • The standard dissolution enthalpies of dehydroepiandrosterone acetate were calculated. - Abstract: The solubility of dehydroepiandrosterone acetate in binary solvent mixtures of (ethyl acetate + methanol), (ethyl acetate + ethanol) and (ethyl acetate + isopropanol) was determined experimentally by using an isothermal dissolution equilibrium method within the temperature range from (273.15 to 313.15) K under atmosphere pressure (101.1 kPa). The solubility of dehydroepiandrosterone acetate increases with increasing temperature and mass fraction of ethyl acetate in each binary system. At the same temperature and mass fraction of ethyl acetate, the solubility of dehydroepiandrosterone acetate was greater in (ethyl acetate + isopropanol) than in the other two mixed solvents. The measured solubility values were correlated with the Jouyban-Acree model, van’t Hoff-Jouyban-Acree model, and modified Apelblat-Jouyban-Acree model. The Jouyban-Acree model was proven to give better representation for the experimental solubility, which provided the lowest relative average deviation and root-mean-square deviation (0.49 × 10 −2 and 0.97 × 10 −4 for ethyl acetate + methanol, 0.44 × 10 −2 and 0.82 × 10 −4 for ethyl acetate + ethanol, and 0.92 × 10 −2 and 3.05 × 10 −4 for ethyl acetate + isopropanol, respectively). Based on the solubility values obtained, the standard dissolution enthalpies for the dissolution process were computed. The dissolution process of dehydroepiandrosterone acetate in these mixed solvents was endothermic. The experimental solubility and the equations presented in the present work can be employed as essential data and models in the practical process for production and purification of dehydroepiandrosterone acetate.

  5. Solid–liquid phase equilibrium and dissolution properties of ethyl vanillin in pure solvents

    International Nuclear Information System (INIS)

    Wu, Hao; Wang, Jingkang; Zhou, Yanan; Guo, Nannan; Liu, Qi; Zong, Shuyi; Bao, Ying; Hao, Hongxun

    2017-01-01

    Highlights: • Solubility of ethyl vanillin in eight pure solvents were determined by a static analytical method. • The experimental solubility data of ethyl vanillin were correlated and analyzed by four thermodynamic models. • Dissolution thermodynamic properties of ethyl vanillin were calculated and discussed. - Abstract: The solubility of ethyl vanillin (EVA) in eight pure solvents were determined in different temperature ranges from (273.15 to 318.15) K by a static analytical method. In the temperature ranges investigated, it was found that the solubility of EVA in all the selected solvents increased with the rising of temperature. Furthermore, four thermodynamic models were used to correlate the experimental solubility data and the calculation results showed that selected models can be used to correlate the solubility data with satisfactory accuracy. Finally, the dissolution thermodynamic properties, including dissolution Gibbs energy, dissolution enthalpy and dissolution entropy of EVA in the eight selected solvents were calculated.

  6. Wet in situ transesterification of microalgae using ethyl acetate as a co-solvent and reactant.

    Science.gov (United States)

    Park, Jeongseok; Kim, Bora; Chang, Yong Keun; Lee, Jae W

    2017-04-01

    This study addresses wet in situ transesterification of microalgae for the production of biodiesel by introducing ethyl acetate as both reactant and co-solvent. Ethyl acetate and acid catalyst are mixed with wet microalgae in one pot and the mixture is heated for simultaneous lipid extraction and transesterification. As a single reactant and co-solvent, ethyl acetate can provide higher FAEE yield and more saccharification of carbohydrates than the case of binary ethanol and chloroform as a reactant and a co-solvent. The optimal yield was 97.8wt% at 114°C and 4.06M catalyst with 6.67mlEtOAC/g dried algae based on experimental results and response surface methodology (RSM). This wet in situ transesterification of microalgae using ethyl acetate doesn't require an additional co-solvent and it also promises more economic benefit as combining extraction and transesterification in a single process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Photocyclization reaction of a diarylmaleimide derivative in polar solvents.

    Science.gov (United States)

    Ohsumi, Masato; Hazama, Masaki; Fukaminato, Tuyoshi; Irie, Masahiro

    2008-07-28

    Photochromism of a symmetric diarylmaleimide derivative, having two thiophene rings (1), and a non-symmetric derivative having a S,S-dioxide thiophene ring and a thiophene ring (2) as the aryl moieties, was studied in various solvents. The photocyclization quantum yield of gradually decreased with increasing the solvent polarity and the reaction was not observed in polar solvents, such as ethanol and acetonitrile; on the other hand, such a strong solvent dependence of the photocyclization reaction was not observed for ; the different behavior is attributed to the weaker electron donating ability of the S,S-dioxide thiophene ring.

  8. Utilization of catalytic hydrolysis of ethyl acetate for solvent removal during microencapsulation.

    Science.gov (United States)

    Lee, Minjung; Kang, Jookyung; Sah, Hongkee

    2013-01-01

    The objective of this study was to apply the specific acid-catalysed hydrolysis of ethyl acetate to completing solvent extraction during an emulsion-based microencapsulation process. The dispersed phase consisting of poly-D,L-lactide-co-glycolide and ethyl acetate was emulsified in an acid catalyst containing aqueous phase. Catalytic hydrolysis of ethyl acetate led to its continual leaching from the dispersed phase of the emulsion, thereby triggering microsphere hardening with high efficiency. Ketoprofen was successfully encapsulated into microspheres via this technique, and liquid chromatography-mass spectrometry showed that its structural integrity was preserved during microencapsulation. Compared to typical solvent extraction approaches, the acid-catalysis technique helped minimize the consumption of a quench liquid. Also, the resultant microspheres displayed excellent dispersibility and decreased propensity for aggregation. Furthermore, the new method provided better drug encapsulation efficiency and lower levels of residual ethyl acetate in microspheres. In conclusion, the acid-catalysis approach had great potential for the preparation of versatile microspheres and nanoparticles.

  9. Ethyl acetate-n-butanol gradient solvent system for high-speed countercurrent chromatography to screen bioactive substances in okra.

    Science.gov (United States)

    Ying, Hao; Jiang, Heyuan; Liu, Huan; Chen, Fangjuan; Du, Qizhen

    2014-09-12

    High-speed countercurrent chromatographic separation (HSCCC) possesses the property of zero-loss of sample, which is very useful for the screening of bioactive components. In the present study, the ethyl acetate-n-butanol gradient HSCCC solvent system composed of n-hexane-ethyl acetate-n-butanol-water was investigated for the screening of bioactive substances. To screen the antiproliferative compounds in okra extract, we used the stationary phase ethyl acetate-n-butanol-water (1:1:10) as the stationary phase, and eluted the antiproliferative components by 6-steps of gradient using mobile phases n-hexane-ethyl acetate (1:2), n-hexane-ethyl acetate (1:4), n-hexane-ethyl acetate (0:4), n-butanol-ethyl acetate (1:4) n-butanol-ethyl acetate (1:2), n-butanol-ethyl acetate (2:2), and n-butanol-ethyl acetate (2:1). The fractions collected from HSCCC separation with the gradient solvent system were assayed for antiproliferative activity against cancer cells. Bioactive components were identified: a major anti-cancer compound, 4'-hydroxy phenethyl trans-ferulate, with middle activity, and a minor anti-cancer compound, carolignan, with strong activity. The result shows that the gradient solvent system is potential for the screening of bioactive compounds from natural products. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Frequency-Dependent Solvent Impedance and Colloid Microelectrophoresis Measurements in Partially Polar Solvents.

    Science.gov (United States)

    Hayden, Edward; Aljabal, Zena; Yethiraj, Anand

    2017-05-16

    We carry out frequency-dependent solvent impedance measurements and alternating current (ac) colloid microelectrophoresis experiments in partially polar solvents in the low-frequency regime (0.25 Hz ≤ f ≤ 10 Hz). Solvent electrode polarization effects are quantified first in partially polar solvent mixtures containing bromocyclohexane (CHB). We find that the polarization capacitance from electrode polarization exhibits a clear power law behavior C p = C p0 f -m with power law exponent m = 0.25 ± 0.04. Once we account for electrode polarization effects, we are able to obtain quantitative mobilities in the low-frequency regime from our ac microelectrophoresis measurements; for these measurements, we use poly(methyl methacrylate colloids that are gravitationally confined to a plane while suspended in a low-polar solvent mixture of cis-trans decahydronapthalene and CHB. We find that the dimensionless electrophoretic mobility is constant, consistent with expectations for frequencies below the ion-diffusion frequency, and has a value E = 1.6 ± 0.4.

  11. Leaching of Oil from Tuna Fish Liver by Using Solvent of Methyl-Ethyl Ketone

    Directory of Open Access Journals (Sweden)

    Mirna Rahmah Lubis

    2013-12-01

    Full Text Available Research of oil leaching from Tuna Fish Liver has been carried out by extracting of tuna fish liver in soxhlet by using methyl-ethyl ketone as solvent. Liver of fresh tuna fish is blended, put into soxhlet, and extracted at temperatures of 60oC, 65oC, 70oC, 75oC, and 80oC. After obtaining the oil, separation between solvent and oil is carried out by distillation. Oil obtained is analyzed by testing the yield, acid number, Iodine value, viscosity, and its impurities content. Yield obtained is influenced by temperature and time of leaching. Both variables indicates that the higher the variables, the more fish liver oil obtained. Maximum yield obtained is 25.552% at operating condition of leaching temperature 80oC, and leaching duration of 5 hours.

  12. Extraction of basil leaves (ocimum canum) oleoresin with ethyl acetate solvent by using soxhletation method

    Science.gov (United States)

    Tambun, R.; Purba, R. R. H.; Ginting, H. K.

    2017-09-01

    The goal of this research is to produce oleoresin from basil leaves (Ocimum canum) by using soxhletation method and ethyl acetate as solvent. Basil commonly used in culinary as fresh vegetables. Basil contains essential oils and oleoresin that are used as flavouring agent in food, in cosmetic and ingredient in traditional medicine. The extraction method commonly used to obtain oleoresin is maceration. The problem of this method is many solvents necessary and need time to extract the raw material. To resolve the problem and to produce more oleoresin, we use soxhletation method with a combination of extraction time and ratio from the material with a solvent. The analysis consists of yield, density, refractive index, and essential oil content. The best treatment of basil leaves oleoresin extraction is at ratio of material and solvent 1:6 (w / v) for 6 hours extraction time. In this condition, the yield of basil oleoresin is 20.152%, 0.9688 g/cm3 of density, 1.502 of refractive index, 15.77% of essential oil content, and the colour of oleoresin product is dark-green.

  13. Relaxation dynamics of a polar solvent cage around a nonpolar electronically excited solvent probe. A subpicosecond laser study

    International Nuclear Information System (INIS)

    Mialocq, J.C.; Hebert, P.; Baldacchino, G.; Gustavsson, T.

    1993-01-01

    The aim of the present paper is to show that the LDS 751 unsymmetrical cyanine laser dye, highly polar in the ground state and non polar in the fluorescent excited singlet state, is a suitable solvent probe. Excitation of LDS 751 in a polar solvent with an ultrashort laser pulse suddenly annihilates the permanent dipole moment of the solute and suppresses the forces which orientate the nearby solvent molecules. The subpicosecond analysis of the Time-Dependent Fluorescence Stokes Shift (TDFSS) of LDS 751 thus enables to probe the relaxation of polar solvent molecules which can be considered as free of solute-solvent interactions. (author)

  14. Near-threshold photoionization of aromatic solutes in polar solvents

    Science.gov (United States)

    Kohler, Bern

    2000-03-01

    In recent years, pump-probe experiments with femtosecond laser pulses have provided exciting new insight into the dynamics of excess electrons in polar liquids. Some of these findings are resulting in revisions to long-held notions in radiation chemistry. In particular, there is now increasing evidence that photoionization close to threshold proceeds by a mechanism radically different than that of charge ejection from an isolated molecule. Photoionization in this near-threshold regime does not require the promotion of an electron to the conduction band of the solvent, but can instead proceed by a mechanism that more closely resembles photoinduced electron transfer to localized electronic states. The density of these localized trapping states is substantial in water and extends as much as several eV below the conduction band edge. Charge ejection experiments in polar solvents can thus provide new information about the energy landscapes of molecular liquids. Because it is inconvenient to access the ionization threshold energy of neat liquids, our work has focused on charge ejection from aromatic compounds "doped" into the band gap of various polar solvents. This allows easier access to the energies necessary for near-threshold photoionization and allows specific solute-solvent interactions to be explored by chemical substitution. Results from femtosecond transient absorption experiments will be presented on the photoionization dynamics of indole, benzimidazole, and some nucleic acid bases. In addition, some results will be presented from photodetachment experiments on solvated radical ions.

  15. Dispersing surface-modified imogolite nanotubes in polar and non-polar solvents

    Science.gov (United States)

    Li, Ming; Brant, Jonathan A.

    2018-02-01

    Furthering the development of nanocomposite structures, namely membranes for water treatment applications, requires that methods be developed to ensure nanoparticle dispersion in polar and non-polar solvents, as both are widely used in associated synthesis techniques. Here, we report on a two-step method to graft polyvinylpyrrolidone (PVP), and a one-step method for octadecylphosphonic acid (OPA), onto the outer surfaces of imogolite nanotubes. The goal of these approaches was to improve and maintain nanotube dispersion in polymer compatible polar and non-polar solvents. The PVP coating modified the imogolite surface charge from positive to weakly negative at pH ≤ 9; the OPA made it weakly positive at acidic pH values to negative at pH ≥ 7. The PVP surface coating stabilized the nanotubes through steric hindrance in polar protic, dipolar aprotic, and chloroform. In difference to the PVP, the OPA surface coating allowed the nanotubes to be dispersed in n-hexane and chloroform, but not in the polar solvents. The lack of miscibility in the polar solvents, as well as the better dispersion in n-hexane, was attributed to the stronger hydrophobicity of the OPA polymer relative to the PVP. [Figure not available: see fulltext.

  16. The Extraction Process of Trimethyl Xanthina in Vitro Culture of Callus Camellia Sinensis with ethyl Acetate Solvent

    Directory of Open Access Journals (Sweden)

    Sutini

    2016-01-01

    Full Text Available Trimethyl xanthina is one of the compounds contained bioactive culture in vitro Cammelia sinensis callus which is widely used in the field of food, beverage, agriculture and health industries. The presence of trimethyl xanthina on food, beverages and health is needed in a certain amount depending on the use which is achieved by the user. To get a certain amount of trimethyl xanthina from callus culture of Cammelia sinensis, the extraction process is performed on the water solvent, as well as non-solvent water / organic solvent such as ethyl acetate. The purpose of this study was to obtain profile of trimethyl xanthina in the extraction of Cammelia sinensis callus. The experimental methods used consisted of dissolution, filtration, extraction with water solvent and ethyl acetate, then followed by identification of trimethyl xanthina using HPLC. The results shows the profile form of trimethyl xanthina of Cammelia sinensis callus have similarities with the standard form of trimethyl xanthina.

  17. Photophysics of Curcumin excited state in toluene-polar solvent mixtures: Role of H-bonding properties of the polar solvent

    Energy Technology Data Exchange (ETDEWEB)

    Saini, R.K.; Das, K., E-mail: kaustuv@rrcat.gov.in

    2014-01-15

    Excited state dynamics of Curcumin in binary solvent mixtures of toluene and polar H-bonding solvents were compared by using an instrument endowed with 40 ps time resolution. The solvation time constant of Curcumin increases significantly (and can therefore be measured) in polar solvents which have, either, both H-bond donating and accepting ability, or, only H-bond donating ability. These results suggest that the rate limiting step in the excited state dynamics of the pigment might be the formation and reorganization of the intermolecular H-bonding between the keto group of the pigment and the H-bond donating moieties of the polar solvent. -- Highlights: • Excited state dynamics of Curcumin in a binary solvent mixture of toluene and three polar H-bonding solvents were compared. • The solvation time constant increases significantly with polar solvents having, H-bond donating and accepting, or, H-bond donating ability. • Observed results suggest that H-bonding property of polar solvent plays an important role in the excited state dynamics. • Intermolecular H-bonding between the keto group of the pigment and polar solvent may be the rate limiting step.

  18. Photophysics of Curcumin excited state in toluene-polar solvent mixtures: Role of H-bonding properties of the polar solvent

    International Nuclear Information System (INIS)

    Saini, R.K.; Das, K.

    2014-01-01

    Excited state dynamics of Curcumin in binary solvent mixtures of toluene and polar H-bonding solvents were compared by using an instrument endowed with 40 ps time resolution. The solvation time constant of Curcumin increases significantly (and can therefore be measured) in polar solvents which have, either, both H-bond donating and accepting ability, or, only H-bond donating ability. These results suggest that the rate limiting step in the excited state dynamics of the pigment might be the formation and reorganization of the intermolecular H-bonding between the keto group of the pigment and the H-bond donating moieties of the polar solvent. -- Highlights: • Excited state dynamics of Curcumin in a binary solvent mixture of toluene and three polar H-bonding solvents were compared. • The solvation time constant increases significantly with polar solvents having, H-bond donating and accepting, or, H-bond donating ability. • Observed results suggest that H-bonding property of polar solvent plays an important role in the excited state dynamics. • Intermolecular H-bonding between the keto group of the pigment and polar solvent may be the rate limiting step

  19. Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents

    International Nuclear Information System (INIS)

    Ciocirlan, Oana; Croitoru, Oana; Iulian, Olga

    2016-01-01

    Highlights: • Viscosities of four binary mixtures of [Emim][BF4] with organic solvents. • Viscosity models based on Eyring’s theory. • Excess functions calculated. • Data for binaries new in the literature, except for system with DMSO. - Abstract: This paper reports experimental values of dynamic viscosity for four binary systems of 1-ethyl-3-methylimidazolium tetrafluoroborate, [Emim][BF4], with dimethyl sulfoxide (DMSO), acetonitrile (ACN), ethylene glycol (EG) and 1,4-dioxane over the temperature ranges from 293.15 K to 353.15 K at p = 0.1 MPa. All binary mixtures were completely miscible over the entire range of mole fraction, except the system with 1,4-dioxane. The viscosity results have been correlated by the one parameter Grunberg–Nissan and Fang and He equations and the two-parameter McAllister, Eyring-UNIQUAC, Eyring-NRTL and Eyring-Wilson models and the results were compared. Additionally, the viscosity deviations, Δη, and the excess Gibbs energy of activation for viscous flow, G ∗E , were calculated and fitted to the Redlich–Kister equation. The results show that all Δη values are negative over the whole composition range and the G ∗E values are positive, except for the system with EG. The results of the excess functions are discussed in terms of molecular interactions.

  20. Radiochemical solvent extraction of Au(III) using thionalide in ethyl methyl ketone/isobutyl methyl ketone

    International Nuclear Information System (INIS)

    Weginwar, R.G.; Lanjewar, R.B.; Garg, A.N.

    1989-01-01

    A radiochemical method for the determination of gold using 198 Au was developed, based on the synergistic extraction of Au(III) with thionalide (TA) in ethyl methyl ketone (EMK) or isobutyl methyl ketone (IBMK) at pH 5.0. Effects of various parameters such as pH, nature of solvent and interferences due to other radionuclides were studied. The method can be used up to 25 ng of Au. (author) 31 refs.; 2 figs.; 2 tabs

  1. Analysis of polycyclic aromatic hydrocarbons in soil: minimizing sample pretreatment using automated Soxhlet with ethyl acetate as extraction solvent.

    Science.gov (United States)

    Szolar, Oliver H J; Rost, Helmut; Braun, Rudolf; Loibner, Andreas P

    2002-05-15

    A simplified sample pretreatment method for industrially PAH-contaminated soils applying automated Soxhlet (Soxtherm) with ethyl acetate as extraction solvent is presented. Laborious pretreatment steps such as drying of samples, cleanup of crude extracts, and solvent exchange were allowed to be bypassed without notable performance impact. Moisture of the soil samples did not significantly influence recoveries of PAHs at a wide range of water content for the newly developed method. However, the opposite was true for the standard procedure using the more apolar 1:1 (v/v) n-hexane/acetone solvent mixture including postextraction treatments recommended by the U.S. EPA. Moreover, ethyl acetate crude extracts did not appreciably effect the chromatographic performance (HPLC-(3D)FLD), which was confirmed by a comparison of the purity of PAH spectra from both pretreatment methods. Up to 20% (v/v) in acetonitrile, ethyl acetate proved to be fully compatible with the mobile phase of the HPLC whereas the same concentration of n-hexane/acetone in acetonitrile resulted in significant retention time shifts. The newly developed pretreatment method was applied to three historically contaminated soils from different sources with extraction efficiencies not being significantly different compared to the standard procedure. Finally, the certified reference soil CRM 524 was subjected to the simplified procedure resulting in quantitative recoveries (>92%) for all PAHs analyzed.

  2. Li-Ion Cells Employing Electrolytes With Methyl Propionate and Ethyl Butyrate Co-Solvents

    Science.gov (United States)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    Future NASA missions aimed at exploring Mars and the outer planets require rechargeable batteries that can operate at low temperatures to satisfy the requirements of such applications as landers, rovers, and penetrators. A number of terrestrial applications, such as hybrid electric vehicles (HEVs) and electric vehicles (EVs) also require energy storage devices that can operate over a wide temperature range (i.e., -40 to +70 C), while still providing high power capability and long life. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-30 to +40 C); however, the rate capability at the lower temperatures is very poor. These limitations at very low temperatures are due to poor electrolyte conductivity, poor lithium intercalation kinetics over the electrode surface layers, and poor ionic diffusion in the electrode bulk. Two wide-operating-temperature-range electrolytes have been developed based on advances involving lithium hexafluorophosphate-based solutions in carbonate and carbonate + ester solvent blends, which have been further optimized in the context of the technology and targeted applications. The approaches employed include further optimization of electrolytes containing methyl propionate (MP) and ethyl butyrate (EB), which are effective co-solvents, to widen the operating temperature range beyond the baseline systems. Attention was focused on further optimizing ester-based electrolyte formulations that have exhibited the best performance at temperatures ranging from -60 to +60 C, with an emphasis upon improving the rate capability at -20 to -40 C. This was accomplished by increasing electrolyte salt concentration to 1.20M and increasing the ester content to 60 percent by volume to increase the ionic conductivity at low temperatures. Two JPL-developed electrolytes 1.20M LiPF6 in EC+EMC+MP (20:20:60 v/v %) and 1.20M LiPF6 in EC+EMC+EB (20:20:60 v/v %) operate effectively over a wide

  3. Modulation of dual fluorescence in a 3-hydroxyquinolone dye by perturbation of its intramolecular proton transfer with solvent polarity and basicity.

    Science.gov (United States)

    Yushchenko, Dmytro A; Shvadchak, Volodymyr V; Bilokin', Mykhailo D; Klymchenko, Andrey S; Duportail, Guy; Mély, Yves; Pivovarenko, Vasyl G

    2006-11-01

    A representative of a new class of dyes with dual fluorescence due to an excited state intramolecular proton transfer (ESIPT) reaction, namely 1-methyl-2-(4-methoxy)phenyl-3-hydroxy-4(1H)-quinolone (QMOM), has been studied in a series of solvents covering a large range of polarity and basicity. A linear dependence of the logarithm of its two bands intensity ratio, log(I(N*)/I(T*)), upon the solvent polarity expressed as a function of the dielectric constant, (epsilon- 1)/(2epsilon + 1), is observed for a series of protic solvents. A linear dependence for log(I(N*)/I(T*)) is also found in aprotic solvents after taking into account the solvent basicity. In contrast, the positions of the absorption and the two emission bands of QMOM do not noticeably depend on the solvent polarity and basicity, indicating relatively small changes in the transition moment of QMOM upon excitation and emission. Time-resolved experiments in acetonitrile, ethyl acetate and dimethylformamide suggest an irreversible ESIPT reaction for this dye. According to the time-resolved data, an increase of solvent basicity results in a dramatic decrease of the ESIPT rate constant, probably due to the disruption of the intramolecular H-bond of the dye by the basic solvent. Due to this new sensor property, 3-hydroxyquinolones are promising candidates for the development of a new generation of environment-sensitive fluorescence dyes for probing interactions of biomolecules.

  4. Separation of three polar compounds from Rheum tanguticum by high-speed countercurrent chromatography with an ethyl acetate/glacial acetic acid/water system.

    Science.gov (United States)

    Chen, Tao; Wang, Ping; Wang, Nana; Sun, Chongyang; Yang, Xue; Li, Hongmei; Zhou, Guoying; Li, Yulin

    2018-01-13

    The separation of polar compounds by high-speed countercurrent chromatography is still regarded as a challenge. In this study, an efficient strategy for the separation of three polar compounds from Rheum tanguticum has been successfully conducted by using high-speed countercurrent chromatography. X-5 macroporous resin chromatography was used for the fast enrichment of the target compounds. Then, the target fraction was directly introduced into high-speed countercurrent chromatography for separation using ethyl acetate/glacial acetic acid/water (100:1:100, v/v/v) as the solvent system. Consequently, three polar compounds including gallic acid, catechin, and gallic acid 4-O-β-d-(6'-O-galloyl) glucoside were obtained with purities higher than 98%. The results showed glacial acetic acid could be such an appropriate regulator for the ethyl acetate/water system. This study provides a reference for the separation of polar compounds from natural products by high-speed countercurrent chromatography. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Quantitative infrared spectroscopy of lipids in solution: II. Novel polar solvent systems.

    Science.gov (United States)

    Schmid, P; Steiner, R N

    1975-01-01

    In the second part of this series, previous solvent limitations in infrared studies are discussed and novel polar solvent systems for the analysis of nonpolar and polar lipids described. Limitation of potassium bromide windows for infrared cells are discussed. The use of calcium fluoride cells with crude lipids is discussed. Problems related to hydrogen bonding of lipid solutes in various solvent systems are discussed as well as hydrogen-deuterium exchange in biologically important lipids.

  6. Effects of solvent polarity on mutual styrene grafting onto polypropylene by electron beam irradiation

    International Nuclear Information System (INIS)

    Moura, E.; Manzoli, J.E.; Geraldo, A.B.C.

    2012-01-01

    Radiation induced mutual grafting of styrene onto polypropylene has been carried using several grafting solutions with different organic solvents and polarity levels. In the mixture of styrene and protic polar solvents high grafting yields were obtained. This behavior suggests that grafting process does not have dependence on swelling of the substrate, something that is expected when a non-polar substrate and a non-polar media are in contact. In this case, the grafting yield may be related to the free radical generation at protic polar solvent; these reactive specimens start the reaction on substrate surface to allow the accessibility of monomer species to active sites. Some reaction mechanisms are proposed. - Highlights: ► Styrene grafting is performed with high yield when protic polar solvents are used. ► Results are related to effects from electron solvation and dipole interactions. ► Grafting samples performed in n-octanol mixtures had crystallinity changes.

  7. In silico study of amphiphilic nanotubes based on cyclic peptides in polar and non-polar solvent

    DEFF Research Database (Denmark)

    Vijayakumar, Vinodhkumar; Vijayaraj, Ramadoss; Peters, Günther H.J.

    2016-01-01

    The stability of cyclic peptide assemblies (CPs) forming a macromolecular nanotube structure was investigated in solvents of different polarity using computational methods. The stability and structure of the complexes were studied using traditional molecular dynamics (MD). Energy of dissociation ...

  8. The use of deuterated ethyl acetate in highly concentrated electrolyte as a low-cost solvent for in situ neutron diffraction measurements of Li-ion battery electrodes

    International Nuclear Information System (INIS)

    Petibon, R.; Li, Jing; Sharma, Neeraj; Pang, Wei Kong; Peterson, Vanessa K.; Dahn, J.R.

    2015-01-01

    A low-cost deuterated electrolyte suitable for in situ neutron diffraction measurements of normal and high voltage Li-ion battery electrodes is reported here. Li[Ni 0.4 Mn 0.4 Co 0.2 ]O 2 /graphite (NMC(442)/graphite) pouch cells filled with 1:0.1:2 (molar ratio) of lithium bis(fluorosulfonyl) imide (LiFSi):LiPF 6 : ethyl acetate (EA) and LiFSi:LiPF 6 :deuterated EA (d8-EA) electrolytes were successfully cycled between 2.8 V and 4.7 V at 40°C for 250 h without significant capacity loss, polarization growth, or gas production. The signal-to-noise ratio of neutron powder diffraction patterns taken on NMC(442) powder with a conventional deuterated organic carbonate-based electrolyte and filled with LiFSi:LiPF 6 :d8-EA electrolyte were virtually identical. Out of all the solvents widely available in deuterated form tested in highly-concentrated systems, EA was the only one providing a good balance between cost and charge-discharge capacity retention to 4.7 V. The use of such an electrolyte blend would half the cost of deuterated solvents needed for in situ neutron diffraction measurements of Li-ion batteries compared to conventional deuterated carbonate-based electrolytes

  9. Solvent extraction of zinc(II) with ethylthioacetate into ethyl acetate

    International Nuclear Information System (INIS)

    Chennuri, S.L.; Haldar, B.C.

    1984-01-01

    A method has been developed for the extraction of Zn(II) with ethylthioacetoacetate into ethyl acetate from an alkaline medium. Various parameters affecting the extraction of Zn(II) were investigated. The stoichiometry of the extracted species was determined by the slope-ratio method. (author)

  10. Palm ethyl ester purification by using Choline Chloride – 1,2 propanediol as deep eutectic solvent

    Science.gov (United States)

    Manurung, R.; Alhamdi, M. A.; Syahputra, A.

    2018-02-01

    Deep eutectic solvent (DES) has gained more attention for using in biodiesel production because of environmental benefits and process improvements. This study was aimed to test the potency and effectiveness of Deep Eutectic Solvent (DES) based choline chloride: 1.2-propanediol as co-solvent in biodiesel purification. The method used in preparing DES synthesis process was conducted by mixing choline chloride: 1.2-propanediol with mole ratio variation such as: 1:2 ; 1:2.5 ; 1:3 ; and 1:3.5 (mole/mole). The temperature of DES synthesis was at 80 °C with 300 rpm stirring speed for 60 minutes. Variation of DES concentration base on percentage palm oil used: 1, 3, and 5 %. DES possible to increase the ethyl ester yield of biodiesel in the purification process. The best result of yield was 89.95% with the 9:1 molar ratio ethanol: oil and 5% of DES. The operation condition was at 70 °C of temperature reaction, 400 rpm of stirring speed, and 90 minutes of reaction time.

  11. Solvent density mode instability in non-polar solutions

    Indian Academy of Sciences (India)

    1Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National. Centre for Basic Sciences, ... upon excitation mainly drives the solvent reorganization [12,13]. However, the. Stokes shifts ..... process [17] where a solvent density mode with momentum q is scattered to another density mode of ...

  12. Determination and thermodynamic modelling for 2-methyl-6-nitroaniline solubility in binary solvent mixtures of ethyl acetate + (methanol, ethanol, n-propanol and isopropanol)

    International Nuclear Information System (INIS)

    Cong, Yang; Du, Cunbin; Wang, Jian; Zhao, Hongkun

    2017-01-01

    Highlights: • Solubility of 2-methyl-6-nitroaniline in four binary mixed solvents were determined. • Solubility data were correlated and calculated by six models. • The standard dissolution enthalpy for the dissolution processes were computed. - Abstract: The solubility of 2-methyl-6-nitroaniline in binary mixed solvents of (ethyl acetate + methanol), (ethyl acetate + ethanol), (ethyl acetate + n-propanol) and (ethyl acetate + isopropanol) was determined experimentally by using the isothermal dissolution method within the temperature range from (278.15–313.15) K under atmosphere pressure. The solubility of 2-methyl-6-nitroaniline increased with increasing temperature and mass fraction of ethyl acetate in each binary system. At the same temperature and mass fraction of ethyl acetate, the mole fraction solubility of 2-methyl-6-nitroaniline was greater in (ethyl acetate + n-propanol) than in the other three mixed solvents. The achieved solubility values were correlated by employing Jouyban-Acree model, van’t Hoff-Jouyban-Acree model, Apelblat-Jouyban-Acree model, Ma model, Sun model and CNIBS/R-K model. The values of relative average deviations (RAD) and root-mean-square deviations (RMSD) were no greater than 1.79% and 20.56 × 10 −4 for the six models. In general, the Jouyban-Acree model proved to provide better representation of the experimental solubility. Furthermore, the dissolution enthalpies of the dissolution process were calculated. Positive values of dissolution enthalpy showed that the dissolution process of 2-methyl-6-nitroaniline in these mixed solvents was endothermic. The experimental solubility results and models presented in the present work are essential in the practical process for production and purification of 2-methyl-6-nitroaniline.

  13. Influence of polar solvents on the enhancement of light-ends in ...

    African Journals Online (AJOL)

    Crude oil 'micelle' can be dispersed into fuels, oil and resin/asphalthene components using some hydrocarbon solvents. This can be adapted towards influencing/enhancing its product slates during the processing of crude oils. This research was carried out to investigate the effect of polar solvents (ethanol and acetone) in ...

  14. The Role of Solvent Polarity on Low-Temperature Methanol Synthesis Catalyzed by Cu Nanoparticles

    International Nuclear Information System (INIS)

    Ahoba-Sam, Christian; Olsbye, Unni; Jens, Klaus-Joachim

    2017-01-01

    Methanol syntheses at low temperature in a liquid medium present an opportunity for full syngas conversion per pass. The aim of this work was to study the role of solvents polarity on low-temperature methanol synthesis reaction using eight different aprotic polar solvents. A “once through” catalytic system, which is composed of Cu nanoparticles and sodium methoxide, was used for methanol synthesis at 100°C and 20 bar syngas pressure. Solvent polarity rather than the 7–10 nm Cu (and 30 nm Cu on SiO 2 ) catalyst used dictated trend of syngas conversion. Diglyme with a dielectric constant (ε) = 7.2 gave the highest syngas conversion among the eight different solvents used. Methanol formation decreased with either increasing or decreasing solvent ε value of diglyme (ε = 7.2). To probe the observed trend, possible side reactions of methyl formate (MF), the main intermediate in the process, were studied. MF was observed to undergo two main reactions; (i) decarbonylation to form CO and MeOH and (ii) a nucleophilic substitution to form dimethyl ether and sodium formate. Decreasing polarity favored the decarbonylation side reaction while increasing polarity favored the nucleophilic substitution reaction. In conclusion, our results show that moderate polarity solvents, e.g., diglyme, favor MF hydrogenolysis and, hence, methanol formation, by retarding the other two possible side reactions.

  15. Solvent-free enzymatic synthesis of feruloylated structured lipids by the transesterification of ethyl ferulate with castor oil.

    Science.gov (United States)

    Sun, Shangde; Zhu, Sha; Bi, Yanlan

    2014-09-01

    A novel enzymatic route of feruloylated structured lipids synthesis by the transesterification of ethyl ferulate (EF) with castor oil, in solvent-free system, was investigated. The transesterification reactions were catalysed by Novozym 435, Lipozyme RMIM, and Lipozyme TLIM, among which Novozym 435 showed the best catalysis performance. Effects of feruloyl donors, reaction variables, and ethanol removal on the transesterification were also studied. High EF conversion (∼100%) was obtained under the following conditions: enzyme load 20% (w/w, relative to the weight of substrates), reaction temperature 90 °C, substrate molar ratio 1:1 (EF/castor oil), 72 h, vacuum pressure 10 mmHg, and 200 rpm. Under these conditions, the transesterification product consisted of 62.6% lipophilic feruloylated structured lipids and 37.3% hydrophilic feruloylated lipids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The use of ethyl acetate as a sole solvent in highly concentrated electrolyte for Li-ion batteries

    International Nuclear Information System (INIS)

    Petibon, R.; Aiken, C.P.; Ma, L.; Xiong, D.; Dahn, J.R.

    2015-01-01

    The use of highly concentrated lithium bis(fluorosulfonyl)imide (LiFSi) electrolyte in ethyl acetate (EA) is reported here. Li[Ni 0.33 Mn 0.33 Co 0.33 ]O 2 /graphite (NMC(111)/graphite) and Li[Ni 0.42 Mn 0.42 Co 0.16 ]O 2 /graphite (NMC(442)/graphite) pouch cells filled with a 3:32:65 (molar ratio) of LiPF 6 :LiFSi:EA electrolyte, were successfully cycled between 2.8–4.2 V and 2.8–4.4 V, respectively at 40 °C over a period of several weeks without dramatic capacity loss. Cells filled with the highly concentrated LiFSi:EA electrolyte demonstrated surprisingly low impedance compared to a conventional electrolyte composed of organic carbonates after 400–800 h of cycling at 40 °C. LiFSi was the most effective salt in reducing the amount of ethyl acetate consumed at the negative electrode during the first charge compared to LiPF 6 and lithium bis(trifluoromethanesulfonyl)imide (LiTFSi) at equivalent molar ratios. The work reported here shows that highly unconventional solvents can be used in full Li-ion cells without any cyclic carbonates at all, provided high concentrations of the appropriate electrolyte salt are used

  17. Solvatochromic and Kinetic Response Models in (Ethyl Acetate + Chloroform or Methanol Solvent Mixtures

    Directory of Open Access Journals (Sweden)

    L. R. Vottero

    2000-03-01

    Full Text Available The present work analyzes the solvent effects upon the solvatochromic response models for a set of chemical probes and the kinetic response models for an aromatic nucleophilic substitution reaction, in binary mixtures in which both pure components are able to form intersolvent complexes by hydrogen bonding.

  18. Plasma-polymerized films providing selective affinity to the polarity of vaporized organic solvents

    International Nuclear Information System (INIS)

    Akimoto, Takuo; Ikeshita, Yusuke; Terashima, Ryo; Karube, Isao

    2009-01-01

    Plasma-polymerized films (PPFs) were fabricated as recognition membranes for a vapor-sensing device, and their affinity to vaporized organic solvents was evaluated with surface plasmon resonance. The affinity we intended to create is the selective sorption of the vaporized organic solvents depending on their polarity. For this purpose, acetonitrile, ethylenediamine (EDA), styrene, hexamethyldisiloxane (HMDSO), and hexamethyldisilazane were used to fabricate PPFs. Vaporized methanol, ethanol, and 1-propanol were used as high-polar solvents to be analyzed. Hexane, toluene, and p-xylene were used as low-polar solvents. As a result, the HMDSO-PPF with 97.3 o of contact angle was found to provide affinity to the low-polar solvents. In contrast, the EDA-PPF with 7.1 o of contact angle provided affinity to the high-polar solvents. Observations of the surface morphology of the HMDSO- and EDA-PPFs with a scanning electron microscope revealed that they are composed of nano-scale islands.

  19. How many molecular layers of polar solvent molecules control chemistry? The concept of compensating dipoles.

    Science.gov (United States)

    Langhals, Heinz; Braun, Patricia; Dietl, Christian; Mayer, Peter

    2013-09-27

    The extension of the solvent influence of the shell into the volume of a polar medium was examined by means of anti-collinear dipoles on the basis of the E(T)(30) solvent polarity scale (i.e., the molar energy of excitation of a pyridinium-N-phenolatebetaine dye; generally: E(T) =28,591 nm kcal mol(-1)/λmax) where no compensation effects were found. As a consequence, solvent polarity effects are concentrated to a very thin layer of a few thousand picometres around the solute where extensions into the bulk solvent become unimportant. A parallelism to the thin surface layer of water to the gas phase is discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effects of polar protic solvents on dual emissions of 3 ...

    Indian Academy of Sciences (India)

    TECS

    max – position of the fluorescence maxima of N* and T* forms, respectively; φ is the fluorescence quantum yield. bData from ref. [25]. cThe long-wavelength absorption band of the dye overlaps with the absorption spectrum of the anionic form in this solvent. dThe long-wavelength absorption band appears as a shoulder in ...

  1. Phase Behavior of Laundry Surfactants in Polar Solvents

    NARCIS (Netherlands)

    Stuart, Marc C.A.; Pas, John C. van de; Engberts, Jan B.F.N.

    2006-01-01

    Laundry surfactants are usually mixtures of ionic and nonionic detergents that exhibit a complex phase behavior. Here the ternary phase behavior of an isotropic and a liquid crystalline (LC) surfactant mixture has been examined in water/solvent systems. The size of the LC area in the ternary phase

  2. Solubility determination and modelling for phthalimide in mixed solvents of (acetone, ethyl acetate or acetonitrile + methanol) from (278.15 to 313.15) K

    International Nuclear Information System (INIS)

    Li, Yanxun; Li, Congcong; Du, Cunbin; Cong, Yang; Cheng, Chao; Zhao, Hongkun

    2017-01-01

    Highlights: • Solubility of phthalimide solubility in three binary mixed solvents were determined. • Solubility data were correlated and calculated by four models. • The standard dissolution enthalpy for the dissolution processes were computed. - Abstract: The solubilities of phthalimide in mixed solvents of (acetone + methanol), (ethyl acetate + methanol) and (acetonitrile + methanol) were determined experimentally by using the isothermal dissolution equilibrium method within the temperature range from (283.15 to 318.15) K under atmospheric pressure (101.1 kPa). For the three systems of (acetone + methanol), (ethyl acetate + methanol) and (acetonitrile + methanol), at a fixed composition of acetonitrile, acetone or ethyl acetate, the solubility of phthalimide increased with an increase in temperature; however, at the same temperature, they increased at first and then decreased with the increase in mass fraction of acetonitrile, acetone or ethyl acetate. At the same temperature and mass fraction of acetonitrile, acetone or ethyl acetate, the mole fraction solubility of phthalimide in (acetone + methanol) was greater than those in the other mixed solvents. The solubility values obtained were correlated with Jouyban-Acree model, van’t Hoff-Jouyban-Acree model, modified Apelblat-Jouyban-Acree model and CNIBS/R-K model. The maximum values of relative average deviations (RAD) and root-mean-square deviations (RMSD) between the experimental and calculated solubility were 5.64 × 10 −2 and 11.56 × 10 −4 , respectively. The CNIBS/R-K model proved to provide the best representation of the experimental results. In addition, the standard dissolution enthalpies of the dissolution process were calculated on the basis of the measured solubility. Dissolution of phthalimide in these mixed solvents is an endothermic process.

  3. Solvent density mode instability in non-polar solutions

    Indian Academy of Sciences (India)

    this region produces time scales, one in the range of 1–2 ps and the other in the range of ≥10 ps for f = 4 as reported earlier [17]. Note also that both the values of f (f = 4) and density for which these two time scales are predicted are very close to the solute–solvent systems for which the experiments have reported multiple ...

  4. Charge transfer state induced from locally excited state by polar solvent

    Science.gov (United States)

    Sun, Mengtao

    2005-06-01

    The photophysical properties of the novel perylene imide (Pi) and oligo-pentaphenyl bisfluorene (pPh) containing molecule have been investigated by quantum chemical methods. It is concluded that the first excited singlet state in the gas is the locally excited state; while the lowest excited state in polar solvents is the intramolecular charge transfer (ICT) state, which corresponds to the ICT from pPh to Pi. This excited state in the polar solvent adopts a planar geometry, in marked contrast to the twisted geometry in the gas phase. The planar geometry in the polar solvent significantly delocalized densities of HOMOs, compared to those in the gas phase, but the influence of the planar geometry to densities of LUMO is very small. Overall, the computed results remain in good agreement with the relevant experimental data.

  5. Evaluation of ethyl lactate as solvent in Fenton oxidation for the remediation of total petroleum hydrocarbon (TPH)-contaminated soil.

    Science.gov (United States)

    Jalilian Ahmadkalaei, Seyedeh Pegah; Gan, Suyin; Ng, Hoon Kiat; Abdul Talib, Suhaimi

    2017-07-01

    Due to the health and environmental risks posed by the presence of petroleum-contaminated areas around the world, remediation of petroleum-contaminated soil has drawn much attention from researchers. Combining Fenton reaction with a solvent has been proposed as a novel way to remediate contaminated soils. In this study, a green solvent, ethyl lactate (EL), has been used in conjunction with Fenton's reagents for the remediation of diesel-contaminated soil. The main aim of this research is to determine how the addition of EL affects Fenton reaction for the destruction of total petroleum hydrocarbons (TPHs) within the diesel range. Specifically, the effects of different parameters, including liquid phase volume-to-soil weight (L/S) ratio, hydrogen peroxide (H 2 O 2 ) concentration and EL% on the removal efficiency, have been studied in batch experiments. The results showed that an increase in H 2 O 2 resulted in an increase in removal efficiency of TPH from 68.41% at H 2 O 2  = 0.1 M to 90.21% at H 2 O 2  = 2 M. The lowest L/S, i.e. L/S = 1, had the highest TPH removal efficiency of 85.77%. An increase in EL% up to 10% increased the removal efficiency to 96.74% for TPH, and with further increase in EL%, the removal efficiency of TPH decreased to 89.6%. EL with an optimum value of 10% was found to be best for TPH removal in EL-based Fenton reaction. The power law and pseudo-first order equations fitted well to the experimental kinetic data of Fenton reactions.

  6. Efficient Synthesis of Molecular Precursors for Para-Hydrogen-Induced Polarization of Ethyl Acetate-1-(13) C and Beyond.

    Science.gov (United States)

    Shchepin, Roman V; Barskiy, Danila A; Coffey, Aaron M; Manzanera Esteve, Isaac V; Chekmenev, Eduard Y

    2016-05-10

    A scalable and versatile methodology for production of vinylated carboxylic compounds with (13) C isotopic label in C1 position is described. It allowed synthesis of vinyl acetate-1-(13) C, which is a precursor for preparation of (13) C hyperpolarized ethyl acetate-1-(13) C, which provides a convenient vehicle for potential in vivo delivery of hyperpolarized acetate to probe metabolism in living organisms. Kinetics of vinyl acetate molecular hydrogenation and polarization transfer from para-hydrogen to (13) C via magnetic field cycling were investigated. Nascent proton nuclear spin polarization (%PH ) of ca. 3.3 % and carbon-13 polarization (%P13C ) of ca. 1.8 % were achieved in ethyl acetate utilizing 50 % para-hydrogen corresponding to ca. 50 % polarization transfer efficiency. The use of nearly 100% para-hydrogen and the improvements of %PH of para-hydrogen-nascent protons may enable production of (13) C hyperpolarized contrast agents with %P13C of 20-50 % in seconds using this chemistry. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effects of solvent polarity on mutual polypropylene grafting by electron beam irradiation

    International Nuclear Information System (INIS)

    Geraldo, A.B.C.; Moura, E.; Somessari, E.S.R.; Silveira, C.G.; Paes, H.A.; Souza, C.A.; Fernandes, W.; Manzoli, J.E.

    2011-01-01

    Complete text of publication follows. Copolymerization by grafting is a process largely known and the advantages of modifying polymers by radiation includes superimposition of properties related to the backbone and the grafted chains in the absence of an initiator. This process produces low byproduct levels, costs and hazards. Since polypropylene is applied in many industrial and commercial sectors, the grafting process is an alternative to improve some of its physical and chemical properties. The aim of this work was to verify the effect of distinct organic solvents on polypropylene grafting process by mutual irradiation applying absorbed doses from 30 kGy to 100 kGy at dose rates of 2.2 kGy/s and 22.4 kGy/s. All process were performed in atmosphere air presence. Styrene was the monomer grafted on polymer substrate and some non-polar and polar organic solvents, like toluene, xylene, acetone, methanol and its homologous, were used at distinct concentrations. The grafted samples were evaluated by degree of styrene grafting (gravimetric determination) and the Mid-FTIR spectrophotometry. As a general behavior, the degree of grafting increases when absorbed dose values increase in a specific solvent until a maximum dose value (50-70 kGy), after this, the degree of grafting decreases. Moreover, the grafting process have high yields when protic polar solvents are used. These results suggest the grafting process does not have dependence of substrate swelling, that is expected when a non-polar substrate and a non-polar media are in contact. The grafting, in this case, can be related to the free radical generation at protic polar solvents in a first step of process mechanism; these reactive specimens start the reaction on substrate surface to allow the accessibility of monomer species to active sites. Some reaction mechanisms are proposed.

  8. Greening Wittig Reactions: Solvent-Free Synthesis of Ethyl Trans-Cinnamate and Trans-3-(9-Anthryl)-2-Propenoic Acid Ethyl Ester

    Science.gov (United States)

    Nguyen, Kim Chi; Weizman, Haim

    2007-01-01

    Green procedure is used to create solvent-free alternatives for conventional Wittig reactions, which are widely used to install a double bond in a highly selective manner. Solvent-free reactions reduce health and environmental risks and provide a basis for an inquiry-based discussion of the stereochemistry of the Wittig reaction and the factors…

  9. Decontamination of Oils Contaminated with Polychlorinated Biphenyls and Dibenzyl Disulfide Using Polar Aprotic Solvents

    Czech Academy of Sciences Publication Activity Database

    Kaštánek, František; Matějková, Martina; Spáčilová, Lucie; Maléterová, Ywetta; Kaštánek, P.; Šolcová, Olga

    2015-01-01

    Roč. 4, č. 2 (2015), s. 41-48 ISSN 2319-5967 R&D Projects: GA TA ČR(CZ) TA04020151 Institutional support: RVO:67985858 Keywords : corrosive sulfur * dibenzyl disulfide * polar aprotic solvents Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://www.ijesit.com/Volume%204/Issue%202/IJESIT201502_06.pdf

  10. Characterization of molecularly imprinted polymers using a new polar solvent titration method.

    Science.gov (United States)

    Song, Di; Zhang, Yagang; Geer, Michael F; Shimizu, Ken D

    2014-07-01

    A new method of characterizing molecularly imprinted polymers (MIPs) was developed and tested, which provides a more accurate means of identifying and measuring the molecular imprinting effect. In the new polar solvent titration method, a series of imprinted and non-imprinted polymers were prepared in solutions containing increasing concentrations of a polar solvent. The polar solvent additives systematically disrupted the templation and monomer aggregation processes in the prepolymerization solutions, and the extent of disruption was captured by the polymerization process. The changes in binding capacity within each series of polymers were measured, providing a quantitative assessment of the templation and monomer aggregation processes in the imprinted and non-imprinted polymers. The new method was tested using three different diphenyl phosphate imprinted polymers made using three different urea functional monomers. Each monomer had varying efficiencies of templation and monomer aggregation. The new MIP characterization method was found to have several advantages. To independently verify the new characterization method, the MIPs were also characterized using traditional binding isotherm analyses. The two methods appeared to give consistent conclusions. First, the polar solvent titration method is less susceptible to false positives in identifying the imprinting effect. Second, the method is able to differentiate and quantify changes in binding capacity, as measured at a fixed guest and polymer concentration, arising from templation or monomer aggregation processes in the prepolymerization solution. Third, the method was also easy to carry out, taking advantage of the ease of preparing MIPs. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Ionic magnetic fluids in polar solvents with tuned counter-ions

    Energy Technology Data Exchange (ETDEWEB)

    Lopes Filomeno, C. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Grupo de Fluidos Complexos Inst. de Quimica, Univ. de Brasília, Brasília (DF) (Brazil); Kouyaté, M. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Cousin, F. [Lab. Léon Brillouin – CE-Saclay, Gif-sur-Yvette (France); Demouchy, G. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Dpt de physique, Univ. de Cergy Pontoise, Cergy-Pontoise (France); Dubois, E.; Michot, L.; Mériguet, G. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Perzynski, R., E-mail: regine.perzynski@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Peyre, V.; Sirieix-Plénet, J. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Tourinho, F.A. [Grupo de Fluidos Complexos Inst. de Quimica, Univ. de Brasília, Brasília (DF) (Brazil)

    2017-06-01

    The aim of the present study is to propose a new reproducible method for preparing colloidal dispersions of electrostatically charged nanoparticles (NPs) in polar solvents with different kinds of counter-ions. Maghemite NPs are here dispersed in solvents of different dielectric constant, namely water, dimethylsulfoxide (DMSO) and an ionic liquid, ethylammonium nitrate (EAN). If the existence of a NP superficial charge happens to be necessary for the colloidal stability of the dispersions in these three solvents, the standard DLVO theory cannot be used any more to describe the colloidal stability in EAN. The structure of the dispersions and the strength of the interparticle repulsion are investigated by small angle X-ray scattering measurements, in association with Ludwig–Soret coefficient determinations. Specificities, associated to the nature of the counter-ions are identified in this work on the colloidal stability, on the interparticle repulsion and on the Ludwig–Soret coefficient. - Highlights: • A controlled synthesis of ionic magnetic fluids in three polar solvents is proposed. • Colloidal repulsion in the magnetic fluids depends on the counter-ion nature. • Soret coefficient of citrate-coated maghemite nanoparticles is probed in water-pH7. • Thermophilicity of nanoparticles depends on the nature of their counter-ions. • Nanoparticles dressed with same counter-ions have solvent-dependent thermoproperties.

  12. Study of interactions between alcohols and polar and non-polar solvents by NMR

    International Nuclear Information System (INIS)

    Servanton-Gadouleau, Monique; Biais, Jacques; Lemanceau, Bernard

    1975-01-01

    The temperature and concentration dependence of the chemical shift variation of the hydroxylic proton of methanol, n-propanol and n-heptanol in n-hexane, n-heptane, cyclohexane, carbon tetrachloride and 1,1-dichloroethane is presented. For each alcohol the results are strongly dependent on the solvents, none of them can be, a priori, considered as perfect. For convenient interpretation of the experimental data hydrophobic and hydrophilic interactions are taken into account. From the proposed models thermodynamically consistent results are obtained concerning the solute-solute and solute-solvent interactions [fr

  13. Fabrication of porous ethyl cellulose microspheres based on the acetone-glycerin-water ternary system: Controlling porosity via the solvent-removal mode.

    Science.gov (United States)

    Murakami, Masahiro; Matsumoto, Akihiro; Watanabe, Chie; Kurumado, Yu; Takama, Masashi

    2015-08-01

    Porous ethyl cellulose (EC) microspheres were prepared from the acetone-glycerin-water ternary system using an oil/water (O/W)-type emulsion solvent extraction method. The O/ W type emulsion was prepared using acetone dissolved ethyl cellulose as an oil phase and aqueous glycerin as a water phase. The effects of the different solvent extraction modes on the porosity of the microspheres were investigated. The specific surface area of the porous EC microspheres was estimated by the gas adsorption method. When the solvent was extracted rapidly by mixing the emulsion with water instantaneously, porous EC microspheres with a maximum specific surface area of 40.7±2.1 m2/g were obtained. On the other hand, when water was added gradually to the emulsion, the specific surface area of the fabricated microspheres decreased rapidly with an increase in the infusion period, with the area being 25-45% of the maximum value. The results of an analysis of the ternary phase diagram of the system suggested that the penetration of water and glycerin from the continuous phase to the dispersed phase before solidification affected the porosity of the fabricated EC microspheres.

  14. Lipase mediated synthesis of rutin fatty ester: Study of its process parameters and solvent polarity.

    Science.gov (United States)

    Vaisali, C; Belur, Prasanna D; Regupathi, Iyyaswami

    2017-10-01

    Lipophilization of antioxidants is recognized as an effective strategy to enhance solubility and thus effectiveness in lipid based food. In this study, an effort was made to optimize rutin fatty ester synthesis in two different solvent systems to understand the influence of reaction system hydrophobicity on the optimum conditions using immobilised Candida antartica lipase. Under unoptimized conditions, 52.14% and 13.02% conversion was achieved in acetone and tert-butanol solvent systems, respectively. Among all the process parameters, water activity of the system was found to show highest influence on the conversion in each reaction system. In the presence of molecular sieves, the ester production increased to 62.9% in tert-butanol system, unlike acetone system. Under optimal conditions, conversion increased to 60.74% and 65.73% in acetone and tert-butanol system, respectively. This study shows, maintaining optimal water activity is crucial in reaction systems having polar solvents compared to more non-polar solvents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Covalent Surface Modification of Silicon Oxides with Alcohols in Polar Aprotic Solvents.

    Science.gov (United States)

    Lee, Austin W H; Gates, Byron D

    2017-09-05

    Alcohol-based monolayers were successfully formed on the surfaces of silicon oxides through reactions performed in polar aprotic solvents. Monolayers prepared from alcohol-based reagents have been previously introduced as an alternative approach to covalently modify the surfaces of silicon oxides. These reagents are readily available, widely distributed, and are minimally susceptible to side reactions with ambient moisture. A limitation of using alcohol-based compounds is that previous reactions required relatively high temperatures in neat solutions, which can degrade some alcohol compounds or could lead to other unwanted side reactions during the formation of the monolayers. To overcome these challenges, we investigate the condensation reaction of alcohols on silicon oxides carried out in polar aprotic solvents. In particular, propylene carbonate has been identified as a polar aprotic solvent that is relatively nontoxic, readily accessible, and can facilitate the formation of alcohol-based monolayers. We have successfully demonstrated this approach for tuning the surface chemistry of silicon oxide surfaces with a variety of alcohol containing compounds. The strategy introduced in this research can be utilized to create silicon oxide surfaces with hydrophobic, oleophobic, or charged functionalities.

  16. Solvent polarity controls the helical conformation of short peptides rich in Calpha-tetrasubstituted amino acids.

    Science.gov (United States)

    Bellanda, Massimo; Mammi, Stefano; Geremia, Silvano; Demitri, Nicola; Randaccio, Lucio; Broxterman, Quirinus B; Kaptein, Bernard; Pengo, Paolo; Pasquato, Lucia; Scrimin, Paolo

    2007-01-01

    The two peptides, rich in C(alpha)-tetrasubstituted amino acids, Ac-[Aib-L-(alphaMe)Val-Aib](2)-L-His-NH(2) (1) and Ac-[Aib-L-(alphaMe)Val-Aib](2)-O-tBu (2 a) are prevalently helical. They present the unique property of changing their conformation from the alpha- to the 3(10)-helix as a function of the polarity of the solvent: alpha in more polar solvents, 3(10) in less polar ones. Conclusive evidence of this reversible change of conformation is reported on the basis of the circular dichroism (CD) spectra and a detailed two-dimensional NMR analysis in two solvents (trifluoroethanol and methanol) refined with molecular dynamics calculations. The X-ray diffractometric analysis of the crystals of both peptides reveals that they assume a prevalent 3(10)-helix conformation in the solid state. This conformation is practically superimposable on that obtained from the NMR analysis of 1 in methanol. The NMR results further validate the reported CD signature of the 3(10)-helix and the use of the CD technique for its assessment.

  17. Solubility of 2-isopropylimidazole in nine pure organic solvents and liquid mixture of (methanol + ethyl acetate) from T = (278.15 to 313.15) K: Experimental measurement and thermodynamic modelling

    International Nuclear Information System (INIS)

    Chen, Jiao; Chen, Gaoquan; Cong, Yang; Du, Cunbin; Zhao, Hongkun

    2017-01-01

    Highlights: • Solubility of 2-isopropylimidazole in pure solvents and (methanol + ethyl acetate) were determined. • The solubility data were correlated with different solubility models. • Standard dissolution enthalpy were computed. - Abstract: Solubility of 2-isopropylimidazole in nine organic solvents including methanol, ethanol, n-propanol, isopropanol, acetone, acetonitrile, ethyl acetate, toluene, 2-butanone and liquid mixture of (methanol + ethyl acetate) were determined experimentally by using the isothermal saturation method over the temperature range from (278.15 to 313.15) K under atmosphere pressure (101.2 kPa). The solubility of 2-isopropylimidazole in the pure solvents increased with a rise of temperature. In general, the mole fraction solubility obeyed the following order from high to low in different pure solvents: methanol > ethanol > 2-butanone > n-propanol > acetone > isopropanol > ethyl acetate > acetonitrile > toluene. For the (methanol + ethyl acetate) mixture with given initial composition, the mole fraction solubility of 2-isopropylimidazole increase with increasing temperature and mass fraction of methanol. The obtained solubility of 2-isopropylimidazole in the pure solvents was correlated with the modified Apelblat equation and λh equation; and in the binary solvent mixture, the Jouyban–Acree model, van’t Hoff–Jouyban–Acree model and modified Apelblat–Jouyban–Acree model. The maximum values of root-mean-square deviation (RMSD) and relative average deviation (RAD) were 19.29 × 10 −3 and 1.07%, respectively. In addition, the standard dissolution enthalpy was calculated.

  18. Solvent-Free Biodiesel Production Catalyzed by Crude Lipase Powder from Seeds: Effects of Alcohol Polarity, Glycerol, and Thermodynamic Water Activity.

    Science.gov (United States)

    Kouteu, Paul Alain Nanssou; Blin, Joël; Baréa, Bruno; Barouh, Nathalie; Villeneuve, Pierre

    2017-10-04

    The aim of this work was to evaluate the potential of crude lipase powders made from Adansonia grandidieri and Jatropha mahafalensis seeds for the synthesis of fatty acid alkyl esters in a solvent-free system. The influence of the nature of the alcohol, the amount of glycerol, and hydration of the powder was investigated. Results showed that the activity of these crude lipase powders was inversely proportional to the alcohol polarity and the amount of the glycerol in the reaction medium. To ensure optimum activity, A. grandidieri and J. mahafalensis powders must be conditioned to a water activity of 0.33 and 0.66. To obtain a fatty acid ethyl ester yield greater than 95% with A. grandidieri, ethanol should be introduced at an amount corresponding to a triacylglycerol to ethanol molar ratio of 2:1 every 15 h for 96 h and use 25% of preconditioned crude lipase powders (2 additions of 12.5%).

  19. Preparation of planar CH3NH3PbI3 thin films with controlled size using 1-ethyl-2-pyrrolidone as solvent

    International Nuclear Information System (INIS)

    Hao, Qiuyan; Chu, Yixia; Zheng, Xuerong; Liu, Zhenya; Liang, Liming; Qi, Jiakun; Zhang, Xin; Liu, Gang; Liu, Hui; Chen, Hongjian; Liu, Caichi

    2016-01-01

    Recently, planar perovskite solar cells based on CH 3 NH 3 PbI 3 have attracted many researcher's interest due to their unique advantages such as simple cell architecture, easy fabrication and potential multijunction construction comparing to the initial mesoporous structure. However, the preparation of planar perovskite films with high quality is still in challenge. In this paper, we developed a vapor-assisted solution process using a novel and green solvent of 1-Ethyl-2-pyrrolidone (NEP) instead of the traditional N, N-dimethylformamide (DMF) to construct a high-quality perovskite CH 3 NH 3 PbI 3 thin film with pure phase, high compactness, small surface roughness and controlled size. The phase evolution and growth mechanism of the perovskite films are also discussed. Utilizing the NEP of low volatility and moderate boiling point as solvent, we dried the PbI 2 -NEP precursor films at different temperature under vacuum and then obtained PbI 2 thin films with different crystalline degree from amorphous to highly crystalline. The perovskite films with crystal size ranged from hundreds of nanometers to several micrometers can be prepared by reacting the PbI 2 films of different crystalline degree with CH 3 NH 3 I vapor. Moreover, planar-structured solar cells combining the perovskite film with TiO 2 and spiro-OMeTAD as the electron and holes transporting layer achieves a power conversion efficiency of 10.2%. - Highlights: • A novel and green solvent of 1-Ethyl-2-pyrrolidone (NEP) was used to construct high-quality perovskite CH 3 NH 3 PbI 3 thin film. • The CH 3 NH 3 PbI 3 grain with different sizes ranged from hundreds of nanometers to several micrometers can be obtained. • Planar-structured perovskite CH 3 NH 3 PbI 3 solar cells using NEP as solvent achieves a power conversion efficiency of 10.2%.

  20. Lid opening and conformational stability of T1 Lipase is mediated by increasing chain length polar solvents

    Directory of Open Access Journals (Sweden)

    Jonathan Maiangwa

    2017-05-01

    Full Text Available The dynamics and conformational landscape of proteins in organic solvents are events of potential interest in nonaqueous process catalysis. Conformational changes, folding transitions, and stability often correspond to structural rearrangements that alter contacts between solvent molecules and amino acid residues. However, in nonaqueous enzymology, organic solvents limit stability and further application of proteins. In the present study, molecular dynamics (MD of a thermostable Geobacillus zalihae T1 lipase was performed in different chain length polar organic solvents (methanol, ethanol, propanol, butanol, and pentanol and water mixture systems to a concentration of 50%. On the basis of the MD results, the structural deviations of the backbone atoms elucidated the dynamic effects of water/organic solvent mixtures on the equilibrium state of the protein simulations in decreasing solvent polarity. The results show that the solvent mixture gives rise to deviations in enzyme structure from the native one simulated in water. The drop in the flexibility in H2O, MtOH, EtOH and PrOH simulation mixtures shows that greater motions of residues were influenced in BtOH and PtOH simulation mixtures. Comparing the root mean square fluctuations value with the accessible solvent area (SASA for every residue showed an almost correspondingly high SASA value of residues to high flexibility and low SASA value to low flexibility. The study further revealed that the organic solvents influenced the formation of more hydrogen bonds in MtOH, EtOH and PrOH and thus, it is assumed that increased intraprotein hydrogen bonding is ultimately correlated to the stability of the protein. However, the solvent accessibility analysis showed that in all solvent systems, hydrophobic residues were exposed and polar residues tended to be buried away from the solvent. Distance variation of the tetrahedral intermediate packing of the active pocket was not conserved in organic solvent

  1. Photophysics of a coumarin based Schiff base in solvents of varying polarities

    Science.gov (United States)

    Ghosh, Saptarshi; Roy, Nayan; Singh, T. Sanjoy; Chattopadhyay, Nitin

    2018-01-01

    The present work reports detailed photophysics of a coumarin based Schiff base, namely, (E)-7-(((8-hydroxyquinolin-2-yl)methylene)amino)-4-methyl-2H-chromen-2-one (HMC) in different solvents of varying polarity exploiting steady state absorption, fluorescence and time resolved fluorescence spectroscopy. The dominant photophysical features of HMC are discussed in terms of emission from an intramolecular charge transfer (ICT) excited state. Molecular orbital (MO) diagrams as obtained from DFT based computational analysis confirms the occurrence of charge transfer from 8‧-hydroxy quinoline moiety of the molecule to the coumarin part. The notable difference in the photophysical response of HMC from its analogous coumarin (C480) lies in a lower magnitude of fluorescence quantum yield of the former, particularly in the solvents of low polarity, which is rationalized by considering the higher rate of non-radiative decay of HMC in apolar solvents. Phosphorescence emission as well as phosphorescence lifetime of HMC has also been reported in 77 K frozen matrix.

  2. The effects of a co-solvent on fabrication of cellulose acetate membranes from solutions in 1-ethyl-3-methylimidazolium acetate

    KAUST Repository

    Kim, Dooli

    2016-08-15

    Ionic liquids have been considered green solvents for membrane fabrication. However, the high viscosity of their polymer solutions hinders the formation of membranes with strong mechanical properties. In this study, acetone was explored as a co-solvent with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) to dissolve cellulose acetate. The effects of acetone on the thermodynamic and kinetic aspects of the polymer solutions were studied and the physicochemical properties and separation capability of their resultant membranes were analyzed. The Hansen solubility parameters of [EMIM]OAc were measured by the software HSPiP and these data demonstrated that acetone was a suitable co-solvent to increase the solubility of cellulose acetate. The Gibbs free energy of mixing ΔGm was estimated to determine the proper composition of the polymer solution with better solubility. The study of the kinetics of phase separation showed that the demixing rate of the CA polymer solution in acetone and [EMIM]OAc was higher than that for solutions in [EMIM]OAc only. The membranes prepared from the former solution had higher water permeance and better mechanical stability than those prepared from the later solution. Adding acetone as a co-solvent opened the opportunity of fabricating membranes with higher polymer concentrations for higher separation capability and better mechanical properties. © 2016

  3. Carbon nanotube enhanced membrane distillation for online preconcentration of trace pharmaceuticals in polar solvents.

    Science.gov (United States)

    Gethard, Ken; Mitra, Somenath

    2011-06-21

    Carbon nanotube enhanced membrane distillation (MD) is presented as a novel, online analytical preconcentration method for removing polar solvents thereby concentrating the analytes, making this technique an alternate to conventional thermal evaporation. In a carbon nanotube immobilized membrane (CNIM), the CNTs serve as sorbent sites and provide additional pathways for enhanced solvent vapor transport, thus enhancing preconcentration. Enrichment using CNIM doubled compared to membranes without CNTs, while the methanol flux and mass transfer coefficients increased by 61% and 519% respectively. The carbon nanotube enhanced MD process showed excellent precision (RSD of 3-5%), linearity, and the detection limits were in the range of 0.001 to 0.009 mg L(-1) by HPLC analysis.

  4. Determination and correlation of terephthaldialdehyde solubility in (ethanol, isopropanol, ethyl acetate, isopentanol) + N,N-dimethylformamide mixed solvents at temperatures from 273.15 K to 318.15 K

    International Nuclear Information System (INIS)

    Wang, Jian; Xu, Anli; Xu, Renji

    2017-01-01

    Highlights: • Solubility of terephthaldialdehyde in four binary mixed solvents were measured. • The obtained solubility data were correlated and calculated via five models. • The standard dissolution enthalpy for the dissolution processes were calculated. - Abstract: In this work, the solubility of terephthaldialdehyde in mono-solvent of ethyl acetate and binary solvent mixtures of (ethanol + N,N-dimethylformamide), (isopropanol + N,N-dimethylformamide), (ethyl acetate + N,N-dimethylformamide) and (isopentanol + N,N-dimethylformamide) were investigated by the isothermal dissolution equilibrium method under 101.1 kPa. This study was carried out at different mass fractions of ethanol, isopropanol, or isopentanol ranging from 0.1 to 0.9; and of ethyl acetate, from 0.1 to 1 at T = (273.15–318.15) K. For the solubility of each solvent mixture studied, the mole fraction solubility of terephthaldialdehyde in mixed solutions increased with increasing temperature and mass fraction of ethanol, isopropanol, ethyl acetate or isopentanol for the four systems of (ethanol + N,N-dimethylformamide), (isopropanol + N,N-dimethylformamide), (ethyl acetate + N,N-dimethylformamide) and (isopentanol + N,N-dimethylformamide). At the same temperature and mass fraction of ethanol, isopropanol, ethyl acetate or isopentanol, the mole fraction solubility of terephthaldialdehyde in (ethyl acetate + N,N-dimethylformamide) was greater than that in the other three systems. In addition, five models (Jouyban–Acree model, van’t Hoff–Acree model, modified Apelblat–Acree model, Sun model and CNIBS/R-K model) were employed to correlate the experimental solubility data. The Jouyban–Acree model gave best representation of the experimental solubility values. Furthermore, the standard molar enthalpy of terephthaldialdehyde dissolving in these mixed solvents (Δ sol H o ) was calculated in this work, and the results showed that the dissolution process was endothermic.

  5. Use of uranyl nitrate as a shift reagent in polar and inert solvents

    International Nuclear Information System (INIS)

    Nosov, B.P.

    1988-01-01

    This work examines the effect of uranyl nitrate as a shift reagent on the PMR spectra of different organic molecules in polar and inert solvents. In order to identify the coordination site of the uranyl ion, its effect on the spectra of amino acids and acetic or propionic acids in water was compared. It was found that the induced shifts of the protons in the corresponding positions of the different acids after addition of uranyl nitrate agreed to within ±0.01 ppm. When nitrogenous bases such as diethylamine and pyridine were added to solutions of the carboxylic acids with uranyl nitrate, an increase in the induced chemical shift of the resonance signals occurred. These facts suggest the coordination of the uranyl ion with the carboxyl oxygen both for acetic and propionic acids and for amino acids. The authors established that the addition of uranyl nitrate to solutions of organic compounds caused different downfield shifts of the resonance signals from the protons. In polar solvents shifts induced by uranyl nitrate in the PMR spectra of carboxylic acids occur only when nitrogenous bases are added

  6. Variational calculation of quantum mechanical/molecular mechanical free energy with electronic polarization of solvent

    Science.gov (United States)

    Nakano, Hiroshi; Yamamoto, Takeshi

    2012-04-01

    Quantum mechanical/molecular mechanical (QM/MM) free energy calculation presents a significant challenge due to an excessive number of QM calculations. A useful approach for reducing the computational cost is that based on the mean field approximation to the QM subsystem. Here, we describe such a mean-field QM/MM theory for electronically polarizable systems by starting from the Hartree product ansatz for the total system and invoking a variational principle of free energy. The MM part is then recast to a classical polarizable model by introducing the charge response kernel. Numerical test shows that the potential of mean force (PMF) thus obtained agrees quantitatively with that obtained from a direct QM/MM calculation, indicating the utility of self-consistent mean-field approximation. Next, we apply the obtained method to prototypical reactions in several qualitatively different solvents and make a systematic comparison of polarization effects. The results show that in aqueous solution the PMF does not depend very much on the water models employed, while in nonaqueous solutions the PMF is significantly affected by explicit polarization. For example, the free energy barrier for a phosphoryl dissociation reaction in acetone and cyclohexane is found to increase by more than 10 kcal/mol when switching the solvent model from an empirical to explicitly polarizable one. The reason for this is discussed based on the parametrization of empirical nonpolarizable models.

  7. Photoisomerization of ethyl ferulate: A solution phase transient absorption study

    Science.gov (United States)

    Horbury, Michael D.; Baker, Lewis A.; Rodrigues, Natércia D. N.; Quan, Wen-Dong; Stavros, Vasilios G.

    2017-04-01

    Ethyl ferulate (ethyl 4-hydroxy-3-methoxycinnamate) is currently used as a sunscreening agent in commercial sunscreen blends. Recent time-resolved gas-phase measurements have demonstrated that it possesses long-lived (>ns) electronic excited states, counterintuitive to what one might anticipate for an effective sunscreening agent. In the present work, the photodynamics of ethyl ferulate in cyclohexane, are explored using time-resolved transient electronic absorption spectroscopy, upon photoexcitation to the 11ππ∗ and 21ππ∗ states. We demonstrate that ethyl ferulate undergoes efficient non-radiative decay to repopulate the electronic ground state, mediated by trans-cis isomerization. These results strongly suggest that even mild perturbations induced by a non-polar solvent, as may be found in a closer-to-market sunscreen blend, may contribute to our understanding of ethyl ferulate's role as a sunscreening agent.

  8. Switchable polarity solvent for liquid phase microextraction of Cd(II) as pyrrolidinedithiocarbamate chelates from environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Erkan, E-mail: kimyager_erkan@hotmail.com; Soylak, Mustafa, E-mail: soylak@erciyes.edu.tr

    2015-07-30

    A switchable polarity solvent was synthesized from triethylamine (TEA)/water/CO{sub 2} (Dry ice) via proton transfer reaction has been used for the microextraction of cadmium(II) as pyrrolidinedithiocarbamate (APDC) chelate. Cd(II)-APDC chelate was extracted into the switchable polarity solvent drops by adding 2 mL 10 M sodium hydroxide solution. Analytical parameters affecting the complex formation and microextraction efficiency such as pH, amount of ligand, volume of switchable polarity solvent and NaOH, sample volume were optimized. The effects of foreign ions were found tolerably. Under optimum conditions, the detection limit was 0.16 μg L{sup −1} (3Sb/m, n = 7) and the relative standard deviation was 5.4% (n = 7). The method was validated by the analysis of certified reference materials (TMDA-51.3 fortified water, TMDA-53.3 fortified water and SPS-WW2 waste water, 1573a Tomato Leaves and Oriental Basma Tobacco Leaves (INCT-OBTL-5)) and addition/recovery tests. The method was successfully applied to determination of cadmium contents of water, vegetable, fruit and cigarette samples. - Highlights: • Switchable polarity solvent was synthesized from triethylamine (TEA)/water/CO{sub 2}. • The switchable polarity solvent has been used for the microextraction of cadmium(II). • The important factors were optimized. • The method was applied to determination of cadmium in real samples.

  9. Does Synergism in Microscopic Polarity Correlate with Extrema in Macroscopic Properties for Aqueous Mixtures of Dipolar Aprotic Solvents?

    Science.gov (United States)

    Duereh, Alif; Sato, Yoshiyuki; Smith, Richard Lee; Inomata, Hiroshi; Pichierri, Fabio

    2017-06-22

    Aqueous mixtures of dipolar aprotic solvents (acetonitrile, γ-valerolactone, γ-butyrolactone, tetrahydrofuran, 1,4-dioxane, acetone, pyridine, N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, and dimethyl sulfoxide) show synergism in microscopic polarity and extrema in macroscopic viscosity (η) and molar excess enthalpy (H E ) in water-rich compositions that correlate with solvent functional group electrostatic basicity (β 2 H ). Microscopic polarities of aqueous solvent mixtures were estimated by measuring the spectral shift (λ max ) of 4-nitroaniline with UV-vis spectroscopy at 25 °C. Dynamic viscosities (η) and densities were measured for eight aqueous dipolar aprotic mixtures over the full range of compositions at (25 to 45) °C. The λ max , η, and H E values of the aqueous mixtures showed a linear trend with increasing electrostatic basicity of the solvent functional groups that is attributed to the size and strength of the hydration shell of water. Density functional theory (DFT) calculations were performed for 1:3 complexes (solvent: (H 2 O) 3 ) and it was found that aqueous mixtures with high basicity have high binding energies and short hydrogen bonding distances implying that the size and strength of the hydration shell of water is proportional to functional group basicity. Consideration of functional group basicity of dipolar aprotic solvents allows one to relate synergism in microscopic polarity to extrema in macroscopic properties for a wide range of aqueous dipolar aprotic solvent mixtures.

  10. Spectroscopic and excited-state properties of tri-9-anthrylborane I: Solvent polarity effects.

    Science.gov (United States)

    Kitamura, Noboru; Sakuda, Eri

    2005-08-25

    Spectroscopic and excited-state properties of tri-9-anthrylborane (TAB), showing unique absorption and fluorescence characteristics originating from p(boron)-pi(anthryl group) orbital interactions, were studied in 12 solvents. Although the absorption maximum energy (nu(a)) of TAB which appeared at around 21 x 10(3) cm(-1) (band I) was almost independent of the solvent polarity parameter, f(X) (f(X) = (D(s) - 1)/(2D(s) + 1) - (n(2) - 1)/(2n(2) + 1) where D(s) and n represent the static dielectric constant and the refractive index of a solvent, respectively), the fluorescence maximum energy (nu(f)) showed a linear correlation with f(X). The f(X) dependence of the value of nu(a) - nu(f) demonstrated that the change in the dipole moment of TAB upon light excitation was approximately 8.0 D, indicating that absorption band I was ascribed to an intramolecular charge-transfer transition in nature. The excited electron of TAB was thus concluded to localize primarily on the p orbital of the boron atom. Furthermore, it was shown that the fluorescence lifetime and quantum yield of TAB varied from 11.8 to 1.1 ns and from 0.41 to 0.02, respectively, with an increase in f(X). The present results indicated that the nonradiative decay rate constant (k(nr)) of TAB was influenced significantly by f(X). Excited-state decay of TAB was understood by intramolecular back-electron (charge) transfer from the p orbital of the boron atom to the pi orbital of the anthryl group, which was discussed in terms of the energy gap dependence of k(nr). Specific solvent interactions of TAB revealed by the present spectroscopic and photophysical studies are also discussed.

  11. Tipping Point for Expansion of Layered Aluminosilicates in Weakly Polar Solvents: Supercritical CO 2

    Energy Technology Data Exchange (ETDEWEB)

    Schaef, Herbert T. [Pacific Northwest National Laboratory, Richland, Washington 99356, United States; Loganathan, Narasimhan [College; Bowers, Geoffrey M. [Department; Kirkpatrick, R. James [College; Yazaydin, A. Ozgur [College; Department; Burton, Sarah D. [William; Hoyt, David W. [William; Thanthiriwatte, K. Sahan [Department; Dixon, David A. [Department; McGrail, B. Peter [Pacific Northwest National Laboratory, Richland, Washington 99356, United States; Rosso, Kevin M. [Pacific Northwest National Laboratory, Richland, Washington 99356, United States; Ilton, Eugene S. [Pacific Northwest National Laboratory, Richland, Washington 99356, United States; Loring, John S. [Pacific Northwest National Laboratory, Richland, Washington 99356, United States

    2017-10-11

    Layered aluminosilicates play a dominant role in the mechanical and gas storage properties of the subsurface, are used in diverse industrial applications, and serve as model materials for understanding solvent-ion-support systems. Although expansion in the presence of H2O is well known to be systematically correlated with the hydration free energy of the interlayer cation, in environments dominated by non-polar solvents (i.e. CO2), uptake into the interlayer is not well-understood. Using novel high pressure capabilities, we investigated the interaction of super-critical CO2 with Na+-, NH4+-, and Cs+-saturated montmorillonite, comparing results with predictions from molecular dynamics simulations. Despite the known trend in H2O, and that cation solvation energies in CO2 suggest a stronger interaction with Na+, both the NH4+- and Cs+-clays readily absorbed CO2 and expanded while the Na+-clay did not. The apparent inertness of the Na+-clay was not due to kinetics, as experiments seeking a stable expanded state showed that none exists. Molecular dynamics simulations revealed a large endothermicity to CO2 intercalation in the Na+-clay, but little or no energy barrier for the NH4+- and Cs+-clays. Consequently, we have shown for the first time that in the presence of a low dielectric constant gas swelling depends more on the strength of the interaction between interlayer cation and aluminosilicate sheets and less on that with solvent. The finding suggests a distinct regime in layered aluminosilicates swelling behavior triggered by low solvent polarizability, with important implications in geomechanics, storage and retention of volatile gases, and across industrial uses in gelling, decoloring, heterogeneous catalysis, and semi-permeable reactive barriers.

  12. Preparation of planar CH{sub 3}NH{sub 3}PbI{sub 3} thin films with controlled size using 1-ethyl-2-pyrrolidone as solvent

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Qiuyan; Chu, Yixia [Engineering Laboratory of Functional Optoelectronic Crystalline Materials of Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132 (China); Zheng, Xuerong [Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Liu, Zhenya; Liang, Liming [Engineering Laboratory of Functional Optoelectronic Crystalline Materials of Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132 (China); Qi, Jiakun [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Xin [Engineering Laboratory of Functional Optoelectronic Crystalline Materials of Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132 (China); Liu, Gang [School of Chemical Engineering, Hebei University of Technology, Tianjin 300132 (China); Liu, Hui, E-mail: liuhuihebut@163.com [Engineering Laboratory of Functional Optoelectronic Crystalline Materials of Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132 (China); Chen, Hongjian [Engineering Laboratory of Functional Optoelectronic Crystalline Materials of Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132 (China); Liu, Caichi, E-mail: ccliu@hebut.edu.cn [Engineering Laboratory of Functional Optoelectronic Crystalline Materials of Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132 (China)

    2016-06-25

    Recently, planar perovskite solar cells based on CH{sub 3}NH{sub 3}PbI{sub 3} have attracted many researcher's interest due to their unique advantages such as simple cell architecture, easy fabrication and potential multijunction construction comparing to the initial mesoporous structure. However, the preparation of planar perovskite films with high quality is still in challenge. In this paper, we developed a vapor-assisted solution process using a novel and green solvent of 1-Ethyl-2-pyrrolidone (NEP) instead of the traditional N, N-dimethylformamide (DMF) to construct a high-quality perovskite CH{sub 3}NH{sub 3}PbI{sub 3} thin film with pure phase, high compactness, small surface roughness and controlled size. The phase evolution and growth mechanism of the perovskite films are also discussed. Utilizing the NEP of low volatility and moderate boiling point as solvent, we dried the PbI{sub 2}-NEP precursor films at different temperature under vacuum and then obtained PbI{sub 2} thin films with different crystalline degree from amorphous to highly crystalline. The perovskite films with crystal size ranged from hundreds of nanometers to several micrometers can be prepared by reacting the PbI{sub 2} films of different crystalline degree with CH{sub 3}NH{sub 3}I vapor. Moreover, planar-structured solar cells combining the perovskite film with TiO{sub 2} and spiro-OMeTAD as the electron and holes transporting layer achieves a power conversion efficiency of 10.2%. - Highlights: • A novel and green solvent of 1-Ethyl-2-pyrrolidone (NEP) was used to construct high-quality perovskite CH{sub 3}NH{sub 3}PbI{sub 3} thin film. • The CH{sub 3}NH{sub 3}PbI{sub 3} grain with different sizes ranged from hundreds of nanometers to several micrometers can be obtained. • Planar-structured perovskite CH{sub 3}NH{sub 3}PbI{sub 3} solar cells using NEP as solvent achieves a power conversion efficiency of 10.2%.

  13. Performance of an enzymatic packed bed reactor running on babassu oil to yield fatty ethyl esters (FAEE in a solvent-free system

    Directory of Open Access Journals (Sweden)

    Aline Simões

    2015-06-01

    Full Text Available The transesterification reaction of babassu oil with ethanol mediated by Burkholderia cepacia lipase immobilized on SiO2-PVA composite was assessed in a packed bed reactor running in the continuous mode. Experiments were performed in a solvent-free system at 50 °C. The performance of the reactor (14 mm ×210 mm was evaluated using babassu oil and ethanol at two molar ratios of 1:7 and 1:12, respectively, and operational limits in terms of substrate flow rate were determined. The system’s performance was quantified for different flow rates corresponding to space times between 7 and 13 h. Under each condition, the impact of the space time on the ethyl esters formation, the transesterification yield and productivity were determined. The oil to ethanol molar ratio was found as a critical parameter in the conversion of babassu oil into the correspondent ethyl esters. The highest transesterification yield of 96.0 ± 0.9% and productivity of 41.1 ± 1.6 mgester gcatalyst-1h-1 were achieved at the oil to ethanol molar ratio of 1:12 and for space times equal or higher than 11 h. Moreover, the immobilized lipase was found stable with respect to its catalytic characteristics, exhibiting a half-life of 32 d.

  14. Managing the solvent water polarization to obtain improved NMR spectra of large molecular structures

    International Nuclear Information System (INIS)

    Hiller, Sebastian; Wider, Gerhard; Etezady-Esfarjani, Touraj; Horst, Reto; Wuethrich, Kurt

    2005-01-01

    In large molecular structures, the magnetization of all hydrogen atoms in the solute is strongly coupled to the water magnetization through chemical exchange between solvent water and labile protons of macromolecular components, and through dipole-dipole interactions and the associated 'spin diffusion' due to slow molecular tumbling. In NMR experiments with such systems, the extent of the water polarization is thus of utmost importance. This paper presents a formalism that describes the propagation of the water polarization during the course of different NMR experiments, and then compares the results of model calculations for optimized water polarization with experimental data. It thus demonstrates that NMR spectra of large molecular structures can be improved with the use of paramagnetic spin relaxation agents which selectively enhance the relaxation of water protons, so that a substantial gain in signal-to-noise can be achieved. The presently proposed use of a relaxation agent can also replace the water flip-back pulses when working with structures larger than about 30 kDa. This may be a valid alternative in situations where flip-back pulses are difficult to introduce into the overall experimental scheme, or where they would interfere with other requirements of the NMR experiment

  15. Synthesis and investigation of solvent effects on the ultraviolet absorption spectra of 5-substituted-4-methyl-3-cyano-6-hydroxy-2-pyridones

    Directory of Open Access Journals (Sweden)

    NATASA V. VALENTIC

    2001-08-01

    Full Text Available A number of 5-substituted-4-methyl-3-cyano-6-hydroxy-2-pyridones from cyanoacetamide and the corresponding alkyl ethyl acetoacetates were synthesized according to modified literature procedures. The alkyl ethyl acetoacetates were obtained by the reaction of C-alkylation of ethyl acetoacetate. An investigation of the reaction conditions for the synthesis of 4-methyl-3-cyano-6-hydroxy-2-pyridone from cyanoacetamide and ethyl acetoacetate in eight different solvents was also performed. The ultraviolet absorption spectra of synthesized pyridones were measured in nine different solvents in the range 200–400 nm. The effects of solvent polarity and hydrogen bonding on the absorption spectra are interpreted by means of linear solvation energy relationships using a general equation of the form n = n0 + sp* + aa + bb, where p* is a measure of the solvent polarity, a is the scale of the solvent hydrogen bond donor acidities and b is the scale of the solvent hydrogen bond acceptor basicities.

  16. Thermodynamic constrains for life based on non-aqueous polar solvents on free-floating planets.

    Science.gov (United States)

    Badescu, Viorel

    2011-02-01

    Free-floating planets (FFPs) might originate either around a star or in solitary fashion. These bodies can retain molecular gases atmospheres which, upon cooling, have basal pressures of tens of bars or more. Pressure-induced opacity of these gases prevents such a body from eliminating its internal radioactive heat and its surface temperature can exceed for a long term the melting temperature of a life-supporting solvent. In this paper two non-aqueous but still polar solvents are considered: hydrogen sulfide and ammonia. Thermodynamic requirements to be fulfilled by a hypothetic gas constituent of a life-supporting FFP's atmosphere are studied. The three gases analyzed here (nitrogen, methane and ethane) are candidates. We show that bodies with ammonia oceans are possible in interstellar space. This may happen on FFPs of (significantly) smaller or larger mass than the Earth. Generally, in case of FFP smaller in size than the Earth, the atmosphere exhibits a convective layer near the surface and a radiative layer at higher altitudes while the atmosphere of FFPs larger in size than Earth does not exhibit a convective layer. The atmosphere mass of a life-hosting FFP of Earth size is two or three orders of magnitude larger than the mass of Earth atmosphere. For FFPs larger than the Earth and specific values of surface pressure and temperature, there are conditions for condensation (in the ethane atmosphere). Some arguments induce the conclusion than the associated surface pressures and temperatures should be treated with caution as appropriate life conditions.

  17. Non-covalent synthesis of calix[4]arene-capped porphyrins in polar solvents via ionic interactions

    NARCIS (Netherlands)

    Fiammengo, R.; Timmerman, P.; Huskens, Jurriaan; Versluis, Kees; Heck, Albert J.R.; Reinhoudt, David

    2002-01-01

    Non-covalent synthesis of calix[4]arene capped porphyrins can be achieved in polar solvents (up to 45% molar fraction of water) via ionic interaction. Thus tetracationic meso-tetrakis(N-alkylpyridinium-3-yl) porphyrins 1a–d and tetra anionic 25,26,27,28-tetrakis(2-ethoxyethoxy)-calix[4]arene

  18. Direct Conversion of Carbohydrates into Ethyl Levulinate with Potassium Phosphotungstate as an Efficient Catalyst

    Directory of Open Access Journals (Sweden)

    Shiqiang Zhao

    2015-11-01

    Full Text Available A series of metal-modified phosphotungstates were prepared and performed for direct synthesis of ethyl levulinate from fructose in ethanol. Considering the cost of catalysts, catalytic activity of catalysts, and easy separation of catalysts together, K-HPW-1 was chosen as the most suitable catalyst for synthesis of ethyl levulinate from fructose. A high ethyl levulinate yield of 64.6 mol% was obtained at 150 °C within 2 h in ethanol. The introduction of low polar toluene as a co-solvent improved the yield of ethyl levulinate to 68.7 mol%. The recovered catalyst remained high activity with the yield of ethyl levulinate converted from fructose above 50 mol% after being used five times. Moreover, the generality of the catalyst was further demonstrated by glucose, sucrose, inulin, and cellulose with ethyl levulinate yielding 14.5, 35.4, 52.3, and 14.8 mol%, respectively.

  19. Nitrobenzene anti-parallel dimer formation in non-polar solvents

    Directory of Open Access Journals (Sweden)

    Toshiyuki Shikata

    2014-06-01

    Full Text Available We investigated the dielectric and depolarized Rayleigh scattering behaviors of nitrobenzene (NO2-Bz, which is a benzene mono-substituted with a planar molecular frame bearing the large electric dipole moment 4.0 D, in non-polar solvents solutions, such as tetrachloromethane and benzene, at up to 3 THz for the dielectric measurements and 8 THz for the scattering experiments at 20 °C. The dielectric relaxation strength of the system was substantially smaller than the proportionality to the concentration in a concentrated regime and showed a Kirkwood correlation factor markedly lower than unity; gK ∼ 0.65. This observation revealed that NO2-Bz has a tendency to form dimers, (NO2-Bz2, in anti-parallel configurations for the dipole moment with increasing concentration of the two solvents. Both the dielectric and scattering data exhibited fast and slow Debye-type relaxation modes with the characteristic time constants ∼7 and ∼50 ps in a concentrated regime (∼15 and ∼30 ps in a dilute regime, respectively. The fast mode was simply attributed to the rotational motion of the (monomeric NO2-Bz. However, the magnitude of the slow mode was proportional to the square of the concentration in the dilute regime; thus, the mode was assigned to the anti-parallel dimer, (NO2-Bz2, dissociation process, and the slow relaxation time was attributed to the anti-parallel dimer lifetime. The concentration dependencies of both the dielectric and scattering data show that the NO2-Bz molecular processes are controlled through a chemical equilibrium between monomers and anti-parallel dimers, 2NO2-Bz ↔ (NO2-Bz2, due to a strong dipole-dipole interaction between nitro groups.

  20. Sugar-Based Polyamides: Self-Organization in Strong Polar Organic Solvents.

    Science.gov (United States)

    Rosu, Cornelia; Russo, Paul S; Daly, William H; Cueto, Rafael; Pople, John A; Laine, Roger A; Negulescu, Ioan I

    2015-09-14

    Periodic patterns resembling spirals were observed to form spontaneously upon unassisted cooling of d-glucaric acid- and d-galactaric acid-based polyamide solutions in N-methyl-N-morpholine oxide (NMMO) monohydrate. Similar observations were made in d-galactaric acid-based polyamide/ionic liquid (IL) solutions. The morphologies were investigated by optical, polarized light and confocal microscopy assays to reveal pattern details. Differential scanning calorimetry was used to monitor solution thermal behavior. Small- and wide-angle X-ray scattering data reflected the complex and heterogeneous nature of the self-organized patterns. Factors such as concentration and temperature were found to influence spiral dimensions and geometry. The distance between rings followed a first-order exponential decay as a function of polymer concentration. Fourier-Transform Infrared Microspectroscopy analysis of spirals pointed to H-bonding between the solvent and the pendant hydroxyl groups of the glucose units from the polymer backbone. Tests on self-organization into spirals of ketal-protected d-galactaric acid polyamides in NMMO monohydrate confirmed the importance of the monosaccharide's pendant free hydroxyl groups on the formation of these patterns. Rheology performed on d-galactaric-based polyamides at high concentration in NMMO monohydrate solution revealed the optimum conditions necessary to process these materials as fibers by spinning. The self-organization of these sugar-based polyamides mimics certain biological materials.

  1. Amino-functionalized (meth)acryl polymers by use of a solvent-polarity sensitive protecting group (Br-t-BOC).

    Science.gov (United States)

    Ritter, Helmut; Tabatabai, Monir; Herrmann, Markus

    2016-01-01

    We describe the synthesis of bromo-tert-butyloxycarbonyl (Br-t-BOC)-amino-protected monomers 2-((1-bromo-2-methylpropan-2-yl)oxycarbonylamino)ethyl (meth)acrylate 3a,b. For this purpose, 2-isocyanatoethyl (meth)acrylate 1a,b was reacted with 1-bromo-2-methylpropan-2-ol (2a). The free radical polymerization of (Br-t-BOC)-aminoethyl (meth)acrylates 3a,b yielded poly((Br-t-BOC)-aminoethyl (meth)acrylate) 6a,b bearing protected amino side groups. The subsequent solvolysis of the Br-t-BOC function led to the new polymers poly(2-aminoethyl (meth)acrylate) 8a,b with protonated free amino groups. The monomers and the resulting polymers were thoroughly characterized by (1)H NMR, IR, GPC and DSC methods. The kinetics of the deprotection step was followed by (1)H NMR spectroscopy. The solvent polarity and neighboring group effects on the kinetics of deprotection are discussed.

  2. SET-LRP in the Neoteric Ethyl Lactate Alcohol.

    Science.gov (United States)

    Moreno, Adrian; Garcia, Diego; Galià, Marina; Ronda, Joan C; Cádiz, Virginia; Lligadas, Gerard; Percec, Virgil

    2017-10-09

    Ethyl lactate (EtLa), a green and safe agrochemical solvent, is gifted with some properties that make it a good candidate for SET-LRP. It dissolves CuBr 2 , mediates an efficient disproportionation of CuBr in the presence of tris(2-(dimethylamino)ethyl)amine (Me 6 -TREN), and is capable to dissolve both aqueous (polar) and hydrocarbon (nonpolar) soluble monomers and polymers. Here, we report that EtLa is an excellent solvent for the Cu(0) wire-catalyzed SET-LRP to produce both hydrophilic and hydrophobic polyacrylates that exhibit precise chain end functionality. These results will expand the table of SET-LRP solvents with a new green member of biological origin that is also biodegradable and, therefore, are expected to contribute to continue expanding the use of SET-LRP in the field of biomacromolecules, bioconjugates, and other biology and medicine related disciplines.

  3. Isolation Of Compounds Of Steroids Teripang Gamat (Stichopus variegatus With Various Types Of Solvents

    Directory of Open Access Journals (Sweden)

    Meydia Meydia

    2016-12-01

    Full Text Available Sea cucumber is one of the fisheries commodity that has an important economic value. Generally istraded in dried form (beche-de-mer. One of thebioactive substances contained in sea cucumber is steroidcompounds that serves as an aphrodisiac and sex reversal. The purpose of this study was to extract thesteroid of the gamma sea cucumber by using three types of solvents (methanol, ethyl acetate and hexaneand get the best solvent in producing the highest yield of the steroids. The study revealed that steroid ofgamma sea cucumber (Stichopus variegatus dissolved completely ethyl acetate (semi-polar solvent duringthe first phase, second phase and the third phase of extraction. In the methanol (polar solvent steroids onlydissolved in the first extraction phase, while using the hexane (non polar solvent steroid was undetectable.Fractionation by thin layer chromatography was obtained two fractions that identified as cholesterol (Rf =0.96 and testosterone (Rf = 0.91.

  4. Temperature dependence measurements and structural characterization of trimethyl ammonium ionic liquids with a highly polar solvent.

    Science.gov (United States)

    Attri, Pankaj; Venkatesu, Pannuru; Hofman, T

    2011-08-25

    We report the synthesis and characterization of a series of an ammonium ionic liquids (ILs) containing acetate, dihydrogen phosphate, and hydrogen sulfate anions with a common cation. To characterize the thermophysical properties of these newly synthesized ILs with the highly polar solvent N,N-dimethylformamide (DMF), precise measurements such as densities (ρ) and ultrasonic sound velocities (u) over the whole composition range have been performed at atmospheric pressure and over wide temperature ranges (25-50 °C). The excess molar volume (V(E)) and the deviation in isentropic compressibilities (Δκ(s)) were predicted using these temperature dependence properties as a function of the concentration of ILs. The Redlich-Kister polynomial was used to correlate the results. The ILs investigated in the present study included trimethylammonium acetate [(CH(3))(3)NH][CH(3)COO] (TMAA), trimethylammonium dihydrogen phosphate [(CH(3))(3)NH][H(2)PO(4)] (TMAP), and trimethylammonium hydrogen sulfate [(CH(3))(3)NH][HSO(4)] (TMAS). The intermolecular interactions and structural effects were analyzed on the basis of the measured and the derived properties. In addition, the hydrogen bonding between ILs and DMF has been demonstrated using semiempirical calculations with help of Hyperchem 7. A qualitative analysis of the results is discussed in terms of the ion-dipole, ion-pair interactions, and hydrogen bonding between ILs and DMF molecules and their structural factors. The influence of the anion of the protic IL, namely, acetate (CH(3)COO), dihydrogen phosphate (H(2)PO(4)), and hydrogen sulfate (HSO(4)), on the thermophysical properties is also provided. © 2011 American Chemical Society

  5. Thermodynamic models for determination of the solubility of 4-(4-aminophenyl)-3-morpholinone in different pure solvents and (1,4-dioxane + ethyl acetate) binary mixtures with temperatures from (278.15 to 333.15) K

    International Nuclear Information System (INIS)

    Yang, Wenge; Fan, Shimin; Guo, Qirun; Hao, Jianfeng; Li, Hongjie; Yang, Shouhai; Zhao, Wangdan; Zhang, Jian; Hu, Yonghong

    2016-01-01

    Highlights: • The solubility in pure solvents and in binary mixtures was investigated. • The modified Apelblat equation and other models were used for researching the solubility. • The Gibbs energy, enthalpy and entropy were calculated by the van’t Hoff analysis. - Abstract: A gravimetric method was used to measure the solubility of the 4-(4-Aminophenyl)-3-morpholinone under atmospheric pressure in 1,4-dioxane, methanol, tetrahydrofuran, ethanol, ethyl acetate, n-propanol as well as in the (1,4-dioxane + ethyl acetate) binary mixtures from T = (278.15 to 333.15) K. The experiment results have proved that rising temperature leads to increased solubility of the 4-(4-aminophenyl)-3-morpholinone in all selected solvents. The (solid + liquid) equilibrium data in six pure solvents and binary mixtures were correlated with four equations, including the modified Apelblat equation, the Buchowski−Ksiazaczak λh equation, CNIBS/R–K equation and the Jouyban–Acree equation. During the research, the computational values were in good agreement with the experimental results according to the calculations based on all selected equations, and the modified Apelblat equation stood out to be the higher suitable with the higher accuracy. The thermodynamic properties of the solution process, including the Gibbs energy, enthalpy, and entropy were calculated by the van’t Hoff analysis. All values of %ξ H are ⩾60.35% indicated that in each studied solvent the dissolution process of 4-(4-aminophenyl)-3-morpholinone is endothermic.

  6. Cooling crystallization of Indomethacin from different organic solvents

    DEFF Research Database (Denmark)

    Malwade, Chandrakant Ramkrishna; Qu, Haiyan

    , 25, 35, and 45 °C. The solvents with varying polarities (ethanol, methanol, ethyl acetate, acetone, acetonitrile, and dichloromethane) were used for solubility measurement. Maximum solubility of IMC was observed in acetone, while acetonitrile showed the lowest solubility. Solid phase analysis...... of excess solute with XRPD and Raman spectroscopy confirmed formation of IMC solvate in acetone, methanol and dichloromethane at 15 °C. Based on solubility of IMC, the solvents ethanol, ethyl acetate, acetone, and dichloromethane were selected for crystallization experiments. Nucleation kinetics of IMC...

  7. Solvent polarity and oxygen sensitivity, rather than viscosity, determine lifetimes of biaryl-sensitised terbium luminescence.

    Science.gov (United States)

    Walter, Edward R H; Williams, J A Gareth; Parker, David

    2017-12-14

    In a macrocyclic terbium complex incorporating a biaryl sensitiser, the observed variation of emission lifetime is shown to be determined by the solubility of oxygen in the solvent system and the relative energy of the chromophore excited state, rather than any dependence on solvent viscosity.

  8. Lyotropic Mesomorphisms of a Lamellar Liquid Crystalline Phase in Non-hydrous Condition: A Phospholipid Hydrated by Different Polar Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Kyu [Korea Kolmar Corporation, Yongi (Korea, Republic of); Jeong, Kwan Young [Chung-buk University, Cheongju (Korea, Republic of)

    2010-05-15

    The lyotropic mesomorphism of lamellar liquid crystalline phase was examined by observing the swelling behavior of Distearoylphosphatidylcholine(DSPC) in glycerin and panthenol without water. The lyotropic mesomorphism was examined by using DSC, XRDs and Cryo-SEM. Increase of two polar solvents under non-hydrous condition showed distinctive differences in the lyotropic mesomorphism from forming different anisotropic structures with DSPC. Glycerin did not affect to the crystalline region of lamellar phase, whereas typical swelling mesomorphism was shown in the noncrystalline region. In contrast, panthenol showed some effect on the crystalline region, but common swelling mesomorphism was found in the non-crystalline region. In this case, the isopropyl and propyl groups in panthenol were the main factor to affect to the lipophilic domain in the crystalline region of lamellar phase. Also, it was found that the formation of well-arranged lamellar structure only by introducing glycerin and panthenol as a solvent without water, was possible. These results were confirmed by examination of the swelling mesomorphism of liquid crystal membrane triggered by introducing the two polar solvents.

  9. Influence of solvent polarization and non-uniform ion size on electrostatic properties between charged surfaces in an electrolyte solution

    Science.gov (United States)

    Sin, Jun-Sik

    2017-12-01

    In this paper, we study electrostatic properties between two similar or oppositely charged surfaces immersed in an electrolyte solution by using the mean-field approach accounting for solvent polarization and non-uniform size effects. Applying a free energy formalism accounting for unequal ion sizes and orientational ordering of water dipoles, we derive coupled and self-consistent equations to calculate electrostatic properties between charged surfaces. Electrostatic properties for similarly charged surfaces depend on the counterion size but not on the coion size. Moreover, electrostatic potential and osmotic pressure between similarly charged surfaces are found to be increased with increasing counterion size. On the other hand, the corresponding ones between oppositely charged surfaces are related to both sizes of positive and negative ions. For oppositely charged surfaces, the electrostatic potential, number density of solvent molecules, and relative permittivity of an electrolyte having unequal ion sizes are not symmetric about the centerline between the charged surfaces. For either case, the consideration of solvent polarization results in a decrease in the electrostatic potential and the osmotic pressure compared to the case without the effect.

  10. Solvent Dependence of (14)N Nuclear Magnetic Resonance Chemical Shielding Constants as a Test of the Accuracy of the Computed Polarization of Solute Electron Densities by the Solvent.

    Science.gov (United States)

    Ribeiro, Raphael F; Marenich, Aleksandr V; Cramer, Christopher J; Truhlar, Donald G

    2009-09-08

    Although continuum solvation models have now been shown to provide good quantitative accuracy for calculating free energies of solvation, questions remain about the accuracy of the perturbed solute electron densities and properties computed from them. Here we examine those questions by applying the SM8, SM8AD, SMD, and IEF-PCM continuum solvation models in combination with the M06-L density functional to compute the (14)N magnetic resonance nuclear shieldings of CH3CN, CH3NO2, CH3NCS, and CH3ONO2 in multiple solvents, and we analyze the dependence of the chemical shifts on solvent dielectric constant. We examine the dependence of the computed chemical shifts on the definition of the molecular cavity (both united-atom models and models based on superposed individual atomic spheres) and three kinds of treatments of the electrostatics, namely the generalized Born approximation with the Coulomb field approximation, the generalized Born model with asymmetric descreening, and models based on approximate numerical solution schemes for the nonhomogeneous Poisson equation. Our most systematic analyses are based on the computation of relative (14)N chemical shifts in a series of solvents, and we compare calculated shielding constants relative to those in CCl4 for various solvation models and density functionals. While differences in the overall results are found to be reasonably small for different solvation models and functionals, the SMx models SM8, and SM8AD, using the same cavity definitions (which for these models means the same atomic radii) as those employed for the calculation of free energies of solvation, exhibit the best agreement with experiment for every functional tested. This suggests that in addition to predicting accurate free energies of solvation, the SM8 and SM8AD generalized Born models also describe the solute polarization in a manner reasonably consistent with experimental (14)N nuclear magnetic resonance spectroscopy. Models based on the

  11. Role of Solvent Polarity and Hydrogen-Bonding on Excited-State Fluorescence of 3-[(E)-{4-[Dimethylamino]benzylidene}amino]-2-naphthoic Acid (DMAMN): Isomerization vs Rotomerization.

    Science.gov (United States)

    Al-Ansari, Ibrahim Ahmed Z

    2018-02-22

    The present experimental and theoretical study on a new chromophore DMAMN of the type push-π-pull (push = dimethylaniline, π = imine, pull = 2-naphthoic acid), allows understanding of the mechanism by which the molecular conformational undergoes isomerization/rotomerization following electronic excitation. The steady-state fluorescence spectra of this compound, carried out in solvents of different polarities and proticities, showed significant changes in both the shape and peak positions. The wavelength and intensity change depend on the polarity and hydrogen-bonding environment. In highly polar solvents, the emission is weak and red-shifted compared to that for cyclohexane, but it is more red-shifted in moderate aprotic polar solvents. In hydroxyl solvents, a new weak low-energy emission band appears at ∼525 nm, attributed to the intermolecularly H-bonded open conformer. On the basis of the generated potential energy landscapes of the ground state and low-lying excited state in the gas phase and solution, we found that selective photon absorption, brings this molecule to a "bright" state, from which N═C isomerization Z → E, takes place. This isomerization in gas-phase and low-polarity solvents leads to two minima with a barrier, whereas in highly polar-protic media, it gives one minimum on the S 1 surface with low ΔE S1/T1 (0.17 eV), facilitating deactivation via ISC.

  12. Organic high ionic strength aqueous two-phase solvent system series for separation of ultra-polar compounds by spiral high-speed counter-current chromatography

    Science.gov (United States)

    Zeng, Yun; Liu, Gang; Ma, Ying; Chen, Xiaoyuan; Ito, Yoichiro

    2011-01-01

    Existing two-phase solvent systems for high-speed countercurrent chromatography cover the separation of hydrophobic to moderately polar compounds, but often fail to provide suitable partition coefficient values for highly polar compounds such as sulfonic acids, catecholamines and zwitter ions. The present paper introduces a new solvent series which can be applied for the separation of these polar compounds. It is composed of 1-butanol, ethanol, saturated ammonium sulfate and water at various volume ratios and consists of a series of 10 steps which are arranged according to the polarity of the solvent system so that the two-phase solvent system with suitable K values for the target compound(s) can be found in a few steps. Each solvent system gives proper volume ratio and high density difference between the two phases to provide a satisfactory level of retention of the stationary phase in the spiral column assembly. The method is validated by partition coefficient measurement of four typical polar compounds including methyl green (basic dye), tartrazine (sulfonic acid), tyrosine (zwitter ion) and epinephrine (a catecholamine), all of which show low partition coefficient values in the polar 1-butanol-water system. The capability of the method is demonstrated by separation of three catecholamines. PMID:22033108

  13. Fluorescence study of arene probe microenvironment in the intraparticle void volume of zeolites interfaced with bathing polar solvents.

    Science.gov (United States)

    Ellison, Eric H; Moodley, Deshi; Hime, Joseph

    2006-03-16

    Fluorescence methodologies have been utilized to examine micropolarity, intramolecular motion, and singlet quenching in the intraparticle void volume of zeolites X, Y, and ultrastable Y (USY) interfaced with bathing polar solvents. Micropolarity was assessed from the 3-to-1 band ratio (III/I) of the fluorescence spectrum of pyrene (PY) and from lambda(max) of the fluorescence spectrum of 1-pyrenecarboxaldehyde (1-PCA). In zeolites bathed in anhydrous solvents, both PY and 1-PCA reported increased micropolarity according to the trend USY nitrocompounds dissolved in solvents bathing the zeolite was examined by a time-resolved approach. For all of the quenchers and solvents studied, quenching was more efficient in USY compared to NaX and NaY. Interestingly, the rate of O2 quenching in USY-MeOH was only 12 times lower than that in bulk MeOH. In contrast, in NaY-MeOH and NaX-MeOH the rate of O2 quenching was too low to be measured. The rate constants in these systems were therefore taken as the rate constant for diffusion-controlled quenching of trapped electrons measured previously. These values were 600 times and 10(5) times lower than the rate of fluorescence quenching in USY-MeOH, respectively. The O2 quenching studies show that dispersive interactions of polar solvents with the cavity walls dominate in USY because of the hydrophobic nature of the USY surface. In NaX and NaY, stronger ion-dipole and hydrogen bonding interactions dominate and lead to more restricted access and lowered quenching efficiency. Perrin (or static) quenching of pyrene fluorescence was also examined to infer the concentration of nitromethane (NM) in the void volume of NaX and NaY bathed in MeOH, ACN, or H2O. The results indicate that access of NM to the interior of NaY is more inhibited in ACN compared to MeOH, presumably because of the higher dipole moment of ACN and its resulting stronger association with the zeolite surface. At similar levels of static quenching equated to a similar NM

  14. UV-Vis spectrophotometric studies of self-oxidation/dissociation of quaternary ammonium permanganates (QAP) - impact of solvent polarity

    Science.gov (United States)

    Bank, Suraj Prakash; Guru, Partha Sarathi; Dash, Sukalyan

    2015-05-01

    Self-oxidation/dissociation of some quaternary ammonium permanganates (QAPs), such as cetyltrimethylammonium permanganate (CTAP) and tetrabutylammonium permanganate (TBAP), have been studied spectrophotometrically in six different organic solvent media of different polarities wherein the compounds show good solubility and stability. The optical densities of the substrates at zero time (ODo) and first-order rate constants of dissociation (k1) have been determined from their successive scanning for 40 min. At comparable experimental conditions, absorption capabilities of the substrates are compared from the ODo values in various organic media; the stability of the solutions is compared from the successive scan spectra in those media. The ODo values and the k1 values have been plotted against some solvent parameters to understand their effects on the absorbance and reactivity of the QAPs. These data are also subjected to multiple regression analysis to explain the influence of various solvent parameters on the ion-pairing properties of the substrates, thus elucidating their effects on the process of self-oxidation/dissociation of the substrates.

  15. Explaining level inversion of the La and Lb States of indole and indole derivatives in polar solvents.

    Science.gov (United States)

    Brisker-Klaiman, Daria; Dreuw, Andreas

    2015-06-08

    Quantum chemical methods are used to study the solvent effects on the spectra of indole and a series of methyl-substituted indoles. We focus on the low-lying L(a) and L(b) states and study their interplay. We find that the solvent mainly affects emission from the L(a) state, by stabilizing its energy in its excited-state geometry. The stabilization of the L(a) state increases with increasing solvent polarity, which accounts for the large fluorescence shift observed in indoles and leads to an inversion in the nature of the lowest emitting state, from L(b) in vacuum to L(a) in water. To the best of our knowledge, this is the first theoretical evidence for level inversion done for a series of indoles. The underlying mechanism of level inversion is analyzed in detail. The usual interpretation of level inversion in terms of their static dipole moment is criticized and an improved predictive measurement is suggested. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Novel Paradigm Supercapacitors V: Significance of Organic Polar Solvents and Salt Identities

    Science.gov (United States)

    2017-06-01

    confident that we have positively contributed to the literature. Dr. Luhrs, thank you for ensuring my work was centered on sound engineering principles...for testing they were immediately transferred from the vacuum to the non-aqueous solvent to minimize the absorption of atmospheric moisture into the

  17. Tipping Point for Expansion of Layered Aluminosilicates in Weakly Polar Solvents: Supercritical CO2.

    Science.gov (United States)

    Schaef, Herbert T; Loganathan, Narasimhan; Bowers, Geoffrey M; Kirkpatrick, R James; Yazaydin, A Ozgur; Burton, Sarah D; Hoyt, David W; Thanthiriwatte, K Sahan; Dixon, David A; McGrail, B Peter; Rosso, Kevin M; Ilton, Eugene S; Loring, John S

    2017-10-25

    Layered aluminosilicates play a dominant role in the mechanical and gas storage properties of the subsurface, are used in diverse industrial applications, and serve as model materials for understanding solvent-ion-support systems. Although expansion in the presence of H 2 O is well-known to be systematically correlated with the hydration free energy of the interlayer cation, particularly in environments dominated by nonpolar solvents (i.e., CO 2 ), uptake into the interlayer is not well-understood. Using novel high-pressure capabilities, we investigated the interaction of dry supercritical CO 2 with Na-, NH 4 -, and Cs-saturated montmorillonite, comparing results with predictions from molecular dynamics simulations. Despite the known trend in H 2 O and that cation solvation energies in CO 2 suggest a stronger interaction with Na, both the NH 4 - and Cs-clays readily absorbed CO 2 and expanded, while the Na-clay did not. The apparent inertness of the Na-clay was not due to kinetics, as experiments seeking a stable expanded state showed that none exists. Molecular dynamics simulations revealed a large endothermicity to CO 2 intercalation in the Na-clay but little or no energy barrier for the NH 4 - and Cs-clays. Indeed, the combination of experiment and theory clearly demonstrate that CO 2 intercalation of Na-montmorillonite clays is prohibited in the absence of H 2 O. Consequently, we have shown for the first time that in the presence of a low dielectric constant, gas swelling depends more on the strength of the interaction between the interlayer cation and aluminosilicate sheets and less on that with solvent. The finding suggests a distinct regime in layered aluminosilicate swelling behavior triggered by low solvent polarizability, with important implications in geomechanics, storage, and retention of volatile gases, and across industrial uses in gelling, decoloring, heterogeneous catalysis, and semipermeable reactive barriers.

  18. Synthesis of sol–gel silica particles in reverse micelles with mixed-solvent polar cores: tailoring nanoreactor structure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Bürglová, Kristýna; Hlaváč, Jan [Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry (Czech Republic); Bartlett, John R., E-mail: jbartlett@usc.edu.au [University of the Sunshine Coast, Faculty of Science, Health, Education and Engineering (Australia)

    2015-07-15

    In this paper, we describe a new approach for producing metal oxide nano- and microparticles via sol–gel processing in confined media (sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles), in which the chemical and physical properties of the polar aqueous core of the reverse micelles are modulated by the inclusion of a second polar co-solvent. The co-solvents were selected for their capacity to solubilise compounds with low water solubility and included dimethylsulfoxide, dimethylformamide, ethylene glycol, n-propanol, dimethylacetamide and N-methylpyrrolidone. A broad range of processing conditions across the sodium bis(2-ethylhexyl)sulfosuccinate/cyclohexane/water phase diagram were identified that are suitable for preparing particles with dimensions <50 to >500 nm. In contrast, only a relatively narrow range of processing conditions were suitable for preparing such particles in the absence of the co-solvents, highlighting the role of the co-solvent in modulating the properties of the polar core of the reverse micelles. A mechanism is proposed that links the interactions between the various reactive sites on the polar head group of the surfactant and the co-solvent to the nucleation and growth of the particles.

  19. The electroanalytical detection and determination of copper in heavily passivating media: ultrasonically enhanced solvent extraction by N-benzoyl-N-phenyl-hydroxylamine in ethyl acetate coupled with electrochemical detection by sono-square wave stripping voltammetry analysis.

    Science.gov (United States)

    Hardcastle, J L; Compton, R G

    2001-11-01

    N-benzoyl-N-phenyl-hydroxylamine dissolved in ethyl acetate was employed as a ligand for the solvent extraction of copper. Ultrasonic emulsification was shown to be effective both in the extraction of copper from an aqueous phase into ethyl acetate and its recovery or "back extraction" into a fresh clean aqueous solution. Experimental determination of thermodynamic parameters governing the extraction process via UV/visible spectroscopy is reported. This permitted theoretical predictions for the amount of copper transferred into the final aqueous solution to be fitted to experimental data. Quantitative analysis of copper removed via double sono-extraction from an aqueous medium hostile to voltammetric analysis proceeded via sono-square wave anodic stripping voltammetry analysis (sono-SWASV). This resulted in very high sensitivity in the relatively clean medium. The technique was then applied to the analysis of copper in the soft drink 'Ribena Light'. In the absence of sample preparation by solvent extraction sono-SWASV yields a measurable peak current for copper. However it is irreproducible and erratic due to passivating effects, possibly attributed to the sugars, natural flavourings and colourings present. Following sono-solvent extraction, the overall copper concentration could be obtained with a detection limit of 2 microg L(-1). Biphasic sono-extraction synergistically coupled with the recognized technique sono-SWASV presents an attractive technique for copper analysis in electrode passivating media. The technique necessarily removes contaminants present in the test solution since these will prefer to remain in the initial aqueous phase, or will transfer to the organic phase but are unlikely to be doubly transferred into the 'clean' final aqueous phase.

  20. Produced Water Treatment Using the Switchable Polarity Solvent Forward Osmosis (SPS FO) Desalination Process: Preliminary Engineering Design Basis

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel; Adhikari, Birendra; Orme, Christopher; Wilson, Aaron

    2016-05-01

    Switchable Polarity Solvent Forward Osmosis (SPS FO) is a semi-permeable membrane-based water treatment technology. INL is currently advancing SPS FO technology such that a prototype unit can be designed and demonstrated for the purification of produced water from oil and gas production operations. The SPS FO prototype unit will used the thermal energy in the produced water as a source of process heat, thereby reducing the external process energy demands. Treatment of the produced water stream will reduce the volume of saline wastewater requiring disposal via injection, an activity that is correlated with undesirable seismic events, as well as generate a purified product water stream with potential beneficial uses. This paper summarizes experimental data that has been collected in support of the SPS FO scale-up effort, and describes how this data will be used in the sizing of SPS FO process equipment. An estimate of produced water treatment costs using the SPS FO process is also provided.

  1. A chemically modified lipase preparation for catalyzing the transesterification reaction in even highly polar organic solvents.

    Science.gov (United States)

    Solanki, Kusum; Gupta, Munishwar Nath

    2011-05-15

    Acylation of Pseudomonas cepacia lipase with Pyromellitic dianhydride to modify 72% of total amino groups was carried out. Different organic solvents were screened for precipitation of modified lipase. It was found that 1,2-dimethoxyethane was the best precipitant which precipitated 97% protein and complete activity. PCMC (protein coated microcrystals), CLPCMC (crosslinked protein coated microcrystals), EPROS (enzyme precipitated and rinsed with organic solvents) and pH tuned preparations of modified and unmodified lipase were prepared and used for carrying out transesterification reaction with n-octane and dimethyl formamide (DMF) as reaction medium. In n-octane, among all the preparations, CLPCMC of modified lipase gave highest rate (1970 nmol min(-1)mg(-1)) as compared to unmodified pH tuned lipase (128 nmol min(-1) mg(-1)). In DMF, with both 1% (v/v) and 5% (v/v) water content, CLPCMC showed highest initial rate of 0.72 and 7.2 nmol min(-1) mg(-1), respectively. Unmodified pH tuned lipase showed no activity at all in DMF with both 1% and 5% (v/v) water content. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Esterase Active in Polar Organic Solvents from the Yeast Pseudozyma sp. NII 08165

    Directory of Open Access Journals (Sweden)

    Deepthy Alex

    2014-01-01

    Full Text Available Esterases/lipases active in water miscible solvents are highly desired in biocatalysis where substrate solubility is limited and also when the solvent is desired as an acyl acceptor in transesterification reactions, as with the case of biodiesel production. We have isolated an esterase from the glycolipid producing yeast-Pseudozyma sp. NII 08165 which in its crude form was alkali active, thermo stable, halo tolerant and also capable of acting in presence of high methanol concentration. The crude enzyme which maintained 90% of its original activity after being treated at 70°C was purified and the properties were characterized. The partially purified esterase preparation had temperature and pH optima of 60°C and 8.0 respectively. The enzyme retained almost complete activity in presence of 25% methanol and 80% activity in the same strength of ethanol. Conditions of enzyme production were optimized, which lead to 9 fold increase in the esterase yield. One of the isoforms of the enzyme LIP1 was purified to homogeneity and characterized. Purified LIP1 had a Km and Vmax of 0.01 and 1.12, respectively. The purified esterase lost its thermo and halo tolerance but interestingly, retained 97% activity in methanol.

  3. Numerical simulation of the solvate structures of acetylsalicylic acid in supercritical carbon dioxide containing polar co-solvents

    Science.gov (United States)

    Petrenko, V. E.; Antipova, M. L.; Gurina, D. L.; Odintsova, E. G.; Kumeev, R. S.; Golubev, V. A.

    2016-07-01

    Hydrogen-bonded complexes of acetylsalicylic acid with polar co-solvents in supercritical carbon dioxide, modified by methanol, ethanol, and acetone of 0.03 mole fraction concentration, are studied by numerical methods of classical molecular dynamics simulation and quantum chemical calculations. The structure, energy of formation, and lifetime of hydrogen-bonded complexes are determined, along with their temperature dependences (from 318 to 388 K at constant density of 0.7 g cm-3). It is shown that the hydrogen bonds between acetylsalicylic acid and methanol are most stable at 318 K and are characterized by the highest value of absolute energy. At higher supercritical temperatures, however, the longest lifetime is observed for acetylsalicylic acid-ethanol complexes. These results correlate with the known literature experimental data showing that the maximum solubility of acetylsalicylic acid at density values close to those considered in this work and at temperatures of 318 and 328 K is achieved when using methanol and ethanol as co-solvents, respectively.

  4. The Effect of Time dealumination and Solvent Concentration in Synthesis of Zeolite Catalyst and Catalytic Test for DiEthyl Ether Production Process

    Science.gov (United States)

    Widayat, Widayat; Roesyadi, A.; Rachimoellah, M.

    2009-09-01

    Ethanol is an alternative energy, but its has three distinct disadvantages as a transportation fuel. Its availability is currently limited, and it has a lower volumetric heating value and a lower Reid vapour pressure (RVP) than gasoline. This paper focuses for this disadvantages and to solve this problem can do with converts ethanol to DiEthyl Ether product. This research produced DiEthyl Ether by ethanol dehydration process with zeolite as catalyst. The catalyst synthesis from natural material from District Gunung Kidul, Indonesia. The catalyst produced with dealumination, neutralization, drying and calcination processes. The zeolite catalyst was analysed of Si/Al, X-ray Diffraction and specific surface area. The catalyst product then used for ethanol dehydration to produce DiEthyl Ether. The results shown the biggest surface area is 184,52 m 2 / gram at catalyst production at 10 hours for time dealumination. The crystallite of catalyst product is similar like shown at diffractogram of XRD analysis. The ratio Si/Al biggest is 313.7 that obtaining at catalyst production with 7 hours for time dealumination. The catalytic test use fixed bed reactor with 1 inci diameter and ethanol fermentation borth as feed. The operation condition is 150° C at temperature and atmosphere pressure. The compounds product in liquid phase are diethyl ether, methanol and water.

  5. Fractionation and characterization of semi polar and polar compounds from leaf extract Nicotiana tabaccum L. reflux ethanol extraction results

    Science.gov (United States)

    Rahardjo, Andhika Priotomo; Fauzantoro, Ahmad; Gozan, Misri

    2018-02-01

    The decline in cigarette production as the solution of health problems can interfere with the welfare of tobacco farmers in Indonesia. So, it is required to utilize the alternative uses of tobacco with chemical compounds inside it as the raw material for producing alternative products. One of the methods that is efficient in separating chemical compounds from plant extracts is fractionation and characterization method. This method has never been used for Nicotiana tabaccum L. extract using semi polar and polar solvents. This study begins with preparing Nicotiana tabaccum L. extract ingredients obtained through reflux ethanol extraction process. Extracts are analyzed by HPLC which serves to determine the chemical compounds in tobacco extract qualitatively. Extract that has been analyzed, is then fractionated using column chromatography with semi polar (ethyl acetate) and polar (ethane) solvents sequentially. Chemical compounds from tobacco extracts will be dissolved in accordance with the polarity of each solvents. The chemical compound is then characterized using HPLC quantitatively and qualitatively. Then, the data that has been obtained is used to find the partition coefficient of the main components in Nicotiana tabaccum L., which is Nicotine (kN) in Virginia 1 (Ethyl Acetate) fraction at 0.075; Virginia 2 (Ethyl Acetate) fraction at 0.037; And Virginia 3 (Ethyl Acetate) fraction at 0.043.

  6. Solvent dependency of the UV-Vis spectrum of indenoisoquinolines: role of keto-oxygens as polarity interaction probes.

    Directory of Open Access Journals (Sweden)

    Andrea Coletta

    Full Text Available Indenoisoquinolines are the most promising non-campthotecins topoisomerase IB inhibitors. We present an integrated experimental/computational investigation of the UV-Vis spectra of the IQNs parental compound (NSC314622 and two of its derivatives (NSC724998 and NSC725776 currently undergoing Phase I clinical trials. In all the three compounds a similar dependence of the relative absorption intensities at 270 nm and 290 nm on solvent polarity is found. The keto-oxygens in positions 5 and 11 of the molecular scaffold of the molecule are the principal chromophores involved in this dependence. Protic interactions on these sites are also found to give rise to absorptions at wavelength <250 nm observed in water solution, due to the stabilization of highly polarized tautomers of the molecule. These results suggest that the keto-oxygens are important polarizable groups that can act as useful interactors with the molecular receptor, providing at the same time an useful fingerprint for the monitoring of the drug binding to topoisomerase IB.

  7. Selective Solvent-Induced Stabilization of Polar Oxide Surfaces in an Electrochemical Environment

    Science.gov (United States)

    Yoo, Su-Hyun; Todorova, Mira; Neugebauer, Jörg

    2018-02-01

    The impact of an electrochemical environment on the thermodynamic stability of polar oxide surfaces is investigated for the example of ZnO(0001) surfaces immersed in water using density functional theory calculations. We show that solvation effects are highly selective: They have little effect on surfaces showing a metallic character, but largely stabilize semiconducting structures, particularly those that have a high electrostatic penalty in vacuum. The high selectivity is shown to have direct consequences for the surface phase diagram and explains, e.g., why certain surface structures could be observed only in an electrochemical environment.

  8. Peculiar effect of polyethylene glycol in comparison with triethyl citrate or diethyl phthalate on properties of ethyl cellulose microcapsules containing propranolol hydrochloride in process of emulsion-solvent evaporation.

    Science.gov (United States)

    Afrasiabi Garekani, Hadi; Sanadgol, Nasim; Dehghan Nayyeri, Nafiseh; Nokhodchi, Ali; Sadeghi, Fatemeh

    2018-03-01

    Plasticizers play a crucial role in various process of microencapsulation. In this study, the effect of incorporation of plasticizer in process of emulsion solvent evaporation was investigated on properties of ethyl cellulose (EC) microcapsules containing propranolol hydrochloride. The effect of plasticizer type and concentration were investigated on characteristics of microcapsules prepared from different viscosity grades of EC. Product yield, encapsulation efficiency, mean particle size, shape, surface characteristics, solid state of drug, and drug release profiles were evaluated. Product yield and encapsulation efficiency were not dependent on plasticizer type and concentration. However, encapsulation efficiency decreased with increase in EC viscosity grade in the most of the cases. The mean particle size was in the range of 724-797 μm and was not dependent on plasticizer type. Microcapsules formed in the presence of PEG had a very smooth surface with few pores. XRD and DSC studies revealed a reduction of drug crystallinity after microencapsulation especially in presence of PEG. The results showed that the presence of TEC and DEP with different concentrations had no marked effect on drug release from microcapsules containing different viscosity grades of EC. This was not the case when PEG was used, and despite its water solubility it reduced the drug release rate noticeably. The reduction in the drug release in the presence of PEG was concentration-dependent. The use of PEG as a plasticizer in process of emulsion solvent evaporation highly improved the EC microcapsule structure and retarded the drug release rate and therefore is recommended.

  9. A fluorescent paramagnetic Mn metal–organic framework based on semi-rigid pyrene tetracarboxylic acid: sensing of solvent polarity and explosive nitroaromatics

    Directory of Open Access Journals (Sweden)

    Alankriti Bajpai

    2015-09-01

    Full Text Available An Mn metal–organic framework (Mn-MOF, Mn-L, based on a pyrene-tetraacid linker (H4L, displays a respectable fluorescence quantum yield of 8.3% in spite of the presence of the paramagnetic metal ions, due presumably to fixation of the metal ions in geometries that do not allow complete energy/charge-transfer quenching. Remarkably, the porous Mn-L MOF with ∼25% solvent-accessible volume exhibits a heretofore unprecedented solvent-dependent fluorescence emission maximum, permitting its use as a probe of solvent polarity; the emission maxima in different solvents correlate excellently with Reichardt's solvent polarity parameter (ETN. Further, the applicability of Mn-L to the sensing of nitroaromatics via fluorescence quenching is demonstrated; the detection limit for TNT is shown to be 125 p.p.m. The results bring out the fact that MOFs based on paramagnetic metal ions can indeed find application when the quenching mechanisms are attenuated by certain geometries of the organic linkers of the MOF.

  10. The Case for Tetrahedral Oxy-subhydride (TOSH Structures in the Exclusion Zones of Anchored Polar Solvents Including Water

    Directory of Open Access Journals (Sweden)

    Klaus Oehr

    2014-11-01

    Full Text Available We hypothesize a mechanistic model of how negatively-charged exclusion zones (EZs are created. While the growth of EZs is known to be associated with the absorption of ambient photonic energy, the molecular dynamics giving rise to this process need greater elucidation. We believe they arise due to the formation of oxy-subhydride structures (OH−(H2O4 with a tetrahedral (sp3 (OH−(H2O3 core. Five experimental data sets derived by previous researchers were assessed in this regard: (1 water-derived EZ light absorbance at specific infrared wavelengths, (2 EZ negative potential in water and ethanol, (3 maximum EZ light absorbance at 270 nm ultraviolet wavelength, (4 ability of dimethyl sulphoxide but not ether to form an EZ, and (5 transitory nature of melting ice derived EZs. The proposed tetrahedral oxy-subhydride structures (TOSH appear to adequately account for all of the experimental evidence derived from water or other polar solvents.

  11. Influence of Solvent Polarity and DNA-Binding on Spectral Properties of Quaternary Benzo[c]phenanthridine Alkaloids.

    Directory of Open Access Journals (Sweden)

    Michal Rájecký

    Full Text Available Quaternary benzo[c]phenanthridine alkaloids are secondary metabolites of the plant families Papaveraceae, Rutaceae, and Ranunculaceae with anti-inflammatory, antifungal, antimicrobial and anticancer activities. Their spectral changes induced by the environment could be used to understand their interaction with biomolecules as well as for analytical purposes. Spectral shifts, quantum yield and changes in lifetime are presented for the free form of alkaloids in solvents of different polarity and for alkaloids bound to DNA. Quantum yields range from 0.098 to 0.345 for the alkanolamine form and are below 0.033 for the iminium form. Rise of fluorescence lifetimes (from 2-5 ns to 3-10 ns and fluorescence intensity are observed after binding of the iminium form to the DNA for most studied alkaloids. The alkanolamine form does not bind to DNA. Acid-base equilibrium constant of macarpine is determined to be 8.2-8.3. Macarpine is found to have the highest increase of fluorescence upon DNA binding, even under unfavourable pH conditions. This is probably a result of its unique methoxy substitution at C12 a characteristic not shared with other studied alkaloids. Association constant for macarpine-DNA interaction is 700000 M(-1.

  12. Solubility and crystallization of piroxicam from different solvents in evaporative and cooling crystallizations

    DEFF Research Database (Denmark)

    Qu, Haiyan; Ostergaard, Iben

    2018-01-01

    Piroxicam is a non-steroidal anti-inflammatory drug (NSAID) and it can form 4 anhydrous polymorphs and one monohydrate 1–4. In this work, the solubility of the polymorphic form II, which is the most stable form at room temperature, was investigated in seven different solvents with various...... polarities; It has been found that the solubility of piroxicam in the solvents is in the following order: chloroform > dichloromethane > acetone > ethyl acetate > acetonitrile > acetic acid > methanol > hexane. Crystallization of piroxicam from different solvents has been performed with evaporative...

  13. The influence of solvent stress on MMS-induced genetic change in Saccharomyces cerevisiae.

    Science.gov (United States)

    Zimmermann, F K; Rohlfs, A

    1991-01-01

    MMS induced mitotic recombination but not mitotic chromosome loss when tested in pure form in strain D61.M of Saccharomyces cerevisiae, confirming previous results of Albertini (1991), whereas in Aspergillus nidulans it also induced chromosomal malsegregation in addition to mitotic recombination (Käfer, 1988). However, induction of mitotic chromosome loss was observed in combination with strong inducers of chromosome loss such as the aprotic polar solvents ethyl acetate and to a lesser extent methyl ethyl ketone but not with gamma-valerolactone and propionitrile. In addition to this, 4 solvents, dimethyl formamide, dimethyl sulfoxide, dioxane and pyridine, enhanced the MMS-induced mitotic recombination in strain D61.M. An enhancement of MMS-induced mitotic recombination and reverse mutation could be demonstrated for ethyl acetate and gamma-valerolactone in yeast strain D7.

  14. Salting-out-enhanced ionic liquid microextraction with a dual-role solvent for simultaneous determination of trace pollutants with a wide polarity range in aqueous samples.

    Science.gov (United States)

    Gao, Man; Qu, Jingang; Chen, Kai; Jin, Lide; Dahlgren, Randy Alan; Wang, Huili; Tan, Chengxia; Wang, Xuedong

    2017-11-01

    In real aquatic environments, many occupational pollutants with a wide range of polarities coexist at nanogram to milligram per liter levels. Most reported microextraction methods focus on extracting compounds with similar properties (e.g., polarity or specific functional groups). Herein, we developed a salting-out-enhanced ionic liquid microextraction based on a dual-role solvent (SILM-DS) for simultaneous detection of tetracycline, doxycycline, bisphenol A, triclosan, and methyltriclosan, with log K ow ranging from -1.32 to 5.40 in complex milk and environmental water matrices. The disperser in the ionic-liquid-based dispersive liquid-liquid microextraction was converted to the extraction solvent in the subsequent salting-out-assisted microextraction procedures, and thus a single solvent performed a dual role as both extractant and disperser in the SILM-DS process. Acetonitrile was selected as the dual-role solvent because of its strong affinity for both ionic liquids and water, as well as the extractant in the salting-out step. Optimized experimental conditions were 115 μL [C 8 MIM][PF 6 ] as extractor, 1200 μL acetonitrile as dual-role solvent, pH 2.0, 5.0 min ultrasound extraction time, 3.0 g Na 2 SO 4 , and 3.0 min vortex extraction time. Under optimized conditions, the recoveries of the five pollutants ranged from 74.5 to 106.9%, and their LODs were 0.12-0.75 μg kg -1 in milk samples and 0.11-0.79 μg L -1 in environmental waters. Experimental precision based on relative standard deviation was 1.4-6.4% for intraday and 2.3-6.5% for interday analyses. Compared with previous methods, the prominent advantages of the newly developed method are simultaneous determination of pollutants with a wide range of polarities and a substantially reduced workload for ordinary environmental monitoring and food tests. Therefore, the new method has great application potential for simultaneous determination of trace pollutants with strongly contrasting polarities in several

  15. Isolation Of Compounds Of Steroids Teripang Gamat (Stichopus variegatus With Various Types Of Solvents

    Directory of Open Access Journals (Sweden)

    Meydia Meydia

    2017-02-01

    Full Text Available AbstractSea cucumber is one of the fisheries commodity that has an important economic value. Generally is traded in dried form (beche-de-mer. One of thebioactive substances contained in sea cucumber is steroid compounds that serves as an aphrodisiac and sex reversal. The purpose of this study was to extract the steroid of the gamma sea cucumber by using three types of solvents (methanol, ethyl acetate and hexane and get the best solvent in producing the highest yield of the steroids. The study revealed that steroid of gamma sea cucumber (Stichopus variegatus dissolved completely ethyl acetate (semi-polar solvent during the first phase, second phase and the third phase of extraction. In the methanol (polar solvent steroids only dissolved in the first extraction phase, while using the hexane (non polar solvent steroid was undetectable. Fractionation by thin layer chromatography was obtained two fractions that identified as cholesterol (Rf = 0.96 and testosterone (Rf = 0.91.

  16. The ototoxic effects of ethyl benzene in rats

    NARCIS (Netherlands)

    Cappaert, N.L.M.; Klis, S.F.L.; Muijser, H.; Groot, J.C.M.J. de; Kulig, B.M.; Smoorenburg, G.F.

    1999-01-01

    Exposure to organic solvents has been shown to be ototoxic in animals and there is evidence that these solvents can induce hearing loss in humans. In this study, the effects of inhalation of the possibly ototoxic solvent ethyl benzene on the cochlear function and morphology were evaluated using

  17. Bio-synthesis and hydrolysis of ethyl phenylacetate and ethyl 2-phenylpropionate in organic solvent by lyophilized mycelia Biossíntese e hidrólise de fenilacetato de etila e 2-fenilpropionato de etila em solvente orgânico por meio de micélios liofilizados

    Directory of Open Access Journals (Sweden)

    Paolo Torre

    2007-06-01

    Full Text Available To select the best biocatalysts for ethanol acylations with phenylacetic and 2-phenylpropionic acids, lyophilized mycelia of Aspergillus oryzae CBS 10207, A. oryzae MIM, Rhizopus oryzae CBS 11207, R. oryzae CBS 39134, R. oryzae CBS 26028 and R. oryzae CBS 32847 were tested in this study. The carboxylesterase activities of A. oryzae MIM and R. oryzae 11207, which revealed to be the best biocatalysts, were investigated either in 0.1 M phosphate buffer or in n-heptane to catalyze the hydrolysis or the synthesis of ethyl esters of these acids, respectively. A. oryzae proved more effective than R. oryzae, probably due to more favorable microenvironment conditions and thermodynamic scenario. The results in terms of product formation and substrate consumption versus time were used to estimate the maximum conversion yields, the equilibrium constants and the times needed to reach half maximum conversion, thus providing sufficient information about these equilibria.Micélios liofilizados de Aspergillus oryzae CBS 10207, A. oryzae MIM, Rhizopus oryzae CBS 11207, R. oryzae CBS 39134, R. oryzae CBS 26028 e R. oryzae CBS 32847 foram testados neste estudo com vista à seleção do melhor biocatalisador para efetuar a acilação de etanol com ácidos fenilacético e 2-fenilpropiônico. As atividades carboxilesterásicas de A. oryzae MIM e R. oryzae 11207, que resultaram ser os melhores biocatalisadores, foram investigadas tanto em tampão fosfato 0,1 M como em n-heptano para catalisar a hidrólise ou a síntese dos ésteres etílicos destes ácidos. A. oryzae pareceu ser mais eficaz que R. oryzae, provavelmente devido a condições micro-ambientais e a um cenário termodinâmico mais favoráveis. Os resultados obtidos em termos de formação do produto e consumo dos substratos em função do tempo foram usados para a estimativa dos rendimentos de conversão máximos, as constantes de equilíbrio e os tempos necessários para alcançar metade da conversão m

  18. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ethyl alcohol containing ethyl acetate. 584.200... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets... having had added the equivalent of 4.25 gallons of 100 percent ethyl acetate. It is used in accordance...

  19. Demand boom boosts ethyl, butyl acetate

    International Nuclear Information System (INIS)

    Coeyman, M.

    1993-01-01

    US ethyl and butyl acetate markets are being described as 'extremely tight.' One major domestic producer is 'in a sold-out position' and has 'gone on sales control' with respect to these two products. Producers say that sales of both ethyl and butyl acetate have increased during the past year, and industry observers say they expect to see an April 1 price initiative of 2 cts to 3 cts/lb, and possibly a second increase in October. While one producer suggests that this market strength could be 'a sign that the coatings industry is turning around,' most agree that reformulation is the principal driver of growth. Ethyl acetate is said to be replacing methyl ethyl ketone in many formulations, while butyl acetate and butyl acetate blends are substituting for methyl isobutyl ketone. In addition, both ethyl and butyl acetate work as substitutes for xylene and toluene in certain applications. In an effort to conform to the requirements of the Clean Air Act of 1990 and to cooperate with the Environmental Protection Agency's 33/50 voluntary emissions reduction program, coatings manufacturers are moving as quickly as possible to eliminate solvents from their products. And although solvents as a whole will eventually see a dramatic decline in consumption, the temporary beneficiaries of reformulation will be certain of the oxygenated solvents, says Jeff Back, business manager at Kline ampersand Co

  20. CO2-Binding Organic Liquids Gas Capture with Polarity-Swing-Assisted Regeneration Full Technology Feasibility Study B1 - Solvent-based Systems

    Energy Technology Data Exchange (ETDEWEB)

    Heldebrant, David J

    2014-08-31

    PNNL, Fluor Corporation and Queens University (Kingston, ON) successfully completed a three year comprehensive study of the CO2BOL water-lean solvent platform with Polarity Swing Assisted Regeneration (PSAR). This study encompassed solvent synthesis, characterization, environmental toxicology, physical, thermodynamic and kinetic property measurements, Aspen Plus™ modeling and bench-scale testing of a candidate CO2BOL solvent molecule. Key Program Findings The key program findings are summarized as follows: • PSAR favorably reduced stripper duties and reboiler temperatures with little/no impact to absorption column • >90% CO2 capture was achievable at reasonable liquid-gas ratios in the absorber • High rich solvent viscosities (up to 600 cP) were successfully demonstrated in the bench-scale system. However, the projected impacts of high viscosity to capital cost and operational limits compromised the other levelized cost of electricity benefits. • Low thermal conductivity of organics significantly increased the required cross exchanger surface area, and potentially other heat exchange surfaces. • CO2BOL had low evaporative losses during bench-scale testing • There was no evidence of foaming during bench scale testing • Current CO2BOL formulation costs project to be $35/kg • Ecotoxicity (Water Daphnia) was comparable between CO2BOL and MEA (169.47 versus 103.63 mg/L) • Full dehydration of the flue gas was determined to not be economically feasible. However, modest refrigeration (13 MW for the 550 MW reference system) was determined to be potentially economically feasible, and still produce a water-lean condition for the CO2BOLs (5 wt% steady-state water loading). • CO2BOLs testing with 5 wt% water loading did not compromise anhydrous performance behavior, and showed actual enhancement of CO2 capture performance. • Mass transfer of CO2BOLs was not greatly impeded by viscosity • Facile separation of antisolvent from lean CO2BOL was

  1. Electrochemical characterization of praseodymia doped zircon. Catalytic effect on the electrochemical reduction of molecular oxygen in polar organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, Antonio, E-mail: antonio.domenech@uv.es [Departament de Quimica Analitica, Universitat de Valencia, Dr. Moliner, 50, 46100 Burjassot, Valencia (Spain); Montoya, Noemi; Alarcon, Javier [Departament de Quimica Inorganica, Universitat de Valencia, Dr. Moliner, 50, 46100 Burjassot, Valencia (Spain)

    2011-08-01

    Highlights: > Electrochemical characterization of Pr centers in praseodymia-doped zircon. > Study of the catalytic effect on the reduction of peroxide radical anion in nonaqueous solvents. > Assessment of non-uniform distribution of Pr centers in the zircon grains. - Abstract: The voltammetry of microparticles and scanning electrochemical microscopy methodologies are applied to characterize praseodymium centers in praseodymia-doped zircon (Pr{sub x}Zr{sub (1-y)}Si{sub (1-z)}O{sub 4}; y + z = x; 0.02 < x < 0.10) specimens prepared via sol-gel synthetic routes. In contact with aqueous electrolytes, two overlapping Pr-centered cathodic processes, attributable to the Pr (IV) to Pr (III) reduction of Pr centers in different sites are obtained. In water-containing, air-saturated acetone and DMSO solutions as solvent, Pr{sub x}Zr{sub (1-y)}Si{sub (1-z)}O{sub 4} materials produce a significant catalytic effect on the electrochemical reduction of peroxide radical anion electrochemically generated. These electrochemical features denote that most of the Pr centers are originally in its 4+ oxidation state in the parent Pr{sub x}Zr{sub (1-y)}Si{sub (1-z)}O{sub 4} specimens. The variation of the catalytic performance of such specimens with potential scan rate, water concentration and Pr loading suggests that Pr is not uniformly distributed within the zircon grains, being concentrated in the outer region of such grains.

  2. Effects of non-polar solvent on the morphology and property of three-dimensional hierarchical TiO2 nanostructures by one-step solvothermal route

    Science.gov (United States)

    Zhou, Yi; Wu, Hongyan; Zhong, Xian; Liu, Ce

    2014-07-01

    Three-dimensional (3D) hierarchical rutile TiO2 microspheres composed of nanorods with diameter of several-tens of nanometers, with different morphologies and with average size ranging from 1.3 to 1.8 μm, were successfully synthesized through a surfactant-free solvothermal route. The effects of the solvents n-hexane, chloroform, and cyclohexane on the microstructures of 3D hierarchical TiO2 nanostructures were investigated. Results of scanning electron microscopy showed that 3D sea-urchin like hierarchical TiO2 composed of nanorods with a diameter of 10 nm can only be prepared in the cyclohexane-water system. The growth mechanism of 3D sea-urchin like hierarchical TiO2 composed of numerous nanorods was further examined and found to differ from the well-known "growth → assembly" mode. The effects of surface tension and polarity of solvents on the morphology and crystal strength of 3D hierarchical TiO2 nanostructure were also investigated. In addition, the prepared 3D sea-urchin like hierarchical TiO2 showed highest photocatalytic activity compared with other 3D hierarchical TiO2 nanostructures in this study and Degussa P25 for the degradation of Rhodamine B solution under UV light irradiation, which could be attributed to its special hierarchical superstructure, the increase of surface catalytic sites and its special composition units.

  3. Solvents effects on crystallinity and dissolution of β-artemether.

    Science.gov (United States)

    Xu, Jianghui; Singh, Vikramjeet; Yin, Xianzhen; Singh, Parbeen; Wu, Li; Xu, Xiaonan; Guo, Tao; Sun, Lixin; Gui, Shuangying; Zhang, Jiwen

    2017-03-01

    β-artemether (ARM) is a widely used anti-malarial drug isolated from the Chinese antimalarial plant, Artemisia annua. The solvent effects on crystal habits and dissolution of ARM were thoroughly investigated and discussed herein. The ARM was recrystallized in nine different solvents of varied polarity, namely, methanol, ethanol, isopropanol, tetrahydrofuran, dichloromethane, trichloromethane, ethyl acetate, acetone and hexane by solvent evaporation method. The obtained crystals were morphologically characterized using scanning electron microscope (SEM). The average sizes of crystals were 1.80-2.64 μm calculated from microscopic images using Image-Pro software. No significant change in chemical structure was noticed after recrystallization and the specific band at 875 cm -1 wavenumber (C-O-O-C) confirmed the presence of most sensitive functional group in the ARM chemical structure. The existence and production of two polymorphic forms, polymorph A and polymorph B, was confirmed by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). The data suggested that the fabrication of polymorph B can be simply obtained from the recrystallization of ARM in a specific solvent. Significant effects of solvent polarity, crystals shapes and sizes on drug dissolution were noticed during in vitro dissolution test. The release kinetics were calculated and well fitted by the Higuchi and Hixon-Crowell models. The ARM-methanol and ARM-hexane showed highest and slowest dissolution, respectively, due to the effects of solvent polarity and crystal morphologies. Overall, proper selection of the solvents for the final crystallization of ARM helps to optimize dissolution and bioavailability for a better delivery of anti-malarial drug.

  4. Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono- and disaccharides

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Riisager, Anders

    2012-01-01

    Sulfonic acid functionalised SBA-15 (SO3H-SBA-15), sulfated zirconia and beta, Y, ZSM-5 and mordenite zeolite catalysts have been applied for the dehydration of sugars to ethyl levulinate and ethyl-D-glucopyranoside (EDGP) using ethanol as solvent and reactant. The SO3H-SBA-15 catalyst showed...... a high catalytic activity for the selective conversion of fructose to ethyl levulinate (57%) and glucose to EDGP (80%) at 140 °C, whereas the disaccharide sucrose yielded a significant amount of both products. The SO3H-SBA-15 catalysts were found to be highly active compared to the zeolites under...

  5. 9-Hydroxyfurodysinin-O-ethyl Lactone: A New Sesquiterpene Isolated from the Tropical Marine Sponge Dysidea arenaria

    Directory of Open Access Journals (Sweden)

    P. Karuso

    2005-10-01

    Full Text Available A new sesquiterpene, 9-hydroxyfurodysinin-O-ethyl lactone, has been isolated from a New Caledonian Dysidea arenaria, along with three known compounds. The possible incorporation of the ethyl ether from the extraction solvent is discussed.

  6. Kinetics and Optimization of Lipophilic Kojic Acid Derivative Synthesis in Polar Aprotic Solvent Using Lipozyme RMIM and Its Rheological Study

    Directory of Open Access Journals (Sweden)

    Nurazwa Ishak

    2018-02-01

    Full Text Available The synthesis of kojic acid derivative (KAD from kojic and palmitic acid (C16:0 in the presence of immobilized lipase from Rhizomucor miehei (commercially known as Lipozyme RMIM, was studied using a shake flask system. Kojic acid is a polyfunctional heterocycles that acts as a source of nucleophile in this reaction allowing the formation of a lipophilic KAD. In this study, the source of biocatalyst, Lipozyme RMIM, was derived from the lipase of Rhizomucor miehei immobilized on weak anion exchange macro-porous Duolite ES 562 by the adsorption technique. The effects of solvents, enzyme loading, reaction temperature, and substrate molar ratio on the reaction rate were investigated. In one-factor-at-a-time (OFAT experiments, a high reaction rate (30.6 × 10−3 M·min−1 of KAD synthesis was recorded using acetone, enzyme loading of 1.25% (w/v, reaction time of 12 h, temperature of 50 °C and substrate molar ratio of 5:1. Thereafter, a yield of KAD synthesis was optimized via the response surface methodology (RSM whereby the optimized molar ratio (fatty acid: kojic acid, enzyme loading, reaction temperature and reaction time were 6.74, 1.97% (w/v, 45.9 °C, and 20 h respectively, giving a high yield of KAD (64.47%. This condition was reevaluated in a 0.5 L stirred tank reactor (STR where the agitation effects of two impellers; Rushton turbine (RT and pitch-blade turbine (PBT, were investigated. In the STR, a very high yield of KAD synthesis (84.12% was achieved using RT at 250 rpm, which was higher than the shake flask, thus indicating better mixing quality in STR. In a rheological study, a pseudoplastic behavior of KAD mixture was proposed for potential application in lotion formulation.

  7. Kinetics and Optimization of Lipophilic Kojic Acid Derivative Synthesis in Polar Aprotic Solvent Using Lipozyme RMIM and Its Rheological Study.

    Science.gov (United States)

    Ishak, Nurazwa; Lajis, Ahmad Firdaus B; Mohamad, Rosfarizan; Ariff, Arbakariya B; Mohamed, Mohd Shamzi; Halim, Murni; Wasoh, Helmi

    2018-02-24

    The synthesis of kojic acid derivative (KAD) from kojic and palmitic acid (C16:0) in the presence of immobilized lipase from Rhizomucor miehei (commercially known as Lipozyme RMIM), was studied using a shake flask system. Kojic acid is a polyfunctional heterocycles that acts as a source of nucleophile in this reaction allowing the formation of a lipophilic KAD. In this study, the source of biocatalyst, Lipozyme RMIM, was derived from the lipase of Rhizomucor miehei immobilized on weak anion exchange macro-porous Duolite ES 562 by the adsorption technique. The effects of solvents, enzyme loading, reaction temperature, and substrate molar ratio on the reaction rate were investigated. In one-factor-at-a-time (OFAT) experiments, a high reaction rate (30.6 × 10 -3 M·min -1 ) of KAD synthesis was recorded using acetone, enzyme loading of 1.25% ( w / v ), reaction time of 12 h, temperature of 50 °C and substrate molar ratio of 5:1. Thereafter, a yield of KAD synthesis was optimized via the response surface methodology (RSM) whereby the optimized molar ratio (fatty acid: kojic acid), enzyme loading, reaction temperature and reaction time were 6.74, 1.97% ( w / v ), 45.9 °C, and 20 h respectively, giving a high yield of KAD (64.47%). This condition was reevaluated in a 0.5 L stirred tank reactor (STR) where the agitation effects of two impellers; Rushton turbine (RT) and pitch-blade turbine (PBT), were investigated. In the STR, a very high yield of KAD synthesis (84.12%) was achieved using RT at 250 rpm, which was higher than the shake flask, thus indicating better mixing quality in STR. In a rheological study, a pseudoplastic behavior of KAD mixture was proposed for potential application in lotion formulation.

  8. Application of acetone acetals as water scavengers and derivatization agents prior to the gas chromatographic analysis of polar residual solvents in aqueous samples.

    Science.gov (United States)

    van Boxtel, Niels; Wolfs, Kris; Van Schepdael, Ann; Adams, Erwin

    2015-12-18

    The sensitivity of gas chromatography (GC) combined with the full evaporation technique (FET) for the analysis of aqueous samples is limited due to the maximum tolerable sample volume in a headspace vial. Using an acetone acetal as water scavenger prior to FET-GC analysis proved to be a useful and versatile tool for the analysis of high boiling analytes in aqueous samples. 2,2-Dimethoxypropane (DMP) was used in this case resulting in methanol and acetone as reaction products with water. These solvents are relatively volatile and were easily removed by evaporation enabling sample enrichment leading to 10-fold improvement in sensitivity compared to the standard 10μL FET sample volumes for a selection of typical high boiling polar residual solvents in water. This could be improved even further if more sample is used. The method was applied for the determination of residual NMP in an aqueous solution of a cefotaxime analogue and proved to be considerably better than conventional static headspace (sHS) and the standard FET approach. The methodology was also applied to determine trace amounts of ethylene glycol (EG) in aqueous samples like contact lens fluids, where scavenging of the water would avoid laborious extraction prior to derivatization. During this experiment it was revealed that DMP reacts quantitatively with EG to form 2,2-dimethyl-1,3-dioxolane (2,2-DD) under the proposed reaction conditions. The relatively high volatility (bp 93°C) of 2,2-DD makes it possible to perform analysis of EG using the sHS methodology making additional derivatization reactions superfluous. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Clean production of methyl ethyl ketone (MEK)

    International Nuclear Information System (INIS)

    Caro Munoz, Cesar Augusto; Alfonso Sossa, Elkin Antonio; Montes de Correa, Consuelo

    2004-01-01

    Methyl ethyl ketone oxime (MEKO) was obtained by reaction of methyl ethyl ketone (MEK) with ammonia and hydrogen peroxide using titanium silicalite-1 (TS-1) as catalyst. The effect of reaction temperature, type of solvent, molar ratios of NH 3 /MEK, H 2 O 2 /MEK and mg catalyst/mmol MEK ratio was studied. Water was the most appropriate solvent to obtain high selectivity to oxime. 100% selectivity to MEKO and 60% conversion of MEK was obtained at 70 Celsius degrade using the following parameters: H 2 O 2 /MEK = 0,7 and NH 3 /MEK = 1,12. mg.catalyst/mmol MEK = 10,5. Little decrease in the catalytic activity was observed after reusing the catalysts twice suggesting that incorporated Ti in the MFI structure is rather stable under the studied conditions

  10. Pallidol hexaacetate ethyl acetate monosolvate

    Directory of Open Access Journals (Sweden)

    Qinyong Mao

    2013-07-01

    Full Text Available The entire molecule of pallidol hexaacetate {systematic name: (±-(4bR,5R,9bR,10R-5,10-bis[4-(acetyloxyphenyl]-4b,5,9b,10-tetrahydroindeno[2,1-a]indene-1,3,6,8-tetrayl tetraacetate} is completed by the application of twofold rotational symmetry in the title ethyl acetate solvate, C40H34O12·C4H8O2. The ethyl acetate molecule was highly disordered and was treated with the SQUEEZE routine [Spek (2009. Acta Cryst. D65, 148–155]; the crystallographic data take into account the presence of the solvent. In pallidol hexaacetate, the dihedral angle between the fused five-membered rings (r.m.s. deviation = 0.100 Å is 54.73 (6°, indicating a significant fold in the molecule. Significant twists between residues are also evident as seen in the dihedral angle of 80.70 (5° between the five-membered ring and the pendent benzene ring to which it is attached. Similarly, the acetate residues are twisted with respect to the benzene ring to which they are attached [C—O(carboxy—C—C torsion angles = −70.24 (14, −114.43 (10 and −72.54 (13°]. In the crystal, a three-dimensional architecture is sustained by C—H...O interactions which encompass channels in which the disordered ethyl acetate molecules reside.

  11. Solvents and solvent effects in organic chemistry

    National Research Council Canada - National Science Library

    Reichardt, C; Welton, T

    2011-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Solute-Solvent Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Solutions...

  12. Supercritical antisolvent co-precipitation of rifampicin and ethyl cellulose.

    Science.gov (United States)

    Djerafi, Rania; Swanepoel, Andri; Crampon, Christelle; Kalombo, Lonji; Labuschagne, Philip; Badens, Elisabeth; Masmoudi, Yasmine

    2017-05-01

    Rifampicin-loaded submicron-sized particles were prepared through supercritical anti-solvent process using ethyl cellulose as polymeric encapsulating excipient. Ethyl acetate and a mixture of ethyl acetate/dimethyl sulfoxide (70/30 and 85/15) were used as solvents for both drug and polymeric excipient. When ethyl acetate was used, rifampicin was crystallized separately without being embedded within the ethyl cellulose matrix while by using the ethyl acetate/dimethyl sulfoxide mixture, reduced crystallinity of the active ingredient was observed and a simultaneous precipitation of ethyl cellulose and drug was achieved. The effect of solvent/CO 2 molar ratio and polymer/drug mass ratio on the co-precipitates morphology and drug loading was investigated. Using the solvent mixture, co-precipitates with particle sizes ranging between 190 and 230nm were obtained with drug loading and drug precipitation yield from respectively 8.5 to 38.5 and 42.4 to 77.2% when decreasing the ethyl cellulose/rifampicin ratio. Results show that the solvent nature and the initial drug concentrations affect morphology and drug precipitation yield of the formulations. In vitro dissolution studies revealed that the release profile of rifampicin was sustained when co-precipitation was carried out with the solvent mixture. It was demonstrated that the drug to polymer ratio influenced amorphous content of the SAS co-precipitates. Differential scanning calorimetry thermograms and infrared spectra revealed that there is neither interaction between rifampicin and the polymer nor degradation of rifampicin during co-precipitation. In addition, stability stress tests on SAS co-precipitates were carried out at 75% relative humidity and room temperature in order to evaluate their physical stability. SAS co-precipitates were X-ray amorphous and remained stable after 6months of storage. The SAS co-precipitation process using a mixture of ethyl acetate/dimethyl sulfoxide demonstrates that this strategy can

  13. Inert Reassessment Document for Ethyl Alcohol - CAS No. 64-17-5

    Science.gov (United States)

    The main use of ethyl alcohol is in the consumption of alcoholic beverage and as a solvent in the laboratory and industry, and in the manufacture of denatured alcohol, pharmaceuticals, perfumes, and organic synthesis.

  14. Inhibition of Pro-inflammatory Cytokines by Ethyl Acetate Extract of ...

    African Journals Online (AJOL)

    inflammatory production by macrophages. Methods: Mouse peritoneal macrophages were cultured in solvent either alone or with 2 ìg/ml lipopolysaccaride (LPS) with/without different doses of ethyl acetate extract of S. striata. Production of ...

  15. Clinical comparison of ethyl acetate and diethyl ether in the formalin-ether sedimentation technique.

    OpenAIRE

    Erdman, D D

    1981-01-01

    A substitute for the volatile solvent diethyl ether has been actively sought for the Formalin-ether sedimentation technique. Ethyl acetate has recently been shown to be a comparable substitute. In an effort to verify these findings and evaluate ethyl acetate under clinical conditions, comparison studies with 62 fresh human stool specimens were performed. Parallel concentrates with diethyl ether and ethyl acetate were prepared for each specimen, and the quantity and appearance of recovered par...

  16. Simultaneous exposure to ethyl benzene and noise : synergistic effects on outer hair cells

    NARCIS (Netherlands)

    Cappaert, N.L.M.; Klis, S.F.L.; Muijser, H.; Kulig, B.M.; Smoorenburg, G.F.

    2001-01-01

    The effects on hearing of simultaneous exposure to the ototoxic organic solvent ethyl benzene and broad-band noise were evaluated in rats. The effects of three ethyl benzene concentrations (0, 300 or 400 ppm) and three noise levels (95 or 105 dBlin SPL or background noise at 65 dBlin SPL) and all

  17. Antidiabetic activity of the ethyl acetate fraction of Ficus lutea (Moraceae) leaf extract: comparison of an in vitro assay with an in vivo obese mouse model.

    Science.gov (United States)

    Olaokun, Oyinlola O; McGaw, Lyndy J; Janse van Rensburg, Ilse; Eloff, Jacobus N; Naidoo, Vinny

    2016-03-31

    Ficus lutea crude acetone leaf extracts were previously shown to stimulate glucose uptake and insulin secretion of established cells and, inhibit α-amylase and α-glucosidase activities. For this study, F. lutea acetone extracts were subjected to solvent-solvent fractionation to yield fractions with differing polarities (hexane, chloroform, dichloromethane, ethyl acetate, n-butanol and water) in an attempt to obtain a more potent fraction with in vitro and probably in vivo activity. Among these fractions, the ethyl acetate fraction had the highest total polyphenol content (100.5 ± 1.6 mg GAE/g dried extract) and α-glucosidase inhibitory activity (126.8 ± 30.6 μg/ml). It also stimulated the highest glucose uptake of C2C12 muscle cells and decreased extracellular glucose concentration of H-4-II-E liver cells with low cytotoxic activity. The ethyl acetate fraction (10.88 ± 0.55 μg/L at 250 μg/ml) enhanced insulin secretion in RIN-m5F pancreatic β-cells to the same degree as the positive control glibenclamide (11.09 ± 0.07 μg/L at 1μM). While fractionation increased α-glucosidase inhibition and glucose uptake of cells, in the ethyl acetate fraction, the α-amylase inhibition and insulin secretion decreased. The weight reducing and glucose control potential of the ethyl acetate fraction in an obese mouse model, important factors in the amelioration of type II diabetes was determined. The extract had no statistical significant weight reducing activity. A major finding was the decrease in the area under the curve of the glucose concentration over time in animals that were treated with both a change in diet and with the plant extract. This is linked to increased glucose uptake within the cells, the most likely mechanism is either an increased insulin response or increased insulin secretion.

  18. Non-targeted molecular characterisation of a rose flower ethyl acetate extract using Ultra-HPLC with atmospheric pressure photoionisation and quadrupole time-of-flight MS/MS.

    Science.gov (United States)

    Riffault, Ludivine; Colas, Cyril; Destandau, Emilie; Pasquier, Laure; André, Patrice; Elfakir, Claire

    2015-01-01

    A non-targeted approach to characterise the phytochemical composition of the flower organ of an original rose cultivar 'Jardin de Granville'® was developed. Particular attention was paid to the less documented molecular families of intermediate polarity, compared with the polyphenol family (anthocyanins, flavonoids, tannins) and volatile compounds. To develop a molecular fingerprinting method for the rapid qualitative phytochemical characterisation of the rose flower ethyl acetate extract. An ultra-HPLC with atmospheric pressure photoionisation (APPI) and quadrupole time-of-flight (QTOF) MS/MS combined with microwave-assisted extraction was carried out for ethyl acetate extracts as an intermediate polarity extraction solvent in order to obtain the most exhaustive extract containing a large range of molecular families. An optimised methodology based on the coupling of the UHPLC and APPI source with a QTOF analyser was developed to characterise the extracted molecules. Sixty-one compounds were identified in the extract, covering eight molecular families of intermediate polarity ranging from polyphenols to triglycerides. The presence of flavonoids with anti-oxidant properties and of triterpenoids with potential anti-inflammatory activity was evidenced and cell-wall constituents such as fatty acids, glycolipids, sphingolipids and acylated sterol glycosides were characterised. Some chlorophyll derivatives were also detected. The method developed is appropriate for fast phytochemical evaluation of rose ethyl acetate extract. It produced accurate mass and MS/MS spectra, which permitted identification of a wide range of compounds of intermediate polarity. Copyright © 2015 John Wiley & Sons, Ltd.

  19. One-Pot Lipase-Catalyzed Enantioselective Synthesis of (R-(−-N-Benzyl-3-(benzylaminobutanamide: The Effect of Solvent Polarity on Enantioselectivity

    Directory of Open Access Journals (Sweden)

    Marina A. Ortega-Rojas

    2017-12-01

    Full Text Available The use of the solvent engineering has been applied for controlling the resolution of lipase-catalyzed synthesis of β-aminoacids via Michael addition reactions. The strategy consisted of the thermodynamic control of products at equilibrium using the lipase CalB as a catalyst. The enzymatic chemo- and enantioselective synthesis of (R-(−-N-benzyl-3-(benzylaminobutanamide is reported, showing the influence of the solvent on the chemoselectivity of the aza-Michael addition and the subsequent kinetic resolution of the Michael adduct; both processes are catalyzed by CalB and both are influenced by the nature of the solvent medium. This approach allowed us to propose a novel one-pot strategy for the enzymatic synthesis of enantiomerically enriched β-aminoesters and β-aminoacids.

  20. Spectroscopic studies of rotational isomerism in ethyl halo acetate

    International Nuclear Information System (INIS)

    Jasem, N.A.

    1985-01-01

    Infrared spectra of ethyl flouro acetate,ethyl chloro acetate ethyl bromo acetate and ethyl iodo acetate have been recorded in the region 4000-200 cm - 1 in the solid liquid and vapour phases.The spectra have shown that some bands are increasing in intensity upon moving from the solid to the liquid and to the vapour phases and some other bands are decreasing.Vibrational frequency assignments of the fundamental modes of vibration were made enthalpy differences between these isomers were determined for each compound in each phase.The values were used as a measure of the relative stability of the isomers.Furthermore,activation energy for the conformations from one isomer into another were estimated using arrhenius equation.Effects of solvents were investigated in this work too.(39 tabs., 46 figs., 55 refs.)

  1. Perspectives for the biotechnological production of ethyl acetate by yeasts.

    Science.gov (United States)

    Löser, Christian; Urit, Thanet; Bley, Thomas

    2014-06-01

    Ethyl acetate is an environmentally friendly solvent with many industrial applications. The production of ethyl acetate currently proceeds by energy-intensive petrochemical processes which are based on natural gas and crude oil without exception. Microbial synthesis of ethyl acetate could become an interesting alternative. The formation of esters as aroma compounds in food has been repeatedly reviewed, but a survey which deals with microbial synthesis of ethyl acetate as a bulk product is missing. The ability of yeasts for producing larger amounts of this ester is known for a long time. In the past, this potential was mainly of scientific interest, but in the future, it could be applied to large-scale ester production from renewable raw materials. Pichia anomala, Candida utilis, and Kluyveromyces marxianus are yeasts which convert sugar into ethyl acetate with a high yield where the latter is the most promising one. Special attention was paid to the mechanism of ester synthesis including regulatory aspects and to the maximum and expectable yield. Synthesis of much ethyl acetate requires oxygen which is usually supplied by aeration. Ethyl acetate is highly volatile so that aeration results in its phase transfer and stripping. This stripping process cannot be avoided but requires adequate handling during experimentation and offers a chance for a cost-efficient process-integrated recovery of the synthesized ester.

  2. Lithium-Ion Electrolytes with Fluoroester Co-Solvents

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor); Prakash, G. K. Surya (Inventor); Smith, Kiah (Inventor); Bhalla, Pooja (Inventor)

    2014-01-01

    An embodiment lithium-ion battery comprising a lithium-ion electrolyte of ethylene carbonate; ethyl methyl carbonate; and at least one solvent selected from the group consisting of trifluoroethyl butyrate, ethyl trifluoroacetate, trifluoroethyl acetate, methyl pentafluoropropionate, and 2,2,2-trifluoroethyl propionate. Other embodiments are described and claimed.

  3. Predicting the Solubility of Pharmaceutical Cocrystals in Solvent/Anti-Solvent Mixtures

    Directory of Open Access Journals (Sweden)

    Linda Lange

    2016-05-01

    Full Text Available In this work, the solubilities of pharmaceutical cocrystals in solvent/anti-solvent systems were predicted using PC-SAFT in order to increase the efficiency of cocrystal formation processes. Modeling results and experimental data were compared for the cocrystal system nicotinamide/succinic acid (2:1 in the solvent/anti-solvent mixtures ethanol/water, ethanol/acetonitrile and ethanol/ethyl acetate at 298.15 K and in the ethanol/ethyl acetate mixture also at 310.15 K. The solubility of the investigated cocrystal slightly increased when adding small amounts of anti-solvent to the solvent, but drastically decreased for high anti-solvent amounts. Furthermore, the solubilities of nicotinamide, succinic acid and the cocrystal in the considered solvent/anti-solvent mixtures showed strong deviations from ideal-solution behavior. However, by accounting for the thermodynamic non-ideality of the components, PC-SAFT is able to predict the solubilities in all above-mentioned solvent/anti-solvent systems in good agreement with the experimental data.

  4. Co-C Dissociation of Adenosylcobalamin (Coenzyme B-12): Role of Dispersion, Induction Effects, Solvent Polarity, and Relativistic and Thermal Corrections

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2014-01-01

    Quantum-chemical cluster modeling is challenged in the limit of large, soft systems by the effects of dispersion and solvent, and well as other physical interactions. Adenosylcobalamin (AdoCbl, coenzyme B-12), as one of the most complex cofactors in life, constitutes such a challenge. The cleavage...... of its unique organometallic Co-C bond has inspired multiple studies of this cofactor. This paper reports the fully relaxed potential energy surface of Co-C cleavage of Ado Cbl, including for the first time all side-chain interactions with the dissociating Ado group. Various methods and corrections...

  5. Extracción de Sustancias Hidrofóbicas de Andisols Repelentes al Agua del Oriente Antioqueño, con Solventes Polares

    OpenAIRE

    Jaramillo J. Daniel F.; Ortiz G Carlos; Peláez J. Carlos A.; Zapata H. Raúl Darío; Uribe B. Carmenza

    1997-01-01

    Muestras de Andisols repelentes al agua fueron sometidas a extracciones con mezclas de solventes orgánicos de diferentes polaridaddes; los lavados con mezclas de polaridades 5 y 6 removieron completamente la hidrofobicidad del suelo, sin importar el orden en el cual se hicieron. Del comportamiento del suelo frente a las secuencias de extracción se pudo concluir que los compuestos orgánicos del suelo se acumulan en él en forma de capas, las cuales pueden presentar alternancia de compuest...

  6. Deasphalting solvents

    International Nuclear Information System (INIS)

    Carrillo, J. A; Caceres, J; Vela, G; Bueno, H

    1996-01-01

    This paper describes how the deasphalted oil (DMO) or demetalized oil (DMO) quality (CCR, Ni, V end asphaltenes contents) changes with: DAO or DMO yield, solvent/feed ratio, type of vacuum reside (from paraffinic to blends with vis breaking bottoms), extraction temperature and extraction solvent (propane, propylene, n-butane and I butane)

  7. Investigation of the impact of organic solvent type and solution pH on the extraction efficiency of naphthenic acids from oil sands process-affected water.

    Science.gov (United States)

    Huang, Rongfu; McPhedran, Kerry N; Sun, Nian; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2016-03-01

    Naphthenic acids (NAs) from oil sand process-affected water (OSPW) were liquid-liquid extracted using six organic solvents (n-pentane, n-hexane, cyclohexane, dichloromethane, ethyl ether, and ethyl acetate) at three pHs (2.0, 8.5, and 12.0). The NAs exist in ionic (ions) and non-ionic (molecules) forms in the water phase depending on their dissociation constants and the solution pH. Results showed the extractability of NA molecules depends on the solvent polarity and the extractability of NA ions on the water solubility in solvent. The organic solvent type and solution pH were found to not only impact the extracted amounts of each NA species, but also the NAs distribution in terms of molecule carbon number and hydrogen deficiency. Overall, it is concluded that ethyl ether can be used as an alternative to dichloromethane (DCM) given their similar extraction efficiencies and extracted NA profiles. This is important since DCM is known to have metabolic toxicity and transitioning to the safer ethyl ether would eliminate laboratory DCM exposures and risk to human health. Despite the higher extraction efficiency of NAs at pH 2.0, extraction at pH 12.0 could be useful for targeted extraction of low-concentration nonpolar organic compounds in OSPW. This knowledge may assist in the determination of the specific NAs species that are known to have chronic, sub-chronic and acute toxicity to various organisms, and the potential targeting of treatment to these NAs species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Alternative solvents can make preparative liquid chromatography greener

    NARCIS (Netherlands)

    Shen, Y.; Chen, B.; Beek, van T.A.

    2015-01-01

    To make preparative Reversed-Phase High Performance Liquid Chromatography (RP-pHPLC) greener, alternative solvents were considered among others in terms of toxicity, cost, safety, workability, chromatographic selectivity and elution strength. The less toxic solvents ethanol, acetone and ethyl

  9. Study of solvent-conjugated polymer interactions by polarized spectroscopy: MEH-PPV and Poly(9,9'-dioctylfluorene-2,7-diyl)

    International Nuclear Information System (INIS)

    Cossiello, Rafael F.; Susman, Mariano D.; Aramendia, Pedro F.; Atvars, Teresa D.Z.

    2010-01-01

    Absorption, emission, and anisotropy measurements were performed on poly-[2-methoxy-5(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and poly-(9,9'-dioctylfluorene-2,7-diyl) (PF) solutions of various solvents, and in thin films deposited from them. The good correlation of MEH-PPV absorption and emission energy with Hildebrandt's dispersive parameter indicate that dispersive forces regulate the effective extent of the luminophore. The excitation and the emission spectra of α and β chains can be distinguished in PF solutions using the steady-state anisotropy. PF films show greater memory effect from the solutions from which they were spun than MEH-PPV. Anisotropy of MEH-PPV is very low, both in solutions and in films reflecting efficient energy migration. Anisotropy of PF in solutions and films demonstrates great differences in energy transfer efficiency within the α and β phases, while there is no energy transfer between these chain conformations.

  10. Solvent substitution

    International Nuclear Information System (INIS)

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general ''Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated

  11. Solvent substitution

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated.

  12. Solvents level dipole moments.

    Science.gov (United States)

    Liang, Wenkel; Li, Xiaosong; Dalton, Larry R; Robinson, Bruce H; Eichinger, Bruce E

    2011-11-03

    The dipole moments of highly polar molecules measured in solution are usually smaller than the molecular dipole moments that are calculated with reaction field methods, whereas vacuum values are routinely calculated in good agreement with available vapor phase data. Whether from Onsager's theory (or variations thereof) or from quantum mechanical methods, the calculated molecular dipoles in solution are found to be larger than those measured. The reason, of course, is that experiments measure the net dipole moment of solute together with the polarized (perturbed) solvent "cloud" surrounding it. Here we show that the reaction field charges that are generated in the quantum mechanical self-consistent reaction field (SCRF) method give a good estimate of the net dipole moment of the solute molecule together with the moment arising from the reaction field charges. This net dipole is a better description of experimental data than the vacuum dipole moment and certainly better than the bare dipole moment of the polarized solute molecule.

  13. Photophysical properties of 1,8-naphthalic anhydride in aprotic solvents: An electron acceptor in excited state

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sujay; Biswas, Subhanip; Mondal, Mousumi; Basu, Samita, E-mail: samita.basu@saha.ac.in

    2014-01-15

    1,8-Naphthalic anhydride (NAN) has long been known as an intermediate for the synthesis of 1,8-naphthalimide derivatives with diverse applications. Uses of NAN for other purposes are restricted because it hydrolyzes in water and other protic solvents. In the current work we have investigated the absorption, steady-state and time-resolved fluorescence spectroscopy of NAN in eight different aprotic solvents of varying polarity. The compound is found to have different quantum yields in all the solvents. Astoundingly, NAN shows minimal fluorescence yield in dimethyl sulphoxide and N,N-dimethylformamide which is found to originate from pure collisional quenching owing to proton affinity of the solvent. In aprotic solvents acetonitrile and ethyl acetate, fluorescence emission and lifetime of NAN are quenched on addition of aliphatic amines namely triethylamine (TEA), tri-N-butylamine (TBA) and diisopropylethylamine (DIEA). Laser flash photolysis experiments in acetonitrile solvent have been used to find out the transient intermediates, which depict the involvement of photo-induced electron transfer from the amines to NAN. Hence, NAN has the potential to act as an efficient photo-induced electron acceptor in aprotic medium. -- Highlights: • In aprotic solvents NAN absorbs with maximum around 330–340 nm. • NAN fluoresce in aprotic solvents with maximum around 345–395 nm. • NAN has negligibly poor fluorescence in DMSO and DMF. • Fluorescence of NAN in aprotic solvents is quenched by TEA, TBA and DIEA. • Photo-induced electron transfer from the amines to NAN is the reason for such interaction.

  14. Acetone-based cellulose solvent.

    Science.gov (United States)

    Kostag, Marc; Liebert, Tim; Heinze, Thomas

    2014-08-01

    Acetone containing tetraalkylammonium chloride is found to be an efficient solvent for cellulose. The addition of an amount of 10 mol% (based on acetone) of well-soluble salt triethyloctylammonium chloride (Et3 OctN Cl) adjusts the solvent's properties (increases the polarity) to promote cellulose dissolution. Cellulose solutions in acetone/Et3 OctN Cl have the lowest viscosity reported for comparable aprotic solutions making it a promising system for shaping processes and homogeneous chemical modification of the biopolymer. Recovery of the polymer and recycling of the solvent components can be easily achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Extracción de Sustancias Hidrofóbicas de Andisols Repelentes al Agua del Oriente Antioqueño, con Solventes Polares

    Directory of Open Access Journals (Sweden)

    Jaramillo J. Daniel F.

    1997-12-01

    Full Text Available Muestras de Andisols repelentes al agua fueron sometidas a extracciones con mezclas de solventes orgánicos de diferentes polaridaddes; los lavados con mezclas de polaridades 5 y 6 removieron completamente la hidrofobicidad del suelo, sin importar el orden en el cual se hicieron. Del comportamiento del suelo frente a las secuencias de extracción se pudo concluir que los compuestos orgánicos del suelo se acumulan en él en forma de capas, las cuales pueden presentar alternancia de compuestos hidrofóbicos con compuestos hidrofílicos; además, los compuestos más hidrofóbicos son removidos por las mezclas de solventes de mayor grado de polaridad. Se plantea la existencia de dos tipos básicos de hidrofobicidad en los compuestos orgánicos del suelo: una "hidrofobicidad posible ": la que se manifiesta cuando la arena desarrolla repelencia al agua al recibir los extractos y que detecta la presencia de compuestos hidrofóbicos en ellos. La otra, la "hidrofobicidad activa": la que se produce en suelos humectables cuando reciben extractos hidrofóbicos y muestra, no sólo la presencia de los compuestos hidrofóbicos en ellos, sino también que se están presentando las condiciones para que ellos interactúen con los componentes originales del suelo y se desarrolle la hidrofobicidad en el mismo. Extractos obtenidos por lavado de raíces finas y acículas recién caídas de Pinus patula, con mezclas de polaridades 5 y 6, no indugeron repelencia apreciable al agua, ni en suelos humectables ni en arena lavada, cuando se aplicaron en concentraciones menores de 0.4%, lo que sugiere que estos materiales deben tener algún grado de transformación para que le impriman al suelo la hidrofobicidad; además, las raíces tienen una mayor hidrofobicidad potencial que las acículas.

  16. High throughput screening: an in silico solubility parameter approach for lipids and solvents in SLN preparations.

    Science.gov (United States)

    Shah, Malay; Agrawal, Yadvendra

    2013-01-01

    The present paper describes an in silico solubility behavior of drug and lipids, an essential screening study in preparation of solid lipid nanoparticles (SLN). Ciprofloxacin HCl was selected as a model drug along with 11 lipids and 5 organic solvents. In silico miscibility study of drug/lipid/solvent was performed using Hansen solubility parameter approach calculated by group contribution method of Van Krevelen and Hoftyzer. Predicted solubility was validated by determining solubility of lipids in various solvent at different temperature range, while miscibility of drug in lipids was determined by apparent solubility study and partition experiment. The presence of oxygen and OH functionality increases the polarity and hydrogen bonding possibilities of the compound which has reflected the highest solubility parameter values for Geleol and Capmul MCM C8. Ethyl acetate, Geleol and Capmul MCM C8 was identified as suitable organic solvent, solid lipid and liquid lipid respectively based on a solubility parameter approach which was in agreement with the result of an apparent solubility study and partition coefficient. These works demonstrate the validity of solubility parameter approach and provide a feasible predictor to the rational selection of excipients in designing SLN formulation.

  17. Tuning redox potentials of bis(imino)pyridine cobalt complexes: an experimental and theoretical study involving solvent and ligand

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, C. Moyses; Doherty, Mark D.; Konezny, Steven J; Luca, Oana R; Usyatinsky, Alex; Grade, Hans; Lobkovsky, Emil B.; Soloveichik, Grigorii; Crabtree, Robert H; Batista, Victor S.

    2012-01-01

    The structure and electrochemical properties of a series of bis(imino)pyridine CoII complexes (NNN)CoX₂ and [(NNN)₂Co][PF₆]₂ (NNN = 2,6-bis[1-(4-R-phenylimino)ethyl]pyridine, with R = CN, CF₃, H, CH₃, OCH₃, N(CH₃)₂; NNN = 2,6-bis[1-(2,6-(iPr)₂-phenylimino)ethyl]pyridine and X = Cl, Br) were studied using a combination of electrochemical and theoretical methods. Cyclic voltammetry measurements and DFT/B3LYP calculations suggest that in solution (NNN)CoCl₂ complexes exist in equilibrium with disproportionation products [(NNN)₂Co]²⁺ [CoCl₄]²⁻ with the position of the equilibrium heavily influenced by both the solvent polarity and the steric and electronic properties of the bis(imino)pyridine ligands. In strong polar solvents (e.g., CH₃CN or H₂O) or with electron donating substituents (R = OCH₃ or N(CH₃)₂) the equilibrium is shifted and only oxidation of the charged products [(NNN)₂Co]²⁺ and [CoCl₄]²⁻ is observed. Conversely, in nonpolar organic solvents such as CH₂Cl₂ or with electron withdrawing substituents (R = CN or CF₃), disproportionation is suppressed and oxidation of the (NNN)CoCl₂ complexes leads to 18e⁻ CoIII complexes stabilized by coordination of a solvent moiety. In addition, the [(NNN)₂Co][PF₆]₂ complexes exhibit reversible CoII/III oxidation potentials that are strongly dependent on the electron withdrawing/donating nature of the N-aryl substituents, spanning nearly 750 mV in acetonitrile. The resulting insight on the regulation of redox properties of a series of bis(imino)pyridine cobalt(II) complexes should be particularly valuable to tune suitable conditions for reactivity.

  18. Solvent sorting in (mixed solvent electrolyte) systems: Time-resolved ...

    Indian Academy of Sciences (India)

    eral studies7–19 that investigated the solvation and rota- tional dynamics either in electrolyte solutions in a sin- gle polar solvent or in binary mixtures in the absence of any electrolyte, similar studies for electrolyte solutions. £For correspondence ..... vent rotation being much faster than the ion translation provides some ...

  19. Pallidol hexa-acetate ethyl acetate monosolvate.

    Science.gov (United States)

    Mao, Qinyong; Taylor, Dennis K; Ng, Seik Weng; Tiekink, Edward R T

    2013-01-01

    The entire mol-ecule of pallidol hexa-acetate {systematic name: (±)-(4bR,5R,9bR,10R)-5,10-bis-[4-(acet-yloxy)phen-yl]-4b,5,9b,10-tetra-hydro-indeno-[2,1-a]indene-1,3,6,8-tetrayl tetra-acetate} is completed by the application of twofold rotational symmetry in the title ethyl acetate solvate, C40H34O12·C4H8O2. The ethyl acetate mol-ecule was highly disordered and was treated with the SQUEEZE routine [Spek (2009 ▶). Acta Cryst. D65, 148-155]; the crystallographic data take into account the presence of the solvent. In pallidol hexa-acetate, the dihedral angle between the fused five-membered rings (r.m.s. deviation = 0.100 Å) is 54.73 (6)°, indicating a significant fold in the mol-ecule. Significant twists between residues are also evident as seen in the dihedral angle of 80.70 (5)° between the five-membered ring and the pendent benzene ring to which it is attached. Similarly, the acetate residues are twisted with respect to the benzene ring to which they are attached [C-O(carb-oxy)-C-C torsion angles = -70.24 (14), -114.43 (10) and -72.54 (13)°]. In the crystal, a three-dimensional architecture is sustained by C-H⋯O inter-actions which encompass channels in which the disordered ethyl acetate mol-ecules reside.

  20. Going the distance with ethyl alcohol

    International Nuclear Information System (INIS)

    Hairston, D.W.

    1995-01-01

    If all had gone according to plan, ethyl alcohol would be in the driver's seat now, cruising down the highway and getting ready to speed into high gear. Instead, this renewable fuel, chemical reagent and solvent is navigating a complex obstacle course, watching warily for sharp turns and mixed signals. Globally, the supply and demand for all grades of ethyl alcohol is awry. Production of industrial-grade material is running at full throttle and prices are going up. Much of the upheaval over ethanol can be traced to the US Environmental Protection Agency and the renewable oxygenate standard (ROS) of the Clean Air Act. Under ROS, 15% of oxygenates used in gasoline sold this year was to be derived from a renewable source. Next month, that percentage was to have been doubled to 30%. Enticed by projections of upwards of 2 billion gal/yr of fermentation alcohol to comply with ROS, producers rushed to expand capacity. But to the producers' dismay, EPA was forced to backpedal on ROS. When representatives of the petroleum industry filed suit and won a stay, EPA rescinded its ROS regulation and ethanol producers were left in the lurch. High prices for corn is also putting the squeeze on inventories of industrial alcohol. Synthetic ethanol production, from ethylene for example, is booming, however. This paper discusses the ethanol market factors

  1. Solvent substitutes

    International Nuclear Information System (INIS)

    Evanoff, S.P.

    1995-01-01

    The environmental and industrial hygiene regulations promulgated since 1980, most notably the Superfund Amendments and Reauthorization Act (SARA), the Hazardous and Solid Waste Amendments to the Resources Conservation and Recovery Act (RCRA), and the Clean Air Act Amendments of 1990, have brought about an increased emphasis on user exposure, hazardous waste generation, and air emissions. As a result, industry is performing a fundamental reassessment of cleaning solvents, processes, and procedures. The more progressive organizations have made their goal the elimination of solvents that may pose significant potential human health and environmental hazards. This chapter discusses solvent cleaning in metal-finishing, metal-manufacturing, and industrial maintenance applications; precision cleaning; and electronics manufacturing. Nonmetallic cleaning, adhesives, coatings, inks, and aerosols also will be addressed, but in a more cursory manner

  2. Green solvents and technologies for oil extraction from oilseeds

    OpenAIRE

    Kumar, S. P. Jeevan; Prasad, S. Rajendra; Banerjee, Rintu; Agarwal, Dinesh K.; Kulkarni, Kalyani S.; Ramesh, K. V.

    2017-01-01

    Oilseeds are crucial for the nutritional security of the global population. The conventional technology used for oil extraction from oilseeds is by solvent extraction. In solvent extraction, n-hexane is used as a solvent for its attributes such as simple recovery, non-polar nature, low latent heat of vaporization (330?kJ/kg) and high selectivity to solvents. However, usage of hexane as a solvent has lead to several repercussions such as air pollution, toxicity and harmfulness that prompted to...

  3. Catalytic Combustion of Ethyl Acetate

    OpenAIRE

    ÖZÇELİK, Tuğba GÜRMEN; ATALAY, Süheyda; ALPAY, Erden

    2014-01-01

    The catalytic combustion of ethyl acetate over prepared metal oxide catalysts was investigated. CeO, Co2O3, Mn2O3, Cr2O3, and CeO-Co2O3 catalysts were prepared on monolith supports and they were tested. Before conducting the catalyst experiments, we searched for the homogeneous gas phase combustion reaction of ethyl acetate. According to the homogeneous phase experimental results, 45% of ethyl acetate was converted at the maximum reactor temperature tested (350 °C). All the prepare...

  4. Extraction of Betulin, Trimyristin, Eugenol and Carnosic Acid Using Water-Organic Solvent Mixtures

    Directory of Open Access Journals (Sweden)

    Fulgentius N. Lugemwa

    2012-08-01

    Full Text Available A solvent system consisting of ethyl acetate, ethyl alcohol and water, in the volume ratio of 4.5:4.5:1, was developed and used to extract, at room temperature, betulin from white birch bark and antioxidants from spices (rosemary, thyme, sage, and oregano and white oak chips. In addition, under reflux conditions, trimyristin was extracted from nutmeg using the same solvent system, and eugenol from olives was extracted using a mixture of salt water and ethyl acetate. The protocol demonstrates the use of water in organic solvents to extract natural products from plants. Measurement of the free-radical scavenging activity using by 2,2-diphenyl-1-picrylhydrazyl (DPPH indicated that the extraction of plant material using ethyl acetate, ethyl alcohol and water (4.5:4.5:1, v/v/v was exhaustive when carried out at room temperature for 96 h.

  5. Radioluminescence of solid ethyl acetate

    International Nuclear Information System (INIS)

    Kroh, J.; Plonka, A.; Wyszywacz, K.

    1977-01-01

    In the crystalline environment the reaction of thermalized electrons with ethyl acetate molecules is less effective than in glassy environment. Therefore more excess electrons are observed in crystalline ethyl acetate by isothermal luminescence and radiothermoluminescence. In the glassy environment other trapped species, like radical-anions CH 3 COOC 2 H 5 - or radicals CH 3 COOCHCH 3 , become reactive at lower temperatures than in the crystalline environment because of glass transition. (author)

  6. 21 CFR 173.228 - Ethyl acetate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethyl acetate. 173.228 Section 173.228 Food and..., Lubricants, Release Agents and Related Substances § 173.228 Ethyl acetate. Ethyl acetate (CAS Reg. No. 141-78... the specifications of the Food Chemicals Codex, 1 (Ethyl Acetate; p. 372, 3d Ed., 1981), which are...

  7. Choice of solvent extraction technique affects fatty acid composition of pistachio (Pistacia vera L.) oil.

    Science.gov (United States)

    Abdolshahi, Anna; Majd, Mojtaba Heydari; Rad, Javad Sharifi; Taheri, Mehrdad; Shabani, Aliakbar; Teixeira da Silva, Jaime A

    2015-04-01

    Pistachio (Pistacia vera L.) oil has important nutritional and therapeutic properties because of its high concentration of essential fatty acids. The extraction method used to obtain natural compounds from raw material is critical for product quality, in particular to protect nutritional value. This study compared the fatty acid composition of pistachio oil extracted by two conventional procedures, Soxhlet extraction and maceration, analyzed by a gas chromatography-flame ionization detector (GC-FID). Four solvents with different polarities were tested: n-hexane (Hx), dichloromethane (DCM), ethyl acetate (EtAc) and ethanol (EtOH). The highest unsaturated fatty acid content (88.493 %) was obtained by Soxhlet extraction with EtAc. The Soxhlet method extracted the most oleic and linolenic acids (51.99 % and 0.385 %, respectively) although a higher concentration (36.32 %) of linoleic acid was extracted by maceration.

  8. Excited state charge transfer reaction in (mixed solvent+ electrolyte ...

    Indian Academy of Sciences (India)

    The reaction time constant in low polar mixtures, which becomes faster on addition of electrolyte, lengthens on increasing the mole fraction of the relatively less polar solvent component of the mixture. These observations have been qualitatively explained in terms of the measured solvent reorganization energy and reaction ...

  9. Measurement and correlation of solubility of dodecanedioic acid in different pure solvents from T = (288.15 to 323.15) K

    International Nuclear Information System (INIS)

    Zhang, Hui; Yin, Qiuxiang; Liu, Zengkun; Gong, Junbo; Bao, Ying; Zhang, Meijing; Hao, Hongxun; Hou, Baohong; Xie, Chuang

    2014-01-01

    Highlights: • The solubility of dodecanedioic acid was determined in six selected solvents. • The experimental data were well correlated with the modified Apelblat equation. • The molecular modeling studies were used to understand the behavior of solubility. • The enthalpy, entropy and the molar Gibbs energy of solution were predicted. -- Abstract: The solubility of dodecanedioic acid in ethanol, acetic acid, acetone, butanone, 3-pentanone and ethyl acetate has been measured at temperatures ranging from (288.15 to 323.15) K by a static analytic method at atmospheric pressure. At a given temperature, the order of solubility is ethanol > acetic acid > acetone > butanone > 3-pentanone > ethyl acetate. Molecular modeling study using Materials Studio DMol 3 (Accelrys Software Inc.) indicated that the solubility of dodecanedioic acid depends not only on the polarities of the solvents but also on the interactions between dodecanedioic acid and solvent molecules. Furthermore, the modified Apelblat equation was used to represent the temperature dependence of the mole fraction solubility. Finally, the molar Gibbs energy, enthalpy, and entropy of the solution were calculated using the fitting parameters of the modified Apelblat equation

  10. Stability and selectivity of alkaline proteases in hydrophilic solvents

    DEFF Research Database (Denmark)

    Pedersen, Lars Haastrup; Ritthitham, Sinthuwat; Pleissner, Daniel

    2008-01-01

    Hydrophilic, organic solvents can be used as co-solvents with water to produce one phase systems sustaining optimal mass transfer of substrates and products of mixed polarity in biocatalysed processes. At concentrations below 50 % hydrophilic solvents can even have a stabilising effect on alkalin...

  11. Magnetic nanoparticles and high-speed countercurrent chromatography coupled in-line and using the same solvent system for separation of quercetin-3-O-rutinoside, luteoloside and astragalin from a Mikania micrantha extract.

    Science.gov (United States)

    Wang, Juanqiang; Geng, Shan; Wang, Binghai; Shao, Qian; Fang, Yingtong; Wei, Yun

    2017-07-28

    A new in-line method of magnetic nanoparticles (MNPs) coupled with high-speed countercurrent chromatography (HSCCC) using a same solvent system during the whole separation process was established to achieve the rapid separation of flavonoids from Mikania micrantha. The adsorption and desorption capacities of five different MNPs for flavonoid standards and Mikania micrantha crude extract were compared and the most suitable magnetic nanoparticle Fe 3 O 4 @SiO 2 @DIH@EMIMLpro was selected as the in-line MNP column. An in-line separation system was established by combining this MNP column with HSCCC through a six-way valve. The comparison between two solvent systems n-hexane-ethyl acetate-methanol-water (3:5:3:5, v/v) and ethyl acetate-methanol-water (25:1:25, v/v) showed that the latter solvent system was more suitable for simultaneously in-line separating three flavonoids quercetin-3-O-rutinoside, luteoloside and astragalin from Mikania micrantha. The purities of these three compounds with the ethyl acetate-methanol-water solvent system were 95.13%, 98.54% and 98.19% respectively. Results showed the established in-line separation system of MNP-HSCCC was efficient, recyclable and served to isolate potential flavonoids with similar polarities from natural complex mixtures. The in-line combination of magnetic nanoparticles with high-speed countercurrent chromatography eluting with the same solvent system during the whole separation process was established for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Rational approach to solvent system selection for liquid-liquid extraction-assisted sample pretreatment in counter-current chromatography.

    Science.gov (United States)

    Wang, Jiajia; Gu, Dongyu; Wang, Miao; Guo, Xinfeng; Li, Haoquan; Dong, Yue; Guo, Hong; Wang, Yi; Fan, Mengqi; Yang, Yi

    2017-05-15

    A rational liquid-liquid extraction approach was established to pre-treat samples for high-speed counter-current chromatography (HSCCC). n-Hexane-ethyl acetate-methanol-water (4:5:4:5, v/v) and (1:5:1:5, v/v) were selected as solvent systems for liquid-liquid extraction by systematically screening K of target compounds to remove low- and high-polarity impurities in the sample, respectively. After liquid-liquid extraction was performed, 1.4g of crude sample II was obtained from 18.5g of crude sample I which was extracted from the flowers of Robinia pseudoacacia L., and then separated with HSCCC by using a solvent system composed of n-hexane-ethyl acetate-methanol-water (1:2:1:2, v/v). As a result, 31mg of robinin and 37mg of kaempferol 7-O-α-l-rhamnopyranoside were isolated from 200mg of crude sample II in a single run of HSCCC. A scale-up separation was also performed, and 160mg of robinin with 95% purity and 188mg of kaempferol 7-O-α-l-rhamnopyranoside with 97% purity were produced from 1.2g of crude sample II. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Microalgae wet extraction using N-ethyl butylamine for fatty acid production

    Directory of Open Access Journals (Sweden)

    Ying Du

    2016-04-01

    Full Text Available Microalgae are considered a promising feedstock for the production of food ingredients, cosmetics, pharmaceutical products and biofuels. The energy intensity of drying and cell breaking of algae and solvent recovery afterwards hindered the route of algae biorefinery. In this work the influences of freeze drying and cell breaking to the extraction efficiency of crude lipid yield and fatty acid yield were investigated. Results showed that drying and cell breaking are not necessary for N-ethyl butylamine extraction, because good yields were obtained without. Crude lipid yield and fatty acid yield using N-ethyl butylamine were comparable with Bligh & Dyer extraction, making N-ethyl butylamine a candidate for further development of an energy efficient lipid extraction technology for non-broken microalgae. Keywords: Microalgae, Lipids, Extraction, Switchable solvent, Secondary amine

  14. Enzymatic Transesterification of Ethyl Ferulate with Fish Oil and Its Optimization by Response Surface Methodology

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Glasius, Marianne; Xu, Xuebing

    2012-01-01

    The enzymatic transesterification of ethyl ferulate (EF) with cod liver fish oil was investigated with Novozym 435 as catalyst under solvent-free conditions. The purpose of the study is to evaluate the synthesis system for production of feruloyl fish oil in industry. The modified HPLC method was ...

  15. Solvent effects in the nucleophilic substitutions of tetrahydropyran acetals promoted by trimethylsilyl trifluoromethanesulfonate: trichloroethylene as solvent for stereoselective C- and O-glycosylations.

    Science.gov (United States)

    Kendale, Joanna C; Valentín, Elizabeth M; Woerpel, K A

    2014-07-18

    The selectivities of nucleophilic substitution reactions of tetrahydropyran acetals promoted by trimethylsilyl trifluoromethanesulfonate depend upon the reaction solvent. Polar solvents favor the formation of S(N)1 products, while nonpolar solvents favor S(N)2 products. Trichloroethylene was identified as the solvent most likely to give S(N)2 products in both C- and O-glycosylation reactions.

  16. Phase equilibria of carbohydrates in polar solvents

    DEFF Research Database (Denmark)

    Jonsdottir, Svava Osk; Rasmussen, Peter

    1999-01-01

    A method for calculating interaction energies and interaction parameters with molecular mechanics methods is extended to predict solid-liquid equilibria (SLE) for saccharides in aqueous solution, giving results in excellent agreement with experimental values. Previously, the method has been shown...

  17. Development of Switchable Polarity Solvent Draw Solutes

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Aaron D.

    2016-11-01

    Results of a computational fluid dynamic (CFD) study of flow and heat transfer in a printed circuit heat exchanger (PCHE) geometry are presented. CFD results obtained from a two-plate model are compared to corresponding experimental results for the validation. This process provides the basis for further application of the CFD code to PCHE design and performance analysis in a variety of internal flow geometries. As a part of the code verification and validation (V&V) process, CFD simulation of a single semicircular straight channel under laminar isothermal conditions was also performed and compared to theoretical results. This comparison yielded excellent agreement with the theoretical values. The two-plate CFD model based on the experimental PCHE design overestimated the effectiveness and underestimated the pressure drop. However, it is found that the discrepancy between the CFD result and experimental data was mainly caused by the uncertainty in the geometry of heat exchanger during the fabrication. The CFD results obtained using a slightly smaller channel diameter yielded good agreement with the experimental data. A separate investigation revealed that the average channel diameter of the OSU PCHE after the diffusion-bonding was 1.93 mm on the cold fluid side and 1.90 mm on the hot fluid side which are both smaller than the nominal design value. Consequently, the CFD code was shown to have sufficient capability to evaluate the heat exchanger thermal-hydraulic performance.

  18. Gas separation by composite solvent-swollen membranes

    Science.gov (United States)

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1989-01-01

    There is disclosed a composite immobulized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorous or sulfur atom, and having a boiling point of at least 100.degree. C. and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation.

  19. 27 CFR 21.107 - Ethyl acetate.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ethyl acetate. 21.107....107 Ethyl acetate. (a) 85 percent ester: (1) Acidity (as acetic acid). Not more than 0.015 percent by...); for incorporation by reference, see § 21.6(b).) When 100 ml of ethyl acetate are distilled by this...

  20. 21 CFR 573.420 - Ethyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ethyl cellulose. 573.420 Section 573.420 Food and... Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether containing...

  1. 21 CFR 172.868 - Ethyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethyl cellulose. 172.868 Section 172.868 Food and... Multipurpose Additives § 172.868 Ethyl cellulose. The food additive ethyl cellulose may be safely used in food in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  2. 21 CFR 184.1293 - Ethyl alcohol.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethyl alcohol. 184.1293 Section 184.1293 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1293 Ethyl alcohol. (a) Ethyl alcohol (ethanol) is the chemical C2H5OH. (b...

  3. Antimicrobial activities of different solvents extracted samples of ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-28

    Dec 28, 2011 ... This research work was carried out to investigate the antimicrobial activities of different solvents extracted samples of Linum usitatissimum against seven bacterial and one fungal pathogen. Three concentrations (0.66, 1.00 and 1.33 mg dics-1) each of ethyl acetate, n-hexane, butanol and distilled.

  4. Solvent selection for solid-to-solid synthesis

    NARCIS (Netherlands)

    Ulijn, R.V.; Martin, de L.; Gardossi, L.; Janssen, A.E.M.; Moore, B.D.; Halling, P.J.

    2002-01-01

    Thermolysin catalyzed solid-to-solid synthesis of the model peptide Z-L-Phe-L-Leu-NH2 is practically feasible in water and a range of organic solvents with different physicochemical properties. Excellent overall conversions were obtained in acetonitrile, ethyl acetate, n-hexane, methanol,

  5. Antifeedant Activty Of Different Organic Solvent Crude Extracts Of ...

    African Journals Online (AJOL)

    The antifeedant activity of different organic solvents (acetone, carbon tetrachloride, chloroform, diethyl ether and ethyl alcohol) crude extracts of latex of Euphorbia hirta (family Euphobiaceae) against Limicolaria aurora was investigated, and compared with a control, using pawpaw, (Carica papaya) as bait, at a concentration ...

  6. Solvent induced supramolecular anisotropy in molecular gels

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Michael A., E-mail: mroger09@uoguelph.ca [Department of Food Science, University of Guelph, Guelph, Ontario, N3C3X9 (Canada); Corradini, Maria G. [Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003 (United States); Emge, Thomas [Department of Chemistry and Biochemistry, Rutgers University, New Brunswick, NJ, 08901 (United States)

    2017-06-15

    Herein is the first report of solvent induced anisotropy in 12-hydroxystearic acid self-assembled fibrillar networks. Increasing the chain length of polar solvent, such as nitriles and ketones, tailored the anisotropy of the fibrillar aggregates. 12HSA molecular gels, comprised of alkanes, exhibited an isotropic fibrillar network irrespective of the alkane chain length. In polar solvents, anisotropy, observed using 2D powder x-ray diffraction profiles, is correlated to a fibrillar supramolecular morphologies in long chain nitriles and ketones while sphereulitic crystals are correlated to x-ray diffraction patterns with an isotropic scatter intensity in short chain ketones and nitriles. These changes directly modify the final physical properties of the gels. - Highlights: • 12-HSA self-assembles into crystalline supramolecular morphologies depending on the solvent. • Alkanes, short chain nitriles and ketones led to 12-HSA displaying supramolecular isotropy. • In long chain nitriles and ketones, 12-HSA displays supramolecular anisotropy.

  7. Solvent induced supramolecular anisotropy in molecular gels

    International Nuclear Information System (INIS)

    Rogers, Michael A.; Corradini, Maria G.; Emge, Thomas

    2017-01-01

    Herein is the first report of solvent induced anisotropy in 12-hydroxystearic acid self-assembled fibrillar networks. Increasing the chain length of polar solvent, such as nitriles and ketones, tailored the anisotropy of the fibrillar aggregates. 12HSA molecular gels, comprised of alkanes, exhibited an isotropic fibrillar network irrespective of the alkane chain length. In polar solvents, anisotropy, observed using 2D powder x-ray diffraction profiles, is correlated to a fibrillar supramolecular morphologies in long chain nitriles and ketones while sphereulitic crystals are correlated to x-ray diffraction patterns with an isotropic scatter intensity in short chain ketones and nitriles. These changes directly modify the final physical properties of the gels. - Highlights: • 12-HSA self-assembles into crystalline supramolecular morphologies depending on the solvent. • Alkanes, short chain nitriles and ketones led to 12-HSA displaying supramolecular isotropy. • In long chain nitriles and ketones, 12-HSA displays supramolecular anisotropy.

  8. New RO TFC Membranes by Interfacial Polymerization in n-Dodecane with Various co-Solvents.

    Science.gov (United States)

    Al-Hobaib, Abdullah Sulaiman; Al-Suhybani, Mohammed Sulaiman; Al-Sheetan, Khalid Mohammed; Mousa, Hasan; Shaik, Mohammed Rafi

    2016-04-29

    The objective of this research is to prepare and characterize a new and highly efficient polyamide TFC RO membrane by interfacial polymerization in dodecane solvent mixed with co-solvents. Three co-solvents were tested namely; acetone, ethyl acetate, and diethyl ether of concentration of 0.5, 1, 2, 3, and 5 wt %. The modified membranes were characterized by SEM, EDX, AFM and contact angle techniques. The results showed that addition of co-solvent results in a decrease in the roughness, pore size and thickness of the produced membranes. However, as the concentration of the co-solvent increases the pore size of the membranes gets larger. Among the three co-solvents tested, acetone was found to result in membranes with the largest pore size and contact angle followed by diethyl ether then ethyl acetate. Measured contact angle increases as the concentration of the co-solvent increases reaching a constant value except for ethyl acetate where it was found to drop. Investigating flux and salt rejection by the formulated membranes showed that higher flux was attained when acetone was used as a co-solvent followed by diethyl ether then ethyl acetate. However, the highest salt rejection was achieved with diethyl ether.

  9. Solvent Optimization for Efficient Enzymatic Monoacylglycerol Production Based on a Glycerolysis Reaction

    DEFF Research Database (Denmark)

    Damstrup, Marianne; Jensen, Tine; Sparsø, Flemming V.

    2005-01-01

    This study was aimed at screening solvent systems of varying polarities to identify suitable solvents for efficient and practical enzymatic glycerolysis. Several pure solvents and solvent mixtures were screened in a batch reaction system consisting of glycerol, sunflower oil, and Novozymo (R) 435...

  10. Solvents interactions with thermochromic print

    Directory of Open Access Journals (Sweden)

    Mirela Rožić

    2017-12-01

    Full Text Available In this study, the interactions between different solvents (benzene, acetone, cyclohexanone, various alcohols and water and thermochromic printing ink were investigated. Thermochromic printing ink was printed on metal surface. Components of thermochromic printing inks are polymeric microcapsules and classic yellow offset printing ink. Below its activation temperature, dye and developer within the microcapsules form a blue coloured complex. Therefore, thermochromic print is green. By heating above the activation temperature, blue colour of the complex turns into the leuco dye colourless state and the green colour of the prints turns into the yellow colour of the classic offset pigment. The results of the interaction with various solvents show that the thermochromic print is stable in all tested solvents except in ethanol, acetone and cyclohexanone. In ethanol, the green colour of the print becomes yellow. SEM analysis shows that microcapsules are dissolved. In acetone and cyclohexanone, the green colour of the print turns into blue, and the microcapsules become significantly more visible. Thus, the yellow pigment interacts with examined ketones. Based on the obtained interactions it can be concluded that the microcapsules have more polar nature than the classical pigment particles. Solvent-thermocromic print interactions were analysed using Hansen solubility parameters that rank the solvents based on their estimated interaction capabilities.

  11. Hansen Cleaning Solvent Research

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental regulation will force current baseline precision cleaning solvent (AK-225) to be phased out starting 2015; we plan to develop a new solvent or solvent...

  12. Nanostructures on spin-coated polymer films controlled by solvent composition and polymer molecular weight

    Energy Technology Data Exchange (ETDEWEB)

    Dario, Aline F.; Macia, Henrique B.; Petri, Denise F.S., E-mail: dfsp@iq.usp.br

    2012-12-01

    In this study we systematically investigated how the solvent composition used for polymer dissolution affects the porous structures of spin-coated polymers films. Cellulose acetate butyrate (CAB) and poly(methyl methacrylate) with low (PMMA-L) and high (PMMA-H) molecular weights were dissolved in mixtures of acetone (AC) and ethyl acetate (EA) at constant polymer concentration of 10 g/L The films were spin-coated at a relative air humidity of 55 {+-} 5%, their thickness and index of refraction were determined by means of ellipsometry and their morphology was analyzed by atomic force microscopy. The dimensions and frequency of nanocavities on polymer films increased with the acetone content ({phi}{sub AC}) in the solvent mixture and decreased with increasing polymer molecular weight. Consequently, as the void content increased in the films, their apparent thicknesses increased and their indices of refraction decreased, creating low-cost anti-reflection surface. The void depth was larger for PMMA-L than for CAB. This effect was attributed to different activities of EA and AC in CAB or PMMA-L solution, the larger mobility of chains and the lower polarity of PMMA-L in comparison to CAB. - Highlights: Black-Right-Pointing-Pointer Nanostructures in spin-coated polymer films depend on the solvent vapor pressure. Black-Right-Pointing-Pointer Anti-reflection polymer films are produced at high solvent vapor pressure. Black-Right-Pointing-Pointer Only shallow cavities are obtained in films of polymers with high molecular weight.

  13. Effectivity of Beta vulgaris L. Extract with various Solvent Fractions to Aedes aegypti Larval Mortality

    Directory of Open Access Journals (Sweden)

    Mutiara Widawati

    2013-06-01

    Full Text Available Dengue vector control is mostly done by using plant-based insecticides. Insecticides from the vegetable and fruit extracts of the leaves of plants that contain compounds alkaloids, saponins, flavonoids, tannins, triterpenoids, and polyphenols can be used as an alternative to naturally control Ae. aegypti. The purpose of this study was to determine the effectiveness of the B. vulgaris L. extract larvacide against larvae of Ae. aegypti. The materials that been used was B. vulgaris L. fruit parts which was milled and dried to become a powder form. 800 g of dry powder was extracted by 70% methanol by percolation method with occasional stirring for 3 days. The extract was concentrated using an evaporator. 60 g remaining residue was dissolved in distilled water and re-extracted with diethyl ether, chloroform, and ethyl acetate. Each fraction extract was dried with anhydrous sodium sulfate and the solvent was distilled. The extract was tested qualitatively to determine the content of secondary metabolites. Larvacide test performed by dissolving each extracts in dimetilsulphoxide (DMSO at concentrations of 0.1, 0.5 and 1%. The larvae used was larval of Ae. aegypti age of seven days. Death larvae counted every day for seven days to determine the effect of the contact. Tests carried out at a temperature of 27±1°C by immersing 25 larvae at each concentration of the extract with 50 mL volume and three replications was performed. The data obtained were analyzed further with different test. The results showed that fruit extract contains flavonoids, alkoloid, sterols, triterpenes, saponins and tannins. Highest mortality happened which was 82.5% and the lowest mortality happened with a concentration of 0.1% diethyl ether extract fraction. The extracts that are dissolved in various solvent fractions have not been effective as a larvacide until the highest concentration which was 1%. Methanol and polar solvent extracts of the fruit has a larvacide potency a bit

  14. Extraction of α-mangostin from Garcinia mangostana L. using alternative solvents: Computational predictive and experimental studies

    OpenAIRE

    Bundeesomchok, Kunnitee; Filly, Aurore; Rakotomanomana, Njara

    2016-01-01

    This study evaluated the performance of alternative green solvents, i.e. D-limonene, dimethylcarbonate (DMC), ethanol, ethyl acetate, ethyl lactate and methyltetrahydrofuran (MeTHF) compared to the petroleum based dichloromethane, for extraction of alpha-mangostin from Garcinia mangostana pericarps. The Hansen solubility parameters (HSPs) were used to explain the dissolution behavior of the solutes and solvents, and the conductor-like screening model for realistic solvation. The (COSMO-RS), a...

  15. Nitrosation of glycine ethyl ester and ethyl diazoacetate to give the alkylating agent and mutagen ethyl chloro(hydroximino)acetate.

    Science.gov (United States)

    Zhou, Lin; Haorah, James; Chen, Sheng C; Wang, Xiaojie; Kolar, Carol; Lawson, Terence A; Mirvish, Sidney S

    2004-03-01

    Whereas nitrosation of secondary amines produces nitrosamines, amino acids with primary amino groups and glycine ethyl ester were reported to react with nitrite to give unidentified agents that alkylated 4-(p-nitrobenzyl)pyridine to produce purple dyes and be direct mutagens in the Ames test. We report here that treatment of glycine ethyl ester at 37 degrees C with excess nitrite acidified with HCl, followed by ether extraction, gave 30-40% yields of a product identified as ethyl chloro(hydroximino)acetate [ClC(=NOH)COOEt, ECHA] and a 9% yield of ethyl chloroacetate. The ECHA was identical to that synthesized by a known method from ethyl acetoacetate, strongly alkylated nitrobenzylpyridine, and may have arisen by N-nitrosation of glycine ethyl ester to give ethyl diazoacetate, which was C-nitrosated and reacted with chloride to give ECHA. Nitrosation of ethyl diazoacetate also yielded ECHA. Ethyl nitroacetate was not an intermediate as its nitrosation did not produce ECHA. ECHA reacted with aniline to give ethyl (hydroxamino)(phenylimino)acetate [PhN=C(NHOH)CO2Et]. This product was different from ethyl [(phenylamino)carbonyl]carbamate [PhNHC(=O)NHCO2Et], which was synthesized by reacting ethyl isocyanatoformate (OCN.CO2Et) with aniline. ECHA reacted with guanosine to give a derivative, which may have been a guanine-C(=NOH)CO2Et derivative. ECHA showed moderate toxicity and weak but significant mutagenicity without activation in Salmonella typhimurium TA-100 (mean, 1.31 x control value for 12-18 microg/plats) and for V79 mammalian cells (1.5-1.7 x control value for 60-100 microM). In conclusion, gastric nitrosation of glycine derivatives such as peptides with a N-terminal glycine might produce ECHA analogues that alkylate bases of gastric mucosal DNA and thereby initiate gastric cancer.

  16. Polarization Optics

    OpenAIRE

    Fressengeas, Nicolas

    2010-01-01

    The physics of polarization optics *Polarized light propagation *Partially polarized light; DEA; After a brief introduction to polarization optics, this lecture reviews the basic formalisms for dealing with it: Jones Calculus for totally polarized light and Stokes parameters associated to Mueller Calculus for partially polarized light.

  17. [The study of vapor-liquid equilibria for polymer/solvents by using gas-liquid chromatography].

    Science.gov (United States)

    Xie, J

    1999-05-01

    The infinite dilution weight fraction activity coefficient, omega 1 infinity, and Flory-Huggins interaction parameter, chi, have been determined for systems of polydimethylsiloxane (PDMS)/solvents and polymethyl-methacrylate (PMMA)/solvents by using gas chromatography from 58 degrees C to 180 degrees C. The solvents include styrene, acetone, ethyl ether, methanol, ethanol, acetic acid, trichloromethane, tetrahydrofuran and ethyl acetate in PDMS/solvent systems and n-hexane, n-heptane, cyclohexane, benzene, toluene, ethyl benzene, styrene, acetone, ethyl ether, methanol, ethanol, methyl methacrylate(MMA), trichloromethane, tetrahydrofuran and ethyl acetate in the PMMA/solvent systems. The results showed that omega 1 infinity and chi were decreased with the increase of temperature in the range from 58 degrees C to 180 degrees C. The study showed that UNIFAC and UNIFAC-FV models could not all be used to estimate omega 1 infinity of the solvents in PMMA/solvent systems. Therefore, UNIFAC and UNIFAC-FV models must be corrected or other models must be used.

  18. Extraction of medically interesting 188Re-perrhenate in methyl ethyl ketone for concentration purposes

    International Nuclear Information System (INIS)

    Mushtaq, A.; Bukhari, T.H.; Khan, I.U.

    2007-01-01

    The high bolus volumes (20-40mL) of the generator-produced Rhenium-188 require post elution concentration of the eluate for the preparation of a dissolved β - source and radiopharmaceuticals labeled with Re-188 for radiotherapy. Solvent extraction of 188 Re in methyl ethyl ketone was studied. With the increase of organic phase volume, extraction of 188 Re was enhanced while mixing time of aqueous and organic phases did not show any significant effect on the extractability of 188 Re in the organic phase. Almost 80% of 188 Re was extracted in methyl ethyl ketone at a volume ratio of 1:2 for aqueous and organic phases. By evaporation/distillation of methyl ethyl ketone, 188 Re was concentrated and dissolved in the desired volume of physiological saline. (orig.)

  19. Cinnamyl acetate synthesis by lipase-catalyzed transesterification in a solvent-free system.

    Science.gov (United States)

    Geng, Bo; Wang, Mengfan; Qi, Wei; Su, Rongxin; He, Zhimin

    2012-01-01

    Cinnamyl acetate was synthesized using immobilized lipase through transesterification between ethyl acetate and cinnamyl alcohol. In the solvent-free system, ethyl acetate acted as not only the acyl donor but also as the solvent of cinnamyl alcohol. Conversion (90.06%) was achieved after 3 H when transesterification was carried out at ethyl acetate/cinnamyl alcohol 15:1, 2.67 g L of lipase (Novozym 435) loading, and 40°C. Excellent stability and reusability of the enzyme resulted from the moderate reaction system. Kinetic studies showed that the Michaelis constants for ethyl acetate and cinnamyl alcohol and the inhibition constant of cinnamyl alcohol were 2.241, 206.82, and 0.461 mmol L⁻¹, respectively, which indicated that the reaction complied with the Ping-Pong Bi-Bi mechanism, with the inhibition of cinnamyl alcohol on lipase. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  20. Solvent effects on photodegradation of CI Reactive Orange 16 by simulated solar light

    Directory of Open Access Journals (Sweden)

    Mijin Dušan Ž.

    2008-01-01

    Full Text Available Organic solvents may appear in wastewaters and other industrial waste streams containing dyes, therefore, their photodegradation catalyzed by TiO2 should be investigated. Solvent effect on photodegradation of CI Reactive Orange 16 has been studied using simulated solar light and P-25 TiO2. Methyl, ethyl and isopropyl alcohol as well as acetone were used as solvents. Photodegradation reaction was faster in methyl than in ethyl alcohol while in water was the slowest. RO16 photodegradation efficiency and reaction rate decreased in the presence of small concentration of ethanol. Higher photodegradation efficiency was observed for higher ethanol concentration. For acetone, photodegradation decreased as concentration of acetone increased. It seems that protic solvents at higher concentrations promote reaction, while at low concentrations slow down reaction. Aprotic solvents slow down reaction.

  1. Optimisation of Croton gratissimus Oil Extraction by n-Hexane and Ethyl Acetate Using Response Surface Methodology.

    Science.gov (United States)

    Jiyane, Phiwe Charles; Tumba, Kaniki; Musonge, Paul

    2018-04-01

    The extraction of oil from Croton gratissimus seeds was studied using the three-factor five-level full-factorial central composite rotatable design (CCRD) of the response surface methodology (RSM). The effect of the three factors selected, viz., extraction time, extraction temperature and solvent-to-feed ratio on the extraction oil yield was investigated when n-hexane and ethyl acetate were used as extraction solvents. The coefficients of determination (R 2 ) of the models developed were 0.98 for n-hexane extraction and 0.97 for ethyl acetate extraction. These results demonstrated that the models developed adequately represented the processes they described. From the optimized model, maximum extraction yield obtained from n-hexane and ethyl acetate extraction were 23.88% and 23.25%, respectively. In both cases the extraction temperature and solvent-to-feed ratio were 35°C and 5 mL/g, respectively. In n-hexane extraction the maximum conditions were reached only after 6 min whereas in ethyl acetate extraction it took 20 min to get the maximum extraction oil yield. Oil extraction of Croton gratissimus seeds, in this work, favoured the use of n-hexane as an extraction solvent as it offered higher oil yields at low temperatures and reduced residence times.

  2. Solvents and solvent effects in organic chemistry

    National Research Council Canada - National Science Library

    Reichardt, C; Welton, T

    2011-01-01

    .../guest complexation equilibria and reactions in biphasic solvent systems and neoteric solvents, respectively. More than 900 new references have been added, giving preference to review articles, and many older ones have been deleted. New references either replace older ones or are added to the end of the respective reference list of each chapter. Th...

  3. Enthalpies of solvation of ethylene oxide oligomers CH3O(CH2CH2O)nCH3 (n = 1 to 4) in different H-bonding solvents: Methanol, chloroform, and water. Group contribution method as applied to the polar oligomers

    International Nuclear Information System (INIS)

    Barannikov, Vladimir P.; Guseynov, Sabir S.; Vyugin, Anatoliy I.

    2011-01-01

    Highlights: → Solvation enthalpy is found for ethylene oxide oligomers in chloroform and methanol. → Coefficients of solute-solute interaction are determined for oligomers in methanol. → Enthalpies of hydrogen bonding of oligomers with chloroform and water are estimated. → Additivity scheme is developed for describing enthalpies of solvation of oligomers. - Abstract: The enthalpies of solution and solvation of ethylene oxide oligomers CH 3 O(CH 2 CH 2 O) n CH 3 (n = 1 to 4) in methanol and chloroform have been determined from calorimetric measurements at T = 298.15 K. The enthalpic coefficients of pairwise solute-solute interaction for methanol solutions have been calculated. The enthalpic characteristics of the oligomers in methanol, chloroform, water and tetrachloromethane have been compared. The hydrogen bonding of the oligomers with chloroform and water molecules is exhibited in the values of solvation enthalpy and coefficient of solute-solute interaction. This effect is not observed for methanol solvent. The thermochemical data evidence an existence of multi-centred hydrogen bonds in associates of polyethers with the solvent molecules. Enthalpies of hydrogen bonding of the oligomers with chloroform and water have been estimated. The additivity scheme has been developed to describe the enthalpies of solvation of ethylene oxide oligomers, unbranched monoethers and n-alkanes in chloroform, methanol, water, and tetrachloromethane. The correction parameters for contribution of repeated polar groups and correction term for methoxy-compounds have been introduced. The obtained group contributions permit to describe the enthalpies of solvation of unbranched monoethers and ethylene oxide oligomers in the solvents with standard deviation up to 0.6 kJ . mol -1 . The values of group contributions and corrections are strongly influenced by solvent properties.

  4. Enthalpies of solvation of ethylene oxide oligomers CH{sub 3}O(CH{sub 2}CH{sub 2}O){sub n}CH{sub 3} (n = 1 to 4) in different H-bonding solvents: Methanol, chloroform, and water. Group contribution method as applied to the polar oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Barannikov, Vladimir P., E-mail: vpb@isc-ras.ru [Institute of Solution Chemistry, Russian Academy of Sciences, Academicheskaya Str. 1, Ivanovo 153045 (Russian Federation); Guseynov, Sabir S.; Vyugin, Anatoliy I. [Institute of Solution Chemistry, Russian Academy of Sciences, Academicheskaya Str. 1, Ivanovo 153045 (Russian Federation)

    2011-12-15

    Highlights: > Solvation enthalpy is found for ethylene oxide oligomers in chloroform and methanol. > Coefficients of solute-solute interaction are determined for oligomers in methanol. > Enthalpies of hydrogen bonding of oligomers with chloroform and water are estimated. > Additivity scheme is developed for describing enthalpies of solvation of oligomers. - Abstract: The enthalpies of solution and solvation of ethylene oxide oligomers CH{sub 3}O(CH{sub 2}CH{sub 2}O){sub n}CH{sub 3} (n = 1 to 4) in methanol and chloroform have been determined from calorimetric measurements at T = 298.15 K. The enthalpic coefficients of pairwise solute-solute interaction for methanol solutions have been calculated. The enthalpic characteristics of the oligomers in methanol, chloroform, water and tetrachloromethane have been compared. The hydrogen bonding of the oligomers with chloroform and water molecules is exhibited in the values of solvation enthalpy and coefficient of solute-solute interaction. This effect is not observed for methanol solvent. The thermochemical data evidence an existence of multi-centred hydrogen bonds in associates of polyethers with the solvent molecules. Enthalpies of hydrogen bonding of the oligomers with chloroform and water have been estimated. The additivity scheme has been developed to describe the enthalpies of solvation of ethylene oxide oligomers, unbranched monoethers and n-alkanes in chloroform, methanol, water, and tetrachloromethane. The correction parameters for contribution of repeated polar groups and correction term for methoxy-compounds have been introduced. The obtained group contributions permit to describe the enthalpies of solvation of unbranched monoethers and ethylene oxide oligomers in the solvents with standard deviation up to 0.6 kJ . mol{sup -1}. The values of group contributions and corrections are strongly influenced by solvent properties.

  5. Canyon solvent cleaning

    International Nuclear Information System (INIS)

    Reif, D.J.

    1986-01-01

    The HM Process at the Savannah River Plant (SRP) uses 7.5% tributylphosphate in n-paraffin as an extraction solvent. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials that influence product losses, produce decontamination, and separation efficiencies. Laboratory studies to improve online solvent cleaning have shown the carbonate washing, although removing residual solvent activity does not remove binding ligands that hold fission products in the solvent. Treatment of solvent by an alumina adsorption process removes binding ligands and significantly improves recycle solvent performance. Both laboratory work defining a full-scale alumina adsorption process and the use of the process to clean HM Process first cycle solvent are presented

  6. Formation of ethyl acetate from whey by Kluyveromyces marxianus on a pilot scale.

    Science.gov (United States)

    Löser, Christian; Urit, Thanet; Stukert, Anton; Bley, Thomas

    2013-01-10

    Whey arising in huge amounts during milk processing is a valuable renewable resource in the field of White Biotechnology. Kluyveromyces marxianus is able to convert whey-borne lactose into ethyl acetate, an environmentally friendly solvent. Formation of ethyl acetate as a bulk product is triggered by iron (Fe). K. marxianus DSM 5422 was cultivated aerobically in whey-borne medium originally containing 40 μg/L Fe, supplemented with 1, 3 or 10 mg/L Fe in the pre-culture, using an 1 L or 70 L stirred reactor. The highest Fe content in the pre-culture promoted yeast growth in the main culture causing a high sugar consumption for growth and dissatisfactory formation of ethyl acetate, while the lowest Fe content limited yeast growth and promoted ester synthesis but slowed down the process. An intermediate Fe dose (ca. 0.5 μg Fe/g sugar) lastly represented a compromise between some yeast growth, a quite high yield of ethyl acetate and an acceptable duration of the process. The mass of ethyl acetate related to the sugar consumed amounted to 0.113, 0.265 and 0.239 g/g in the three processes corresponding to 21.9%, 51.4% and 46.3% of the theoretically maximum yield. The performance on a pilot scale was somewhat higher than on lab scale. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Green solvents and technologies for oil extraction from oilseeds.

    Science.gov (United States)

    Kumar, S P Jeevan; Prasad, S Rajendra; Banerjee, Rintu; Agarwal, Dinesh K; Kulkarni, Kalyani S; Ramesh, K V

    2017-01-01

    Oilseeds are crucial for the nutritional security of the global population. The conventional technology used for oil extraction from oilseeds is by solvent extraction. In solvent extraction, n -hexane is used as a solvent for its attributes such as simple recovery, non-polar nature, low latent heat of vaporization (330 kJ/kg) and high selectivity to solvents. However, usage of hexane as a solvent has lead to several repercussions such as air pollution, toxicity and harmfulness that prompted to look for alternative options. To circumvent the problem, green solvents could be a promising approach to replace solvent extraction. In this review, green solvents and technology like aqueous assisted enzyme extraction are better solution for oil extraction from oilseeds. Enzyme mediated extraction is eco-friendly, can obtain higher yields, cost-effective and aids in obtaining co-products without any damage. Enzyme technology has great potential for oil extraction in oilseed industry. Similarly, green solvents such as terpenes and ionic liquids have tremendous solvent properties that enable to extract the oil in eco-friendly manner. These green solvents and technologies are considered green owing to the attributes of energy reduction, eco-friendliness, non-toxicity and non-harmfulness. Hence, the review is mainly focussed on the prospects and challenges of green solvents and technology as the best option to replace the conventional methods without compromising the quality of the extracted products.

  8. Effect of solvents on the bulk growth of 4-aminobenzophenone single crystals: A potential material for blue and green lasers

    Science.gov (United States)

    Natarajan, V.; Usharani, S.; Arivanandhan, M.; Anandan, P.; Hayakawa, Y.

    2015-06-01

    Although 4-aminobenzophenone (4-ABP) is the best derivative of benzophenone with 260 times higher second harmonic generation (SHG) efficiency than potassium dihydrogen phosphate (KDP), growth of high quality bulk crystal still remains a difficult task. In the present work, the effect of solvents on solubility and growth aspects of 4-ABP was investigated to grow inclusion free 4-ABP crystals. The growth processes were discussed based on solute-solvent interaction in two different growth media of ethyl acetate and ethanol. The growth rate and thereby solvent inclusions are relatively higher in ethyl acetate grown crystal than the crystal grown from ethanol. The structural, thermal and optical properties of 4-ABP crystals were studied. The enthalpy of 4-ABP melting process was estimated from differential thermal analysis. The optical transmission study shows that 4-ABP crystals grown from ethanol has high transparency compared to ethyl acetate grown sample due to solvent inclusion in the later crystal.

  9. Reactivity of solvent alcohol on degradation of CFC113

    International Nuclear Information System (INIS)

    Nakagawa, Seiko

    2003-01-01

    1,1,2-Trichloro-trifluoroethane (CFC113) was dissolved in alkaline 1-butanol, 2-butanol, iso-butyl alcohol, and phenyl ethyl alcohol and irradiated with 60 Co gamma rays after purged with pure nitrogen gas. In all these solvents, the concentration of CFC113 and hydroxide ion decreased and that of chloride ion increased with a dose observed in 2-propanol solution. The reaction efficiency increases in order of 1-butanol< iso-butyl alcohol< phenyl ethyl alcohol<2-butanol<2-propanol. The solvent effect will depend on the binding energy of the αC-H of the alcohol molecule and electron affinity and dipole moment of the ketones or aldehydes produced from the alcohols

  10. Biomonitoring of N-ethyl-2-pyrrolidone in automobile varnishers.

    Science.gov (United States)

    Koslitz, Stephan; Meier, Swetlana; Schindler, Birgit Karin; Weiss, Tobias; Koch, Holger Martin; Brüning, Thomas; Käfferlein, Heiko Udo

    2014-12-01

    N-alkyl-2-pyrrolidones are important organic solvents for varnishes in industry. This study investigates exposure to N-ethyl-2-pyrrolidone (NEP) in varnishing of hard plastic components in an automobile plant. Two specific biomarkers of exposure, 5-hydroxy-N-ethyl-2-pyrrolidone (5-HNEP) and 2-hydroxy-N-ethylsuccinimide (2-HESI), were analyzed in urine samples of 14 workers. For this purpose, pre-shift, post-shift and next day pre-shift urine samples were collected midweek. Twelve workers performed regular work tasks (loading, wiping and packing), whereas two workers performed special work tasks including cleaning the sprayer system with organic solvents containing N-alkyl-2-pyrrolidones. Spot urine samples of nine non-exposed persons of the same plant served as controls. Median post-shift urinary levels of workers with regular work tasks (5-HNEP: 0.15 mg/L; 2-HESI: 0.19 mg/L) were ∼5-fold higher compared to the controls (0.03 mg/L each). Continuously increasing metabolite levels, from pre-shift via post-shift to pre-shift samples of the following day, were observed in particular for the two workers with the special working tasks. Maximum levels were 31.01 mg/L (5-HNEP) and 8.45 mg/L (2-HESI). No clear trend was evident for workers with regular working tasks. In summary, we were able to show that workers can be exposed to NEP during varnishing tasks in the automobile industry. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Environmental effect of rapeseed oil ethyl ester

    International Nuclear Information System (INIS)

    Makareviciene, V.; Janulis, P.

    2003-01-01

    Exhaust emission tests were conducted on rapeseed oil methyl ester (RME), rapeseed oil ethyl ester (REE) and fossil diesel fuel as well as on their mixtures. Results showed that when considering emissions of nitrogen oxides (NO x ), carbon monoxide (CO) and smoke density, rapeseed oil ethyl ester had less negative effect on the environment in comparison with that of rapeseed oil methyl ester. When fuelled with rapeseed oil ethyl ester, the emissions of NO x showed an increase of 8.3% over those of fossil diesel fuel. When operated on 25-50% bio-ester mixed with fossil diesel fuel, NO x emissions marginally decreased. When fuelled with pure rapeseed oil ethyl ester, HC emissions decreased by 53%, CO emissions by 7.2% and smoke density 72.6% when compared with emissions when fossil diesel fuel was used. Carbon dioxide (CO 2 ) emissions, which cause greenhouse effect, decreased by 782.87 g/kWh when rapeseed oil ethyl ester was used and by 782.26 g/kWh when rapeseed oil methyl ester was used instead of fossil diesel fuel. Rapeseed oil ethyl ester was more rapidly biodegradable in aqua environment when compared with rapeseed oil methyl ester and especially with fossil diesel fuel. During a standard 21 day period, 97.7% of rapeseed oil methyl ester, 98% of rapeseed oil ethyl ester and only 61.3% of fossil diesel fuel were biologically decomposed. (author)

  12. Solvent system selectivities in countercurrent chromatography using Salicornia gaudichaudiana metabolites as practical example with off-line electrospray mass-spectrometry injection profiling.

    Science.gov (United States)

    Costa, Fernanda das Neves; Jerz, Gerold; Figueiredo, Fabiana de Souza; Winterhalter, Peter; Leitão, Gilda Guimarães

    2015-03-13

    For the development of an efficient two-stage isolation process for high-speed countercurrent chromatography (HSCCC) with focus on principal metabolites from the ethyl acetate extract of the halophyte plant Salicornia gaudichaudiana, separation selectivities of two different biphasic solvent systems with similar polarities were evaluated using the elution and extrusion approach. Efficiency in isolation of target compounds is determined by the solvent system selectivity and their chronological use in multiple separation steps. The system n-hexane-ethyl acetate-methanol-water (0.5:6:0.5:6, v/v/v/v) resulted in a comprehensive separation of polyphenolic glycosides. The system n-hexane-n-butanol-water (1:1:2, v/v/v) was less universal but was highly efficient in the fractionation of positional isomers such as di-substituted cinnamic acid quinic acid derivatives. Multiple metabolite detection performed on recovered HSCCC tube fractions was done with rapid mass-spectrometry profiling by sequential off-line injections to electrospray mass-spectrometry (ESI-MS/MS). Selective ion traces of metabolites delivered reconstituted preparative HSCCC runs. Molecular weight distribution of target compounds in single HSCCC tube fractions and MS/MS fragment data were available. Chromatographic areas with strong co-elution effects and fractions of pure recoverable compounds were visualized. In total 11 metabolites have been identified and monitored. Result of this approach was a fast isolation protocol for S. gaudichaudiana metabolites using two solvent systems in a strategic sequence. The process could easily be scaled-up to larger lab-scale or industrial recovery. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Solvent recycle/recovery

    Energy Technology Data Exchange (ETDEWEB)

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

    1990-09-01

    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  14. Kinetic solvent effects on 1,3-dipolar cycloadditions of benzonitrile oxide

    NARCIS (Netherlands)

    Rispens, T; Engberts, JBFN

    The kinetics of 1,3-dipolar cycloadditions of benzonitrile oxide with a series of N-substituted maleimides and with cyclopentene are reported for water, a wide range of organic solvents and binary solvent mixtures. The results indicate the importance of both solvent polarity and specific

  15. Chemical Composition of Artemisia annua L. Leaves and Antioxidant Potential of Extracts as a Function of Extraction Solvents

    Directory of Open Access Journals (Sweden)

    Maznah Ismail

    2012-05-01

    Full Text Available This study was conducted to investigate the chemical and nutritional composition of Artemisia annua leaves in addition to determination of antioxidant potential of their extracts prepared in different solvents. Chemical composition was determined by quantifying fat, protein, carbohydrate, fiber, tocopherol, phytate, and tannin contents. Extraction of A. annua leaves, for antioxidant potential evaluation, was carried out using five solvents of different polarities, i.e., hexane, chloroform, ethyl acetate, methanol and water. Antioxidant potential was evaluated by estimating total phenolic (TPC, flavonoid (TFC contents, ferric reducing antioxidant power (FRAP, Trolox equivalent antioxidant capacity (TEAC, DPPH radical scavenging activity and lipid peroxidation. Efficiency of different solvents was compared for the yield of antioxidant extracts from leaf samples and a clear variation was observed. The highest TPC, TFC, TEAC, DPPH radical scavenging and lowest lipid peroxidation were observed in MeOH extracts, whereas aqueous extract exhibited high ferric reducing antioxidant power; suggesting MeOH to be the most favorable extractant.

  16. Measurement and correlation of the solubility of 2,3,4,5-tetrabromothiophene in different solvents

    International Nuclear Information System (INIS)

    Wang, Kai; Hu, Yonghong; Yang, Wenge; Guo, Song; Shi, Ying

    2012-01-01

    Highlights: ► The solubility of tetrabromothiophene in different solvents was investigated. ► The modified Apelblat equation was more accurate than the van’t Hoff equation and the λh equation. ► Ethyl acetate showed the potential as a better recrystallization solvent to replace trichloromethane. ► The solution process in the selected solvents was endothermic and nonspontaneous. - Abstract: The solubility of 2,3,4,5-tetrabromothiophene were measured in methanol, ethanol, propan-1-ol, butan-1-ol, toluene, ethyl formate, ethyl acetate, trichloromethane and oxolane within the temperature range between 278.05 K and 325.15 K under atmospheric pressure by gravimetric method. The solubility of 2,3,4,5-tetrabromothiophene in those selected solvents increased with increasing temperature. The solubility data were correlated with the van’t Hoff equation, the modified Apelblat equation and the λh equation. The thermodynamic properties of the solution process, including the Gibbs energy, enthalpy, and entropy were calculated by the van’t Hoff analysis and the Gibbs equation. The experimental results showed that ethyl acetate had the potential as a better solvent in the re-crystallization process of 2,3,4,5-tetrabromothiophene.

  17. Investigating the role of solvent-solute interaction in crystal nucleation of salicylic acid from organic solvents.

    Science.gov (United States)

    Khamar, Dikshitkumar; Zeglinski, Jacek; Mealey, Donal; Rasmuson, Åke C

    2014-08-20

    In previous work, it has been shown that the crystal nucleation of salicylic acid (SA) in different solvents becomes increasingly more difficult in the order: chloroform, ethyl acetate acetonitrile, acetone, methanol, and acetic acid. In the present work, vibration spectroscopy, calorimetric measurements, and density functional theory (DFT) calculations are used to reveal the underlying molecular mechanisms. Raman and infrared spectra suggest that SA exists predominately as dimers in chloroform, but in the other five solvents there is no clear evidence of dimerization. In all solvents, the shift in the SA carbonyl peak reflecting the strength in the solvent-solute interaction is quite well correlated to the nucleation ranking. This shift is corroborated by DFT calculated energies of binding one solvent molecule to the carboxyl group of SA. An even better correlation of the influence of the solvent on the nucleation is provided by DFT calculated energy of binding the complete first solvation shell to the SA molecule. These solvation shell binding energies are corroborated by the enthalpy of solvent-solute interaction as estimated from experimentally determined enthalpy of solution and calculated enthalpy of cavity formation using the scaled particle theory. The different methods reveal a consistent picture and suggest that the stronger the solvent binds to the SA molecule in solution, the slower the nucleation becomes.

  18. Solvent-extraction methods applied to the chemical analysis of uranium. III. Study of the extraction with inert solvents

    International Nuclear Information System (INIS)

    Vera Palomino, J.; Palomares Delgado, F.; Petrement Eguiluz, J. C.

    1964-01-01

    The extraction of uranium on the trace level is studied by using tributylphosphate as active agent under conditions aiming the attainment of quantitative extraction by means of a single step process using a number of salting-out agents and keeping inside the general lines as reported in two precedent papers. Two inert solvents were investigated, benzene and cyclohexane, which allowed to derive the corresponding empirical equations describing the extraction process and the results obtained were compared with those previously reported for solvents which, like ethyl acetate and methylisobuthylketone, favour to a more or less extend the extraction of uranium. (Author) 4 refs

  19. Separation and characterisation of five polar herbicides using countercurrent chromatography with detection by negative ion electrospray ionisation mass spectrometry.

    Science.gov (United States)

    Kidwell, H; Jones, J J; Games, D E

    2001-01-01

    Five polar herbicides were separated and characterised using high-speed analytical countercurrent chromatography (HSACCC) in conjunction with online electrospray mass spectrometry (ESI-MS). The countercurrent chromatography used a standard isocratic biphasic solvent system of hexane/ethyl acetate/methanol/water in reverse phase to effect the separation of these five environmentally important compounds. The chromatograph was coupled to a triple quadrupole mass spectrometer via a standard electrospray liquid chromatography interface that was able to give mass spectra in negative ion mode of each compound. Limits of detection are reported for this series of compounds along with representative negative ion ESI-MS data and calibrations for the separation. Copyright 2001 John Wiley & Sons, Ltd.

  20. Screening of solvent dependent antibacterial activity of Prunus domestica.

    Science.gov (United States)

    Yaqeen, Zahra; Naqvi, Naim-ul-Hasan; Sohail, Tehmina; Rehman, Zakir-ur; Fatima, Nudrat; Imran, Hina; Rehman, Atiqur

    2013-03-01

    Fruit of Prunus domestica was extracted in ethanol. The ethanol extract was further extracted with two solvents ethyl acetate and chloroform. The crude ethanol extract and two fractions (ethyl acetate and chloroform) were screened for their antibacterial activity using the agar well diffusion method .They were tested against nine bacteria; five Gram positive bacteria (Staphylococcus aureus, Streptococcuc intermedius, Bacillus cereus, Bacillus pumilus) and four Gram negative bacteria (Eschrichia coli, Proteus mirabilis Shigella flexneri, Salmonella typhi and Klebsiela pneumoniae). The susceptibility of microorganisms to all three fractions was compared with each other and with standard antibiotic (Ampicillin) Among all fractions ethyl acetate exhibited highest antibacterial activity (average zone of inhibition 34.57mm ± 1.3) while ethyl alcohol exhibited least antibacterial activity (average zone of inhibition 17.42mm ± 3.3). Minimum inhibitory concentration of ethanol, ethyl acetate and chloroform fractions was found in the range of 78 μ g/ml to 2500 μ gl/ml against gram positive and gram negative bacteria.

  1. Hemo-De as substitute for ethyl acetate in formalin-ethyl acetate concentration technique.

    OpenAIRE

    Neimeister, R; Logan, A L; Gerber, B; Egleton, J H; Kleger, B

    1987-01-01

    In comparative studies, Hemo-De (PMP Medical Industries, Inc., Irving, Tex.) was found to be a suitable replacement for ethyl acetate in the Formalin-ethyl acetate concentration technique. With essentially equivalent recovery rates for both procedures, the Formalin-Hemo-De concentration technique is considered to be the preferred technique because Hemo-De is less toxic and less flammable and does not present disposal problems, and its cost is approximately one-fourth that of ethyl acetate.

  2. The bioactive compounds and antioxidant activity of ethanol and ethyl ecetate extracts of Candi Banana (Musa paradisiaca)

    Science.gov (United States)

    Laeliocattleya, R. A.; Estiasih, T.; Griselda, G.; Muchlisyiyah, J.

    2018-03-01

    Banana has various benefits for health. One local variety of banana is candi banana (Musa paradisiaca). The aim of this research was to study the content of the bioactive compounds of phenolics, flavonoids, tannin, carotenoids and the antioxidant activity of extract ethanol and ethyl acetate of candi banana. Powdered candi banana was extracted using ethanol and ethyl acetate in an ultrasonic bath. The results showed that the content of phenolics, flavonoids, tannin and carotenoids in ethanol extract were 58.76 ± 3.19 mg/kg, 416.08 ± 18.79 mg/kg, 209.83 ± 15.87 mg/kg and 74.55 ± 4.31 mg/kg, respectively. The content of phenolics, flavonoids, tannin and carotenoids in ethyl acetate extract were 0.83 ± 0.12 mg/kg, 4.31 ± 0.66 mg/kg, 49.97 ± 2.43 mg/kg and 304.40 ± 16.62 mg/kg. While the antioxidant activity (IC50) of ethanol extract and ethyl acetate were 3374.13 ± 123.46 ppm and 40318.19 ± 1014.90 ppm. This research showed that type of solvents of ethanol and ethyl acetate affected the content of bioactive compounds and antioxidant activity of candi banana. The antioxidant activity of ethanol extract was higher than that of ethyl acetate extract. It showed that ethanol was a better solvent than ethyl acetate to extract bioactive compounds in candi banana.

  3. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    Science.gov (United States)

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-08

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016. © 2016 American Institute of Chemical Engineers.

  4. 300 area solvent evaporator interim status closure plan: Revision 2

    International Nuclear Information System (INIS)

    1989-02-01

    This document describes activities for the closure of a hazardous waste tank treatment facility operated by the US Department of Energy-Richland Operations Office (DOE-RL) and co-operated by the Westinghouse Hanford Company (WHC). This treatment facility was a solvent evaporator located in the 300 Area of the Hanford Site, from 1975 to 1985 on behalf of DOE-RL. The 300 Area Solvent Evaporator (300 ASE) was a modified load lugger (dumpster) in which solvent wastes were evaporated. Some of the solvents were radioactively contaminated because they came from a degreaser which processed bare uranium metal billets from the N Reactor Fuel Manufacturing Facility. The waste was composed of perchloroethylene, trichloroethylene, 1,1,1-trichloroethane, ethyl acetate/bromine solution, paint shop solvents and possibly some used oil. Also, small amounts of uranium, copper, zirconium and possibly beryllium were present in the degreaser solvents as particulates. Radioactive and non-radioactive solvents were not segregated in the 300 ASE, and the entire mixture was regarded as mixed waste

  5. New method for synthesis of N-alkyl and N,N-dialkyl-O-ethyl and O-isopropylthiocarbamates by oxidation of ammonium salt of xhantogenic acid

    Directory of Open Access Journals (Sweden)

    Milisavljević Smiljka S.

    2010-01-01

    Full Text Available A synthesis of N-alkyl and N,N-dialkyl-O-ethyl and O-isopropyl thiocarbamates by oxidation of ammonium salt of ethyl and isopropylxanthogenic acid in a presence of sodium hypochlorite and hydrogen peroxide were performed. Ammonium salt of ethyl and isopropylxanthogenic acid was obtained by the reaction of alkylammonium sulfate and sodium ethyl and isopropyl xanthate. Studies on a dependence of N-ethyl-O-isopropylthiocarbamate yield and purity with respect to reaction parameters (reaction time, molar ratio of oxidant and ethylamonium salt of isopropylxanthogenic acid were performed. Optimal reaction conditions for synthesis of N-alkyl and N,N-dialkyl-O-ethyl and O-isopropyl thiocarbamates were established. Synthesized compounds have been fully characterized by FTIR, 1H NMR and MS data, while purity has been determined by GC method. A plausible pathway for the N-alkyl and N,N-dialkyl-O-ethyl and O-isopropyl thiocarbamates synthesis, in the presence of the oxidative agents sodium hypochlorite and hydrogen peroxide, was proposed. The presented synthetic methods has been developed at laboratory and applied at semi-industrial level. The developed optimal method provides a powerful and versatile method for the preparation of N-alkyl and N,N-dialkyl-O-ethyl and O-isopropyl thiocarbamates. This new optimized method offer several benefits, namely, simple operation, mild reaction conditions, bypass of hazardous organic solvents, moderately toxic and inexpensive reagents, and also short reaction times and high product yields.

  6. Information draft on the development of air standards for ethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    Ethyl ether is a clear, volatile liquid with a sweet, pungent odour. It is used as a solvent for waxes, fats, oils, perfumes, alkaloids and gums. It is an easily removable extractant of hormones from animal and plant tissues. Therapeutically, it is used as an inhalation anesthetic and antispasmodic. Ethyl ether can be absorbed via inhalation or ingestion. From the blood it passes quickly into the brain. It is partly metabolized to carbon dioxide and to urinary metabolites, but over 90 per cent is excreted unchanged through exhaled air. Inhalation may cause dizziness, giddiness, euphoria, skin, eye and mucous membrane irritation, and rarely death, due to respiratory failure. Release into the environment is usually from its industrial application. Ethyl ether is not a candidate substance in the National Pollutant Release Inventory for the reporting of environmental releases. No data in ambient air concentrations was found for Ontario or Canada. This report discusses the scientific and technical evidence relevant to the setting of a revised air standard for ethyl ether. The available evidence has been gathered from world-wide sources. Only three of the agencies reviewed have derived ambient air quality criteria. These were based on the occupational exposure limit of the American Conference of Governmental Industrial Hygienists. Odour thresholds have been found to be in the range of 700 to 3,000 microgram/cubic meter, which may provide an appropriate effect to consider for developing air quality limits for Ontario. 42 refs., 1 tab., appendix

  7. A comparison of the acute behavioral effects of inhaled amyl, ethyl, and butyl acetate in mice.

    Science.gov (United States)

    Bowen, S E; Balster, R L

    1997-02-01

    The acute neurobehavioral effects of three acetates (amyl, ethyl, and n-butyl acetate) were investigated after 20-min inhalation exposures in mice using locomotor activity and a functional observational battery (FOB). Ethyl and n-butyl acetate produced significant decreases in locomotor activity at the highest concentrations examined, while amyl acetate was without effect. Minimally effective concentrations for activity-decreasing effects were 2000 ppm for ethyl acetate and 8000 ppm for n-butyl acetate. The potency order was similar in the FOB where ethyl acetate was more potent in disrupting the neurobehavioral measures. The FOB profile of effects for all three acetates included changes in posture, decreased arousal, increased tonic/clonic movements, disturbances in gait, delayed righting reflexes, and increased sensorimotor reactivity. Furthermore, handling-induced convulsions were produced in some mice acutely exposed to each of these acetates. Recovery from the acute effects of these acetates was rapid and began within minutes of removal from the exposure chamber. The acetates produced a profile of neurobehavioral effects that were different from those reported for depressant solvents (i.e., toluene, 1,1,1-trichloroethane) that are subject to abuse. Evidence is emerging for qualitative differences in the acute neurobehavioral effects of various volatile chemicals.

  8. Determining an efficient solvent extraction parameters for re-refining of waste lubricating oils

    International Nuclear Information System (INIS)

    Durrani, H.A.; Panhwar, M.I.

    2011-01-01

    Re-refining of vehicle waste lubricating oil by solvent extraction is one of the efficient and cheapest methods. Three extracting solvents MEK ((Methyl-Ethyl-Ketone), 1-butanol, 2-propanol were determined experimentally for their performance based on the parameters i.e. solvent type, solvent oil ratio and extraction temperature. From the experimental results it was observed the MEK performance was highest based on the lowest oil percent losses and highest sludge removal. Further, when temperature of extraction increased the oil losses percent also decreased. This is due to the solvent ability that dissolves the base oil in waste lubricating oil and determines the best SOR (Solvent Oil Ratio) and extraction temperatures. (author)

  9. Determining an Efficient Solvent Extraction Parameters for Re-Refining of Waste Lubricating Oils

    Directory of Open Access Journals (Sweden)

    Hassan Ali Durrani

    2012-04-01

    Full Text Available Re-refining of vehicle waste lubricating oil by solvent extraction is one of the efficient and cheapest methods. Three extracting solvents MEK (Methyl-Ethyl-Ketone, 1-butanol, 2-propanol were determined experimentally for their performance based on the parameters i.e. solvent type, solvent oil ratio and extraction temperature. From the experimental results it was observed the MEK performance was highest based on the lowest oil percent losses and highest sludge removal. Further, when temperature of extraction increased the oil losses percent also decreased. This is due to the solvent ability that dissolves the base oil in waste lubricating oil and determines the best SOR (Solvent Oil Ratio and extraction temperatures.

  10. Effect of solvent composition on dispersing ability of reaction sialon suspensions.

    Science.gov (United States)

    Xu, Xin; Oliveira, Marta; Ferreira, José M F

    2003-03-15

    This work focuses on the optimization of the rheological behavior of suspensions considering different solvent compositions. The effects of methyl ethyl ketone (MEK)/ethanol (E) solvent mixtures on reaction sialon suspensions were investigated by measuring sedimentation behavior, adsorption of dispersant, and flow behavior. It was shown that both the flow behavior and the sedimentation behavior strongly depended on selection of solvent composition. Using 3 wt% KD1 as dispersant, well-dispersed colloidal suspensions could be obtained in MEK-rich solvents. The suspensions with 60 vol% MEK/40 vol% E as solvent could be fitted to the Bingham model with very low yield stress, while suspensions with pure MEK or ethanol-rich mixtures as solvent showed pseudo plastic behavior with relatively high yield stress values. A model was proposed to explain the different flow behaviors of suspensions considering the different configurations of dispersant at particles' surfaces.

  11. Effect of irradiation and extractive solvents on the Thevetia seed oil

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-06

    Mar 6, 2009 ... Pet. Ether. 300. 0.4257. Pet. Ether. 500. 0.4594. Chloroform. 300. 0.5068. Chloroform. 500. 0.4932. Methanol. 300. 0.4833. Methanol. 500. 0.6330. Table 2. Rf values of thevetia seeds oil (petroleum ether and ethyl acetate as mobile phase). Extraction solvent. Radiation dosage (RADS). RF. Pet. Ether. 300.

  12. Fractionation of five technical lignins by selective extraction in green solvents and characterization of isolated fractions

    NARCIS (Netherlands)

    Boeriu, C.G.; Fitigau, F.; Gosselink, R.J.A.; Frissen, A.E.; Stoutjesdijk, J.H.; Peter, F.

    2014-01-01

    Lignins from softwood, hardwood, grass and wheat straw were fractionated by selective extraction at ambient temperature using green solvents like acetone/water solutions of 10, 30, 50, 70 and 90% (v/v) acetone and ethyl acetate. A comparison between the isolated fractions and unfractionated lignins

  13. Polarity controlled reaction path and kinetics of thermal cis-to-trans isomerization of 4-aminoazobenzene.

    Science.gov (United States)

    Joshi, Neeraj Kumar; Fuyuki, Masanori; Wada, Akihide

    2014-02-20

    Spectral and kinetic behavior of thermal cis-to-trans isomerization of 4-aminoazobenzene (AAB) is examined in various solvents of different polarities. In contrast to azobenzene (AB), it is found the rate of thermal isomerization of AAB is highly dependent on solvent polarity. Accelerated rates are observed in polar solvents as compared to nonpolar solvents. Moreover, a decrease in the barrier height with an increase in medium polarity is observed. Our observations suggest that inversion is the preferred pathway in cis-to-trans thermal isomerization in a nonpolar medium; however, in a polar medium, the isomerization path deviates from the inversion route and rotational behavior is incorporated. Differences in the kinetics and in mechanisms of isomerization in different media are rationalized in terms of modulation in barrier height by polarity of the medium and solute-solvent interaction. It is found that kinetics as well as the mechanism of thermal isomerization in AAB is controlled by the polarity of the medium.

  14. Antimicrobial activity of Butyl acetate, Ethyl acetate and Isopropyl alcohol on undesirable microorganisms in cosmetic products.

    Science.gov (United States)

    Lens, C; Malet, G; Cupferman, S

    2016-10-01

    The microbiological contamination risk of a cosmetic product has to be assessed by the manufacturer, according to the composition, to determine whether microbiological testing is required. Certain ingredients in cosmetic formulations help to create an environment hostile towards microbial growth. In this study, the influence on microbial survival of some solvents used in nail varnishes was evaluated. The purpose of this study was two-fold. The first was to define the thresholds to be considered for the exemption of products from microbiological testing. The second was to assess the cross-contamination risk linked to the use on successive consumers of solvent-based products in beauty salons. Strains of Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Candida albicans and Trichophyton rubrum were exposed to various concentrations of ethyl acetate, butyl acetate and isopropyl alcohol in culture medium to estimate their MIC (minimum inhibitory concentration). These strains are relevant to cosmetic products as they are associated with skin and nail infections. Mixtures of the three solvents, which are characteristic of nail varnish compositions, were also tested for their cidal activity. Ethyl and butyl acetates had a stronger impact than isopropyl alcohol: the MIC of ethyl and butyl acetate is ≤5% for all of the tested strains, whereas that of isopropyl alcohol is ≤10%. Various combinations of the three solvents tested showed a significant effect on both fungal and bacterial strains (greater than 3 log reduction in 15 min for the bacterial test strains and in 30 min for T. rubrum). Products containing more than 5% ethyl or butyl acetate or more than 10% isopropyl alcohol are hostile towards microbial growth. These products can therefore be considered as microbiologically low risk during both production and use, and so do not require microbiological testing (challenge test and end-product testing). Moreover, the nine tested mixtures of these three

  15. Degradation of lipids in yeast (Saccharomyces cerevisiae) at the early phase of organic solvent-induced autolysis

    International Nuclear Information System (INIS)

    Ishida-Ichimasa, Michiko

    1978-01-01

    Initial stage of organic solvent-induced autolysis in yeast was studied with 14 C-acetate labeled cells. In the case of toluene-induced autolysis, primary cell injury which was estimated by leakage of UV absorbing substances from cell accompanied rapid deacylation of phospholipids. Lysophospholipids did not occur during autolysis. When autolysis was induced by addition of ethyl acetate, phospholipids of yeast cells were not degraded so much. Ethyl acetate rather inhibited yeast phospholipase activity under the condition tested. (auth.)

  16. Spectroscopic and DFT study of solvent effects on the electronic absorption spectra of sulfamethoxazole in neat and binary solvent mixtures.

    Science.gov (United States)

    Almandoz, M C; Sancho, M I; Blanco, S E

    2014-01-24

    The solvatochromic behavior of sulfamethoxazole (SMX) was investigated using UV-vis spectroscopy and DFT methods in neat and binary solvent mixtures. The spectral shifts of this solute were correlated with the Kamlet and Taft parameters (α, β and π(*)). Multiple lineal regression analysis indicates that both specific hydrogen-bond interaction and non specific dipolar interaction play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra using TD-DFT methods were in good agreement with the experimental ones. Binary mixtures consist of cyclohexane (Cy)-ethanol (EtOH), acetonitrile (ACN)-dimethylsulfoxide (DMSO), ACN-dimethylformamide (DMF), and aqueous mixtures containing as co-solvents DMSO, ACN, EtOH and MeOH. Index of preferential solvation was calculated as a function of solvent composition and non-ideal characteristics are observed in all binary mixtures. In ACN-DMSO and ACN-DMF mixtures, the results show that the solvents with higher polarity and hydrogen bond donor ability interact preferentially with the solute. In binary mixtures containing water, the SMX molecules are solvated by the organic co-solvent (DMSO or EtOH) over the whole composition range. Synergistic effect is observed in the case of ACN-H2O and MeOH-H2O, indicating that at certain concentrations solvents interact to form association complexes, which should be more polar than the individual solvents of the mixture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Microbiological synthesis of methyl ethyl ketone

    Directory of Open Access Journals (Sweden)

    Astashkina Anna

    2016-01-01

    Full Text Available Optimal conditions for the microbiological synthesis of methyl ethyl ketone (MEK on the mineral medium with butanol-1, butanol-2, 2-methylpropanol-2 by hydrocarbon-oxidizing bacteria Pseudomonas spp. were chosen. Optimal conditions for microbiological synthesis are liquid mineral Adkins’ medium containing 3% (vol. of the substrate, stirring speed – 80-100 rev/min, temperature – 37° C, and synthesis time 24-48 hours. The specific growth rate and time of culture generation during the microbial synthesis were determined. It was found that methyl ethyl ketone is formed in the reaction mixture after 8, 48 and 72 hours when using 2-methylpropanol-2, butanol-2, butanol-1 as substrates, respectively. Maximum methyl ethyl ketone yield in the reaction mixture is observed after 12 hours in the case of using 2-methylpropanol-2 as a carbon source and accounts for 10%.

  18. Effects of Ultrasound Irradiation on the Preparation of Ethyl Cellulose Nanocapsules Containing Spirooxazine Dye

    Directory of Open Access Journals (Sweden)

    Julija Volmajer Valh

    2017-01-01

    Full Text Available This article presents the influence of low frequency, high intensity ultrasonic irradiation on the characteristics (average size, polydispersity index of ethyl cellulose nanocapsules encapsulating a photochromic dye. Photochromic nanocapsules were prepared by the emulsion-solvent evaporation method. The acoustic densities entering the system were systematically studied with respect to their abilities to modify and reduce the average sizes and polydispersity indexes of the nanocapsules. Scanning electron microscope, confocal laser microscope, and dynamic light scattering were utilised to characterise the structure, shape, size, and polydispersity of ethyl cellulose photochromic nanocapsules. We were able to tailor the size of the photochromic nanocapsules simply by varying the acoustic densities entering the system. At an acoustic density of 1.5 W/mL and 60 s of continuous irradiation, we were able to prepare an almost monodispersed population of the nanocapsules with an average size of 193 nm.

  19. Selection of optimum ionic liquid solvents for flavonoid and phenolic acids extraction

    Science.gov (United States)

    Rahman, N. R. A.; Yunus, N. A.; Mustaffa, A. A.

    2017-06-01

    Phytochemicals are important in improving human health with their functions as antioxidants, antimicrobials and anticancer agents. However, the quality of phytochemicals extract relies on the efficiency of extraction process. Ionic liquids (ILs) have become a research phenomenal as extraction solvent due to their unique properties such as unlimited range of ILs, non-volatile, strongly solvating and may become either polarity. In phytochemical extraction, the determination of the best solvent that can extract highest yield of solute (phytochemical) is very important. Therefore, this study is conducted to determine the best IL solvent to extract flavonoids and phenolic acids through a property prediction modeling approach. ILs were selected from the imidazolium-based anion for alkyl chains ranging from ethyl > octyl and cations consisting of Br, Cl, [PF6], BF4], [H2PO4], [SO4], [CF3SO3], [TF2N] and [HSO4]. This work are divided into several stages. In Stage 1, a Microsoft Excel-based database containing available solubility parameter values of phytochemicals and ILs including its prediction models and their parameters has been established. The database also includes available solubility data of phytochemicals in IL, and activity coefficient models, for solid-liquid phase equilibrium (SLE) calculations. In Stage 2, the solubility parameter values of the flavonoids (e.g. kaempferol, quercetin and myricetin) and phenolic acids (e.g. gallic acid and caffeic acid) are determined either directly from database or predicted using Stefanis and Marrero-Gani group contribution model for the phytochemicals. A cation-anion contribution model is used for IL. In Stage 3, the amount of phytochemicals extracted can be determined by using SLE relationship involving UNIFAC-IL model. For missing parameters (UNIFAC-IL), they are regressed using available solubility data. Finally, in Stage 4, the solvent candidates are ranked and five ILs, ([OMIM] [TF2N], [HeMIM] [TF2N], [HMIM] [TF2N

  20. Otimização da etapa de extração do ácido clavulânico presente no caldo de fermentação utilizando misturas de solventes

    Directory of Open Access Journals (Sweden)

    Mariane de A. Mancilha

    2014-01-01

    Full Text Available The purpose of this work was to study four different solvent mixtures intended to increase the yield of the extraction stage of clavulanic acid (CA, which is one of the steps in the purification process. Four central composite rotatable designs (CCRD were utilized to optimize the solvent mixtures. The variables selected for the factorial design were solvent mixture ratio (mL/mL and temperature (ºC. The results showed that the yield of CA extracted from fermentation broth with the solvent mixtures of methyl-ethyl-ketone and ethyl acetate, and methyl-isobutyl-ketone and ethyl acetate (44.7 and 50.0%, respectively was higher than that of the individual ethyl acetate alone (36.5%.

  1. X-ray photoelectron spectroscopy and infra-red studies of x-ray-induced beam damage of cellulose, ethyl cellulose and ethyl-hydroxyethyl cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.M.D.; Hewitt, J.A.; Meenan, B.J. (Ulster Univ., Coleraine (United Kingdom))

    1992-03-01

    The cellulose derivatives ethyl cellulose and ethyl-hydroxyethyl cellulose (EHEC) have been studied by XPS in the form of solvent-cast films. All the films, as well as a sample of cellulose used as a standard material, show significant surface degradation on irradiation in the time period consistent with XPS data acquisition. Under the experimental conditions employed here the four materials studied behave similarly, in that a reaction occurs in the cellulose skeleton, resulting in dehydroxylation of some of the pyranose units in the surface layers, with concomitant elimination of molecules of water. An infrared (IR) analysis of the ethyl cellulose and high-molecular-weight EHEC films indicates the presence of a strong carbonyl band, no evidence for which is found in the XPS spectra. However, other features of the IR spectra support the proposed dehydroxylation mechanism. The origin of this inconsistency is unclear but may be attributable to either differences in the surface and bulk degradation products formed or to the detection differences of the XPS and IR techniques. (author).

  2. Ethyl cellulose microcapsules for protecting and controlled release of folic acid.

    Science.gov (United States)

    Prasertmanakit, Satit; Praphairaksit, Nalena; Chiangthong, Worawadee; Muangsin, Nongnuj

    2009-01-01

    Ethyl cellulose microcapsules were developed for use as a drug-delivery device for protecting folic acid from release and degradation in the undesirable environmental conditions of the stomach, whilst allowing its release in the intestinal tract to make it available for absorption. The controlled release folic acid-loaded ethyl cellulose microcapsules were prepared by oil-in-oil emulsion solvent evaporation using a mixed solvent system, consisting of a 9:1 (v/v) ratio of acetone:methanol and light liquid paraffin as the dispersed and continuous phase. Span 80 was used as the surfactant to stabilize the emulsion. Scanning electron microscopy revealed that the microcapsules had a spherical shape. However, the particulate properties and in vitro release profile depended on the concentrations of the ethyl cellulose, Span 80 emulsifier, sucrose (pore inducer), and folic acid. The average diameter of the microcapsules increased from 300 to 448 microm, whilst the folic acid release rate decreased from 52% to 40%, as the ethyl cellulose concentration was increased from 2.5% to 7.5% (w/v). Increasing the Span 80 concentration from 1% to 4% (v/v) decreased the average diameter of microcapsules from 300 to 141 microm and increased the folic acid release rate from 52% to 79%. The addition of 2.5-7.5% (w/v) of sucrose improved the folic acid release from the microcapsules. The entrapment efficiency was improved from 64% to 88% when the initial folic acid concentration was increased from 1 to 3 mg/ml.

  3. Uranium extraction from colofanite via organic solvents

    International Nuclear Information System (INIS)

    Ribeiro, Valeria Aparecida Leitao

    2007-01-01

    This work describes the use of pure or combined extractants dissolved in organic solvents for quantitative uranium recovery from colofanite, a fluoroapatite ore, from Itataia, Santa Quiteria, Ceara, Brazil. This ore contains the highest brazilian uranium reserve. The metal is associated to phosphate species. The ore is digested with sulfuric acid (wet process), producing phosphoric acid, which is used for manufacturing of fertilizers and animal food. >From the acid leaching, some systems for uranium recovery were tested. Among them, PC88A (2-ethyl-hexyl phosphonic acid, mono-2-ethyl-hexyl ester) 40% vol. and DEHPA (di(2-ethyl-hexyl)phosphoric acid) 40% vol. in kerosene presented the highest values for the distribution coefficient (D) for uranium. When synergistic systems were employed, the best results were obtained for DEHPA 40%vol. + PC88A 40%vol. and DEHPA 40% vol. + TOPO (trioctylphosphine oxide) 5% vol. in kerosene. 15% wt/v sodium carbonate was the best medium for uranium stripping and separation from iron, the main interfering element. Uranium was precipitated as sodium diuranate by adding sodium hydroxide (5,0 mol L -1 ). Thorium in the raffinate was extracted by TOPO (0,1% vol.) in cyclohexane. The radioactivity level of the final aqueous waste is similar to natural background, according to CNEN-NE 6.05 Norm. After neutralization, the solid can be co-processed, according to the Directory 264 from the National Brazilian Environmental Council (CONAMA), whereas the treated effluent can be discarded according to the Directory 357 from CONAMA. (author)

  4. Selective nonspecific solvation under dielectric saturation and fluorescence spectra of dye solutions in binary solvents.

    Science.gov (United States)

    Bakhshiev, N G; Kiselev, M B

    1991-09-01

    The influence of selective nonspecific solvation on the fluorescence spectra of three substitutedN-methylphthalimides in a binary solvent system consisting of a nonpolar (n-heptane) and a polar (pyridine) component has been studied under conditions close to dielectric saturation. The substantially nonlinearity of the effect is confirmation that the spectral shifts of fluorescence bands depend on the number of polar solvent molecules involved in solvating the dye molecule. The measured fluorescence spectral shifts determined by substituting one nonpolar solvent molecula with a polar one in the proximity of the dye molecule agree quantitatively with the forecasts of the previously proposed semiempirical theory which describes this nonlinear solvation phenomenon.

  5. Experimental Limiting Oxygen Concentrations for Nine Organic Solvents at Temperatures and Pressures Relevant to Aerobic Oxidations in the Pharmaceutical Industry.

    Science.gov (United States)

    Osterberg, Paul M; Niemeier, Jeffry K; Welch, Christopher J; Hawkins, Joel M; Martinelli, Joseph R; Johnson, Thomas E; Root, Thatcher W; Stahl, Shannon S

    2015-11-20

    Applications of aerobic oxidation methods in pharmaceutical manufacturing are limited in part because mixtures of oxygen gas and organic solvents often create the potential for a flammable atmosphere. To address this issue, limiting oxygen concentration (LOC) values, which define the minimum partial pressure of oxygen that supports a combustible mixture, have been measured for nine commonly used organic solvents at elevated temperatures and pressures. The solvents include acetic acid, N -methylpyrrolidone, dimethyl sulfoxide, tert -amyl alcohol, ethyl acetate, 2-methyltetrahydrofuran, methanol, acetonitrile, and toluene. The data obtained from these studies help define safe operating conditions for the use of oxygen with organic solvents.

  6. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  7. Radiation destruction of vitamin A in lipid solvents

    International Nuclear Information System (INIS)

    Snauwaert, F.; Maes, E.; Tobback, P.; Bhushan, B.

    1978-01-01

    The radiation response of vitamin A alcohol and its acetate derivative was compared in different lipid solvents. In all the solvents vitamin A alcohol exhibited a much higher radiation sensitivity than its ester counterpart. The nature of the solvent and the initial concentration was found to have a great influence on the extent of radiation degradation of vitamin A alcohol. In contrast to a high radiolability in non-polar solvents, vitamin A alcohol exhibited a remarkable stability in isopropanol. In addition, in isopropanol the G(-) relationship with radiation dose showed a reverse trend to that observed for other solvents. A thin-layer chromatographic procedure was developed for separation of the radiation degradation products. (author)

  8. Commentary on “thermodynamic equilibrium of hydroxyacetic acid in pure and binary solvent systems”

    International Nuclear Information System (INIS)

    Acree, William E.

    2017-01-01

    Highlights: • Errors found in published equation coefficients. • Published solubility data reanalyzed. • New coefficients determined for simplified form of CNIBS/R-K model. - Abstract: Problems are discussed regarding published mathematical representations by Huang et al. (2017) for describing how the measured mole fraction solubility varies with solvent composition in the binary (ethanol + ethyl acetate) and binary (acetone + ethanol) solvent systems. Several sets of published equation coefficients were found to give back-calculated mole fraction solubilities that exceeded unity. The published solubility data for hydroxyacetic acid dissolved in binary (ethanol + ethyl acetate) was reanalyzed and new curve-fitted equation coefficients were calculated for the simplified form of the Combined Nearly Ideal Binary Solvent (NIBS)/Redlich-Kister Model. Two simple methods for identifying possible errors in curve-fitted equation coefficients were also presented.

  9. Bioactivity of Diterpens from the Ethyl Acetate Extract of Kingiodendron pinnatum Rox. Hams.

    Science.gov (United States)

    Javarappa, Komal Kumar; Prasad, Attemode Girijanna Devi; Mahadesh Prasad, A J; Mane, Chetana

    2016-01-01

    Kingiodendron pinnatum Rox. Hams. is an endangered medicinal plant used in gonorrhoe, catarrhal conditions of genito-urinary and respiratory tracts. The scientific and pharmacological formulation of K. pinnatum has not been established so far though it is being traditionally used by tribes of the region. P hytochemical screening and identification of the bioactive compounds from the ethyl acetate extract of Kingiodendron pinnatum Rox. Hams. Chromatographic separation was carried out by thin layer chromatography and column chromatography. Bio-autography of the column fractioned extract and TLC chromatogram were evaluated in vitro for antibacterial activity. The PTLC, HP TLC were used for crude extract and HPLC, LCMS, FTIR, 1 HNMR and 13 CNMR were employed for the isolated compound in the ethyl acetate extract of K. pinnatum . Evaluation of solvent system for chromatographic separation revealed that ethyl acetate: petroleum ether in the ratio of 7:2.5 ml was the most appropriate one for the separation of diterpene compounds. The antibacterial bio-autography screening of TLC separated compound showed positive activity with Staphylococcus aureus and negative activity with Escherichia coli . Spectroscopic analysis of the isolated compound from the ethyl acetate extract of K. pinnatum revealed the presence of diterpene compound. It is evident from the present study that the ethyl acetate extract of K. pinnatum is rich in diterpene compounds and having potential antibacterial activity. Novel extraction method for phytochemicls from Kingidendron pinnatum at RTAntibacterial property of diterpens extracted from Kingiodendron pinnatum Rox. Hams aganist S. aureus Abbreviations Used : TLC: Thin Layer Chromatography, PTLC: Preparatory Thin Layer Chromatography, HPTLC: High perormence Thin Layer chromatography, HPLC: High Performance Liquid Chromatography, LC-MS: Liquid chromatography Mass Spectra, FTIR: Fourier Transform Infrared Chromatography, NMR: Nuclear Magnetic Resonance.

  10. Fermentation-Guided Natural Products Isolation of a Grape Berry Triacylglyceride that Enhances Ethyl Ester Production

    Directory of Open Access Journals (Sweden)

    Christopher L. Blackford

    2018-01-01

    Full Text Available A full understanding of the origin, formation and degradation of volatile compounds that contribute to wine aroma is required before wine style can be effectively managed. Fractionation of grapes represents a convenient and robust method to simplify the grape matrix to enhance our understanding of the grape contribution to volatile compound production during yeast fermentation. In this study, acetone extracts of both Riesling and Cabernet Sauvignon grape berries were fractionated and model wines produced by spiking aliquots of these grape fractions into model grape juice must and fermented. Non-targeted SPME-GCMS analyses of the wines showed that several medium chain fatty acid ethyl esters were more abundant in wines made by fermenting model musts spiked with certain fractions. Further fractionation of the non-polar fractions and fermentation of model must after addition of these fractions led to the identification of a mixture of polyunsaturated triacylglycerides that, when added to fermenting model must, increase the concentration of medium chain fatty acid ethyl esters in wines. Dosage-response fermentation studies with commercially-available trilinolein revealed that the concentration of medium chain fatty acid ethyl esters can be increased by the addition of this triacylglyceride to model musts. This work suggests that grape triacylglycerides can enhance the production of fermentation-derived ethyl esters and show that this fractionation method is effective in segregating precursors or factors involved in altering the concentration of fermentation volatiles.

  11. ANTISECRETORY AND ANTIULCERATIVE EFFECTS OF ETHYL ...

    African Journals Online (AJOL)

    User

    2015-12-02

    Dec 2, 2015 ... ABSTRACT. The present work was carried out to investigate the possible effects of ethyl acetate seed fraction of. Nigella sativa on gastric ulcers and basal gastric secretions using the Non-Steroidal Anti-inflammatory. Drug-induced (NSAID) model. Phytochemical screening according to Trease and Evans, ...

  12. Manufacturing Ethyl Acetate From Fermentation Ethanol

    Science.gov (United States)

    Rohatgi, Naresh K.; Ingham, John D.

    1991-01-01

    Conceptual process uses dilute product of fermentation instead of concentrated ethanol. Low-concentration ethanol, extracted by vacuum from fermentation tank, and acetic acid constitutes feedstock for catalytic reaction. Product of reaction goes through steps that increases ethyl acetate content to 93 percent by weight. To conserve energy, heat exchangers recycle waste heat to preheat process streams at various points.

  13. Cleaning without chlorinated solvents

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, L.M.; Simandl, R.F.

    1994-12-31

    Because of health and environmental concerns, many regulations have been passed in recent years regarding the use of chlorinated solvents. The Oak Ridge Y-12 Plant has had an active program to find alternatives for these solvents used in cleaning applications for the past 7 years. During this time frame, the quantity of solvents purchased has been reduced by 92%. The program has been a twofold effort. Vapor degreasers used in batch cleaning-operations have been replaced by ultrasonic cleaning with aqueous detergent, and other organic solvents have been identified for use in hand-wiping or specialty operations. In order to qualify these alternatives for use, experimentation was conducted on cleaning ability as well as effects on subsequent operations such as welding, painting and bonding. Cleaning ability was determined using techniques such as X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FTIR) which are capable of examining monolayer levels of contamination on a surface. Solvents have been identified for removal of rust preventative oils, lapping oils, machining coolants, lubricants, greases, and mold releases. Solvents have also been evaluated for cleaning urethane foam spray guns, swelling of urethanes and swelling of epoxies.

  14. Extraction and separation studies of uranium(VI) with tris-(2-ethyl hexyl) phosphate

    International Nuclear Information System (INIS)

    Sundaramurthi, N.M.; Desai, G.S.; Shinde, V.M.

    1990-01-01

    A solvent extraction method is proposed for the extraction and separation of uranium from salicylate media using tris-(2-ethyl hexyl) phosphate dissolved in xylene as an extractant. The optimum conditions were evaluated from a critical study of pH, salicylate concentration, extractant concentration, period of equilibration and diluent. The method permits the separation of uranium from thorium, cerium, titanium, zirconium, hafnium, copper, vanadium and chromium from binary mixtures and is applicable to the analysis of uranium in synthetic samples. The method is precise, accurate, fast and selective. (author) 5 refs.; 2 tabs

  15. Fast detoxication of 2-chloro ethyl ethyl sulfide by p-type Ag2O semiconductor nanoparticle-loaded Al2O3-based supports

    International Nuclear Information System (INIS)

    Ma, Meng-Wei; Kuo, Dong-Hau

    2016-01-01

    Highlights: • Detoxication of CWA surrogate of 2-chloro ethyl ethyl sulfide is investigated. • A small amount of Ag 2 O on Al 2 O 3 -base support is sufficient to degrade 2-CEES. • Detoxication conversion >82% in 15 min is achieved for >2.5% Ag 2 O/Na 2 SiO 3 /Al 2 O 3 . • Na 2 SiO 3 modified Al 2 O 3 to have the valley-like line pattern for depositing Ag 2 O. • 2-CEES oxidation is initiated from the dominant electronic holes in p-type Ag 2 O. - Abstract: p-type Ag 2 O semiconductor nanoparticle-loaded Al 2 O 3 or Na 2 SiO 3 /Al 2 O 3 powders used for detoxicating the surrogate of sulfur mustard of 2-chloro ethyl ethyl sulfide (C 2 H 5 SCH 2 CH 2 Cl, 2-CEES) were investigated. Different amounts of Ag 2 O and Na 2 SiO 3 on catalyst supports were evaluated. Gas chromatography with a pulsed flame photometric detector (GC–PFPD) and gas chromatography coupled with a mass spectroscopy (GC–MS) were used to monitor and identify the catalytic reactions, together with reaction products analysis. The GC analyses showed that the decontamination of 2-CEES in isopropanol solvent for 15 min was above 82% efficiency for the 0.5% Na 2 SiO 3 /Al 2 O 3 support deposited with a Ag 2 O content above 2.5%. 2-(ethylthio)ethanol and 2-(ethylthio)ethanoic acid were identified as the major products after catalytic reactions. The electronic holes dominating in p-type Ag 2 O is proposed to provide the key component and to initiate the catalytic reactions. The electronic hole-based detoxication mechanism is proposed.

  16. 1H chemically induced dynamic nuclear polarization in the photodecomposition of uranyl carboxylates

    International Nuclear Information System (INIS)

    Rykov, S.V.; Khudyakov, I.V.; Skakovsky, E.D.; Burrows, H.D.; Formosinho, S.J.; Miguel, M. da G.M.

    1991-01-01

    Chemically induced dynamic nuclear polarization ( 1 H CIDNP) has been observed during photolysis of uranyl salts of pivalic, propionic, and acetic acids in D 2 O solution, [ 2 H 6 ]acetone, [ 2 H 4 ]methanol, or in some other solvent. The multiplet polarization of isobutene and isobutane protons has been found under photolysis of deoxygenated pivalate solution. The polarized compounds are formed in the triplet pairs of tert-butyl free radicals. 1 H Emission of the tert-butylperoxyl group and emission of 1 H from isobutene have been recorded under photolysis of air-saturated pivalate solutions. The CIDNP of butane protons stays as a multiplet. Such changes in the presence of air/oxygen have arisen apparently because of the formation of tert-butylperoxyl free radical and its reaction with tert-butyl radical products, i.e. hydroperoxide (peroxide) and isobutene. Isobutene probably forms a complex with molecular oxygen which has a very short proton relaxation time. During the photolysis of uranyl pivalate in the presence of p-benzoquinone (5 x 10 -2 -0.1 mol dm -3 ) we have not observed any CIDNP, whereas under p-benzoquinone concentrations of 10 -3 -10 -2 mol dm -3 the CIDNP from both hydroquinone and p-benzoquinone has been followed. Photolysis of uranyl propionate has led to CIDNP from butane protons. An emission from methyl group protons of a compound with an ethylperoxyl fragment in the presence of air/oxygen has been observed. The same polarization picture has arisen under interaction of photoexcited uranyl with propionic acid. During the photolysis of uranyl acetate at relatively low concentrations (10 -2 mol dm -3 ) a CIDNP very similar to that registered for uranyl propionate was recorded. The ethyl fragment is probably obtained in reactions for two methyl radicals formed from acetate with the parent uranyl acetate, namely hydrogen-atom abstraction and addition reactions. (author)

  17. Polarization, political

    NARCIS (Netherlands)

    Wojcieszak, M.; Mazzoleni, G.; Barnhurst, K.G.; Ikeda, K.; Maia, R.C.M.; Wessler, H.

    2015-01-01

    Polarization has been studied in three different forms: on a social, group, and individual level. This entry first focuses on the undisputed phenomenon of elite polarization (i.e., increasing adherence of policy positions among the elites) and also outlines different approaches to assessing mass

  18. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  19. 77 FR 60917 - Trinexapac-ethyl; Pesticide Tolerances

    Science.gov (United States)

    2012-10-05

    ... AGENCY 40 CFR Part 180 RIN 2070-ZA16 Trinexapac-ethyl; Pesticide Tolerances AGENCY: Environmental... trinexapac-ethyl in or on multiple commodities and modifies existing tolerance levels and commodity definitions for trinexapac-ethyl, which are identified and discussed later in this document. EPA proposed...

  20. Perylenetetracarboxylic diimide (PTCDI) nanowires for sensing ethyl acetate in wine.

    Science.gov (United States)

    Khopkar, Yashdeep; Kojtari, Arben; Swearer, Dayne; Zivanovic, Sandra; Ji, Hai-Feng

    2014-09-01

    We report the application of perylenetetracarboxylic diimide (PTCDI) nanowires for sensing ethyl acetate. The conductivity of the crystalline nano/microwires increases quickly and selectively in the presence of ethyl acetate vapor, but not with water, acid and alcohol vapors, suggesting that the nanowires of PTCDI may be used for monitoring ethyl acetate during a wine manufacturing process.

  1. Purex process solvent: literature review

    International Nuclear Information System (INIS)

    Geier, R.G.

    1979-10-01

    This document summarizes the data on Purex process solvent presently published in a variety of sources. Extracts from these various sources are presented herein and contain the work done, the salient results obtained, and the original, unaltered conclusions of the author of each paper. Three major areas are addressed: solvent stability, solvent quality testing, and solvent treatment processes. 34 references, 44 tables

  2. Phase equilibrium measurements and thermodynamic modelling for the system (CO2 + ethyl palmitate + ethanol) at high pressures

    International Nuclear Information System (INIS)

    Gaschi, Priscilla S.; Mafra, Marcos R.; Ndiaye, Papa M.; Corazza, Marcos L.

    2013-01-01

    Graphical abstract: Ethyl palmitate and biodiesel comparison in a pressure–composition diagram for the systems (CO 2 + ethyl palmitate + biodiesel), at different temperatures. Highlights: ► We measured VLE, LLE, and VLLE for the system (CO 2 + ethyl palmitate + ethanol). ► The saturation pressures were obtained using a variable-volume view cell. ► Phase envelope of (CO 2 + ethyl palmitate) is different that (CO 2 + soybean oil biodiesel). ► The experimental data were modeled using PR-vdW2 and PR–WS equations of state. - Abstract: This work reports phase equilibrium measurements for the binary {CO 2 (1) + ethyl palmitate(2)} and ternary {CO 2 (1) + ethyl palmitate(2) + ethanol(3)} systems at high pressures. There is currently great interest in biodiesel production processes involving supercritical and/or pressurized solvents, such as non-catalytic supercritical biodiesel production and enzyme-catalysed biodiesel production. Also, supercritical CO 2 can offer an interesting alternative for glycerol separation in the biodiesel purification step in a water-free process. In this context, the main goal of this work was to investigate the phase behaviour of binary and ternary systems involving CO 2 , a pure constituent of biodiesel ethyl palmitate and ethanol. Experiments were carried out in a high-pressure variable-volume view cell with operating temperatures ranging from (303.15 to 353.15) K and pressures up to 21 MPa. The CO 2 mole fraction ranged from 0.5033 to 0.9913 for the binary {CO 2 (1) + ethyl palmitate(2)} system and from 0.4436 to 0.9712 for ternary system {CO 2 (1) + ethyl palmitate(2) + ethanol(3)} system with ethyl ester to ethanol molar ratios of (1:6), (1:3), and (1:1). For the systems investigated, vapour–liquid (VL), liquid–liquid (LL) and vapour–liquid–liquid (VLL) phase transitions were observed. The experimental data sets were successfully modeled using the Peng–Robinson equation of state with the classical van der Waals

  3. Use of ethyl lactate to extract bioactive compounds from Cytisus scoparius: Comparison of pressurized liquid extraction and medium scale ambient temperature systems.

    Science.gov (United States)

    Lores, Marta; Pájaro, Marta; Álvarez-Casas, Marta; Domínguez, Jorge; García-Jares, Carmen

    2015-08-01

    An important trend in the extraction of chemical compounds is the application of new environmentally friendly, food grade solvents. Ethyl lactate (ethyl 2-hydroxypropanoate), produced by fermentation of carbohydrates, is miscible with both hydrophilic and hydrophobic compounds being a potentially good solvent for bioactive compounds. Despite its relatively wide use as a general solvent, the utilization of ethyl lactate as an extraction solvent has only recently been considered. Here, we evaluate the possible use of ethyl lactate to extract phenolic compounds from wild plants belonging to Cytisus scoparius, and we compare the characteristics of the extracts obtained by Pressurized Solvent Extraction (the total phenolics content, the antioxidant activity and the concentration of the major polyphenols) with those of other extracts obtained with methanol. In order to explore the industrial production of the ethyl lactate Cytisus extract, we also evaluate medium scale ambient temperature setups. The whole plant and the different parts (flowers, branches, and seed pods) were evaluated separately as potential sources of polyphenols. All extracts were analyzed by LC-MS/MS for accurate identification of the major polyphenols. Similar phenolic profiles were obtained when using ethyl lactate or methanol. The main bioactives found in the Cytisus extract were the non-flavonoid phenolic compounds caffeic and protocatechuic acids and 3,4-dihydroxybenzaldehyde; the flavonoids rutin, kaempferol and quercetin; the flavones chrysin, orientin and apigenin; and the alkaloid lupanine. Regarding the comparison of the extraction systems, although the performance of the PLE was much better than that of the ambient-temperature columns, the energy consumption was also much higher. Ethyl lactate has resulted an efficient extraction solvent for polyphenols from C. scoparius, yielding extracts with high levels of plant phenolics and antioxidant activity. The antimicrobial activity of these

  4. Membrane Separation of 2-Ethyl Hexyl Amine/1-Decene

    KAUST Repository

    Bawareth, Bander

    2012-12-01

    1-Decene is a valuable product in linear alpha olefins plants that is contaminated with 2-EHA (2-ethyl hexyl amine). Using organic solvent nanofiltration membranes for this separation is quite challengeable. A membrane has to be a chemically stable in this environment with reasonable and stable separation factor. This paper shows that Teflon AF 2400 and cellulose acetate produced interesting results in 1-decene/2-EHA separation. The separation factor of Teflon AF 2400 is 3 with a stable permeance of 1.1x10-2 L/(m2·h·bar). Likewise, cellulose acetate gave 2-EHA/1-decene separation factor of 2 with a lower permeance of 3.67x10-3 L/(m2·h·bar). A series of hydrophilic membranes were tested but they did not give any separation due to high degree of swelling of 2-EHA with these polymers. The large swelling causes the membrane to lose its diffusivity selectivity because of an increase in the polymer\\'s chain mobility.

  5. Polar Bears

    Science.gov (United States)

    Amstrup, Steven C.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Polar bears (Ursus maritimus) are hunted throughout most of their range. In addition to hunting polar bears of the Beaufort Sea region are exposed to mineral and petroleum extraction and related human activities such as shipping road-building, and seismic testing (Stirling 1990).Little was known at the start of this project about how polar bears move about in their environment, and although it was understood that many bears travel across political borders, the boundaries of populations had not been delineated (Amstrup 1986, Amstrup et al. 1986, Amstrup and DeMaster 1988, Garner et al. 1994, Amstrup 1995, Amstrup et al. 1995, Amstrup 2000).As human populations increase and demands for polar bears and other arctic resources escalate, managers must know the sizes and distributions of the polar bear populations. Resource managers also need reliable estimates of breeding rates, reproductive intervals, litter sizes, and survival of young and adults.Our objectives for this research were 1) to determine the seasonal and annual movements of polar bears in the Beaufort Sea, 2) to define the boundaries of the population(s) using this region, 3) to determine the size and status of the Beaufort Sea polar bear population, and 4) to establish reproduction and survival rates (Amstrup 2000).

  6. Antiradical and Cytotoxic Activities of Varying Polarity Extracts of the Aerial Part of Euphorbia hirta L.

    Directory of Open Access Journals (Sweden)

    Shanmugapriya Perumal

    2013-01-01

    Full Text Available Euphorbia hirta is a well-known ethnomedicinal plant with diverse biological activities. The aim of the present study is to investigate the antiradical activities of various solvent extracts of the aerial part of E. hirta as well as to determine the possible cytotoxicity of these extracts. The aerial part of E. hirta was extracted with different solvent systems in order to increase polarity. The solvents used were hexane, dichloromethane (DCM, ethyl acetate (EA, ethanol (EtOH, and methanol (MeOH. The contents of total phenols and total flavonoids were analyzed by UV spectrophotometry, whereas the potential free radical-scavenging activities of the extracts were evaluated using the stable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH, the β-carotene-linoleic acid bleaching system, and reducing power. The EtOH extract exhibited the highest total phenolic content (237.9±2.26 mg GAE/g, and DCM extract scored the highest total flavonoid content (121±0.15 mg CE/g. The MeOH extract showed a potent free radical-scavenging activity as evidenced by low EC50 at 42.81 µg/mL. Interestingly, the EtOH extract demonstrated the highest reducing power activity with EC50 value of 6.18 µg/mL. In β-carotene-linoleic acid assay, oxidation of linoleic acid was effectively inhibited by DCM extract with 96.15±0.78%. All the extracts showed no cytotoxic activity against Vero cells.

  7. Transport of a solvent mixture across two glove materials when applied in a paint matrix.

    Science.gov (United States)

    Tran, Jackelin Q; Ceballos, Diana M; Dills, Russell L; Yost, Michael G; Morgan, Michael S

    2012-07-01

    The transport of mixed paint solvents through natural rubber latex (4 mil) and nitrile rubber (5 mil) gloves was evaluated after spray application of the paint formulation directly on the glove surface. Glove materials and thicknesses were those selected by the majority of spray painters in the local automobile repair industry. A flat panel containing glove specimens mounted in multiple permeation cells permitted evaporation of solvents from the applied paint and incorporated a solid sorbent receiving medium for measuring glove membrane transport. The panel was sprayed in a paint booth to simulate use conditions. Charcoal cloth under the glove adsorbed transported solvents, which were quantified by gas chromatography. For each solvent component, results were expressed as mass transported through the glove relative to the mass applied, per unit area, during 30 min after spray application. The paint formulation contained ketones, acetates, and aromatics. Natural rubber latex allowed 6-10 times the transport of solvents relative to nitrile rubber for all eight solvent components: methyl ethyl ketone, toluene, styrene, ethyl benzene, xylene isomers, and 2-heptanone. m-Xylene showed the largest difference in transport between the two glove materials. This solvent also had the highest transport for each material. The results indicate that nitrile rubber gloves offer somewhat greater chemical resistance to all eight solvents studied compared with natural rubber latex gloves, regardless of the chemical properties of the individual solvent components. However, it must be emphasized that neither of the glove materials, in the thicknesses used in this study, provide adequate protection when exposed by direct spray painting. Simulation of realistic spray conditions may offer a source of useful information on the performance of chemical protective gloves because it accounts for solvent evaporation and the effect of paint polymerization after application on glove transport.

  8. Assessment of Solvent-Induced Nitrogen Shielding Variations of Triazole Systems

    Science.gov (United States)

    Witanowski, M.; Sicinska, W.; Biedrzycka, Z.; Grabowski, Z.; Webb, G. A.

    High-precision 14N NMR shieldings are reported for all of the possible N-methyl triazoles in a variety of solvents. A large difference is observed in the effects of solvent on the shieldings of the pyrrole-type and pyridine-type nitrogen atoms in such systems. This difference largely arises from solvent-to-solute hydrogen-bonding effects for the latter type of nitrogen atom. For these two types of nitrogen atoms in triazoles, solvent polarity effects induce changes in the shieldings in opposite directions: this is corroborated by shielding calculations using the solvaton model. Solvent-to-solute hydrogen-bonding effects are larger than those due to solvent polarity and permit the assessment of the basicities of nonequivalent nitrogenous sites; these appear to parallel the analogous basicities with respect to protonation.

  9. Separation by solvent extraction

    Science.gov (United States)

    Holt, Jr., Charles H.

    1976-04-06

    17. A process for separating fission product values from uranium and plutonium values contained in an aqueous solution, comprising adding an oxidizing agent to said solution to secure uranium and plutonium in their hexavalent state; contacting said aqueous solution with a substantially water-immiscible organic solvent while agitating and maintaining the temperature at from -1.degree. to -2.degree. C. until the major part of the water present is frozen; continuously separating a solid ice phase as it is formed; separating a remaining aqueous liquid phase containing fission product values and a solvent phase containing plutonium and uranium values from each other; melting at least the last obtained part of said ice phase and adding it to said separated liquid phase; and treating the resulting liquid with a new supply of solvent whereby it is practically depleted of uranium and plutonium.

  10. Separation by solvent extraction

    International Nuclear Information System (INIS)

    Holt, C.H. Jr.

    1976-01-01

    In a process for separating fission product values from U and Pu values contained in an aqueous solution, an oxidizing agent is added to the solution to secure U and Pu in their hexavalent state. The aqueous solution is contacted with a substantially water-immiscible organic solvent with agitation while the temperature is maintained at from -1 to -2 0 C until the major part of the water present is frozen. The solid ice phase is continuously separated as it is formed and a remaining aqueous liquid phase containing fission product values and a solvent phase containing Pu and U values are separated from each other. The last obtained part of the ice phase is melted and added to the separated liquid phase. The resulting liquid is treated with a new supply of solvent whereby it is practically depleted of U and Pu

  11. Solvent selection methodology for pharmaceutical processes: Solvent swap

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil; Kumar Tula, Anjan; Gani, Rafiqul

    2016-01-01

    in pharmaceutical processes as well as new solvent swap alternatives. The method takes into account process considerations such as batch distillation and crystallization to achieve the swap task. Rigorous model based simulations of the swap operation are performed to evaluate and compare the performance......A method for the selection of appropriate solvents for the solvent swap task in pharmaceutical processes has been developed. This solvent swap method is based on the solvent selection method of Gani et al. (2006) and considers additional selection criteria such as boiling point difference......, volatility difference, VLE phase diagram analysis, and azeotropic information that are particularly important for the solvent swap task. The method employs a solvent-swap database together with calculation tools for properties–functions of solvents. The database contains solvents that are commonly used...

  12. Self-Assembly of Block and Graft Copolymers in Organic Solvents: An Overview of Recent Advances

    Directory of Open Access Journals (Sweden)

    Leonard Ionut Atanase

    2018-01-01

    Full Text Available This review is an attempt to update the recent advances in the self-assembly of amphiphilic block and graft copolymers. Their micellization behavior is highlighted for linear AB, ABC triblock terpolymers, and graft structures in non-aqueous selective polar and non-polar solvents, including solvent mixtures and ionic liquids. The micellar characteristics, such as particle size, aggregation number, and morphology, are examined as a function of the copolymers’ architecture and molecular characteristics.

  13. Effective lipid extraction from algae cultures using switchable solvents

    NARCIS (Netherlands)

    Samori, Chiara; Lopez Barreiro, D.; Vet, Robin; Pezzolesi, Laura; Brilman, Derk Willem Frederik; Galletti, Paola; Tagliavini, Emilio

    2013-01-01

    A new procedure based on switchable polarity solvents (SPS) was proposed for lipid extraction of wet algal samples or cultures, thereby circumventing the need for an energy intensive drying step and facilitating easy recovery of the lipids from the extraction liquid. Lipids were extracted by using

  14. Synthesis of Ethyl Salicylate Using Household Chemicals

    Science.gov (United States)

    Solomon, Sally; Hur, Chinhyu; Lee, Alan; Smith, Kurt

    1996-02-01

    Ethyl salicylate is synthesized, isolated, and characterized in a three-step process using simple equipment and household chemicals. First, acetylsalicylic acid is extracted from aspirin tablets with isopropyl alcohol, then hydrolyzed to salicylic acid with muriatic acid, and finally, the salicylic acid is esterified using ethanol and a boric acid catalyst. The experiment can be directed towards high school or university level students who have sufficient background in organic chemistry to recognize the structures and reactions that are involved.

  15. Equilibrium data on ethanol-water-solvent ternaries

    Directory of Open Access Journals (Sweden)

    I. Kirbaslar

    2000-06-01

    Full Text Available Experimental liquid-liquid equilibria of water-ethanol-1-nonanol and water-ethanol-1-decanol systems were investigated at 303.16± 0.20 K. The reliability of the experimental tie-line data was ascertained by using Othmer-Tobias and Hand plots. Distribution coefficients (Di and separation factors (S were evaluated for the immiscibility region. It is concluded that the solvents with high boiling point, 1-nonanol and 1-decanol, are suitable separating agents for dilute aqueous ethyl alcohol solutions.

  16. Diluent effects in solvent extraction. The Effects of Diluents in Solvent Extraction - a literature study

    International Nuclear Information System (INIS)

    Loefstroem-Engdahl, Elin; Aneheim, Emma; Ekberg, Christian; Foreman, Mark; Skarnemark, Gunnar

    2010-01-01

    The fact that the choice of organic diluent is important for a solvent extraction process goes without saying. Several factors, such as e.g. price, flash point, viscosity, polarity etc. each have their place in the planning of a solvent extraction system. This high number of variables makes the lack of compilations concerning diluent effects to an interesting topic. Often the interest for the research concerning a specific extraction system focuses on the extractant used and the complexes built up during an extraction. The diluents used are often classical ones, even if it has been shown that choice of diluent can affect extraction as well as separation in an extraction system. An attempt to point out important steps in the understanding of diluent effects in solvent extraction is here presented. This large field is, of course, not summarized in this article, but an attempt is made to present important steps in the understanding of diluents effects in solvent extraction. Trying to make the information concerning diluent effects and applications more easily accessible this review offers a selected summarizing of literature concerning diluents effects in solvent extraction. (authors)

  17. The effect of fluorine atom on the synthesis and composition of gametocidal ethyl oxanilates.

    Science.gov (United States)

    Iskra, Jernej; Titan, Primož; Meglič, Vladimir

    2013-01-01

    Three derivatives of ethyl oxanilate were synthesized in order to test their application as gametocides on the hermaphrodite plants like common wheat (Triticum aestivum L.). A substituent at para position (F, Br, CN) of aniline defined its reactivity towards diethyl oxalate 2. Classical reaction in toluene was not selective and amidation occurred also at the second carbonyl groups of 2. Alternative synthesis under solvent-free conditions with application of low pressure for removal of EtOH provided selectively with ethyl oxanilate 3a and 3b. 4-Cyanoaniline did not react selectively and the corresponding ethyl oxanilate 3c was prepared from mono acid chloride of oxalic acid. Fluoro derivative 3a was found to be the only one that gives stable aqueous suspension for its application as chemical hybridizing agent for common wheat, while bromo- 3b and cyano- 3c analogues were not soluble enough and suspension was stable for less than 2 hours. Fluoro derivative had shown the best induction of male sterility, while in comparison with standard chemical hybridizing agent they were substantially less toxic for plant.

  18. Solubility modelling and thermodynamic dissolution functions of phthalimide in ten organic solvents

    International Nuclear Information System (INIS)

    Xu, Renjie; Wang, Jian; Han, Shuo; Du, Cunbin; Meng, Long; Zhao, Hongkun

    2016-01-01

    Highlights: • The solubility of phthalimide in ten organic solvents were determined. • The solubility were correlated with four thermodynamic models. • The dissolution thermodynamic properties of solution were obtained. - Abstract: In this work, a high performance liquid chromatography (HPLC) was employed to determine the solubilities of phthalimide in methanol, isopropanol, n-propanol, ethyl acetate, acetonitrile, i-butanol, n-butanol, toluene, acetone and ethanol at temperatures ranging from (283.15 to 318.15) K under 0.1 MPa. The solubility of phthalimide in a fixed solvent increases with an increase in temperature. At a certain temperature, the solubility in different solvents decreases according to the following order: acetone > ethyl acetate > (methanol, isopropanol, n-propanol, acetonitrile, i-butanol, n-butanol, ethanol) > toluene. Four models, modified Apelblat equation, λh equation, Wilson model and NRTL model were employed to correlate the solubility of phthalimide in the solvents studied. The evaluated solubilities provide better agreement with the modified Apelblat equation than the other three models. The four thermodynamic models are all acceptable for correlating the solubility of phthalimide in the solvents studied. Furthermore, the standard dissolution enthalpy and excess enthalpy of the solutions were obtained. The dissolution process of phthalimide in the selected solvents is discussed.

  19. Decaffeination process characteristic of Robusta coffee in single column reactor using ethyl acetate solvent

    Directory of Open Access Journals (Sweden)

    Sukrisno Widyotomo

    2009-08-01

    Full Text Available AbstractThis experiment aims to know the solar energy efficiency of four clones of cocoa that cultivated under three different shading plants. This experiment has been done from September until December 2013 located at Kaliwining Experiment Farm with characteristic 45 m above sea level, soil type is low humic gley, soil texture is silty clay loam, and climate classification type D based on Scmidht and Fergusson Classification. This experiment used Nested Design as Experimental Design with species of shading plant as main plot which are Teak (Tectona grandis L., Krete (Cassia surattensis (Burm. F., Lamtoro (Leucaena leucocephala L. and Cocoa clones as sub plot which are Sulawesi 1, Sulawesi 2, KKM 22, KW 165. The observation of solar energy efficiency consists of daily solar radiation intensity, solar radiation intensity above plant, solar radiation intensity under plant, and also plant total dry weight. The experimental result showed that there is differences (heterogenity between shading location based on homogenity test by Bartlett Method. There are some interaction between the kind of shading plant and clones in parameter of interception efficiency, absorbtion efficiency, the efficiency of solar energy that caught by plant, and solar energy conversion efficiency. The efficiency of solar energy that caught by plant will affect the solar energy conversion efficiency with R2 = 0,86.  Keywords : Solar Energy Efficiency, Cocoa Clones, Shading Plant, Nested Design, Bartlett Method

  20. Cleaning Spent Bleaching Clay through Using Solvent Extraction Method and RSM Statistical Approach

    Directory of Open Access Journals (Sweden)

    Mahsa Shahi

    2015-12-01

    Full Text Available Abstract. Bleaching clay refers to clays that in their natural or activated state have the capacity to absorb dyes and other remaining undesirable ingredients from edible oil during its purification processes. Thus, the most important function of bleaching clay is to improve the appearance, flavor, odor, and stability of the final oil product. Hexane, acetone, and methyl ethyl ketone were used as the solvents in this research, and RSM (response surface methodology was employed for determining the optimal parameters. The variable parameters included the solvent to clay ratio (SCR and the extraction time. Results showed methyl ethyl ketone with the final oil removal efficiency of 61.3% was superior to hexane and acetone, with efficiencies of 52.7 and 59.1%, respectively. Under the best laboratory conditions and using RSM, the highest extraction efficiency was 5.97 ml/g for the ketone solvents (acetone and methyl ethyl ketone at the extraction time of 3 minutes and 6 seconds, and 5.92 ml/g for hexane at the extraction time of 24 minutes and 30 seconds.Keywords: Cleaning, Spent Bleaching Clay, Solvent Extraction, Response Surface Methodology (RSM, Oil Purification

  1. Cleaning Spent Bleaching Clay through Using Solvent Extraction Method and RSM Statistical Approach

    Directory of Open Access Journals (Sweden)

    mahsa shahi

    2015-07-01

    Full Text Available Bleaching clay refers to clays that in their natural or activated state have the capacity to absorb dyes and other remaining undesirable ingredients from edible oil during its purification processes. Thus, the most important function of bleaching clay is to improve the appearance, flavor, odor, and stability of the final oil product. Hexane, acetone, and methyl ethyl ketone were used as the solvents in this research, and RSM (response surface methodology was employed for determining the optimal parameters. The variable parameters included the solvent to clay ratio (SCR and the extraction time. Results showed methyl ethyl ketone with the final oil removal efficiency of 61.3% was superior to hexane and acetone, with efficiencies of 52.7 and 59.1%, respectively. Under the best laboratory conditions and using RSM, the highest extraction efficiency was 5.97 ml/g for the ketone solvents (acetone and methyl ethyl ketone at the extraction time of 3 minutes and 6 seconds, and 5.92 ml/g for hexane at the extraction time of 24 minutes and 30 seconds. Key words: Cleaning, Spent Bleaching Clay, Solvent Extraction, Response Surface Methodology (RSM, Oil Purification

  2. Chemical and thermochemical aspects of the ozonolysis of ethyl oleate: decomposition enthalpy of ethyl oleate ozonide.

    Science.gov (United States)

    Cataldo, Franco

    2013-01-01

    Neat ethyl oleate was ozonized in a bubble reactor and the progress of the ozonolysis was followed by infrared (FT-IR) spectroscopy and by the differential scanning calorimetry (DSC). The ozonolysis was conducted till a molar ratio O3/C=C≈1 when the exothermal reaction spontaneously went to completion. A specific thermochemical calculation on ethyl oleate ozonation has been made to determine the theoretical heat of the ozonization reaction using the group increment approach. A linear relationship was found both in the integrated absorptivity of the ozonide infrared band at 1110 cm(-1) and the ozonolysis time as well as the thermal decomposition enthalpy of the ozonides and peroxides formed as a result of the ozonation. The DSC decomposition temperature of ozonated ethyl oleate occurs with an exothermal peak at about 150-155 °C with a decomposition enthalpy of 243.0 kJ/mol at molar ratio O3/C=C≈1. It is shown that the decomposition enthalpy of ozonized ethyl oleate is a constant value (≈243 kJ/mol) at any stage of the O3/C=C once an adequate normalization of the decomposition enthalpy for the amount of the adsorbed ozone is taken into consideration. The decomposition enthalpy of ozonized ethyl oleate was also calculated using a simplified thermochemical model, obtaining a result in reasonable agreement with the experimental value. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Organic solvent topical report

    International Nuclear Information System (INIS)

    Cowley, W.L.

    1998-01-01

    This report is the technical basis for the accident and consequence analyses used in the Hanford Tank Farms Basis for Interim Operation. The report also contains the scientific and engineering information and reference material needed to understand the organic solvent safety issue. This report includes comments received from the Chemical Reactions Subcommittee of the Tank Advisory Panel

  4. Organic solvent topical report

    Energy Technology Data Exchange (ETDEWEB)

    COWLEY, W.L.

    1999-05-13

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an organic solvent fire is within risk evaluation guidelines. This report updates information contained in Analysis of Consequences of Postulated Solvent Fires in Hanford Site Waste Tanks. WHC-SD-WM-CN-032. Rev. 0A (Cowley et al. 1996). However, this document will not replace Cowley et al (1996) as the primary reference for the Basis for Interim Operation (BIO) until the recently submitted BIO amendment (Hanson 1999) is approved by the US Department of Energy. This conclusion depends on the use of controls for preventing vehicle fuel fires and for limiting the use of flame cutting in areas where hot metal can fall on the waste surface.The required controls are given in the Tank Waste Remediation System Technical Safety Requirements (Noorani 1997b). This is a significant change from the conclusions presented in Revision 0 of this report. Revision 0 of this calcnote concluded that some organic solvent fire scenarios exceeded risk evaluation guidelines, even with controls imposed.

  5. Organic solvent topical report

    Energy Technology Data Exchange (ETDEWEB)

    Cowley, W.L.

    1998-04-30

    This report is the technical basis for the accident and consequence analyses used in the Hanford Tank Farms Basis for Interim Operation. The report also contains the scientific and engineering information and reference material needed to understand the organic solvent safety issue. This report includes comments received from the Chemical Reactions Subcommittee of the Tank Advisory Panel.

  6. Generating highly polarized nuclear spins in solution using dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Wolber, J.; Ellner, F.; Fridlund, B.

    2004-01-01

    A method to generate strongly polarized nuclear spins in solution has been developed, using Dynamic Nuclear Polarization (DNP) at a temperature of 1.2K, and at a field of 3.354T, corresponding to an electron spin resonance frequency of 94GHz. Trityl radicals are used to directly polarize 13C...... and other low-γ nuclei. Subsequent to the DNP process, the solid sample is dissolved rapidly with a warm solvent to create a solution of molecules with highly polarized nuclear spins. Two main applications are proposed: high-resolution liquid state NMR with enhanced sensitivity, and the use...

  7. Effects of Ethyl Acetate Extracts from the Polycephalomyces nipponicus Isolate Cod-MK1201 (Ascomycetes) against Human Pathogenic Bacteria and a Breast Cancer Cell Line.

    Science.gov (United States)

    Sangdee, Kusavadee; Seephonkai, Prapairat; Buranrat, Benjaporn; Surapong, Nilawan; Sangdee, Aphidech

    2016-01-01

    This study aimed to identify a suitable organic solvent for extracting bioactive compounds from Polycephalomyces nipponicus and to evaluate the antibacterial and anticancer activities of the extracts obtained. Only extracts obtained with ethyl acetate exhibited antibacterial activity, so ethyl acetate was chosen for large-scale extraction. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Gram-positive and Gram-negative human pathogenic bacteria of the 3 ethyl acetate-derived extracts-ethyl acetate extract from P. nipponicus (PN-ME), ethyl acetate extract after defatting (PN-ME*), and ethyl acetate extract after refluxation (PN-ME')-were determined. PN-ME' exhibited the most potent activity, inhibiting 12 of the 18 test bacteria, especially Bacillus cereus ATCC 11778 and Vibrio cholera (O1) DMST 9700, with low MIC and MBC values. PN-ME* showed greater inhibitory activity than PN-ME. The effects of the extracts on bacterial cell morphology were also determined. After 120 minutes of treatment with PN-ME* or PN-ME', B. cereus ATCC 11778 exhibited an abnormal rod-shaped cell structure, with some cells elongated to multiple times their original size and others appearing collapsed. V cholera (O1) DMST 9700 cells showed shrinkage and the formed subsurface cavities. PN-ME* and PN-ME' also inhibited the growth of MCF-7 breast cancer cells. In conclusion, the fungal isolate P. nipponicus Cod-MK1201 represents a source of antibacterial and anti-breast cancer compounds.

  8. Solvent sorting in (mixed solvent electrolyte) systems: Time-resolved ...

    Indian Academy of Sciences (India)

    Solvent sorting in (mixed solvent electrolyte) systems: Time-resolved ... Mixed solvent systems; electrolyte solutions; dynamic fluorescence measurements; theory. 1. ..... Open and filled triangles represent τs for the other binary mixture in the absence and presence of 1.0 M LiClO4, respectively. exponentially with the mole ...

  9. Theoretical study of the Solvent effects on Electronic properties of 2(1H-quinoxalinone derivatives

    Directory of Open Access Journals (Sweden)

    Tourya Ghailane

    2016-06-01

    Full Text Available The structures and electronic spectra of three quinoxalinone derivatives have been investigated theoretically by performing DFT and TDDFT calculations with standard basis sets containing polarization and diffuse functions. The solvent effect was taken into account using self-consistent isodensity polarized continuum model (SCIPCM; three polar solvents were considered. The effect of the solvent polarity on the geometries, solvation energies, dipole moment, energy gap between HOMO and LUMO and UV-visible electronic transitions were examined for all studied compounds. The theoretical electronic spectrum of 2(1H-quinoxalinone was compared with the experimental one. The experimental electronic spectrum recorded in ethanol exhibit three absorption bands respectively at 230, 280 and 220 nm. The existence of these bands has been confirmed by TDDFT calculations for the studied quinoxalinone derivatives. The effects of solvent polarity and the nature of the substituent of the quinoxalinone on the displacement of the calculated absorption bands are discussed.

  10. Dielectric relaxation of ethanol and N-methyl acetamide polar ...

    Indian Academy of Sciences (India)

    The study of structure and associated behaviour of binary polar molecules (jk) dissolved in non-polar solvents (i) through the dielectric relaxation phenomena involved are with measurement of conductivity [1–3] under gigahertz (GHz) electric field. This is very important now [4], because of its increasing applications in new ...

  11. in Binary Liquid Mixtures of Ethyl benzoate

    Directory of Open Access Journals (Sweden)

    Shaik Babu

    2012-01-01

    Full Text Available Ultrasonic velocity is measured at 2MHz frequency in the binary mixtures of Ethyl Benzoate with 1-Propanol, 1-Butanol, 1-Pentanol and theoretical values of ultrasonic velocity have been evaluated at 303K using Nomoto's relation, Impedance relation, Ideal mixture relation, Junjie's method and free length theory. Theoretical values are compared with the experimental values and the validity of the theories is checked by applying the chi-square test for goodness of fit and by calculating the average percentage error (APE. A good agreement has been found between experimental and Nomoto’s ultrasonic velocity.

  12. Solvent extraction columns

    International Nuclear Information System (INIS)

    Middleton, P.; Smith, J.R.

    1979-01-01

    In pulsed columns for use in solvent extraction processes, e.g. the reprocessing of nuclear fuel, the horizontal perforated plates inside the column are separated by interplate spacers manufactured from metallic neutron absorbing material. The spacer may be in the form of a spiral or concentric circles separated by radial limbs, or may be of egg-box construction. Suitable neutron absorbing materials include stainless steel containing boron or gadolinium, hafnium metal or alloys of hafnium. (UK)

  13. Solvent density mode instability in non-polar solutions

    Indian Academy of Sciences (India)

    Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Salt Lake City, Kolkata 700 098, India; Unit for Nanoscience and Technology, S.N. Bose National Centre for Basic Sciences, JD Block, Salt Lake City, Kolkata 700 098, India; Advanced Materials ...

  14. Effects of polar protic solvents on dual emissions of 3 ...

    Indian Academy of Sciences (India)

    TECS

    product, T*) forms (figure 1). 1. Both the N* and T* forms are highly emissive, exhibiting well-separated bands in the emission spectra. Importantly, these dyes can provide information about the physicochemical properties of their microenvironment, both by the positions and the relative intensities of their two emission bands.

  15. Epoxidation of polybutadiene rubber in non polar solvent

    International Nuclear Information System (INIS)

    Schneider, Luciane K. de A.; Jacobi, Marly A.M.

    2005-01-01

    The epoxidation of polybutadiene rubber in cyclohexane, at 50 deg C, by the method of performic acid generated in situ, at different reagent concentration was investigated. The epoxy degree was determined by 1 H-RMN, and because of the gelation and coagulation of modified rubber during the reaction, only a maximum of 30 mol % of epoxy degree could be achieved. The reaction followed a first order kinetic in relation to hydrogen peroxide and acid concentration showing a rate constant of 4,0 (± 0,5) x 10 -5 L.mol-1.seg -1 . (author)

  16. Hazardous solvent substitution

    International Nuclear Information System (INIS)

    Twitchell, K.E.

    1995-01-01

    Eliminating hazardous solvents is good for the environment, worker safety, and the bottom line. However, even though we are motivated to find replacements, the big question is 'What can we use as replacements for hazardous solvents?'You, too, can find replacements for your hazardous solvents. All you have to do is search for them. Search through the vendor literature of hundreds of companies with thousands of products. Ponder the associated material safety data sheets, assuming of course that you can obtain them and, having obtained them, that you can read them. You will want to search the trade magazines and other sources for product reviews. You will want to talk to users about how well the product actually works. You may also want to check US Environmental Protection Agency (EPA) and other government reports for toxicity and other safety information. And, of course, you will want to compare the product's constituent chemicals with the many hazardous constituency lists to ensure the safe and legal use of the product in your workplace

  17. Solid dispersions of the penta-ethyl ester prodrug of diethylenetriaminepentaacetic acid (DTPA): formulation design and optimization studies.

    Science.gov (United States)

    Yang, Yu-Tsai; Di Pasqua, Anthony J; Zhang, Yong; Sueda, Katsuhiko; Jay, Michael

    2014-11-01

    The penta-ethyl ester prodrug of diethylenetriaminepentaacetic acid (DTPA), which exists as an oily liquid, was incorporated into a solid dispersion for oral administration by the solvent evaporation method using blends of polyvinylpyrrolidone (PVP), Eudragit® RL PO and α-tocopherol. D-optimal mixture design was used to optimize the formulation. Formulations that had a high concentration of both Eudragit® RL PO and α-tocopherol exhibited low water absorption and enhanced stability of the DTPA prodrug. Physicochemical properties of the optimal formulation were evaluated using Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). In vitro release of the prodrug was evaluated using the USP Type II apparatus dissolution method. DSC studies indicated that the matrix had an amorphous structure, while FTIR spectrometry showed that DTPA penta-ethyl ester and excipients did not react with each other during formation of the solid dispersion. Dissolution testing showed that the optimized solid dispersion exhibited a prolonged release profile, which could potentially result in a sustained delivery of DTPA penta-ethyl to enhance bioavailability. In conclusion, DTPA penta-ethyl ester was successfully incorporated into a solid matrix with high drug loading and improved stability compared to prodrug alone.

  18. Solid dispersions of the penta-ethyl ester prodrug of diethylenetriaminepentaacetic acid (DTPA): Formulation design and optimization studies

    Science.gov (United States)

    Yang, Yu-Tsai; Di Pasqua, Anthony J.; Zhang, Yong; Sueda, Katsuhiko; Jay, Michael

    2015-01-01

    The penta-ethyl ester prodrug of diethylenetriaminepentaacetic acid (DTPA), which exists as an oily liquid, was incorporated into a solid dispersion for oral administration by the solvent evaporation method using blends of polyvinylpyrrolidone (PVP), Eudragit® RL PO and α-tocopherol. D-optimal mixture design was used to optimize the formulation. Formulations that had a high concentration of both Eudragit® RL PO and α-tocopherol exhibited low water absorption and enhanced stability of the DTPA prodrug. Physicochemical properties of the optimal formulation were evaluated using Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). In vitro release of the prodrug was evaluated using the USP Type II apparatus dissolution method. DSC studies indicated that the matrix had an amorphous structure, while FTIR spectrometry showed that DTPA penta-ethyl ester and excipients did not react with each other during formation of the solid dispersion.. Dissolution testing showed that the optimized solid dispersion exhibited a prolonged release profile, which could potentially result in a sustained delivery of DTPA penta-ethyl to enhance bioavailability. In conclusion, DTPA penta-ethyl ester was successfully incorporated into a solid matrix with high drug loading and improved stability compared to prodrug alone. PMID:24047113

  19. Sorption mechanism of solvent vapors to coals; Sekitan eno yobai joki no shuchaku kiko no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, K.; Takanohashi, T.; Iino, M. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    With an objective to clarify the interactions between micropore structure of coal and solvent reagents, a sorption experiment was carried out under solvent saturated vapor pressure. Low-volatile bituminous coal, Pocahontas No. 3 coal, has the aromatic ring structure developed, and makes solvent more difficult to diffuse into coal, hence sorption amount is small. Methanol has permeated since its polarity is high. High-volatile bituminous coal, Illinois No. 6 coal, makes solvent penetrate easily, and the sorption amount was large with both of aromatic and polar solvents. Since brown coal, Beulah Zap coal, contains a large amount of oxygen, and hydrogen bonding is predominant, sorption amount of cyclohexane and benzene having no polarity is small. Methanol diffuses while releasing hydrogen bond due to its polarity, and its sorption amount is large. A double sorption model is available, which expresses the whole sorption amount as a sum of physical sorption amount and amount of permeation into coal. This model was applied when it explained successfully the sorption behavior of the solvents relative to coals, excepting some of the systems. However, also observed were such abnormal behavior as sorption impediment due to interactions between coal surface and solvents, and permeation impediment due to hydroxyl groups inside the coals. 1 ref., 10 figs., 2 tabs.

  20. A one-pot glycerol-based additive-blended ethyl biodiesel production: a green process.

    Science.gov (United States)

    Zanin, Fabio G; Macedo, Alexandra; Archilha, Marcos Vinicios L R; Wendler, Edison P; Dos Santos, Alcindo A

    2013-09-01

    N-methyl-2-pyrrolidonium methyl sulfonate, a Brønsted acid ionic liquid, promoted the transesterification of soybean oil with ethanol giving a high quality fatty acid ethyl ester. At the end of the reaction, after distillation of excess of ethanol, spontaneous phase separation took place. While the clear upper phase corresponded to the ethyl ester, the lower phase was composed of a mixture of glycerol byproduct and the catalyst. By addition of a stoichiometric amount of appropriated reagents to the resulting mixture, a new ionic liquid-catalyzed process allows the conversion of the glycerol into less polar derivatives, and consequent migration to the ethyl esters phase. This work demonstrated that emulsion, phase separation and contamination problems were completely avoided and the glycerol could be incorporated into the biodiesel as additives in a single step. The whole process involves two renewable starting materials, ethanol and vegetable oil, allowing a total green additive-blended biodiesel production process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Glycerol transesterification with ethyl acetate to synthesize acetins using ethyl acetate as reactant and entrainer

    Directory of Open Access Journals (Sweden)

    Amin Shafiei

    2017-03-01

    Full Text Available Transesterification of glycerol with ethyl acetate was performed over acidic catalysts in the batch and semi-batch systems. Ethyl acetate was used as reactant and entrainer to remove the produced ethanol during the reaction, through azeotrope formation. Since the azeotrope of ethyl acetate and ethanol forms at 70 oC, all the experiments were performed at this temperature. Para-toluene sulfonic acid, sulfuric acid, and Amberlyst 36 were used as catalyst. The effect of process parameters including ethyl acetate to glycerol molar ratio (6-12, reaction time (3-9 h, and the catalyst to glycerol weight (2.5-9.0%, on the conversion and products selectivities were investigated. Under reflux conditions, 100% glycerol conversion was obtained with 45%, 44%, and 11% selectivity to monoacetin, diacetin, and triacetin, respectively. Azeotropic reactive distillation led to 100% conversion of glycerol with selectivities of 3%, 48% and 49% for monoacetin, diacetin, and triacetin. During the azeotropic reactive distillation, it was possible to remove ethanol to shift the equilibrium towards diacetin and triacetin. Therefore, the total selectivity to diacetin and triacetin was increased from 55% to 97% through azeotropic distillation.

  2. 21 CFR 172.872 - Methyl ethyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl ethyl cellulose. 172.872 Section 172.872... CONSUMPTION Multipurpose Additives § 172.872 Methyl ethyl cellulose. The food additive methyl ethyl cellulose... a cellulose ether having the general formula [C6H(10 -x-y)O5(CH3)x(C2H5)y]n, where x is the number...

  3. Permeability of commercial solvents through living human skin

    DEFF Research Database (Denmark)

    Ursin, C; Hansen, C M; Van Dyk, J W

    1995-01-01

    rate. For other solvents this was not necessary, so the un-normalized data were used. High [3H]water permeation rate also was used as a criterion for "defective" skin samples that gave erroneous permeability rates, especially for solvents having slow permeability. The linearity of the steady state data...... was characterized by calculation of the "percent error of the slope." The following permeability rates (g/m2h) of single solvents were measured: dimethyl sulfoxide (DMSO), 176; N-methyl-2-pyrrolidone, 171; dimethyl acetamide, 107; methyl ethyl ketone, 53; methylene chloride, 24; [3H]water, 14.8; ethanol, 11.......3; butyl acetate, 1.6; gamma-butyrolactone, 1.1; toluene, 0.8; propylene carbonate, 0.7; and sulfolane, 0.2. The effect of [3H]water saturation on the shape of the presteady state portion of the permeation curve was determined and found to be very dependent on the solvent. The permeability of mixtures...

  4. Transport of Proteins Dissolved in Organic Solvents Across Biomimetic Membranes

    Science.gov (United States)

    Bromberg, Lev E.; Klibanov, Alexander M.

    1995-02-01

    Using lipid-impregnated porous cellulose membranes as biomimetic barriers, we tested the hypothesis that to afford effective transmembrane transfer of proteins and nucleic acids, the vehicle solvent should be able to dissolve both the biopolymers and the lipids. While the majority of solvents dissolve one or the other, ethanol and methanol were found to dissolve both, especially if the protein had been lyophilized from an aqueous solution of a pH remote from the protein's isoelectric point. A number of proteins, as well as RNA and DNA, dissolved in these alcohols readily crossed the lipidized membranes, whereas the same biopolymers placed in nondissolving solvents (e.g., hexane and ethyl acetate) or in those unable to dissolve lipids (e.g., water and dimethyl sulfoxide) exhibited little transmembrane transport. The solubility of biopolymers in ethanol and methanol was further enhanced by complexation with detergents and poly(ethylene glycol); significant protein and nucleic acid transport through the lipidized membranes was observed from these solvents but not from water.

  5. Microwave Synthesis Under Solvent-Free Conditions and Spectral Studies of Some Mesoporphyrinic Complexes

    Directory of Open Access Journals (Sweden)

    Rica Boscencu

    2012-05-01

    Full Text Available A series of A3B and A4 type mesoporphyrinic complexes were synthesized with superior yields using microwave irradiation under solvent-free conditions. The structures of the complexes were confirmed using elemental analysis, FT-IR, UV-Vis, EPR and NMR spectral data. The influence of environmental polarity on spectral properties of the mesoporphyrinic complexes was investigated. The obtained results indicate that the shape of absorption and fluorescence spectra does not depend on the solvent polarity under the experimental conditions used. The small shifts of the absorption and emission maximums that occur by increasing of solvent polarity reflects the physical interaction between the porphyrinic substituents and the solvent molecules.

  6. Effect of solvent alcohol on degradation of chlorinated hydrocarbons by γ-irradiation

    International Nuclear Information System (INIS)

    Nakagawa, Seiko

    2002-01-01

    1,1,2-Trichloro-trifluoroethane (CFC113) was dissolved in alkaline 1-butanol, 2-butanol, iso-butyl alcohol, and phenyl ethyl alcohol and irradiated with 60 Co gamma rays after being purged with pure nitrogen gas. In all these solvents, the concentration of CFC113 and hydroxide ion decreased and that of chloride ion increased with a dose observed in 2-propanol solution. The reaction efficiency increases in the following order: 1-butanol < iso-butyl alcohol < phenyl ethyl alcohol < 2-butanol < 2-propanol. The solvent effect will depend on the binding energy of the αC-H of the alcohol molecule and electron affinity and dipole moment of the ketones or aldehydes produced from the alcohols. (author)

  7. Effects of Solvents on Polymorphism and Shape of Mefenamic Acid Crystals

    Directory of Open Access Journals (Sweden)

    Abdul Mudalip Siti Kholijah

    2018-01-01

    Full Text Available Mefenamic acid [2-(2, 3-dimethylphenyl amino benzoic acid] is an active pharmaceutical compound that exist in different polymorphic form and shape. In this work the effect of solvents on polymorphism and shape of mefenamic acid crystals were examined. The solvents used were ethanol, isopropanol, ethyl acetate, dimethyl acetamide, dimethyl formamide, and acetone. Natural cooling was employed during the crystallisation process. The crystals produced were dried and analysed using optical microscopy, differential scanning calorimetry, thermal gravimetric analysis, x-ray powder diffraction (XRPD and fourier transform infrared spectroscopy (FTIR. The analysis confirmed that the crystals obtained using ethyl acetate, ethanol, isopropanol, and acetone are pure Form I with a needle-like flat shape. Meanwhile, the crystallisation using DMF produced polymorphic Form II in cubic shape.

  8. Political polarization

    OpenAIRE

    Dixit, Avinash K.; Weibull, Jörgen W.

    2007-01-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  9. Political polarization.

    Science.gov (United States)

    Dixit, Avinash K; Weibull, Jörgen W

    2007-05-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  10. The combustion kinetics of the lignocellulosic biofuel, ethyl levulinate

    KAUST Repository

    Ghosh, Manik Kumer

    2018-04-04

    Ethyl levulinate (Ethyl 4-oxopentanoate) is a liquid molecule at ambient temperature, comprising of ketone and ethyl ester functionalities and is one of the prominent liquid fuel candidates that may be easily obtained from lignocellulosic biomass. The combustion kinetics of ethyl levulinate have been investigated. Shock tube and rapid compression machine apparatuses are utilised to acquire gas phase ignition delay measurements of 0.5% ethyl levulinate/O2 mixtures at ϕ = 1.0 and ϕ = 0.5 at ∼ 10 atm over the temperature range 1000–1400 K. Ethyl levulinate is observed not to ignite at temperatures lower than ∼1040 K in the rapid compression machine. The shock tube and rapid compression machine data are closely consistent and show ethyl levulinate ignition delay to exhibit an Arrhenius dependence to temperature. These measurements are explained by the construction and analysis of a detailed chemical kinetic model. The kinetic model is completed by establishing thermochemical-kinetic analogies to 2-butanone, for the ethyl levulinate ketone functionality, and to ethyl propanoate for the ethyl ester functionality. The so constructed model is observed to describe the shock tube data very accurately, but computes the rapid compression machine data set to a lesser but still applicable fidelity. Analysis of the model suggests the autooxidation mechanism of ethyl levulinate to be entirely dominated by the propensity for the ethyl ester functionality to unimolecularly decompose to form levulinic acid and ethylene. The subsequent reaction kinetics of these species is shown to dictate the overall rate of the global combustion reaction. This model is then use to estimate the Research and Motored Octane Numbers of ethyl levulinate to be ≥97.7 and ≥ 93, respectively. With this analysis ethyl levulinate would be best suited as a gasoline fuel component, rather than as a diesel fuel as suggested in the literature. Indeed it may be considered to be useful as an

  11. Aprotic solvents effect on the UV-visible absorption spectra of bixin.

    Science.gov (United States)

    Rahmalia, Winda; Fabre, Jean-François; Usman, Thamrin; Mouloungui, Zéphirin

    2014-10-15

    We describe here the effects of aprotic solvents on the spectroscopic characteristics of bixin. Bixin was dissolved in dimethyl sulfoxide, acetone, dichloromethane, ethyl acetate, chloroform, dimethyl carbonate, cyclohexane and hexane, separately, and its spectra in the resulting solutions were determined by UV-visible spectrophotometry at normal pressure and room temperature. We analyzed the effect of aprotic solvents on λmax according to Onsager cavity model and Hansen theory, and determined the approximate absorption coefficient with the Beer-Lambert law. We found that the UV-visible absorption spectra of bixin were found to be solvent dependent. The S0→S2 transition energy of bixin in solution was dependent principally on the refractive index of the solvents and the bixin-solvent dispersion interaction. There was a small influence of the solvents dielectric constant, permanent dipole interaction and hydrogen bonding occurred between bixin and solvents. The absorbance of bixin in various solvents, with the exception of hexane, increased linearly with concentration. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Aprotic solvents effect on the UV-visible absorption spectra of bixin

    Science.gov (United States)

    Rahmalia, Winda; Fabre, Jean-François; Usman, Thamrin; Mouloungui, Zéphirin

    2014-10-01

    We describe here the effects of aprotic solvents on the spectroscopic characteristics of bixin. Bixin was dissolved in dimethyl sulfoxide, acetone, dichloromethane, ethyl acetate, chloroform, dimethyl carbonate, cyclohexane and hexane, separately, and its spectra in the resulting solutions were determined by UV-visible spectrophotometry at normal pressure and room temperature. We analyzed the effect of aprotic solvents on λmax according to Onsager cavity model and Hansen theory, and determined the approximate absorption coefficient with the Beer-Lambert law. We found that the UV-visible absorption spectra of bixin were found to be solvent dependent. The S0 → S2 transition energy of bixin in solution was dependent principally on the refractive index of the solvents and the bixin-solvent dispersion interaction. There was a small influence of the solvents dielectric constant, permanent dipole interaction and hydrogen bonding occurred between bixin and solvents. The absorbance of bixin in various solvents, with the exception of hexane, increased linearly with concentration.

  13. Agglomeration of Celecoxib by Quasi Emulsion Solvent Diffusion Method: Effect of Stabilizer

    Directory of Open Access Journals (Sweden)

    Maryam Maghsoodi

    2016-12-01

    Full Text Available Purpose: The quasi-emulsion solvent diffusion (QESD has evolved into an effective technique to manufacture agglomerates of API crystals. Although, the proposed technique showed benefits, such as cost effectiveness, that is considerably sensitive to the choice of a stabilizer, which agonizes from a absence of systemic understanding in this field. In the present study, the combination of different solvents and stabilizers were compared to investigate any connections between the solvents and stabilizers. Methods: Agglomerates of celecoxib were prepared by QESD method using four different stabilizers (Tween 80, HPMC, PVP and SLS and three different solvents (methyl acetate, ethyl acetate and isopropyl acetate. The solid state of obtained particles was investigated by differential scanning calorimetry (DSC and Fourier transform infrared (FT-IR spectroscopy. The agglomerated were also evaluated in term of production yield, distribution of particles and dissolution behavior. Results: The results showed that the effectiveness of stabilizer in terms of particle size and particle size distribution is specific to each solvent candidate. A stabilizer with a lower HLB value is preferred which actually increased its effectiveness with the solvent candidates with higher lipophilicity. HPMC appeared to be the most versatile stabilizer because it showed a better stabilizing effect compared to other stabilizers in all solvents used. Conclusion: This study demonstrated that the efficiency of stabilizers in forming the celecoxib agglomerates by QESD was influenced by the HLB of the stabilizer and lipophilicity of the solvents.

  14. A Correlation between the Activity of Candida antarctica Lipase B and Differences in Binding Free Energies of Organic Solvent and Substrate

    DEFF Research Database (Denmark)

    Banik, Sindrila Dutta; Nordblad, Mathias; Woodley, John

    2016-01-01

    in an inhibitory effect which is also confirmed by the binding free energies for the solvent and substrate molecules estimated from the simulations. Consequently, the catalytic activity of CALB decreases in polar solvents. This effect is significant, and CALB is over 10 orders of magnitude more active in nonpolar...... of the enzyme may be ascribed to binding of solvent molecules to the enzyme active site region and the solvation energy of substrate molecules in the different solvents. Polar solvent molecules interact strongly with CALB and compete with the substrate to bind to the active site region, resulting...

  15. Vegetable Oils as Alternative Solvents for Green Oleo-Extraction, Purification and Formulation of Food and Natural Products.

    Science.gov (United States)

    Yara-Varón, Edinson; Li, Ying; Balcells, Mercè; Canela-Garayoa, Ramon; Fabiano-Tixier, Anne-Sylvie; Chemat, Farid

    2017-09-05

    Since solvents of petroleum origin are now strictly regulated worldwide, there is a growing demand for using greener, bio-based and renewable solvents for extraction, purification and formulation of natural and food products. The ideal alternative solvents are non-volatile organic compounds (VOCs) that have high dissolving power and flash point, together with low toxicity and less environmental impact. They should be obtained from renewable resources at a reasonable price and be easy to recycle. Based on the principles of Green Chemistry and Green Engineering, vegetable oils could become an ideal alternative solvent to extract compounds for purification, enrichment, or even pollution remediation. This review presents an overview of vegetable oils as solvents enriched with various bioactive compounds from natural resources, as well as the relationship between dissolving power of non-polar and polar bioactive components with the function of fatty acids and/or lipid classes in vegetable oils, and other minor components. A focus on simulation of solvent-solute interactions and a discussion of polar paradox theory propose a mechanism explaining the phenomena of dissolving polar and non-polar bioactive components in vegetable oils as green solvents with variable polarity.

  16. Ternary (liquid + liquid) equilibria of the azeotrope (ethyl acetate + 2-propanol) with different ionic liquids at T = 298.15 K

    International Nuclear Information System (INIS)

    Pereiro, A.B.; Rodriguez, A.

    2007-01-01

    Experimental (liquid + liquid) equilibria involving ionic liquids {1,3-dimethylimidazolium methyl sulfate (MMIM MeSO 4 )}, {2-propanol + ethyl acetate + 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM PF 6 )} and {2-propanol + ethyl acetate + 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIM PF 6 )} were carried out to separate the azeotropic mixture ethyl acetate and 2-propanol. Selectivity and distribution ratio values, derived from the tie-lines data, were presented in order to analyze the best separation solvent in a liquid extraction process. Experimental (liquid + liquid) equilibria data were compared with the correlated values obtained by means of the NRTL, Othmer-Tobias and Hand equations. These equations were verified to accurately correlate the experimental data

  17. Method of estimating changes in vapor concentrations continuously generated from two-component organic solvents.

    Science.gov (United States)

    Hori, Hajime; Ishidao, Toru; Ishimatsu, Sumiyo

    2010-12-01

    We measured vapor concentrations continuously evaporated from two-component organic solvents in a reservoir and proposed a method to estimate and predict the evaporation rate or generated vapor concentrations. Two kinds of organic solvents were put into a small reservoir made of glass (3 cm in diameter and 3 cm high) that was installed in a cylindrical glass vessel (10 cm in diameter and 15 cm high). Air was introduced into the glass vessel at a flow rate of 150 ml/min, and the generated vapor concentrations were intermittently monitored for up to 5 hours with a gas chromatograph equipped with a flame ionization detector. The solvent systems tested in this study were the methanoltoluene system and the ethyl acetate-toluene system. The vapor concentrations of the more volatile component, that is, methanol in the methanol-toluene system and ethyl acetate in the ethyl acetate-toluene system, were high at first, and then decreased with time. On the other hand, the concentrations of the less volatile component were low at first, and then increased with time. A model for estimating multicomponent organic vapor concentrations was developed, based on a theory of vapor-liquid equilibria and a theory of the mass transfer rate, and estimated values were compared with experimental ones. The estimated vapor concentrations were in relatively good agreement with the experimental ones. The results suggest that changes in concentrations of two-component organic vapors continuously evaporating from a liquid reservoir can be estimated by the proposed model.

  18. Solvent effects in chemistry

    CERN Document Server

    Buncel, Erwin

    2015-01-01

    This book introduces the concepts, theory and experimental knowledge concerning solvent effects on the rate and equilibrium of chemical reactions of all kinds.  It begins with basic thermodynamics and kinetics, building on this foundation to demonstrate how a more detailed understanding of these effects may be used to aid in determination of reaction mechanisms, and to aid in planning syntheses. Consideration is given to theoretical calculations (quantum chemistry, molecular dynamics, etc.), to statistical methods (chemometrics), and to modern day concerns such as ""green"" chemistry, where ut

  19. Trace analysis of residual methyl methanesulfonate, ethyl methanesulfonate and isopropyl methanesulfonate in pharmaceuticals by capillary gas chromatography with flame ionization detection.

    Science.gov (United States)

    Li, Weiyong

    2004-08-13

    A capillary gas chromatographic method using flame ionization detection was developed and validated for the trace analysis (ppm level) of methyl methanesulfonate, ethyl methanesulfonate, and isopropyl methanesulfonate in pharmaceutical drug substance. The method utilizes a megabore capillary column with bonded and crosslinked polyethylene glycol stationary phase. A dissolve-and-injection approach was adopted for sample introduction in a splitless mode. The investigated sample solvents include acetonitrile, ethyl acetate, methylene chloride, 1,2-dichloromethane, and toluene. Aqueous mixtures of acetonitrile and water can also be used as sample solvent. A limit of detection of about 1 microg/g (1 ppm) and limit of quantitation of 5 microg/g (5 ppm) were achieved for the mesylate esters in drug substance samples. The method optimization and validation are also discussed in this paper.

  20. Epoxidation of polybutadiene rubber in non polar solvent; Epoxidacao de borracha de polibutadieno em solvente apolar

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Luciane K. de A.; Jacobi, Marly A.M. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Quimica]. E-mail: jacobi@iq.ufrgs.br

    2005-07-01

    The epoxidation of polybutadiene rubber in cyclohexane, at 50 deg C, by the method of performic acid generated in situ, at different reagent concentration was investigated. The epoxy degree was determined by {sup 1}H-RMN, and because of the gelation and coagulation of modified rubber during the reaction, only a maximum of 30 mol % of epoxy degree could be achieved. The reaction followed a first order kinetic in relation to hydrogen peroxide and acid concentration showing a rate constant of 4,0 ({+-} 0,5) x 10{sup -5} L.mol-1.seg{sup -1}. (author)

  1. Gas phase radiation chemistry of ethyl bromide

    International Nuclear Information System (INIS)

    Frank, A.J.; Hanrahan, R.J.

    1976-01-01

    The γ radiolysis of ethyl bromide has been investigated at 100 Torr pressure and 23 0 C. In the pure system between an absorbed dose of 1.0 x 10 20 and 1.5 x 10 20 eV/g the major products and their respective G values are as follows: hydrogen bromide, 3.89; ethane, 2.70; ethylene, 2.17; acetylene, 0.31; hydrogen, 1.39; 1,1-dibromoethane, 0.88; 1,2-dibromoethane, 0.12; vinyl bromide, 0.32; methane, 0.083; methyl bromide, 0.080; and bromoform, 0.0078. When oxygen is added, the G values in this dose range become the following: hydrogen bromide, 4.89; ethane, 0.31; ethylene, 0.78; acetylene, 0.27; hydrogen, 1.38; 1,1-dibromoethane, 0.028; 1,2-dibromoethane, 0.56; vinyl bromide, 0.0; methane 0.03; methyl bromide, 0.32; and bromoform, 0.0034. Bromine is also formed with a G value of 2.4 when oxygen is added. The presence of hydrogen and acetylene in the radiolysis indicates that these species must be formed from higher energy processes not accessible in the 253.7-nm photolysis, which was studied in a parallel investigation. The product distribution indicates that the probabilities of single bond rupture in the primary event are approximately C 2 H 5 --Br:C 2 H 4 Br--H:CH 3 --CH 2 Br = 1.00:0.40:0.06. Either a hot hydrogen atom abstraction reaction or direct molecular H 2 elimination accounts for about 16 percent of the hydrogen yield. Strong similarities in dose-yield plots suggest that many of the secondary processes involved in the photolysis are important in the radiolysis of ethyl bromide as well. The high pressure mass spectrometry of the system indicates the role of ionic species. Differences in radiolytic behavior of ethyl chloride, bromide, and iodide can largely be explained in terms of the energetics of the primary and secondary processes in each system

  2. Anti-Inflammatory Potential of Ethyl Acetate Fraction of Moringa oleifera in Downregulating the NF-κB Signaling Pathway in Lipopolysaccharide-Stimulated Macrophages

    Directory of Open Access Journals (Sweden)

    Palanisamy Arulselvan

    2016-10-01

    Full Text Available In the present investigation, we prepared four different solvent fractions (chloroform, hexane, butanol, and ethyl acetate of Moringa oleifera extract to evaluate its anti-inflammatory potential and cellular mechanism of action in lipopolysaccharide (LPS-induced RAW264.7 cells. Cell cytotoxicity assay suggested that the solvent fractions were not cytotoxic to macrophages at concentrations up to 200 µg/mL. The ethyl acetate fraction suppressed LPS-induced production of nitric oxide and proinflammatory cytokines in macrophages in a concentration-dependent manner and was more effective than the other fractions. Immunoblot observations revealed that the ethyl acetate fraction effectively inhibited the expression of inflammatory mediators including cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor (NF-κB p65 through suppression of the NF-κB signaling pathway. Furthermore, it upregulated the expression of the inhibitor of κB (IκBα and blocked the nuclear translocation of NF-κB. These findings indicated that the ethyl acetate fraction of M. oleifera exhibited potent anti-inflammatory activity in LPS-stimulated macrophages via suppression of the NF-κB signaling pathway.

  3. Anti-Inflammatory Potential of Ethyl Acetate Fraction of Moringa oleifera in Downregulating the NF-κB Signaling Pathway in Lipopolysaccharide-Stimulated Macrophages.

    Science.gov (United States)

    Arulselvan, Palanisamy; Tan, Woan Sean; Gothai, Sivapragasam; Muniandy, Katyakyini; Fakurazi, Sharida; Esa, Norhaizan Mohd; Alarfaj, Abdullah A; Kumar, S Suresh

    2016-10-31

    In the present investigation, we prepared four different solvent fractions (chloroform, hexane, butanol, and ethyl acetate) of Moringa oleifera extract to evaluate its anti-inflammatory potential and cellular mechanism of action in lipopolysaccharide (LPS)-induced RAW264.7 cells. Cell cytotoxicity assay suggested that the solvent fractions were not cytotoxic to macrophages at concentrations up to 200 µg/mL. The ethyl acetate fraction suppressed LPS-induced production of nitric oxide and proinflammatory cytokines in macrophages in a concentration-dependent manner and was more effective than the other fractions. Immunoblot observations revealed that the ethyl acetate fraction effectively inhibited the expression of inflammatory mediators including cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor (NF)-κB p65 through suppression of the NF-κB signaling pathway. Furthermore, it upregulated the expression of the inhibitor of κB (IκBα) and blocked the nuclear translocation of NF-κB. These findings indicated that the ethyl acetate fraction of M. oleifera exhibited potent anti-inflammatory activity in LPS-stimulated macrophages via suppression of the NF-κB signaling pathway.

  4. Cyclohexenones Through Addition of Ethyl Acetoacetate to 3-Aryl-1 ...

    African Journals Online (AJOL)

    Chalcone derivatives 3a–i containing a thiophene ring were prepared by the condensation of 1-(thiophen-3-yl)ethanone with aromatic aldehydes in excellent yields. The Michael addition of ethyl acetoacetate 4 to chalcone derivatives 3a–i resulted in the formation of nine novel ethyl 6-aryl ...

  5. 2,6-Bis(9-ethyl-9H-carbazolylmethylenecyclohexanone

    Directory of Open Access Journals (Sweden)

    Abdullah M. Asiri

    2009-10-01

    Full Text Available The title compound, 2,6-bis(ethyl-9-ethyl-9H-carbazolylmethylenecyclohexanone has been synthesized by condensation of 9-ethylcarbazole-3-aldehyde and cyclohexanone in ethanol in the presence of pyridine. The structure of this new compound was confirmed by elemental analysis, IR, 1H NMR, 13C NMR and EI-MS spectral analysis.

  6. Graft Copolymerization of Acrylonitrile and Ethyl Methacrylate on ...

    African Journals Online (AJOL)

    Graft copolymers of Acrylonitrile and ethyl methcrylate on dextrin were prepared by the use of ceric ion initiator in aqueous medium at 290C. The molecular weight of grafted poly(ethyl methacrylate) chains were higher than for polyacrylonitrile grafts; but the latter were more frequently grafted on the backbone polymer.

  7. Ethyl acetate production by the elusive alcohol acetyltransferase from yeast

    NARCIS (Netherlands)

    Kruis, Alex; Levisson, Mark; Mars, Astrid E.; Ploeg, van der Max; Garcés Daza, Fernando; Ellena, Valeria; Kengen, Servé W.M.; Oost, van der John; Weusthuis, Ruud A.

    2017-01-01

    Ethyl acetate is an industrially relevant ester that is currently produced exclusively through unsustainable processes. Many yeasts are able to produce ethyl acetate, but the main responsible enzyme has remained elusive, hampering the engineering of novel production strains. Here we describe the

  8. Antimicrobial activity of ethyl acetate extract of Citrullus lanatus seeds

    African Journals Online (AJOL)

    Purpose: To determine the antimicrobial activity and chemical constituents of ethyl acetate extract of Citrullus lanatus seeds. Methods: Antimicrobial activity of the ethyl acetate extract of the seeds of C. lanatus was evaluated against Staphylococus aureus ATCC 25923, Escherichia coli ATCC 25922, Bacillus subtilis ...

  9. Antibacterial activity of various fractions of ethyl acetate extract from ...

    African Journals Online (AJOL)

    The antibacterial activity of various fractions of ethyl acetate extract isolated from edible fungi, Tirmania pinoyi (Maire) Malençon, growing in Algeria, was investigated. Extraction was done by the Soxhlet and the fractions obtained were purified with silica-gel column. Two fractions of ethyl acetate extract were tested against ...

  10. 77 FR 12740 - Trinexapac-ethyl; Pesticide Tolerances

    Science.gov (United States)

    2012-03-02

    ... subchronic dog study showed decreased body weight gain and food consumption, diffuse thymic atrophy, and... food consumption observed in the parental animals (>1,200 mg/kg/day). Trinexapac-ethyl is classified as..., ``Trinexapac-ethyl: Human Health Risk Assessment for the Section 3 Registration Action on Cereal Grains...

  11. Antimicrobial activity of ethyl acetate extract of Citrullus lanatus seeds

    African Journals Online (AJOL)

    Purpose: To determine the antimicrobial activity and chemical constituents of ethyl acetate extract of. Citrullus lanatus seeds. Methods: Antimicrobial activity of the ethyl acetate extract of the seeds of C. lanatus was evaluated against Staphylococus aureus ATCC 25923, Escherichia coli ATCC 25922, Bacillus subtilis ...

  12. IRIS Toxicological Review of Methyl Ethyl Ketone (2003 Final)

    Science.gov (United States)

    EPA announced the release of the final report, Toxicological Review of Methyl Ethyl Ketone: in support of the Integrated Risk Information System (IRIS). The updated Summary for Methyl Ethyl Ketone and accompanying toxicological review have been added to the IRIS Database....

  13. Weeding the Astrophysical Garden: Ethyl Cyanide

    Science.gov (United States)

    De Lucia, F. C.; Fortman, S. M.; Medvedev, I. R.; Neese, C. F.

    2009-12-01

    It is well known that many, if not most, of the unidentified features in astrophysical spectra arise from relatively low lying excited vibrational and torsional states of a relatively small number of molecular species— the astrophysical weeds. It is also well known that the traditional quantum mechanical assignment and fitting of these excited state spectra is a formidable task, one that is made harder by the expected perturbations and interactions among these states. We have previously proposed an alternative fitting and analysis approach based on experimental, intensity calibrated spectra taken at many temperatures. In this paper we discuss the implementation of this approach and provide details in the context of one of these weeds, ethyl cyanide.

  14. Solvent-induced shifts in electronic spectra of uracil.

    Science.gov (United States)

    DeFusco, Albert; Ivanic, Joseph; Schmidt, Michael W; Gordon, Mark S

    2011-05-12

    Highly accurate excitation spectra are predicted for the low-lying n-π* and π-π* states of uracil for both the gas phase and in water employing the complete active space self-consistent field (CASSCF) and multiconfigurational quasidegenerate perturbation theory (MCQDPT) methods. Implementation of the effective fragment potential (EFP) solvent method with CASSCF and MCQDPT enables the prediction of highly accurate solvated spectra, along with a direct interpretation of solvent shifts in terms of intermolecular interactions between solvent and solute. Solvent shifts of the n-π* and π-π* excited states arise mainly from a change in the electrostatic interaction between solvent and solute upon photoexcitation. Polarization (induction) interactions contribute about 0.1 eV to the solvent-shifted excitation. The blue shift of the n-π* state is found to be 0.43 eV and the red shift of the π-π* state is found to be -0.26 eV. Furthermore, the spectra show that in solution the π-π* state is 0.4 eV lower in energy than the n-π* state.

  15. Extended Hansen solubility approach: naphthalene in individual solvents.

    Science.gov (United States)

    Martin, A; Wu, P L; Adjei, A; Beerbower, A; Prausnitz, J M

    1981-11-01

    A multiple regression method using Hansen partial solubility parameters, delta D, delta p, and delta H, was used to reproduce the solubilities of naphthalene in pure polar and nonpolar solvents and to predict its solubility in untested solvents. The method, called the extended Hansen approach, was compared with the extended Hildebrand solubility approach and the universal-functional-group-activity-coefficient (UNIFAC) method. The Hildebrand regular solution theory was also used to calculate naphthalene solubility. Naphthalene, an aromatic molecule having no side chains or functional groups, is "well-behaved', i.e., its solubility in active solvents known to interact with drug molecules is fairly regular. Because of its simplicity, naphthalene is a suitable solute with which to initiate the difficult study of solubility phenomena. The three methods tested (Hildebrand regular solution theory was introduced only for comparison of solubilities in regular solution) yielded similar results, reproducing naphthalene solubilities within approximately 30% of literature values. In some cases, however, the error was considerably greater. The UNIFAC calculation is superior in that it requires only the solute's heat of fusion, the melting point, and a knowledge of chemical structures of solute and solvent. The extended Hansen and extended Hildebrand methods need experimental solubility data on which to carry out regression analysis. The extended Hansen approach was the method of second choice because of its adaptability to solutes and solvents from various classes. Sample calculations are included to illustrate methods of predicting solubilities in untested solvents at various temperatures. The UNIFAC method was successful in this regard.

  16. Low-Temperature, Solution-Processed, Transparent Zinc Oxide-Based Thin-Film Transistors for Sensing Various Solvents

    Directory of Open Access Journals (Sweden)

    Hsin-Chiang You

    2017-02-01

    Full Text Available A low temperature solution-processed thin-film transistor (TFT using zinc oxide (ZnO film as an exposed sensing semiconductor channel was fabricated to detect and identify various solution solvents. The TFT devices would offer applications for low-cost, rapid and highly compatible water-soluble detection and could replace conventional silicon field effect transistors (FETs as bio-sensors. In this work, we demonstrate the utility of the TFT ZnO channel to sense various liquids, such as polar solvents (ethanol, non-polar solvents (toluene and deionized (DI water, which were dropped and adsorbed onto the channel. It is discussed how different dielectric constants of polar/non-polar solvents and DI water were associated with various charge transport properties, demonstrating the main detection mechanisms of the thin-film transistor.

  17. Measurement of dielectric constant of organic solvents by indigenously developed dielectric probe

    Science.gov (United States)

    Keshari, Ajay Kumar; Rao, J. Prabhakar; Rao, C. V. S. Brahmmananda; Ramakrishnan, R.; Ramanarayanan, R. R.

    2018-04-01

    The extraction, separation and purification of actinides (uranium and plutonium) from various matrices are an important step in nuclear fuel cycle. One of the separation process adopted in an industrial scale is the liquid-liquid extraction or solvent extraction. Liquid-liquid extraction uses a specific ligand/extractant in conjunction with suitable diluent. Solvent extraction or liquid-liquid extraction, involves the partitioning of the solute between two immiscible phases. In most cases, one of the phases is aqueous, and the other one is an organic solvent. The solvent used in solvent extraction should be selective for the metal of interest, it should have optimum distribution ratio, and the loaded metal from the organic phase should be easily stripped under suitable experimental conditions. Some of the important physical properties which are important for the solvent are density, viscosity, phase separation time, interfacial surface tension and the polarity of the extractant.

  18. Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation.

    Science.gov (United States)

    Saerens, S M G; Delvaux, F; Verstrepen, K J; Van Dijck, P; Thevelein, J M; Delvaux, F R

    2008-01-01

    Volatile esters are responsible for the fruity character of fermented beverages and thus constitute a vital group of aromatic compounds in beer and wine. Many fermentation parameters are known to affect volatile ester production. In order to obtain insight into the production of ethyl esters during fermentation, we investigated the influence of several fermentation variables. A higher level of unsaturated fatty acids in the fermentation medium resulted in a general decrease in ethyl ester production. On the other hand, a higher fermentation temperature resulted in greater ethyl octanoate and decanoate production, while a higher carbon or nitrogen content of the fermentation medium resulted in only moderate changes in ethyl ester production. Analysis of the expression of the ethyl ester biosynthesis genes EEB1 and EHT1 after addition of medium-chain fatty acid precursors suggested that the expression level is not the limiting factor for ethyl ester production, as opposed to acetate ester production. Together with the previous demonstration that provision of medium-chain fatty acids, which are the substrates for ethyl ester formation, to the fermentation medium causes a strong increase in the formation of the corresponding ethyl esters, this result further supports the hypothesis that precursor availability has an important role in ethyl ester production. We concluded that, at least in our fermentation conditions and with our yeast strain, the fatty acid precursor level rather than the activity of the biosynthetic enzymes is the major limiting factor for ethyl ester production. The expression level and activity of the fatty acid biosynthetic enzymes therefore appear to be prime targets for flavor modification by alteration of process parameters or through strain selection.

  19. High yielding synthesis of N-ethyl dehydroamino acids.

    Science.gov (United States)

    Monteiro, Luís S; Suárez, Ana S

    2012-10-01

    Recently we reported the use of a sequence of alkylation and dehydration methodologies to obtain N-ethyl-α, β-dehydroamino acid derivatives. The application of this N-alkylation procedure to several methyl esters of β,β-dibromo and β-bromo, β-substituted dehydroamino acids protected with standard amine protecting groups was subsequently reported. The corresponding N-ethyl, β-bromo dehydroamino acid derivatives were obtained in fair to high yields and some were used as substrates in Suzuki cross-coupling reactions to give N-ethyl, β,β-disubstituted dehydroalanine derivatives. Herein, we further explore N-ethylation of β-halo dehydroamino acid derivatives using triethyloxonium tetrafluoroborate as alkylating agent, but substituting N,N-diisopropylethylamine for potassium tert-butoxide as auxiliary base. In these conditions, for all β-halo dehydroamino acid derivatives, reactions were complete and the N-ethylated derivative could be isolated in high yield. This method was also applied for N-ethylation of non-halogenated dehydroamino acids. Again, with all compounds the reactions were complete and the N-ethyl dehydroamino acid derivatives could be isolated in high yields. Some of these N-ethyl dehydroamino acid methyl ester derivatives were converted in high yields to their corresponding acids and coupled to an amino acid methyl ester to give N-ethyl dehydrodipeptide derivatives in good yields. Thus, this method constitutes a general procedure for high yielding synthesis of N-ethylated dehydroamino acids, which can be further applied in peptide synthesis.

  20. Bis({1-[(1-iminoethylimino]ethyl}azanido-κ2N1,N5nickel(II methanol monosolvate

    Directory of Open Access Journals (Sweden)

    Yong-Qiang Xie

    2013-01-01

    Full Text Available The title compound, [Ni(C4H8N32]·CH3OH, contains two independent NiII atoms, each located on an inversion center and coordinated by four N atoms from two 1-[(1-iminoethylimino]ethyl}azanide ligands in a square-planar geometry. N—H...N, N—H...O and O—H...N hydrogen bonds link the complex molecules and methanol solvent molecules into a corrugated layer parallel to (001.

  1. Solvent accessible surface area (ASA) of simulated phospholipid membranes

    DEFF Research Database (Denmark)

    Tuchsen, E.; Jensen, Morten Østergaard; Westh, P.

    2003-01-01

    The membrane-solvent interface has been investigated through calculations of the solvent accessible surface area (ASA) for simulated membranes of DPPC and POPE. For DPPC at 52 degreesC we found an ASA of 126 +/- 8 Angstrom(2) per lipid molecule, equivalent to twice the projected lateral area......, even the most exposed parts of the PC head-group show average ASAs of less than half of its maximal or 'fully hydrated' value. The average ASA of a simulated POPE membrane was 96 +/- 7 Angstrom(2) per lipid. The smaller value than for DPPC reflects much lower ASA of the ammonium ion, which is partially...... compensated by increased exposure of the ethylene and phosphate moieties. The ASA of the polar moieties Of (PO4, NH3 and COO) constitutes 65% of the total accessible area for POPE, making this interface more polar than that of DPPC. It is suggested that ASA information can be valuable in attempts...

  2. Impact of injection solvents on supercritical fluid chromatography.

    Science.gov (United States)

    Abrahamsson, Victor; Sandahl, Margareta

    2013-09-06

    Even though there has been a rapid development in instrumentation and applications of supercritical fluid chromatography (SFC), relatively little is known about retention mechanisms compared to high-performance liquid chromatography (HPLC). Much effort has been made to characterize the influence of injection solvents on chromatographic efficiency in HPLC, however has been left rather uninvestigated in the domain of SFC. In this study properties of different injection solvents have been studied and correlated with properties of seven various analytes on three different columns, a C18, a 2-ethylpyridine and a bare-silica column. Aided by calculations of correlation coefficients and principal component analysis (PCA), the physical properties of injection solvents and the interactions between injection solvent, solute and stationary phase were investigated. The findings of this work shows that interactions capable of masking accessible silanol groups on a C18 column are of importance in order to maximize the plate number. While solvents with dipolar and hydrogen bond interaction properties are associated negatively with chromatographic efficiency using polar columns. Properties such as molar density, vapor pressure and boiling point were related to sharper peaks, mostly likely because of solubility issues of the injection solvent into the methanol-modified carbon dioxide. However, no additional solubility due to hydrogen interactions between the injection solvent and the carbon dioxide in SFC was observed. Surface tension and viscosity was not particularly associated with a decrease in plate numbers. By increasing the injection volume a stronger correlation between solubility related properties and plate numbers were obtained. Additional experiments showed that the resistance in solubility became an issue when performing partial-loop injection where additional washing solvent entered the system, thus providing broadened peaks. Copyright © 2013 Elsevier B.V. All rights

  3. Binary and ternary LLE data of the system (ethylbenzene + styrene + 1-ethyl-3-methylimidazolium thiocyanate) and binary VLE data of the system (styrene + 1-ethyl-3-methylimidazolium thiocyanate)

    International Nuclear Information System (INIS)

    Jongmans, Mark T.G.; Schuur, Boelo; Haan, André B. de

    2012-01-01

    Highlights: ► LLE data have been measured for the system {ethylbenzene + styrene + [EMIM][SCN]}. ► VLE was determined for the system {styrene + [EMIM][SCN]} at vacuum conditions. ► All experimental data were correlated well with the NRTL model. ► [EMIM][SCN] has a much larger selectivity than the benchmark solvent sulfolane. - Abstract: The distillation of close boiling mixtures may be improved by adding a proper affinity solvent, and thereby creating an extractive distillation process. An example of a close boiling mixture that may be separated by extractive distillation is the mixture ethylbenzene/styrene. The ionic liquid 1-ethyl-3-methylimidazolium thiocyanate ([EMIM][SCN]) is a promising solvent to separate ethylbenzene and styrene by extractive distillation. In this study, (vapour + liquid) equilibrium data have been measured for the binary system (styrene + [EMIM][SCN]) over the pressure range of (3 to 20) kPa and binary and ternary (liquid + liquid) equilibrium data of the system (ethylbenzene + styrene + [EMIM][SCN]) at temperatures (313.2, 333.2 and 353.2) K. Due to the low solubility of ethylbenzene in [EMIM][SCN], it was not possible to measure accurately VLE data of the binary system (ethylbenzene + [EMIM][SCN]) and of the ternary system (ethylbenzene + styrene + [EMIM][SCN]) using the ebulliometer. Because previous work showed that the LLE selectivity is a good measure for the selectivity in VLE, we determined the selectivity with LLE. The selectivity of [EMIM][SCN] to styrene in LLE measurements ranges from 2.1 at high styrene raffinate purity to 2.6 at high ethylbenzene raffinate purity. The NRTL model can properly describe the experimental results. The rRMSD in temperature, pressure and mole fraction for the binary VLE data are respectively (0.1, 0.12 and 0.13)%. The rRMSD is only 0.7% in mole fraction for the LLE data.

  4. Strategic Polarization.

    Science.gov (United States)

    Kalai, Adam; Kalai, Ehud

    2001-08-01

    In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.

  5. Detection of benzene, toluene, ethyl benzene, and xylenes (BTEX) using toluene dioxygenase-peroxidase coupling reactions.

    Science.gov (United States)

    Xu, Zhaohui; Mulchandani, Ashok; Chen, Wilfred

    2003-01-01

    We have developed a simple, whole-cell bioassay for the detection of bioavailable benzene, toluene, ethyl benzene, and xylenes (BTEX) and similar compounds. A genetically engineered E. coli strain expressing toluene dioxygenase (TDO) and toluene dihydrodiol dehydrogenase (TodD) was constructed, enabling the conversion of BTEX into their respective catechols, which were quickly converted into colored products by a horseradish peroxidase (HRP)-coupled reaction. The intensity of the color formation was correlated to concentrations of the BTEX compounds. Under the optimized conditions, a detection limit (defined as three times the standard deviation of the response obtained from the blank) of 10, 10, 20, and 50 microM was observed for benzene, toluene, ethyl benzene, and xylene, respectively. The bioassay was selective toward BTEX-related compounds with no interference observed with commonly used pesticides, herbicides, and organic solvent. The bioassay was very stable with little change in response over a 10-week period. The excellent stability suggests that the reported bioassay may be suitable for field monitoring of BTEX to identify and track contaminated water and follow the bioremediation progress.

  6. Studies on the mechanism of synthesis of ethyl acetate in Kluyveromyces marxianus DSM 5422.

    Science.gov (United States)

    Löser, Christian; Urit, Thanet; Keil, Peter; Bley, Thomas

    2015-02-01

    Kluyveromyces marxianus converts whey-borne sugar into ethyl acetate, an environmentally friendly solvent with many applications. K. marxianus DSM 5422 presumably synthesizes ethyl acetate from acetyl-SCoA. Iron limitation as a trigger for this synthesis is explained by a diminished aconitase and succinate dehydrogenase activity (both enzymes depend on iron) causing diversion of acetyl-SCoA from the tricarboxic acid cycle to ester synthesis. Copper limitation as another trigger for ester synthesis in this yeast refers to involvement of the electron transport chain (all ETC complexes depend on iron and complex IV requires copper). This hypothesis was checked by using several ETC inhibitors. Malonate was ineffective but carboxin partially inhibited complex II and initiated ester synthesis. Antimycin A and cyanide as complexes III and IV inhibitors initiated ester synthesis only at moderate levels while higher concentrations disrupted all respiration and caused ethanol formation. A restricted supply of oxygen (the terminal electron acceptor) also initiated some ester synthesis but primarily forced ethanol production. A switch from aerobic to anaerobic conditions nearly stopped ester synthesis and induced ethanol formation. Iron-limited ester formation was compared with anaerobic ethanol production; the ester yield was lower than the ethanol yield but a higher market price, a reduced number of process stages, a faster process, and decreased expenses for product recovery by stripping favor biotechnological ester production.

  7. Eco-solvents--cluster-formation, surfactantless microemulsions and facilitated hydrotropy.

    Science.gov (United States)

    Klossek, Michael L; Touraud, Didier; Kunz, Werner

    2013-07-14

    In this paper we consider clusters in the ternary systems water-benzyl alcohol and ethanol, ethyl lactate or γ-valerolactone as found with the help of dynamic and static light scattering experiments. These ternary mixtures are powerful solvent media and consist only of low-toxic solvents of natural origin. In a recent work we have shown that surfactantless microemulsions are formed in the water-ethanol-n-octanol system. By contrast, in the systems studied here the sizes of the aggregates are too small to be considered as micelles. It can be postulated that the presence of clusters or larger structures as in surfactantless microemulsions is strongly influenced by the most hydrophobic compound. The phenomenon of facilitated hydrotropy is also investigated in the above-mentioned systems. In this context, ethanol is considered as the primary hydrotrope and the more hydrophobic benzyl alcohol as the facilitating secondary hydrotrope. The hydrophobic dye Disperse Red 13 is used as a marker of facilitated hydrotropy. The results suggest that the degree of self-association of eco-solvent has a significant influence on the hydrotropic efficiency of benzyl alcohol.

  8. Ethyl pyruvate protects colonic anastomosis from ischemia-reperfusion injury.

    Science.gov (United States)

    Unal, B; Karabeyoglu, M; Huner, T; Canbay, E; Eroglu, A; Yildirim, O; Dolapci, M; Bilgihan, A; Cengiz, O

    2009-03-01

    Ethyl pyruvate is a simple derivative in Ca(+2)- and K(+)-containing balanced salt solution of pyruvate to avoid the problems associated with the instability of pyruvate in solution. It has been shown to ameliorate the effects of ischemia-reperfusion (I/R) injury in many organs. It has also been shown that I/R injury delays the healing of colonic anastomosis. In this study, the effect of ethyl pyruvate on the healing of colon anastomosis and anastomotic strength after I/R injury was investigated. Anastomosis of the colon was performed in 32 adult male Wistar albino rats divided into 4 groups of 8 individuals: (1) sham-operated control group (group 1); (2) 30 minutes of intestinal I/R by superior mesenteric artery occlusion (group 2); (3) I/R+ ethyl pyruvate (group 3), ethyl pyruvate was administered as a 50-mg/kg/d single dose; and (4) I/R+ ethyl pyruvate (group 4), ethyl pyruvate administration was repeatedly (every 6 hours) at the same dose (50 mg/kg). On the fifth postoperative day, animals were killed. Perianastomotic tissue hydroxyproline contents and anastomotic bursting pressures were measured in all groups. When the anastomotic bursting pressures and tissue hydroxyproline contents were compared, it was found that they were decreased in group 2 when compared with groups 1, 3, and 4 (P .05). Ethyl pyruvate significantly prevents the delaying effect of I/R injury on anastomotic strength and healing independent from doses of administration.

  9. SOLVENT EXTRACTION PROCESS FOR PROTACTINIUM

    Science.gov (United States)

    Hyde, E.K.; Katzin, L.I.; Wolf, M.J.

    1961-04-01

    A process is described for separating protactinium from thorium present together as the nitrates in a 0.1 to 10 N nitric acid solution. The separation is carried out by extraction with an aliphatic alcohol, ketone, and/or ester having at least six carbon atoms, such as n-amyl acetate, 2-ethyl hexanol, and diisopropyl ketone.

  10. Thermodynamic study of solubility for 2-amino-4-chloro-6-methoxypyrimidine in twelve organic solvents at temperatures from 273.15 K to 323.15 K

    International Nuclear Information System (INIS)

    Yao, Ganbing; Xia, Zhanxiang; Li, Zhihui

    2017-01-01

    Highlights: • 2-Amino-4-chloro-6-methoxypyrimidine solubility in twelve solvents were determined. • The solubility were correlated with four models. • The mixing properties were derived. - Abstract: The solubility of 2-amino-4-chloro-6-methoxypyrimidine in methanol, ethanol, chloroform, toluene, ethyl acetate, acetonitrile, n-propanol, acetone, N,N-dimethylformamide, isopropanol, 1,4-dioxane and ethyl benzene was obtained experimentally using the high-performance liquid chromatography analysis at temperatures ranging from (273.15 to 323.15) K under atmospheric pressure. The solubility of 2-amino-4-chloro-6-methoxypyrimidine in a fixed solvent increased with an increase in temperature. At a certain temperature, the mole fraction solubility in different solvents decreased according to the following order: N,N-dimethylformamide > dioxane > acetone > ethyl acetate > chloroform > (acetonitrile, n-propanol) > (ethanol, isopropanol) > methanol > toluene > ethyl benzene. Four models, modified Apelblat equation, λh equation, Wilson model and NRTL model were applied to correlate of the experimental solubility results. The largest values of relative average deviation and root-mean-square deviation acquired by the four models are 1.21% and 10.71 × 10 −4 , respectively. The modified Apelblat model is regarded as the best one for describing the experimental values. Furthermore, the mixing Gibbs energy, mixing enthalpy, and mixing entropy, activity coefficient and reduced excess enthalpy at infinitesimal concentration were obtained based on the mole fraction solubility. The mixing process of 2-amino-4-chloro-6-methoxypyrimidine in the selected solvents is discussed.

  11. Methyl and ethyl soybean esters production

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Anna Leticia Montenegro Turtelli; Park, Kil Jin; Zorzeto, Thais Queiroz [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail: annalets@feagri.unicamp.br; Bevilaqua, Gabriela [Universidade Estadual de Campinas (IQ/UNICAMP), SP (Brazil). Inst. de Quimica

    2008-07-01

    Biodiesel is a fuel obtained from triglycerides found in nature, like vegetable oils and animal fats. Nowadays it has been the subject of many researches impulses by the creation of the Brazilian law that determined the blend of 2% of biodiesel with petrodiesel. Basically, there are no limitations on the oilseed type for chemical reaction, but due to high cost of this major feedstock, it is important to use the grain that is available in the region of production. Soybean is the oilseed mostly produced in Brazil and its oil is the only one that is available in enough quantity to supply the current biodiesel demand. The objective of this work was to study the effects of reaction time and temperature on soybean oil transesterification reaction with ethanol and methanol. A central composite experimental design with five variation levels was used and response surface methodology applied for the data analysis. The statistical analysis of the results showed that none of the factors affected the ethyl esters production. However, the methyl esters production suffered the influence of temperature (linear effect), reaction time (linear and quadratic) and interaction of these two variables. None of the generated models showed significant regression consequently it was not possible to build the response surface. The experiments demonstrated that methanol is the best alcohol for transesterification reactions and the ester yield was up to 85%. (author)

  12. Separation of Asphaltenes by Polarity using Liquid-Liquid Extraction

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar

    1997-01-01

    with increasing content of toluene. Although large fractions of the crude oil (Alaska ´93) was extracted in the higher polarity solvents (high concentration of methanol), the asphaltene content of the dissolved material was low. As the toluene content increased more asphaltenes were transferred to the solvent......In order to investigate the nature of petroleum asphaltenes in terms of polarity a process was developed using initial liquid-liquid extraction of the oil phase followed by precipitation of the asphaltenes using n-heptane. The liquid-liquid extraction was performed using toluene-methanol mixtures...... of the maltene phase also increase while H/C decreases. The content of heteroatoms in the asphaltenes are relatively higher and apparently increase with the polarity of the solvent. It is concluded that these asphaltenes are indeed dominated by high molecular weight substances that cannot be extracted...

  13. Supercritical carbon dioxide as solvent and temporary protecting group for rhodium-catalyzed hydroaminomethylation.

    Science.gov (United States)

    Wittmann, K; Wisniewski, W; Mynott, R; Leitner, W; Kranemann, C L; Rische, L T; Eilbracht, P; Kluwer, S; Ernsting, J M; Elsevier, C J

    2001-11-05

    Supercritical carbon dioxide (scCO2) acts simultaneously as solvent and temporary protecting group during homogeneously rhodium-catalyzed hydroaminomethylation of ethyl methallylic amine. Cyclic amines are formed as the major products in scCO,, whereas the cyclic amide is formed preferentially in conventional solvents. Multinuclear high-pressure NMR spectroscopy revealed that this selectivity switch is mainly due to reversible formation of the carbamic acid in the solvent CO2, which reduces the tendency for intramolecular ring closure at the Rh-acyl intermediate. These results substantiate the general concept of using scCO2 as a protective medium for amines in homogeneous catalysis and demonstrate for the first time its application for selectivity control.

  14. Solvent extraction of Zn and metals in Zn ores by nonphosphorous solvents

    International Nuclear Information System (INIS)

    Auchapt, J.M.; Tostain, Jacqueline.

    1975-07-01

    This bibliography follows a first work on Zn solvent extraction by organo-phosphorous compounds. The other solvents used in Zn extraction, are studied: oxygenated nonphosphorous solvents (ketones, alcohols, carboxylic acids, sulfonates), nitrogenous solvents and hydrocarbons [fr

  15. Dielectric relaxation phenomena of rigid polar liquid molecules ...

    Indian Academy of Sciences (India)

    Abstract. The dielectric relaxation phenomena of rigid polar liquid molecules chloral and ethyl- trichloroacetate (j) in benzene, n-hexane and n-heptane (i) under 4.2, 9.8 and 24.6 GHz electric fields at 30ÆC are studied to show the possible existence of double relaxation times τ2 and τ1 for rotations of the whole and the ...

  16. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as... prescribed for polyethylene in § 177.1520. (1) Specifications—(i) Infrared identification. Ethylene-ethyl...

  17. Precessing deuteron polarization

    International Nuclear Information System (INIS)

    Sitnik, I.M.; Volkov, V.I.; Kirillov, D.A.; Piskunov, N.M.; Plis, Yu.A.

    2002-01-01

    The feasibility of the acceleration in the Nuclotron of deuterons polarized in the horizontal plane is considered. This horizontal polarization is named precessing polarization. The effects of the main magnetic field and synchrotron oscillations are included. The precessing polarization is supposed to be used in studying the polarization parameters of the elastic dp back-scattering and other experiments

  18. Preparation and morphology control of amphiphilic block copolymer thin films using mixed solvent vapors

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Chan, E-mail: xiechan@pku.edu.cn [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 (China); School of Material Science and Engineering, Nanchang Hangkong University, Jiangxi, Nanchang, 330063 (China); Zhou, Yu; Zhou, Feng; Wu, Hongwei; Zou, Dechun; Fan, Xinghe [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 (China); Shen, Zhihao, E-mail: zshen@pku.edu.cn [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 (China)

    2014-03-01

    Graphical abstract: A series of well-defined amphiphilic block copolymer (BCP), poly[N,N-(dimethylamino)ethyl methacrylate]-block-polystyrene (PDMAEMA-b-PS), was synthesized using the ARGET ATRP method. Solvent annealing was applied for controlling the thin-film morphologies. A vertical nanocylinder structure forms in the thin film annealed under the vapors of binary mixed solvents from water and tetrahydrofuran which have a strong selectivity for the minority PDMAEMA block. - Highlights: • Well-defined amphiphilic diblock copolymers synthesized. • Systematic study on morphologies in thin films controlled by annealing under vapors of mixed solvents. - Abstract: A well-defined amphiphilic diblock copolymer, poly[N,N-(dimethylamino)ethyl methacrylate]-block-polystyrene (PDMAEMA-b-PS), was synthesized using activators regenerated by electron transfer atom transfer radical polymerization. The formation and transition of morphologies in PDMAEMA-b-PS thin films annealed under the vapors of water, tetrahydrofuran, and their binary mixed solvents were first investigated by using atomic force microscopy and scanning electron microscopy. By changing the composition of the annealing solvent, morphological evolution with increasing vapor preferential affinity was observed. A vertical nanocylinder structure forms in the PDMAEMA-b-PS thin film when it is annealed under a mixed solvent vapor with Δχ ∼ −0.975 having a strong preferential affinity for the minority PDMAEMA block at ambient temperature. The self-assembly of PDMAEMA-b-PS thin films provides a new convenient way to fabricate stimuli-responsive substrates with potential applications in adhesion control, wetting, and binding or release of functional molecules at surfaces.

  19. Molecular and ionic hydrogen bond formation in fluorous solvents.

    Science.gov (United States)

    O'Neal, Kristi L; Weber, Stephen G

    2009-01-08

    There are only a few studies of noncovalent association in fluorous solvents and even fewer that are quantitative. A full understanding, particularly of stoichiometry and binding strength of noncovalent interactions in fluorous solvents could be very useful in improved molecular-receptor-based extractions, advancements in sensor technologies, crystal engineering, and supramolecular chemistry. This work investigates hydrogen bonding between heterocyclic bases and a perfluoropolyether with a terminal carboxylic acid group (Krytox 157FSH (1)), chiefly in FC-72 (a mixture of perfluorohexanes). In particular, we were interested in whether or not proton transfer occurs, and if so, under what conditions in H-bonded complexes. Continuous variations experiments show that in FC-72 weaker bases (pyrazine, pyrimidine, and quinazoline) form 1:1 complexes with 1, whereas stronger bases (quinoline, pyridine, and isoquinoline) form 1:3 complexes. Ultraviolet and infrared spectral signatures reveal that the 1:1 complexes are molecular (B.HA) whereas the 1:3 complexes are ionic (BH+.A-HAHA). Infrared spectra of 1:3 ionic complexes are discussed in detail. Literature and experimental data on complexes between N-heterocyclic bases and carboxylic acids in a range of solvents are compiled to compare solvent effects on proton transfer. Polar solvents support ionic hydrogen bonds at a 1:1 mol ratio. In nonpolar organic solvents, ionic hydrogen bonds are only observed in complexes with 1:2 (base/acid) stoichiometries. In fluorous solvents, a larger excess of acid, 1:3, is necessary to facilitate proton transfer in hydrogen bonds between carboxylic acids and the bases studied.

  20. Substoichiometric determination of selenium with potassium ethyl xanthate

    International Nuclear Information System (INIS)

    Chandrasekhar Reddy, P.; Polaiah, B.; Rangamannar, B.

    1989-01-01

    A substoichiometric radiochemical method was developed for the determination of selenium with potassium ethyl xanthate. The selenium ethyl xanthate complex formed was extracted into chloroform from borate buffer at pH 5. The effect of foreign ions on the extraction was studied. Microgram quantities of selenium could be conveniently determined with a fair degree of accuracy. The method was successfully applied for the determination of selenium content in food stuffs such as 'Jaggery' and 'Wheat powder'. (author) 4 refs.; 3 figs

  1. Isolation of ethyl acetic based AGF bio-nutrient and its application on the growth of Capsicum annum L. plants

    Science.gov (United States)

    Hendrawan, Sonjaya, Yaya; Khoerunnisa, Fitri; Musthapa, Iqbal; Nurmala, Astri Rizki

    2015-12-01

    The study aimed to obtain the bionutrient derived from extraction of AGF leafs in ethyl acetic solvents and to explore its application on the plant growth of capsicum annum L. (curly red chili). Particularly, the fraction of secondary metabolites groups composed bionutrient was intensively elucidated by liquid vacuum chromatography technique. The characterization of secondary metabolites groups was conducted through several methods, i.e. thin layer chromatography, phytochemical screening, and FTIR spectroscopy. The AGF extracts based bionutrient then was applied on capsicum annum L. plants with dosage of 2 and 10 mL/L. The ethyl acetic solvent and commercial nutrient of Phonska and pesticide of curacron (EC 500) were selected as a blank and a positive control to evaluate the growth pattern of capsicum annum L., respectively. The result showed that the CF 1 dan CF2 of AGF extract contained alkaloid and terpenoid of secondary metabolite group, the CF 3, and CF 4 of AGF extracts were dominated by alkaloid, flavonoid, and terpenoid, while the CF 5 of AGF extract contained alkaloid, tannin and terpenoid groups. The CF 2 of AGF extract has the highest growth rate constant of 0.1702 week-1 with the number and heaviest mass of the yield of 82 pieces and 186.60, respectively. It was also showed the significant bio-pesticide activity that should be useful to support plant growth, indicating that AGF extract can be applied as both bio-nutrient and bio-pesticide.

  2. Permeation of aromatic solvent mixtures through nitrile protective gloves.

    Science.gov (United States)

    Chao, Keh-Ping; Hsu, Ya-Ping; Chen, Su-Yi

    2008-05-30

    The permeation of binary and ternary mixtures of benzene, toluene, ethyl benzene and p-xylene through nitrile gloves were investigated using the ASTM F739 test cell. The more slowly permeating component of a mixture was accelerated to have a shorter breakthrough time than its pure form. The larger differences in solubility parameter between a solvent mixture and glove resulted in a lower permeation rate. Solubility parameter theory provides a potential approach to interpret the changes of permeation properties for BTEX mixtures through nitrile gloves. Using a one-dimensional diffusion model based on Fick's law, the permeation concentrations of ASTM F739 experiments were appropriately simulated by the estimated diffusion coefficient and solubility. This study will be a fundamental work for the risk assessment of the potential dermal exposure of workers wearing protective gloves.

  3. The electronic absorption spectra of pyridine azides, solvent-solute interaction

    Science.gov (United States)

    Abu-Eittah, Rafie H.; Khedr, Mahmoud K.

    2009-01-01

    The electronic absorption spectra of: 2-, 3-, and 4-azidopyridines have been investigated in a wide variety of polar and non-polar solvents. According to Onsager model, the studied spectra indicate that the orientation polarization of solvent dipoles affects the electronic spectrum much stronger than the induction polarization of solvent dipoles. The effect of solvent dipole moment predominates that of solvent refractive index in determining the values of band maxima of an electronic spectrum. The spectra of azidopyridines differ basically from these of pyridine or mono-substituted pyridine. Results at hand indicate that the azide group perturbs the pyridine ring in the case of 3-azidopyridine much more than it does in the case of 2-azidopyridine. This result agrees with the predictions of the resonance theory. Although the equilibrium ⇌ azide tetrazole is well known, yet the observed spectra prove that such an equilibrium does not exist at the studied conditions. The spectra of the studied azidopyridines are characterized by the existence of overlapping transitions. Gaussian analysis is used to obtain nice, resolved spectra. All the observed bands correspond to π → π* transitions, n → π* may be overlapped with the stronger π → π* ones.

  4. Handbook of organic solvent properties

    CERN Document Server

    Smallwood, Ian

    2012-01-01

    The properties of 72 of the most commonly used solvents are given, tabulated in the most convenient way, making this book a joy for industrial chemists to use as a desk reference. The properties covered are those which answer the basic questions of: Will it do the job? Will it harm the user? Will it pollute the air? Is it easy to handle? Will it pollute the water? Can it be recovered or incinerated? These are all factors that need to be considered at the early stages of choosing a solvent for a new product or process.A collection of the physical properties of most commonly used solvents, their

  5. Investigation of Solvent Effects on Photophysical Properties of New Aminophthalimide Derivatives-Based on Methanesulfonate.

    Science.gov (United States)

    Tan, Ayse; Bozkurt, Ebru; Kara, Yunus

    2017-05-01

    Novel aminophthalimide derivatives were synthesized starting from (3aR,7aS)-2-(2-hydroxypropyl)-3a,4,7,7a-tetrahydro-1H-isoindole-1,3(2H)-dione (9) , and solvent effects on the photo-physical properties of these newly synthesized aminophthalimide derivatives (compounds 14 and 15) were investigated using UV-Vis absorption spectroscopy, steady-state and time-resolved fluorescence measurements. Both absorption and fluorescence spectra exhibited bathochromic shift with the increased polarity of the solvents for both molecules. Solute-solvent interactions were analyzed using the Lippert-Mataga and Bakhshiev polarity functions, and Kamlet-Taft and Catalan multiple linear regression approaches. The results revealed that these two molecules experienced specific interactions. Furthermore, photo-physical parameters were calculated for both molecules in all of the solvents, such as the fluorescence quantum yield, fluorescence lifetime, radiative (k r ) and non-radiative (k nr ) rate constant values. It was observed that the fluorescence quantum yield values decreased linearly with increasing solvent polarity. This study proved the new dyes including isopropyl methanesulfonate group displayed different behavior from previous studies of aminophthalimide derivatives in water. It was recommended that these new dyes having interesting properties by changing solvent can be used various applications such as environmentally sensitive fluorescent probes, labels in biology, laser industry.

  6. Measurement and correlation of solubility of ciclesonide in seven pure organic solvents

    International Nuclear Information System (INIS)

    Zhou, Lina; Yin, Qiuxiang; Guo, Zhiqiang; Lu, Haijiao; Liu, Mingyan; Chen, Wei; Hou, Baohong

    2017-01-01

    Highlights: • The solubility of ciclesonide in seven pure organic solvents was determined by gravimetric method. • The solubility order was interpreted by virtue of density function theory (DFT). • The experimental solubility of ciclesonide was correlated by four thermodynamic models. • Mixing thermodynamic properties of ciclesonide were calculated and discussed. - Abstract: The solubility of ciclesonide in seven organic solvents (ethanol, 2-propanol, 1-propanol, 1-butanol, acetonitrile, toluene and ethyl acetate) in the temperature range from 278.15 K to 313.15 K was measured by gravimetrical method under atmospheric pressure. The results indicate that the solubility of ciclesonide increases with elevating temperature in all investigated solvents. The solubility order in different solvents was interpreted through comparing interaction force between solute and solvent molecules by virtue of density function theory (DFT). Thermodynamic equations including the modified Apelblat equation, λh equation, Wilson equation and NRTL equation are all suitable to correlate the solubility results. Based on the Wilson equation, the thermodynamic parameters from the mixing process are calculated, and the results indicate the mixing process of ciclesonide in the selected pure solvents is spontaneous and entropy-driven.

  7. Solubility and solution thermodynamics of sorbic acid in eight pure organic solvents

    International Nuclear Information System (INIS)

    Fang, Jing; Zhang, Meijing; Zhu, Peipei; Ouyang, Jinbo; Gong, Junbo; Chen, Wei; Xu, Fengxia

    2015-01-01

    Highlights: • The solubility of sorbic acid in eight pure organic solvents was experimentally determined. • Several solution thermodynamic properties of sorbic acid in eight pure organic solvents were calculated. • The experimental solubility data were correlated by five models. • The COSMO-RS model was employed to predict the solubility of sorbic acid in eight pure organic solvents. - Abstract: By the gravimetric method, the solubility of sorbic acid in eight solvents including ethanol, 2-propanol, methanol, 1-butanol, ethyl acetate, methyl tert-butyl ether, acetone and acetonitrile was determined over a temperature range from 285.15 to K at atmospheric pressure. For the temperature range investigated, the solubility of sorbic acid in the solvents increased with increasing temperature. The experimental values were correlated with the linear solvation energy relationship, modified Apelblat equation, λh equation, non-random two-liquid (NRTL) model, and Wilson model. On the other hand, the enthalpy, entropy and Gibbs free energy of dissolution were obtained from these solubility values by using the van’t Hoff and Gibbs equations. The excess enthalpy of solution was estimated on the basis of λh equation. Furthermore, the a priori predictive model COSMO-RS was employed to predict the solubility of sorbic acid in selected solvents and reasonable agreement with experimental values is achieved

  8. Ethyl acetate production by the elusive alcohol acetyltransferase from yeast.

    Science.gov (United States)

    Kruis, Aleksander J; Levisson, Mark; Mars, Astrid E; van der Ploeg, Max; Garcés Daza, Fernando; Ellena, Valeria; Kengen, Servé W M; van der Oost, John; Weusthuis, Ruud A

    2017-05-01

    Ethyl acetate is an industrially relevant ester that is currently produced exclusively through unsustainable processes. Many yeasts are able to produce ethyl acetate, but the main responsible enzyme has remained elusive, hampering the engineering of novel production strains. Here we describe the discovery of a new enzyme (Eat1) from the yeast Wickerhamomyces anomalus that resulted in high ethyl acetate production when expressed in Saccharomyces cerevisiae and Escherichia coli. Purified Eat1 showed alcohol acetyltransferase activity with ethanol and acetyl-CoA. Homologs of eat1 are responsible for most ethyl acetate synthesis in known ethyl acetate-producing yeasts, including S. cerevisiae, and are only distantly related to known alcohol acetyltransferases. Eat1 is therefore proposed to compose a novel alcohol acetyltransferase family within the α/β hydrolase superfamily. The discovery of this novel enzyme family is a crucial step towards the development of biobased ethyl acetate production and will also help in selecting improved S. cerevisiae brewing strains. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. Polare maskuliniteter

    Directory of Open Access Journals (Sweden)

    Marit Anne Hauan

    2012-05-01

    Full Text Available In this paper my aim is to read and understand the journal of Gerrit de Veer from the last journey of William Barents to the Arctic Regions in 1596 and the journal of captain Junge on his hunting trip from Tromsø to Svalbard in 1834.It is nearly 240 years between this to voyages. The first journal is known as the earliest report from the arctic era. Gerrit de Veer adds instructive copper engravings to his text and give us insight in the crews meeting with this new land. Captain Junges journal is found together with his dead crew in a house in a fjord nearby Ny-Ålesund and has no drawings, but word. Both of these journals may be read as sources of the knowledge and understanding of the polar region. They might also unveil the ideas of how to deal with and survive under the challenges that is given. In addition one can ask if the sources can tell us more about how men describe their challenges. Can the way they expressed themselves in the journals give us an understanding of masculinity? And not least help us to create good questions of the change in the ideas of masculinities which is said to follow the change in understanding of the wilderness.

  10. Ternary Phase-Separation Investigation of Sol-Gel Derived Silica from Ethyl Silicate 40

    Science.gov (United States)

    Wang, Shengnan; Wang, David K.; Smart, Simon; Diniz da Costa, João C.

    2015-01-01

    A ternary phase-separation investigation of the ethyl silicate 40 (ES40) sol-gel process was conducted using ethanol and water as the solvent and hydrolysing agent, respectively. This oligomeric silica precursor underwent various degrees of phase separation behaviour in solution during the sol-gel reactions as a function of temperature and H2O/Si ratios. The solution composition within the immiscible region of the ES40 phase-separated system shows that the hydrolysis and condensation reactions decreased with decreasing reaction temperature. A mesoporous structure was obtained at low temperature due to weak drying forces from slow solvent evaporation on one hand and formation of unreacted ES40 cages in the other, which reduced network shrinkage and produced larger pores. This was attributed to the concentration of the reactive sites around the phase-separated interface, which enhanced the condensation and crosslinking. Contrary to dense silica structures obtained from sol-gel reactions in the miscible region, higher microporosity was produced via a phase-separated sol-gel system by using high H2O/Si ratios. This tailoring process facilitated further condensation reactions and crosslinking of silica chains, which coupled with stiffening of the network, made it more resistant to compression and densification. PMID:26411484

  11. A two-step enzymatic resolution process for large-scale production of (S)- and (R)-ethyl-3-hydroxybutyrate.

    Science.gov (United States)

    Fishman, A; Eroshov, M; Dee-Noor, S S; van Mil, J; Cogan, U; Effenberger, R

    2001-08-05

    An efficient two-step enzymatic process for production of (R)- and (S)-ethyl-3-hydroxybutyrate (HEB), two important chiral intermediates for the pharmaceutical market, was developed and scaled-up to a multikilogram scale. Both enantiomers were obtained at 99% chemical purity and over 96% enantiomeric excess, with a total process yield of 73%. The first reaction involved a solvent-free acetylation of racemic HEB with vinylacetate for the production of (S)-HEB. In the second reaction, (R)-enriched ethyl-3-acetoxybutyrate (AEB) was subjected to alcoholysis with ethanol to derive optically pure (R)-HEB. Immobilized Candida antarctica lipase B (CALB) was employed in both stages, with high productivity and selectivity. The type of butyric acid ester influenced the enantioselectivity of the enzyme. Thus, extending the ester alkyl chain from ethyl to octyl resulted in a decrease in enantiomeric excess, whereas using bulky groups such as benzyl or t-butyl, improved the enantioselectivity of the enzyme. A stirred reactor was found unsuitable for large-scale production due to attrition of the enzyme particles and, therefore, a batchwise loop reactor system was used for bench-scale production. The immobilized enzyme was confined to a column and the reactants were circulated through the enzyme bed until the targeted conversion was reached. The desired products were separated from the reaction mixture in each of the two stages by fractional distillation. The main features of the process are the exclusion of solvent (thus ensuring high process throughput), and the use of the same enzyme for both the acetylation and the alcoholysis steps. Kilogram quantities of (S)-HEB and (R)-HEB were effectively prepared using this unit, which can be easily scaled-up to produce industrial quantities. Copyright 2001 John Wiley & Sons, Inc.

  12. Solvent-extraction methods applied to the chemical analysis of uranium. III. Study of the extraction with inert solvents; Metodos de extraccion con disolventes aplicados al analisis quimico del uranio. III. Estudio de la extraccion con disolvente inertes

    Energy Technology Data Exchange (ETDEWEB)

    Vera Palomino, J.; Palomares Delgado, F.; Petrement Eguiluz, J. C.

    1964-07-01

    The extraction of uranium on the trace level is studied by using tributylphosphate as active agent under conditions aiming the attainment of quantitative extraction by means of a single step process using a number of salting-out agents and keeping inside the general lines as reported in two precedent papers. Two inert solvents were investigated, benzene and cyclohexane, which allowed to derive the corresponding empirical equations describing the extraction process and the results obtained were compared with those previously reported for solvents which, like ethyl acetate and methylisobuthylketone, favour to a more or less extend the extraction of uranium. (Author) 4 refs.

  13. Separation of toluene from alkanes using 1-ethyl-3-methylpyridinium ethylsulfate ionic liquid at T = 298.15 K and atmospheric pressure

    International Nuclear Information System (INIS)

    Gonzalez, Emilio J.; Calvar, Noelia; Gonzalez, Begona; Dominguez, Angeles

    2010-01-01

    In this paper, the separation of toluene from aliphatic hydrocarbons (heptane, or octane, or nonane) was analyzed by solvent extraction with 1-ethyl-3-methylpyridinium ethylsulfate ionic liquid, [EMpy][ESO 4 ]. Liquid-liquid equilibrium (LLE) data for the ternary systems {heptane (1) + toluene (2) + [EMpy][ESO 4 ] (3)}, {octane (1) + toluene (2) + [EMpy][ESO 4 ] (3)}, and {nonane (1) + toluene (2) + [EMpy][ESO 4 ] (3)} were obtained by measurements at T = 298.15 K and atmospheric pressure. The selectivity, % removal of aromatic, and solute distribution ratio, obtained from experimental equilibrium results, were used to determine the ability of [EMpy][ESO 4 ] as a solvent. The degree of consistency of the experimental LLE values was ascertained using the Othmer-Tobias and Hand equations. The experimental results for the ternary systems were correlated with the NRTL model. Finally, the results obtained were compared with other ionic liquids and other solvents.

  14. Application of non-aqueous solvents to batteries. I Physicochemical properties of propionitrile/water two-phase solvent relevant to zinc-bromine batteries

    Science.gov (United States)

    Singh, P.; White, K.; Parker, A. J.

    1983-11-01

    The properties of bromine/propionitrile solution are investigated with a view to its use as an electrolyte in zinc-bromine batteries which use circulating electrolyte. The solution, which forms a two-phase system with water, has higher conductivity than the oils formed by complexation of bromine with organic salts such as N,N-methoxymethyl methylpiperidinium bromide and N,N-ethyl methylmorpholinium bromide. The activity of bromine in the aqueous phase of the bromine-propionitrile/water, two-phase system is very low; thus, coulombic efficiencies greater than 85 percent are achieved. Zinc-bromine batteries containing this solvent system show good charge/discharge characteristics.

  15. Fluorescence characteristic of 2-Chloropyrazine: Effect of solvents and concentration of Cu (II)

    International Nuclear Information System (INIS)

    Aiyub, Z.; Abdullah, Z.; Yaakob, B.H.; Bakar, M.A.A.

    2007-01-01

    2-Chloropyrazine showed the highest fluorescence peak at 328 nm when excited at 290 nm in ethyl acetate. The intensity was reduced in chloroform, ethanol, acetone, dichloromethane, water and the lowest fluorescence intensity was observed in acetonitrile. The fluorescence characteristic of 2-chloropyrazine with different concentrations of copper (II) nitrate was studied as a function of the metal ion complex. The studies were carried out in ethanol and ethyl acetate in the same concentration and the maximum fluorescence was observed in ethyl acetate. When excited at 287 nm in ethanol, the complex emitted intense fluorescence at two wavelengths around 304-308 nm and 569-572 nm while in ethyl acetate it fluoresced at 327-332 nm and 651-647 nm when excited at 290 nm. The pattern of increase and decrease of fluorescence intensity depends on the concentration of Cu (II) added. At a concentration of 9.93 x 10 -5 M of Cu (II), fluorescence intensity decreased in both solvents. (author)

  16. Phytochemical studies of various polarities leave crude extracts of Omani Datura metel L. and evaluation of their antimicrobial potential

    Directory of Open Access Journals (Sweden)

    Ali Saleh Hamed Al-Jafari

    2015-03-01

    Full Text Available Objective: To identify the chemical constituents and evaluate antimicrobial potential of various crude extracts from leaves of Datura metel grown in Oman. Methods: The leaf samples were collected from the University of Nizwa and extracted with methanol by using Soxhlet extractor. The isolated crude extract was defatted with distilled water and extracted with solvents of different polarities including hexane, chloroform, ethyl acetate and butanol. Chemical compositions of the crude extracts were analyzed by gas chromatography-mass spectrometer and their antimicrobial potential was evaluated by agar disc diffusion method against one Gram positive bacteria Staphylococcus aureus and two Gram negative bacteria Escherichia coli and Pseudomonus aeruginosa. Results: The crude extracts were composed of different organic compounds such as alkaloids, hydrocarbons, aromatic hydrocarbons, organic acids, terpenoids, vitamin etc. The methanol and its fractionated crude extracts showed antimicrobial potential with inhibition zone in the range of 0-13 mm. Conclusions: The selective crude extract from the leaves of Datura metel could be used as natural antibiotics.

  17. General and specific solvent effects in optical spectra of ortho-aminobenzoic acid.

    Science.gov (United States)

    Takara, Marcelo; Ito, Amando Siuiti

    2005-03-01

    We describe studies about solvent effects on the absorption and emission properties of o-aminobenzoic acid (o-Abz), interpreting the results within the framework of general and specific solute-solvent interactions. Measurements were performed in several solvents and analysis of the absorption and emission wavelengths were made based on Lippert's model for general solvent effects and on the use of different parameters to describe the ability of the solvent to promote specific interactions with the solute. We observed low sensitivity of the Stokes shift upon changes in the medium polarity, and large deviation from the linearity predicted by Lippert's equation when the solvents were characterized as Bronsted acid in the Kamlet-Taft pi* scale. Quantum yield and fluorescence lifetimes were best interpreted based on the AN+DN scale used to describe the electron donor/acceptor properties of the solvent. The results indicated that non-radiative deexcitation processes are favoured in solvents which promote the formation of intramolecular hydrogen bond, while interactions with electron acceptor solvents lead to enhancement of fluorescence.

  18. Thin-film composite crosslinked polythiosemicarbazide membranes for organic solvent nanofiltration (OSN)

    KAUST Repository

    Aburabie, Jamaliah

    2015-01-01

    In this work we report a new class of solvent stable thin-film composite (TFC) membrane fabricated on crosslinked polythiosemicarbazide (PTSC) as substrate that exhibits superior stability compared with other solvent stable polymeric membranes reported up to now. Integrally skinned asymmetric PTSC membranes were prepared by the phase inversion process and crosslinked with an aromatic bifunctional crosslinker to improve the solvent stability. TFC membranes were obtained via interfacial polymerization using trimesoyl chloride (TMC) and diaminopiperazine (DAP) monomers. The membranes were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and contact angle measurement.The membranes exhibited high fluxes toward solvents like tetrahydrofuran (THF), dimethylformamide (DMF) and dimethylsulfoxide (DMSO) ranging around 20L/m2 h at 5bar with a molecular weight cut off (MWCO) of around 1000g/mol. The PTSC-based thin-film composite membranes are very stable toward polar aprotic solvents and they have potential applications in the petrochemical and pharmaceutical industry.

  19. Zinc(II) and chloroindium(III) phthalocyanines bearing ethyl 7-oxy-6-chloro-4-methylcoumarin-3-propanoate groups: Synthesis, characterization and investigation of their photophysicochemical properties

    Science.gov (United States)

    Kuruca, Halid; Köksoy, Baybars; Karapınar, Begümhan; Durmuş, Mahmut; Bulut, Mustafa

    In this study, ethyl 7-hydroxy-6-chloro-4-methylcoumarin-3-propanoate (1), ethyl 7-(2,3-dicyanophenoxy)-6-chloro-4-methylcoumarin-3-propanoate (2), ethyl 7-(3,4-dicyanophenoxy)-6-chloro-4-methylcoumarin-3-propanoate (3), ethyl 4-chloro-5-(7-oxy-6-chloro-4-methylcoumarin-3-propanoate)phthalonitrile (4) were synthesized. The phthalonitrile derivatives (2, 3 and 4) were converted to their peripheral tetra, non-peripheral tetra and peripheral chlorocta substituted zinc(II) and chloroindium phthalocyanine derivatives. All novel compounds were characterized by elemental analysis, FT-IR, 1H-NMR, MALDI-TOF mass spectrometry and UV-vis spectral data. Additionally, the spectral, photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen generation and photodegradation under light irradiation) properties of the resulting substituted phthalocyaninatozinc(II) and indium(III) chloride complexes (5-10) were investigated in DMF, and the obtained results were compared for determination of the effects of the substituents’ positions and the variety of the central metal atom on these properties. The fluorescence quenching behavior of these phthalocyanines (5-10) were also investigated using 1,4-benzoquinone as a quencher. The obtained ethyl 7-oxy-6-chloro-4-methylcoumarin-3-propanoate bearing phthalocyaninatozinc(II) (5, 7 and 9) and indium(III) chloride (6, 8 and 10) complexes showed excellent solubility in most organic solvents. They produced high singlet-oxygen and showed appropriate photodegradation which is very important for photodynamic therapy applications. The novel ethyl 7-oxy-6-chloro-4-methylcoumarin-3-propanoate substituted zinc(II) and cloroindium(III) phthalocyanines were synthesized and characterized by using different spectroscopic methods such as 1H NMR, FT-IR, UV-vis, mass spectroscopy. The photophysical and photochemical properties as fluorescence lifetime, fluorescence, singlet oxygen and photodegredation quantum yields were

  20. Evaluation of different solvent mixtures in esterifiable lipids extraction from microalgae Botryococcus braunii for biodiesel production.

    Science.gov (United States)

    Hidalgo, Pamela; Ciudad, Gustavo; Navia, Rodrigo

    2016-02-01

    Non-polar and polar solvents as well as their mixtures were tested for the extraction of microalgae lipids and thus, to evaluate their effect on total and esterifiable lipids extraction yields with potential to be converted to biodiesel. The obtained results show an increase in lipids and esterifiable lipids extraction yields when non-polar and polar solvent mixtures were used. The higher esterifiable lipids extraction yield was 19.2%wt (based on dry biomass) using a chloroform-methanol mixture (75%v/v of methanol), corresponding to a 98.9%wt esterifiable lipids extraction. In addition, esterifiable lipids extraction yield of 18.9%wt (based on dry biomass) was obtained when a petroleum ether-methanol mixture (75%v/v of methanol) was used, corresponding to a 96.9%wt esterifiable lipids extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Solid−liquid phase equilibrium and mixing properties of 2-Cyano-4′-methylbiphenyl in pure solvents

    International Nuclear Information System (INIS)

    Zhou, Yanan; Hao, Hongxun; Yang, Jingxiang; Zhu, Peipei; Wang, Ting; Hou, Baohong; Xie, Chuang

    2016-01-01

    Highlights: • Solubility of 2-Cyano-4′-methylbiphenyl in eight pure solvents were determined by using UV spectrometer method. • The experimental solubility data of 2-Cyano-4′-methylbiphenyl were correlated and analyzed by three thermodynamic models. • Mixing thermodynamic properties of 2-Cyano-4′-methylbiphenyl were calculated and discussed. - Abstract: Solid–liquid equilibrium data of 2-Cyano-4′-methylbiphenyl (OTBN) are essential for the design and optimization of its production process. In this work, the solubility data of OTBN in pure solvents including 2-propanol, (R)-(−)-2-butanol (2-butanol, for short), methyl acetate, ethyl acetate, propyl acetate, butyl acetate, acetone and acetonitrile were determined in different temperature ranges from (268.05 to 303.25) K by using UV spectrometer method under atmospheric pressure. It was found that the order of OTBN solubility in these selected pure solvents at given temperature is acetone > methyl acetate > ethyl acetate > propyl acetate > butyl acetate > 2-butanol > 2-propanol and methyl acetate > acetonitrile > 2-butanol. In the temperature range investigated, the solubility data of OTBN increase with the increasing of temperature in all eight solvents. Furthermore, the modified Apelblat equation, the Wilson model and the NRTL model were applied to correlate the experimental solubility data. The correlated results are consistent with the experimental results. Finally, the mixing thermodynamic properties of OTBN in different solvents were calculated and analyzed based on the experimental solubility data and the Wilson model.

  2. The Solvent Selection framework: solvents for organic synthesis, separation processes and ionic-organic synthesis

    DEFF Research Database (Denmark)

    Mitrofanov, Igor; Sansonetti, Sascha; Abildskov, Jens

    2012-01-01

    This paper presents a systematic integrated framework for solvent selection and solvent design. The framework is divided into several modules, which can tackle specific problems in various solvent-based applications. In particular, three modules corresponding to the following solvent selection...... problems are presented: 1) solvent selection and design for organic synthesis, 2) solvent screening and design of solvent mixtures for pharmaceutical applications and 3) ionic liquids selection and design as solvents. The application of the framework is highlighted successfully through case studies...... focusing on solvent replacement problem in organic synthesis and solvent mixture design for ibuprofen respectively....

  3. Nanocrystalline copper(II oxide-catalyzed one-pot four- component synthesis of polyhydroquinoline derivativesunder solvent-free conditions

    Directory of Open Access Journals (Sweden)

    J. Safaei-Ghomi

    2011-07-01

    Full Text Available The efficient and environmentally friendly method for the one-pot synthesis of polyhydroquinolines has been developed in the presence of CuO nanoparticles. The multi-component reactions of aldehydes, dimedone, ethyl acetoacetate andammonium acetate were carried out under solvent-free conditions to afford some polyhydroquinoline derivatives. This method provides several advantages including high yields, low reaction times and little catalyst loading.

  4. Dynamic nuclear polarization in perfluorodimethylcyclohexane doped with a perfluoralkyl free radical

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, B. van den [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Bubnov, N.N. [A.N. Nesmeyanov Inst. of Organo-element Compounds, Russian Acad. of Sci., Moscow (Russian Federation); Bunyatova, E.I. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Hautle, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Konter, J.A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Mango, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Solodovnikov, S.P. [A.N. Nesmeyanov Inst. of Organo-element Compounds, Russian Acad. of Sci., Moscow (Russian Federation); Tumanski, B.L. [A.N. Nesmeyanov Inst. of Organo-element Compounds, Russian Acad. of Sci., Moscow (Russian Federation)

    1995-03-01

    First results of DNP at 2.5 T and below 0.3 K in F-dimethylcyclohexane (C{sub 8}F{sub 16}), doped with F-2,4-dimethyl-3-ethyl-3-pentyl (C{sub 9}F{sub 19}), are presented. A polarization of the {sup 19}F-nuclei of up to 54% was obtained. ((orig.))

  5. Dynamic nuclear polarization in perfluorodimethylcyclohexane doped with a perfluoralkyl free radical

    Science.gov (United States)

    van den Brandt, B.; Bubnov, N. N.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.; Mango, S.; Solodovnikov, S. P.; Tumanski, B. L.

    1995-02-01

    First results of DNP at 2.5 T and below 0.3 K in F-dimethylcyclohexane (C 8F 16), doped with F-2,4-dimethyl-3-ethyl-3-pentyl (C 9F 19), are presented. A polarization of the 19F-nuclei of up to 54% was obtained.

  6. Continuous production of palm biofuel under supercritical ethyl acetate

    International Nuclear Information System (INIS)

    Komintarachat, Cholada; Sawangkeaw, Ruengwit; Ngamprasertsith, Somkiat

    2015-01-01

    Highlights: • Continuous synthesized biofuel from palm oil in supercritical ethyl acetate was examined. • Mass flow rate of palm oil and ethyl acetate mixture influent to biofuel production in continuous system. • Water addition to reacting mixture improves the production of fatty acid ethyl esters and triacetin. • The generated acetic acid from ETA hydrolysis can protect the products from thermal decomposition. - Abstract: The interesterification of palm oil in supercritical ethyl acetate (ETA) to produce fatty acid ethyl ester (FAEEs) or biofuel was conducted in a continuous tubular reactor. The density of the mixtures in the system was estimated using the Peng–Robinson equation of state process simulator, and the residence time was calculated. The effects of the reaction conditions, including the molar ratios of palm oil to ethyl acetate, the temperature, and the pressure, were investigated under various mass flow rates of the mixtures and optimized. The results showed that reaction temperatures above 653 K and long residence times affected the content of FAEEs and triacetin, a valuable by-product. The addition of water to the mixture in a 1:30:10 M ratio of palm oil to ethyl acetate to water at 653 K, 16 MPa, and a mixture mass flow rate of 1.5 g/min increased the total production of FAEEs and triacetin from 90.9 to 101.5 wt% in 42.4 min. The main finding of the present study is that triglyceride associated with ETA hydrolysis used to form acetic acid protected the products from decomposition at high temperatures and long residence times. The results will aid the selection of an efficient and economical process for alternative biofuel production from palm oil in supercritical ETA

  7. Thermodynamic models for determination of the solubility of omeprazole in pure and mixture organic solvents from T = (278.15 to 333.15) K

    International Nuclear Information System (INIS)

    Hu, Yonghong; Wu, Gang; Gu, Pengfei; Yang, Wenge; Wang, Chunxiao; Ding, Zhiwen; Cao, Yang

    2016-01-01

    Highlights: • The solubility increased with increasing temperature. • The data were fitted using the modified Apelblat equation and other models. • The Gibbs energy, enthalpy and entropy were calculated by the van’t Hoff analysis. - Abstract: Data on corresponding (solid + liquid) equilibrium of omeprazole in different solvents are essential for a preliminary study of industrial applications. In this paper, the (solid + liquid) equilibrium of omeprazole in water, methanol, ethanol, 1-butanol, acetonitrile, acetone, ethyl acetate, tetrahydrofuran pure solvents and (tetrahydrofuran + ethyl acetate) mixture solvents were explored within the temperatures from 278.15 K to 333.15 K under atmosphere pressure. For the temperature range investigated, the solubility of omeprazole in the solvents increased with increasing temperature. From (278.15 to 333.15) K, the solubility of omeprazole in tetrahydrofuran is superior to other selected pure solvents. The modified Apelblat model, the Buchowski–Ksiazaczak λh model, and the ideal model were adopted to describe and predict the change tendency of solubility. Computational results showed that the modified Apelblat model has advantages than the other two models. Numerical values of the solubility were fitted using a modified Apelblat equation, a variant of the combined nearly ideal binary solvent/Redich–Kister (CNIBS/R–K) model and Jouyban–Acree model in (tetrahydrofuran + ethyl acetate) binary solvent mixture. Computational results showed that the CNIBS/R–K model is superior to the other equations. In addition, the calculated thermodynamic parameters indicate that in each solvent studied the dissolution of omeprazole is endothermic, non-spontaneous and is an entropy-driven process.

  8. Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds

    Science.gov (United States)

    Laurencin, Cato T.; Brown, Justin L.; Nair, Lakshmi

    2011-01-01

    A solvent/non-solvent sintering technique has been devised for joining polymeric microspheres to make porous matrices for use as drug-delivery devices or scaffolds that could be seeded with cells for growing tissues. Unlike traditional sintering at elevated temperature and pressure, this technique is practiced at room temperature and pressure and, therefore, does not cause thermal degradation of any drug, protein, or other biochemical with which the microspheres might be loaded to impart properties desired in a specific application. Also, properties of scaffolds made by this technique are more reproducible than are properties of comparable scaffolds made by traditional sintering. The technique involves the use of two miscible organic liquids: one that is and one that is not a solvent for the affected polymer. The polymeric microspheres are placed in a mold having the size and shape of the desired scaffold, then the solvent/non-solvent mixture is poured into the mold to fill the void volume between the microspheres, then the liquid mixture is allowed to evaporate. Some of the properties of the resulting scaffold can be tailored through choice of the proportions of the liquids and the diameter of the microspheres.

  9. Stabilization of Empty Fruit Bunch derived Bio-oil using Solvents

    Directory of Open Access Journals (Sweden)

    Chung Loong Yiin

    2016-03-01

    Full Text Available The intention of this research was to select the ideal condition for accelerated aging of bio-oil and the consequences of additive in stabilizing the bio-oil. The bio-oil was produced from the catalytic pyrolysis of empty fruit bunch. The optimum reaction conditions applied to obtain the utmost bio-oil yield were 5 wt% of H-Y catalyst at reaction temperature of 500 °C and nitrogen flow rate of 100 ml/min. A 10 wt% of solvents including acetone, ethanol, and ethyl acetate were used to study the bio-oil’s stability. All the test samples were subjected to accelerated aging at temperature of 80 oC for 7 days. The properties of samples used as the indicator of aging were viscosity and water content. The effectiveness of solvents increased in the following order: acetone, ethyl acetate, and 95 vol% ethanol. Based on the result of Gas chromatography-mass spectrometry (GC-MS, it could impede the chain of polymerization by converting the active units in the oligomer chain to inactive units. The solvent reacted to form low molecular weight products which resulted in lower viscosity and lessen the water content in bio-oil. Addition of 95 vol% ethanol also inhibited phase separation.

  10. Symmetry- and solvent-dependent photophysics of fluorenes containing donor and acceptor groups.

    Science.gov (United States)

    Stewart, David J; Dalton, Matthew J; Swiger, Rachel N; Fore, Jennifer L; Walker, Mark A; Cooper, Thomas M; Haley, Joy E; Tan, Loon-Seng

    2014-07-17

    Three two-photon absorption (2PA) dyes (donor-π-donor (DPA2F), donor-π-acceptor (AF240), and acceptor-π-acceptor (BT2F); specifically, D is Ph2N-, A is 2-benzothiazoyl, and the π-linker is 9,9-diethylfluorene) are examined in a variety of aprotic solvents. Because the 2PA cross section is sensitive to the polarity of the local environment, this report examines the solvent-dependent linear photophysics of the dyes, which are important to understand before probing more complex solid-state systems. The symmetrical dyes show little solvent dependence; however, AF240 has significant solvatochromism observed in the fluorescence spectra and lifetimes and also the transient absorption spectra. A 114 nm bathochromic shift is observed in the fluorescence maximum when going from n-hexane to acetonitrile, whereas the lifetimes increase from 1.25 to 3.12 ns. The excited-state dipole moment for AF240 is found to be 20.1 D using the Lippert equation, with smaller values observed for the symmetrical dyes. Additionally, the femtosecond transient absorption (TA) spectra at time zero show little solvent dependence for DPA2F or BT2F, but AF240 shows a 52 nm hypsochromic shift from n-hexane to acetonitrile. Coupled with the solvatochromism in the fluorescence and large excited-state dipole moment, this is attributed to formation of an intramolecular charge-transfer (ICT) state in polar solvents. By 10 ps in AF240, the maximum TA in acetonitrile has shifted 30 nm, providing direct evidence of a solvent-stabilized ICT state, whose formation occurs in 0.85-2.71 ps, depending on solvent. However, AF240 in nonpolar solvents and the symmetrical dyes in all solvents show essentially no shifts due to a predominantly locally excited (LE) state. Preliminary temperature-dependent fluorescence using frozen glass media supports significant solvent reorganization around the AF240 excited state in polar solvents, and may also support a twisted intramolecular charge-transfer (TICT

  11. Development of continuous deglycerolisation reactor for ethyl ester production

    Directory of Open Access Journals (Sweden)

    Ruamporn Nikhom

    2014-12-01

    Full Text Available In this work, the development of continuous deglycerolisation (CD reactor for ethyl ester production was investigated to improve the ethyl ester conversion. The device to assist separation of glycerol, in the CD unit, integrates transesterification (mixing zone and separation (settling zone into one unit. For reversible transesterification, removing glycerol during reaction can drive the equilibrium to the product side in order to achieve high conversion. Two models of device to assist separation of glycerol have been carried out to investigate the suitable conditions for ethyl ester production. Results showed that the fin-type model could separate higher amount of glycerol from the reaction system in order to achieve high transesterification conversion. The suitable conditions found in this study were: molar ratio of oil to ethanol of 1:5, KOCH3 concentration of 1.6 %wt. retention time of 15 min and reaction temperature of 70°C. At these conditions, ethyl ester’s purity and yield were 97.3%wt. and 92.0%wt., respectively. In addition, the fuel properties of the final ethyl ester product met the biodiesel standard for methyl ester which specified by Department of Energy Business.

  12. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  13. Is Water a Universal Solvent for Life?

    Science.gov (United States)

    Pohorill, Andrew

    2012-01-01

    There are strong reasons to believe that the laws, principles and constraints of physics and chemistry are universal. It is much less clear how this universality translates into our understanding of the origins of life. Conventionally, discussions of this topic focus on chemistry that must be sufficiently rich to seed life. Although this is clearly a prerequisite for the emergence of living systems, I propose to focus instead on self-organization of matter into functional structures capable of reproduction, evolution and responding to environmental changes. In biology, most essential functions are largely mediated by noncovalent interactions (interactions that do not involve making or breaking chemical bonds). Forming chemical bonds is only a small part of what living systems do. There are specific implications of this point of view for universality. I will concentrate on one of these implications. Strength of non-covalent interactions must be properly tuned. If they were too weak, the system would exhibit undesired, uncontrolled response to natural fluctuations of physical and chemical parameters. If they were too strong kinetics of biological processes would be slow and energetics costly. This balance, however, is not a natural property of complex chemical systems. Instead, it has to be achieved with the aid of an appropriate solvent for life. In particular, potential solvents for life must be characterized by a high dielectric constant to ensure solubility of polar species and sufficient flexibility of biological structures stabilized by electrostatic interactions. Among these solvents, water exhibits a remarkable trait that it also promotes solvophobic (hydrophobic) interactions between non-polar species, typically manifested by a tendency of these species to aggregate and minimize their contacts with the aqueous solvent. Hydrophobic interactions are responsible, at least in part, for many self-organization phenomena in biological systems, such as the formation

  14. Porous polymeric membranes with thermal and solvent resistance

    KAUST Repository

    Pulido, Bruno

    2017-05-30

    Polymeric membranes are highly advantageous over their ceramic counterparts in terms of the simplicity of the manufacturing process, cost and scalability. Their main disadvantages are low stability at temperatures above 200 °C, and in organic solvents. We report for the first time porous polymeric membranes manufactured from poly(oxindolebiphenylylene) (POXI), a polymer with thermal stability as high as 500 °C in oxidative conditions. The membranes were prepared by solution casting and phase inversion by immersion in water. The asymmetric porous morphology was characterized by scanning electronic microscopy. The pristine membranes are stable in alcohols, acetone, acetonitrile and hexane, as well as in aqueous solutions with pH between 0 and 14. The membrane stability was extended for application in other organic solvents by crosslinking, using various dibromides, and the efficiency of the different crosslinkers was evaluated by thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). POXI crosslinked membranes are stable up to 329 °C in oxidative conditions and showed organic solvent resistance in polar aprotic solvents with 99% rejection of Red Direct 80 in DMF at 70 °C. With this development, the application of polymeric membranes could be extended to high temperature and harsh environments, fields currently dominated by ceramic membranes.

  15. Effects of Solvent Composition on Liquid Range, Glass Transition, and Conductivity of Electrolytes of a (Li, Cs)PF6 Salt in EC-PC-EMC Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Michael S.; Li, Qiuyan; Li, Xing; Xu, Wu; Xu, Kang

    2017-05-10

    Electrolytes of 1 M LiPF6 (lithium hexafluorophosphate) and 0.05 M CsPF6 (cesium hexafluorophosphate) in EC-PC-EMC (ethylene carbonate-propylene carbonate-ethyl methyl carbonate) solvents of varying solvent compositions were studied for the effects of solvent composition on the lower limit of liquid range, viscosity (as reflected by the glass transition temperature), and electrolytic conductivity. In addition, a ternary phase diagram of EC-PC-EMC was constructed and crystallization temperatures of EC and EMC were calculated to assist the interpretation and understanding of the change of liquid range with solvent composition. A function based on Vogel-Fulcher-Tammann equation was fitted to the conductivity data in their entirety and plotted as conductivity surfaces in solvent composition space for more direct and clear comparisons and discussions. Changes of viscosity and dielectric constant of the solvents with their composition, in relation to those of the solvent components, were found to be underlying many of the processes studied.

  16. Pulse radiolysis of ethyl acetate and its solutions

    International Nuclear Information System (INIS)

    Ramanan, G.

    1976-01-01

    Pure ethyl acetate was subjected to electron pulse radiolysis in the liquid state and the absorption spectrum of the transient species produced was obtained between 280 and 650 nm. Two different species were produced, one with a short life of about 150 ns absorbing at longer wavelengths attributed to the solvated electron and a much longer lived radical absorbing at wavelengths less than 400 nm. The solute triplet yields were followed using anthracene and biphenyl at different concentrations. An upperlimit for the yield of excited singlet anthracene was estimated from the study of fluorescence to be G approximately equal to 0.1. Anthracene singlet yields in the presence of benzene at different concentrations were measured and the contribution of ethyl acetate positive ions in forming the additional exicted singlets is discussed. The free ion yield is G = 0.25. Yield of ethyl acetate positive ions scavengeable at high benzene concentrations is G = 0.63

  17. Cytotoxic activity of different polarity fractions obtained from methanolic extracts of Vismia baccifera and Vismia macrophylla (Hypericaceae collected in Venezuela

    Directory of Open Access Journals (Sweden)

    Janne del C. Rojas

    2017-10-01

    Full Text Available Context: Cancer is a complex disease involving numerous changes in cell physiology and abnormal cell growth, which lead to malignant tumors. Many investigations are still carrying on in different areas including, natural products, to find a possible break point to this pathology. Aims: To evaluate the cytotoxic activity on different polar extracts from Vismia baccifera and Vismia macrophylla collected in two locations of the Venezuelan Andes. Methods: Cytotoxic activity assay was carried out following the colorimetric (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide MTT assay. Human tumor cell Lines from breast carcinoma without gene over-expression (MCF-7, breast carcinoma with overexpressed gene (SKBr3, prostate carcinoma (PC3 and cervix epithelial carcinoma (HeLa were tested with different polarity solvent extracts (hexane, dichloromethane, ethyl acetate, butanol, water from the two species under investigation. Human dermis fibroblasts were used as control cells. Mean inhibitory concentration (IC50 was calculated. Results: Extracts from V. macrophylla showed significant inhibition of cervix epithelial carcinoma with values ranging from 6.09 µg/mL to 17.51 µg/mL; breast carcinoma with an overexpressed gene with values from 12.14 µg/mL to 16.90 µg/mL and prostate carcinoma from 10.91 µg/mL to 17.70 µg/mL. V. baccifera extracts showed the strongest activity against prostate carcinoma with an IC50 value of 2.92 µg/mL. Conclusions: The present study showed evidence for the anticancer activity of Vismia baccifera and Vismia macrophylla extracts since caused growth inhibition in different cell lines at low concentrations, thus, it is considered not only an important contribution to the natural products research but bring supportive data for further investigations on cancer research.

  18. Extraction of oil from pequi fruit (Caryocar Brasiliense, Camb. using several solvents and their mixtures

    Directory of Open Access Journals (Sweden)

    Antoniassi, R.

    2011-09-01

    Full Text Available In this study, the oil extraction process from pequi pulp using different solvents (hexane, acetone and ethyl alcohol and their mixtures was investigated, using a simplex-centroid design. The extraction occurred at 50°C, under stirring (22 Hz, for 16 hours. The solid-liquid ratio used was 1:10 (w/w. Higher yield values were obtained for extractions with acetone and hexane, especially their mixtures with ethanol. Iodine value, saponification value and refractive index did not differ significantly among the treatments. A higher acid value was obtained for the extraction with ethyl alcohol. Higher carotenoid contents were obtained for the extraction with acetone and ethyl alcohol as pure solvents. The fatty acid profile in the oil fraction of the extracts did not vary among the different types of solvents and their mixtures.En este trabajo fue estudiado el proceso de extracción de aceite de la pulpa de pequi utilizando diferentes disolventes (n-hexano, acetona y etanol y sus mezclas, empleando diseño central simplex. Las extracciones fueron realizadas a 50°C, durante 16 horas de agitación (22 Hz. La proporción sólido:líquido empleada fue 1:10 (p/p. Los mayores rendimientos fueron obtenidos para las extracciones con acetona y con hexano, especialmente cuando fueron mezclados con etanol. El índice de yodo, el índice de saponificación y el índice de refracción no difirieron significativamente entre los tratamientos. Los mayores valores de acidez se obtuvieron en la extracción con etanol. Los mayores contenidos en carotenoides se obtuvieron en las extracciones con acetona y etanol como disolventes puros. El perfil de los ácidos grasos en las fracciones de aceite de los extractos no presentó variación entre los diferentes tipos de disolventes y sus mezclas.

  19. Multiple sclerosis and organic solvents

    DEFF Research Database (Denmark)

    Mortensen, J T; Brønnum-Hansen, Henrik; Rasmussen, K

    1998-01-01

    We investigated a possible causal relation between exposure to organic solvents in Danish workers (housepainters, typographers/printers, carpenters/cabinetmakers) and onset of multiple sclerosis. Data on men included in the Danish Multiple Sclerosis Register (3,241 men) were linked with data from......, and butchers. Over a follow-up period of 20 years, we observed no increase in the incidence of multiple sclerosis among men presumed to be exposed to organic solvents. It was not possible to obtain data on potential confounders, and the study design has some potential for selection bias. Nevertheless......, the study does not support existing hypotheses regarding an association between occupational exposure to organic solvents and multiple sclerosis....

  20. Low frequency dielectric dispersion study of PVC-PPy blends in dilute solution of different solvents

    Science.gov (United States)

    Sharma, Deepika; Tripathi, Deepti

    2017-05-01

    In present study,the effect of adding Polypyrrole (PPy), a conductive polymer, on the dielectric and electrical behavior of Polyvinyl chloride (PVC) in dilute solution of moderate polar solvent Tetrahydrofuran (THF) and polar solvent M-Cresol at low frequency is investigated. The blend of PVC with PPy forms a colloidal solution in both the solvents. The dielectric dispersion study of PVC-PPy blends in THF and M-Cresol has been carried out in the frequency range of 20Hz to 2MHz at temperature of 303 K. The influence of solvent on dielectric and electrical parameters such as dielectric constant [ɛ*(ω)], loss tangent (tan δ) and ac conductivity (σac) of PVC - PPy solutions is studied. At low frequencies, electrode polarization seems to have dominant effect on the complex dielectric constant. The values of relaxation time corresponding to this phenomena is also reported. Dielectric dispersion studies show that the solvent environment plays significant role in governing segmental motion of polymer chain in solution.

  1. Double-stranded DNA dissociates into single strands when dragged into a poor solvent.

    Science.gov (United States)

    Cui, Shuxun; Yu, Jin; Kühner, Ferdinand; Schulten, Klaus; Gaub, Hermann E

    2007-11-28

    DNA displays a richness of biologically relevant supramolecular structures, which depend on both sequence and ambient conditions. The effect of dragging double-stranded DNA (dsDNA) from water into poor solvent on the double-stranded structure is still unclear because of condensation. Here, we employed single molecule techniques based on atomic force microscopy and molecular dynamics (MD) simulations to investigate the change in structure and mechanics of DNA during the ambient change. We found that the two strands are split apart when the dsDNA is pulled at one strand from water into a poor solvent. The findings were corroborated by MD simulations where dsDNA was dragged from water into poor solvent, revealing details of the strand separation at the water/poor solvent interface. Because the structure of DNA is of high polarity, all poor solvents show a relatively low polarity. We speculate that the principle of spontaneous unwinding/splitting of dsDNA by providing a low-polarity (in other word, hydrophobic) micro-environment is exploited as one of the catalysis mechanisms of helicases.

  2. [Simultaneous determination of seven residual solvents in bovis calculus artifactus by headspace gas chromatography].

    Science.gov (United States)

    Chi, Shuyao; Wu, Dike; Sun, Jinhong; Ye, Ruhan; Wang, Xiaoyan

    2014-05-01

    A headspace gas chromatography (HS-GC) method was developed for the simultaneous determination of seven residual solvents (petroleum ether (60-90 degrees C), acetone, ethyl acetate, methanol, methylene chloride, ethanol and butyl acetate) in bovis calculus artifactus. The DB-WAX capillary column and flame ionization detector (FID) were used for the separation and detection of the residual solvents, and the internal standard method was used for the quantification. The chromatographic conditions, such as equilibrium temperature and equilibrium time, were optimized. Under the optimized conditions, all of the seven residual solvents showed good linear relationships with good correlation coefficients (not less than 0.999 3) in the prescribed concentration range. At three spiked levels, the recoveries for the seven residual solvents were 94.7%-105.2% with the relative standard deviations (RSDs) less than 3.5%. The limits of detection (LODs) of the method were 0.43-5.23 mg/L, and the limits of quantification (LOQs) were 1.25-16.67 mg/L. The method is simple, rapid, sensitive and accurate, and is suitable for the simultaneous determination of the seven residual solvents in bovis calculus artifactus.

  3. A mixed solvent system for preparation of spherically agglomerated crystals of ascorbic acid.

    Science.gov (United States)

    Ren, Fuzheng; Zhou, Yaru; Liu, Yan; Fu, Jinping; Jing, Qiufang; Ren, Guobin

    2017-09-01

    The objective of this research was to develop a novel solvent system to prepare spherically agglomerated crystals (SAC) of ascorbic acid with improved flowability for direct compression. A spherical agglomeration method was developed by selecting the mixed solvents (n-butyl and ethyl acetate) as a poor solvent and the process was further optimized by using triangular phase diagram and particle vision measurement. Physiochemical properties of SAC were characterized and compared with original drug crystals. It showed that amount of poor solvent, ratio of solvent mixture, and drug concentration are critical for preparation of SAC with desirable properties. The solid state of SAC was same as original crystals according to DSC, XRD, and FT-IR results. There was no significant difference in solubility and dissolution rate of drug between SAC and original crystals. The flowability and packability of SAC as well as the tensile strength and elastic recovery of tablets made from SAC were all significantly improved when compared with original crystals and tablets from crystals. It is concluded that the present method was suitable to prepare SAC of ascorbic acid for direct compression.

  4. Dielectric relaxation of ethanol and N-methyl acetamide polar ...

    Indian Academy of Sciences (India)

    is used in agriculture and food industry [5]. Dielectric measurements also have ... Onsager equation [7] may be a better choice due to the strong intermolecular interac- tions as a result of short-range ..... in figures 2 and 3 may be a better choice to eliminate polar–polar interactions at higher concentrations in a given solvent.

  5. High stability of few layer graphene nanoplatelets in various solvents

    KAUST Repository

    Xu, X

    2017-04-25

    Dispersion of few-layer graphene nanoplatelets (GNPs) in liquid media is a crucial step for various applications. Here, we highlight a simple, nondestructive method for preparing stable aqueous colloidal solutions with GNP powder quickly dispersed in 5 wt.% sodium–hypochlorite- (NaClO) and sodium-bromide- (NaBr) salted solvent by bath sonication. This method makes it possible to easily prepare a highly concentrated colloidal solution (1 mgcenterdotml−1) of GNPs that can easily be re-dispersed in water (treated GNPs). The aqueous suspension we prepared remained stable for longer than a few weeks. We made similar tests with various solvents and dispersibility appeared to decrease with decreasing polarity. High-concentration suspensions using our facile dispersion method could be of particular interest to the large community using graphene for a diversity of applications.

  6. The effect of organic solvents on the equilibrium position of enzymatic acylglycerol synthesis.

    Science.gov (United States)

    Janseen, A E; Van der Padt, A; Van Sonsbeek, H M; Van't Riet, K

    1993-01-05

    The effect of organic solvents on the equilibrium position of lipase-catalyzed esterification of glycerol and decanoic acid has been investigated. The reaction is carried out in an aqueous-organic two-phase system. In polar solvents, high mole fractions of monoacylglycerol and low mole fractions of triacylglycerol and measured, while in nonpolar solvents, the measured differences in the mole fractions of monodi-, and triacylglycerols are less. There is a good correlation between the ester mole fractions at equilibrium and the log P of the solvent (partition coefficient in n-octanolwater), however, only if the group of tertiary alcohols is excluded. In the plot of the easter mole fractions as a function of the logarithm of hte solubility of water in the organic solvent, the tertiary alcohols can be included; however, in this case other deviations appear.For the prediction of the effect of organic solvents on the ester mole fractions at reaction equilibrium in nondilute reaction systems with a water activity below 1, the program TREP (Two-phase Reaction Equilibrium Prediction) is developed, which is based on the UNIFAC group contribution method. With this model the equilibrium data are essentially predicted from basic thermodynamic data. The required equilibrium constants are estimated from experiments without an organic solvent in the reaction medium. The mole fractions calculated by TREP show the same trends as the experimentally measured mole fractions; however, some variation is observed in the absolute values. These deviations may be due to inaccuracies in the UNIFAC group contribution method. TREP is found to be a correct method to predict within some limits the ester mole fractions at equilibrium for all mixtures of solvents, substrates, and products. The production of monoester can be enhanced in reaction system with a sufficient high concentration of a polar solvent. In experiments with a triglymeto-decanoic acid ratio of 5, almost no di-and triesters can be

  7. The effect of solvents on the stabilities (color and Fe) of anthocyanin isolated from the red-color-melinjo peels

    Science.gov (United States)

    Tarmizi, Ermiziar; Lalasari, Latifa Hanum; Saragih, Raskita

    2015-12-01

    Anthocyanin from the red-color-melinjo peels could be isolated using a polar solvent (ethanol) [ermiziar, 2010]. The amount of hydrocarbons in the structure of anthocyanin might cause that anthocyanin could be isolated using a non polar solvent. The purpose of research is to isolate anthocyanin using non polar solvents (hexane and petroleum ether) with maceration steps for 24 hours and separate solvents using rotary evaporator equipment. The stability of anthocyanin could be observed every week (1,2,3 and 4 weeks) in various environmental conditions (with or without light in refrigerator and open or closed storage). The characterization of anthocyanin was analyzed with visual (physic photo) and or using equipments such as Fourier Transform Infrared Spectroscopy (FTIR) for determining functional groups, Ultraviolet-Visible Spectroscopy (UV/Vis) with 500-550 nm wavelengths for deciding absorption of anthocyanin and atomic absorption spectroscopy (AAS) for analyzing Fe element. The result showed that anthocyanin isolation with hexane solvent has yield higher than petroleum eter solvent. From the results of physic observation for 4 weeks looked that there are changing colors of samples significant after 3 and 4 weeks in cooler with or without light. The stability of anthocyanin color was the best on the storage time until 2 weeks using hexane solvent in refrigerator and closed condition that it has absorption of 0.6740 with 500 nm wavelengths and Fe concentration 6.29 ppm.

  8. The effect of solvents on the stabilities (color and Fe) of anthocyanin isolated from the red-color-melinjo peels

    Energy Technology Data Exchange (ETDEWEB)

    Tarmizi, Ermiziar, E-mail: uph-ermi@yahoo.com, E-mail: ermitarmizi@gmail.com; Saragih, Raskita, E-mail: raskitasaragih@yahoo.com [Indonesia Institute of Technology (ITI), Raya PuspiptekSerpong, Tangerang Banten 15320 (Indonesia); Lalasari, Latifa Hanum, E-mail: ifa-sari@yahoo.com, E-mail: lati003@lipi.go.id [Research Centre for Metallurgy and Material, Indonesian Institute of Sciences (LIPI), KawasanPuspiptekSerpong, Tangerang Selatan 15314 (Indonesia)

    2015-12-29

    Anthocyanin from the red-color-melinjo peels could be isolated using a polar solvent (ethanol) [ermiziar, 2010]. The amount of hydrocarbons in the structure of anthocyanin might cause that anthocyanin could be isolated using a non polar solvent. The purpose of research is to isolate anthocyanin using non polar solvents (hexane and petroleum ether) with maceration steps for 24 hours and separate solvents using rotary evaporator equipment. The stability of anthocyanin could be observed every week (1,2,3 and 4 weeks) in various environmental conditions (with or without light in refrigerator and open or closed storage). The characterization of anthocyanin was analyzed with visual (physic photo) and or using equipments such as Fourier Transform Infrared Spectroscopy (FTIR) for determining functional groups, Ultraviolet–Visible Spectroscopy (UV/Vis) with 500-550 nm wavelengths for deciding absorption of anthocyanin and atomic absorption spectroscopy (AAS) for analyzing Fe element. The result showed that anthocyanin isolation with hexane solvent has yield higher than petroleum eter solvent. From the results of physic observation for 4 weeks looked that there are changing colors of samples significant after 3 and 4 weeks in cooler with or without light. The stability of anthocyanin color was the best on the storage time until 2 weeks using hexane solvent in refrigerator and closed condition that it has absorption of 0.6740 with 500 nm wavelengths and Fe concentration 6.29 ppm.

  9. The effect of solvents on the stabilities (color and Fe) of anthocyanin isolated from the red-color-melinjo peels

    International Nuclear Information System (INIS)

    Tarmizi, Ermiziar; Saragih, Raskita; Lalasari, Latifa Hanum

    2015-01-01

    Anthocyanin from the red-color-melinjo peels could be isolated using a polar solvent (ethanol) [ermiziar, 2010]. The amount of hydrocarbons in the structure of anthocyanin might cause that anthocyanin could be isolated using a non polar solvent. The purpose of research is to isolate anthocyanin using non polar solvents (hexane and petroleum ether) with maceration steps for 24 hours and separate solvents using rotary evaporator equipment. The stability of anthocyanin could be observed every week (1,2,3 and 4 weeks) in various environmental conditions (with or without light in refrigerator and open or closed storage). The characterization of anthocyanin was analyzed with visual (physic photo) and or using equipments such as Fourier Transform Infrared Spectroscopy (FTIR) for determining functional groups, Ultraviolet–Visible Spectroscopy (UV/Vis) with 500-550 nm wavelengths for deciding absorption of anthocyanin and atomic absorption spectroscopy (AAS) for analyzing Fe element. The result showed that anthocyanin isolation with hexane solvent has yield higher than petroleum eter solvent. From the results of physic observation for 4 weeks looked that there are changing colors of samples significant after 3 and 4 weeks in cooler with or without light. The stability of anthocyanin color was the best on the storage time until 2 weeks using hexane solvent in refrigerator and closed condition that it has absorption of 0.6740 with 500 nm wavelengths and Fe concentration 6.29 ppm

  10. Perturbation of spectra properties of 3,4-diphenyl thiophene by polar ...

    African Journals Online (AJOL)

    SERVER

    2007-11-19

    Nov 19, 2007 ... The UV/visible spectra of 3,4-diphenyl thiophene were obtained in various solvents (both polar and non polar). The wave number of transition energies, corresponding molar ... of absorption of light, the quantum energy (E) of which is a function of frequency (v). However not all absorption of radiation by ...

  11. Use of solvent to regulate the degree of polymerisation in weakly associated supramolecular oligomers

    DEFF Research Database (Denmark)

    Bähring, Steffen; Kim, D. S.; Duedal, T.

    2014-01-01

    Using a tetrathiafulvalene functionalised calix[4] pyrrole (TTF-C[4]P; 1) and alkyl diester-linked bis-dinitrophenols (2-4), it was found that the solvent polarity and linker length have an effect on the molecular aggregation behaviour. 2D H-1 NOESY, DOSY NMR and UV-vis-NIR spectroscopic studies...

  12. Preparation of electrospun polyacrylonitrile fibers containing only the polarization charges

    Science.gov (United States)

    Zhong, Qin; Yao, Yongyi; Guo, Xiaoming; Zhou, Tao; Xiang, Ruili

    2017-03-01

    In this paper, we report a simple method to separate immobile charges into polarization charges and trapped charges and successfully prepare electrospun polyacrylonitrile fibers only containing polarization charge. The amount of surface polarization charges and trapped charges were +5.34 nC/g and -2.98 nC/g, respectively. We also tried to explain the mechanism of formation and location of immobile charges by using a model of a parallel plate capacitor, and to track the route and location of charges. Additionally, we investigated the influence of residual solvent, a water bath and the temperature of the water bath on the immobile charges.

  13. Unimolecular Gas-Phase Thermolysis of Ethyl Acetate

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Carlsen, Lars

    1983-01-01

    The unimolecular gas-phase thermolysis of ethyl acetate has been investigated by the Flash-Vacuum-Thermolysis/Field-Ionization Mass Spectrometry (FVT/FI-MS) method in combination with Collision Activation (CA) mass spectrometry at 1253K. Two predominant reactions are observed: elimination...... of ethylene affording acetic acid, the latter to some extent consecutively yielding ketene, and intramolecular oxygen to oxygen ethyl group migration. Additionally minor amounts of acetaldehyde is formed. The mechanistic aspects are discussed based on 18O and 18O/ 13C labelling....

  14. Click grafting of seaweed polysaccharides onto PVC surfaces using an ionic liquid as solvent and catalyst.

    Science.gov (United States)

    Bigot, Sandra; Louarn, Guy; Kébir, Nasreddine; Burel, Fabrice

    2013-11-06

    Seaweed antibacterial polysaccharides were grafted onto poly(vinylchloride) (PVC) surfaces using an original click chemistry pathway. PVC isothiocyanate surfaces (PVC-NCS) were first prepared by nucleophilic substitution of the chloride groups by isothiocyanate groups in DMSO/water medium. Then, unmodified Ulvan, Fucan, Laminarin or Zosterin was directly grafted onto the PVC-NCS surface using 1-ethyl-3-methyl imidazolium phosphate, an ionic liquid, as solvent and catalyst. To attest the grafting effectiveness, the new PVC surfaces were well characterized by AFM, XPS and contact angle measurements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Two-step synthesis of fatty acid ethyl ester from soybean oil catalyzed by Yarrowia lipolytica lipase

    Directory of Open Access Journals (Sweden)

    Chen Jinnan

    2011-03-01

    Full Text Available Abstract Background Enzymatic biodiesel production by transesterification in solvent media has been investigated intensively, but glycerol, as a by-product, could block the immobilized enzyme and excess n-hexane, as a solution aid, would reduce the productivity of the enzyme. Esterification, a solvent-free and no-glycerol-release system for biodiesel production, has been developed, and two-step catalysis of soybean oil, hydrolysis followed by esterification, with Yarrowia lipolytica lipase is reported in this paper. Results First, soybean oil was hydrolyzed at 40°C by 100 U of lipase broth per 1 g of oil with approximately 30% to 60% (vol/vol water. The free fatty acid (FFA distilled from this hydrolysis mixture was used for the esterification of FFA to fatty acid ethyl ester by immobilized lipase. A mixture of 2.82 g of FFA and equimolar ethanol (addition in three steps were shaken at 30°C with 18 U of lipase per 1 gram of FFA. The degree of esterification reached 85% after 3 hours. The lipase membranes were taken out, dehydrated and subjected to fresh esterification so that over 82% of esterification was maintained, even though the esterification was repeated every 3 hours for 25 batches. Conclusion The two-step enzymatic process without glycerol released and solvent-free demonstrated higher efficiency and safety than enzymatic transesterification, which seems very promising for lipase-catalyzed, large-scale production of biodiesel, especially from high acid value waste oil.

  16. Solubility measurement and modelling of 1,8-dinitronaphthalene in nine organic solvents from T = (273.15 to 308.15) K and mixing properties of solutions

    International Nuclear Information System (INIS)

    Zhou, Guoquan; Du, Cunbin; Han, Shuo; Meng, Long; Wang, Jian; Li, Rongrong; Zhao, Hongkun

    2015-01-01

    Highlights: • Solubility of 1,8-dinitronaphthalene in nine organic solvents were determined. • The solubility were correlated with Apelblat equation, Wilson and NRTL model. • The mixing properties of solution were calculated based on the Wilson model. - Abstract: The solubility of 1,8-dinitronaphthalene in acetonitrile, methanol, ethanol, trichloromethane, isopropanol, acetone, toluene, ethyl acetate and butyl alcohol were obtained experimentally at temperatures ranging from (273.15 to 308.15) K under 0.1 MPa by using a gravimetric method. The solubility of 1,8-dinitronaphthalene in those solvents increases with an increase in temperature. The solubility values decrease according to the following order: acetone > (acetonitrile, ethyl acetate) > trichloromethane > toluene > methanol > ethanol > isopropanol > butyl alcohol. Three models, the modified Apelblat equation, Wilson and NRTL were used to correlate the solubility of 1,8-dinitronaphthalene in the solvents studied. The calculated solubility by the modified Apelblat equation provides better agreement than those evaluated by the other two models. The regressed results via the three models are all acceptable for the solubility of 1,8-dinitronaphthalene in the selected solvents. Furthermore, the mixing Gibbs energy, mixing enthalpy, and mixing entropy for per 1 mol of mixture of 1,8-dinitronaphthalene and solvents were calculated based on the Wilson model. The dissolution process of 1,8-dinitronaphthalene in the selected solvents is spontaneous and exothermic

  17. Solid-state structure and solution conformation of the nootropic agent N[2-( N,N-Diisopropylamino)ethyl]-2-oxo-1-pyrrolidinacetamide sulphate. X-ray and homonuclear two-dimensional 1H NMR studies

    Science.gov (United States)

    Bandoli, Giuliano; Nicolini, Marino; Pappalardo, Giuseppe C.; Grassi, Antonio; Perly, Bruno

    1987-04-01

    The crystal and molecular structure of the nootropic agent N-[2-( N,N-diisopropyl-amino)ethyl]-2-oxo-1-pyrrolidinacetamide sulphate was determined by X-ray analysis. The conformational properties in the solution state were deduced from the 1H-NMR spectrum run in 2H 2O at 500 MHz. Spectral assignments were made with the aid of the COSY 45 shift correlation experiment. Crystals were triclinic with unit cell dimensions a = 13.410(10), b = 11.382(8), c = 6.697(4) », α = 83.80(3), β = 88.61(3)and γ = 72.25(6)° ; space group Poverline1. The structure was determined from 1047 three-dimensional counter data and refined to a value of 7.5% for the conventional discrepancy factor R. One molecule of the solvent acetonitrile is incorporated per two of the (C 14H 28N 3O 2) +-(HSO 4) -. The five-membered heterocyclic ring is in an envelope ( Cs) conformation and the "flap" atom deviates by 0.31 » from the plane of the other four. This plane forms a dihedral angle of 71.4° with the amide group, with the CO fragment directed toward the ring. All bond angles and distances are in good agreement with expected standard values. A strong OH⋯O intermolecular bond (2.61 ») links the cation of the hydrogen-sulphate anion, while the loosely held MeCN molecule is trapped in the polar pockets. The molecular conformation in the solid was compared with results from 1H NMR spectral analysis which showed that in solution wide torsional oscillations can occur about the bonds of the chain bonded to the N(1) atom.

  18. Continuum treatment of electronic polarization effect.

    Science.gov (United States)

    Tan, Yu-Hong; Luo, Ray

    2007-03-07

    A continuum treatment of electronic polarization has been explored for in molecular mechanics simulations in implicit solvents. The dielectric constant for molecule interior is the only parameter in the continuum polarizable model. A value of 4 is found to yield optimal agreement with high-level ab initio quantum mechanical calculations for the tested molecular systems. Interestingly, its performance is not sensitive to the definition of molecular volume, in which the continuum electronic polarization is defined. In this model, quantum mechanical electrostatic field in different dielectric environments from vacuum, low-dielectric organic solvent, and water can be used simultaneously in atomic charge fitting to achieve consistent treatment of electrostatic interactions. The tests show that a single set of atomic charges can be used consistently in different dielectric environments and different molecular conformations, and the atomic charges transfer well from training monomers to tested dimers. The preliminary study gives us the hope of developing a continuum polarizable force field for more consistent simulations of proteins and nucleic acids in implicit solvents.

  19. Continuum treatment of electronic polarization effect

    Science.gov (United States)

    Tan, Yu-Hong; Luo, Ray

    2007-03-01

    A continuum treatment of electronic polarization has been explored for in molecular mechanics simulations in implicit solvents. The dielectric constant for molecule interior is the only parameter in the continuum polarizable model. A value of 4 is found to yield optimal agreement with high-level ab initio quantum mechanical calculations for the tested molecular systems. Interestingly, its performance is not sensitive to the definition of molecular volume, in which the continuum electronic polarization is defined. In this model, quantum mechanical electrostatic field in different dielectric environments from vacuum, low-dielectric organic solvent, and water can be used simultaneously in atomic charge fitting to achieve consistent treatment of electrostatic interactions. The tests show that a single set of atomic charges can be used consistently in different dielectric environments and different molecular conformations, and the atomic charges transfer well from training monomers to tested dimers. The preliminary study gives us the hope of developing a continuum polarizable force field for more consistent simulations of proteins and nucleic acids in implicit solvents.

  20. Effect of adding ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate on the coordination environment of Li+ ions in propylene carbonate, according to data from IR spectroscopy and quantum chemical modeling

    Science.gov (United States)

    Shestakov, A. F.; Yudina, A. V.; Tulibaeva, G. Z.; Shul'ga, Yu. M.; Ignatova, A. A.; Yarmolenko, O. V.

    2017-08-01

    The effect ionic liquid (IL) 1-ethyl-3-methylimidazolium tetrafluoroborate has on the coordination environment of Li+ cations in carbonate solvents is studied by means of IR spectroscopy and quantum chemical modeling using the example of propylene carbonate (PC). LiBF4 is used as the lithium salt. This system is promising for use as an electrolyte in lithium power sources (LPSs), but the mechanism of ionic conductivity by Li+ ions in such systems has yet to be studied in full.

  1. Influence of solvent quality on the mechanical strength of ethylcellulose oleogels.

    Science.gov (United States)

    Gravelle, A J; Davidovich-Pinhas, M; Zetzl, A K; Barbut, S; Marangoni, A G

    2016-01-01

    Ethylcellulose (EC) is the only known food-grade polymer able to structure edible oils. The gelation process and gel properties are similar to those of polymer hydrogels, the main difference being the nature of the solvent. The present study examines the influence of solvent quality on the large deformation mechanical behavior of EC oleogels. Two alternative strategies for manipulating the mechanical response of these gels were evaluated; manipulating the bulk solvent polarity and the addition of surface active small molecules. Gel strength was positively correlated to solvent polarity when blending soybean oil with either mineral oil or castor oil. This behavior was attributed to the ability of the polar entities present in the oil phase to interact with the EC gel network. The addition of the small molecules oleic acid and oleyl alcohol resulted in a substantial enhancement in gel strength up to 10wt% addition, followed by a gradual decrease with increasing proportions. Binding interactions between EC and these molecules were successfully modeled using a Langmuir adsorption isotherm below 10wt% addition. Furthermore, the thermal behavior of stearic acid and stearyl alcohol also indicated a direct interaction between these molecules and the EC network. Differences in the mechanical behavior of gels prepared using refined, bleached, and deodorized canola or soybean oils, and those made with cold-pressed flaxseed oil could be attributed to both oil polarity, and the presence of minor components (free fatty acids). Shorter pulsed NMR T2 relaxation times were observed for stronger gels due to the more restricted mobility of the solvent when interacting with the polymer. This work has demonstrated the strong influence of the solvent composition on the mechanical properties of EC oleogels, which will allow for the tailoring of mechanical properties for various applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Geographical Income Polarization

    DEFF Research Database (Denmark)

    Azhar, Hussain; Jonassen, Anders Bruun

    inter municipal income inequality. Counter factual simulations show that rising property prices to a large part explain the rise in polarization. One side-effect of polarization is tendencies towards a parallel polarization of residence location patterns, where low skilled individuals tend to live......In this paper we estimate the degree, composition and development of geographical income polarization based on data at the individual and municipal level in Denmark from 1984 to 2002. Rising income polarization is reconfirmed when applying new polarization measures, the driving force being greater...

  3. A volumetric and viscosity study for the binary mixtures of 1-hexyl-3-methylimidazolium tetrafluoroborate with some molecular solvents

    International Nuclear Information System (INIS)

    Zhu Anlian; Wang Jianji; Liu Ruixia

    2011-01-01

    Research highlights: → Excess molar volumes and excess logarithm viscosities for the binary mixtures of 1-hexyl-3-methylimidazolium tetrafluroborate were determined. → The absolute values of V m E follow the sequence: THF > butanone > ethyl acetate > butylamine for the binary systems. → The values of (lnη) E decrease in the order: THF > butylamine > ethyl acetate > butanone. → Ion-dipole interaction, the hydrogen bond, the packing efficiency and the ion-pairs exist in the ionic liquid are believed to influence the excess properties of the related systems. → The information obtained in this work allows us to show how physical properties of molecular solvents affect their interaction with the ionic liquid. - Abstract: Information on the interactions between ionic liquids and molecular solvents are essential for the understanding of the function of ionic liquids in related procedures, and excess properties are sensitive probe for these interactions. In this work, excess molar volume (V m E ) and excess logarithmic viscosity ((ln η) E ) for the binary mixtures of 1-hexyl-3-methylimidazolium tetrafluoroborate ([C 6 mim][BF 4 ]) with butanone, ethyl acetate, butylamine, and tetrahydrofuran have been determined from density and viscosity measurements in the whole composition range at the temperature of 298.15 K. It is found that for the studied systems, the values of V m E are negative but those of (ln η) E are positive in the whole concentration range. The V m E values show their minimum at the ionic liquid mole fraction of 0.3, and (ln η) E values exhibit a maximum at the same composition. The absolute values of V m E follow the sequence: tetrahydrofuran > butanone > ethyl acetate > butylamine for the binary systems, whereas the values of (ln η) E decrease in the order: tetrahydrofuran > butylamine > ethyl acetate > butanone. The results have been analyzed through the ion-dipole interaction, the hydrogen bonding, the packing efficiency and the ion

  4. Risk assessment for halogenated solvents

    International Nuclear Information System (INIS)

    Travis, C.C.

    1988-01-01

    A recent development in the cancer risk area is the advent of biologically based pharmacokinetic and pharmacodynamic models. These models allow for the incorporation of biological and mechanistic data into the risk assessment process. These advances will not only improve the risk assessment process for halogenated solvents but will stimulate and guide basic research in the biological area

  5. Improved Purex solvent scrubbing methods

    International Nuclear Information System (INIS)

    Mailen, J.C.; Tallent, O.K.

    1984-01-01

    Studies of hydrazine and hydroxylamine salts as solvent scrubbing agents that can be decomposed into gases are summarized. Results from testing of countercurrent scrubbers and solid sorber columns that produce lesser amounts of permanent salts are reported. The status of studies of the acid-degradation of paraffin diluent and the options for removal of long-chain organic acids is given

  6. Multiple sclerosis and organic solvents

    DEFF Research Database (Denmark)

    Mortensen, J T; Brønnum-Hansen, Henrik; Rasmussen, K

    1998-01-01

    We investigated a possible causal relation between exposure to organic solvents in Danish workers (housepainters, typographers/printers, carpenters/cabinetmakers) and onset of multiple sclerosis. Data on men included in the Danish Multiple Sclerosis Register (3,241 men) were linked with data from...

  7. Polarization and charge-transfer effects in aqueous solution via ab initio QM/MM simulations.

    Science.gov (United States)

    Mo, Yirong; Gao, Jiali

    2006-02-23

    Combined ab initio quantum mechanical and molecular mechanical (QM/MM) simulations coupled with the block-localized wave function energy decomposition (BLW-ED) method have been conducted to study the solvation of two prototypical ionic systems, acetate and methylammonium ions in aqueous solution. Calculations reveal that the electronic polarization between the targeted solutes and water is the primary many-body effect, whereas the charge-transfer term only makes a small fraction of the total solute-solvent interaction energy. In particular, the polarization effect is dominated by the solvent (water) polarization.

  8. Replacement solvents for use in chemical synthesis

    Science.gov (United States)

    Molnar, Linda K.; Hatton, T. Alan; Buchwald, Stephen L.

    2001-05-15

    Replacement solvents for use in chemical synthesis include polymer-immobilized solvents having a flexible polymer backbone and a plurality of pendant groups attached onto the polymer backbone, the pendant groups comprising a flexible linking unit bound to the polymer backbone and to a terminal solvating moiety. The polymer-immobilized solvent may be dissolved in a benign medium. Replacement solvents for chemical reactions for which tetrahydrofuran or diethyl may be a solvent include substituted tetrahydrofurfuryl ethers and substituted tetrahydro-3-furan ethers. The replacement solvents may be readily recovered from the reaction train using conventional methods.

  9. Solvent effects on the thermochemistry of free-radical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kanabus-Kaminska, J.M.; Griller, D. (National Research Council of Canada, Ottawa, Ontario (Canada)); Gilbert, B.C. (Univ. of York Heslington (England))

    1989-04-26

    Heats of the reaction H{sub 2}O + 2RH {yields} 2H{sub 2}O + 2R{sup {sm bullet} were measured in water for a variety of organic substrates by using photoacoustic calorimetry. The values obtained were substantially lower than those calculated from gas-phase data and the difference was due entirely to the change in solvation energy associated with the conversion of 1 equiv of hydrogen peroxide to 2 of water. The solvation energies of R{sm bullet}} and RH were the same and their contributions to the measured heats of reaction therefore canceled. The results suggest that solution data, measured in extremely polar solvents, can be converted to their gas-phase equivalents (and vice versa) by considering only the heats of solvation of very small, polar molecules that participate in a given reaction. Moderately large organic molecules and their corresponding radicals are solvated to the same extent - even in water.

  10. Ethyl Pyruvate Provides Therapeutic Benefits to Resuscitation Fluids

    Science.gov (United States)

    2009-02-01

    worsen survival in endotoxemia [33] depending on the dose and time of administration [34]. These results reveal the need to study the factors...described in previous studies [40]. Animals without resuscitation were characterized by uremia, metabolic acidosis and hyperglycemia. Both resuscitation...AnGap) and negative base excess of extracellular fluid (BEecf). Resuscitation with Hextend alone or with ethyl pyruvate improved metabolic acidosis

  11. short communication reaction of ethyl acetoacetate and 2

    African Journals Online (AJOL)

    Preferred Customer

    starting materials. Thus, we describe in this paper a facile procedure for the synthesis of 9- phenyl-6H-benzo[c]chromen-6-ones involving the reaction of ethyl acetoacetate and chalcones derived from the condensation of salicylaldehyde and acetophenone derivatives. RESULTS AND DISCUSSIONS. The conditions for the ...

  12. Synthesis of Ethyl Nalidixate: A Medicinal Chemistry Experiment

    Science.gov (United States)

    Leslie, Ray; Leeb, Elaine; Smith, Robert B.

    2012-01-01

    A series of laboratory experiments that complement a medicinal chemistry lecture course in drug design and development have been developed. The synthesis of ethyl nalidixate covers three separate experimental procedures, all of which can be completed in three, standard three-hour lab classes and incorporate aspects of green chemistry such as…

  13. Ethyl Alcohol Extract of Hizikia fusiforme Induces Caspase ...

    African Journals Online (AJOL)

    Ethyl Alcohol Extract of Hizikia fusiforme Induces Caspase-dependent Apoptosis in Human Leukemia U937 Cells by Generation of Reactive Oxygen Species. C-H Kang, S-H Kang, S-H Boo, S-Y Park, D-O Moon, G-Y Kim ...

  14. Catalytic Synthesis of Ethyl Ester From Some Common Oils ...

    African Journals Online (AJOL)

    Catalytic conversion of ethanol to fatty acid ethyl esters (FAEE) was carried out by homogeneous and heterogeneous transesterification of melon seed, shea butter and neem seed oils using NaOH, KOH and 5wt%CaO/Al2O3 catalyst systems respectively. Oil content of the seeds from n-hexane or hot water extract ranged ...

  15. Effects of pesticide (Chlorpyrifos Ethyl) on the fingerlings of catfish ...

    African Journals Online (AJOL)

    Acute toxicity bioassay of the organophosphate pesticide chlorpyrifos ethyl on the fingerlings of Clarias gariepinus was evaluated to determine its effect on the survival, body morphology and the lethal concentration (LC50). Following a preliminary bioassay in mg/l concentration which showed 100% mortality, fish were ...

  16. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    Science.gov (United States)

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  17. Ethyl ester purpurine-18 from Gossypium mustelinum (Malvaceae)

    International Nuclear Information System (INIS)

    Silva, Tania Maria Sarmento; Camara, Celso Amorim; Barbosa-Filho, Jose Maria; Giulietti, Ana Maria

    2010-01-01

    The phaeophorbide ethyl ester named Purpurine-18 and the flavonoids quercetin and kaempferol were obtained by chromatographic procedures from the chloroform fraction of aerial parts of Gossypium mustelinum. The structure of these compound was determined by NMR, IR and mass spectra data analysis. This is the first occurrence of this compound in Angiosperm. (author)

  18. Radio-sensitizing effect of ethyl caffeate on nasopharyngeal ...

    African Journals Online (AJOL)

    ETF may be useful for treating naso-pharyngeal carcinoma in combination with radiation therapy. Keywords: Ethyl caffeate, Radio-sensitizing effects, Caspase, Nasopharyngeal carcinoma, CNE-2 cell line, β-irradiation. Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), Scopus,.

  19. Antisecretory and antiulcerative effects of ethyl acetate fraction of ...

    African Journals Online (AJOL)

    The present work was carried out to investigate the possible effects of ethyl acetate seed fraction of Nigella sativa on gastric ulcers and basal gastric secretions using the Non-Steroidal Anti-inflammatory Drug-induced (NSAID) model. Phytochemical screening according to Trease and Evans, 2002 and acute toxicity tests ...

  20. Effects of ethyl acetate leaf extracts of Vitex simplicifolia on ...

    African Journals Online (AJOL)

    The effects of oral administration of ethyl acetate leaf extract of Vitex simplicifolia on vitamins A, E and C, Superoxide dismutase (SOD) and lipid profile levels in alloxan induced diabetic Wistar rats were investigated. The study was conducted with 30 Wistar rats, assigned into six groups of five rats each, and daily ...

  1. Electrical transport in ethyl cellulose–chloranil system

    Indian Academy of Sciences (India)

    The charge-transport behaviour in pure and chloranil (Chl) doped ethyl cellulose (EC) system has been studied by measuring ... ples are analyzed using space charge limited current theory and quantitative information about the transport parameters is .... the current density I follows the relation (Lamb 1967;. Simmons 1970).

  2. Antidiarrheal Activity of the Ethyl Acetate Extract of Morinda ...

    African Journals Online (AJOL)

    Methods: The ethyl acetate extract of Morinda morindoides (250, 500, and 1000 mg/kg body weight) was administered orally to three groups of rats (five animals per group) in order to evaluate the activity of the extract against castor oil-induced diarrhea model in rat. Two other groups received normal saline (5mg/kg) and ...

  3. Protective effects of ethyl acetate extraction from Gastrodia elata ...

    African Journals Online (AJOL)

    Background: Damage of the blood brain barrier (BBB) during the process of cerebral ischemic injury is a key factor which influences the therapeutic efficacy to the cerebral ischemic injury. The present study was designed to verify the mechanisms underlying the protective effects of the ethyl acetate (EtOAc) extraction from ...

  4. Hypolipidemic activity of ethyl acetate fraction of methanolic seed ...

    African Journals Online (AJOL)

    Parts of Persea americana Mill are used for various ethnomedicinal purposes. The aqueous seed extract is used locally by herbalists for the treatment of hyperlipidemia. In this study, our objective was to investigate the possible hypolipidemic effect of ethyl acetate fraction (EAF) of the methanolic seed extract on olive oil- ...

  5. Effects of Piliostigma thonningii ethyl acetate leaf extract on ...

    African Journals Online (AJOL)

    Recent research findings extol the medicinal significance of the different parts of Piliostigma thonningii. The present study investigated the hepatoprotective effect of its ethyl acetate leaf extract against AlCl3-induced hepatocellular derangement in mature male rats. Thirty male Wistar rats (mean weight, 207 ± 11.01g) were ...

  6. Phytochemical composition and in vitro effects of the ethyl acetate ...

    African Journals Online (AJOL)

    Distemonanthus benthamianus is a tree used in traditional African medicine to treat bacterial, fungal and viral infections. The pasty phase and the granular phase obtained from the ethyl acetate bark extract of D. benthamianus were tested for antimicrobial purposes on Staphylococcus aureus and on Streptococcus ...

  7. Phytochemical Constituents and Analgesic Activity of Ethyl Acetate ...

    African Journals Online (AJOL)

    Purpose: To investigate the active fraction of pomegranate fruit extract and screen it for analgesic activity. Methods: The analgesic activity of pomegranate ethyl acetate fraction (EtOAc) was examined using three models of pain: writhing, hot tail flick and plantar tests. EtOAc was administered by oral gavage in doses of 100, ...

  8. Temperature Induced Solubility Transitions of Various Poly(2-oxazolines in Ethanol-Water Solvent Mixtures

    Directory of Open Access Journals (Sweden)

    Hanneke M. L. Lambermont-Thijs

    2010-08-01

    Full Text Available The solution behavior of a series of poly(2-oxazolines with different side chains, namely methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, pentyl, hexyl, heptyl, octyl, nonyl, phenyl and benzyl, are reported in ethanol-water solvent mixtures based on turbidimetry investigations. The LCST transitions of poly(2-oxazolines with propyl side chains and the UCST transitions of the poly(2-oxazolines with more hydrophobic side chains are discussed in relation to the ethanol-water solvent composition and structure. The poly(2-alkyl-2-oxazolines with side chains longer than propyl only dissolved during the first heating run, which is discussed and correlated to the melting transition of the polymers.

  9. Three dimensional ink-jet printing of biomaterials using ionic liquids and co-solvents.

    Science.gov (United States)

    Gunasekera, Deshani H A T; Kuek, SzeLee; Hasanaj, Denis; He, Yinfeng; Tuck, Christopher; Croft, Anna K; Wildman, Ricky D

    2016-08-15

    1-Ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) and 1-butyl-3-methylimidazolium acetate ([C4C1Im][OAc]) have been used as solvents for the dissolution and ink-jet printing of cellulose from 1.0 to 4.8 wt%, mixed with the co-solvents 1-butanol and DMSO. 1-Butanol and DMSO were used as rheological modifiers to ensure consistent printing, with DMSO in the range of 41-47 wt% producing samples within the printable range of a DIMATIX print-head used (printability parameter cellulose solubility. Regeneration of cellulose from printed samples using water was demonstrated, with the resulting structural changes to the cellulose sample assessed by scanning electron microscopy (SEM) and white light interferometry (WLI). These results indicate the potential of biorenewable materials to be used in the 3D additive manufacture process to generate single-component and composite materials.

  10. Ozone facilitated dechlorination of 2-chloroethanol and impact of organic solvents and activated charcoal.

    Science.gov (United States)

    Gounden, Asogan N; Jonnalagadda, Sreekanth B

    2013-10-01

    The ozone-initiated oxidation of 2-chloroethanol was followed by monitoring the consumption of the halogenated organic substrate. Gas chromatographic analysis of the ozonated products showed an increase in conversion from about 1 % after 3 h of ozone treatment to about 22 % after 12 h. The yields of major ozonated products identified and quantified namely acetaldehyde, acetic acid, and chloride ion increased proportionately as a function of ozone treatment time. The percent conversion of 2-chloroethanol in the presence of acetic acid or ethyl acetate were found to be higher than those under solvent-free conditions with similar products obtained. The use of activated charcoal during the ozonolyis of 2-chloroethanol showed a significant increase in the percent conversion of the substrate compared to solvent free ozonation. Based on the experimental findings, the overall mechanism for the reaction between 2-chloroethanol and ozone is described.

  11. Part 1: synthesis and visible absorption spectra of some new monoazo dyes derived from ethyl 2-amino-4-(4'-substitutedphenyl)thiophenes.

    Science.gov (United States)

    Babür, Banu; Ertan, Nermin

    2014-10-15

    Series of monoazo dyes from some ethyl 2-amino-4-(4'-substitutedphenyl) thiophenes were prepared and characterized. The structure of the substances was confirmed by FT-IR, (1)H NMR and mass spectroscopic techniques. The relationship among the structure of the dyes, their absorption characteristics and the solvatochromic and halochromic behaviors of the dyes were investigated. Introduction of electron-accepting substituent into the diazo moiety results in large bathochromic shifts in all solvents used. The dyes exhibited positive solvatochromism and their solvatochromic properties were discussed in relation to tautomerism. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Solvent selection for biocatalysis in mainly organic systems: predictions of effects on equilibrium position.

    Science.gov (United States)

    Halling, P J

    1990-03-25

    Predictions may be made for the influence of solvent choice on the equilibrium position of biocatalyzed reactions, based on data for the liquid-liquid distribution of the reactants. The most reliable predictions are probably for dilute systems, based on partition coefficients or correlations derived from them. The effective equilibrium constant for esterification reactions is predicted to alter by more than four orders of magnitude on changing between different water-immiscible solvents. The equilibrium constant correlates well with the solubility of water in the solvent, and is most favorable for synthesis in the least polar solvents (aliphatic hydrocarbons). Similar effects seem to apply for other reactions, including oxidation of alcohols and hydrolysis of chlorides. Predictions can be made for nondilute systems using the UNIFAC system of group contributions, but the reliability of these is more questionable.

  13. Ultrasonication-Assisted Solvent Extraction of Quercetin Glycosides from ‘Idared’ Apple Peels

    Directory of Open Access Journals (Sweden)

    Gwendolyn M. Huber

    2011-11-01

    Full Text Available Quercetin and quercetin glycosides are physiologically active flavonol molecules that have been attributed numerous health benefits. Recovery of such molecules from plant matrices depends on a variety of factors including polarity of the extraction solvent. Among the solvents of a wide range of dielectric constants, methanol recovered the most quercetin and its glycosides from dehydrated ‘Idared’ apple peels. When ultra-sonication was employed to facilitate the extraction, exposure of 15 min of ultrasound wavelengths of dehydrated apple peel powder in 80% to 100% (v/v methanol in 1:50 (w:v solid to solvent ratio provided the optimum extraction conditions for quercetin and its glycosides. Acidification of extraction solvent with 0.1% (v/v or higher concentrations of HCl led to hydrolysis of naturally occurring quercetin glycosides into the aglycone as an extraction artifact.

  14. Green and Sustainable Solvents in Chemical Processes.

    Science.gov (United States)

    Clarke, Coby J; Tu, Wei-Chien; Levers, Oliver; Bröhl, Andreas; Hallett, Jason P

    2018-01-24

    Sustainable solvents are a topic of growing interest in both the research community and the chemical industry due to a growing awareness of the impact of solvents on pollution, energy usage, and contributions to air quality and climate change. Solvent losses represent a major portion of organic pollution, and solvent removal represents a large proportion of process energy consumption. To counter these issues, a range of greener or more sustainable solvents have been proposed and developed over the past three decades. Much of the focus has been on the environmental credentials of the solvent itself, although how a substance is deployed is as important to sustainability as what it is made from. In this Review, we consider several aspects of the most prominent sustainable organic solvents in use today, ionic liquids, deep eutectic solvents, supercritical fluids, switchable solvents, liquid polymers, and renewable solvents. We examine not only the performance of each class of solvent within the context of the reactions or extractions for which it is employed, but also give consideration to the wider context of the process and system within which the solvent is deployed. A wide range of technical, economic, and environmental factors are considered, giving a more complete picture of the current status of sustainable solvent research and development.

  15. Polarized Light Corridor Demonstrations.

    Science.gov (United States)

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  16. Chiroptical Properties and the Racemization of Pyrene and Tetrathiafulvalene-Substituted Allene: Substitution and Solvent Effects on Racemization in Tetrathiafulvalenylallene

    Directory of Open Access Journals (Sweden)

    Masashi Hasegawa

    2014-03-01

    Full Text Available Dissymmetric 1,3-diphenylallene derivative 3 connected with 4,5-bis(methyl-thiotetrathiafulvalenyl and 1-pyrenyl substituents was prepared and characterized. The molecular structure was determined by X-ray crystallographic analysis. Optical resolution was accomplished using a recycling chiral HPLC, and its chiroptical properties were examined with optical rotation and electronic circular dichroism (ECD spectra. The title compound underwent photoracemization under daylight. This behavior was investigated in various solvents and compared with that of 1,3-bis(tetrathiafulvalenylallene (bis-TTF-allene derivative 2. The first-order rate plot of the intensity of the ECD spectra at a given time interval gave the rate of racemization. Mild racemization was observed in polar solvents, whereas a relatively fast rate was obtained in less polar solvents. In addition, the TTF groups of the allene also accelerate the racemization rate. These results suggest that the racemization mechanism occurs via a non-polar diradical structure.

  17. Effective Biotransformation of Ethyl 4-Chloro-3-Oxobutanoate into Ethyl (S)-4-Chloro-3-Hydroxybutanoate by Recombinant E. coli CCZU-T15 Whole Cells in [ChCl][Gly]-Water Media.

    Science.gov (United States)

    Dai, Yong; Huan, Bin; Zhang, Hai-Sheng; He, Yu-Cai

    2017-04-01

    To increase the biocatalytic activity of Escherichia coli CCZU-T15 whole cells, choline chloride/glycerol ([ChCl][Gly]) was firstly used as biocompatible solvent for the effective biotransformation of ethyl 4-chloro-3-oxobutanoate (COBE) into ethyl (S)-4-chloro-3-hydroxybutanoate [(S)-CHBE]. Furthermore, L-glutamine (150 mM) was added into [ChCl][Gly]-water ([ChCl][Gly] 12.5 vol%, pH 6.5) media instead of NAD + for increasing the biocatalytic efficiency. To further improve the biosynthesis of (S)-CHBE (>99 % e.e.) by E. coli CCZU-T15 whole cells, Tween-80 (7.5 mM) was also added into this reaction media, and (S)-CHBE (>9 % e.e.) could be effectively synthesized from 2000 and 3000 mM COBE in the yields of 100 and 93.0 % by whole cells of recombinant E. coli CCZU-T15, respectively. TEM image indicated that the cell membrane was permeabilized and lost its integrity and when the cell was exposed to [ChCl][Gly]-water media with Tween-80. Clearly, this bioprocess has high potential for the effective biosynthesis of (S)-CHBE (>99 % e.e.).

  18. Optimization of SPE for Analysis of Mandelic Acid as a Biomarker of Exposure to Ethyl Benzene

    Directory of Open Access Journals (Sweden)

    SJ Shahtaheri, M Abdollahi, F Golbabaei, A Rahimi-Froushani, F Ghamari

    2004-10-01

    Full Text Available Ethyl benzene is an important constituent of widely used solvents in industries and laboratories, causing widespread environmental and industrial pollutions. For evaluation of occupational exposure to such pollutants, biological monitoring is an essential process, in which, preparation of environmental and biological samples is one of the most time-consuming and error-prone aspects prior to chromatographic techniques. The use of solid-phase extraction (SPE has been grown and is a fertile technique of sample preparation as it provides better results than those of liquid-liquid extraction (LLE. In this study, SPE using bonded silica has been optimized with regard to sample pH, sample concentration, elution solvent, elution volume, sorbent type, and sorbent mass. Through experimental evaluation, a strong anion exchange silica cartridge (SAX has been found successful in simplifying sample preparation. The present approach proved that, mandelic acid could be retained on SAX sorbent based on specific interaction. Further study was employed using 10% acetic acid to extract the analyte from spiked urine and gave a clean sample for HPLC-UV system. In this study, a high performance liquid chromatography, using reverse-phase column was used. The isocratic run was done at a constant flow rate of 0.85 ml/min, the mobile phase was water/methanol/acetic acid and a UV detector was used, setting at 225 nm. At the developed conditions the extraction recovery was exceeded 98%. The factors were evaluated statically and also validated with three different pools of spiked urine samples and showed a good reproducibility over six consecutive days as well as six within-day experiments.

  19. Extraction of curcuminoids by using ethyl lactate and its optimisation by response surface methodology.

    Science.gov (United States)

    D'Archivio, Angelo Antonio; Maggi, Maria Anna; Ruggieri, Fabrizio

    2018-02-05

    Response surface methodology (RSM) was applied to optimise the extraction of curcuminoids (curcumin, demethoxycurcumin and bisdemethoxycurcumin) from turmeric using ethyl lactate (EL), ethanol and water under mild conditions (magnetic stirring at room temperature). An augmented simplex-centroid mixture design was used to monitor the dependence of the extraction efficiency from the proportions of the three solvents in the extraction medium. HPLC was used to establish the content of curcuminoids in turmeric and in the extracts. Surface plots for the extracted amount of each curcuminoid covering the whole composition domain were generated by interpolation of the experimental data with quadratic canonical polynomial models. The response surfaces of the three curcuminoids are qualitatively similar and the maximum extraction efficiency was obtained with water-EL 30:70v/v that ensured the almost quantitative recovery of the three compounds from turmeric. While degradation of the three curcuminoids in water at moderate alkaline pH is relatively fast (half-times are between 0.23 and 8.5h at pH=8.6), their stability is noticeably greater in EL (half-times are within 21-69days). Addition of EL to water is also able to inhibit the alkaline hydrolysis of curcumin and its derivatives, their half-times in the water-EL 30:70v/v, being within 40-70h at pH=8.6. The above evidences suggest that EL is a promising solvent for the extraction of curcuminods from turmeric and a suitable medium for vehiculation of these compounds into drugs or foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Polarized Moessbauer transitions

    International Nuclear Information System (INIS)

    Barb, D.

    1975-01-01

    Theoretical aspects of the emission, absorption and scattering of polarized gamma rays are reviewed for a general case of combined magnetic and electric hyperfine interactions; various possibilities of obtaining polarized gamma sources are described and examples are given of the applications of Moessbauer spectroscopy with polarized gamma rays in solving problems of solid state physics. (A.K.)

  1. Iodine removing method in organic solvent

    International Nuclear Information System (INIS)

    Suzuki, Takeo; Sakurai, Manabu

    1988-01-01

    Purpose: To effectively remove iodine in an organic solvent to thereby remove iodine in the solvent that can be re-used or put to purning treatment. Method: Organic solvent formed from wastes of nuclear facilities is mixed with basic lead acetate, or silica gel or activated carbon incorporated with such a compound to adsorb iodine in the organic solvent to the basic lead acetate. Then, iodine in the organic solvent is removed by separating to eliminate the basic lead acetate adsorbing iodine from the organic solvent or by passing the organic solvent through a tower or column charged or pre-coated with silica gel or activated carbon incorporated with lead acetate. By using basic lead acetate as the adsorbents, iodine can effective by adsorbed and eliminated. Thus, the possibility of circumstantial release of iodine can be reduced upon reusing or burning treatment of the organic solvent. (Kamimura, M.)

  2. Computer Aided Solvent Selection and Design Framework

    DEFF Research Database (Denmark)

    Mitrofanov, Igor; Conte, Elisa; Abildskov, Jens

    and computer-aided tools and methods for property prediction and computer-aided molecular design (CAMD) principles. This framework is applicable for solvent selection and design in product design as well as process design. The first module of the framework is dedicated to the solvent selection and design...... in terms of: physical and chemical properties (solvent-pure properties); Environment, Health and Safety (EHS) characteristic (solvent-EHS properties); operational properties (solvent–solute properties). 3. Performing the search. The search step consists of two stages. The first is a generation and property...... identification of solvent candidates using special software ProCAMD and ProPred, which are the implementations of computer-aided molecular techniques. The second consists of assigning the RS-indices following the reaction–solvent and then consulting the known solvent database and identifying the set of solvents...

  3. Solvent extraction in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Chesne, A.

    1980-09-01

    The author reviews the chief aspects of solvent extraction in reprocessing, including choice of the solvent, general description of the Purex process, and extractor technology, while emphasizing the specific character of nuclear fuels

  4. Thermoanalytical study of N{sub {alpha}}-benzoyl-L-argininate ethyl ester chloride

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, A.C. [Department of Chemical Engineering, University of Coimbra, Polo II, Pinhal de Marrocos, Coimbra 3030-790 (Portugal); Jarmelo, S. [Department of Chemical Engineering, University of Coimbra, Polo II, Pinhal de Marrocos, Coimbra 3030-790 (Portugal); Department of Chemistry, University of Coimbra, Coimbra 3004-535 (Portugal); Canotilho, J. [Faculty of Pharmacy, University of Coimbra, Polo das Ciencias da Saude, Azinhaga de Santa Comba, Coimbra 3000-548 (Portugal); Eusebio, M.E.S.; Fausto, R. [Department of Chemistry, University of Coimbra, Coimbra 3004-535 (Portugal); Gil, M.H.; Simoes, P.N. [Department of Chemical Engineering, University of Coimbra, Polo II, Pinhal de Marrocos, Coimbra 3030-790 (Portugal)

    2012-01-10

    Highlights: Black-Right-Pointing-Pointer Thermal analysis of crystalline N{sub {alpha}}-benzoyl-L-argininate ethyl ester chloride. Black-Right-Pointing-Pointer Characterization by STA, MDSC, PLTM, and HiRes-MTGA. Black-Right-Pointing-Pointer Non-isothermal kinetic analysis of the thermal decomposition. - Abstract: N{sub {alpha}}-benzoyl-L-argininate ethyl ester chloride (BAEEH{sup +}{center_dot}Cl{sup -}) has been used as a model drug in the development of polymeric delivery systems for peptides and proteins. In this study, crystalline BAEEH{sup +}{center_dot}Cl{sup -} was characterized by different thermoanalytical techniques. The main thermal events were identified by modulated differential scanning calorimetry (MDSC). Polarized light thermomicroscopy (PLTM) showed that no phase transitions but fusion occur before thermal decomposition. A crystalline phase could not be obtained from the melt in cooling/heating cycles between 150 Degree-Sign C and -150 Degree-Sign C, at 10 Degree-Sign C min{sup -1} scanning rate. The thermal stability and the non-isothermal kinetic analysis of the thermal decomposition were studied by conventional and high resolution modulated thermogravimetric analysis (HiRes-MTGA). Depending on the conditions of the study, the decomposition starts in the range from 197 Degree-Sign C (HiRes-MTGA at {phi} = 2 Degree-Sign C min{sup -1}) to 261 Degree-Sign C (TGA at 20 Degree-Sign C min{sup -1}). It was found that the first stage of the decomposition process can be described by the kinetic triplet E{sub a} = 142 kJ mol{sup -1}, A = 1.86 Multiplication-Sign 10{sup 11} s{sup -1}, and f({alpha}) = (1 - {alpha}){sup 2.78}.

  5. Simulating structure and dynamics in small droplets of 1-ethyl-3-methylimidazolium acetate

    Science.gov (United States)

    Brehm, Martin; Sebastiani, Daniel

    2018-05-01

    To investigate the structure and dynamics of small ionic liquid droplets in gas phase, we performed a DFT-based ab initio molecular dynamics study of several 1-ethyl-3-methylimidazolium acetate clusters in vacuum as well as a bulk phase simulation. We introduce an unbiased criterion for average droplet diameter and density. By extrapolation of the droplet densities, we predict the experimental bulk phase density with a deviation of only a few percent. The hydrogen bond geometry between cations and anions is very similar in droplets and bulk, but the hydrogen bond dynamics is significantly slower in the droplets, becoming slower with increasing system size, with hydrogen bond lifetimes up to 2000 ps. From a normal mode analysis of the trajectories, we identify the modes of the ring proton C-H stretching, which are strongly affected by hydrogen bonding. From analyzing these, we find that the hydrogen bond becomes weaker with increasing system size. The cations possess an increased concentration inside the clusters, whereas the anions show an excess concentration on the outside. Almost all anions point towards the droplet center with their carboxylic groups. Ring stacking is found to be a very important structural motif in the droplets (as in the bulk), but side chain interactions are only of minor importance. By using Voronoi tessellation, we define the exposed droplet surface and find that it consists mainly of hydrogen atoms from the cation's and anion's methyl and ethyl groups. Polar atoms are rarely found on the surface, such that the droplets appear completely hydrophobic on the outside.

  6. Effect of Solvents on the Product Distribution and Reaction Rate of a Buchwald-Hartwig Amination Reaction

    DEFF Research Database (Denmark)

    Christensen, H.; Kiil, Søren; Dam-Johansen, Kim

    2006-01-01

    The Buchwald-Hartwig amination reaction between p-bromotoluene and piperazine in the presence of the homogeneous catalytic system Pd(dba)(2)/(+/-)-BINAP and the base NaO-t-Bu was investigated in two different classes of solvents: aprotic, nonpolar and aprotic, polar. The reaction was carried out...... solvent for the Buchwald-Hartwig amination reaction under the conditions applied was m-xylene....

  7. Icosapent ethyl (eicosapentaenoic acid ethyl ester): Effects on remnant-like particle cholesterol from the MARINE and ANCHOR studies.

    Science.gov (United States)

    Ballantyne, Christie M; Bays, Harold E; Philip, Sephy; Doyle, Ralph T; Braeckman, Rene A; Stirtan, William G; Soni, Paresh N; Juliano, Rebecca A

    2016-10-01

    Remnant-like particle cholesterol (RLP-C) is atherogenic and may increase atherosclerotic cardiovascular disease risk. Icosapent ethyl is a high-purity prescription eicosapentaenoic acid ethyl ester (approved as an adjunct to diet to reduce triglyceride [TG] levels in adult patients with TGs ≥500 mg/dL [≥5.65 mmol/L] at 4 g/day). In the MARINE and ANCHOR studies, icosapent ethyl reduced TG and other atherogenic lipid parameter levels without increasing low-density lipoprotein cholesterol (LDL-C) levels. This exploratory analysis evaluated the effects of icosapent ethyl on calculated and directly measured RLP-C. MARINE (TGs ≥500 and ≤2000 mg/dL [≥5.65 mmol/L and ≤22.6 mmol/L]) and ANCHOR (TGs ≥200 and <500 mg/dL [≥2.26 and <5.65 mmol/L] despite statin-controlled LDL-C) were phase 3, 12-week, double-blind studies that randomized adult patients to icosapent ethyl 4 g/day, 2 g/day, or placebo. This analysis assessed median percent change from baseline to study end in directly measured (immunoseparation assay) RLP-C levels (MARINE, n = 218; ANCHOR, n = 252) and calculated RLP-C levels in the full populations. Icosapent ethyl 4 g/day significantly reduced directly measured RLP-C levels -29.8% (p = 0.004) in MARINE and -25.8% (p = 0.0001) in ANCHOR versus placebo, and also reduced directly measured RLP-C levels to a greater extent in subgroups with higher versus lower baseline TG levels, in patients receiving statins versus no statins (MARINE), and in patients receiving medium/higher-intensity versus lower-intensity statins (ANCHOR). Strong correlations were found between calculated and directly measured RLP-C for baseline, end-of-treatment, and percent change values in ANCHOR and MARINE (0.73-0.92; p < 0.0001 for all). Icosapent ethyl 4 g/day significantly reduced calculated and directly measured RLP-C levels versus placebo in patients with elevated TG levels from the MARINE and ANCHOR studies. Copyright © 2016 The Authors

  8. Recent solvent extraction experience at Savannah River

    International Nuclear Information System (INIS)

    Gray, L.W.; Burney, G.A.; Gray, J.H.; Hodges, M.E.; Holt, D.L.; Macafee, I.M.; Reif, D.J.; Shook, H.E.

    1986-01-01

    Tributyl phosphate-based solvent extraction processes have been used at Savannah River for more than 30 years to separate and purify thorium, uranium, neptunium, plutonium, americium, and curium isotopes. This report summarizes the advancement of solvent extraction technology at Savannah River during the 1980's. Topics that are discussed include equipment improvements, solvent treatment, waste reduction, and an improved understanding of the various chemistries in the process streams entering, within, and leaving the solvent extraction processes

  9. Sleep disturbances and exposure to organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Lindelof, B.; Almkvist, O.; Goethe, C. (Huddinge Hospital (Sweden))

    An inquiry about sleep habits and sleep disturbances revealed a significantly higher prevalence of insomnia in a solvent-exposed group than in a comparable group that had no occupational exposure to organic solvents. The solvent-exposed group has also registered an increased consumption of hypnotics, and a significant increase occurred in the number of individuals who had consulted physicians because of sleep disorders. The results indicate that solvent exposure could induce sleep disturbances.

  10. A green analytical chemistry approach for lipid extraction: computation methods in the selection of green solvents as alternative to hexane.

    Science.gov (United States)

    Cascant, Mari Merce; Breil, Cassandra; Garrigues, Salvador; de la Guardia, Miguel; Fabiano-Tixier, Anne Silvie; Chemat, Farid

    2017-05-01

    There is a great interest in finding alternatives and green solvents in extraction processes to replace petroleum based solvents. In order to investigate these possibilities, computational methods, as Hansen solubility parameters (HSP) and conductor-like screening model for real solvent (COSMO-RS), were used in this work to predict the solvation power of a series of solvents in salmon fish lipids. Additionally, experimental studies were used to evaluate the performance in lipids extraction using 2-methyltetrahydrofurane, cyclopentyl methyl ether, dimethyl carbonate, isopropanol, ethanol, ethyl acetate, p-cymene and d-limonene compared with hexane. Lipid classes of extracts were obtained by using high performance thin-layer chromatography (HPTLC), whereas gas chromatography with a flame ionization detector (GC/FID) technique was employed to obtain fatty acid profiles. Some differences between theoretical and experimental results were observed, especially regarding the behavior of p-cymene and d-limonene, which separate from the predicted capability. Results obtained from HPTLC indicated that p-cymene and d-limonene extract triglycerides (TAGs) and diglycerides (DAGs) at levels of 73 and 19%, respectively, whereas the other studied extracts contain between 75 and 76% of TAGs and between 16 and 17% of DAGs. Fatty acid profiles, obtained by using GC-FID, indicated that saturated fatty acids (SFAs) between 19.5 and 19.9% of extracted oil, monounsaturated fatty acids (MUFAs) in the range between 43.5 and 44.9%, and PUFAs between 31.2 and 34.6% were extracted. p-Cymene and limonene extracts contained lower percentages than the other studied solvents of some PUFAs due probably to the fact that these unsaturated fatty acids are more susceptible to oxidative degradation than MUFAs. Ethyl acetate has been found to be the best alternative solvent to hexane for the extraction of salmon oil lipids. Graphical Abstract ᅟ.

  11. Exploring the usefulness of key green physicochemical properties: Quantitative structure-activity relationship for solvents from biomass.

    Science.gov (United States)

    Zuriaga, Estefanía; Giner, Beatriz; Ribate, María Pilar; García, Cristina B; Lomba, Laura

    2018-04-01

    In recent decades there has been a growing interest in the development of new solvents from biomass. Some of these new solvents have been classified as green because of their renewable and sustainable source. However, characterization from the ecotoxicological and physicochemical points of view is needed to categorize them as green solvents. We have selected several key physicochemical properties that can reflect environmental features (density, boiling point, critical aggregation concentration, and log p) and explored their usefulness for preliminarily assessing the green character of the studied solvents. Specifically, we have studied several solvents from biomass: lactate family (methyl, ethyl, and butyl lactate), furfural family (furfural, 5-methylfurfural, furfuryl alcohol, and tetrahydrofurfuryl alcohol), and levulinate family (methyl, ethyl, and butyl levulinate). To fill the gaps and complete some toxicity data for the environment, we have measured the ecotoxicity using 2 of the most common and versatile biomodels, bacteria Vibrio fischeri and crustacean Daphnia magna, for furfural- and lactate-derived compounds. The results indicate that solvents from biomass can be categorized as green because their toxicity for the environment is low. Finally, a quantitative structure-activity relationship (QSAR) study was performed with the selected key properties and the ecotoxicological information. Despite the different structure of the chemicals under study, good correlations were found for the studied organisms. It seems that log p and critical aggregation concentration reflect the greatest part of the ecotoxic behavior, whereas density and boiling point cannot reflect toxicity signals. However, these properties are rather useful for assessing the final environmental fate of the studied chemicals. Environ Toxicol Chem 2018;37:1014-1023. © 2017 SETAC. © 2017 SETAC.

  12. Solvent Extraction of Thorium Using 5,11,17,23-Tetra[(2-ethyl acetoethoxyphenyl(azophenyl]calix[4]arene

    Directory of Open Access Journals (Sweden)

    Quang Hieu Tran

    2016-01-01

    Full Text Available A rapid, sensitive, and selective method for determination of thorium based on the complex with ortho-ester tetra-azophenylcalix[4]arene (TEAC was described. In the presence of pH of 4–6, TEAC-Th(IV complex is extracted from an acidic aqueous solution into chloroform layer. The absorbance intensity of complex was measured by UV-Vis spectrometer at 525 nm and the molar absorptivity was found to be 2.4 × 104. Beer’s law was obeyed in the range of 1.0 to 25 × 10−5 M thorium(IV. The effects of pH, TEAC concentration, and shaking time were also studied. The tolerance limits for several metal ions were calculated. The proposed method was applied to the determination of thorium in synthetic solution and in the monazite sand samples with good results.

  13. Calculation for liquid-liquid equilibria of quaternary alkane-ethyl acetate-methanol-water systems used in counter-current chromatography.

    Science.gov (United States)

    Chen, Jian; Zhao, Mengqiang; Yu, Yanmei; Li, Zongcheng

    2007-06-01

    The calculation of liquid-liquid equilibrium compositions of solvent systems is very important for the work on counter-current chromatography (CCC), especially the phase composition and volume ratio obtained from liquid-liquid equilibrium calculation. In this work, liquid-liquid equilibria of quaternary Arizona solvent systems, alkane-ethyl acetate-methanol-water, and related ternary systems are correlated and predicted using the non-random two-liquid model (NRTL). Hexane, heptane and isooctane are the used alkanes. The parameters in the model are regressed only with the special systems considered. Detailed comparison with experimental data shows that liquid-liquid equilibria of these systems can be predicted with greatly improved accuracy as compared to the group contribution method (UNIFAC).

  14. Small angle neutron scattering study of the conformation of poly(ethylene oxide) dissolved in deep eutectic solvents.

    Science.gov (United States)

    Chen, Zhengfei; McDonald, Samila; FitzGerald, Paul; Warr, Gregory G; Atkin, Rob

    2017-11-15

    The conformation of poly(ethylene oxide) (PEO) in deep eutectic solvents (DESs) is determined by the polymer-solvent interactions, especially hydrogen bonding interactions. The hypothesis for this work is that the hydrogen bonding environment of a DES can be varied via changing the cation or hydrogen bond donor (HBD), and therefore the solvent quality for PEO; the anion species will also effect hydrogen bonding, but this is not examined here. Small angle neutron scattering (SANS) is used to probe the concentration dependent conformation of 36kDa PEO dissolved in DESs formed by mixing ethyl or butyl ammonium bromide with a molecular HBD (glycerol or ethylene glycol) in a 1:2 molar ratio. The radius of gyration (R g ), Flory exponent and crossover concentration (c * ) from the dilute to the semi-dilute regime of PEO in the DESs revealed by SANS and Zimm plot analysis show that these DESs are moderately good solvents for PEO. When the ammonium alkyl chain length is increased, the hydrogen bond density per unit volume decreases, and with it the solvent quality for PEO. The solvent quality is improved when the HBD is changed from glycerol to ethylene glycol due to differences in the hydrogen bonding environment for PEO. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Protection efficacy of gloves against components of the solvent in a sprayed isocyanate coating utilizing a reciprocating permeation panel.

    Science.gov (United States)

    Ceballos, Diana M; Reeb-Whitaker, Carolyn; Sasakura, Miyoko; Dills, Russell; Yost, Michael G

    2015-04-01

    Determine protection effectiveness of 5-mil natural rubber latex (0.13-mm), 5-mil nitrile rubber (0.13-mm), and 13-mil butyl rubber (0.33-mm) glove materials against solvents present in a commonly used automotive clear coat formulation using a novel permeation panel. The latex and nitrile gloves were the type commonly used by local autobody spray painters. Glove materials were tested by spraying an automotive clear coat onto an automated reciprocating permeation panel (permeation panel II). Temperature, relative humidity, and spray conditions were controlled to optimize clear coat loading homogeneity as evaluated by gravimetric analysis. Solvent permeation was measured using charcoal cloth analyzed by the National Institute for Occupational Safety and Health 1501 method. Natural rubber latex allowed 3-5 times the permeation of solvents relative to nitrile rubber for all 10 solvents evaluated: ethyl benzene, 2-heptanone, 1-methoxy-2-propyl acetate, o-xylene, m-xylene, p-xylene, n-butyl acetate, methyl isobutyl ketone, petroleum distillates, and toluene. There is a distinct behavior in solvent permeation before and after the coating dry time. Solvent permeation increased steadily before coating dry time and remained fairly constant after coating dry time. Butyl was not permeated by any of the solvents under the conditions tested. Commonly used 5-mil thick (0.13-mm) latex and nitrile gloves were ineffective barriers to solvents found in a commonly used clear coat formulation. Conversely, 13-mil (0.33-mm) butyl gloves were found to be protective against all solvents in the clear coat formulation. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  16. Development of pH sensitive 2-(diisopropylamino)ethyl methacrylate based nanoparticles for photodynamic therapy

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Cheng-Liang; Luo, Tsai-Yueh; Lin, Wuu-Jyh [Isotope Application Division, Institute of Nuclear Energy Research, PO Box 3-27, Longtan, Taoyuan 325, Taiwan (China); Yang, Li-Yuan; Yang, Shu-Jyuan; Shieh, Ming-Jium [Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan (China); Lai, Ping-Shan, E-mail: soloman@ntu.edu.tw [Department of Chemistry, National Chung-Hsing University, 250, Kuo-Kuang Road, Taichung 402, Taiwan (China)

    2010-04-16

    Photodynamic therapy is an effective treatment for tumors that involves the administration of light-activated photosensitizers. However, most photosensitizers are insoluble and non-specific. To target the acid environment of tumor sites, we synthesized three poly(ethylene glycol) methacrylate-co-2-(diisopropylamino)ethyl methacrylate (PEGMA-co-DPA) copolymers capable of self-assembly to form pH sensitive nanoparticles in an aqueous environment, as a means of encapsulating the water-insoluble photosensitizer, meso-tetra(hydroxyphenyl)chlorin (m-THPC). The critical aggregation pH of the PEGMA-co-DPA polymers was 5.8-6.6 and the critical aggregation concentration was 0.0045-0.0089 wt% at pH 7.4. Using solvent evaporation, m-THPC loaded nanoparticles were prepared with a high drug encapsulation efficiency (approximately 89%). Dynamic light scattering and transmission electron microscopy revealed the spherical shape and 132 nm diameter of the nanoparticles. The in vitro release rate of m-THPC at pH 5.0 was faster than at pH 7.0 (58% versus 10% m-THPC released within 48 h, respectively). The in vitro photodynamic therapy efficiency was tested with the HT-29 cell line. m-THPC loaded PEGMA-co-DPA nanoparticles exhibited obvious phototoxicity in HT-29 colon cancer cells after light irradiation. The results indicate that these pH sensitive nanoparticles are potential carriers for tumor targeting and photodynamic therapy.

  17. Inhalation developmental toxicology studies: Teratology study of methyl ethyl ketone in mice: Final report

    International Nuclear Information System (INIS)

    Mast, T.J.; Dill, J.A.; Evanoff, J.J.; Rommereim, R.L.; Weigel, R.J.; Westerberg, R.B.

    1989-02-01

    Methyl ethyl ketone (MEK) is a widely used industrial solvent which results in considerable human exposure. In order to assess the potential for MEK to cause developmental toxicity in rodents, four groups of Swiss (CD-1) mice were exposed to 0, 400, 1000 or 3000 ppM MEK vapors, 7 h/day, 7 dy/wk. Ten virgin females and ∼30 plug-positive females per group were exposed concurrently for 10 consecutive days (6--15 dg for mated mice). Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice on 18 dg. Uterine implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. Exposure of pregnant mice to these concentrations of MEK did not result in apparent maternal toxicity, although there was a slight, treatment-correlated increase in liver to body weight ratios which was significant for the 3000-ppM group. Mild developmental toxicity was evident at 3000-ppM as a reduction in mean fetal body weight. This reduction was statistically significant for the males only, although the relative decrease in mean fetal body weight was the same for both sexes. 17 refs., 4 figs., 10 tabs

  18. Inhalation developmental toxicology studies: Teratology study of methyl ethyl ketone in mice: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mast, T.J.; Dill, J.A.; Evanoff, J.J.; Rommereim, R.L.; Weigel, R.J.; Westerberg, R.B.

    1989-02-01

    Methyl ethyl ketone (MEK) is a widely used industrial solvent which results in considerable human exposure. In order to assess the potential for MEK to cause developmental toxicity in rodents, four groups of Swiss (CD-1) mice were exposed to 0, 400, 1000 or 3000 ppM MEK vapors, 7 h/day, 7 dy/wk. Ten virgin females and approx.30 plug-positive females per group were exposed concurrently for 10 consecutive days (6--15 dg for mated mice). Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice on 18 dg. Uterine implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. Exposure of pregnant mice to these concentrations of MEK did not result in apparent maternal toxicity, although there was a slight, treatment-correlated increase in liver to body weight ratios which was significant for the 3000-ppM group. Mild developmental toxicity was evident at 3000-ppM as a reduction in mean fetal body weight. This reduction was statistically significant for the males only, although the relative decrease in mean fetal body weight was the same for both sexes. 17 refs., 4 figs., 10 tabs.

  19. FATTY ACID ETHYL ESTERS FROM MICROALGAE OF Scenedesmus ecornis BY ENZYMATIC AND ACID CATALYSIS

    Directory of Open Access Journals (Sweden)

    Gabryelle F. de Almeida

    Full Text Available Microalgae are an indispensable food source for the various growth stages of mollusks, crustaceans, and several fish species. Using a microalgae biomass present in the Amazonian ecosystem (Macapá-AP, we study extraction methods for fatty acid such as solvent extraction (magnetic stirring and/or Soxhlet and/or hydrolysis (acid and/or enzymatic catalysis followed by esterification and/or direct transesterification. Extraction of crude triacylglycerides by mechanical stirring at room temperature was more efficient than continuous reflux (Soxhlet. Subsequently, the lipid extract was subject to transesterification with ethanol and CAL-B as a biocatalyst, leading to production of fatty acid ethyl esters (FAEE. Additionally, FAEEs were prepared by hydrolysis of crude triacylglycerides followed by acid-mediated esterification or enzymatic catalysis (lipase. In this case, the type of catalyst did not significantly influence FAEE yields. In the lipid extract, we identified palmitic, linoleic, oleic, and stearic acids with palmitic acid being the most abundant. Our results suggest that enzymatic catalysis is a viable method for the extraction of lipids in the microalga, Scenedesmus ecornis.

  20. Measurement and correlation of solubility of trans-resveratrol in 11 solvents at T = (278.2, 288.2, 298.2, 308.2, and 318.2) K

    International Nuclear Information System (INIS)

    Sun Xilan; Peng Bin; Yan Weidong

    2008-01-01

    The solubilities of trans-resveratrol in methanol, ethanol, 1-propanol, 2- propanol, 1-butanol, 1-pentanol, 1-hexanol, ethyl acetate, tetrahydrofuran, acetone, and water (pH 6.0) solvents were measured at T = (278.2, 288.2, 298.2, 308.2, and 318.2) K. The solubilities of trans-resveratrol in selected solvents increase with temperature, but decrease with increasing the number of carbon in alcohol solvents. The experimental data were correlated using a thermodynamic equation

  1. Comparison of formalin-ethyl ether sedimentation, formalin-ethyl acetate sedimentation, and zinc sulfate flotation techniques for detection of intestinal parasites.

    OpenAIRE

    Truant, A L; Elliott, S H; Kelly, M T; Smith, J H

    1981-01-01

    Formalin-ethyl ether sedimentation, Formalin-ethyl acetate sedimentation, and zinc sulfate flotation techniques were compared using over 250 clinical parasitology specimens. Fifty positive specimens were identified, and a variety of parasites, including amoebae, flagellates, cestodes, nematodes, and trematodes, were encountered. The Formalin-ether and Formalin-ethyl acetate sedimentation procedures gave identical results for the detection of cysts, ova, and larvae, and these methods offered a...

  2. Solvent cleaning system and method for removing contaminants from solvent used in resin recycling

    Science.gov (United States)

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

  3. The Physics of Polarization

    Science.gov (United States)

    Landi Degl'Innocenti, Egidio

    2015-10-01

    The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.

  4. High-throughput determination of quantitative structure-property relationships using a resonant multisensor system: solvent resistance of bisphenol a polycarbonate copolymers.

    Science.gov (United States)

    Potyrailo, Radislav A; McCloskey, Patrick J; Wroczynski, Ronald J; Morris, William G

    2006-05-01

    Polymers are important materials for sensor, microfluidic, and other demanding applications. High-throughput screening methodology has been applied for the evaluation of the solvent resistance of a family of polycarbonate copolymers prepared from the reaction of bisphenol A (BPA), hydroquinone (HQ), and resorcinol (RS) in different solvents of practical importance, such as chloroform, tetrahydrofuran (THF), and methyl ethyl ketone (MEK). We employed a 24-channel acoustic-wave sensor system that provided previously unavailable capabilities for parallel evaluation of polymer solvent resistance. This high-throughput polymer evaluation approach assisted in construction of detailed solvent-resistance maps of polycarbonate copolymers and in determination of quantitative structure-property relationships. The best absolute solvent resistance of all studied copolymers was achieved in MEK, followed by chloroform and THF. A D-optimal mixture design was employed to explore the relationship between the copolymer compositions and their solvent resistance. The applied special cubic model for each solvent took into account the primary mixture terms such as BPA, HQ, and RS; binary interaction terms such as BPA-HQ, BPA-RS, and HQ-RS; and a ternary interaction term BPA-HQ-RS. A combination of the normal distribution of the model residuals and the very high values of adjusted R2 (0.97-0.99) demonstrated a good quality of the model. At a HQ concentration of 40 mol %, the solvent resistance was the highest for all tested solvents, and different concentrations of BPA (40 and 60 mol %) and RS (0 and 20 mol %) did not affect the solvent resistance. Without HQ, solvent resistance was decreasing with an increase of RS and decrease of BPA. Overall, with an increase of HQ concentration from 0 to 40 mol %, the solvent resistance of BPA-HQ-RS copolymers was improved by up to 3 times in THF, by 21 times in chloroform, and by 32 times in MEK.

  5. Solvothermal Synthesis of TiO2 Photocatalysts in Ketone Solvents with Low Boiling Points

    Directory of Open Access Journals (Sweden)

    Chau Thanh Nam

    2013-01-01

    Full Text Available The titanium dioxide (TiO2 photocatalysts were synthesized by a solvothermal process in highly alkaline 70 : 30 water : ketone solutions with a TiO2-P25 precursor and calcined at different temperatures. The ketone solvents, such as acetone and methyl ethyl ketone (MEK, had low boiling points (<100°C. The as-prepared samples were characterized by XRD, TEM, FTIR, UV-vis and Raman spectroscopy. The effects of the different solvents on the nanostructure, the morphology, and the photocatalytic performance of the TiO2 products were investigated. Nanotubes formed in water and water-MEK, while nanoparticle/nanowires formed in water-acetone and water-acetone-MEK. The ketone solvents played an important role in the improving nanostructure properties of these products, which affected their photocatalytic reactions. The results indicated that samples synthesized in solvents such as water and MEK had high adsorption and photocatalytic behaviors. The photocatalytic reactivity was the greatest for the TiO2 prepared in MEK and calcined at 100°C, which was even more reactive than the sample prepared in water and TiO2-P25 powder.

  6. The influence of hydrogen bonds and preferential solvation on spectroscopic properties of methyl p-dimethylaminobenzoate and its ortho derivative in binary solvent mixture

    Science.gov (United States)

    Józefowicz, Marek

    2011-05-01

    Using the steady-state spectroscopic technique, we have studied the spectroscopic properties of methyl p-dimethylaminobenzoate and its ortho derivative in binary mixture where one of components is capable to form hydrogen bonds with the solute molecules. Non-linear solvatochromic shifts of the absorption, locally excited (LE) and intramolecular charge transfer (ICT) fluorescence bands are observed for both fluorophores. This non-linearity has been explained as due to three main causes: non-ideal behavior of the solvent mixture, specific solute-solvent association, and dielectric enrichment of the solvent around the polar solutes. The results of spectroscopic measurements were used to calculate, according to Mazurenko's, Bakhshiev's and Kiselev's theories, the free energy of the reorientational interaction for a studied molecules, the number of more polar solvent molecules involved in the first solvation shell and the fluorescence spectra of solvates having different number of more polar component in the first solvation shell.

  7. Computer-aided tool for solvent selection in pharmaceutical processes: Solvent swap

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil; K. Tula, Anjan; Gernaey, Krist V.

    In the pharmaceutical processes, solvents have a multipurpose role since different solvents can be used in different stages (such as chemical reactions, separations and purification) in the multistage active pharmaceutical ingredients (APIs) production process. The solvent swap and selection tasks...... swap solvents is developed and is used to retrieve information for the most commonly used solvent candidates typically found in the pharmaceutical industry. The selection is verified by simulation. The framework for the solvent selection and solvent swap is part of an integrated computer...

  8. Direct observation of the solvent effects on the low-lying nπ* and ππ* excited triplet states of acetophenone derivatives in thermal equilibrium.

    Science.gov (United States)

    Narra, Sudhakar; Shigeto, Shinsuke

    2015-03-05

    Low-lying excited triplet states of aromatic carbonyl compounds exhibit diverse photophysical and photochemical properties of fundamental importance. Despite tremendous effort in studying those triplet states, the effects of substituents and solvents on the energetics of the triplet manifold and on photoreactivity remain to be fully understood. We have recently studied the ordering of the low-lying nπ* and ππ* excited triplet states and its substituent dependence in acetophenone derivatives using nanosecond time-resolved near-IR (NIR) spectroscopy. Here we address the other important issue, the solvent effects, by directly observing the electronic bands in the NIR that originate from the lowest nπ* and ππ* states of acetophenone derivatives in four solvents of different polarity (n-heptane, benzene, acetonitrile, and methanol). The two transient NIR bands decay synchronously in all the solvents, indicating that the lowest nπ* and ππ* states are in thermal equilibrium irrespective of the solvent polarity studied here. We found that the ππ* band increases in intensity relative to the nπ* band as solvent polarity increases. These results are compared with the photoreduction rate constant for the acetophenone derivatives in the solvents to which 2-propanol was added as a hydrogen-atom donor. Based on the present findings, we present a comprehensive, solvent- and substituent-dependent energy level diagram of the low-lying nπ* and ππ* excited triplet states.

  9. Synthesis of quinoxaline 1,4-di-n-oxide derivatives on solid support using room temperature and microwave-assisted solvent-free procedures

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Caro, Lilia C.; Sanchez-Sanchez, Mario; Bocanegra-Garcia, Virgilio; Rivera, Gildardo [Universidad Autonoma de Tamaulipas, Reynosa (Mexico). Dept. de Farmacia y Quimica Medicinal; Monge, Antonio [Universidad de Navarra, Pamplona (Spain). Centro de Investigacion en Farmacobiologia Aplicada. Unidad de Investigacion y Desarrollo de Medicamentos

    2011-07-01

    We describe the synthesis of 12 new ethyl and methyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives on solid supports with room temperature and microwave-assisted solvent-free procedures. Results show that solid supports have good catalytic activity in the formation of quinoxaline 1,4-di-N-oxide derivatives. We found that florisil and montmorillonite KSF and K10 could be used as new, easily available, inexpensive alternatives of catalysts. Additionally, room temperature and microwave-irradiation solvent-free synthesis was more efficient than a conventional procedure (Beirut reaction), reducing reaction time and increasing yield. (author)

  10. SPECTROSCOPIC CHARACTERIZATION AND DETECTION OF ETHYL MERCAPTAN IN ORION

    International Nuclear Information System (INIS)

    Kolesniková, L.; Alonso, J. L.; Daly, A. M.; Tercero, B.; Cernicharo, J.; Gordon, B. P.; Shipman, S. T.

    2014-01-01

    New laboratory data of ethyl mercaptan, CH 3 CH 2 SH, in the millimeter- and submillimeter-wave domains (up to 880 GHz) provided very precise values of the spectroscopic constants that allowed the detection of gauche-CH 3 CH 2 SH toward Orion KL. This identification is supported by 77 unblended or slightly blended lines plus no missing transitions in the range 80-280 GHz. A detection of methyl mercaptan, CH 3 SH, in the spectral survey of Orion KL is reported as well. Our column density results indicate that methyl mercaptan is ≅ 5 times more abundant than ethyl mercaptan in the hot core of Orion KL

  11. Micellar phase boundaries under the influence of ethyl alcohol

    International Nuclear Information System (INIS)

    Bergeron, Denis E.

    2016-01-01

    The Compton spectrum quenching technique is used to monitor the effect of ethyl alcohol (EtOH) additions on phase boundaries in two systems. In toluenic solutions of the nonionic surfactant, Triton X-100, EtOH shifts the boundary separating the first clear phase from the first turbid phase to higher water:surfactant ratios. In a commonly used scintillant, Ultima Gold AB, the critical micelle concentration is not shifted. The molecular interactions behind the observations and implications for liquid scintillation counting are discussed. - Highlights: • Compton spectrum quenching technique applied to find micellar phase boundaries. • Toluenic Triton X-100 and Ultima Gold AB investigated. • Ethyl alcohol affects phase boundaries in Triton X-100, not in Ultima Gold AB. • Phase boundary observations discussed in terms of relevant molecular interactions.

  12. Turbulent Motion in Ethyl Acetate-Water System

    Science.gov (United States)

    Ahmad, Jamil

    2000-09-01

    An overhead projector demonstration is described in which 4 mL of ethyl acetate is added to 10 mL of water contained in a 10-cm diameter Petri dish. Within a minute or so of the addition, image of a turbulent motion appears on the screen, at first at a few centers that eventually organize themselves in a line. The image of the line of turbulence is quite striking and resembles a moving front of dancing flames. The phenomenon arises because as ethyl acetate evaporates from the region where it has spread in the form of a monolayer, fresh material gets transferred to take its place. Because of the viscosity effects, this transfer of the surface film causes movement in the bulk of the material as well, making the process visible.

  13. Elevated plasma creatinine due to creatine ethyl ester use.

    Science.gov (United States)

    Velema, M S; de Ronde, W

    2011-02-01

    Creatine is a nutritional supplement widely used in sport, physical fitness training and bodybuilding. It is claimed to enhance performance. We describe a case in which serum creatinine is elevated due to the use of creatine ethyl esther. One week after withdrawal, the plasma creatinine had normalised. There are two types of creatine products available: creatine ethyl esther (CEE) and creatine monohydrate (CM). Plasma creatinine is not elevated in all creatine-using subjects. CEE , but not CM, is converted into creatinine in the gastrointestinal tract. As a result the use of CEE may be associated with elevated plasma creatinine levels. Since plasma creatinine is a widely used marker for renal function, the use of CEE may lead to a false assumption of renal failure.

  14. Rapid determination of volatile constituents in safflower from Xinjiang and Henan by ultrasonic-assisted solvent extraction and GC–MS

    Directory of Open Access Journals (Sweden)

    Ling-Han Jia

    2011-08-01

    Full Text Available The total volatile components were extracted from safflower by ultrasonic-assisted solvent extraction (USE and their chemical constituents were analyzed by gas chromatography–mass spectrometry (GC–MS to provide scientific basis for the quality control of safflower. Five different solvents (diethyl ether, ethanol, ethyl acetate, dichloromethane and acetone were used and compared in terms of number of volatile components extracted and the peak areas of these components in TIC. The results showed that USE could be used as an efficient and rapid method for extracting the volatile components from safflower. It also could be found that the number of components in the TIC of ethyl acetate extract was more than that in the TIC of other solvent ones. Meanwhile, the volatile components of safflower from Xinjiang Autonomous Region and Henan Province of China were different in chemical components and relative contents. It could be concluded that both the extraction solvents and geographical origin of safflower are responsible for these differences. The experimental results also indicated that USE/GC–MS is a simple, rapid and effective method to analyze the volatile oil components of safflower. Keywords: Safflower, Ultrasonic solvent extraction, Gas chromatography–mass spectrometry (GC–MS

  15. Purity Evaluation of Curcuminoids in the Turmeric Extract Obtained by Accelerated Solvent Extraction.

    Science.gov (United States)

    Yadav, Dinesh K; Sharma, Khushbu; Dutta, Anirban; Kundu, Aditi; Awasthi, Akanksha; Goon, Arnab; Banerjee, Kaushik; Saha, Supradip

    2017-05-01

    Curcuminoids, the active principle of Curcuma longa L, is one of the most researched subjects worldwide for its broad-spectrum biological activities. Being traditionally known for their anticancer properties and issues related to bioavailability, the curcuminoids, including diferuloylmethane (curcumin), have gained special attention. Thus, the current study focused on the purity profiling of curcuminoids when extracted by accelerated solvent extraction, which was run with turmeric rhizome powder (20 g) at 1500 psi and at 50°C, with a static time of 10 min and with three cycles. The performance of ethanol, ethyl acetate, and acetone as extraction solvents was comparatively evaluated. Once extracted, the individual curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin) were purified by column chromatography, followed by preparative TLC, and the compounds were characterized by spectroscopic and chromatographic techniques. The HPLC method was standardized by using a gradient mobile phase of water and acetonitrile containing 0.1% formic acid. The LODs were calculated as 0.27, 0.33, and 0.42 μg/mL for curcumin, demethoxycurcumin, and bisdemethoxycurcumin, respectively. Accuracy (relative percentage error) and precision RSD values of the developed HPLC method were below 5%. The intraday accuracy ranged between -0.9 and -3.63%. The physical yield was the highest in ethanol (8.4%) extraction, followed by ethyl acetate (7.4%) and acetone (6.6%). Maximum purity was recorded in acetone (46.2%), followed by ethanol (43.4%) and ethyl acetate (38.8%), with no significant differences across the individual curcuminoids. This research will be useful for future applications related to the extraction of curcuminoids at a commercial level and to their profiling in food matrixes.

  16. Effect of PAF on polyrnorphonuclear leucocyte plasma membrane polarity: a fluorescence study

    Directory of Open Access Journals (Sweden)

    A. Kantar

    1993-01-01

    Full Text Available The effect of PAF on the plasma membrane polarity of polymorphonuclear leukocytes (PMNs was investigated by measuring the steady-state fluorescence emission spectra of 2-dimethylamino(6-1auroyl naphthalene (Laurdan, which is known to be incorporated at the hydrophobic-hydrophilic interface of the bilayer, displaying spectral sensitivity to the polarity of its surrounding. Laurdan shows a marked steady-state emission blue-shift in non-polar solvents, with respect to polar solvents. Our results demonstrate that PAF (10−7 M induces a blue shift of the fluorescence emission spectra of Laurdan. These changes are blocked in the presence of the PAF antagonist, L-659,989. Our data indicate that the interaction between PAF and PMNs is accompanied by a decrease in polarity in the hydrophobic-hydrophilic interface of the plasma membrane.

  17. Fast detoxication of 2-chloro ethyl ethyl sulfide by p-type Ag{sub 2}O semiconductor nanoparticle-loaded Al{sub 2}O{sub 3}-based supports

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Meng-Wei [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Kuo, Dong-Hau, E-mail: dhkuo@mail.ntust.edu.tw [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2016-01-15

    Highlights: • Detoxication of CWA surrogate of 2-chloro ethyl ethyl sulfide is investigated. • A small amount of Ag{sub 2}O on Al{sub 2}O{sub 3}-base support is sufficient to degrade 2-CEES. • Detoxication conversion >82% in 15 min is achieved for >2.5% Ag{sub 2}O/Na{sub 2}SiO{sub 3}/Al{sub 2}O{sub 3}. • Na{sub 2}SiO{sub 3} modified Al{sub 2}O{sub 3} to have the valley-like line pattern for depositing Ag{sub 2}O. • 2-CEES oxidation is initiated from the dominant electronic holes in p-type Ag{sub 2}O. - Abstract: p-type Ag{sub 2}O semiconductor nanoparticle-loaded Al{sub 2}O{sub 3} or Na{sub 2}SiO{sub 3}/Al{sub 2}O{sub 3} powders used for detoxicating the surrogate of sulfur mustard of 2-chloro ethyl ethyl sulfide (C{sub 2}H{sub 5}SCH{sub 2}CH{sub 2}Cl, 2-CEES) were investigated. Different amounts of Ag{sub 2}O and Na{sub 2}SiO{sub 3} on catalyst supports were evaluated. Gas chromatography with a pulsed flame photometric detector (GC–PFPD) and gas chromatography coupled with a mass spectroscopy (GC–MS) were used to monitor and identify the catalytic reactions, together with reaction products analysis. The GC analyses showed that the decontamination of 2-CEES in isopropanol solvent for 15 min was above 82% efficiency for the 0.5% Na{sub 2}SiO{sub 3}/Al{sub 2}O{sub 3} support deposited with a Ag{sub 2}O content above 2.5%. 2-(ethylthio)ethanol and 2-(ethylthio)ethanoic acid were identified as the major products after catalytic reactions. The electronic holes dominating in p-type Ag{sub 2}O is proposed to provide the key component and to initiate the catalytic reactions. The electronic hole-based detoxication mechanism is proposed.

  18. Synthesis of new radiotracers based of Ethyl Ester

    International Nuclear Information System (INIS)

    Trabelsi, Donia

    2008-01-01

    The in vivo study of a biochemical or physiological process requires the synthesis of specific radiotracers but also the targeting of these compounds so that they can reach their target tissue. Methodologies original synthesis associated with radioisotopes used, the quantities and chemical forms often have to be available developed. The chemistry of metal complexes booming, we were able to use the ethyl ester combined with technetium, forming a stable radiotracer. Finally, a counting of radioactivity in different rat's organs completed our study. (Author)

  19. 3-Chloro-2-ethyl-6-nitro-2H-indazole

    Directory of Open Access Journals (Sweden)

    Mohamed Mokhtar Mohamed Abdelahi

    2017-05-01

    Full Text Available In the title compound, C9H8ClN3O2, the orientation of the ethyl substituent is partly determined by an intramolecular C—H...Cl hydrogen bond. The indazole moiety is slightly folded with an angle of 0.70 (8° between the five- and six-membered rings. In the crystal, molecules pack in layers parallel to [100] through C—H...π(ring and N...;O...π(ring interactions.

  20. Comparative Acute Toxicity Of Chlorpyrifos-Ethyl (Organophosphate ...

    African Journals Online (AJOL)

    cyhalothrin on Clarias gariepinus was evaluated through changes of selected biochemical parameters. Fish was exposed to 0.64 mg/l, 0.80 mg/l, 0.96 mg/l, 1.12 mg/l, 1.28 mg/l of chlorpyrifos-ethyl, and 0.008mg/l, 0.009mg/l, 0.010mg/l, ...