WorldWideScience

Sample records for polar science education

  1. Joint Science Education Project: Learning about polar science in Greenland

    Science.gov (United States)

    Foshee Reed, Lynn

    2014-05-01

    The Joint Science Education Project (JSEP) is a successful summer science and culture opportunity in which students and teachers from the United States, Denmark, and Greenland come together to learn about the research conducted in Greenland and the logistics involved in supporting the research. They conduct experiments first-hand and participate in inquiry-based educational activities alongside scientists and graduate students at a variety of locations in and around Kangerlussuaq, Greenland, and on the top of the ice sheet at Summit Station. The Joint Committee, a high-level forum involving the Greenlandic, Danish and U.S. governments, established the Joint Science Education Project in 2007, as a collaborative diplomatic effort during the International Polar Year to: • Educate and inspire the next generation of polar scientists; • Build strong networks of students and teachers among the three countries; and • Provide an opportunity to practice language and communication skills Since its inception, JSEP has had 82 student and 22 teacher participants and has involved numerous scientists and field researchers. The JSEP format has evolved over the years into its current state, which consists of two field-based subprograms on site in Greenland: the Greenland-led Kangerlussuaq Science Field School and the U.S.-led Arctic Science Education Week. All travel, transportation, accommodations, and meals are provided to the participants at no cost. During the 2013 Kangerlussuaq Science Field School, students and teachers gathered data in a biodiversity study, created and set geo- and EarthCaches, calculated glacial discharge at a melt-water stream and river, examined microbes and tested for chemical differences in a variety of lakes, measured ablation at the edge of the Greenland Ice Sheet, and learned about fossils, plants, animals, minerals and rocks of Greenland. In addition, the students planned and led cultural nights, sharing food, games, stories, and traditions of

  2. 2011 Joint Science Education Project: Research Experience in Polar Science

    Science.gov (United States)

    Wilkening, J.; Ader, V.

    2011-12-01

    The Joint Science Education Project (JSEP), sponsored by the National Science Foundation, is a two-part program that brings together students and teachers from the United States, Greenland, and Denmark, for a unique cross-cultural, first-hand experience of the realities of polar science field research in Greenland. During JSEP, students experienced research being conducted on and near the Greenland ice sheet by attending researcher presentations, visiting NSF-funded field sites (including Summit and NEEM field stations, both located on the Greenland ice sheet), and designing and conducting research projects in international teams. The results of two of these projects will be highlighted. The atmospheric project investigated the differences in CO2, UVA, UVB, temperature, and albedo in different Arctic microenvironments, while also examining the interaction between the atmosphere and water present in the given environments. It was found that the carbon dioxide levels varied: glacial environments having the lowest levels, with an average concentration of 272.500 ppm, and non-vegetated, terrestrial environments having the highest, with an average concentration of 395.143 ppm. Following up on these results, it is planned to further investigate the interaction of the water and atmosphere, including water's role in the uptake of carbon dioxide. The ecology project investigated the occurrence of unusual large blooms of Nostoc cyanobacteria in Kangerlussuaq area lakes. The water chemistry of the lakes which contained the cyanobacteria and the lakes that did not were compared. The only noticeable difference was of the lakes' acidity, lakes containing the blooms had an average pH value of 8.58, whereas lakes without the blooms had an average pH value of 6.60. Further investigation of these results is needed to determine whether or not this was a cause or effect of the cyanobacteria blooms. As a next step, it is planned to attempt to grow the blooms to monitor their effects on

  3. Individuals with greater science literacy and education have more polarized beliefs on controversial science topics

    Science.gov (United States)

    2017-01-01

    Although Americans generally hold science in high regard and respect its findings, for some contested issues, such as the existence of anthropogenic climate change, public opinion is polarized along religious and political lines. We ask whether individuals with more general education and greater science knowledge, measured in terms of science education and science literacy, display more (or less) polarized beliefs on several such issues. We report secondary analyses of a nationally representative dataset (the General Social Survey), examining the predictors of beliefs regarding six potentially controversial issues. We find that beliefs are correlated with both political and religious identity for stem cell research, the Big Bang, and human evolution, and with political identity alone on climate change. Individuals with greater education, science education, and science literacy display more polarized beliefs on these issues. We find little evidence of political or religious polarization regarding nanotechnology and genetically modified foods. On all six topics, people who trust the scientific enterprise more are also more likely to accept its findings. We discuss the causal mechanisms that might underlie the correlation between education and identity-based polarization. PMID:28827344

  4. Individuals with greater science literacy and education have more polarized beliefs on controversial science topics.

    Science.gov (United States)

    Drummond, Caitlin; Fischhoff, Baruch

    2017-09-05

    Although Americans generally hold science in high regard and respect its findings, for some contested issues, such as the existence of anthropogenic climate change, public opinion is polarized along religious and political lines. We ask whether individuals with more general education and greater science knowledge, measured in terms of science education and science literacy, display more (or less) polarized beliefs on several such issues. We report secondary analyses of a nationally representative dataset (the General Social Survey), examining the predictors of beliefs regarding six potentially controversial issues. We find that beliefs are correlated with both political and religious identity for stem cell research, the Big Bang, and human evolution, and with political identity alone on climate change. Individuals with greater education, science education, and science literacy display more polarized beliefs on these issues. We find little evidence of political or religious polarization regarding nanotechnology and genetically modified foods. On all six topics, people who trust the scientific enterprise more are also more likely to accept its findings. We discuss the causal mechanisms that might underlie the correlation between education and identity-based polarization.

  5. Developing and testing multimedia educational tools to teach Polar Sciences in the Italian school

    Science.gov (United States)

    Macario, Maddalena; Cattadori, Matteo; Bianchi, Cristiana; Zattin, Massimiliano; Talarico, Franco Maria

    2013-04-01

    In the last few years science education moved forward rapidly by connecting the expertise and enthusiasm of polar educators worldwide. The interest in Polar Sciences determined the creation of a global professional network for those that educate in, for, and about the Polar Regions. In Italy, this cooperation is well represented by APECS-Italy, the Italian section of the Association of Polar Early Career Scientists (APECS) that is composed by young researchers and teachers of the Italian School. The Polar Regions represent one of the best natural environments where students can investigate directly on global changes. In this sense, the working group UNICAMearth of the Geology Division of School of Science and Technology, University of Camerino (Italy), promotes the arrangement of instructional resources based on real data coming from the research world. Our project aims to develop innovative teaching resources and practices designed to bring the importance of the Polar Regions closer to home. Consequently, Polar Sciences could become a focus point in the new national school curricula, where Earth Sciences have to be thought and learnt in an integrated way together with other sciences. In particular, M. Macario is producing a teaching tool package, starting from a case study, which includes a dozen of full lesson plans based on multimedia tools (images, smart board lessons and videos of lab experiments) as well as on hands-on activities about polar issues and phenomena. Among the resources the teaching tool package is referring to, there is also an App for tablet named CLAST (CLimate in Antartica from Sediments and Tectonics). This App has been designed by a team made up of polar scientists belonging to the University of Siena and University of Padova, two science teachers of the Museo delle Scienze (MUSE) of Trento other than M. Macario. CLAST has been funded by two Research Projects, CLITEITAM ("CLImate-TEctonics Interactions along the TransAntarctic Mountains

  6. POLAR-PALOOZA Polar Researchers and Arctic Residents Engage, Inform and Inspire Diverse Public Audiences by sharing Polar Science and Global Connections during the International Polar Year, using a New Model of Informal Science Education

    Science.gov (United States)

    Haines-Stiles, G.; Akuginow, E.

    2006-12-01

    (Please note that the POLAR-PALOOZA initiative described in this Abstract is-as of 9/7/2006-"pending" for possible support from NSF and NASA as part of this year's IPY solicitation. Subject to decisions expected by 9/30, this presentation would either be withdrawn, or amplified with specific participants, locations and dates.) Despite the success of well-regarded movies like "March of the Penguins", the polar regions remain a great unknown for most people. Public knowledge about the Arctic and Antarctic, and the critical role of the Poles in the entire Earth system, is nonexistent, incomplete or burdened with misperceptions. The International Polar Years of 2007-2009-and associated "I*Y" science years such as IHY, IYPE and eGY-present a unique opportunity to change this. The people who can best effect this change are those who know the Poles best, through living or working there. Based on innovative but proven models, POLAR-PALOOZA will use three complementary strategies to engage, inform and inspire large public audiences. (1) A national tour, under the working title "Stories from a Changing Planet", will include in-person presentations at science centers, museums, libraries and schools across North America, including Canada and Mexico. The presentations will be augmented by High Definition Video taped on location at the Poles, audio and video podcasts, and special education and outreach activities for targeted audiences. "Stories from a Changing Planet" will provide diverse audiences with an exciting opportunity to meet and interact directly with polar experts, and to appreciate why the Poles and the research done there are directly relevant to their lives. (2) The "HiDef Video Science Story Capture Corps" is a team of professional videographers, using the latest generation of low-cost, high-quality cameras, deployed to both Poles. They will document the work of multiple researchers and projects, rather than focusing on one topic for a single broadcast program

  7. PolarTREC-Teachers and Researchers Exploring and Collaborating: Science Education from the Poles to the World

    Science.gov (United States)

    Warnick, W. K.; Breen, K.; Warburton, J.; Fischer, K.; Wiggins, H.; Owens, R.; Polly, B.; Wade, B.; Buxbaum, T.

    2007-12-01

    PolarTREC-Teachers and Researchers Exploring and Collaborating is a three-year (2007-2009) teacher professional development program celebrating the International Polar Year (IPY) that advances polar science education by bringing K-12 educators and polar researchers together in hands-on field experiences in the Arctic and Antarctic. Currently in its second year, the program fosters the integration of research and education to produce a legacy of long-term teacher-researcher collaborations, improved teacher content knowledge through experiences in scientific inquiry, and broad public interest and engagement in polar science. Through PolarTREC, over 40 U.S. teachers will spend two to six weeks in the Arctic or Antarctic, working closely with researchers in the field as an integral part of the science team. Research projects focus on a wide range of IPY science themed topics such as sea-ice dynamics, terrestrial ecology, marine biology, atmospheric chemistry, and long-term climate change. While in the field, teachers and researchers will communicate extensively with their colleagues, communities, and hundreds of students of all ages across the globe, using a variety of tools including satellite phones, online journals, podcasts and interactive "Live from IPY" calls and web-based seminars. The online outreach elements of the project convey these experiences to a broad audience far beyond the classrooms of the PolarTREC teachers. In addition to field research experiences, PolarTREC will support teacher professional development and a sustained community of teachers, scientists, and the public through workshops, Internet seminars, an e-mail listserve, and teacher peer groups. To learn more about PolarTREC visit the website at: http://www.polartrec.com or contact info@polartrec.com or 907-474-1600. PolarTREC is funded by NSF and managed by the Arctic Research Consortium of the US (ARCUS).

  8. PolarTREC-Teachers and Researchers Exploring and Collaborating: Innovative Science Education from the Poles to the World

    Science.gov (United States)

    Warnick, W. K.; Warburton, J.; Breen, K.; Wiggins, H. V.; Larson, A.; Behr, S.

    2006-12-01

    PolarTREC-Teachers and Researchers Exploring and Collaborating is a three-year (2007-2009) teacher professional development program celebrating the International Polar Year (IPY) that will advance polar science education by bringing K-12 educators and polar researchers together in hands-on field experiences in the Arctic and Antarctic. PolarTREC builds on the strengths of the existing TREC program in the Arctic, an NSF supported program managed by the Arctic Research Consortium of the US (ARCUS), to embrace a wide range of activities occurring at both poles during and after IPY. PolarTREC will foster the integration of research and education to produce a legacy of long-term teacher-researcher collaborations, improved teacher content knowledge through experiences in scientific inquiry, and broad public interest and engagement in polar science and IPY. PolarTREC will enable thirty-six teachers to spend two to six weeks in the Arctic or Antarctic, working closely with researchers investigating a wide range of IPY science themed topics such as sea-ice dynamics, terrestrial ecology, marine biology, atmospheric chemistry, and long-term climate change. While in the field, teachers and researchers will communicate extensively with their colleagues, communities, and hundreds of students of all ages across the globe, using a variety of tools including satellite phones, online journals, podcasts and interactive "Live from IPY" calls and web-based seminars. The online outreach elements of the project convey these experiences to a broad audience far beyond the classrooms of the PolarTREC teachers. In addition to field research experiences, PolarTREC will support teacher professional development and a sustained community of teachers, scientists, and the public through workshops, Internet seminars, an e-mail listserve, and teacher peer groups. For further information on PolarTREC, contact Wendy Warnick, ARCUS Executive Director at warnick@arcus.org or 907-474-1600 or visit www.arcus.org/trec/

  9. Promoting Diversity Through Polar Interdisciplinary Coordinated Education (Polar ICE)

    Science.gov (United States)

    McDonnell, J. D.; Hotaling, L. A.; Garza, C.; Van Dyk, P. B.; Hunter-thomson, K. I.; Middendorf, J.; Daniel, A.; Matsumoto, G. I.; Schofield, O.

    2017-12-01

    Polar Interdisciplinary Coordinated Education (ICE) is an education and outreach program designed to provide public access to the Antarctic and Arctic regions through polar data and interactions with the scientists. The program provides multi-faceted science communication training for early career scientists that consist of a face-to face workshop and opportunities to apply these skills. The key components of the scientist training workshop include cultural competency training, deconstructing/decoding science for non-expert audiences, the art of telling science stories, and networking with members of the education and outreach community and reflecting on communication skills. Scientists partner with educators to provide professional development for K-12 educators and support for student research symposia. Polar ICE has initiated a Polar Literacy initiative that provides both a grounding in big ideas in polar science and science communication training designed to underscore the importance of the Polar Regions to the public while promoting interdisciplinary collaborations between scientists and educators. Our ultimate objective is to promote STEM identity through professional development of scientists and educators while developing career awareness of STEM pathways in Polar science.

  10. Exploring Science Through Polar Exploration

    Science.gov (United States)

    Pfirman, S. L.; Bell, R. E.; Zadoff, L.; Kelsey, R.

    2003-12-01

    Exploring the Poles is a First Year Seminar course taught at Barnard College, Columbia University. First Year Seminars are required of incoming students and are designed to encourage critical analysis in a small class setting with focused discussion. The class links historical polar exploration with current research in order to: introduce non-scientists to the value of environmental science through polar literature; discuss issues related to venturing into the unknown that are of relevance to any discipline: self-reliance, leadership, preparation, decisions under uncertainty; show students the human face of science; change attitudes about science and scientists; use data to engage students in exploring/understanding the environment and help them learn to draw conclusions from data; integrate research and education. These goals are met by bringing analysis of early exploration efforts together with a modern understanding of the polar environment. To date to class has followed the efforts of Nansen in the Fram, Scott and Amundsen in their race to the pole, and Shackleton's Endurance. As students read turn-of-the-century expedition journals, expedition progress is progressively revealed on an interactive map showing the environmental context. To bring the exploration process to life, students are assigned to expedition teams for specific years and the fates of the student "expeditions" are based on their own decisions. For example, in the Arctic, they navigate coastal sea ice and become frozen into the ice north of Siberia, re-creating Nansen's polar drift. Fates of the teams varied tremendously: some safely emerged at Fram Strait in 4 years, while others nearly became hopelessly lost in the Beaufort Gyre. Students thus learn about variability in the current polar environment through first hand experience, enabling them to appreciate the experiences, decisions, and, in some cases, the luck, of polar explorers. Evaluation by the Columbia Center for New Media, Teaching

  11. Polar Science Is Cool!

    Science.gov (United States)

    Weeks, Sophie

    2012-01-01

    Children are fascinated by the fact that polar scientists do research in extremely cold and dangerous places. In the Arctic they might be viewed as lunch by a polar bear. In the Antarctic, they could lose toes and fingers to frostbite and the wind is so fast it can rip skin off. They camp on ice in continuous daylight, weeks from any form of…

  12. Bringing Polar Science to the Classroom

    Science.gov (United States)

    Bruccoli, A.; Madsen, J. M.; Porter, M.

    2004-12-01

    The NSF sponsored IceCube (OPP-0236449) and Teachers Experiencing Antarctica and the Arctic (TEA) projects have developed a model for engaging K-12 teachers in a variety of scientific disciplines using polar science as a unifying theme. An intensive workshop, Science in the Ice, provided teachers with background content knowledge and seed ideas for activities aligned with national teaching standards. These activities were used to support the introduction of authentic science investigations related to current polar research in the classroom. The pilot workshop, sponsored by the NSF supported Math-Science Partnership SCALE (0227016), demonstrated the viability of this approach for involving a continuum of teachers from novice to master in a meaningful professional development model that can lead to sustainable classroom changes. This model for teacher professional development is based on the premise that the most robust educational outreach efforts involve teachers that are prepared, supported, and connected to a network of researchers and educators. This network can also serve to both stimulate interest in polar research and as a vehicle for delivering classroom materials related to the International Polar Year. An overview of Science in the Ice will be provided to show how the natural fascination with extreme environments can be used to introduce on-going research to the classroom from multiple disciplines---glaciology, geology, and astrophysics---with a common thread of polar science. The case for involving teachers now to fully capitalize on the potential of the International Polar Year, by providing professional development opportunities including field experiences with researchers, will be made.

  13. TREC Dynamic Domain: Polar Science

    Science.gov (United States)

    2015-11-20

    similarity. However, not all teams that submitted web crawls to this dataset applied their jaccard- similarity algorithms . 4.2 Data Format ...analysis. These algorithms were focused then on allowing better answers to the below representative science queries of our Polar data: 1. What...

  14. Bringing Society to a Changing Polar Ocean: Polar Interdisciplinary Coordinated Education (ICE)

    Science.gov (United States)

    Schofield, O.

    2015-12-01

    Environmental changes in the Arctic and Antarctic appear to be accelerating and scientists are trying to understand both the patterns and the impacts of change. These changes will have profound impact on humanity and create a need for public education about these critical habitats. We have focused on a two-pronged strategy to increase public awareness as well as enable educators to discuss comfortably the implications of climate change. Our first focus is on entraining public support through the development of science documentaries about the science and people who conduct it. Antarctic Edge is a feature length award-winning documentary about climate change that has been released in May 2015 and has garnered interest in movie theatres and on social media stores (NetFlix, ITunes). This broad outreach is coupled with our group's interest assisting educators formally. The majority of current polar education is focused on direct educator engagement through personal research experiences that have impact on the participating educators' classrooms. Polar Interdisciplinary Coordinated Education (ICE) proposes to improve educator and student engagement in polar sciences through exposure to scientists and polar data. Through professional development and the creation of data tools, Polar ICE will reduce the logistical costs of bringing polar science to students in grades 6-16. We will provide opportunities to: 1) build capacity of polar scientists in communicating and engaging with diverse audiences; 2) create scalable, in-person and virtual opportunities for educators and students to engage with polar scientists and their research through data visualizations, data activities, educator workshops, webinars, and student research symposia; and 3) evaluate the outcomes of Polar ICE and contribute to our understanding of science education practices. We will use a blended learning approach to promote partnerships and cross-disciplinary sharing. This combined multi-pronged approach

  15. Cryosphere Communication from Knowledge to Action: Polar Educators International

    Science.gov (United States)

    Crowley, S.

    2012-12-01

    Evidence from the recent IPY meetings shows that education and outreach of the 2007-08 IPY touched 24 million people; we intend to grow that number. As a legacy of IPY and as a direct action of IPY Montreal, we announced the establishment of Polar Educators International - a global professional network for those that educate in, for, and about the Polar Regions. We intend to move polar science forward by connecting the cultures and enthusiasm of polar education across the globe. The founding members come from polar and non-polar nations around the world. The new group draws together museums, schools, universities, science centers, formal and informal education, expeditions, NGOs, companies, governmental organizations, and non-profits. Working across national, disciplinary, and age group boundaries, we want to improve polar science & education for the next generation of policy makers, entrepreneurs, explorers, citizen scientists, journalists and educators; as well as the the public. The new network of more than 200 leading educators, scientists, and community members will develop innovative resources to communicate polar science. We intend to engage those learning and teaching about the polar regions, and thereby change the terms of debate, and the framework of education to rekindle student and public engagement with global environmental changes. We are committed to engaging our membership and have clear directions from our recent survey and report from the community. This presentation will address the needs put forth from our membership and where the organization will go in the future to inform a professional network on science and outreach in the polar regions.

  16. Polar Perspectives on Art and Science

    Science.gov (United States)

    Rennermalm, A. K.; Salzman, H.; Gustafson, D.

    2014-12-01

    The rapidly changing climate and environment in polar regions in the 20th and 21st centuries are well documented by scientists. Yet, this understanding is not well disseminated to students and the general public because the language of science is often inaccessible to these groups. To increase participation in science about the changing Polar regions, we organized a series of interdisciplinary events at Rutgers, The State University of New Jersey, in 2013/14 called "Polar Perspectives on Art and Science". This series brought five artist/scholars to Rutgers and reached a broad audience of students, faculty and the general public. Accompanying this series were two high-profile events. First, the Zimmerli Art Museum's academic-year-long exhibit, "Glacial Perspectives," displayed paintings and photographs by Diane Burko documenting rapidly changing glacial, and polar landscapes. Second, the "Let Us Talk About Water" event included a screening of the documentary "Chasing Ice" followed by a panel discussion at the Rutgers Cinema. Financial support was provided by Zimmerli Art Museum's Andrew W. Mellon Endowment Fund, Consortium of Universities for the Advancement of Hydrological Sciences, Inc., Rutgers Centers for Global Advancement and International Affairs, GAIA, and many other Rutgers institutes and departments. Student feedback on the "Polar Perspectives on Science and Art" suggest that art was effective in enhancing engagement and understanding of contemporary polar change. Furthermore, the many events created a forum for reoccurring and stimulating discussions among people with their academic home in widely different disciplines, including humanities, and physical and social sciences.

  17. Higher education, wages, and polarization

    OpenAIRE

    Valletta, Robert G.

    2015-01-01

    The earnings gap between people with a college degree and those with no education beyond high school has been growing since the late 1970s. Since 2000, however, the gap has grown more for those who have earned a post-graduate degree as well. The divergence between workers with college degrees and those with graduate degrees may be one manifestation of rising labor market polarization, which benefits those earning the highest and the lowest wages relatively more than those in the middle of the...

  18. Teach the Teacher! Building ROV's to Teach Polar Science

    Science.gov (United States)

    Bartholow, S.; Warburton, J.

    2014-12-01

    In 2013, the Arctic Research Consortium of the United States (ARCUS) a non-profit corporation consisting of institutions organized and operated for educational, professional, or scientific purposes, received funding from Lockheed Martin to design and host a workshop for teachers. Middle School teachers participated in a three-day Polar Workshop designed to enlighten teachers regarding marine polar science and exploration through the use of remotely operated vehicles, or ROVs. The Polar Workshop was offered as part of a teacher professional development activity that took at the Monterey Bay Aquarium Research Institute. The workshop provided training for teachers alongside polar scientists and teacher mentors. The overall purpose of the workshop was to teach teachers about marine polar science and technology that could be used with students in classrooms. Teachers were teamed with a polar scientist and with a teacher mentor for the three-day project. Results from the evaluation of the Polar Workshop indicate this workshop was an excellent opportunity for the teachers who participated as well as for the scientists. In this presentation, we will share the evaluation data, best practices of the workshop model, and how teacher mentors, scientists, and graduate students can help teach teachers successfully.

  19. Polar Science Weekend: A University / Science Center Collaboration

    Science.gov (United States)

    Stern, H. L.; Moritz, R. E.; Lettvin, E.; Schatz, D.; Russell, L.

    2008-12-01

    Polar Science Weekend (PSW) is a four-day event featuring hands-on activities, live demonstrations, and a variety of exhibits about the polar regions and current polar research, presented by scientists from the University of Washington's Polar Science Center, and held at Seattle's Pacific Science Center. PSW was conceived and organized jointly by the Polar Science Center and Pacific Science Center, which is Washington State's most well-attended museum. The first PSW in March 2006 drew over 5000 visitors, and subsequent PSWs in 2007 and 2008 have both surpassed that figure. The success of this university / science center partnership has made PSW an annual event, and has served as a model for Pacific Science Center's Portal to the Public program, in which partnerships with other scientific institutions have been built. Researchers at the Polar Science Center (PSC) study the physical processes controlling high-latitude oceans, atmosphere, sea ice, and ice sheets, and are involved in numerous IPY projects. PSC scientists also engage in many outreach efforts such as classroom visits and public lectures, but PSW stands out as the highlight of the year. The partnership with Pacific Science Center brings access to facilities, publicity, and a large audience that would not otherwise be readily available to PSC. Pacific Science Center, constructed for the 1962 World's Fair in Seattle, serves more than one million visitors per year. Pacific Science Center's mission is to inspire a lifelong interest in science, math and technology by engaging diverse communities through interactive and innovative exhibits and programs. PSW helps to advance this mission by bringing students, teachers, and families face-to-face with scientists who work in some of the most remote and challenging places on earth, to learn first-hand about polar research in a fun and informal setting. This is made possible only by the partnership with PSC. In this talk we will present descriptions and photos of PSW

  20. Science Teaching in Science Education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  1. Videographic Education: Owning the Polar Crisis

    Science.gov (United States)

    Vachon, R. W.; Buhr, S. M.

    2007-12-01

    Television and internet-served video is an increasingly important media tool for reaching into society. This talk will present clips from a film designed to educate the public about warming in the polar regions, the socioeconomic and environmental implications of this warming; and the actions we can take to slow down human contributions to climate change. This talk will present a short film Owning the Polar Crisis, which is drawn from footage for Polar Visions, a four segment film available for educational audiences and the public.. The films are unique in that they draw from the perspectives of well-known climate scientists, citizens from all over the planet and natives of the Arctic. The compelling images were taken from numerous locations around the Arctic, including Alaska and Greenland. Owning the Polar Crisis was filmed, directed and produced by Dr. Ryan Vachon, a climate scientist and videographer with an intimate knowledge of the subject matter.

  2. Science Education Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Discusses: (1) the nature of science; (2) Ausubel's learning theory and its application to introductory science; and (3) mathematics and physics instruction. Outlines a checklist approach to Certificate of Extended Education (CSE) practical assessment in biology. (JN)

  3. Communicating polar sciences to school children through a scientific expedition

    Science.gov (United States)

    Lacarra, Maite; Lamarque, Gaelle; Koenig, Zoé; Bourgain, Pascaline; Mathilde Thierry, Anne

    2015-04-01

    APECS-France, the French national committee of the Association of Polar Early Career Scientists (APECS), was created in 2013 to improve the dissemination of polar sciences towards the general public and school children in particular, through activities developed in French for French schools. During the autumn of 2014, a young polar oceanographer from the University Pierre and Marie Curie, Zoé Koenig, participated in an expedition on board a sailing vessel in the Southern Ocean. APECS-France set up a new education and outreach project called "Zoé en Expé". Using different media, about 800 children, aged 6 to 12, and from 40 schools, were actively involved in the project. Interactions between Zoé and the students occurred before, during, and after the expedition, through a newsletter, a blog updated in real-time during the expedition, webinars (interactive video-conferences), and visits in classrooms when possible. Teachers were given a list of websites dedicated to polar and oceanographic science outreach and activities adapted to the age and level of the students were offered. Different activities were developed around the expedition, depending on teachers' objectives and children affinities. In particular, students were able to relate to the expedition by imagining a day in the life of Chippy, the mascot of the expedition. They were then asked to draw and/or write Chippy's adventures. APECS-France is now planning to edit a children's book using students' drawings as well as photographs taken during the expedition. Older students were also able to follow in real-time sensors released in the Southern Ocean by Zoé, measuring salinity and temperature. Throughout this 3-month project, children were able to study a wide range of topics (oceanography, biology, history, geography…). The expedition and the educational project allowed raising the awareness of children about the fragile and badly known Antarctic environment.

  4. Games in Science Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2014-01-01

    This paper presents a categorisation of science game formats in relation to the educational possibilities or limitations they offer in science education. This includes discussion of new types of science game formats and gamification of science. Teaching with the use of games and simulations...... in science education dates back to the 1970s and early 80s were the potentials of games and simulations was discussed extensively as the new teaching tool ( Ellington et al. , 1981). In the early 90s the first ITC -based games for exploration of science and technical subjects was developed (Egenfeldt......-Nielsen, 2005). After the turn of the millennium, there has been an increasing awareness both on potentials in using commercial computer games in science education, and on developing so serious games for scientific subjects such as chemistry, physics and biology (Squire & Klopfer, 2007; Shaffer, 2006; Magnussen...

  5. United States Naval Academy Polar Science Program; Undergraduate Research and Outreach in Polar Environments

    Science.gov (United States)

    Woods, J. E.

    2013-12-01

    The United States Naval Academy (USNA) Polar Science Program (PSP), has been very active completing its own field campaign out of Barrow, AK, sent students to the South Pole, participated in STEM activities and educated over 100 future Naval Officers about the Polar Regions. Each activity is uniquely different, but has the similar undertone of sharing the recent rapid changes in the Cryosphere to a wide range of audiences. There is further room for development and growth through future field campaigns and new collaborations. The Naval Academy Ice Experiment (NAICEX) 2013 was based out of the old Naval Arctic Research Laboratory (NARL) in Barrow, AK. In joint collaboration with the University of Delaware, University of Washington, and Naval Research Laboratory we successfully took multiple measurements for over a week on the fast ice just offshore. Five undergraduate students from USNA, as well as 3 graduate students from University of Delaware participated, as well as multiple professors and instructors from each institution. Data collected during the experiment will be used in capstone courses and thesis research. There was also an outreach component to the experiment, where local students from Barrow H.S. have been assigned to the USNA ice observations project for their own high school course work. Local students will be analyzing data that will contribute into the larger research effort at USNA through coordinated remote efforts and participation in future field experiments. The USNA STEM office is one of the most robust in the entire country. The USNA PSP is active within this program by developing polar specific modules that are integrated varying length outreach opportunities from a few hours to week long camps. USNA PSP also engages in educator training that is held at the Naval Academy each summer. Through this program of educating the educators, the far reaching levels of awareness are multiplied exponentially. Also, the USNA Oceanography Department has

  6. Science Education through Informal Education

    Science.gov (United States)

    Kim, Mijung; Dopico, Eduardo

    2016-01-01

    To develop the pedagogic efficiency of informal education in science teaching, promoting a close cooperation between institutions is suggested by Monteiro, Janerine, de Carvalho, and Martins (EJ1102247). In their article, they point out effective examples of how teachers and educators work together to develop programs and activities at informal…

  7. Partnerships for Science Education.

    Science.gov (United States)

    Greenwood, M. R. C.

    1995-01-01

    To preserve the nation's standing in science, technology, education, and discovery, the highest priority should be to develop and support school programs, media programs, and informal educational experiences so that learning elements of science and technology is as common for the public as learning sports skills or reading. Discusses goals of the…

  8. Science, Worldviews, and Education

    Science.gov (United States)

    Gauch, Hugh G., Jr.

    2009-01-01

    Whether science can reach conclusions with substantial worldview import, such as whether supernatural beings exist or the universe is purposeful, is a significant but unsettled aspect of science. For instance, various scientists, philosophers, and educators have explored the implications of science for a theistic worldview, with opinions spanning…

  9. Semantic-enabled Spatiotemporal Web Portal for Polar Sciences

    Science.gov (United States)

    Liu, K.

    2014-12-01

    It is essential for Intergovernmental and scientists to study, monitor and analyze the geographic data in polar regions. Polarregions are likely to respond rapidly and more severely to the climate changesthan any other area on the Earth.They also have significant importance for Global warming research. The ocean water around the Antarctic and Arctic is a crucial part of the ocean's thermohaline circulation. The Polar Cyberinfrastructure Program was built to acquire, share, access, analyze the polar data for Arctic and Antarctic communities. The polar data are becoming big and bring challenges for Polar Cyberinfrastructure Program including: 1) it is difficultfor polar data users to discover most relevant data based on the understanding the behavior; 2) the quality of polar data service is essential to use the polar data, however, it varies for users in different locations and different time. The semantic enabled discovery and volunteer computing are used in the Polar Cyberinfrastructurefor tackling these challenges: 1) semantic search and knowledge reasoning to improve the discovery recall and precision of polar data; 2) volunteer computing is used to gather volunteers computing resources around the world to improve the quality evaluationaccuracy of polar data service. Keywords: Polar Science, Cyberinfrastructure, Semantic, Volunteer Computing

  10. Assessment in Science Education

    Science.gov (United States)

    Rustaman, N. Y.

    2017-09-01

    An analyses study focusing on scientific reasoning literacy was conducted to strengthen the stressing on assessment in science by combining the important of the nature of science and assessment as references, higher order thinking and scientific skills in assessing science learning as well. Having background in developing science process skills test items, inquiry in its many form, scientific and STEM literacy, it is believed that inquiry based learning should first be implemented among science educators and science learners before STEM education can successfully be developed among science teachers, prospective teachers, and students at all levels. After studying thoroughly a number of science researchers through their works, a model of scientific reasoning was proposed, and also simple rubrics and some examples of the test items were introduced in this article. As it is only the beginning, further studies will still be needed in the future with the involvement of prospective science teachers who have interests in assessment, either on authentic assessment or in test items development. In balance usage of alternative assessment rubrics, as well as valid and reliable test items (standard) will be needed in accelerating STEM education in Indonesia.

  11. Building Transferable Knowledge and Skills through an Interdisciplinary Polar Science Graduate Program

    Science.gov (United States)

    Culler, L. E.; Virginia, R. A.; Albert, M. R.; Ayres, M.

    2015-12-01

    Modern graduate education must extend beyond disciplinary content to prepare students for diverse careers in science. At Dartmouth, a graduate program in Polar Environmental Change uses interdisciplinary study of the polar regions as a core from which students develop skills and knowledge for tackling complex environmental issues that require cooperation across scientific disciplines and with educators, policy makers, and stakeholders. Two major NSF-funded initiatives have supported professional development for graduate students in this program, including an IGERT (Integrative Graduate Education and Research Traineeship) and leadership of JSEP's (Joint Science Education Project) Arctic Science Education Week in Greenland. We teach courses that emphasize the links between science and the human dimensions of environmental change; host training sessions in science communication; invite guest speakers who work in policy, academia, journalism, government research, etc.; lead an international field-based training that includes policy-focused meetings and a large outreach component; provide multiple opportunities for outreach and collaboration with local schools; and build outreach and education into graduate research programs where students instruct and mentor high school students. Students from diverse scientific disciplines (Ecology, Earth Science, and Engineering) participate in all of the above, which significantly strengthens their interdisciplinary view of polar science and ability to communicate across disciplines. In addition, graduate students have developed awareness, confidence, and the skills to pursue and obtain diverse careers. This is reflected in the fact that recent graduates have acquired permanent and post-doctoral positions in academic and government research, full-time teaching, and also in post-docs focused on outreach and science policy. Dartmouth's interdisciplinary approach to graduate education is producing tomorrow's leaders in science.

  12. Science Fiction and Science Education.

    Science.gov (United States)

    Cavanaugh, Terence

    2002-01-01

    Uses science fiction films such as "Jurassic Park" or "Anaconda" to teach science concepts while fostering student interest. Advocates science fiction as a teaching tool to improve learning and motivation. Describes how to use science fiction in the classroom with the sample activity Twister. (YDS)

  13. Science education ahead?

    Science.gov (United States)

    1999-01-01

    In spite of the achievements and successes of science education in recent years, certain problems undoubtedly remain. Firstly the content taught at secondary level has largely remained unchanged from what had been originally intended to meet the needs of those who would go on to become scientists. Secondly the curriculum is overloaded with factual content rather than emphasizing applications of scientific knowledge and skills and the connections between science and technology. Thirdly the curriculum does not relate to the needs and interests of the pupils. A recent report entitled Beyond 2000: Science Education for the Future, derived from a series of seminars funded by the Nuffield Foundation, attempts to address these issues by setting out clear aims and describing new approaches to achieve them. Joint editors of the report are Robin Millar of the University of York and Jonathan Osborne of King's College London. The recommendations are that the curriculum should contain a clear statement of its aims, with the 5 - 16 science curriculum seen as enhancing general `scientific literacy'. At key stage 4 there should be more differentiation between the literacy elements and those designed for the early stages of a specialist training in science; up to the end of key stage 3 a common curriculum is still appropriate. The curriculum should be presented clearly and simply, following on from the statement of aims, and should provide young people with an understanding of some key `ideas about science'. A wide variety of teaching methods and approaches should be encouraged, and the assessment approaches for reporting on students' performance should focus on their ability to understand and interpret information as well as their knowledge and understanding of scientific ideas. The last three recommendations in the report cover the incorporation of aspects of technology and the applications of science into the curriculum, with no substantial change overall in the short term but a

  14. Antarctic Super Heroes: Using a Graphic Novel to Teach Students About Polar Science. (Invited)

    Science.gov (United States)

    Lougheed, V.; Palsole, S.; Rojas, C.; Tweedie, C. E.

    2009-12-01

    The University of Texas at El Paso received an IPY grant from the US National Science Foundation to take undergraduate and graduate students, as well as teachers, to Antarctica over winter break 2007. The program, called IPY-ROAM (International Polar Year - Research and Educational Experiences in Antarctica for Minorities) aimed to increase the number of underrepresented minorities in the sciences, and increase public awareness about the polar regions. Education and outreach activities have been designed to teach people of all ages about polar science. For example, an interactive museum exhibit was designed to describe how the polar regions are being affected by climate change, and how individuals can make a difference. Our latest outreach strategy involves taking the large amount of educational materials collected for the museum display and making it available to a broader audience. We have created a graphic novel where the story of the ROAM Antarctic trip and existing educational materials are communicated using a combination of comic strips, fact sheets, and classroom activities. Photographic images from the ROAM trip were digitized and converted to a comic strip format. These images were combined with text from film footage collected by a documentary film, as well as personal anecdotes, to convey the successes of the program and the primary messages participants wanted to share with the public. The graphic novel will be made available to local school groups and online, at our website: www.ipyroam.org.

  15. Sensory Science Education

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin

    2018-01-01

    little note of the body-mind interactions we have with the material world. Utilizing examples from primary schools, it is argued that a sensory pedagogy in science requires a deliberate sensitization and validation of the senses’ presence and that a sensor pedagogy approach may reveal the unique ways...... in how we all experience the world. Troubling science education pedagogy is therefore also a reconceptualization of who we are and how we make sense of the world and the acceptance that the body-mind is present, imbalanced and complex....

  16. NASA IceBridge and PolarTREC - Education and Outreach Partnership

    Science.gov (United States)

    Bartholow, S.; Warburton, J.; Beck, J.; Woods, J. E.

    2015-12-01

    PolarTREC-Teachers and Researchers Exploring and Collaborating, a teacher professional development program, began with the International Polar Year in 2004 and continues today in the United States. PolarTREC has worked specifically with OIB for 3 years and looking forward to ongoing collaboration. PolarTREC brings U.S. K­12 educators and polar researchers together through an innovative teacher research experience model. Participating teachers spend 3-6 weeks in the field with research teams conducting surveys and collecting data on various aspects of polar science. During their experience, teachers become research team members filling a variety of roles on the team. They also fulfill a unique role of public outreach officer, conducting live presentations about their field site and research as well as journaling, answering questions, and posting photos. Working with OIB has opened up the nature of science for the participating teachers. In developing the long-term relationship with OIB teams, teachers can now share (1) the diversity of training, backgrounds, and interests of OIB scientists, (2) identify the linkages between Greenlandic culture and community and cryospheric science and evidence of climate change, (3) network with Danish and Greenlandic educators on the mission (4) gain access to the full spectrum of a science project - development, implementation, analysis, networking, and dissemination of information. All aspects help these teachers become champions of NASA science and educational leaders in their communities. Evaluation data shows that PolarTREC has clearly achieved it goals with the OIB partnership and suggests that linking teachers and researchers can have the potential to transform the nature of science education. By giving teachers the content knowledge, pedagogical tools, confidence, understanding of science in the broader society, and experiences with scientific inquiry, participating teachers are using authentic scientific research in their

  17. Crowdfunding for Elementary Science Educators

    Science.gov (United States)

    Reese, Jessica; Miller, Kurtz

    2017-01-01

    The inadequate funding of science education in many school districts, particularly in underserved areas, is preventing elementary science educators from realizing the full potential of the "Next Generation Science Standards" ("NGSS"). Yet many elementary science teachers may be unaware that millions of dollars per year are…

  18. Education and outreach for the International Polar Year

    Science.gov (United States)

    Pfirman, Stephanie; Bell, Robin Elizabeth; Turrin, Margie; Maru, Poonam

    2004-12-01

    If the 65 educators, scientists, and media specialists who gathered at the “Bridging the Poles” workshop in Washington, D.C. last June have their way a semitrailer truck labeled “Got Snow?” would traverse the country during the International Polar Year (IPY) of 2007-2009 loaded with polar gear, interactive activities, and a snowmaker. We would significantly increase the number of Arctic residents—especially indigenous Alaskans—with Ph.D.s. We would build exchange programs between inner city youths and polar residents. Polar exhibitions would open at natural history and art museums and zoos. And polar postage stamps, interactive polar computer games, national polar book-of-the-month recommendations, made-for-TV polar documentaries, and a polar youth forum would bring the poles front and center to the public's attention.

  19. Improving Geoscience Education through the PolarTREC Teacher Research Experience Model (Invited)

    Science.gov (United States)

    Warburton, J.; Timm, K.; Larson, A. M.

    2010-12-01

    Teacher Research Experiences (TRE’s) are not new. For more than a decade, the National Science Foundation (NSF) as well as other federal agencies have been funding programs that place teachers with researchers in efforts to invigorate science education by bringing educators and researchers together through hands-on experiences. Many of the TRE’s are successful in providing a hands-on field experience for the teachers and researchers however many of the programs lack the resources to continue the collaborations and support the growing network of teachers that have had these field experiences. In 2007, NSF provided funding for PolarTREC—Teachers and Researchers Exploring and Collaborating, a program of the Arctic Research Consortium of the U.S. (ARCUS). PolarTREC is a TRE where K-12 teachers participate in polar field research, working closely with scientists as a pathway to improving science education. In just three years, it has become a successful TRE. What makes PolarTREC different than other the teacher research experience programs and how can others benefit from what we have learned? During this presentation, we will share data collected through the program evaluation and on how PolarTREC contributes to the discipline of Science, Technology, Engineering, and Mathematics (STEM) education and pedagogy through a model program conceived and organized according to current best practices, such as pre-research training, mentoring, support for classroom transfer, and long-term access to resources and support. Data shows that PolarTREC’s comprehensive program activities have many positive impacts on educators and their ability to teach science concepts and improve their teaching methods. Additionally, K-12 students polled in interest surveys showed significant changes in key areas including amount of time spent in school exploring research activities, importance of understanding science for future work, importance of understanding the polar regions as a person

  20. Is Religious Education Compatible with Science Education?

    Science.gov (United States)

    Mahner, Martin; Bunge, Mario

    1996-01-01

    Addresses the problem of the compatibility of science and religion, and its bearing on science and religious education, challenges the popular view that science and religion are compatible or complementary. Discusses differences at the doctrinal, metaphysical, methodological, and attitudinal levels. Argues that religious education should be kept…

  1. Augmented Reality for Science Education

    DEFF Research Database (Denmark)

    Brandt, Harald; Nielsen, Birgitte Lund; Georgsen, Marianne

    Augmented reality (AR) holds great promise as a learning tool. So far, however, most research has looked at the technology itself – and AR has been used primarily for commercial purposes. As a learning tool, AR supports an inquiry-based approach to science education with a high level of student...... involvement. The AR-sci-project (Augmented Reality for SCIence education) addresses the issue of applying augmented reality in developing innovative science education and enhancing the quality of science teaching and learning....

  2. Using International Polar Days to Engage and Experiment with Science - Outreach Partnerships in IPY

    Science.gov (United States)

    Salmon, R. A.; Munro, N.; Carlson, D.; Pauls, M.; Zicus, S.

    2008-12-01

    The International IPY Education, Outreach, and Communication Committee developed quarterly International Polar Days in response to pressure from educators and media wishing to remain involved in IPY, throughout IPY. Between September 2007 and March 2009 these events focus on aspects of polar research that are both specific enough to allow depth of understanding, but also broad enough to highlight the interconnectivity of polar science. Each day has experimented with different communication tools including multilingual activity and summary sheets, live radio and web events, press releases, local lectures and engagement at conferences. A virtual balloon launch helps us to assess our reach and develop plans for the next event. The talk will present an evaluation from the balloon launch as well as lessons learnt from activities that had varying degrees of success.

  3. Education in space science

    Science.gov (United States)

    Philbrick, C. Russell

    2005-08-01

    The educational process for teaching space science has been examined as a topic at the 17th European Space Agency Symposium on European Rocket and Balloon, and Related Research. The approach used for an introductory course during the past 18 years at Penn State University is considered as an example. The opportunities for using space science topics to motivate the thinking and efforts of advanced undergraduate and beginning graduate students are examined. The topics covered in the introductory course are briefly described in an outline indicating the breath of the material covered. Several additional topics and assignments are included to help prepare the students for their careers. These topics include discussions on workplace ethics, project management, tools for research, presentation skills, and opportunities to participate in student projects.

  4. Augmented Reality in Science Education

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Swenson, Hakon

    and challenges related to AR enhancing student learning in science in lower secondary school were identified by expert science teachers, ICT designers and science education researchers from four countries in a Delphi survey. Findings were condensed in a framework to categorize educational AR designs....

  5. PolarTREC-Celebrating the Legacy of the IPY Through Researcher-Educator Partnerships

    Science.gov (United States)

    Timm, K.; Warburton, J.; Larson, A. M.

    2009-12-01

    Polar TREC-Teachers and Researchers Exploring and Collaborating, a three-year (2007-2009) NSF-funded program, has matched over 40 teachers with polar researchers working in multiple scientific disciplines for 2-8 week Teacher Research Experiences (TRE) in the Arctic and Antarctica during the IPY. PolarTREC contributes to the legacy of the IPY through the creation and dissemination of polar education resources, prolonged teacher-researcher relationships, and contributions to scholarly knowledge on the impacts of TRE's. Products developed during PolarTREC are helping to sustain the widespread interest and enthusiasm in the polar regions generated during the IPY. During their expeditions, participating teachers brought science and information about profound changes at the poles to school, community, and professional audiences through web-based communications, journals, discussion forums, multimedia, and live events. PolarTREC teachers constructed nearly 100 classroom lesson plans and activities as products of their experiences. Live events from the field attracted over 11,000 participants, primarily K-12 students. Although the field experience is central to the PolarTREC TRE Model, many participants cite the relationship they built with their teacher/researcher as one of the best outcomes. Through personal communications, presentations at professional conferences, and continued support of each other’s work through classroom visits or joint proposal development, teachers and researchers have maintained the mutually beneficial relationships established during the IPY. Participating scientists gained access to professional educators with expertise in translating research approaches and results into programs. The need for researchers to explain their research and “boil it down to the raw essence” helped many see how their work fits into a bigger picture, often helping them communicate outside their scientific discipline and to diverse public audiences. Teachers, on

  6. NQRY Coaching: Scientists and Science Educators Energizing the Next Generation

    Science.gov (United States)

    Shope, R. E.

    2007-12-01

    A recent National Academy of Science report recommends that science educators focus strategically on teaching the practice of science. To accomplish this, we have devised and implemented the Science Performance Collaboratory, a collaborative research, education, and workforce model that brings scientists and science educators together to conduct scientific inquiry. In this session, we demonstrate how to form active inquiry teams around Arctica Science Research content areas related to the International Polar Year. We use the term Arctica Science Research to refer to the entire scope of exploration and discovery relating to: polar science and its global connections; Arctic and Antarctic research and climate sciences; ice and cryospheric studies on Earth; polar regions of the Moon, Mars, and Mercury; icy worlds throughout the Solar System, such as Europa, Enceladus, Titan, Pluto and the Comets; cryovolvanism; ice in interstellar space, and beyond. We apply the notion of teaching the practice science by enacting three effective strategies: 1) The Inquiry Wheel Game, in which we develop an expanded understanding of what has been traditionally taught as "the scientific method"; 2) Acting Out the Science Story, in which we develop a physicalized expression of our conceptual understanding; and 3) Selecting Success Criteria for Inquiry Coaching, in which we reframe how we evaluate science learning as we teach the practice of science.

  7. Inquiry Coaching: Scientists & Science Educators Energizing the Next Generation

    Science.gov (United States)

    Shope, R. E.; Alcantara Valverde, L.

    2007-05-01

    A recent National Academy of Sciences report recommends that science educators focus strategically on teaching the practice of science. To accomplish this, we have devised and implemented the Science Performance Laboratory, a collaborative research, education, and workforce model that brings scientists and science educators together to conduct scientific inquiry. In this session, we demonstrate how to form active inquiry teams around Arctica Science Research content areas related to the International Polar Year. We use the term "Arctica Science Research" to refer to the entire scope of exploration and discovery relating to: polar science and its global connections; Arctic and Antarctic research and climate sciences; ice and cryospheric studies on Earth; polar regions of the Moon, Mars, and Mercury; icy worlds throughout the Solar System, such as Europa, Enceladus, Titan, Pluto and the Comets; cryovolcanism; ice in interstellar space, and beyond. We apply the notion of teaching the practice science by enacting three effective strategies: 1) The Inquiry Wheel Game, in which we develop an expanded understanding of what has been traditionally taught as "the scientific method"; 2) Acting Out the Science Story, in which we develop a physicalized expression of our conceptual understanding; and 3) Selecting Success Criteria for Inquiry Coaching, in which we reframe how we evaluate science learning as we teach the practice of science.

  8. The Globalization of Science Education

    Science.gov (United States)

    DeBoer, George E.

    2011-01-01

    Standards-based science education, with its emphasis on monitoring and accountability, is rapidly becoming a key part of the globalization of science education. Standards-based testing within countries is increasingly being used to determine the effectiveness of a country's educational system, and international testing programs such as Programme…

  9. Antonio Gramsci, Education and Science

    Science.gov (United States)

    Balampekou, Matina; Floriotis, Georgis

    2012-01-01

    This paper explores how the ideas of a great political thinker and philosopher Antonio Gramsci, are relevant to education and science and to critical science education. One of the main points in Gramsci's analysis is the social value and impact of certain aspects of the superstructure. He understands that education is a means which can be used for…

  10. Nevada Underserved Science Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Nicole Rourke; Jason Marcks

    2004-07-06

    Nevada Underserved Science Education Program (NUSEP) is a project to examine the effect of implementing new and innovative Earth and space science education curriculum in Nevada schools. The project provided professional development opportunities and educational materials for teachers participating in the program.

  11. Relativism, Rationality, and Science Education.

    Science.gov (United States)

    Siegel, Harvey

    1985-01-01

    Contemporary philosophy of science is controversial and includes debate about the relativity of scientific knowledge and the rationality of scientific enterprise. Crucial questions and important ramifications for science education are presented through discussion of these philosophical disputes. (DH)

  12. Globalisation and science education: Rethinking science education reforms

    Science.gov (United States)

    Carter, Lyn

    2005-05-01

    Like Lemke (J Res Sci Teach 38:296-316, 2001), I believe that science education has not looked enough at the impact of the changing theoretical and global landscape by which it is produced and shaped. Lemke makes a sound argument for science education to look beyond its own discourses toward those like cultural studies and politics, and to which I would add globalisation theory and relevant educational studies. Hence, in this study I draw together a range of investigations to argue that globalisation is indeed implicated in the discourses of science education, even if it remains underacknowledged and undertheorized. Establishing this relationship is important because it provides different frames of reference from which to investigate many of science education's current concerns, including those new forces that now have a direct impact on science classrooms. For example, one important question to investigate is the degree to which current science education improvement discourses are the consequences of quality research into science teaching and learning, or represent national and local responses to global economic restructuring and the imperatives of the supranational institutions that are largely beyond the control of science education. Developing globalisation as a theoretical construct to help formulate new questions and methods to examine these questions can provide science education with opportunities to expand the conceptual and analytical frameworks of much of its present and future scholarship.

  13. Science education and everyday action

    Science.gov (United States)

    McCann, Wendy Renee Sherman

    2001-07-01

    This dissertation addresses three related tasks and issues in the larger field of science education. The first is to review of the several uses of "everydayness" at play in the science education literature, and in the education and social science literatures more generally. Four broad iterations of everydayness were found in science education, and these were traced and analyzed to develop their similarities, and contradictions. It was concluded that despite tendencies in science education research to suppose a fundamental demarcation either between professional science and everyday life, or between schools and everyday life, all social affairs, including professional science and activity in schools, are continuous with everyday life, and consist fundamentally in everyday, ordinary mundane actions which are ordered and organized by the participants to those social activities and occasions. The second task for this dissertation was to conduct a naturalistic, descriptive study of undergraduate-level physics laboratory activities from the analytic perspective of ethnomethodology. The study findings are presented as closely-detailed analysis of the students' methods of following their instructions and 'fitting' their observed results to a known scientific concept or principle during the enactment of their classroom laboratory activities. Based on the descriptions of students' practical work in following instructions and 'fitting'. The characterization of school science labs as an "experiment-demonstration hybrid" is developed. The third task of this dissertation was to synthesize the literature review and field study findings in order to clarify what science educators could productively mean by "everydayness", and to suggest what understandings of science education the study of everyday action recommends. It is argued that the significance of the 'experiment-demo hybrid' characterization must be seen in terms of an alternate program for science education research, which

  14. Artificial Intelligence and Science Education.

    Science.gov (United States)

    Good, Ron

    1987-01-01

    Defines artificial intelligence (AI) in relation to intelligent computer-assisted instruction (ICAI) and science education. Provides a brief background of AI work, examples of expert systems, examples of ICAI work, and addresses problems facing AI workers that have implications for science education. Proposes a revised model of the Karplus/Renner…

  15. Blended Learning Improves Science Education.

    Science.gov (United States)

    Stockwell, Brent R; Stockwell, Melissa S; Cennamo, Michael; Jiang, Elise

    2015-08-27

    Blended learning is an emerging paradigm for science education but has not been rigorously assessed. We performed a randomized controlled trial of blended learning. We found that in-class problem solving improved exam performance, and video assignments increased attendance and satisfaction. This validates a new model for science communication and education. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Is Christian Education Compatible With Science Education?

    Science.gov (United States)

    Martin, Michael

    Science education and Christian education are not compatible if by Christian education one means teaching someone to be a Christian. One goal of science education is to give students factual knowledge. Even when there is no actual conflict of this knowledge with the dogmas of Christianity, there exists the potential for conflict. Another goal of science education is to teach students to have the propensity to be sensitive to evidence: to hold beliefs tentatively in light of evidence and to reject these beliefs in the light of new evidence if rejection is warranted by this evidence. This propensity conflicts with one way in which beliefs are often taught in Christian education: namely as fundamental dogmas, rather than as subject to revision in the light of the evidence.

  17. PoLAR Voices: Informing Adult Learners about the Science and Story of Climate Change in the Polar Regions Through Audio Podcast

    Science.gov (United States)

    Quinney, A.; Murray, M. S.; Gobroski, K. A.; Topp, R. M.; Pfirman, S. L.

    2015-12-01

    The resurgence of audio programming with the advent of podcasting in the early 2000s spawned a new medium for communicating advances in science, research, and technology. To capitalize on this informal educational outlet, the Arctic Institute of North America partnered with the International Arctic Research Center, the University of Alaska Fairbanks, and the UA Museum of the North to develop a podcast series called PoLAR Voices for the Polar Learning and Responding (PoLAR) Climate Change Education Partnership. PoLAR Voices is a public education initiative that uses creative storytelling and novel narrative structures to immerse the listener in an auditory depiction of climate change. The programs will feature the science and story of climate change, approaching topics from both the points of view of researchers and Arctic indigenous peoples. This approach will engage the listener in the holistic story of climate change, addressing both scientific and personal perspectives, resulting in a program that is at once educational, entertaining and accessible. Feedback is being collected at each stage of development to ensure the content and format of the program satisfies listener interests and preferences. Once complete, the series will be released on thepolarhub.org and on iTunes. Additionally, blanket distribution of the programs will be accomplished via radio broadcast in urban, rural and remote areas, and in multiple languages to increase distribution and enhance accessibility.

  18. Multicultural Science Education and Curriculum Materials

    Science.gov (United States)

    Atwater, Mary M.

    2010-01-01

    This article describes multicultural science education and explains the purposes of multicultural science curricula. It also serves as an introductory article for the other multicultural science education activities in this special issue of "Science Activities".

  19. Interview with Science Education Pioneer Bob Yager

    OpenAIRE

    Stiles, John

    2016-01-01

    In a recent interview, Dr. Yager spoke about his participation in the changing field of science education, the challenges that still persist in implementing exemplary science teaching, STEM Education and his views on the current science education standards.

  20. Augmented Reality for Science Education

    DEFF Research Database (Denmark)

    Brandt, Harald; Nielsen, Birgitte Lund; Georgsen, Marianne

    Augmented reality (AR) holds great promise as a learning tool. So far, however, most research has looked at the technology itself – and AR has been used primarily for commercial purposes. As a learning tool, AR supports an inquiry-based approach to science education with a high level of student i...... involvement. The AR-sci-project (Augmented Reality for SCIence education) addresses the issue of applying augmented reality in developing innovative science education and enhancing the quality of science teaching and learning.......Augmented reality (AR) holds great promise as a learning tool. So far, however, most research has looked at the technology itself – and AR has been used primarily for commercial purposes. As a learning tool, AR supports an inquiry-based approach to science education with a high level of student...

  1. Science and religion: implications for science educators

    Science.gov (United States)

    Reiss, Michael J.

    2010-03-01

    A religious perspective on life shapes how and what those with such a perspective learn in science; for some students a religious perspective can hinder learning in science. For such reasons Staver's article is to be welcomed as it proposes a new way of resolving the widely perceived discord between science and religion. Staver notes that Western thinking has traditionally postulated the existence and comprehensibility of a world that is external to and independent of human consciousness. This has led to a conception of truth, truth as correspondence, in which our knowledge corresponds to the facts in this external world. Staver rejects such a conception, preferring the conception of truth as coherence in which the links are between and among independent knowledge claims themselves rather than between a knowledge claim and reality. Staver then proposes constructivism as a vehicle potentially capable of resolving the tension between religion and science. My contention is that the resolution between science and religion that Staver proposes comes at too great a cost—both to science and to religion. Instead I defend a different version of constructivism where humans are seen as capable of generating models of reality that do provide richer and more meaningful understandings of reality, over time and with respect both to science and to religion. I argue that scientific knowledge is a subset of religious knowledge and explore the implications of this for science education in general and when teaching about evolution in particular.

  2. Augmented Reality in Science Education

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Swensen, Hakon

    Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits...... and challenges related to AR enhancing student learning in science in lower secondary school were identified by expert science teachers, ICT designers and science education researchers from four countries in a Delphi survey. Findings were condensed in a framework to categorize educational AR designs....

  3. Preparing informal science educators perspectives from science communication and education

    CERN Document Server

    2017-01-01

    This book provides a diverse look at various aspects of preparing informal science educators. Much has been published about the importance of preparing formal classroom educators, but little has been written about the importance, need, and best practices for training professionals who teach in aquariums, camps, parks, museums, etc. The reader will find that as a collective the chapters of the book are well-related and paint a clear picture that there are varying ways to approach informal educator preparation, but all are important. The volume is divided into five topics: Defining Informal Science Education, Professional Development, Designing Programs, Zone of Reflexivity: The Space Between Formal and Informal Educators, and Public Communication. The authors have written chapters for practitioners, researchers and those who are interested in assessment and evaluation, formal and informal educator preparation, gender equity, place-based education, professional development, program design, reflective practice, ...

  4. The United States Polar Rock Repository: A geological resource for the Earth science community

    Science.gov (United States)

    Grunow, Annie M.; Elliot, David H.; Codispoti, Julie E.

    2007-01-01

    The United States Polar Rock Repository (USPRR) is a U. S. national facility designed for the permanent curatorial preservation of rock samples, along with associated materials such as field notes, annotated air photos and maps, raw analytic data, paleomagnetic cores, ground rock and mineral residues, thin sections, and microfossil mounts, microslides and residues from Polar areas. This facility was established by the Office of Polar Programs at the U. S. National Science Foundation (NSF) to minimize redundant sample collecting, and also because the extreme cold and hazardous field conditions make fieldwork costly and difficult. The repository provides, along with an on-line database of sample information, an essential resource for proposal preparation, pilot studies and other sample based research that should make fieldwork more efficient and effective. This latter aspect should reduce the environmental impact of conducting research in sensitive Polar Regions. The USPRR also provides samples for educational outreach. Rock samples may be borrowed for research or educational purposes as well as for museum exhibits.

  5. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    Resonance journal of science education. June 2015 Volume 20 Number 6. GENERALARTICLES. 483. Alexander the Great. The Mathematical Genius Grothendieck ... Latent Heat Storage Through Phase Change. Materials. Akanksha Mishra, A Shukla and Atul Sharma. 542. Necklaces: Generalizations. V Ch Venkaiah.

  6. Defending Constructivism in Science Education

    Science.gov (United States)

    Gil-Perez, Daniel; Guisasola, Jenaro; Moreno, Antonio; Cachapuz, Antonio; Pessoa De Carvalho, Anna M.; Torregrosa, Joaquin Martinez; Salinas, Julia; Valdes, Pablo; Gonzalez, Eduardo; Duch, Anna Gene; Dumas-Carre, Andree; Tricarico, Hugo; Gallego, Romulo

    After an impressive development throughout the last two decades, supported by a greatamount of research and innovation, science education seemed to be becoming a newscientific domain. This transformation of Science Education into a specific field of researchand knowledge is usually associated with the establishment of what has been called anemergent consensus about constructivist positions. However, some voices have begunto question these constructivist positions and therefore the idea of an advancementtowards a coherent body of knowledge in the field of science education. The goalof this work is to analyse some of the current criticisms of the so-called constructivistorientations and to study their implications for the development of science education asa coherent body of knowledge.

  7. Constructivism, Education, Science, and Technology

    OpenAIRE

    Moses A. Boudourides

    2003-01-01

    Abstract: The purpose of this paper is to present a brief review of the various streams of constructivism in studies of education, society, science and technology. It is intended to present a number of answers to the question (what really is constructivism?) in the context of various disciplines from the humanities and the sciences (both natural and social). In particular the discussion will focus on four varieties of constructivism: philosophical, cybernetic, educational, and sociological co...

  8. Constructivism, Education, Science, and Technology

    Directory of Open Access Journals (Sweden)

    Moses A. Boudourides

    2003-10-01

    Full Text Available Abstract: The purpose of this paper is to present a brief review of the various streams of constructivism in studies of education, society, science and technology. It is intended to present a number of answers to the question (what really is constructivism? in the context of various disciplines from the humanities and the sciences (both natural and social. In particular the discussion will focus on four varieties of constructivism: philosophical, cybernetic, educational, and sociological constructivism.

  9. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. May 2012 Volume 17 Number 5. SERIES ARTICLES. 436 Dawn of Science. The Quest for Power. T Padmanabhan. GENERAL ARTICLES. 441 Bernoulli Runs Using 'Book Cricket' to Evaluate. Cricketers. Anand Ramalingam. 454 Wilhelm Ostwald, the Father of Physical Chemistry.

  10. Resonance journal of science education

    Indian Academy of Sciences (India)

    sriranga

    Resonance journal of science education. March 2011 Volume 16 Number 3. GENERAL ARTICLES. 204 Sir Alfred ... Anupam Saxena. 238 Graphene – An Exciting Two-Dimensional. Material for Science and Technology ... The Rise of Modern Medicine. T Padmanabhan. REFLECTIONS. 279 Darshana Jolts. Sound: The ...

  11. Constructivism, Education, Science, and Technology

    Science.gov (United States)

    Boudourides, Moses A.

    2003-01-01

    The purpose of this paper is to present a brief review of the various streams of constructivism in studies of education, society, science and technology. It is intended to present a number of answers to the question (what really is constructivism?) in the context of various disciplines from the humanities and the sciences (both natural and…

  12. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    Resonance journal of science education. January 2016 Volume 21 Number 1 ... Crux of Time Management for Students. Felix Bast ... Refresher Course on Mountain Hydrology and. Climate Change. Science Academies' Seventy-Fifth Refresher Course in Experimental Physics. Information & Announcements. 106. 105. 108.

  13. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. February 2012 Volume 17 Number 2. SERIES ARTICLES. 106 Dawn of Science. Calculus is Developed in Kerala. T Padmanabhan. GENERAL ARTICLES. 117 Willis H Carrier: Father of Air Conditioning. R V Simha. 139 Refrigerants For Vapour Compression Refrigeration. Systems.

  14. Science Communication during the International Polar Year 2007-2008: Successes and Recommendations (Invited)

    Science.gov (United States)

    Carlson, D. J.; Ipy Education, Outreach; Communication Committee

    2010-12-01

    This IPY (International Polar Year 2007-2008) represented one of the largest international scientific research efforts ever undertaken. It stimulated the active engagement of thousands of teachers, students, and citizens around the globe through international collaboration and cooperation, careful cultivation of a global community of enthusiastic professional science communicators and educators, and creative use of free technologies. From music performances in Alaska to tree planting in Malaysia, hundreds of events and activities around the world demonstrated the public enthusiasm and the broad impact of IPY. This paper describes the core concepts and tangible activities developed and implemented by the IPY international Education, Outreach, and Communication (EOC) Committee and community and the International Programme Office (IPO) between March 2006 and December 2009. We present methods and accomplishments and address two questions: 1) How did these activities come about? 2) How do the ideas, tools, experiences, and successes from this IPY apply more broadly to science communication?

  15. Knowledge, Belief, and Science Education

    Science.gov (United States)

    Ferreira, Tiago Alfredo S.; El-Hani, Charbel N.; da Silva-Filho, Waldomiro José

    2016-10-01

    This article intends to show that the defense of "understanding" as one of the major goals of science education can be grounded on an anti-reductionist perspective on testimony as a source of knowledge. To do so, we critically revisit the discussion between Harvey Siegel and Alvin Goldman about the goals of science education, especially where it involves arguments based on the epistemology of testimony. Subsequently, we come back to a discussion between Charbel N. El-Hani and Eduardo Mortimer, on the one hand, and Michael Hoffmann, on the other, striving to strengthen the claim that rather than students' belief change, understanding should have epistemic priority as a goal of science education. Based on these two lines of discussion, we conclude that the reliance on testimony as a source of knowledge is necessary to the development of a more large and comprehensive scientific understanding by science students.

  16. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 11. Integration and Polar Coordinates. S Kesavan. General Article Volume 18 Issue 11 November 2013 pp 996-1003. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/018/11/0996-1003. Keywords.

  17. Romanticism and Romantic Science: Their Contribution to Science Education

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Schulz, Roland

    2014-01-01

    The unique contributions of romanticism and romantic science have been generally ignored or undervalued in history and philosophy of science studies and science education. Although more recent research in history of science has come to delineate the value of both topics for the development of modern science, their merit for the educational field…

  18. Guidelines for Building Science Education

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Cheryn E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rashkin, Samuel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huelman, Pat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    The U.S. Department of Energy’s (DOE) residential research and demonstration program, Building America, has triumphed through 20 years of innovation. Partnering with researchers, builders, remodelers, and manufacturers to develop innovative processes like advanced framing and ventilation standards, Building America has proven an energy efficient design can be more cost effective, healthy, and durable than a standard house. As Building America partners continue to achieve their stretch goals, they have found that the barrier to true market transformation for high performance homes is the limited knowledge-base of the professionals working in the building industry. With dozens of professionals taking part in the design and execution of building and selling homes, each person should have basic building science knowledge relevant to their role, and an understanding of how various home components interface with each other. Instead, our industry typically experiences a fragmented approach to home building and design. After obtaining important input from stakeholders at the Building Science Education Kick-Off Meeting, DOE created a building science education strategy addressing education issues preventing the widespread adoption of high performance homes. This strategy targets the next generation and provides valuable guidance for the current workforce. The initiative includes: • Race to Zero Student Design Competition: Engages universities and provides students who will be the next generation of architects, engineers, construction managers and entrepreneurs with the necessary skills and experience they need to begin careers in clean energy and generate creative solutions to real world problems. • Building Science to Sales Translator: Simplifies building science into compelling sales language and tools to sell high performance homes to their customers. • Building Science Education Guidance: Brings together industry and academia to solve problems related to

  19. Enhancing Metacognitive Practices in Science Education Students ...

    African Journals Online (AJOL)

    Enhancing Metacognitive Practices in Science Education Students Using the Intelligencies for Nation Building. ... AFRREV STECH: An International Journal of Science and Technology ... Three experts from Measurement and Evaluation (2) and one from Science Education scrutinized the instrument to ensure validity.

  20. Space Science Education Resource Directory

    Science.gov (United States)

    Christian, C. A.; Scollick, K.

    The Office of Space Science (OSS) of NASA supports educational programs as a by-product of the research it funds through missions and investigative programs. A rich suite of resources for public use is available including multimedia materials, online resources, hardcopies and other items. The OSS supported creation of a resource catalog through a group lead by individuals at STScI that ultimately will provide an easy-to-use and user-friendly search capability to access products. This paper describes the underlying architecture of that catalog, including the challenge to develop a system for characterizing education products through appropriate metadata. The system must also be meaningful to a large clientele including educators, scientists, students, and informal science educators. An additional goal was to seamlessly exchange data with existing federally supported educational systems as well as local systems. The goals, requirements, and standards for the catalog will be presented to illuminate the rationale for the implementation ultimately adopted.

  1. The IPY Education, Outreach and Communication Assessment: How IPY is shaping the future of science outreach

    Science.gov (United States)

    Provencher, J. F.; Baeseman, J. L.; Carlson, D. J.; Timm, K.

    2011-12-01

    The International Polar Year 2007-2008 (IPY) saw unprecedented polar collaboration between scientists, educators and communities, and prioritized science communication alongside a diverse science program. This global effort represents one of the largest investments in polar science outreach to date with IPY outreach occurring in more than 70 countries and involving millions of people, representing a microcosm of science outreach knowledge. In order to understand and learn from the many IPY education, outreach and communication (EOC) projects an ICSU sponsored IPY EOC assessment, managed by the Association of Polar Early Career Scientists (APECS), conducted a global inventory and assessment of IPY EOC programs at the end of the IPY. As a result the project has now gathered information on more than 530 outreach events including endorsed outreach programmes, science partnered outreach projects and simply IPY inspired science outreach events. By talking to communicators and scientists around the world many lessons can be learned on how to engage and actively involve the public, students and early career scientists in polar research in a meaningful way. Through the integration of science outreach from budget to results, dedication of outreach personnel and an inclusive approach to all aspects of science outreach, IPY has demonstrated that the public wants to be engaged in polar issues, and how science can incorporate both good science and effective outreach. This type of public engagement is not only critical for science literacy, it is this level of involvement in science that helps to keep science in the forefront of people's minds, and thus high on the agenda of governments and organizations funding research. At the conclusion of this latest IPY, polar science outreach programs not only supported science that expanded our knowledge of the Polar Regions, it integrated essential, and called for, science education, outreach and communication to a global community.

  2. Education science and biological anthropology.

    Science.gov (United States)

    Krebs, Uwe

    2014-01-01

    This contribution states deficits and makes proposals in order to overcome them. First there is the question as to why the Biological Anthropology--despite all its diversifications--hardly ever deals with educational aspects of its subject. Second it is the question as to why Educational Science neglects or even ignores data of Biological Anthropology which are recognizably important for its subject. It is postulated that the stated deficits are caused by several adverse influences such as, the individual identity of each of the involved single sciences; aspects of the recent history of the German Anthropology; a lack of conceptual understanding of each other; methodological differences and, last but not least, the structure of the universities. The necessity to remedy this situation was deduced from two groups of facts. First, more recent data of the Biological Anthropology (e.g. brain functions and learning, sex specificity and education) are of substantial relevance for the Educational Science. Second, the epistemological requirements of complex subjects like education need interdisciplinary approaches. Finally, a few suggestions of concrete topics are given which are related to both, Educational Science and Biological Anthropology.

  3. Fostering science communication and outreach through video production in Dartmouth's IGERT Polar Environmental Change graduate program

    Science.gov (United States)

    Hammond Wagner, C. R.; McDavid, L. A.; Virginia, R. A.

    2013-12-01

    Dartmouth's NSF-supported IGERT Polar Environmental Change graduate program has focused on using video media to foster interdisciplinary thinking and to improve student skills in science communication and public outreach. Researchers, educators, and funding organizations alike recognize the value of video media for making research results more accessible and relevant to diverse audiences and across cultures. We present an affordable equipment set and the basic video training needed as well as available Dartmouth institutional support systems for students to produce outreach videos on climate change and its associated impacts on people. We highlight and discuss the successes and challenges of producing three types of video products created by graduate and undergraduate students affiliated with the Dartmouth IGERT. The video projects created include 1) graduate student profile videos, 2) a series of short student-created educational videos for Greenlandic high school students, and 3) an outreach video about women in science based on the experiences of women students conducting research during the IGERT field seminar at Summit Station and Kangerlussuaq, Greenland. The 'Science in Greenland--It's a Girl Thing' video was featured on The New York Times Dot Earth blog and the Huffington Post Green blog among others and received international recognition. While producing these videos, students 1) identified an audience and created story lines, 2) worked in front of and behind the camera, 3) utilized low-cost digital editing applications, and 4) shared the videos on multiple platforms from social media to live presentations. The three video projects were designed to reach different audiences, and presented unique challenges for content presentation and dissemination. Based on student and faculty assessment, we conclude that the video projects improved student science communication skills and increased public knowledge of polar science and the effects of climate change.

  4. Earth Science Education in Morocco

    Science.gov (United States)

    Bouabdelli, Mohamed

    1999-05-01

    The earth sciences are taught in twelve universities in Morocco and in three other institutions. In addition there are three more earth science research institutions. Earth science teaching has been taking place since 1957. The degree system is a four-year degree, split into two two-year blocks and geology is taught within the geology-biology programme for the first part of the degree. 'Classical' geology is taught in most universities, although applied geology degrees are also on offer in some universities. Recently-formed technical universities offer a more innovative approach to Earth Science Education. Teaching is in French, although school education is in Arabic. There is a need for a reform of the curriculum, although a lead is being taken by the technical universities. A new geological mapping programme promises new geological and mining discoveries in the country and prospects of employment for geology graduates.

  5. Scientific Research in Polar Seas – ERICON Science Perspective 2015-2030

    NARCIS (Netherlands)

    Wilmott, V.; Azzolini, R.; von Brandt, A.; Brinkhuis, H.; Camerlenghi, A.; Coakley, B.; De Santis, L.; Kristoffersen, Y.; Lembke-Jene, L.; Rebesco, M.; Thiede, J.; and other contributors, .

    2012-01-01

    Polar sciences are a modern branch of the natural sciences involving large groups of researchers, and sophisticated instrumentation contributing indispensable data for a better understanding of the polar regions and their impact on the global environment. The fact that a lot of the necessary

  6. Marketing Earth science education

    Science.gov (United States)

    Snieder, Roel; Spiers, Chris

    In the 1990s, the Department of Earth Sciences at Utrecht University in the Netherlands was struggling with a declining influx of students. For years, the department had been active in promoting its program, but this was insufficient to stem the decline in interest. To remedy the problem, the school's Earth science faculty carried out, with the help of consultants, a qualitative evaluation of its promotional activities. The faculty feared that their own image of the department might be in conflict with the image held by others; prospective students, in particular. The consultants interviewed secondary school students, parents, teachers, and study advisors in secondary schools. This article is a report on the results of this evaluation.

  7. Assessing Challenges and Opportunities for Education and Communication Activities for International Polar Year 2007-2008

    Science.gov (United States)

    McCaffrey, M. S.

    2005-05-01

    goals, contribute to building a lasting legacy for IPY, and support prior IPY Education and Outreach planning efforts, a Center for Polar Education and Coordination, and an online journal entitled the POLAR Post, modeled after the NASA Earth Observatory, have been proposed by the Outreach Department at the Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado, in conjunction with the National Snow and Ice Data Center (NSIDC), the Institute for Arctic and Alpine Research (INSTAAR), and UCAR Education and Outreach. National Research Council (2004). A Vision for the International Polar Year. "Increasing Public Understanding and Participation in Polar Science Through the International Polar Year" and "Actions Needed to Make the International Polar Year Succeed." 65-79. National Research Council (2004). Planning for the International Polar Year 2007-2008: Report from the Implementation Workshop. "Data Education and Outreach Initiatives." 32-34.

  8. Inquiry-based science education

    DEFF Research Database (Denmark)

    Østergaard, Lars Domino; Sillasen, Martin Krabbe; Hagelskjær, Jens

    2010-01-01

    Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret naturfagsundervisnings......Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret...

  9. A Rising Tide for Polar Science: Efforts of the U.S. National Committee for the International Polar Year

    Science.gov (United States)

    Albert, M. R.

    2003-12-01

    The polar regions, fascinating yet distant and cold places, hold the keys to our changing world. While the upcoming IPY is the 50th anniversary of the International Geophysical Year and the 125th anniversary of the first International Polar Year, it also falls at a crucial time in rapid changes in environmental and social systems that may affect all peoples of the Earth. Further warming of the Arctic, changing ecosystems and opening pathways for ocean travel, impact not only the people there but also the shipping, economics, and strategic considerations of distant nations. Yet potential further warming of the Arctic may be understood by clues in the Antarctic ice. How are the polar regions changing, and how swiftly may those changes affect the entire Earth? This is but one question emerging from community discussions of the science of the upcoming IPY. Our emerging ability to investigate previously unexplored areas is increasing our understanding of the wide world we live in, through interdisciplinary studies and tools for connections. Autonomous vehicles, genomics, and remote sensing technologies are just a few of the emerging areas that may provide new tools for investigating previously inaccessible realms. At the same time, tools such as the internet are making the world smaller, enabling instant communications between the peoples of the world. Joint international investigations enhance our ability to understand one another as well as our ability to understand our world and our universe. Rapid communications and international involvement can revolutionize the way we educate young scientists and our future leaders in a complex and changing world. Involving and educating people - young scientists, college students, school children, and the public - will be included as hallmarks of the IPY. The people are here. New tools are emerging. The ideas, or scientific goals, of the IPY are being crafted jointly through broad involvement of the scientific community, through

  10. NASA Earth Science Education Collaborative

    Science.gov (United States)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  11. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. July 2007 Volume 12 Number 7. GENERAL ARTICLES. 04 Josiah Willard Gibbs. V Kumaran. 12 Josiah Willard ... IISc, Bangalore). Rapidity: The Physical Meaning of the Hyperbolic Angle in. Special Relativity. Giorgio Goldoni. Survival in Stationary Phase. S Mahadevan. Classroom.

  12. The Globalization of Science Education

    Science.gov (United States)

    Deboer, George

    2012-02-01

    Standards-based science education, with its emphasis on clearly stated goals, performance monitoring, and accountability, is rapidly becoming a key part of how science education is being viewed around the world. Standards-based testing within countries is being used to determine the effectiveness of a country's educational system, and international testing programs such as PISA and TIMSS enable countries to compare their students to a common standard and to each other. The raising of standards and the competition among countries is driven in part by a belief that economic success depends on a citizenry that is knowledgeable about science and technology. In this talk, I consider the question of whether it is prudent to begin conversations about what an international standards document for global citizenship in science education might look like. I examine current practices to show the areas of international agreement and the significant differences that still exist, and I conclude with a recommendation that such conversations should begin, with the goal of laying out the knowledge and competencies that international citizens should have that also gives space to individual countries to pursue goals that are unique to their own setting.

  13. The Utopia of Science Education

    Science.gov (United States)

    Castano, Carolina

    2012-01-01

    In this forum I expand on the ideas I initially presented in "Extending the purposes of science education: addressing violence within socio-economic disadvantaged communities" by responding to the comments provided by Matthew Weinstein, Francis Broadway and Sheri Leafgren. Focusing on their notion of utopias and superheroes, I ask us to reconsider…

  14. Science Communication versus Science Education: The Graduate Student Scientist as a K-12 Classroom Resource

    Science.gov (United States)

    Strauss, Jeff; Shope, Richard E., III; Terebey, Susan

    2005-01-01

    Science literacy is a major goal of science educational reform (NRC, 1996; AAAS, 1998; NCLB Act, 2001). Some believe that teaching science only requires pedagogical content knowledge (PCK). Others believe doing science requires knowledge of the methodologies of scientific inquiry (NRC, 1996). With these two mindsets, the challenge for science educators is to create models that bring the two together. The common ground between those who teach science and those who do science is science communication, an interactive process that galvanizes dialogue among scientists, teachers, and learners in a rich ambience of mutual respect and a common, inclusive language of discourse . The dialogue between science and non-science is reflected in the polarization that separates those who do science and those who teach science, especially as it plays out everyday in the science classroom. You may be thinking, why is this important? It is vital because, although not all science learners become scientists, all K-12 students are expected to acquire science literacy, especially with the implementation of the No Child Left Behind Act of 2001 (NCLB). Students are expected to acquire the ability to follow the discourse of science as well as connect the world of science to the context of their everyday life if they plan on moving to the next grade level, and in some states, to graduate from high school. This paper posits that science communication is highly effective in providing the missing link for K-12 students cognition in science and their attainment of science literacy. This paper will focus on the "Science For Our Schools" (SFOS) model implemented at California State Univetsity, Los Angeles (CSULA) as a project of the National Science Foundation s GK-12 program, (NSF 2001) which has been a huge success in bridging the gap between those who "know" science and those who "teach" science. The SFOS model makes clear the distinctions that identify science, science communication, science

  15. Nuclear science education in Taiwan

    International Nuclear Information System (INIS)

    Chung, Chien

    1990-01-01

    The nuclear science education has been established in Taiwan at the National Tsing Hua University (NTHU) since 1956. Support from the well-developed local nuclear power industry and government agencies is converged with rapid growth rate toward the College of Nuclear Science at NTHU, the only one among 123 universities and colleges in Taiwan where nuclear-related education is offered. The College, with 53 faculty members, offers bachelor's degree in Nuclear Engineering and master's and doctorate degrees in Nuclear Science, Nuclear Engineering, and Radiation Biology. Lectures and lab classes of radiochemistry, health physics, nuclear instruments, reactor experiment, nuclear medicine, and environmental monitoring are given to the 240 undergraduate students and 200 postgraduate students. The 1988 annual budget and research contracts for the College amounted USD600,000 and USD2,220,000, respectively

  16. The Japanese science education centers.

    Science.gov (United States)

    Glass, B

    1966-10-14

    These six Japanese science education centers signify a sweeping reform of elementary and secondary school science teaching. They achieve their striking results because they are established on a permanent, local basis and are supported mainly by the local boards of education. They have avoided control by pedagogues and specialists in "education." Instead, they are operated by trained scientists and experienced school teachers who work together to devise programs specially suited to the needs of their teachers. With small and practicable steps, the teachers improve their understanding of methods which they can readily test in their own classrooms rooms and laboratories. The laboratory equipment in the science education centers is only slightly superior to that which the teachers have in their own schools, but superior enough to make them desire to improve their own facilities. Major facilities, such as x-ray machines, electron microscopes, telescopes (15-cm), and machine shops, as well as good working collections of minerals and fossils, and adequate greenhouses, permit the teachers to work with more expensive equipment, to gain a firsthand knowledge of its operation, and to bring groups of students to the center to observe what such instruments make possible. The use of American experimental course content improvement programs is widespread. Every science education center I visited is using PSSC, CHEMS, CBA, BSCS, or ESCP materials and studying the philosophy of these programs. Yet no center is entirely dependent on these programs, but uses them critically to supplement and improve its own courses. The emphasis is on good laboratory and field teaching as a basis for understanding scientific methods and concepts. Science as investigation and inquiry, instead of treatment solely as an authoritative body of facts, is coming into its own. The few defects of the science education centers of Japan inhere in the educational situation itself. The centers are at present

  17. Does science education need the history of science?

    Science.gov (United States)

    Gooday, Graeme; Lynch, John M; Wilson, Kenneth G; Barsky, Constance K

    2008-06-01

    This essay argues that science education can gain from close engagement with the history of science both in the training of prospective vocational scientists and in educating the broader public about the nature of science. First it shows how historicizing science in the classroom can improve the pedagogical experience of science students and might even help them turn into more effective professional practitioners of science. Then it examines how historians of science can support the scientific education of the general public at a time when debates over "intelligent design" are raising major questions over the kind of science that ought to be available to children in their school curricula. It concludes by considering further work that might be undertaken to show how history of science could be of more general educational interest and utility, well beyond the closed academic domains in which historians of science typically operate.

  18. PoSSUM: Polar Suborbital Science in the Upper Mesosphere

    Science.gov (United States)

    Reimuller, J. D.; Fritts, D. C.; Thomas, G. E.; Taylor, M. J.; Mitchell, S.; Lehmacher, G. A.; Watchorn, S. R.; Baumgarten, G.; Plane, J. M.

    2013-12-01

    Project PoSSUM (www.projectpossum.org) is a suborbital research project leveraging imaging and remote sensing techniques from Reusable Suborbital Launch Vehicles (rSLVs) to gather critical climate data through use of the PoSSUM Observatory and the PoSSUM Aeronomy Laboratory. An acronym for Polar Suborbital Science in the Upper Mesosphere, PoSSUM grew from the opportunity created by the Noctilucent Cloud Imagery and Tomography Experiment, selected by the NASA Flight Opportunities Program as Experiment 46-S in March 2012. This experiment will employ an rSLV (e.g. the XCOR Lynx Mark II) launched from a high-latitude spaceport (e.g. Eielson AFB, Alaska or Kiruna, Sweden) during a week-long deployment scheduled for July 2015 to address critical questions concerning noctilucent clouds (NLCs) through flights that transition the cloud layer where the clouds will be under direct illumination from the sun. The 2015 Project PoSSUM NLC campaign will use the unique capability of rSLVs to address key under-answered questions pertaining to NLCs. Specifically, PoSSUM will answer: 1) What are the small-scale dynamics of NLCs and what does this tell us about the energy and momentum deposition from the lower atmosphere? 2) What is the seasonal variability of NLCs, mesospheric dynamics, and temperatures? 3) Are structures observed in the OH layer coupled with NLC structures? 4) How do NLCs nucleate? and 5) What is the geometry of NLC particles and how do they stratify? Instrumentation will include video and still-frame visible cameras (PoSSUMCam), infrared cameras, a mesospheric temperatures experiment, a depolarization LiDAR, a mesospheric density and temperatures experiment (MCAT), a mesospheric winds experiment, and a meteoric smoke detector (MASS). The instrument suite used on PoSSUM will mature through subsequent campaigns to develop an integrated, modular laboratory (the ';PoSSUM Observatory') that will provide repeatable, low cost, in-situ NLC and aeronomy observations as well

  19. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Ownership form. Articles in Resonance – Journal of Science Education. Volume 22 Issue 3 March 2017 pp 331-331 Ownership form. Ownership form · More Details Abstract Fulltext PDF ...

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Website Reviews. Articles in Resonance – Journal of Science Education. Volume 4 Issue 8 August 1999 pp 91-93 Website Reviews. Website Review · Harini Nagendra · More Details Fulltext PDF ...

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Science Academies' Refresher Course in Advances in Chemical Sciences and Sustainable Development. Information and Announcements Volume 19 Issue 9 September 2014 pp 876-876 ...

  2. Myriam Krasilchik: A Brazilian Science Educator.

    Science.gov (United States)

    Bizzo, Nelio Marco Vincenzo; Kelly, Peter Joseph

    1991-01-01

    Tells the story of Brazilian science educator Myriam Krasilchik who, in 1990, became dean of the University of Sao Paolo's School of Education. She provided leadership in the creation of Science Teaching Centers in Brazil and has been active in international science education organizations. (SM)

  3. Innovation in Science Education - World-Wide.

    Science.gov (United States)

    Baez, Albert V.

    The purpose of this book is to promote improvements in science education, world-wide, but particularly in developing countries. It is addressed to those in positions to make effective contributions to the improvement of science education. The world-wide role of science education, the goals of innovative activities, past experience in efforts to…

  4. Ethiopian Journal of Education and Sciences

    African Journals Online (AJOL)

    The Ethiopian Journal of Education and Sciences focuses on publishing articles relating to education and sciences. It publishes original research findings, experiments, action research, case studies, brief communications, and review articles in the fields of education and sciences. The objective is to create forum for ...

  5. Tutorial Instruction in Science Education

    Directory of Open Access Journals (Sweden)

    Rhea Miles

    2015-06-01

    Full Text Available The purpose of the study is to examine the tutorial practices of in-service teachers to address the underachievement in the science education of K-12 students. Method: In-service teachers in Virginia and North Carolina were given a survey questionnaire to examine how they tutored students who were in need of additional instruction. Results: When these teachers were asked, “How do you describe a typical one-on-one science tutorial session?” the majority of their responses were categorized as teacher-directed. Many of the teachers would provide a science tutorial session for a student after school for 16-30 minutes, one to three times a week. Respondents also indicated they would rely on technology, peer tutoring, scientific inquiry, or themselves for one-on-one science instruction. Over half of the in-service teachers that responded to the questionnaire stated that they would never rely on outside assistance, such as a family member or an after school program to provide tutorial services in science. Additionally, very few reported that they incorporated the ethnicity, culture, or the native language of ELL students into their science tutoring sessions.

  6. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-01-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be…

  7. EU-PolarNet: Connecting Science with Society

    Science.gov (United States)

    Biebow, N.

    2015-12-01

    The rapid changes occurring in the Polar Regions are significantly influencing global climate with consequences for global society. European and international polar research has contributed critical knowledge to identifying the processes behind these rapid changes but datasets from the Polar Regions are still insufficient to fully understand and more effectively predict the effects of change on our climate and society. This situation can only be improved by a more holistic integrated scientific approach, a higher degree of coordination of polar research and closer cooperation with all relevant actors on an international level. The objectives of EU-PolarNet are to establish an on-going dialogue between policy-makers, business and industry leaders, local communities and scientists to increase mutual understanding and identify new ways of working that will deliver economic and societal benefits. The results of this dialogue will be brought together in an Integrated European Research Programme that will be co-designed with all relevant stakeholders and coordinated with the activities of polar research nations beyond Europe. This programme will be accompanied by a feasible implementation plan to provide the Polar community with the capability to define the nature of environmental risks so that governments can design policy measures to mitigate them and businesses and other stakeholders benefit from the opportunities that are opening up in the Polar Regions.

  8. Philosophy of Science and Education

    Science.gov (United States)

    Jung, Walter

    2012-08-01

    This is a vast and vague topic. In order to do justice to it one has to write a book or maybe more than one. For it can be understood in quite different ways and on different levels For example you may think mainly of the historical aspect, that is how philosophy of science developed in the last hundred or so years and how its influence on education changed; you may think of quite different schools of philosophy, from Marxist or positivist to such exotic but at some places influential philosophic positions like that of Rudolph Steiner; of course, you may limit the subject to special fields like epistemology, theory of scientific methodology, or, what has become fashionable recently, sociology of knowledge which may have a considerable bearing on physics teaching (Collins and Shapin 1983; Jung 1985). Again we may think of the topic treated by a philosopher, a scientist, an educationalist, a teacher, which would mean quite a difference. I am trying here to speak as an educationalist, with the physics teacher in mind: this is my vocational perspective as someone who educates physics teachers. Of course, our main concern is the contribution of science, especially physics, to general education, which integrates many of the special topics mentioned. Philosophy of science comes in because it is not at all clear what science and physics is, and what of it should be taught, and how such chosen parts should be taught. I also take this opportunity to give an idea of the longstanding tradition of this discussion in Germany, connected with names like Wagenshein, Litt, Heisenberg and many others.

  9. University Science and Mathematics Education in Transition

    DEFF Research Database (Denmark)

    Skovsmose, Ole; Valero, Paola; Christensen, Ole Ravn

    of science and mathematics education in the current information society and provides insight essential for developing possibilities to improve science and mathematics education in universities all around the world. The uniquely broad treatment offered by University Science and Mathematics Education...... configuration poses to scientific knowledge, to universities and especially to education in mathematics and science. Traditionally, educational studies in mathematics and science education have looked at change in education from within the scientific disciplines and in the closed context of the classroom....... Although educational change is ultimately implemented in everyday teaching and learning situations, other parallel dimensions influencing these situations cannot be forgotten. An understanding of the actual potentialities and limitations of educational transformations are highly dependent on the network...

  10. Integrating Felting in Elementary Science Classrooms to Facilitate Understanding of the Polar Auroras

    Directory of Open Access Journals (Sweden)

    Brandy Terrill

    2017-10-01

    Full Text Available The Next Generation Science Standards (NGSS emphasize conceptual science instruction that draws on students’ ability to make observations, explain natural phenomena, and examine concept relationships. This paper explores integrating the arts, in the form of felting, in elementary science classrooms as a way for students to model and demonstrate understanding of the complex scientific processes that cause the polar auroras. The steps for creating felting, and using the felting artwork students create for assessing science learning, are described.

  11. Preparing Future Secondary Computer Science Educators

    Science.gov (United States)

    Ajwa, Iyad

    2007-01-01

    Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…

  12. The State and Future of Mars Polar Science and Exploration

    Science.gov (United States)

    Clifford, Stephen M.; Crisp, David; Fisher, David A.; Herkenhoff, Ken E.; Smrekar, Suzanne E.; Thomas, Peter C.; Wynn-Williams, David D.; Zurek, Richard W.; Barnes, Jeffrey R.; Bills, Bruce G.

    2000-01-01

    As the planet's principal cold traps, the martian polar regions have accumulated extensive mantles of ice and dust that cover individual areas of approx. 10(exp 6)sq km and total as much as 3-4 km thick. From the scarcity of superposed craters on their surface, these layered deposits are thought to he comparatively young-preserving a record of the seasonal and climatic cycling of atmospheric CO2, H2O, and dust over the past approx. 10(exp 5)-10(exp 8) years. For this reason, the martian polar deposits may serve as a Rosetta Stone for understanding the geologic and climatic history of the planet-documenting variations in insolation (due to quasiperiodic oscillations in the planet's obliquity and orbital elements), volatile mass balance, atmospheric composition, dust storm activity, volcanic eruptions, large impacts, catastrophic floods, solar luminosity, supernovae, and perhaps even a record of microbial life. Beyond their scientific value, the polar regions may soon prove important for another reason-providing a valuable and accessible reservoir of water to support the long-term human exploration of Mars. In this paper we assess the current state of Mars polar research, identify the key questions that motivate the exploration of the polar regions, discuss the extent to which current missions will address these questions, and speculate about what additional capabilities and investigations may be required to address the issues that remain outstanding.

  13. The State and Future of Mars Polar Science and Exploration

    Science.gov (United States)

    Clifford, S.M.; Crisp, D.; Fisher, D.A.; Herkenhoff, K. E.; Smrekar, S.E.; Thomas, P.C.; Wynn-Williams, D. D.; Zurek, R.W.; Barnes, J.R.; Bills, B.G.; Blake, E.W.; Calvin, W.M.; Cameron, J.M.; Carr, M.H.; Christensen, P.R.; Clark, B. C.; Clow, G.D.; Cutts, J.A.; Dahl-Jensen, D.; Durham, W.B.; Fanale, F.P.; Farmer, J.D.; Forget, F.; Gotto-Azuma, K.; Grard, R.; Haberle, R.M.; Harrison, W.; Harvey, R.; Howard, A.D.; Ingersoll, A.P.; James, P.B.; Kargel, J.S.; Kieffer, H.H.; Larsen, J.; Lepper, K.; Malin, M.C.; McCleese, D.J.; Murray, B.; Nye, J.F.; Paige, D.A.; Platt, S.R.; Plaut, J.J.; Reeh, N.; Rice, J.W.; Smith, D.E.; Stoker, C.R.; Tanaka, K.L.; Mosley-Thompson, E.; Thorsteinsson, T.; Wood, S.E.; Zent, A.; Zuber, M.T.; Zwally, H.J.

    2000-01-01

    As the planet's principal cold traps, the martian polar regions have accumulated extensive mantles of ice and dust that cover individual areas of ???106 km2 and total as much as 3-4 km thick. From the scarcity of superposed craters on their surface, these layered deposits are thought to be comparatively young - preserving a record of the seasonal and climatic cycling of atmospheric CO2, H2O, and dust over the past ???105-108 years. For this reason, the martian polar deposits may serve as a Rosetta Stone for understanding the geologic and climatic history of the planet - documenting variations in insolation (due to quasiperiodic oscillations in the planet's obliquity and orbital elements), volatile mass balance, atmospheric composition, dust storm activity, volcanic eruptions, large impacts, catastrophic floods, solar luminosity, supernovae, and perhaps even a record of microbial life. Beyond their scientific value, the polar regions may soon prove important for another reason - providing a valuable and accessible reservoir of water to support the long-term human exploration of Mars. In this paper we assess the current state of Mars polar research, identify the key questions that motivate the exploration of the polar regions, discuss the extent to which current missions will address these questions, and speculate about what additional capabilities and investigations may be required to address the issues that remain outstanding. ?? 2000 Academic Press.

  14. University Science and Mathematics Education in Transition

    DEFF Research Database (Denmark)

    Skovsmose, Ole; Valero, Paola; Christensen, Ole Ravn

    clear that the transformation of knowledge outside universities has implied a change in the routes that research in mathematics, science and technology has taken in the last decades. In this context, it is difficult to avoid considering seriously the challenges that such a complex and uncertain social...... in Transition makes the volume an important resource for University science and mathematics education researchers and faculty....... configuration poses to scientific knowledge, to universities and especially to education in mathematics and science. Traditionally, educational studies in mathematics and science education have looked at change in education from within the scientific disciplines and in the closed context of the classroom...

  15. Introduction to the fifth Mars Polar Science special issue: key questions, needed observations, and recommended investigations

    Science.gov (United States)

    Clifford, Stephen M.; Yoshikawa, Kenji; Byrne, Shane; Durham, William; Fisher, David; Forget, Francois; Hecht, Michael; Smith, Peter; Tamppari, Leslie; Titus, Timothy; Zurek, Richard

    2013-01-01

    The Fifth International Conference on Mars Polar Science and Exploration – which was held from September 12–16, 2011, at the Pike’s Waterfront Lodge in Fairbanks, Alaska – is the latest in a continuing series of meetings that are intended to promote the exchange of knowledge and ideas between planetary and terrestrial scientists interested in Mars polar and climate research (http://www.lpi.usra.edu/meetings/polar2011/polar20113rd.html). The conference was sponsored by the Lunar and Planetary Institute, National Aeronautics and Space Administration, NASA’s Mars Program Office, University of Alaska Fairbanks, International Association of Cryospheric Sciences and the Centre for Research in Earth and Space Sciences at York University.

  16. Romanticism and Romantic Science: Their Contribution to Science Education

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Schulz, Roland

    2014-10-01

    The unique contributions of romanticism and romantic science have been generally ignored or undervalued in history and philosophy of science studies and science education. Although more recent research in history of science has come to delineate the value of both topics for the development of modern science, their merit for the educational field has not been explored. Romanticism was not only an obvious historical period, but a particular state of mind with its own extraordinary emotional sensitivity towards nature. It is especially the latter which we hope to revisit and reclaim for science education. After discussing several key historical contributions, we describe nine characteristics of `Romantic Science' in order to focus on six ideas/possibilities that we believe hold much value for transforming current science education: (1) the emotional sensitivity toward nature, (2) the centrality of sense experience, (3) the importance of "holistic experience", (4) the importance of the notions of mystery and wonder, (5) the power of science to transform people's outlook on the natural world, and (6) the importance of the relationship between science and philosophy. It is argued that in view of a pragmatist/utilitarian conception of school science prevalent today the aforementioned ideas (especially the notion of wonder and the poetic/non-analytical mode of knowledge), can provide food for thought for both science teachers and researchers seeking to work out an aesthetic conception, one that complements current approaches such as inquiry science and conceptual change.

  17. Cultural studies of science education

    Science.gov (United States)

    Higgins, Joanna; McDonald, Geraldine

    2008-07-01

    In response to Stetsenko's [2008, Cultural Studies of Science Education, 3] call for a more unified approach in sociocultural perspectives, this paper traces the origins of the use of sociocultural ideas in New Zealand from the 1970s to the present. Of those New Zealanders working from a sociocultural perspective who responded to our query most had encountered these ideas while overseas. More recently activity theory has been of interest and used in reports of work in early childhood, workplace change in the apple industry, and in-service teacher education. In all these projects the use of activity theory has been useful for understanding how the elements of a system can transform the activity. We end by agreeing with Stetsenko that there needs to be a more concerted approach by those working from a sociocultural perspective to recognise the contribution of others in the field.

  18. The Education Professorate: Teaching an "Artificial" Science.

    Science.gov (United States)

    Wagener, James W.

    This paper argues that conceiving the education professor's role in higher education as that of teaching an "artificial" science is a helpful metaphor for re-contextualizing this mission. How the use of the metaphor of an artificial science bears on the role of the education professorate is examined by applying the purposive-inner…

  19. Levinas and an Ethics for Science Education

    Science.gov (United States)

    Blades, David W.

    2006-01-01

    Despite claims that STS(E) science education promotes ethical responsibility, this approach is not supported by a clear philosophy of ethics. This paper argues that the work of Emmanuel Levinas provides an ethics suitable for an STS(E) science education. His concept of the face of the Other redefines education as learning from the other, rather…

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 9. Issue front cover thumbnail Issue back cover ... pp 821-821 Science Smiles. Science Smiles · Ayan Guha ... Information and Announcements. Science Academies Refresher Course on Traditional and Modern Approaches in Plant Taxonomy'.

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of Sciences ... Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 1. An Introduction to Parallel ... Abhiram Ranade1. Department of Computer Science and Engineering, Indian Institute of Technology Powai, Mumbai 400076, India ...

  2. Discovering Science Education in the USA

    Science.gov (United States)

    Teaching Science, 2014

    2014-01-01

    Science is amazing for many reasons. One of them is its immeasurable size as a subject, and the breadth of its application. From nanotech to astrophysics, from our backyards to the global arena, science links everything and everyone on Earth. Our understanding of science--and science education--needs to be just as diverse and all-encompassing.…

  3. Science Education at Arts-Focused Colleges

    Science.gov (United States)

    Oswald, W. Wyatt; Ritchie, Aarika; Murray, Amy Vashlishan; Honea, Jon

    2016-01-01

    Many arts-focused colleges and universities in the United States offer their undergraduate students coursework in science. To better understand the delivery of science education at this type of institution, this article surveys the science programs of forty-one arts-oriented schools. The findings suggest that most science programs are located in…

  4. Sex education and science education in faith-based schools

    OpenAIRE

    Reiss, Michael

    2014-01-01

    The key issue for a faith-based school is the extent to which, if at all, its aims, ethos, curriculum, pedagogy and assessment should differ from other schools and the impact this has for its students on their learning, attitudes and dispositions. This chapter explores these issues with specific reference to the teaching of sex education and the teaching of science education. I conclude that the role of religion is somewhat different in science education and in sex education. In science educa...

  5. Informal science education at Science City

    Science.gov (United States)

    French, April Nicole

    The presentation of chemistry within informal learning environments, specifically science museums and science centers is very sparse. This work examines learning in Kansas City's Science City's Astronaut Training Center in order to identify specific behaviors associated with visitors' perception of learning and their attitudes toward space and science to develop an effective chemistry exhibit. Grounded in social-constructivism and the Contextual Model of Learning, this work approaches learning in informal environments as resulting from social interactions constructed over time from interaction between visitors. Visitors to the Astronaut Training Center were surveyed both during their visit and a year after the visit to establish their perceptions of behavior within the exhibit and attitudes toward space and science. Observations of visitor behavior and a survey of the Science City staff were used to corroborate visitor responses. Eighty-six percent of visitors to Science City indicated they had learned from their experiences in the Astronaut Training Center. No correlation was found between this perception of learning and visitor's interactions with exhibit stations. Visitor attitudes were generally positive toward learning in informal settings and space science as it was presented in the exhibit. Visitors also felt positively toward using video game technology as learning tools. This opens opportunities to developing chemistry exhibits using video technology to lessen the waste stream produced by a full scale chemistry exhibit.

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 11. Science Academies' Refresher Course on Bioprospection of Bioresources: Land to Lab Approach. Information and Announcements Volume 22 Issue 11 November 2017 pp 1101-1101 ...

  7. Searching for Meaning in Science Education.

    Science.gov (United States)

    Berkheimer, Glenn D.; McLeod, Richard J.

    1979-01-01

    Discusses how science programs K-16 should be developed to meet the modern objectives of science education and restore its true meaning. The theories of Phenix and Ausubel are included in this discussion. (HM)

  8. Images of Science and Scientists on Children's Educational Science Programs.

    Science.gov (United States)

    Long, Marilee; Steinke, Jocelyn

    A qualitative study analyzed images of science and scientists in children's educational science programs on television to determine whether they conveyed the images found in other media. Four episodes of each of four 30-minute, non-animated programs ("Beakman's World" broadcast on CBS, "Bill Nye, The Science Guy" shown on…

  9. Earth System Science Education Modules

    Science.gov (United States)

    Hall, C.; Kaufman, C.; Humphreys, R. R.; Colgan, M. W.

    2009-12-01

    The College of Charleston is developing several new geoscience-based education modules for integration into the Earth System Science Education Alliance (ESSEA). These three new modules provide opportunities for science and pre-service education students to participate in inquiry-based, data-driven experiences. The three new modules will be discussed in this session. Coastal Crisis is a module that analyzes rapidly changing coastlines and uses technology - remotely sensed data and geographic information systems (GIS) to delineate, understand and monitor changes in coastal environments. The beaches near Charleston, SC are undergoing erosion and therefore are used as examples of rapidly changing coastlines. Students will use real data from NASA, NOAA and other federal agencies in the classroom to study coastal change. Through this case study, learners will acquire remotely sensed images and GIS data sets from online sources, utilize those data sets within Google Earth or other visualization programs, and understand what the data is telling them. Analyzing the data will allow learners to contemplate and make predictions on the impact associated with changing environmental conditions, within the context of a coastal setting. To Drill or Not To Drill is a multidisciplinary problem based module to increase students’ knowledge of problems associated with nonrenewable resource extraction. The controversial topic of drilling in the Arctic National Wildlife Refuge (ANWR) examines whether the economic benefit of the oil extracted from ANWR is worth the social cost of the environmental damage that such extraction may inflict. By attempting to answer this question, learners must balance the interests of preservation with the economic need for oil. The learners are exposed to the difficulties associated with a real world problem that requires trade-off between environmental trust and economic well-being. The Citizen Science module challenges students to translate scientific

  10. Reforming Science and Mathematics Education

    Science.gov (United States)

    Lagowski, J. J.

    1995-09-01

    Since 1991, the National Science Foundation has signed cooperative agreements with 26 states to undertake ambitious and comprehensive initiatives to reform science, mathematics, and technology education. Collectively, those agreements are known as the State Systemic Initiatives (SSI's). Two complimentary programs, The Urban and Rural Systemic Initiatives (USI's and RSI's), address similar reforms in the nation's largest cities and poorest rural areas. The SSI Program departs significantly from past NSF practice in several ways. The funding is for a longer term and is larger in amount, and the NSF is taking a more activist role, seeking to leverage state and private funds and promote the coordination of programs within states. The Initiatives also have a stronger policy orientation than previous NSF programs have had. The NSF strategy is a reflection of the growing and widely held view that meaningful reforms in schools are most likely to be achieved through state initiatives that set clear and ambitious learning goals and standards; align all of the available policy levers in support of reform; stimulate school-level initiatives; and mobilize human and financial resources to support these changes. Two premises underlie systemic reform: (1) all children can meet significantly higher standards if they are asked to do so and given adequate opportunities to master the content, and (2) state and local policy changes can create opportunities by giving schools strong and consistent signals about the changes in practice and performance that are expected. Because this is an enormous investment of Federal resources that is intended to bring about deep, systemic improvement in the nation's ability to teach science and mathematics effectively, the NSF has contracted with a consortium of independent evaluators to conduct a review of the program. The first of the SSI's were funded in 1991, sufficiently long ago to begin to formulate some initial impressions of their impact. Take

  11. Educational Technology Classics: The Science Teacher and Educational Technology

    Science.gov (United States)

    Harbeck, Richard M.

    2015-01-01

    The science teacher is the key person who has the commitment and the responsibility for carrying out any brand of science education. All of the investments, predictions, and expressions of concern will have little effect on the accomplishment of the broad goals of science education if these are not reflected in the situations in which learning…

  12. Reconceptualizing the Nature of Science for Science Education

    Science.gov (United States)

    Dagher, Zoubeida R.; Erduran, Sibel

    2016-03-01

    Two fundamental questions about science are relevant for science educators: (a) What is the nature of science? and (b) what aspects of nature of science should be taught and learned? They are fundamental because they pertain to how science gets to be framed as a school subject and determines what aspects of it are worthy of inclusion in school science. This conceptual article re-examines extant notions of nature of science and proposes an expanded version of the Family Resemblance Approach (FRA), originally developed by Irzik and Nola (International handbook of research in history, philosophy and science teaching. Springer, Dordrecht, pp 999-1021, 2014) in which they view science as a cognitive-epistemic and as an institutional-social system. The conceptual basis of the expanded FRA is described and justified in this article based on a detailed account published elsewhere (Erduran and Dagher in Reconceptualizing the nature of science for science education: scientific knowledge, practices and other family categories. Springer, Dordrecht, 2014a). The expanded FRA provides a useful framework for organizing science curriculum and instruction and gives rise to generative visual tools that support the implementation of a richer understanding of and about science. The practical implications for this approach have been incorporated into analysis of curriculum policy documents, curriculum implementation resources, textbook analysis and teacher education settings.

  13. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-04-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be integrated. In this paper we describe our philosophy of science education (ASSET approach) which is composed of bounded rationalism as a guideline for understanding teachers' practical reasoning, liberal education underlying the why of teaching, scientific perspectivism as guideline for the what and educational social constructivism as guiding choices about the how of science education. Integration of multiple philosophies into a coherent philosophy of science education is necessary but not sufficient to make it practical for teachers. Philosophies are still formulated at a too abstract level to guide teachers' practical reasoning. For this purpose, a heuristic model must be developed on an intermediate level of abstraction that will provide teachers with a bridge between these abstract ideas and their specific teaching situation. We have developed and validated such a heuristic model, the CLASS model in order to complement our ASSET approach. We illustrate how science teachers use the ASSET approach and the CLASS model to make choices about the what, the how and the why of science teaching.

  14. Research facility access & science education

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, S.P. [Univ. of Texas, Arlington, TX (United States); Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

    1994-10-01

    As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

  15. Science and Society - Problems, issues and dilemmas in science education

    CERN Multimedia

    2001-01-01

    Next in CERN's series of Science and Society speakers is Jonathan Osborne, Senior Lecturer in Science Education at King's College London. On Thursday 26 April, Dr Osborne will speak in the CERN main auditorium about current issues in science education in the light of an ever more science-based society. Jonathan Osborne, Senior Lecturer in Science Education at King's College London. Does science deserve a place at the curriculum high table of each student or is it just a gateway to a set of limited career options in science and technology? This question leads us to an important change in our ideas of what science education has been so far and what it must be. Basic knowledge of science and technology has traditionally been considered as just a starting point for those who wanted to build up a career in scientific research. But nowadays, the processes of science, the analysis of risks and benefits, and a knowledge of the social practices of science are necessary for every citizen. This new way of looking at s...

  16. Science Education Research vs. Physics Education Research: A Structural Comparison

    OpenAIRE

    Akarsu, Bayram

    2011-01-01

    The main goal of this article is to introduce physics education research (PER) to researchers in other fields. Topics include discussion of differences between science education research (SER) and physics education research (PER), physics educators, research design and methodology in physics education research and current research traditions and trends (e.g. current research ideas) within PER.

  17. Science Education Research vs. Physics Education Research: A Structural Comparison

    Science.gov (United States)

    Akarsu, Bayram

    2010-01-01

    The main goal of this article is to introduce physics education research (PER) to researchers in other fields. Topics include discussion of differences between science education research (SER) and physics education research (PER), physics educators, research design and methodology in physics education research and current research traditions and…

  18. Science Education: Issues, Approaches and Challenges

    Directory of Open Access Journals (Sweden)

    Shairose Irfan Jessani

    2015-06-01

    Full Text Available In today’s global education system, science education is much more than fact-based knowledge. Science education becomes meaningless and incomprehensible for learners, if the learners are unable to relate it with their lives. It is thus recommended that Pakistan, like many other countries worldwide should adopt Science Technology Society (STS approach for delivery of science education. The purpose of the STS approach lies in developing scientifically literate citizens who can make conscious decisions about the socio-scientific issues that impact their lives. The challenges in adopting this approach for Pakistan lie in four areas that will completely need to be revamped according to STS approach. These areas include: the examination system; science textbooks; science teacher education programs; and available resources and school facilities.

  19. Science education in a secular age

    Science.gov (United States)

    Long, David E.

    2013-03-01

    A college science education instructor tells his students he rejects evolution. What should we think? The scene unfolds in one of the largest urban centers in the world. If we are surprised, why? Expanding on Federica Raia's (2012) first-hand experience with this scenario, I broaden her discussion by considering the complexity of science education in a secular age. Enjoining Raia within the framework of Charles Taylor's A Secular Age, I task the science education community to consider the broad strokes of science, religious faith, and the complexity of modernity in its evolving, hybridized forms. Building upon anthropological approaches to science education research, I articulate a framework to more fully account for who, globally, is a Creationist, and what this means for our views of ethically responsive science education.

  20. Building a Global Ocean Science Education Network

    Science.gov (United States)

    Scowcroft, G. A.; Tuddenham, P. T.; Pizziconi, R.

    2016-02-01

    It is imperative for ocean science education to be closely linked to ocean science research. This is especially important for research that addresses global concerns that cross national boundaries, including climate related issues. The results of research on these critical topics must find its way to the public, educators, and students of all ages around the globe. To facilitate this, opportunities are needed for ocean scientists and educators to convene and identify priorities and strategies for ocean science education. On June 26 and 27, 2015 the first Global Ocean Science Education (GOSE) Workshop was convened in the United States at the University of Rhode Island Graduate School of Oceanography. The workshop, sponsored by the Consortium for Ocean Science Exploration and Engagement (COSEE) and the College of Exploration, had over 75 participants representing 15 nations. The workshop addressed critical global ocean science topics, current ocean science research and education priorities, advanced communication technologies, and leveraging international ocean research technologies. In addition, panels discussed elementary, secondary, undergraduate, graduate, and public education across the ocean basins with emphasis on opportunities for international collaboration. Special presentation topics included advancements in tropical cyclone forecasting, collaborations among Pacific Islands, ocean science for coastal resiliency, and trans-Atlantic collaboration. This presentation will focus on workshop outcomes as well as activities for growing a global ocean science education network. A summary of the workshop report will also be provided. The dates and location for the 2016 GOES Workshop will be announced. See http://www.coexploration.net/gose/index.html

  1. San Diego Science Alliance Education Outreach Activities

    Science.gov (United States)

    Blue, Anne P.

    1996-11-01

    The General Atomics Science Education Outreach Activities as well as those of several other San Diego area institutions led to the formation in 1994 of the San Diego Science Alliance. The Science Alliance is a consortium of science-related industries, institutions of research and higher education, museums, medical health networks, and science competitions in support of K-12 science education. Some Alliance accomplishments include printing over 4000 resource catalogs for teachers, workshops presented by over 20 of their business members at the San Diego Science Education Conference, and hosting of 3 eight-week courses for teachers. The Alliance provides an important forum for interaction between schools and teachers and local industries and institutions. The Science Alliance maintains a World Wide Web Home Page at elvbf http://www.cerf.net/sd_science/. General Atomics' role in the San Diego Science Alliance will be presented.(Presented by Patricia S. Winter for the General Atomics Science Education Groups and San Diego Science Alliance.)

  2. Modern Engineering : Science and Education

    CERN Document Server

    2016-01-01

    This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2014 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.

  3. Integrating technology into radiologic science education.

    Science.gov (United States)

    Wertz, Christopher Ira; Hobbs, Dan L; Mickelsen, Wendy

    2014-01-01

    To review the existing literature pertaining to the current learning technologies available in radiologic science education and how to implement those technologies. Only articles from peer-reviewed journals and scholarly reports were used in the research for this review. The material was further restricted to those articles that emphasized using new learning technologies in education, with a focus on radiologic science education. Teaching in higher education is shifting from a traditional classroom-based lecture format to one that incorporates new technologies that allow for more varied and diverse educational models. Radiologic technology educators must adapt traditional education delivery methods to incorporate current technologies. Doing so will help engage the modern student in education in ways in which they are already familiar. As students' learning methods change, so must the methods of educational delivery. The use of new technologies has profound implications for education. If implemented properly, these technologies can be effective tools to help educators.

  4. Science Education Research Trends in Latin America

    Science.gov (United States)

    Medina-Jerez, William

    2018-01-01

    The purpose of this study was to survey and report on the empirical literature at the intersection of science education research in Latin American and previous studies addressing international research trends in this field. Reports on international trends in science education research indicate that authors from English-speaking countries are major…

  5. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Filler. Articles in Resonance – Journal of Science Education. Volume 20 Issue 1 January 2015 pp 75-75 Filler. A Short Proof of Euler's Inequality · Samer Seraj · More Details Fulltext PDF ...

  6. Homi Bhabha Centre for Science Education (TIFR)

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 2. Homi Bhabha Centre for Science Education (TIFR). S Ramaseshan. Information and Announcements Volume 3 Issue 2 February 1998 pp 91-95. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Homi Bhabha Centre for Science Education: Admission to PhD Programme in Science Education - 2018 · More Details Abstract Fulltext PDF. pp 244-244 Information and Announcements. Physics Training and Talent Search · More Details Abstract Fulltext PDF. pp 245-245 Flowering Trees. Gymnosporia montana Benth.

  8. Global Reproduction and Transformation of Science Education

    Science.gov (United States)

    Tobin, Kenneth

    2011-01-01

    Neoliberalism has spread globally and operates hegemonically in many fields, including science education. I use historical auto/ethnography to examine global referents that have mediated the production of contemporary science education to explore how the roles of teachers and learners are related to macrostructures such as neoliberalism and…

  9. Developing Intercultural Science Education in Ecuador

    Science.gov (United States)

    Schroder, Barbara

    2008-01-01

    This article traces the recent development of intercultural science education in Ecuador. It starts by situating this development within the context of a growing convergence between Western and indigenous sciences. It then situates it within the larger historical, political, cultural, and educational contexts of indigenous communities in Ecuador,…

  10. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Order Form. Articles in Resonance – Journal of Science Education. Volume 19 Issue 9 September 2014 pp 878-878 Order Form. Order Form · More Details Fulltext PDF. Volume 19 Issue 11 November 2014 pp 1068-1068 Order Form. Order Form · More Details ...

  11. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Deepak Nandi. Articles written in Resonance – Journal of Science Education. Volume 23 Issue 2 February 2018 pp 197-217 General Article. Thymus: The site for Development of Cellular Immunity · Shamik Majumdar Sanomy Pathak Deepak Nandi · More Details ...

  12. LIBRARY AND INFORMATION SCIENCE EDUCATION IN ETHIOPIA

    African Journals Online (AJOL)

    dell

    influenced the direction of curriculum and the development of library and information science education in Ethiopia ... The introduction and use of computer technology has expanded the knowledge base for library and ... Library Science for Secondary Education degree students who majored in academic subjects and the ...

  13. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Amit Krishna De. Articles written in Resonance – Journal of Science Education. Volume 4 Issue 5 May 1999 pp 78-87 General Article. Therapy in Parkinson's Disease: Some Recent Developments · Amit Krishna De · More Details Fulltext PDF ...

  14. Game based learning for computer science education

    NARCIS (Netherlands)

    Schmitz, Birgit; Czauderna, André; Klemke, Roland; Specht, Marcus

    2011-01-01

    Schmitz, B., Czauderna, A., Klemke, R., & Specht, M. (2011). Game based learning for computer science education. In G. van der Veer, P. B. Sloep, & M. van Eekelen (Eds.), Computer Science Education Research Conference (CSERC '11) (pp. 81-86). Heerlen, The Netherlands: Open Universiteit.

  15. Mainstreaming ESd into Science teacher Education Courses:

    African Journals Online (AJOL)

    2007-12-11

    Dec 11, 2007 ... and science education students' perceptions on mainstreaming education for sustainable development (ESD) into their courses. ESD was a salient matter in ... content knowledge model be adapted so that content and pedagogy of science courses are inclusive of social and humanistic issues such as those ...

  16. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Table of Contents. Articles in Resonance – Journal of Science Education. Volume 2 Issue 1 January 1997 pp 6-7 Table of Contents. Table of Contents · More Details Fulltext PDF. Volume 2 Issue 2 February 1997 pp 6-7 Table of Contents. Table of Contents.

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Film Review. Articles in Resonance – Journal of Science Education. Volume 22 Issue 3 March 2017 pp 317-318 Film Review. The Untold Story of NASA's Trailblazers: Hidden Figures sheds light on the contributions of black women to the US Space Race.

  18. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Face to Face. Articles in Resonance – Journal of Science Education. Volume 13 Issue 1 January 2008 pp 89-98 Face to Face. Viewing Life Through Numbers · C Ramakrishnan Sujata Varadarajan · More Details Fulltext PDF. Volume 13 Issue 3 March 2008 pp ...

  19. Symposium 1: Challenges in science education and popularization of Science

    Directory of Open Access Journals (Sweden)

    Ildeo de Castro Moreira

    2014-08-01

    Full Text Available Science education and popularization of science are important elements for social inclusion. The Brazil exhibits strong inequalities regarding the distribution of wealth, access to cultural assets and appropriation of scientific and technological knowledge. Each Brazilian should have the opportunity to acquire a basic knowledge of science and its operation that allow them to understand their environment and expand their professional opportunities. However, the overall performance of Brazilian students in science and math is bad. The basic science education has, most often, few resources and is discouraging, with little appreciation of experimentation, interdisciplinarity and creativity. Beside the shortage of science teachers, especially teachers with good formation, predominate poor wage and working conditions, and deficiencies in instructional materials and laboratories. If there was a significant expansion in access to basic education, the challenge remains to improve their quality. According to the last National Conference of STI, there is need of a profound educational reform at all levels, in particular with regard to science education. Already, the popularization of science can be an important tool for the construction of scientific culture and refinement of the formal teaching instrument. However, we still lack a comprehensive and adequate public policy to her intended. Clearly, in recent decades, an increase in scientific publication occurred: creating science centers and museums; greater media presence; use of the internet and social networks; outreach events, such as the National Week of CT. But the scenario is shown still fragile and limited to broad swathes of Brazilians without access to scientific education and qualified information on CT. In this presentation, from a general diagnosis of the situation, some of the main challenges related to education and popularization of science in the country will address herself.

  20. Perceived barriers to online education by radiologic science educators.

    Science.gov (United States)

    Kowalczyk, Nina K

    2014-01-01

    Radiologic science programs continue to adopt the use of blended online education in their curricula, with an increase in the use of online courses since 2009. However, perceived barriers to the use of online education formats persist in the radiologic science education community. An electronic survey was conducted to explore the current status of online education in the radiologic sciences and to identify barriers to providing online courses. A random sample of 373 educators from radiography, radiation therapy, and nuclear medicine technology educational programs accredited by the Joint Review Committee on Education in Radiologic Technology and Joint Review Committee on Educational Programs in Nuclear Medicine Technology was chosen to participate in this study. A qualitative analysis of self-identified barriers to online teaching was conducted. Three common themes emerged: information technology (IT) training and support barriers, student-related barriers, and institutional barriers. Online education is not prevalent in the radiologic sciences, in part because of the need for the clinical application of radiologic science course content, but online course activity has increased substantially in radiologic science education, and blended or hybrid course designs can effectively provide opportunities for student-centered learning. Further development is needed to increase faculty IT self-efficacy and to educate faculty regarding pedagogical methods appropriate for online course delivery. To create an excellent online learning environment, educators must move beyond technology issues and focus on providing quality educational experiences for students.

  1. Scientists Interacting With University Science Educators

    Science.gov (United States)

    Spector, B. S.

    2004-12-01

    Scientists with limited time to devote to educating the public about their work will get the greatest multiplier effect for their investment of time by successfully interacting with university science educators. These university professors are the smallest and least publicized group of professionals in the chain of people working to create science literate citizens. They connect to all aspects of formal and informal education, influencing everything from what and how youngsters and adults learn science to legislative rulings. They commonly teach methods of teaching science to undergraduates aspiring to teach in K-12 settings and experienced teachers. They serve as agents for change to improve science education inside schools and at the state level K-16, including what science content courses are acceptable for teacher licensure. University science educators are most often housed in a College of Education or Department of Education. Significant differences in culture exist in the world in which marine scientists function and that in which university science educators function, even when they are in the same university. Subsequently, communication and building relationships between the groups is often difficult. Barriers stem from not understanding each other's roles and responsibilities; and different reward systems, assumptions about teaching and learning, use of language, approaches to research, etc. This presentation will provide suggestions to mitigate the barriers and enable scientists to leverage the multiplier effect saving much time and energy while ensuring the authenticity of their message is maintained. Likelihood that a scientist's message will retain its authenticity stems from criteria for a university science education position. These professors have undergraduate degrees in a natural science (e.g., biology, chemistry, physics, geology), and usually a master's degree in one of the sciences, a combination of natural sciences, or a master's including

  2. Science Education: From Separation to Integration

    Science.gov (United States)

    Linn, Marcia C.; Gerard, Libby; Matuk, Camillia; McElhaney, Kevin W.

    2016-01-01

    Advances in technology, science, and learning sciences research over the past 100 years have reshaped science education. This chapter focuses on how investigators from varied fields of inquiry who initially worked separately began to interact, eventually formed partnerships, and recently integrated their perspectives to strengthen science…

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 21, Issue 8. August 2016, pages 673-767. pp 673-673 Editorial. Editorial · More Details Abstract Fulltext PDF. pp 676-676 Science Smiles. Science Smiles · More Details Abstract ...

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 7. Issue front cover thumbnail. Volume 21, Issue 7. July 2016, pages 579-670. pp 579-579 Editorial. Editorial · More Details Abstract Fulltext PDF. pp 582-582 Science Smiles. Science Smiles ... General Article. The Search for Another Earth.

  5. Promoting Science in Secondary School Education.

    Science.gov (United States)

    Chiovitti, Anthony; Duncan, Jacinta C; Jabbar, Abdul

    2017-06-01

    Engaging secondary school students with science education is crucial for a society that demands a high level of scientific literacy in order to deal with the economic and social challenges of the 21st century. Here we present how parasitology could be used to engage and promote science in secondary school students under the auspice of a 'Specialist Centre' model for science education. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Data Mining Tools in Science Education

    Directory of Open Access Journals (Sweden)

    Premysl Zaskodny

    2012-12-01

    Full Text Available The main principle of paper is Data Mining in Science Education (DMSE as Problem Solving. The main goal of paper is consisting in Delimitation of Complex Data Mining Tool and Partial Data Mining Tool of DMSE. The procedure of paper is consisting of Data Preprocessing in Science Education, Data Processing in Science Education, Description of Curricular Process as Complex Data Mining Tool (CP-DMSE, Description of Analytical Synthetic Modeling as Partial Data Mining Tool (ASM-DMSE and finally Application of CPDMSE and ASM-DMSE via Physics Education.

  7. Pre-Service Science Teachers' Cognitive Structures Regarding Science, Technology, Engineering, Mathematics (STEM) and Science Education

    Science.gov (United States)

    Hacioglu, Yasemin; Yamak, Havva; Kavak, Nusret

    2016-01-01

    The aim of this study is to reveal pre-service science teachers' cognitive structures regarding Science, Technology, Engineering, Mathematics (STEM) and science education. The study group of the study consisted of 192 pre-service science teachers. A Free Word Association Test (WAT) consisting of science, technology, engineering, mathematics and…

  8. Concepts of matter in science education

    CERN Document Server

    Sevian, Hannah

    2013-01-01

    Bringing together a wide collection of ideas, reviews, analyses and new research on particulate and structural concepts of matter, Concepts of Matter in Science Education informs practice from pre-school through graduate school learning and teaching and aims to inspire progress in science education. The expert contributors offer a range of reviews and critical analyses of related literature and in-depth analysis of specific issues, as well as new research. Among the themes covered are learning progressions for teaching a particle model of matter, the mental models of both students and teachers of the particulate nature of matter, educational technology, chemical reactions and chemical phenomena, chemical structure and bonding, quantum chemistry and the history and philosophy of science relating to the particulate nature of matter. The book will benefit a wide audience including classroom practitioners and student teachers at every educational level, teacher educators and researchers in science education.

  9. Constructivism in Science and Science Education: A Philosophical Critique

    Science.gov (United States)

    Nola, Robert

    This paper argues that constructivist science education works with an unsatisfactory account of knowledge which affects both its account of the nature of science and of science education. The paper begins with a brief survey of realism and anti-realism in science and the varieties of constructivism that can be found. In the second section the important conception of knowledge and teaching that Plato develops in the Meno is contrasted with constructivism. The section ends with an account of the contribution that Vico (as understood by constructivists), Kant and Piaget have made to constructivist doctrines. Section three is devoted to a critique of the theory of knowledge and the anti-realism of von Glaserfeld. The final section considers the connection, or lack of it, between the constructivist view of science and knowledge and the teaching of science.

  10. Informal Science: Family Education, Experiences, and Initial Interest in Science

    Science.gov (United States)

    Dabney, Katherine P.; Tai, Robert H.; Scott, Michael R.

    2016-01-01

    Recent research and public policy have indicated the need for increasing the physical science workforce through development of interest and engagement with informal and formal science, technology, engineering, and mathematics experiences. This study examines the association of family education and physical scientists' informal experiences in…

  11. Science, Worldviews and Education: An Introduction

    Science.gov (United States)

    Matthews, Michael R.

    2009-06-01

    This special issue of Science & Education deals with the theme of ‘Science, Worldviews and Education’. The theme is of particular importance at the present time as many national and provincial education authorities are requiring that students learn about the Nature of Science (NOS) as well as learning science content knowledge and process skills. NOS topics are being written into national and provincial curricula. Such NOS matters give rise to questions about science and worldviews: What is a worldview? Does science have a worldview? Are there specific ontological, epistemological and ethical prerequisites for the conduct of science? Does science lack a worldview but nevertheless have implications for worldviews? How can scientific worldviews be reconciled with seemingly discordant religious and cultural worldviews? In addition to this major curricular impetus for refining understanding of science and worldviews, there are also pressing cultural and social forces that give prominence to questions about science, worldviews and education. There is something of an avalanche of popular literature on the subject that teachers and students are variously engaged by. Additionally the modernisation and science-based industrialisation of huge non-Western populations whose traditional religions and beliefs are different from those that have been associated with orthodox science, make very pressing the questions of whether, and how, science is committed to particular worldviews. Hugh Gauch Jr. provides a long and extensive lead essay in the volume, and 12 philosophers, educators, scientists and theologians having read his paper, then engage with the theme. Hopefully the special issue will contribute to a more informed understanding of the relationship between science, worldviews and education, and provide assistance to teachers who are routinely engaged with the subject.

  12. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  13. Identifying Teacher Needs for Promoting Education through Science as a Paradigm Shift in Science Education

    Science.gov (United States)

    Holbrook, J.; Rannikmae, M.; Valdmann, A.

    2014-01-01

    This paper identifies an "education through science" philosophy for school science teaching at the secondary level and determines its interrelationship with approaches to student acquisition of key educational competences and the identification of teacher needs to promote meaningful learning during science lessons. Based on the…

  14. Trends of Science Education Research: An Automatic Content Analysis

    Science.gov (United States)

    Chang, Yueh-Hsia; Chang, Chun-Yen; Tseng, Yuen-Hsien

    2010-01-01

    This study used scientometric methods to conduct an automatic content analysis on the development trends of science education research from the published articles in the four journals of "International Journal of Science Education, Journal of Research in Science Teaching, Research in Science Education, and Science Education" from 1990 to 2007. The…

  15. Emotions, Aesthetics and Wellbeing in Science Education

    DEFF Research Database (Denmark)

    Bellocchi, Alberto; Cassie, Quigley; Otrel-Cass, Kathrin

    2017-01-01

    This internationally edited collection on emotions, aesthetics, and wellbeing emerged following an exploratory research workshop held in Luxembourg associated with the journal Cultural Studies of Science Education (CSSE). The workshop was entitled ‘Innovation and collaboration in cultural studies...... of science education: Towards an international research agenda.’ Authors were invited to articulate the theoretical and philosophical underpinnings of their research, offering empirical elaborations to illustrate applications of these conceptual and methodological foundations. An outcome...... the background of existing research interest in the field of science education. We then provide an overview of each chapter in the collection....

  16. Philosophy of Education and Other Educational Sciences

    Science.gov (United States)

    Howe, Kenneth R.

    2014-01-01

    This article largely agrees with John White's characterizations of the relationships among philosophy of education, philosophy more generally, and the conventional world. It then extends what White identifies as the fundamental problem that should now be occupying philosophy of education--the irreconcilable opposition between education for…

  17. Toward the sociopolitical in science education

    Science.gov (United States)

    Tolbert, Sara; Bazzul, Jesse

    2017-06-01

    In this paper, we explore how Jacques Rancière's (The ignorant schoolmaster: five lessons in intellectual emancipation. Stanford University Press, Stanford, 1991) notions of radical equality and dissensus reveal horizons for activism and sociopolitical engagement in science education theory, research, and practice. Drawing on Rochelle Gutiérrez' (J Res Math Educ 44(1):37-68, 2013a. doi: 10.5951/jresematheduc.44.1.0037; J Urban Math Educ 6(2):7-19, b) "sociopolitical turn" for mathematics education, we identify how the field of science education can/is turning from more traditional notions of equity, achievement and access toward issues of systemic oppression, identity and power. Building on the conversation initiated by Lorraine Otoide who draws from French philosopher Jacques Rancière to experiment with a pedagogy of radical equality, we posit that a sociopolitical turn in science education is not only imminent, but necessary to meet twenty-first century crises.

  18. Leveraging the International Polar Year Legacy: Providing Historical Perspective for IPY Education, Outreach and Communication Efforts

    Science.gov (United States)

    Tsukernik, M.; McCaffrey, M. S.

    2006-12-01

    As the International Polar Year 2007-2008 (IPY) is fast approaching, it is important to look back and learn from the previous experience. Over 125 years ago, when an Austrian explorer and naval officer Lt. Karl Weyprecht called for an international yearlong intensive effort to study the Polar Regions, he probably never imagined that his model for international collaboration would become so widely popular. Frustrated by the lack of coordinated, international collaboration in research activities, Weyprecht proposed an intensive burst of research activity over the course of at least a year. The first IPY began in 1882 with 12 nations establishing 13 stations in the Arctic and 2 in the Southern Hemisphere. The initial yearlong plan did not go beyond data collection. However, the idea lived in the minds of scientists worldwide and the second IPY followed the first one 50 years later. By 1932, technology evolved significantly, and on top of ground-based meteorological and geophysical measurements, data collection also included radiosonde and acoustic atmospheric measurements. Occurring during a global economic depression, and between world wars, the second IPY faced many challenges. However, 40 permanent stations were established, some of which are still active. Scientific exploration also reached remote frontiers from Antarctica to the Earth's ionosphere. Less than a decade after the WWII, the idea of the next IPY started to circulate in scientific circles. The world was focused on space exploration and the word "polar" seemed too narrow for the gigantic projects planned for the 1957. That is why the initial idea of the third IPY evolved into the International Geophysical Year (IGY), although polar regions were still a major focus. The success of the IGY is almost overwhelming the first Earth orbiting satellites, a traverse of Antarctica, a discovery of the Radiation Belt, a series of science education films about IGY activities and research themes are just a few

  19. National Earth Science Teachers Association Achievements in Earth Science Education Leadership

    Science.gov (United States)

    Passow, M. J.; Johnson, R. M.; Pennington, P.; Herrold, A.; Holzer, M.; Ervin, T.; Hall, B.

    2008-12-01

    The National Earth Science Teachers Association (NESTA) continues its 25-year-long effort to advance geoscience education at all levels. NESTA especially employs multiple approaches to provide leadership, support, and resources to teachers so that all K - 12 students may receive a quality Earth and Space Science education. NESTA presents Share-a-thons, Earth and Space Science Resources Days, lectures, Rock and Mineral Raffles, field experiences, and social events that foster networking at national and regional science education conferences. Our quarterly journal,The Earth Scientist,provides quality classroom activities as well as background science information and news of opportunities of value to classroom teachers and their students. Recent issues have focused on the International Polar Year, professional development in the Earth Sciences, and recent advances in astronomy. These have included contributions from classroom and university educators and researchers. NESTA's web site, www.nestanet.org, provides timely information about upcoming events and opportunities, links to useful resources for geoscience teachers, access to the current and archived journals, and organizational information. A revised website, supported by an NSF grant, will be unveiled before the next NSTA National Conference on Science Education. These are supplemented by a monthly E-News and special "e-blasts". NESTA's leadership engages in frequent teleconferences to keep current with organizational planning. Among other accomplishments during the past year, NESTA revitalized our State contact network, identifying a member in almost every state plus some Canadian Provinces. This network will help disseminate information from NESTA, as well as provide feedback on issues of importance to members around the country. NESTA leaders and members interact with other national geoscience education organizations, including NAGT, GSA, AGI, AMS, and the Triangle Coalition. NESTA representatives also serve

  20. Global reproduction and transformation of science education

    Science.gov (United States)

    Tobin, Kenneth

    2011-03-01

    Neoliberalism has spread globally and operates hegemonically in many fields, including science education. I use historical auto/ethnography to examine global referents that have mediated the production of contemporary science education to explore how the roles of teachers and learners are related to macrostructures such as neoliberalism and derivative sensibilities, including standards, competition, and accountability systems, that mediate enacted curricula. I investigate these referents in relation to science education in two geographically and temporally discrete contexts Western Australia in the 1960s and 1970s and more recently in an inner city high school in the US. In so doing I problematize some of the taken for granted aspects of science education, including holding teachers responsible for establishing and maintaining control over students, emphasizing competition between individuals and between collectives such as schools, school districts and countries, and holding teachers and school leaders accountable for student achievement.

  1. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    1986-01-01

    The Guidebook contains detailed information on curricula which would provide the professional technical education qualifications which have been established for nuclear power programme personnel. The core of the Guidebook consists of model curricula in engineering and science, including relevant practical work. Curricula are provided for specialization, undergraduate, and postgraduate programmes in nuclear-oriented mechanical, chemical, electrical, and electronics engineering, as well as nuclear engineering and radiation health physics. Basic nuclear science and engineering laboratory work is presented together with a list of basic experiments and the nuclear equipment needed to perform them. Useful measures for implementing and improving engineering and science education and training capabilities for nuclear power personnel are presented. Valuable information on the national experiences of IAEA Member States in engineering and science education for nuclear power, as well as examples of such education from various Member States, have been included

  2. Ethiopian students' achievement challenges in science education ...

    African Journals Online (AJOL)

    The purpose of this study was to investigate challenges on students' academic achievement in science education across selected preparatory schools of Ethiopia. The participants were students, teachers and principals from three regions and nine schools. The participants of the study were 801 students and 118 science ...

  3. Science as Myth in Physical Education.

    Science.gov (United States)

    Kirk, David

    Scientization is a process that refers to the mythologies that are generated around the practices of working scientists. This paper discusses how science works on popular consciousness and how particular occupational groups use science to legitimatize their discipline, specifically in physical education. Two examples are presented to illustrate…

  4. Science Education in a Secular Age

    Science.gov (United States)

    Long, David E.

    2013-01-01

    A college science education instructor tells his students he rejects evolution. What should we think? The scene unfolds in one of the largest urban centers in the world. If we are surprised, why? Expanding on Federica Raia's (2012) first-hand experience with this scenario, I broaden her discussion by considering the complexity of science education…

  5. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 21, Issue 11. November 2016, pages 965-1062. pp 965-966 Editorial. Editorial · More Details Abstract Fulltext PDF. pp 967-967 Science Smiles ... pp 971-983 General Article.

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 11. Issue front cover thumbnail Issue ... pp 985-1006 General Article. The Ziegler Catalysts: Serendipity or .... Science Academies' Summer Research Fellowship Programme for Students and Teachers - 2018 · More Details Abstract Fulltext PDF.

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 11. Is Psychology a Science ? Kamala V Mukunda. General Article Volume 2 Issue 11 November 1997 pp 59-66. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/002/11/0059-0066 ...

  8. Is Museum Education "Rocket Science"?

    Science.gov (United States)

    Dragotto, Erin; Minerva, Christine; Nichols, Michelle

    2006-01-01

    The field of museum education has advanced and adapted over the years to meet the changing needs of audiences as determined by new research, national policy, and international events. Educators from Chicago's Adler Planetarium & Astronomy Museum provide insight into a (somewhat) typical museum education department, especially geared for readers…

  9. Interdisciplinary Science Research and Education

    Science.gov (United States)

    MacKinnon, P. J.; Hine, D.; Barnard, R. T.

    2013-01-01

    Science history shows us that interdisciplinarity is a spontaneous process that is intrinsic to, and engendered by, research activity. It is an activity that is done rather than an object to be designed and constructed. We examine three vignettes from the history of science that display the interdisciplinary process at work and consider the…

  10. Culture Matters in Science Education

    Science.gov (United States)

    Pang, Valerie Ooka; Lafferty, Karen Elizabeth; Pang, Jennifer M.; Griswold, Joan; Oser, Rick

    2014-01-01

    On the Saturday before Halloween, hundreds of students and their parents went from booth to booth participating in science activities at an annual Fall Festival and Learning Fair. The Fall Festival and Learning Fair is a valuable annual partnership where culturally relevant teaching engages each child in hands-on, standards-based science lessons.…

  11. Resonance journal of science education

    Indian Academy of Sciences (India)

    'Garden' of biomolecular structures. Courtesy: Ms. G Sudha, Molecular Biophysics Unit,. Indian Institute of Science, Bangalore. See page 639 for details. Hermann Emil Fischer. (1852–1919). ( Illustration: Subhankar Biswas ). Front Cover. Back Cover. 603. Science Smiles. Ayan Guha. 619. Inside Back Cover. Flowering ...

  12. Malaysia's EOC Strategy in Strengthening the Science Knowledge, Awareness and National Interest towards the Polar Regions

    Science.gov (United States)

    Shabudin, Ahmad Firdaus Ahmad; Said, Noor Azzah; Rahim, Rashidah Abdul; Ng, Theam Foo

    2016-01-01

    This study aims to examine Malaysia's involvement in the Polar Regions, in the context of education, outreach, and communication (EOC), and consequently, to determine the effectiveness of these initiatives. Using qualitative and quantitative research analyses, this study found that Malaysia's experiences in EOC can be used to increase public…

  13. Troubling an embodied pedagogy in science education

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin; Kristensen, Liv Kondrup

    2017-01-01

    and this was also indicative as to how they related to each other. Applying an embodied pedagogy approach to science education means that integrating movement in science is more than adding physical activity, because embodiment is about how students perceive themselves and the world. This is particularly important...... of that which is available applies to science education. The argument is made that an embodied pedagogy recognises and validates the centrality of the body in learning, but it is about more than making students move. Utilising such an approach requires one to recognise that embodiment shapes interactions...

  14. Exploring science educators' cosmological worldviews through the ...

    African Journals Online (AJOL)

    The mandate of the new South African curriculum for educators to enact a scienceindigenous knowledge curriculum in their classrooms is not only challenging to their cosmological beliefs, it is equally challenging to their instructional practices. This is because science educators (teachers) in South Africa have been ...

  15. Sustaining science, technology and mathematics teacher education ...

    African Journals Online (AJOL)

    Sustaining science, technology and mathematics teacher education through gender mainstreaming. C Ugwuanyi, O Bankole. Abstract. No Abstract. Global Journal of Educational Research Vol. 2(1&2) 2003: 17-22. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  16. Wisconsin Earth and Space Science Education

    Science.gov (United States)

    Bilbrough, Larry (Technical Monitor); French, George

    2003-01-01

    The Wisconsin Earth and Space Science Education project successfilly met its objectives of creating a comprehensive online portfolio of science education curricular resources and providing a professional development program to increase educator competency with Earth and Space science content and teaching pedagogy. Overall, 97% of participants stated that their experience was either good or excellent. The favorable response of participant reactions to the professional development opportunities highlights the high quality of the professional development opportunity. The enthusiasm generated for using the curricular material in classroom settings was overwhelmingly positive at 92%. This enthusiasm carried over into actual classroom implementation of resources from the curricular portfolio, with 90% using the resources between 1-6 times during the school year. The project has had a positive impact on student learning in Wisconsin. Although direct measurement of student performance is not possible in a project of this kind, nearly 75% of participating teachers stated that they saw an increase in student performance in math and science as a result of using project resources. Additionally, nearly 75% of participants saw an increase in the enthusiasm of students towards math and science. Finally, some evidence exists that the professional development academies and curricular portfolio have been effective in changing educator behavior. More than half of all participants indicated that they have used more hands-on activities as a result of the Wisconsin Earth and Space Science Education project.

  17. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    347 Impact of Theoretical Chemistry on Chemical and. Biological Sciences. Chemistry Nobel Prize – 2013. Saraswathi Vishveshwara. SERIES ARTICLES. 368 Ecology: From Individuals to Collectives. A Physicist's Perspective on Ecology. Vishwesha Guttal. 310. 368 ...

  18. Nuclear Weapons and Science Education.

    Science.gov (United States)

    Wellington, J. J.

    1984-01-01

    Provides suggestions on how science teachers can, and should, deal with the nuclear weapons debate in a balanced and critical way. Includes a table outlining points for and against deterrence and disarmament. (JN)

  19. Modern Romanian Library Science Education

    OpenAIRE

    Elena Tîrziman

    2015-01-01

    Library and Information Science celebrates 25 years of modern existence. An analysis of this period shows a permanent modernisation of this subject and its synchronisation with European realities at both teaching and research levels. The evolution of this subject is determined by the dynamics of the field, the quick evolution of the information and documenting trades in close relationship with science progress and information technologies. This major ensures academic training (Bachelor, Maste...

  20. Simulations as Scaffolds in Science Education

    DEFF Research Database (Denmark)

    Renken, Maggie; Peffer, Melanie; Otrel-Cass, Kathrin

    This book outlines key issues for addressing the grand challenges posed to educators, developers, and researchers interested in the intersection of simulations and science education. To achieve this, the authors explore the use of computer simulations as instructional scaffolds that provide...... strategies and support when students are faced with the need to acquire new skills or knowledge. The monograph aims to provide insight into what research has reported on navigating the complex process of inquiry- and problem-based science education and whether computer simulations as instructional scaffolds...

  1. Plagiarism challenges at Ukrainian science and education

    Directory of Open Access Journals (Sweden)

    Denys Svyrydenko

    2016-12-01

    Full Text Available The article analyzes the types and severity of plagiarism violations at the modern educational and scientific spheres using the philosophic methodological approaches. The author analyzes Ukrainian context as well as global one and tries to formulate "order of the day" of plagiarism challenges. The plagiarism phenomenon is intuitively comprehensible for academicians but in reality it has a very complex nature and a lot of manifestation. Using approaches of ethics, philosophical anthropology, philosophy of science and education author formulates the series of recommendation for overcoming of plagiarism challenges at Ukrainian science and education.

  2. Teaching Interdisciplinary Engineering and Science Educations

    DEFF Research Database (Denmark)

    Kofoed, Lise B.; S. Stachowicz, Marian

    2014-01-01

    creating new knowledge. We will address the challenges by defining the term interdisciplinary in connection with education, and using the Problem Based Learning educational approach and experience from the engineering and science educational areas to find the obstacles. Two cases based on interdisciplinary......In this paper we study the challenges for the involved teachers who plan and implement interdisciplinary educations. They are confronted with challenges regarding their understanding of using known disciplines in a new interdisciplinary way and see the possibilities of integrating disciplines when...... and understand how different expertise can contribute to an interdisciplinary education....

  3. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Richard Feynman. Articles written in Resonance – Journal of Science Education. Volume 16 Issue 9 September 2011 pp 860-873 Reflections. What is Science? Richard Feynman · More Details Fulltext PDF ...

  4. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Science Smiles. Articles in Resonance – Journal of Science Education. Volume 1 Issue 4 April 1996 pp 4-4 Science Smiles. Chief Editor's column / Science Smiles · R K Laxman · More Details Fulltext PDF. Volume 1 Issue 5 May 1996 pp 3-3 Science Smiles.

  5. Supporting new science teachers in pursuing socially just science education

    Science.gov (United States)

    Ruggirello, Rachel; Flohr, Linda

    2017-10-01

    This forum explores contradictions that arose within the partnership between Teach for America (TFA) and a university teacher education program. TFA is an alternate route teacher preparation program that places individuals into K-12 classrooms in low-income school districts after participating in an intense summer training program and provides them with ongoing support. This forum is a conversation about the challenges we faced as new science teachers in the TFA program and in the Peace Corps program. We both entered the teaching field with science degrees and very little formal education in science education. In these programs we worked in a community very different from the one we had experienced as students. These experiences allow us to address many of the issues that were discussed in the original paper, namely teaching in an unfamiliar community amid challenges that many teachers face in the first few years of teaching. We consider how these challenges may be amplified for teachers who come to teaching through an alternate route and may not have as much pedagogical training as a more traditional teacher education program provides. The forum expands on the ideas presented in the original paper to consider the importance of perspectives on socially just science education. There is often a disconnect between what is taught in teacher education programs and what teachers actually experience in urban classrooms and this can be amplified when the training received through alternate route provides a different framework as well. This forum urges universities and alternate route programs to continue to find ways to authentically partner using practical strategies that bring together the philosophies and goals of all stakeholders in order to better prepare teachers to partner with their students to achieve their science learning goals.

  6. Web-based Tools for Educators: Outreach Activities of the Polar Radar for Ice Sheet Measurements (PRISM) Project

    Science.gov (United States)

    Braaten, D. A.; Holvoet, J. F.; Gogineni, S.

    2003-12-01

    The Radar Systems and Remote Sensing Laboratory at the University of Kansas (KU) has implemented extensive outreach activities focusing on Polar Regions as part of the Polar Radar for Ice Sheet Measurements (PRISM) project. The PRISM project is developing advanced intelligent remote sensing technology that involves radar systems, an autonomous rover, and communications systems to measure detailed ice sheet characteristics, and to determine bed conditions (frozen or wet) below active ice sheets in both Greenland and Antarctica. These measurements will provide a better understanding of the response of polar ice sheets to global climate change and the resulting impact the ice sheets will have on sea level rise. Many of the research and technological development aspects of the PRISM project, such as robotics, radar systems, climate change and exploration of harsh environments, can kindle an excitement and interest in students about science and technology. These topics form the core of our K-12 education and training outreach initiatives, which are designed to capture the imagination of young students, and prompt them to consider an educational path that will lead them to scientific or engineering careers. The K-12 PRISM outreach initiatives are being developed and implemented in a collaboration with the Advanced Learning Technology Program (ALTec) of the High Plains Regional Technology in Education Consortium (HPR*TEC). ALTec is associated with the KU School of Education, and is a well-established educational research center that develops and hosts web tools to enable teachers nationwide to network, collaborate, and share resources with other teachers. An example of an innovative and successful web interface developed by ALTec is called TrackStar. Teachers can use TrackStar over the Web to develop interactive, resource-based lessons (called tracks) on-line for their students. Once developed, tracks are added to the TrackStar database and can be accessed and modified

  7. 75 FR 65305 - National Board for Education Sciences

    Science.gov (United States)

    2010-10-22

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences AGENCY: Department of Education, Institute of Education Sciences. ACTION: Notice of an open meeting with a closed session. SUMMARY: This... Education Sciences. The notice also describes the functions of the Committee. Notice of this meeting is...

  8. 75 FR 13265 - National Board for Education Sciences

    Science.gov (United States)

    2010-03-19

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences AGENCY: Institute of Education Sciences, Department of Education. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming meeting of the National Board for Education Sciences. The...

  9. 75 FR 53280 - National Board for Education Sciences

    Science.gov (United States)

    2010-08-31

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences AGENCY: Department of Education, Institute of Education Sciences. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming meeting of the National Board for Education Sciences. The...

  10. 77 FR 20805 - National Board for Education Sciences; Meeting

    Science.gov (United States)

    2012-04-06

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences; Meeting AGENCY: U.S. Department of Education, Institute of Education Sciences. ACTION: Notice of an Open Teleconference Meeting. SUMMARY: This... Education Sciences. The notice also describes the functions of the Committee. Notice of this meeting is...

  11. Science Teacher Education Partnerships with Schools (STEPS): Partnerships in Science Teacher Education

    Science.gov (United States)

    Kenny, John Daniel; Hobbs, Linda; Herbert, Sandra; Chittleborough, Gail; Campbell, Coral; Jones, Mellita; Gilbert, Andrew; Redman, Christine

    2014-01-01

    This paper reports on the STEPS project which addressed international concerns about primary teachers' lack of confidence to teach science, and on-going questions about the effectiveness of teacher education. The five universities involved had each independently established a science education program incorporating school-based partnerships…

  12. Flipped learning in science education

    DEFF Research Database (Denmark)

    Andersen, Thomas Dyreborg; Foss, Kristian Kildemoes; Nissen, Stine Karen

    2017-01-01

    ICT in a meaningful way, and make way that the potential of ICT may be unleashed. This poster presentation will present the methodological framework for a study on the implementation of Flipped Learning in science classrooms in the Danish elementary school system – and the research following this. Our...... research questions are “To what extent can teachers using the FL-teaching method improve Danish pupils' learning outcomes in science subject’s physics / chemistry, biology and geography in terms of the results of national tests?” And “What factors influence on whether FL-teaching improves pupils' learning......?” During a 3-year period 84 science teachers at 18 schools will participate in a program where they will lean to conduct teaching based on flipped learning principals. The teachers will undertake a 3 + 1 + 1 day course where essential technical and didactical issues regarding flipped learning...

  13. Sputnik's Impact on Science Education in America

    Science.gov (United States)

    Holbrow, Charles H.

    2007-04-01

    The launch of Sputnik, the world's first artificial Earth orbiting satellite, by the Soviet Union on October 4, 1957 was a triggering event. Before Sputnik pressure had been rising to mobilize America's intellectual resources to be more effective and useful in dealing with the Cold War. Sputnik released that pressure by stirring up a mixture of American hysteria, wounded self-esteem, fears of missile attacks, and deep questioning of the intellectual capabilities of popular democratic society and its educational system. After Sputnik the federal government took several remarkable actions: President Eisenhower established the position of Presidential Science Advisor; the House and the Senate reorganized their committee structures to focus on science policy; Congress created NASA -- the National Aeronautics and Space Agency -- and charged it to create a civilian space program; they tripled funding for the National Science Foundation to support basic research but also to improve science education and draw more young Americans into science and engineering; and they passed the National Defense Education Act which involved the federal government to an unprecedented extent with all levels of American education. I will describe some pre-Sputnik pressures to change American education, review some important effects of the subsequent changes, and talk about one major failure of change fostered by the national government.

  14. Emphasizing Morals, Values, Ethics, and Character Education in Science Education and Science Teaching

    Science.gov (United States)

    Chowdhury, Mohammad

    2016-01-01

    This article presents the rationale and arguments for the presence of morals, values, ethics and character education in science curriculum and science teaching. The author examines how rapid science and technological advancements and globalization are contributing to the complexities of social life and underpinning the importance of morals, values…

  15. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    (Credit: M S Pavan, IISc). Adolf von Baeyer. (1835–1917). (Illustration: Subhankar Biswas). Front Cover. Science Smiles. Ayan Guha. 488. Back Cover. Inside Back Cover. Flowering Trees. Credit: R Arun Singh, IISc. 483. REFLECTIONS. 570 Ramanujan's Circle. Inspirors, Patrons and Mentors. Utpal Mukhopadhyay. 489.

  16. Science Education and ESL Students

    Science.gov (United States)

    Allen, Heather; Park, Soonhye

    2011-01-01

    The number of students who learn English as a second language (ESL) in U.S. schools has grown significantly in the past decade. This segment of the student population increased by 56% between the 1994-95 and 2004-05 school years (NCLR 2007). As the ESL student population increases, many science teachers struggle to tailor instructional materials,…

  17. Resonance journal of science education

    Indian Academy of Sciences (India)

    Ancient Indian Coins. Damodar Dharmananda Kosambi. (1907–1966). ( Illustration: Subhankar Biswas ). Front Cover. Back Cover. 499. Science Smiles. Ayan Guha. 501. Inside Back Cover. Flowering Trees. (Credit: K Sankara Rao, IISc). 574 Kosambi and Proper Orthogonal Decomposition. Roddam Narasimha. SERIES ...

  18. Science in early childhood education

    DEFF Research Database (Denmark)

    Broström, Stig

    2015-01-01

    Based on an action research project with 12 preschools in a municipality north of Copenhagen the article investigates and takes a first step in order to create a preschool science Didaktik. The theoretical background comprises a pedagogical/didactical approach based on German critical constructive...

  19. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    Sketch made by Niels Bohr in 1944 to illustrate the content of his debate with Einstein on the uncertainty principle at the 6th Solvay Conference in 1930. Niels Bohr (1885–1962). Sketch by Homi Bhabha. (Courtesy: TIFR, Bombay). Front Cover. 871. Science Smiles. Ayan Guha. 876. Back Cover. 948. Classics. Biology and ...

  20. How can science education foster students' rooting?

    Science.gov (United States)

    Østergaard, Edvin

    2015-06-01

    The question of how to foster rooting in science education points towards a double challenge; efforts to prevent (further) uprooting and efforts to promote rooting/re-rooting. Wolff-Michael Roth's paper discusses the uprooting/rooting pair of concepts, students' feeling of alienation and loss of fundamental sense of the earth as ground, and potential consequences for teaching science in a rooted manner. However, the argumentation raises a number of questions which I try to answer. My argumentation rests on Husserl's critique of science and the "ontological reversal", an ontological position where abstract models from science are considered as more real than the everyday reality itself, where abstract, often mathematical, models are taken to be the real causes behind everyday experiences. In this paper, measures towards an "ontological re-reversal" are discussed by drawing on experiences from phenomenon-based science education. I argue that perhaps the most direct and productive way of promoting rooting in science class is by intentionally cultivating the competencies of sensing and aesthetic experience. An aesthetic experience is defined as a precognitive, sensuous experience, an experience that is opened up for through sensuous perception. Conditions for rooting in science education is discussed against three challenges: Restoring the value of aesthetic experience, allowing time for open inquiry and coping with curriculum. Finally, I raise the question whether dimensions like "reality" or "nature" are self-evident for students. In the era of constructivism, with its focus on cognition and knowledge building, the inquiry process itself has become more important than the object of inquiry. I argue that as educators of science teachers we have to emphasize more explicitly "the nature of nature" as a field of exploration.

  1. Modern Romanian Library Science Education

    Directory of Open Access Journals (Sweden)

    Elena Tîrziman

    2015-01-01

    Full Text Available Library and Information Science celebrates 25 years of modern existence. An analysis of this period shows a permanent modernisation of this subject and its synchronisation with European realities at both teaching and research levels. The evolution of this subject is determined by the dynamics of the field, the quick evolution of the information and documenting trades in close relationship with science progress and information technologies. This major ensures academic training (Bachelor, Master, and Doctor and post-graduation studies and is involved in research projects relevant for the field and the labour market. Exigencies of the information-related trades and the appearance of new jobs are challenges for this academic major.

  2. Misrecognition and science education reform

    Science.gov (United States)

    Brandt, Carol B.

    2012-09-01

    In this forum, I expand upon Teo and Osborne's discussion of teacher agency and curriculum reform. I take up and build upon their analysis to further examine one teacher's frustration in enacting an inquiry-based curriculum and his resulting accommodation of an AP curriculum. In this way I introduce the concept of misrecognition (Bourdieu and Passeron 1977) to open up new ways of thinking about science inquiry and school reform.

  3. Philosophy of Science and Education

    Science.gov (United States)

    Jung, Walter

    2012-01-01

    This is a vast and vague topic. In order to do justice to it one has to write a book or maybe more than one. For it can be understood in quite different ways and on different levels. For example you may think mainly of the historical aspect, that is how philosophy of science developed in the last hundred or so years and how its influence on…

  4. A SOCIOCULTURAL APPROACH TO SCIENCE EDUCATION

    Directory of Open Access Journals (Sweden)

    Kenneth Tobin

    2013-12-01

    Full Text Available I present a sociocultural approach to research and science education that incorporates a recursive relationship between transformation and theory, acknowledges the strengths of subjectivity, and regards difference as a resource for learning. The methodology incorporates hermeneutic-phenomenology, reflexive inquiry, and event-oriented inquiry. Research on emotions contextualizes methodologies for multidisciplinary and multi-level research. Finally, a new journal that was developed as a home for cultural studies of science education is described along with the processes used in manuscript review and publication.

  5. Flipped learning in science education

    DEFF Research Database (Denmark)

    Andersen, Thomas Dyreborg; Foss, Kristian Kildemoes; Nissen, Stine Karen

    2017-01-01

    During the last decade, massive investment in ICT has been made in Danish schools. There seems, however, to be a need to rethink how to better integrate ICT in education (Bundgaard et al. 2014 p. 216) Flipped learning might be a didactical approach that could contribute to finding a method to use...

  6. Validity, Science and Educational Measurement

    Science.gov (United States)

    Goldstein, Harvey

    2015-01-01

    The term "validity" is one of the most important and one of the most debated concepts in educational measurement. In this paper, I argue that various different approaches can all be viewed from an associational perspective. I also argue that our understanding will be enhanced by adopting some basic ideas of scientific reasoning to the…

  7. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    ... through a panel which studied the state of science education in the country. The journal's objective therefore is targeted primarily at science education for undergraduate students and teachers and focuses on enriching the processes of teaching and learning science thereby stimulating science education in the country.

  8. What Is "Agency"? Perspectives in Science Education Research

    Science.gov (United States)

    Arnold, Jenny; Clarke, David John

    2014-01-01

    The contemporary interest in researching student agency in science education reflects concerns about the relevance of schooling and a shift in science education towards understanding learning in science as a complex social activity. The purpose of this article is to identify problems confronting the science education community in the development…

  9. Transforming Elementary Science Teacher Education by Bridging Formal and Informal Science Education in an Innovative Science Methods Course

    Science.gov (United States)

    Riedinger, Kelly; Marbach-Ad, Gili; Randy McGinnis, J.; Hestness, Emily; Pease, Rebecca

    2011-02-01

    We investigated curricular and pedagogical innovations in an undergraduate science methods course for elementary education majors at the University of Maryland. The goals of the innovative elementary science methods course included: improving students' attitudes toward and views of science and science teaching, to model innovative science teaching methods and to encourage students to continue in teacher education. We redesigned the elementary science methods course to include aspects of informal science education. The informal science education course features included informal science educator guest speakers, a live animal demonstration and a virtual field trip. We compared data from a treatment course ( n = 72) and a comparison course ( n = 26). Data collection included: researchers' observations, instructors' reflections, and teacher candidates' feedback. Teacher candidate feedback involved interviews and results on a reliable and valid Attitudes and Beliefs about the Nature of and the Teaching of Science instrument. We used complementary methods to analyze the data collected. A key finding of the study was that while benefits were found in both types of courses, the difference in results underscores the need of identifying the primary purpose for innovation as a vital component of consideration.

  10. Science academy statements on water, health, and science education

    Science.gov (United States)

    Showstack, Randy

    2011-05-01

    Several days prior to the Group of 8 (G8) summit of nations on 26-27 May in Deauville, France, science academies from those nations and five others issued joint statements calling for the governments to take actions regarding water and health as well as science education. The water and health statement indicates that nearly 3 billion people will be living in water-scarce countries by 2050 and that 2.6 billion already lack access to proper sanitation and nearly 900 million lack access to a clean water supply. The statement calls for developing basic infrastructure for sanitation, promoting education to change the behavior of populations regarding water supply, funding research and development to identify pathogens, and improving water management and hygiene standards, among other measures.

  11. Science Teachers' Views about the Science Fair at Primary Education Level

    Science.gov (United States)

    Tortop, Hasan Said

    2013-01-01

    Science fair is an environment where students present their scientific research projects. Opinions of science teachers who participated as a mentor in science fair are important for determining of the science fair quality and its contribution of science education. The aim of study was to determine science teachers' views about the science fair at…

  12. Understanding adolescent student perceptions of science education

    Science.gov (United States)

    Ebert, Ellen Kress

    This study used the Relevance of Science Education (ROSE) survey (Sjoberg & Schreiner, 2004) to examine topics of interest and perspectives of secondary science students in a large school district in the southwestern U.S. A situated learning perspective was used to frame the project. The research questions of this study focused on (a) perceptions students have about themselves and their science classroom and how these beliefs may influence their participation in the community of practice of science; (b) consideration of how a future science classroom where the curriculum is framed by the Next Generation Science Standards might foster students' beliefs and perceptions about science education and their legitimate peripheral participation in the community of practice of science; and (c) reflecting on their school science interests and perspectives, what can be inferred about students' identities as future scientists or STEM field professionals? Data were collected from 515 second year science students during a 4-week period in May of 2012 using a Web-based survey. Data were disaggregated by gender and ethnicity and analyzed descriptively and by statistical comparison between groups. Findings for Research Question 1 indicated that boys and girls showed statistically significant differences in scientific topics of interest. There were no statistical differences between ethnic groups although. For Research Question 2, it was determined that participants reported an increase in their interest when they deemed the context of the content to be personally relevant. Results for Research Question 3 showed that participants do not see themselves as youthful scientists or as becoming scientists. While participants value the importance of science in their lives and think all students should take science, they do not aspire to careers in science. Based on this study, a need for potential future work has been identified in three areas: (a) exploration of the perspectives and

  13. Education in Soil Science: the Italian approach

    Science.gov (United States)

    Benedetti, Anna; Canfora, Loredana; Dazzi, Carmelo; Lo Papa, Giuseppe

    2017-04-01

    The Italian Society of Soil Science (SISS) was founded in Florence on February 18th, 1952. It is an association legally acknowledged by Decree of the President of the Italian Republic in February 1957. The Society is member of the International Union of Soil Sciences (IUSS) of the European Confederation of Soil Science Societies (ECSSS) and collaborates with several companies, institutions and organizations having similar objectives or policy aspects. SISS promotes progress, coordination and dissemination of soil science and its applications encouraging relationships and collaborations among soil lovers. Within the SISS there are Working Groups and Technical Committees for specific issues of interest. In particular: • the Working Group on Pedotechniques; • the Working Group on Hydromorphic and Subaqueous Soils and • the Technical Committee for Soil Education and Public Awareness. In this communication we wish to stress the activities developed since its foundation by SISS to spread soil awareness and education in Italy through this last Technical Committee, focusing also the aspect concerning grants for young graduates and PhD graduates to stimulate the involvement of young people in the field of soil science. Keywords: SISS, soil education and awareness.

  14. Radiation risk and science education

    International Nuclear Information System (INIS)

    Eijkelhof, H.M.C.

    1996-01-01

    Almost everywhere the topic of radioactivity is taught in the physics or chemistry classes of secondary schools. The question has been raised whether the common approach of teaching this topic would contribute to a better understanding of the risks of ionising radiation: and, if the answer is negative, how to explain and improve this situation? In a Dutch research programme which took almost ten years, answers to this question have been sought by means of analyses of newspaper reports, curriculum development, consultation with radiation experts, physics textbook analysis, interviews and questionnaires with teachers and pupils, class observations and curriculum development. Th main results of this study are presented and some recommendations given for science teaching and for communication with the public in general as regards radiation risk. (author)

  15. Earth Science Education in Kenya

    Science.gov (United States)

    Opiyo-Akech, N.; Barongo, J. O.

    1999-05-01

    The University of Nairobi is currently the only University in Kenya which offers degree level courses in the earth sciences. The Department was founded in 1961, became part of an autonomous University in 1970, awarded its first degrees in 1972 and awarded its first Geology degrees in 1978. The Department currently offers a four-year B.Sc. course - delivered as part of a course unit system - and an M.Sc. programme in Geology. Students are admitted to the University after eight years of primary and four years of secondary schooling. Graduates find employment either in government departments or in the private sector. The Department currently has 15 academic staff who are involved in a variety of research projects. Currently, there are collaborative links with Universities in Germany, Sweden and South Africa.

  16. Developing Students' Futures Thinking in Science Education

    Science.gov (United States)

    Jones, Alister; Buntting, Cathy; Hipkins, Rose; McKim, Anne; Conner, Lindsey; Saunders, Kathy

    2012-01-01

    Futures thinking involves a structured exploration into how society and its physical and cultural environment could be shaped in the future. In science education, an exploration of socio-scientific issues offers significant scope for including such futures thinking. Arguments for doing so include increasing student engagement, developing students'…

  17. Concepts in K-9 Computer Science Education

    NARCIS (Netherlands)

    Barendsen, Erik; Mannila, Linda; Demo, Barbara; Grgurina, Nataša; Izu, Cruz; Mirolo, Claudio; Sentance, Sue; Settle, Amber; Stupuriené, Gabrielé

    2015-01-01

    This exploratory study focuses on concepts and their assessment in K-9 computer science (CS) education. We analyzed concepts in local curriculum documents and guidelines, as well as interviewed K-9 teachers in two countries about their teaching and assessment practices. Moreover, we investigated the

  18. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 1. Volume 19, Issue 1. January 2014, pages 1-106. pp 1-2 General Editorial. General Editorial on Publication Ethics · R Ramaswamy · More Details Fulltext PDF. pp 3-3 General Editorial. Academy Policy on Plagiarism · More Details Fulltext PDF.

  19. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 10. October 2002, pages 1-100. pp 1-1 Editorial. Editorial · Biman Nath · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Timoshenko: Father of Engineering ...

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 12. Issue front cover thumbnail Issue back cover thumbnail. Volume 20, Issue 12. December 2015, pages 1077-1171b. pp 1077-1078 Editorial. Editorial · Rajaram Nityananda · More Details Fulltext PDF. pp 1079-1081 Article-in-a-Box.

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 11. November 2002, pages 1-102. pp 1-1 Editorial. Editorial · Biman Nath · More Details Fulltext PDF. pp 2-5 Article-in-a-Box. Stephen Jay Gould: A View of Life.

  2. New Biological Sciences, Sociology and Education

    Science.gov (United States)

    Youdell, Deborah

    2016-01-01

    Since the Human Genome Project mapped the gene sequence, new biological sciences have been generating a raft of new knowledges about the mechanisms and functions of the molecular body. One area of work that has particular potential to speak to sociology of education, is the emerging field of epigenetics. Epigenetics moves away from the mapped…

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 2. Issue front cover thumbnail Issue back cover thumbnail. Volume 3, Issue 2. February 1998, pages 1-98. pp 1-1 Editorial. Editorial ... Can You Depend Totally on Computers? Computer Security, Availability and Correctness · H N Mahabala.

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 2. Issue front cover thumbnail Issue back cover thumbnail. Volume 22, Issue 2. February 2017, pages 101-191. pp 101-102 Editorial. Editorial · More Details Abstract Fulltext PDF. pp 103-109 Article-in-a-Box. Vera C Rubin (1928-2016).

  5. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 12. Jacques Monod and the Advent of the Age of Operons. R Jayaraman. General Article Volume 15 Issue 12 December 2010 pp 1084-1096. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 7. Physical Research Laboratory. P Sharma. Information and Announcements Volume 4 Issue 7 July 1999 pp 92-96. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/004/07/0092-0096 ...

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 2. Erwin Schrödinger, “What is Life? The Physical Aspect of the Living Cell”. N Mukunda. Book Review Volume 4 Issue 2 February 1999 pp 85-87. Fulltext. Click here to view fulltext PDF. Permanent link:

  8. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 11, Issue 1. January 2006, pages 1-100. pp 1-1 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 2-5 Article-in-a-Box. Amedeo Avogadro - Counting Atoms and ...

  9. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 12. Issue front cover thumbnail Issue back cover thumbnail. Volume 19, Issue 12. December 2014, pages ... pp 1093-1103 General Article. Crystallography and Drug Design · K Suguna · More Details Fulltext PDF. pp 1104-1114 General Article.

  10. Science Educator's Guide to Laboratory Assessment.

    Science.gov (United States)

    Doran, Rodney; Chan, Fred; Tamir, Pinchas; Lenhardt, Carol

    This book presents multiple assessment formats and strategies appropriate for inquiry activities for both indoor and outdoor education. Chapters 5-8 feature examples of disciplinary assessment practices for biology, chemistry, physics, and earth sciences. Other contents include: (1) "A Rationale for Assessment"; (2) "Developing New Assessment";…

  11. Education sciences, schooling, and abjection: recognizing ...

    African Journals Online (AJOL)

    Schooling in North America and northern Europe embodies salvation themes. The themes are (re)visions of ... the 20th century and contemporary school reform research are examined to understand their different cultural ... Keywords: educational sciences; history of present; politics of schooling; reform; social inclusion/ ...

  12. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 3, Issue 10. October 1998, pages 1-102. pp 1-2 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. From Fourier Series to Fourier Transforms.

  13. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 1. Crux of Time Management for Students. Felix Bast. General Article Volume 21 Issue 1 January 2016 pp 71-88. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/021/01/0071-0088. Keywords.

  14. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 2, Issue 11. November 1997, pages 1-114. pp 1-1 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 2-4 Article-in-a-Box. Gems: Objects of Aesthetic Beauty and ...

  15. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 12. Issue front cover thumbnail Issue back cover thumbnail. Volume 11, Issue 12. December 2006, pages 1-102. pp 1-2 Editorial. Editorial · Renuka Ravindran · More Details Fulltext PDF. pp 3-6 Article-in-a-Box. Isaac Newton (1642/43-1727).

  16. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 4. Current Issue Volume 23 | Issue 4. April 2018. Home · Volumes & Issues · Categories · Special Issues · Search · Editorial Board · Information for Authors · Subscription ...

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Keywords. Scalars; four-vectors; lorentz transformation; special relativity. ... Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 4. Current Issue Volume 23 | Issue 4. April 2018. Home · Volumes & Issues · Categories · Special Issues · Search · Editorial Board · Information for Authors · Subscription ...

  18. Improving science, technology and mathematics education in ...

    African Journals Online (AJOL)

    PROF.MIREKU

    O. A. Sofowora1, & B. Adekomi. Abstract. The study assessed the impact of a World Bank Assisted Project “STEP-B” on teaching and learning of Science, Technology and Mathematics Education (STM) in. Nigeria. It also described the contribution of Obafemi Awolowo University, Ile-Ife to the improvement of STM through ...

  19. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Issue front cover thumbnail Issue back cover thumbnail. Volume 21, Issue 9. September 2016, pages 767-863. pp 767-768 Editorial. Editorial · More Details Abstract Fulltext PDF. pp 769-772 Article in a Box. The Creative Genius: John Nash.

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 17, Issue 10. October 2012, pages 923-1020. pp 923-923 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 924-925 Article-in-a-Box. S N De - An Appreciation.

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 3 · Current Issue Volume 23 | Issue 3. March 2018. Home · Volumes & Issues · Categories · Special Issues · Search · Editorial Board · Information for Authors · Subscription ...

  2. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 18, Issue 11. November 2013, pages 961-1056. pp 961-962 Editorial. Editorial · K L Sebastian · More Details Fulltext PDF. pp 963-965 Article-in-a-Box. Leonor Michaelis and ...

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 5. Issue front cover thumbnail Issue back cover thumbnail. Volume 10, Issue 5. May 2005, pages 1-102. pp 1-2 Editorial. Editorial · Jaywant H Arakeri · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. Robert W Floyd (1936-2001) · Priti Shankar.

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 10 ... More Details Fulltext PDF. pp 84-87 Classroom. Learning Earthquake Design and Construction – Why are Open-Ground Storey Buildings Vulnerable in Earthquakes?

  5. Psychology's Role in Mathematics and Science Education

    Science.gov (United States)

    Newcombe, Nora S.; Ambady, Nalini; Eccles, Jacquelynne; Gomez, Louis; Klahr, David; Linn, Marcia; Miller, Kevin; Mix, Kelly

    2009-01-01

    Improving mathematics and science education in the United States has been a matter of national concern for over half a century. Psychology has a vital role to play in this enterprise. In this article, the authors review the kinds of contributions that psychology can make in four areas: (a) early understanding of mathematics, (b) understanding of…

  6. An Ethically Ambitious Higher Education Data Science

    Science.gov (United States)

    Stevens, Mitchell L.

    2014-01-01

    The new data sciences of education bring substantial legal, political, and ethical questions about the management of information about learners. This piece provides a synoptic view of recent scholarly discussion in this domain and calls for a proactive approach to the ethics of learning research.

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 1. Arrows in Chemistry. Abirami Lakshminarayanan. General Article Volume 15 Issue 1 January 2010 pp 51-63. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/015/01/0051-0063. Keywords.

  8. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 8. Use of Isotopes for Studying Reaction Mechanisms-Secondary Kinetic Isotope Effect. Uday Maitra J Chandrasekhar. Series Article Volume 2 Issue 8 August 1997 pp 18-25 ...

  9. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 10. Fractals: A New Geometry of Nature. Balakrishnan Ramasamy T S K V Iyer P Varadharajan. Classroom Volume 2 Issue 10 October 1997 pp 62-68. Fulltext. Click here to view fulltext PDF. Permanent link:

  10. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 12. Electrons in Condensed Matter. T V Ramakrishnan. General Article Volume 2 Issue 12 December 1997 pp 17-32. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/002/12/0017-0032 ...

  11. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 3. Issue front cover thumbnail Issue back cover thumbnail. Volume 21, Issue 3. March 2016, pages 203-297 ... Sangeeta Pandita Saral Baweja · More Details Fulltext PDF. pp 289-294 Book Review. Such a Long Journey · Rajaram Nityananda.

  12. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 12. Pythagorean Means and Carnot Machines: When Music Meets Heat. Ramandeep S Johal.

  13. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 22, Issue 1. January 2017, pages 1-101. pp 1-3 General Editorial. General Editorial · More Details Abstract Fulltext PDF. pp 5-5 Editorial. Editorial · More Details Abstract Fulltext ...

  14. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    ... Resonance – Journal of Science Education; Volume 6; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 6, Issue 10. October 2001, pages 1- ... pp 96-97 Book Review. Call of Indian Birds – An Audio Cassette · Lt General Baljit Singh · More Details Fulltext PDF. pp 97-100 Book Review. Essentials ...

  15. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 3, Issue 8 ... P G Babu · More Details Fulltext PDF. pp 56-65 Feature Article. Nature Watch - Hornbills – Giants Among the Forest Birds · T R Shankar Raman Divya Mudappa.

  16. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 7. Issue front cover thumbnail Issue back cover thumbnail ... Debabrata Goswami · More Details Fulltext PDF. pp 22-32 General Article. Breeding Ecology of Birds - Why do Some Species Nest Singly While Others are Colonial? Abdul Jamil Urfi.

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 1, Issue 10. October 1996 ... More Details Fulltext PDF. pp 78-81 Classroom. Microbiology as if Bird Watching · Milind G Watve · More Details Fulltext PDF. pp 82-83 Think It Over.

  18. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 6. Issue front cover thumbnail Issue back cover thumbnail ... Rajendra Bhatia · More Details Fulltext PDF. pp 44-55 General Article. Acoustic Communication in Birds - Differences in Songs and Calls, their Production and Biological Significance.

  19. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 4. Issue front cover thumbnail Issue back cover thumbnail. Volume 13, Issue 4. April 2008 ... K R Y Simha Dhruv C Hoysall · More Details Fulltext PDF. pp 394-397 Think It Over. Solution to How Many Birds are Unwatched · Soubhik Chakraborty.

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    ... Journals; Resonance – Journal of Science Education; Volume 15; Issue 5. Issue front cover thumbnail Issue back cover thumbnail. Volume 15, Issue 5 ... pp 411-427 General Article. Bird of Passage at Four Universities - Student Days of Rudolf Peierls · G Baskaran · More Details Fulltext PDF. pp 428-433 General Article.

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 13, Issue 1. January 2008, pages 1-102. pp 1-1 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 2-3 Table of Contents. Table of Contents · More Details Fulltext ...

  2. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 16, Issue 1. January 2011, pages 1-104. pp 1-1 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Leeuwenhoek: Discoverer of the Microbial ...

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 12. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 12. December 2002, pages 1-106. pp 1-1 Editorial. Editorial · Biman Nath · More Details Fulltext PDF. pp 2-4 Article-in-a-Box. K. S. Krishnan – An Outstanding Scientist.

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 2. Issue front cover thumbnail Issue back cover thumbnail. Volume 16, Issue 2. February 2011, pages 103-202. pp 103-103 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 104-104 Article-in-a-Box. A Short Biography of Israel ...

  5. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 5. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 5. May 2002, pages 1-106. pp 1-2 Editorial. Editorial · Amitabh Joshi · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. Sir Mokshagundam Visvesvaraya – A Visionary ...

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 4. Issue front cover thumbnail Issue back cover thumbnail. Volume 16, Issue 4. April 2011, pages 297-406. pp 297-298 Editorial. Editorial · Vasant Natarajan · More Details Fulltext PDF. pp 299-301 Article-in-a-Box. Robert H. Dicke – Physicist ...

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 17, Issue 8. August 2012, pages 719-820. pp 719-720 Editorial. Editorial · V Rajaraman · More Details Fulltext PDF. pp 721-723 Article-in-a-Box. Dennis M Ritchie · V Rajaraman.

  8. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 5. Issue front cover thumbnail Issue back cover thumbnail. Volume 20, Issue 5. May 2015, pages 373-478. pp 373-373 Editorial. Editorial · Rajaram Nityananda · More Details Fulltext PDF. pp 374-379 Article-in-a-Box. Arnold Sommerfeld: ...

  9. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 9. Haber Process for Ammonia Synthesis. Jayant M Modak. General Article Volume 7 Issue 9 September 2002 pp 69-77. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/007/09/0069-0077 ...

  10. Winds of Revolution Sweep through Science Education.

    Science.gov (United States)

    Krieger, James

    1990-01-01

    Described is the status of science education reform in 1990. Different groups working on change, demographic trends in the US, student anecdotes, lab operations, the role of Sigma Xi, goals set by the state governors, industry efforts, and programs for the improvement of middle school teachers are discussed. (CW)

  11. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 12. Issue front cover thumbnail Issue back cover thumbnail. Volume 10, Issue 12. December 2005, pages 1-268. World Year of Physics - 2005. pp 1-3 Editorial. Editorial · T V Ramakrishnan · More Details Fulltext PDF. pp 4-5 Table of Contents.

  12. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 12. Issue front cover thumbnail Issue back cover thumbnail. Volume 21, Issue 12. December 2016, pages 1063-1153. pp 1063-1063 Editorial. Editorial · More Details Abstract Fulltext PDF. pp 1065-1068 Article in a Box. Hermann Weyl ...

  13. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 5. Artificial Seeds and their Applications. G V S Saiprasad. General Article Volume 6 Issue 5 May 2001 pp 39-47. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/05/0039-0047 ...

  14. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 7. Power Maps and Commutativity of Groups. Ashok Singh. Classroom Volume 9 Issue 7 July 2004 pp 70-73 ... Author Affiliations. Ashok Singh1. Department of Mathematics Government Nehru Memorial College Mansa (Panjab) 151505, India ...

  15. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 2. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. Charles Darwin. Classics Volume 14 Issue 2 February 2009 pp 204-208 ...

  16. Infrared astronomy in science and education

    Science.gov (United States)

    Mayeur, Paul Anthony

    This dissertation looks at the effects of an educator-scientist partnership on the creation of an inquiry based science lesson for the middle school classroom. The lesson was initially created by a scientist following their science research, but changed as the scientist began working with teachers. The changes in the lesson show that scientists and educators may not agree on what is considered appropriate for a science lesson because of time commitment and grade level. However, by working together the partnership is able to reach a compromise of the lesson that allows for the students to get the best possible outcome. This dissertation also shows that science research is a method of inquiry, which can be brought to the classroom through inquiry education. The science research the lesson followed looks at the interstellar dust cloud DC 314.8-5.1, which is unique because of the cloud's proximity to a B-type star with no known association. This thesis did a survey of the area looking for background sources that can be used for future spectroscopical studies. Further, the survey led to the discovery of two possible young stellar objects. In order to fuel educator-scientist interaction and to bring inquiry education into the middle school classroom a scientist created a web-based science lesson that incorporated real NASA data into the middle-school classroom. This lesson was based on the scientist's research in infrared astronomy within the broader context of astrobiology. The lesson includes students plotting real data; in the process the students learn about infrared radiation, star color, and the wavelength/temperature relationship. These are all topics that were studied in the scientist's research, which led the scientist to the idea of creating a lesson for the middle-school classroom. This lesson is based on the principles of inquiry-based learning. Inquiry lessons can bring together these ideas into one place and hopefully inspire new generations to explore the

  17. [Museums, science, and education: new challenges].

    Science.gov (United States)

    Valente, Maria Esther; Cazelli, Sibele; Alves, Fátima

    2005-01-01

    The article discusses how the social role of science museums is shaped by scientific and technological endeavor, society's demands, and educational issues, above all in negotiations with a museum's audiences. The text also analyzes the trajectory taken by Brazil's science museums in their process of consolidation and the changes current society has imposed on these institutes. Communication has become the center of the discussion on museum culture, particularly in that it adjusts the educational aspect according to the conception of social practices, which are deemed fundamental resources. Lastly, the article examines the incorporation of the ideas of 'risk' and 'uncertainty', produced by science, into this new way of thinking about museums, which values the public and the communication processes.

  18. In Brief: Revitalizing Earth science education

    Science.gov (United States)

    Showstack, Randy

    2008-12-01

    A 5-year, $3.9-million U.S. National Science Foundation Math Science Partnership grant to Michigan Technological University (MTU), in Houghton, aims to improve instruction in middle-school Earth and space science courses. The program will enable geoscience and education researchers to work with middle-school science teachers to test strategies designed to reform science, technology, engineering, and math (STEM) education. Project lead researcher Bill Rose said the project could be a template for improvement in STEM throughout the United States. Rose, one of seven MTU faculty members involved with the Michigan Institute for Teaching Excellence Program (MITEP), said the project is ``trying to do something constructive to attract more talented young people to advanced science, math, and technology.'' The project includes data collection and analysis overseen by an evaluation team from the Colorado School of Mines. Also participating in the project are scientists from Grand Valley State University, Allendale, Mich.; the Grand Rapids (Mich.) Area Pre-College Engineering Program; the American Geological Institute; and the U.S. National Park Service.

  19. Science-Technology-Society (STS): A New Paradigm in Science Education

    Science.gov (United States)

    Mansour, Nasser

    2009-01-01

    Changes in the past two decades of goals for science education in schools have induced new orientations in science education worldwide. One of the emerging complementary approaches was the science-technology-society (STS) movement. STS has been called the current megatrend in science education. Others have called it a paradigm shift for the field…

  20. Novel Tools for Climate Change Learning and Responding in Earth Science Education

    Science.gov (United States)

    Sparrow, Elena; Brunacini, Jessica; Pfirman, Stephanie

    2015-04-01

    Several innovative, polar focused activities and tools including a polar hub website (http://thepolarhub.org) have been developed for use in formal and informal earth science or STEM education by the Polar Learning and Responding (PoLAR) Climate Change Education Partnership (consisting of climate scientists, experts in the learning sciences and education practitioners). In seeking to inform understanding of and response to climate change, these tools and activities range from increasing awareness to informing decisions about climate change, from being used in classrooms (by undergraduate students as well as by pre-college students or by teachers taking online climate graduate courses) to being used in the public arena (by stakeholders, community members and the general public), and from using low technology (card games such as EcoChains- Arctic Crisis, a food web game or SMARTIC - Strategic Management of Resources in Times of Change, an Arctic marine spatial planning game) to high technology (Greenify Network - a mobile real world action game that fosters sustainability and allows players to meaningfully address climate change in their daily lives, or the Polar Explorer Data Visualization Tablet App that allows individuals to explore data collected by scientists and presented for the everyday user through interactive maps and visualizations, to ask questions and go on an individualized tour of polar regions and their connections to the rest of the world). Games are useful tools in integrative and applied learning, in gaining practical and intellectual skills, and in systems thinking. Also, as part of the PoLAR Partnership, a Signs of the Land Climate Change Camp was collaboratively developed and conducted, that can be used as a model for engaging and representing indigenous communities in the co-production of climate change knowledge, communication tools and solutions building. Future camps are planned with Alaska Native Elders, educators including classroom

  1. SSC education: Science to capture the imagination

    International Nuclear Information System (INIS)

    Gadsden, T.; Kivlighn, S.

    1992-01-01

    To the great majority of Americans, science is merely a collection of facts and theories that should (for unknown reasons) be memorized and perhaps even understood in order for one to function as a responsible citizen. Few see science as a way of thinking and questioning and as an approach to learning the secrets of our world. In addition, most children and many adults have a stereotypical view of scientists as studious men in lab coats who spend all their time working alone in dark and smelly chemical or biological laboratories. The Superconducting Super Collider (SSC) totally contradicts such a perception. This great instrument is being created by thousands of scientists, engineers, business people, technicians, administrators, and others, from dozens of nations, working together to realize a shared vision to seek answers to shared questions. The SSCL also provides an opportunity to change the mistaken impressions about science and scientists that have resulted in fewer students pursuing careers in fields related to science. In addition, it will serve as a catalyst to help people understand the roles that scientific thought and inquiry can play in bettering their lives and the lives of their offspring. Recognizing this problem in our society, the creators of the SSC Laboratory made a commitment to use the SSC to improve science education. Consequently, in addition to building the world's premier high-energy physics laboratory, the SSCL has a second goal: creation of a major national and international educational resource. To achieve the latter goal, the Education Office of the SSCL is charged with using the resources of the Laboratory, both during construction and during operation, to improve education in science and mathematics at all levels (prekindergarten through post-doctorate) and for all components of our society (including the general public), in the United States and around the world

  2. Science education research interests of elementary teachers

    Science.gov (United States)

    Gabel, Dorothy; Samuel, K. V.; Helgeson, Stanley; McGuire, Saundra; Novak, Joseph; Butzow, John

    Science education researchers have always sought to improve the quality of our nation's schools. One way of doing this is to make research findings on the teaching of science available to teachers. Perhaps an even more effective way is to plan research studies with teachers' interests in mind. The purpose of this study was to determine the science education research interests of elementary teachers and to examine the data according to certain demographic variables. The sample consisted of 553 elementary teachers in 98 schools from across the nation. The survey instrument contained 28 items, 16 of which were included on a survey instrument prepared by White et al. The data collected using the Likert-type questionnaire were dichotomized as 1 important and O not important and were analyzed using the Cochran Test and the McNemar Test for post hoc comparisons. Results of the study indicate that the top five research interests of teachers in the order of preference are: hands-on experiences, science content of the curriculum, cognitive development and learning styles, problem solving, and teaching strategies. The area of lowest interest was research on sex differences.Results of the survey have several important implications for science education. First, they can be used to help science educators plan research that may be of interest to elementary teachers. Second, they can be used by groups such as NSTA who publish research reviews, and by colleges and universities that prepare elementary teachers, as a guide to not only what is of interest to elementary teachers, but to identify those areas of research for which dissemination has been lacking.

  3. Persuasion and attitude change in science education

    Science.gov (United States)

    Koballa, Thomas R., Jr.

    Many strategies used to induce the occurrence of desirable science-related beliefs, attitudes, and behaviors involve the use of persuasive messages. Science educators need to become acquainted with persuasion in the context of social influence and learning theory to be able to evaluate its usefulness in the science education milieu. Persuasion is the conscious attempt to bring about a jointly developed mental state common to both source and receiver through the use of symbolic cues, and it can be distinguished from other forms of social influence. Propaganda is a type of persuasion directed toward a mass audience. Coercion relies on reinforcement control, whereas persuasion is prompted by information. Brainwashing involves coercive techniques used to obtain cooperation and compliance. Persuasion and instruction are much alike; both require conscious cognitive activity by the recipient and involve communication which includes giving arguments and evidence for the purpose of getting someone to do something or to believe something.Persuasion research is anchored in learning theory. Early efforts were based on information processing. Studies following an information process approach focused on the effect of the variables harbored within the question Who says what in which channel to whom with what effect? on belief and attitude change. Cognitive processing and social exchange approaches to persuasion represent extensions to information process. Cognitive processing is concerned specifically with how people personally process the arguments presented in a persuasive message. Social exchange emphasizes the interchange that takes place between the message source and recipient. These approaches seem to be fruitful areas for future persuasion research in science education.Science educators' unfamiliarity with persuasion research stems from the fact that it is largely reported in the social psychology literature and has not been integrated into a framework familiar to

  4. The Feasibility of Educating Trainee Science Teachers in Issues of Science and Religion

    Science.gov (United States)

    Poole, Michael

    2016-01-01

    This article reflects on Roussel De Carvalho's paper "Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom" (EJ1102211). It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher…

  5. Implementing SPRINTT [Student Polar Research with IPY National(and International)Teacher Training] in 5th Grade Science

    Science.gov (United States)

    Glass, D. S.

    2009-12-01

    I implemented the new NSF-funded SPRINTT (Student Polar Research with IPY National (and International) Teacher Training) curriculum with a 5th grade science class. SPRINTT, developed at U.S. Satellite Laboratory, Inc., is a 5-8 week science program teaching 5th through 10th graders to investigate climate change using polar data. The program includes perspectives of both Western scientists and the indigenous Northern population. The course contains three phases: Phase 1 includes content, data interpretation, and hands-on experiments to study Frozen Water, Frozen Land, and Food; Phase 2 (optional) includes further content on specific polar topics; and Phase 3 is a scaffolded research investigation. Before the course, teachers were trained via live webinars. This curriculum capitalizes on children’s innate fascination with our planet’s final frontier and combines it with the politically and scientifically relevant topic of climate change. In 2009, I used SPRINTT with 23 heterogeneous fifth grade students at National Presbyterian School in Washington DC for an environmental science unit. Overall, it was a success. The students met most of the learning objectives and showed enthusiasm for the material. I share my experiences to help other educators and curriculum developers. The Phase 1 course includes earth science (glaciers, sea ice, weather and climate, greenhouse gases, seasons, and human impacts on environments), life science (needs of living things, food and energy transfer, adaptations, and ecosystems and biomes) and physical science (phases of matter). Tailoring the program, I focused on Phase 1, the most accessible material and content, while deemphasizing the more cumbersome Phase 3 online research project. Pre-assessments documented the students’ misconceptions and informed instruction. The investigations were appropriately educational and interesting. For example, students enjoyed looking at environmental factors and their impact on the people in the

  6. 75 FR 5771 - Institute of Education Sciences; Overview Information; Education Research and Special Education...

    Science.gov (United States)

    2010-02-04

    ... DEPARTMENT OF EDUCATION Institute of Education Sciences; Overview Information; Education Research and Special Education Research Grant Programs; Notice Inviting Applications for New Awards for Fiscal....305D, 84.305E, 84.324A, 84.324B, and 84.324C. Summary: The Director of the Institute of Education...

  7. Troubling an embodied pedagogy in science education

    DEFF Research Database (Denmark)

    Kristensen, Liv Kondrup; Otrel-Cass, Kathrin

    2017-01-01

    and this was also indicative as to how they related to each other. Applying an embodied pedagogy approach to science education means that integrating movement in science is more than adding physical activity, because embodiment is about how students perceive themselves and the world. This is particularly important......This chapter explores the idea of using an embodied pedagogy for science teaching following the mandated introduction of physical activity across all subjects in Danish primary schools. While there is research available that explores the different ways of utilizing movement in school, very little...... students were asked to conduct physics experiments in which movement was an integrated part of the learning experience. Our analysis focused on how students’ bodies were situated during this science activity. The young people made decisions on whether they felt comfortable performing in front of others...

  8. Teacher Leaders in Research Based Science Education

    Science.gov (United States)

    Rector, T. A.; Jacoby, S. H.; Lockwood, J. F.; McCarthy, D. W.

    2001-12-01

    NOAO facilities will be used in support of ``Teacher Leaders in Research Based Science Education" (TLRBSE), a new Teacher Retention and Renewal program that will be funded through the National Science Foundation's Directorate for Education and Human Resources. The goal of TLRBSE is to provide professional development for secondary teachers of mathematics and science in an effort to support novice teachers beginning their careers as well as to motivate and retain experienced teachers. Within the context of astronomy, TLRBSE will develop master teachers who will mentor a second tier of novice teachers in the exemplary method of research-based science education, a proven effective teaching method which models the process of inquiry and exploration used by scientists. Participants will be trained through a combination of in-residence workshops at Kitt Peak National Observatory and the National Solar Observatory, a distance-learning program during the academic year, interaction at professional meetings and mentor support from teacher leaders and professional astronomers. A total of 360 teachers will participate in the program over five years.

  9. effects of sociocultural beliefs on science education in zimbabwe

    African Journals Online (AJOL)

    cooperative goal structure' may have positive implications for science education. The following sociocultural factors that may affect science education in Zimbabwe are discussed: sex or gender bias, reverence for authority, religious ideology, ...

  10. Editorial: Special Issue (SI): International Conference on Science Education (ICSE)

    Science.gov (United States)

    Liu, Xiufeng; Zhang, BaoHui

    2014-04-01

    In the context of science education globalization, the International Conference on Science Education was held in Nanjing, China, in October 2012. The purpose of this conference was to provide a forum for science education researchers from China and from the rest of the world to exchange research ideas and best practices in science education. A call for papers for a special issue of the Journal of Science Education and Technology was made to all conference participants, and a set of six articles was resulted from a standard peer review process. This set of six articles provides a snapshot of research in China and in some other countries, and represents a dialogue between Chinese science education researchers and science education researchers from other countries. We call for more exchange and collaboration in science education between China and the rest of the world.

  11. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Crossword. Articles in Resonance – Journal of Science Education. Volume 23 Issue 3 March 2018 pp 397-400 Crossword. Crossword · Shobhana Narasimhan · More Details Abstract Fulltext PDF ...

  12. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Guidelines for Authors. Articles in Resonance – Journal of Science Education. Volume 19 Issue 7 July 2014 pp 662-666 Guidelines for Authors. Guidelines for Authors · More Details Fulltext PDF ...

  13. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Website Reviews. Articles in Resonance – Journal of Science Education. Volume 4 Issue 8 August 1999 pp 91-93 Website Reviews. Website Review · Harini Nagendra · More Details Fulltext PDF ...

  14. Merging University Students into K?12 Science Education Reform

    National Research Council Canada - National Science Library

    Williams, Valerie

    2002-01-01

    ... indeed a role for those trained in science in K-12 education. Highly competent, skilled scientists are a rich resource in our society that may be useful in strengthening science and mathematics education in schools across the country...

  15. Informal science education: lifelong, life-wide, life-deep.

    Science.gov (United States)

    Sacco, Kalie; Falk, John H; Bell, James

    2014-11-01

    Informal Science Education: Lifelong, Life-Wide, Life-Deep Informal science education cultivates diverse opportunities for lifelong learning outside of formal K-16 classroom settings, from museums to online media, often with the help of practicing scientists.

  16. Southern Africa Journal of Education, Science and Technology ...

    African Journals Online (AJOL)

    Southern Africa Journal of Education, Science and Technology: About this journal. Journal Home > Southern Africa Journal of Education, Science and Technology: About this journal. Log in or Register to get access to full text downloads.

  17. Southern Africa Journal of Education, Science and Technology: Site ...

    African Journals Online (AJOL)

    Southern Africa Journal of Education, Science and Technology: Site Map. Journal Home > About the Journal > Southern Africa Journal of Education, Science and Technology: Site Map. Log in or Register to get access to full text downloads.

  18. Southern Africa Journal of Education, Science and Technology ...

    African Journals Online (AJOL)

    Southern Africa Journal of Education, Science and Technology: Journal Sponsorship. Journal Home > About the Journal > Southern Africa Journal of Education, Science and Technology: Journal Sponsorship. Log in or Register to get access to full text downloads.

  19. Homi Bhabha Centre for Science Education, Tata Institute of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 2. Homi Bhabha Centre for Science Education, Tata Institute of Fundamental Research (A Deemed University). Information and Announcements Volume 22 Issue 2 February 2017 pp 189-189 ...

  20. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 1. Discrete Event Simulation. Matthew Jacob ... Keywords. Simulation; modelling; computer programming. Author Affiliations. Matthew Jacob1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012.

  1. Library exhibits and programs boost science education

    Science.gov (United States)

    Dusenbery, Paul B.; Curtis, Lisa

    2012-05-01

    Science museums let visitors explore and discover, but for many families there are barriers—such as cost or distance—that prevent them from visiting museums and experiencing hands-on science, technology, engineering, and mathematics (STEM) learning. Now educators are reaching underserved audiences by developing STEM exhibits and programs for public libraries. With more than 16,000 outlets in the United States, public libraries serve almost every community in the country. Nationwide, they receive about 1.5 billion visits per year, and they offer their services for free.

  2. Spatial Thinking in Atmospheric Science Education

    Science.gov (United States)

    McNeal, P. M.; Petcovic, H. L.; Ellis, T. D.

    2016-12-01

    Atmospheric science is a STEM discipline that involves the visualization of three-dimensional processes from two-dimensional maps, interpretation of computer-generated graphics and hand plotting of isopleths. Thus, atmospheric science draws heavily upon spatial thinking. Research has shown that spatial thinking ability can be a predictor of early success in STEM disciplines and substantial evidence demonstrates that spatial thinking ability is improved through various interventions. Therefore, identification of the spatial thinking skills and cognitive processes used in atmospheric science is the first step toward development of instructional strategies that target these skills and scaffold the learning of students in atmospheric science courses. A pilot study of expert and novice meteorologists identified mental animation and disembedding as key spatial skills used in the interpretation of multiple weather charts and images. Using this as a starting point, we investigated how these spatial skills, together with expertise, domain specific knowledge, and working memory capacity affect the ability to produce an accurate forecast. Participants completed a meteorology concept inventory, experience questionnaire and psychometric tests of spatial thinking ability and working memory capacity prior to completing a forecasting task. A quantitative analysis of the collected data investigated the effect of the predictor variables on the outcome task. A think-aloud protocol with individual participants provided a qualitative look at processes such as task decomposition, rule-based reasoning and the formation of mental models in an attempt to understand how individuals process this complex data and describe outcomes of particular meteorological scenarios. With our preliminary results we aim to inform atmospheric science education from a cognitive science perspective. The results point to a need to collaborate with the atmospheric science community broadly, such that multiple

  3. Partisanship, Political Polarization, and State Higher Education Budget Outcomes

    Science.gov (United States)

    Dar, Luciana; Lee, Dong-Wook

    2014-01-01

    In this article, we explore how partisanship affects state higher education policy priorities and expenditures. We assume that party coalitions are heterogeneous and policy preferences/priorities differ via mediating factors. We find that Democratic Party strength positively affects state funding for higher education but that the effect diminishes…

  4. An Integrated Concept on Earth and Environmental Sciences Postgraduate Education

    Science.gov (United States)

    Grosfeld, Klaus; Lohmann, Gerrit; Ladstätter-Weißenmayer, Annette; Burrows, John; Sprengel, Claudia; Bijma, Jelle

    2010-05-01

    disciplines to cooperate and exchange views on the common theme of ‘linking data and modelling', leading to a better understanding of local processes within a global context. Computational and conceptual models of the Earth system provide the ability to investigate different scenarios in biogeochemistry, such as the carbon cycle, the structure of marine sediments, and isotope distribution in climate components. Training and education, especially in time-series and data analysis, is a common key component for all participants. The Helmholtz Graduate School for Polar and Marine Research (POLMAR) (polmar.awi.de), beyond the aforementioned programmes in further cooperation with the Max Planck Institute for Marine Microbiology, Bremen, the University of Potsdam, Bremerhaven University of Applied Science and the Institute for Marine Resources (IMARE), provides a consistent framework for education and qualification for PhD students in general. Developing all categories of skills needed for analysing complex climate and environmental systems and the development of integrated solutions in a supportive network of collaborating research institutions fosters outstanding career options. Structured scientific training and supervision supported by a broad range of transferable skills development courses is indicative for the entire concept. This structured and integrated educational concept provides a strong basis for qualifying the next generation of excellent scientists for the challenging questions in Earth System Science and Polar and Marine Research.

  5. Analysis of the Current Literature of Science Education.

    Science.gov (United States)

    Ayers, Jerry B.

    Presented is a study designed to analyze nine journals that contain substantial material devoted to the field of science education for the period 1970 through 1971: "American Journal of Physics,""Chemistry,""Journal of Chemical Education,""Journal of Research in Science Teaching,""Physics Today,""School Science and Mathematics,""Science and…

  6. Encountering Science Education's Capacity to Affect and Be Affected

    Science.gov (United States)

    Alsop, Steve

    2016-01-01

    What might science education learn from the recent affective turn in the humanities and social sciences? Framed as a response to Michalinos Zembylas's article, this essay draws from selected theorizing in affect theory, science education and science and technology studies, in pursuit of diverse and productive ways to talk of affect within science…

  7. Teacher Education for Teaching Science to American Indian Students.

    Science.gov (United States)

    Rowland, Paul; Adkins, Carol R.

    1995-01-01

    The Science and Mathematics for Indian Learners and Educators (SMILE) Project at Northern Arizona University provided science inservice training to K-8 teachers from Bureau of Indian Affairs schools on the Navajo reservation. The training aimed to increase and improve science instruction for Indian children and to connect science education to…

  8. Improving Science Achievement through Changes in Education Policy

    Science.gov (United States)

    Owens, Tara M.

    2009-01-01

    Concerns over science education in the United States continue to grow due to the increasing global demands and competitiveness for careers in science and technology. This author contends that educators in the United States must look for ways to increase science proficiency and overall science literacy. Research about how students learn science…

  9. Imaginative science education the central role of imagination in science education

    CERN Document Server

    Hadzigeorgiou, Yannis

    2016-01-01

    This book is about imaginative approaches to teaching and learning school science. Its central premise is that science learning should reflect the nature of science, and therefore be approached as an imaginative/creative activity. As such, the book can be seen as an original contribution of ideas relating to imagination and creativity in science education. The approaches discussed in the book are storytelling, the experience of wonder, the development of ‘romantic understanding’, and creative science, including science through visual art, poetry and dramatization. However, given the perennial problem of how to engage students (of all ages) in science, the notion of ‘aesthetic experience’, and hence the possibility for students to have more holistic and fulfilling learning experiences through the aforementioned imaginative approaches, is also discussed. Each chapter provides an in-depth discussion of the theoretical background of a specific imaginative approach (e.g., storytelling, ‘wonder-full’ s...

  10. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Search. Search. Resonance – Journal of Science Education. Title. Author. Keywords. Category. Fulltext. Submit. Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 4. Current Issue Volume 23 | Issue 4. April 2018. Home · Volumes & Issues ...

  11. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 23; Issue 2. Homi Bhabha Centre for Science Education: Admission to PhD Programme in Science Education - 2018. Information and Announcements Volume 23 Issue 2 February 2018 pp 243-243 ...

  12. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Search. Search. Resonance – Journal of Science Education. Title. Author. Keywords. Category. Fulltext. Submit. Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 2. Current Issue Volume 23 | Issue 2. February 2018. Home · Volumes & ...

  13. Special Education Teachers' Nature of Science Instructional Experiences

    Science.gov (United States)

    Mulvey, Bridget K.; Chiu, Jennifer L.; Ghosh, Rajlakshmi; Bell, Randy L.

    2016-01-01

    Special education teachers provide critical science instruction to students. However, little research investigates special education teacher beliefs and practices around science in general or the nature of science and inquiry in particular. This investigation is a cross-case analysis of four elementary special education teachers' initial…

  14. The Role of Critical Thinking in Science Education

    Science.gov (United States)

    Santos, Luis Fernando

    2017-01-01

    This review aims to respond various questions regarding the role of Critical Thinking in Science Education from aspects concerning the importance or relevance of critical thinking in science education, the situation in the classroom and curriculum, and the conception of critical thinking and fostering in science education. This review is specially…

  15. Homi Bhabha Centre for Science Education Tata Institute of ...

    Indian Academy of Sciences (India)

    INF. & ANN. Homi Bhabha Centre for Science Education. Tata Institute of Fundamental Research (A Deemed University. Admission to PhD Programme in Science Education – 2018). We are looking for young people with. • Interest in science education • Flair for teaching and writing • Curiosity about how students learn.

  16. (W)rapping relationships between science education and globalisation

    Science.gov (United States)

    Gough, Annette

    2011-03-01

    This essay reviews the contribution of Rowhea Elmesky in this volume, to the field of research in science education, and places it in the context of the juncture of youth disengagement with science, multicultural education and globalisation, with an underlay of a historical context and critiques of science education from feminist and postcolonial perspectives.

  17. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. A P Mitra. Articles written in Resonance – Journal of Science Education. Volume 5 Issue 7 July 2000 pp 3-4 Article-in-a-Box. Sisir Kumar Mitra · A P Mitra · More Details Fulltext PDF. Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 1.

  18. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Kathy Ceceri. Articles written in Resonance – Journal of Science Education. Volume 16 Issue 9 September 2011 pp 879-880 Personal Reflections. Five Things I Learned from Richard Feynman About Science Education · Kathy Ceceri · More Details Fulltext PDF ...

  19. Initial teacher education and continuing professional development for science teachers

    DEFF Research Database (Denmark)

    Dolin, Jens; Evans, Robert Harry

    2011-01-01

    Research into ways of improving the initial education and continuing professional development of science teachers is closely related to both common and unique strands. The field is complex since science teachers teach at different educational levels, are often educated in different science subjec...

  20. Space Sciences Education and Outreach Project of Moscow State University

    Science.gov (United States)

    Krasotkin, S.

    2006-11-01

    sergekras@mail.ru The space sciences education and outreach project was initiated at Moscow State University in order to incorporate modern space research into the curriculum popularize the basics of space physics, and enhance public interest in space exploration. On 20 January 2005 the first Russian University Satellite “Universitetskiy-Tatyana” was launched into circular polar orbit (inclination 83 deg., altitude 940-980 km). The onboard scientific complex “Tatyana“, as well as the mission control and information receiving centre, was designed and developed at Moscow State University. The scientific programme of the mission includes measurements of space radiation in different energy channels and Earth UV luminosity and lightning. The current education programme consists of basic multimedia lectures “Life of the Earth in the Solar Atmosphere” and computerized practice exercises “Space Practice” (based on the quasi-real-time data obtained from “Universitetskiy-Tatyana” satellite and other Internet resources). A multimedia lectures LIFE OF EARTH IN THE SOLAR ATMOSPHERE containing the basic information and demonstrations of heliophysics (including Sun structure and solar activity, heliosphere and geophysics, solar-terrestrial connections and solar influence on the Earth’s life) was created for upper high-school and junior university students. For the upper-university students there a dozen special computerized hands-on exercises were created based on the experimental quasi-real-time data obtained from our satellites. Students specializing in space physics from a few Russian universities are involved in scientific work. Educational materials focus on upper high school, middle university and special level for space physics students. Moscow State University is now extending its space science education programme by creating multimedia lectures on remote sensing, space factors and materials study, satellite design and development, etc. The space

  1. Hermeneutics of science and multi-gendered science education

    Science.gov (United States)

    Ginev, Dimitri Jordan

    2008-11-01

    In this paper, I consider the relevance of the view of cognitive existentialism to a multi-gendered picture of science education. I am opposing both the search for a particular feminist standpoint epistemology and the reduction of philosophy of science to cultural studies of scientific practices as championed by supporters of postmodern political feminism. In drawing on the theory of gender plurality and the conception of dynamic objectivity, the paper suggests a way of treating the nexus between the construction of gender within the interrelatedness of scientific practices and the constitution of particular objects of inquiry. At stake is the notion of characteristic hermeneutic situation which proves to be helpful in designing a multi-gendered pedagogy as well.

  2. New concepts of science and medicine in science and technology studies and their relevance to science education

    Directory of Open Access Journals (Sweden)

    Hsiu-Yun Wang

    2012-02-01

    Full Text Available Science education often adopts a narrow view of science that assumes the lay public is ignorant, which seemingly justifies a science education limited to a promotional narrative of progress in the form of scientific knowledge void of meaningful social context. We propose that to prepare students as future concerned citizens of a technoscientific society, science education should be informed by science, technology, and society (STS perspectives. An STS-informed science education, in our view, will include the following curricular elements: science controversy education, gender issues, historical perspective, and a move away from a Eurocentric view by looking into the distinctive patterns of other regional (in this case of Taiwan, East Asian approaches to science, technology, and medicine. This article outlines the significance of some major STS studies as a means of illustrating the ways in which STS perspectives can, if incorporated into science education, enhance our understanding of science and technology and their relationships with society.

  3. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B

    2012-08-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  4. Rocket Science 101 Interactive Educational Program

    Science.gov (United States)

    Armstrong, Dennis; Funkhouse, Deborah; DiMarzio, Donald

    2007-01-01

    To better educate the public on the basic design of NASA s current mission rockets, Rocket Science 101 software has been developed as an interactive program designed to retain a user s attention and to teach about basic rocket parts. This program also has helped to expand NASA's presence on the Web regarding educating the public about the Agency s goals and accomplishments. The software was designed using Macromedia s Flash 8. It allows the user to select which type of rocket they want to learn about, interact with the basic parts, assemble the parts to create the whole rocket, and then review the basic flight profile of the rocket they have built.

  5. Advances in Computer Science and Education

    CERN Document Server

    Huang, Xiong

    2012-01-01

    CSE2011 is an integrated conference concentration its focus on computer science and education. In the proceeding, you can learn much more knowledge about computer science and education of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful

  6. Inclusive science education: learning from Wizard

    Science.gov (United States)

    Koomen, Michele Hollingsworth

    2016-06-01

    This case study reports on a student with special education needs in an inclusive seventh grade life science classroom using a framework of disability studies in education. Classroom data collected over 13 weeks consisted of qualitative (student and classroom observations, interviews, student work samples and video-taped classroom teaching and learning record using CETP-COP) methods. Three key findings emerged in the analysis and synthesis of the data: (1) The learning experiences in science for Wizard are marked by a dichotomy straddled between autonomy ["Sometimes I do" (get it)] and dependence ["Sometimes I don't (get it)], (2) the process of learning is fragmented for Wizard because it is underscored by an emerging disciplinary literacy, (3) the nature of the inclusion is fragile and functional. Implications for classroom practices that support students with learning disabilities include focusing on student strengths, intentional use of disciplinary literacy strategies, and opportunities for eliciting student voice in decision making.

  7. Towards a truer multicultural science education: how whiteness impacts science education

    Science.gov (United States)

    Le, Paul T.; Matias, Cheryl E.

    2018-03-01

    The hope for multicultural, culturally competent, and diverse perspectives in science education falls short if theoretical considerations of whiteness are not entertained. Since whiteness is characterized as a hegemonic racial dominance that has become so natural it is almost invisible, this paper identifies how whiteness operates in science education such that it falls short of its goal for cultural diversity. Because literature in science education has yet to fully entertain whiteness ideology, this paper offers one of the first theoretical postulations. Drawing from the fields of education, legal studies, and sociology, this paper employs critical whiteness studies as both a theoretical lens and an analytic tool to re-interpret how whiteness might impact science education. Doing so allows the field to reconsider benign, routine, or normative practices and protocol that may influence how future scientists of Color experience the field. In sum, we seek to have the field consider the theoretical frames of whiteness and how it might influence how we engage in science education such that our hope for diversity never fully materializes.

  8. Scientism and Scientific Thinking. A Note on Science Education

    Science.gov (United States)

    Gasparatou, Renia

    2017-11-01

    The move from respecting science to scientism, i.e., the idealization of science and scientific method, is simple: We go from acknowledging the sciences as fruitful human activities to oversimplifying the ways they work, and accepting a fuzzy belief that Science and Scientific Method, will give us a direct pathway to the true making of the world, all included. The idealization of science is partly the reason why we feel we need to impose the so-called scientific terminologies and methodologies to all aspects of our lives, education too. Under this rationale, educational policies today prioritize science, not only in curriculum design, but also as a method for educational practice. One might expect that, under the scientistic rationale, science education would thrive. Contrariwise, I will argue that scientism disallows science education to give an accurate image of the sciences. More importantly, I suggest that scientism prevents one of science education's most crucial goals: help students think. Many of my arguments will borrow the findings and insights of science education research. In the last part of this paper, I will turn to some of the most influential science education research proposals and comment on their limits. If I am right, and science education today does not satisfy our most important reasons for teaching science, perhaps we should change not just our teaching strategies, but also our scientistic rationale. But that may be a difficult task.

  9. Constructivism and science education: Some epistemological problems

    Science.gov (United States)

    Matthews, Michael R.

    1993-03-01

    The paper outlines the significant influence of constructivism in contemporary science and mathematics education and emphasizes the central role that epistemology plays in constructivist theory and practice. It is claimed that constructivism is basically a variant of old-style empiricist epistemology, which had its origins in Aristotle's individualist and sense-based theory of knowledge. There are well-known problems with empiricism from which constructivism appears unable to dissociate itself.

  10. Integrating World Views, Knowledge and Venues in Climate Science Education

    Science.gov (United States)

    Sparrow, E. B.; Chase, M. J.; Demientieff, S.; Brunacini, J.; Pfirman, S. L.

    2015-12-01

    The Reaching Arctic Communities Facing Climate Change Project integrates traditional and western knowledge and observations in climate science to facilitate dialog and learning among Alaska Native adults about climate change and its impacts on the environment and on Alaskan communities. In one of the models we have tested, the informal education took place at a 4-day camp by the Tanana River in Fairbanks, Alaska. Participants included Alaska Native elders, leaders, educators and natural resource managers, community members and university scientists. Results of pre/post camp surveys showed increased awareness of scientific and technical language used in climate science, improved ability to locate resources, tools, and strategies for learning about climate change, enhanced capacity to communicate climate change in a relevant way to their audiences and communities, confirmed the value of elders in helping them understand, respond and adapt to climate change, and that the camp setting facilitated an in-depth discussion and sharing of knowledge. The camp also enhanced the awareness about weather, climate and the environment of the camp facilitators who also noticed a shift in their own thinking and behavior. After the camp one participant who is an educator shared some of the hands-on tools developed by Polar Learning and Responding Climate Change Education Partnership project and used at the camp, with her 6th grade students, with the other teachers in her school and also at a state conference. Another shared what she learned with her family and friends as well as at a conference sponsored by her faith community where she was an invited speaker. Another camp was scheduled for this past summer but was cancelled due to some unforeseen weather/climate related events. A camp is planned for early summer in 2016; however other models of reaching the adult Native populations in a similar culturally responsive manner as the camps will also be explored and tested.

  11. Postgraduate Education in Earth and Environmental Sciences: an Integrated Concept

    Science.gov (United States)

    Grosfeld, K.; Lohmann, G.; Ladstätter-Weißenmayer, A.; Burrows, J.; Sprengel, C.; Bijma, J.

    2009-04-01

    carbon cycle, the structure of marine sediments, and isotope distribution in climate components. Training and education, especially in time-series and data analysis, is a common key component for all participants. The Helmholtz graduate school for Polar and Marine Research (POLMAR) (polmar.awi.de), beyond the aforementioned programmes in further cooperation with the Max Planck Institute for Microbiology, Bremen, the University Potsdam, Bremerhaven University of Applied Science and the Institute for Marine Resources (IMARE), provides a consistent framework for education and qualification for PhD students in general. Developing all categories of skills needed for analysing complex climate and environmental systems and the development of integrated solutions in a supportive network of collaborating research institutions fosters outstanding career options. Structured training and supervision supported by a broad range of transferrable skill development courses is indicative for the entire concept. This structured and integrated educational concept provides a strong basis for qualifying the next generation of excellent scientists for the challenging questions in Earth System Science and Polar and Marine Research.

  12. Natural Language Processing (NLP), Machine Learning (ML), and Semantics in Polar Science

    Science.gov (United States)

    Duerr, R.; Ramdeen, S.

    2017-12-01

    One of the interesting features of Polar Science is that it historically has been extremely interdisciplinary, encompassing all of the physical and social sciences. Given the ubiquity of specialized terminology in each field, enabling researchers to find, understand, and use all of the heterogeneous data needed for polar research continues to be a bottleneck. Within the informatics community, semantics has broadly accepted as a solution to these problems, yet progress in developing reusable semantic resources has been slow. The NSF-funded ClearEarth project has been adapting the methods and tools from other communities such as Biomedicine to the Earth sciences with the goal of enhancing progress and the rate at which the needed semantic resources can be created. One of the outcomes of the project has been a better understanding of the differences in the way linguists and physical scientists understand disciplinary text. One example of these differences is the tendency for each discipline and often disciplinary subfields to expend effort in creating discipline specific glossaries where individual terms often are comprised of more than one word (e.g., first-year sea ice). Often each term in a glossary is imbued with substantial contextual or physical meaning - meanings which are rarely explicitly called out within disciplinary texts; meaning which are therefore not immediately accessible to those outside that discipline or subfield; meanings which can often be represented semantically. Here we show how recognition of these difference and the use of glossaries can be used to speed up the annotation processes endemic to NLP, enable inter-community recognition and possible reconciliation of terminology differences. A number of processes and tools will be described, as will progress towards semi-automated generation of ontology structures.

  13. Online Higher Education in the Natural Sciences

    Science.gov (United States)

    Pearson, Karen; Liddicoat, Joseph

    2013-04-01

    Online courses in higher education allow traditional and non-traditional students to complete course work in all disciplines with great flexibility. Courses in the Natural Sciences are no exception because the online environment allows students to collapse time and space; to access a course anywhere; to get immediate feedback, tutoring and coaching; and to receive real-time interaction between themselves and the instructor. This presentation will highlight successful examples of course content from the areas of astronomy, environmental, and earth and physical sciences. Content examples will focus on helping students use their 'environment' as part of the laboratory experience in courses traditionally thought of as lecture and laboratory courses. These examples will include real and virtual field trips, use of multimedia content, collaboration between students and faculty to design and conduct experiments and field work, and modifications to traditional lecture methods for the online environment. Dr. Karen Pearson former director of Online-Learning and Academic Technologies and Professor Science and Mathematics at the Fashion Institute of Technology (SUNY) and Dr. Joseph Liddicoat will focus on how courses in the Natural Sciences can be delivered in the online environment while maintaining high academic standards and not losing the "hands" on experience students need while completing a laboratory science course as part of a liberal arts curriculum.

  14. Overcoming Students' Misconceptions in Earth Science Education

    Science.gov (United States)

    Kirkby, K. C.; Finley, F. N.; Morin, P. J.; Chen, A. P.

    2006-12-01

    The University of Minnesota's Introductory Geology Program recently began to develop and use geologic concept surveys. Designed to measure changes in student knowledge and confidence through the semester, these surveys clearly demonstrate the remarkable tenacity of students' prior knowledge and misconceptions in surviving or resisting course instruction, unless instruction is specifically designed to counteract those misconceptions. Students do not simply absorb new information and knowledge, but interpret it in light of their previous understanding of how things work. They use this previous understanding to interpret, revise and often dismiss new information presented in class. This filtering process is one of the most important, if often overlooked, barriers to effective instruction. The present study demonstrates that classroom `interventions', targeted to specific misconceptions can overcome this barrier. Once students believe that their previous understanding is incorrect or incomplete and inadequately explains phenomena, they are more likely to understand, accept and use a new interpretation in subsequent explanations. These ideas are well known in education departments, but are less well established in the earth science field. Compared to physics and mathematics, earth science education also suffers from a relative lack of research on students' prior knowledge and misconceptions, the basis on which successful `interventions' rely. The present study presents a suite of common earth science misconceptions and demonstrates the effectiveness of targeted `interventions' in overcoming them, compared to traditional instruction methods. The results clearly demonstrate the importance of instructors knowing what knowledge or concepts students bring to their courses, as well as the remarkable effort still needed to identify and document students' perceptions of how the Earth works. This work is sponsored in part by the Fund for the Improvement of Postsecondary

  15. CAREER Educational Outreach: Inquiry-based Atmospheric Science Lessons for K-12 students

    Science.gov (United States)

    Courville, Z.; Carbaugh, S.; Defrancis, G.; Donegan, R.; Brown, C.; Perovich, D. K.; Richter-Menge, J.

    2011-12-01

    Climate Comics is a collaborative outreach effort between the Montshire Museum of Science, in Norwich, VT, the Cold Regions Research and Engineering Laboratory (CRREL) research staff, and freelance artist and recent graduate of the Center for Cartoon Studies in White River Junction, VT, Sam Carbaugh. The project involves the cartoonist, the education staff from the museum, and researchers from CRREL creating a series of comic books with polar science and research themes, including sea ice monitoring, sea ice albedo, ice cores, extreme microbial activity, and stories and the process of fieldwork. The aim of the comic series is to provide meaningful science information in a comic-format that is both informative and fun, while highlighting current polar research work done at the lab. The education staff at the Montshire Museum develops and provides a series of hands-on, inquiry-based activity descriptions to complement each comic book, and CRREL researchers provide science background information and reiterative feedback about the comic books as they are being developed. Here, we present the motivation for using the comic-book medium to present polar research topics, the process involved in creating the comics, some unique features of the series, and the finished comic books themselves. Cartoon illustrating ways snow pack can be used to determine past climate information.

  16. Computational thinking in life science education.

    Directory of Open Access Journals (Sweden)

    Amir Rubinstein

    2014-11-01

    Full Text Available We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1 devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2 focus on discrete notions, rather than on continuous ones, and (3 have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  17. Science Education for Democratic Citizenship through the Use of the History of Science

    Science.gov (United States)

    Kolsto, Stein Dankert

    2008-01-01

    Scholars have argued that the history of science might facilitate an understanding of processes of science. Focusing on science education for citizenship and active involvement in debates on socioscientific issues, one might argue that today's post-academic science differs from academic science in the past, making the history of academic science…

  18. The Implications for Science Education of Heidegger's Philosophy of Science

    Science.gov (United States)

    Shaw, Robert

    2013-01-01

    Science teaching always engages a philosophy of science. This article introduces a modern philosophy of science and indicates its implications for science education. The hermeneutic philosophy of science is the tradition of Kant, Heidegger, and Heelan. Essential to this tradition are two concepts of truth, truth as correspondence and truth as…

  19. Reconceptualizing the Nature of Science for Science Education: Why Does it Matter?

    Science.gov (United States)

    Dagher, Zoubeida R.; Erduran, Sibel

    2016-01-01

    Two fundamental questions about science are relevant for science educators: (a) What is the nature of science? and (b) what aspects of nature of science should be taught and learned? They are fundamental because they pertain to how science gets to be framed as a school subject and determines what aspects of it are worthy of inclusion in school…

  20. Project of international science-education center and integration problems of nano science education in far eastern region of Asia

    Science.gov (United States)

    Plusnin, N. I.; Lazarev, G. I.

    2008-03-01

    Some conception of international science-education center on nano science in Vladivostok is presented. The conception is based on internal and external prerequisites. Internal one is high intellectual potential of institutes of Russian Academy of Sciences and universities of Vladivostok and external one is need of countries of Far Eastern region of Asia in high level manpower. The conception takes into account a specific distribution of science and education potential between Russian Academy of Sciences and Russian universities and a specific their dislocation in Vladivostok. First specific dictates some similarity of organization structure and function of international science-education center to typical science-education center in Russia. But as for dislocation of the international science-education center in Vladivostok, it should be near dislocation of institutes of Far Eastern Brunch of Russian Academy of Sciences in Vladivostok, which are dislocated very compactly in suburb zone of Vladivostok.

  1. Project of international science-education center and integration problems of nano science education in far eastern region of Asia

    International Nuclear Information System (INIS)

    Plusnin, N I; Lazarev, G I

    2008-01-01

    Some conception of international science-education center on nano science in Vladivostok is presented. The conception is based on internal and external prerequisites. Internal one is high intellectual potential of institutes of Russian Academy of Sciences and universities of Vladivostok and external one is need of countries of Far Eastern region of Asia in high level manpower. The conception takes into account a specific distribution of science and education potential between Russian Academy of Sciences and Russian universities and a specific their dislocation in Vladivostok. First specific dictates some similarity of organization structure and function of international science-education center to typical science-education center in Russia. But as for dislocation of the international science-education center in Vladivostok, it should be near dislocation of institutes of Far Eastern Brunch of Russian Academy of Sciences in Vladivostok, which are dislocated very compactly in suburb zone of Vladivostok

  2. Leaving School — learning at SEA: Regular high school education alongside polar research

    Science.gov (United States)

    Gatti, Susanne

    2010-05-01

    Against the background of unsatisfactory results from the international OECD study PISA (Program for International Student Assessment), Germany is facing a period of intense school reforms. Looking back at a tradition of school culture with too few changes during the last century, quick and radical renewal of the school system is rather unlikely. Furthermore students are increasingly turning away from natural sciences [1]. The AWI aims at providing impulses for major changes in the schooling system and is offering solid science education not only for university students but also for a larger audience. All efforts towards this goal are interconnected within the project SEA (Science & Education @ the AWI). With the school-term of 2002/03 the Alfred-Wegener-Institute for Polar and Marine Research started HIGHSEA (High school of SEA). The program is the most important component of SEA. Each year 22 high school students (grade 10 or 11) are admitted to HIGHSEA spending their last three years of school not at school but at the institute. Four subjects (biology as a major, chemistry, math and English as accessory subjects) are combined and taught fully integrated. Students leave their school for two days each week to study, work and explore all necessary topics at the AWI. All of the curricular necessities of the four subjects have been rearranged in their temporal sequencing thus enabling a conceptual formulation of four major questions to be dealt with in the course of the three-year program [2]. Students are taught by teachers of the cooperation schools as well as by scientists of the AWI. Close links and intense cooperation between both groups are the basis of fundamental changes in teaching and learning climate. We are organizing expeditions for every group of HIGHSEA-students (e. g. to the Arctic or to mid-Atlantic seamounts). For each student expedition we devise a "real" research question. Usually a single working group at the AWI has a special interest in the

  3. Nordic science and technology entrepreneurship education

    DEFF Research Database (Denmark)

    Warhuus, Jan P.; Basaiawmoit, Rajiv Vaid

    As a university discipline, entrepreneurship education (EEd) has moved from whether it can be taught, to what and how it should be taught (Kuratko 2005) and beyond the walls of the business school (Hindle 2007), where a need for a tailored, disciplinary approach is becoming apparent. Within science......, technology, engineering, and mathematics (STEM) EEd, tacit knowledge of what works and why is growing, while reflections to activate this knowledge are often kept local or reported to the EEd community as single cases, which are difficult compare and contrast for the purpose of deriving cross-case patterns......, findings, and knowledge. The objective of this paper is to decode this tacit knowledge within Nordic science and technology institutions, and use it to provide guidance for future EEd program designs and improvements....

  4. Engaging Latino audiences in informal science education

    Science.gov (United States)

    Bonfield, Susan B.

    Environment for the Americas (EFTA), a non-profit organization, developed a four-year research project to establish a baseline for Latino participation and to identify practical tools that would enable educators to overcome barriers to Latino participation in informal science education (ISE). Its national scope and broad suite of governmental and non-governmental, Latino and non-Latino partners ensured that surveys and interviews conducted in Latino communities reflected the cosmopolitan nature of the factors that influence participation in ISE programs. Information about economic and education levels, country of origin, language, length of residence in the US, and perceptions of natural areas combined with existing demographic information at six study sites and one control site provided a broader understanding of Latino communities. The project team's ability to work effectively in these communities was strengthened by the involvement of native, Spanish-speaking Latino interns in the National Park Service's Park Flight Migratory Bird Program. The project also went beyond data gathering by identifying key measures to improve participation in ISE and implementing these measures at established informal science education programs, such as International Migratory Bird Day, to determine effectiveness. The goals of Engaging Latino Audiences in Informal Science Education (ISE) were to 1) identify and reduce the barriers to Latino participation in informal science education; 2) provide effective tools to assist educators in connecting Latino families with science education, and 3) broadly disseminate these tools to agencies and organizations challenged to engage this audience in informal science education (ISE). The results answer questions and provide solutions to a challenge experienced by parks, refuges, nature centers, and other informal science education sites across the US. Key findings from this research documented low participation rates in ISE by Latinos, and that

  5. Avoiding the Issue of Gender in Japanese Science Education

    Science.gov (United States)

    Scantlebury, Kathryn; Baker, Dale; Sugi, Ayumi; Yoshida, Atsushi; Uysal, Sibel

    2007-01-01

    This paper describes how the patriarchal structure of Japanese society and its notions of women, femininity, and gendered stereotypes produced strong cultural barriers to increasing the participation of females in science education. Baseline data on attitudes toward science and the perceptions of gender issues in science education, academic major…

  6. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Reflections. Articles in Resonance – Journal of Science Education. Volume 1 Issue 2 February 1996 pp 92-101 Reflections. Translation of the article in Bengali titled The Crisis of Science written by Satyendra Nath Bose in Parichay (1931). Arnab Rai Choudhuri.

  7. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Personal Reflections. Articles in Resonance – Journal of Science Education. Volume 6 Issue 3 March 2001 pp 90-93 Personal Reflections. Why did I opt for Career in Science? Jayant V Narlikar · More Details Fulltext PDF. Volume 9 Issue 8 August 2004 pp 89-89 ...

  8. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Hermann Bondi. Articles written in Resonance – Journal of Science Education. Volume 1 Issue 7 July 1996 pp 82-95 Reflections. Science - its Philosophy and Spirit · Hermann Bondi · More Details Fulltext PDF ...

  9. Science Student Teachers and Educational Technology: Experience, Intentions, and Value

    Science.gov (United States)

    Efe, Rifat

    2011-01-01

    The primary purpose of this study is to examine science student teachers' experience with educational technology, their intentions for their own use, their intentions for their students' use, and their beliefs in the value of educational technology in science instruction. Four hundred-forty-eight science student teachers of different disciplines…

  10. Some Aspects of Science Education in European Context

    Science.gov (United States)

    Naumescu, Adrienne Kozan; Pasca, Roxana-Diana

    2008-01-01

    Some up-to-date problems in science education in European context are treated in this paper. The characteristics of science education across Europe are presented. Science teachers' general competencies are underlined. An example of problem-solving as teaching method in chemistry is studied in knowledge based society. Transforming teacher practice…

  11. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Sheela K Ramasesha. Articles written in Resonance – Journal of Science Education. Volume 4 Issue 8 August 1999 pp 16-24 Series Article. Science and Technology of Ceramics - Traditional Ceramics · Sheela K Ramasesha · More Details Fulltext PDF. Volume ...

  12. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Harold A Scheraga. Articles written in Resonance – Journal of Science Education. Volume 8 Issue 6 June 2003 pp 2-5 Article-in-a-Box. Paul J. Flory – The Man Who Laid the Foundations of Modern Polymer Science · Harold A Scheraga · More Details Fulltext ...

  13. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 23; Issue 2. On the Relationship of ... Keywords. Wigner, Abbot, philosophy of science, use of mathematics in physics. ... Deepak Dhar1. Indian Institute of Science Education and Research Dr. Homi Bhabha Road Pashan Pune 411 008, India.

  14. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Palash Sarkar. Articles written in Resonance – Journal of Science Education. Volume 5 Issue 9 September 2000 pp 22-40 General Article. A Sketch of Modern Cryptology - The Art and Science of Secrecy Systems · Palash Sarkar · More Details Fulltext PDF ...

  15. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Devendra Mani. Articles written in Resonance – Journal of Science Education. Volume 19 Issue 5 May 2014 pp 471-477 Face to Face. Science is Not a Zero-Sum Game · Devendra Mani · More Details Fulltext PDF ...

  16. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 4. Simulation of Electron Motion in Fields – An Interactive Teaching Aid ... Department of Physics Shivaji Education Society Amravati's Science College Congress Nagar, Nagpur 440 012, India; Department of Computer Science Anuradha ...

  17. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Veena Srinivasan. Articles written in Resonance – Journal of Science Education. Volume 22 Issue 3 March 2017 pp 303-313 Research News. Doing Science That Matters to Address India'sWater Crisis · Veena Srinivasan · More Details Abstract Fulltext PDF.

  18. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Information for Authors. Resonance – Journal of Science Education. Resonance – journal of Science Education is targeted primarily at undergraduate students and teachers. The journal invites articles in various branches of science and emphasizes on a lucid style that will attract readers from diverse backgrounds. A helpful ...

  19. The University of Delaware Carlson International Polar Year Events: Collaborative and Educational Outreach

    Science.gov (United States)

    Nelson, F. E.; Bryant, T.; Wellington, P.; Dooley, J.; Bird, M.

    2008-12-01

    Delaware is a small state with, by virtue of its coastal location, a large stake in climatic change in the polar regions. The University of Delaware has maintained a strong presence in cold-regions research since the mid-1940s, when William Samuel Carlson, a highly accomplished Arctic explorer, military strategist, and earth scientist, was named 20th President (1946-50) of the University. Carlson played a leading role in two of the University of Michigan's Greenland expeditions in the late 1920s and early 1930s. As Director of the Arctic, Desert, and Tropic Branch of the US Army Air Forces Tactical Center during World War II, Colonel Carlson played a role in developing several air transportation routes through the Arctic that helped to facilitate the Allied victory in Europe. Carlson authored many scientific and popular publications concerned with the Arctic, including the books Greenland Lies North (1940) and Lifelines Through the Arctic (1962). Although the University of Delaware has maintained a vigorous and continuous program of polar research since Carlson's tenure, the faculty, staff, and students involved are diffused throughout the University's colleges and departments, without an institutional focal point. Consequently, although many of these individuals are well known in their respective fields, the institution has not until recently been perceived widely as a center of polar-oriented research. The goals of the Carlson International Polar Year Events are to: (a) develop a sense of community among UD's diffuse polar-oriented researchers and educators; (b) create a distinctive and highly visible role for UD in the milieu of IPY activities; (c) promote interest in and knowledge about the polar regions in the State of Delaware, at all educational levels; (d) forge a close relationship between UD and the American Geographical Society, a national organization involved closely with previous International Polar Years; and (e) create a new basis for development

  20. Research trends and issues in informal science education

    Science.gov (United States)

    Pinthong, Tanwarat; Faikhamta, Chatree

    2018-01-01

    Research in informal science education (ISE) become more interesting area in science education for a few decades. The main purpose of this research is to analyse research articles in 30 issues of top three international journals in science education; Journal of Research in Science Teaching, Science Education, and the International Journal of Science Education. The research articles during 2007 and 2016 were reviewed and analysed according to the authors' nationality, informal science education's research topics, research paradigms, methods of data collection and data analysis. The research findings indicated that there were 201 published papers related to informal science education, successfully submitted by 469 authors from 27 different countries. In 2008, there was no article related to informal science education. Statistical analyses showed that authors from USA are the most dominant, followed by UK and Israel. The top three ISE's research topics most frequently investigated by the researchers were regarding students' informal learning, public understanding in science, and informal perspectives, policies and paradigms. It is also found that theoretical framework used in informal science education which is becoming more strongly rooted is in a mix of the sociocultural and constructivist paradigms, with a growing acceptance of qualitative research methods and analyses.

  1. Science education, integral inquiry, transformation and possibility

    Science.gov (United States)

    Stack, Sue

    2013-09-01

    This paper is written in response to Nancy Davis's article Integral Methodological Pluralism in Science Education Research: Valuing Multiple Perspectives. I use Integral Theory as a framing for this response to explore how it might offer different perspectives and ways of inquiring into Nancy's paper. This process highlights the notion of integral inquiry as a potential for personal transformation. I give an autobiographical account of my own experience in utilising Integral Theory as part of my PhD and its impact on my own becoming. For another perspective I interview Nancy to draw out deeper shared meanings.

  2. Basic science right, not basic science lite: medical education at a crossroad.

    Science.gov (United States)

    Fincher, Ruth-Marie E; Wallach, Paul M; Richardson, W Scott

    2009-11-01

    This perspective is a counterpoint to Dr. Brass' article, Basic biomedical sciences and the future of medical education: implications for internal medicine. The authors review development of the US medical education system as an introduction to a discussion of Dr. Brass' perspectives. The authors agree that sound scientific foundations and skill in critical thinking are important and that effective educational strategies to improve foundational science education should be implemented. Unfortunately, many students do not perceive the relevance of basic science education to clinical practice.The authors cite areas of disagreement. They believe it is unlikely that the importance of basic sciences will be diminished by contemporary directions in medical education and planned modifications of USMLE. Graduates' diminished interest in internal medicine is unlikely from changes in basic science education.Thoughtful changes in education provide the opportunity to improve understanding of fundamental sciences, the process of scientific inquiry, and translation of that knowledge to clinical practice.

  3. Reforming Science Education: Part I. The Search for a Philosophy of Science Education

    Science.gov (United States)

    Schulz, Roland M.

    2009-04-01

    The call for reforms in science education has been ongoing for a century, with new movements and approaches continuously reshaping the identity and values of the discipline. The HPS movement has an equally long history and taken part in the debates defining its purpose and revising curriculum. Its limited success, however, is due not only to competition with alternative visions and paradigms (e.g. STS, multi-culturalism, constructivism, traditionalism) which deadlock implementation, and which have led to conflicting meanings of scientific literacy, but the inability to rise above the debate. At issue is a fundamental problem plaguing science education at the school level, one it shares with education in general. It is my contention that it requires a guiding “metatheory” of education that can appropriately distance itself from the dual dependencies of metatheories in psychology and the demands of socialization—especially as articulated in most common conceptions of scientific literacy tied to citizenship. I offer as a suggestion Egan’s cultural-linguistic theory as a metatheory to help resolve the impasse. I hope to make reformers familiar with his important ideas in general and more specifically, to show how they can complement HPS rationales and reinforce the work of those researchers who have emphasized the value of narrative in learning science. This will be elaborated in Part II of a supplemental paper to the present one. As a prerequisite to presenting Egan’s metatheory I first raise the issue of the need for a conceptual shift back to philosophy of education within the discipline, and thereto, on developing and demarcating true educational theories (essentially neglected since Hirst). In the same vein it is suggested a new research field should be opened with the express purpose of developing a discipline-specific “philosophy of science education” (largely neglected since Dewey) which could in addition serve to reinforce science education

  4. Creativity in early science education : a case study

    OpenAIRE

    Costa, Manuel F. M.; Marques, Marta Isabel Bessa

    2014-01-01

    The importance of creativity in education is recognized and is mentioned in Portuguese educational policy documents. The need and importance of science education to foster students' creativity was the main driving point of this study. This qualitative study aims to reveal the potential for creativity and the role of Inquiry Based Science Education in preschool and early primary education. The fieldwork was documented by the use of sequential digital images cap...

  5. Symposium 1: Science Education in Brazil: advances and challenges

    Directory of Open Access Journals (Sweden)

    Tânia C. de Araújo-Jorge

    2014-08-01

    Full Text Available Science Education in Brazil: advances and challenges Tania C. de Araujo-Jorge and Marcus Vinicius Campos MatracaLab. of Innovations in Therapies, Education and Bioproducts, Instituto Oswaldo Cruz, Fiocruz-Rio, Brazil. In Brazil the consensus that education is essential for the growth of a development country is insufficient to cover the gap between desires, public policies and results, contrasting with countries like Korea and Japan. The international success of Brazilian experiences in social policies to reduce poverty reflects on a sustainable fall in the Gini index, but the PISA indicators for science education deserves impact measures. Besides, Education in Brazil came up among the priority claims in popular movements that exploded June 2013, leading governments and social actors to try to recover the lost time. In 2014 the Federal Congress should conclude discussions of the 2011-2020 Plan for National Education (PNE and a National Education Conference is organized for February 2014. Science Education is essential for industry and social innovation and all the players in this scene face challenges, especially scientists. How is it possible to improve science teaching at schools? At different education grades what is the relative role for improvement of science curriculum, science teacher formation, science practices in formal and non-formal education, public communication of science, and learning-cognition-teaching mechanisms/theories? What is the role of artscience fusion in science education culture? What are de priorities for research and test and for implementation at short time? How is it possible to integrate and to articulate efforts of scientists and teachers, and insert science thinking for creativity since the initial basic education, through in middle fundamental education, and attaining biology, physics and chemical teachers in high school and university levels? These are some of the present questions in post-graduate productions

  6. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Mara Nikolajek. Articles written in Resonance – Journal of Science Education. Volume 16 Issue 2 February 2011 pp 180-187 Classroom. Environmental Education in a Green Classroom · Jürgen Drissner Hans-Martin Haase Mara Nikolajek Katrin Hille.

  7. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Z Karagölge. Articles written in Resonance – Journal of Science Education. Volume 9 Issue 6 June 2004 pp 86-91 Classroom. An Experiment for Teaching Chemical Kinetics in Chemical Education · I Ceyhun Z Karagölge · More Details Fulltext PDF ...

  8. Homi Bhabha Centre for Science Education Tata Institute of ...

    Indian Academy of Sciences (India)

    We are looking for young people with. • Interest in science education • Flair for teaching and writing • Curiosity about how students learn. • Critical and analytical skills • Commitment to improve education. Science and mathematics teachers and educators are also encouraged to apply. They would have to spend a minimum ...

  9. Science Education in India under Colonial Constraints, 1792-1857.

    Science.gov (United States)

    Sangwan, Satpal

    1990-01-01

    Traces the imprints of colonial constraints on the evolution of science education in India against the backdrop of the British colonial legacy. Divides the British Educational Policy into three phases: 1792-1813, 1814-35, and 1836-57. Assesses British education policy with regard to the teaching of science following the descriptive analysis. (DB)

  10. African Journal of Educational Studies in Mathematics and Sciences ...

    African Journals Online (AJOL)

    Sponsors. African Journal of Educational Studies in Mathematics and Sciences is housed in the Department of Mathematics Education, University of Education, Winneba, P. O. Box 25, Winneba, Ghana, and sponsored by Centre for School and Community, Science and Technology Studies (SACOST) and Institute for ...

  11. Homi Bhabha Centre for Science Education Tata Institute of ...

    Indian Academy of Sciences (India)

    Interest in science education • Flair for teaching and writing • Curiosity about how students learn • Critical and analytical skills • Innovative approaches • Commitment to improve education. Science and mathematics Teachers and Educators are also encouraged to apply. They would have to spend a minimum of two years at ...

  12. Mainstreaming ESD into Science Teacher Education Courses: A ...

    African Journals Online (AJOL)

    In this case study, researchers evaluated national education policies in Zambia, analysed a localised science (Chemistry 5070) syllabus, assessed a university teaching methods course, and evaluated 54 mathematics and science education students' perceptions on mainstreaming education for sustainable development ...

  13. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Katrin Hille. Articles written in Resonance – Journal of Science Education. Volume 16 Issue 2 February 2011 pp 180-187 Classroom. Environmental Education in a Green Classroom · Jürgen Drissner Hans-Martin Haase Mara Nikolajek Katrin Hille · More Details ...

  14. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. I Ceyhun. Articles written in Resonance – Journal of Science Education. Volume 9 Issue 6 June 2004 pp 86-91 Classroom. An Experiment for Teaching Chemical Kinetics in Chemical Education · I Ceyhun Z Karagölge · More Details Fulltext PDF ...

  15. A Review of Empirical Evidence on Scaffolding for Science Education

    Science.gov (United States)

    Lin, Tzu-Chiang; Hsu, Ying-Shao; Lin, Shu-Sheng; Changlai, Maio-Li; Yang, Kun-Yuan; Lai, Ting-Ling

    2012-01-01

    This content analysis of articles in the Social Science Citation Index journals from 1995 to 2009 was conducted to provide science educators with empirical evidence regarding the effects of scaffolding on science learning. It clarifies the definition, design, and implementation of scaffolding in science classrooms and research studies. The results…

  16. Atom Surprise: Using Theatre in Primary Science Education

    Science.gov (United States)

    Peleg, Ran; Baram-Tsabari, Ayelet

    2011-01-01

    Early exposure to science may have a lifelong effect on children's attitudes towards science and their motivation to learn science in later life. Out-of-class environments can play a significant role in creating favourable attitudes, while contributing to conceptual learning. Educational science theatre is one form of an out-of-class environment,…

  17. Schools In Board - Bridging Arctic Research And Environmental Science Education

    Science.gov (United States)

    Barber, D. G.; Barber, L.

    2008-12-01

    Schools on Board (www.arcticnet.ulaval.ca) was created in 2002 to address the outreach objectives of a network of Canadian scientists conducting research in the High Arctic. The program was piloted with great success with the 2004 research program called the Canadian Arctic Shelf Study (CASES). Since then, the S/B program continues as an integral outreach program of the Canadian Network of Centres of Excellence (NCE) known as ArcticNet. The primary objective of the program is to bridge Arctic climate change research with science and environmental education in the public school system. It is a vehicle for scientists and graduate students to share their research program with high schools and the general public. The program encourages schools to include Arctic Sciences into their science programs by linking Arctic research to existing curriculum, providing resources and opportunities to send high school students and teachers into the Arctic to participate in a science expedition on board the Canadian research icebreaker CCGS Amundsen. The field program is an adventure into Arctic research that exposes students and teachers to the objectives and methods of numerous science teams representing a number of research disciplines and institutions from across Canada and beyond. Face-to-face interactions with scientists of all levels (masters, PhD's, researchers, CRC chairs), hands-on experiences in the field and in the labs, and access to state-of-the-art scientific instrumentation, combine to create a powerful learning environment. In addition to hands-on research activities the program introduces participants to many aspects of Canada's North, including local knowledge related to climate change, culture, history, and politics - within the educational program on the ship and the planned visits to Northern communities. During International Polar Year (IPY) Schools on Board collaborated with international researchers and northern agencies from 11 countries to offer one

  18. Blending Entertainment, Education, and Science in a Modern Digital Planetarium

    Science.gov (United States)

    Kortenkamp, Stephen J.

    2015-11-01

    Students at the University of Arizona have a relatively rare opportunity to learn in a state-of-the-art planetarium. Originally opened as a campus planetarium in 1975, the Flandrau Science Center recently expanded into the digital realm. In 2014 Flandrau’s antique Minolta star projector was joined by a full-dome 4K digital projection system powered by a high performance computer cluster. Currently three science courses are taught in the planetarium for non-science majors — stellar astronomy, astrobiology, and planetary science (taught by SJK).The new digital system allows us to take our classes off the surface of Earth on a journey into the cosmos. Databases from dozens of spacecraft missions and deep-space telescopic surveys are tapped by the software to generate a realistic immersive 3D perspective of the universe, from local planets, satellites and rings to distant stars and galaxies all the way out to the limit of the visible universe. Simple clicks of a mouse allow us to change the orientation, trajectory, and speed of the virtual spacecraft, giving our students diverse views of different phenomena.The challenge with this system is harnessing the entertainment aspect for educational purposes. The visualization capabilities allow us to artificially enhance certain features and time scales. For example, the sizes of Earth and the moon can be enlarged on-the-fly to help demonstrate phases and eclipses. Polar axes and latitude lines can be added to Earth as it orbits the sun to help convey the reasons for seasons. Orbital paths can be highlighted to allow students to more accurately comprehend the population of near-Earth asteroids.These new immersive computer-generated visualization techniques have the potential to enhance comprehension in science education, especially for concepts involving 3D spatial and temporal relationships. Whether or not this potential is being realized will require studies to gauge student learning and retention beyond the short

  19. An Evaluation of the Science Education Component of the Cross River State Science and Technical Education Project

    Science.gov (United States)

    Ekuri, Emmanuel Etta

    2012-01-01

    The Cross River State Science and Technical Education Project was introduced in 1992 by edict number 9 of 20 December 1991, "Cross River State Science and Technical Education Board Edit, 20 December, 1991", with the aim of improving the quality of science teaching and learning in the state. As the success of the project depends…

  20. DEVELOPMENT STRATEGY OF PARTNERSHIP OF HIGHER EDUCATION, SCIENCE AND BUSINESS

    Directory of Open Access Journals (Sweden)

    I. Mazur

    2014-12-01

    Full Text Available In the article the cooperation of higher education, science and business is analysed. A conflict of civilizations wave development in the confrontation of two forces: the "factory of Education" and force change is disclosed. European and Ukrainian higher education quality estimation is analysed. The effect of unsynchronization in time is educed between the necessities of business and possibilities of education and science. Reasons of bribery are exposed at higher school. The development strategy of partnership of higher education, science and business is proposed.

  1. Exploring social networks of municipal science education stakeholders in Danish Science Municipalities

    DEFF Research Database (Denmark)

    von der Fehr, Ane

    involved in science education development. These municipal science education networks (MSE networks) were identified as important for development of science education in the SM project. Therefore, it was a key interest to explore these networks in order to investigate how the central stakeholders affected...... development in the science and technology industry. Therefore, much effort has been invested to improve science education. The importance of school external stakeholders in development of education has been an increasingly emphasised, also in the field of science education. This has led to a growing focus...... on how conditions and structures in municipalities affect the development. Projects aiming at the municipal arena have thus been initiated and the Danish Science Municipality Project (SM project) was such a project. Part of the SM project was to create networks connecting different municipal stakeholder...

  2. Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalised science classroom

    Science.gov (United States)

    De Carvalho, Roussel

    2016-06-01

    Steven Vertovec (2006, 2007) has recently offered a re-interpretation of population diversity in large urban centres due to a considerable increase in immigration patterns in the UK. This complex scenario called superdiversity has been conceptualised to help illuminate significant interactions of variables such as religion, language, gender, age, nationality, labour market and population distribution on a larger scale. The interrelationships of these themes have fundamental implications in a variety of community environments, but especially within our schools. Today, London schools have over 300 languages being spoken by students, all of whom have diverse backgrounds, bringing with them a wealth of experience and, most critically, their own set of religious beliefs. At the same time, Science is a compulsory subject in England's national curriculum, where it requires teachers to deal with important scientific frameworks about the world; teaching about the origins of the universe, life on Earth, human evolution and other topics, which are often in conflict with students' religious views. In order to cope with this dynamic and thought-provoking environment, science initial teacher education (SITE)—especially those catering large urban centres—must evolve to equip science teachers with a meaningful understanding of how to handle a superdiverse science classroom, taking the discourse of inclusion beyond its formal boundaries. Thus, this original position paper addresses how the role of SITE may be re-conceptualised and re-framed in light of the immense challenges of superdiversity as well as how science teachers, as enactors of the science curriculum, must adapt to cater to these changes. This is also the first in a series of papers emerging from an empirical research project trying to capture science teacher educators' own views on religio-scientific issues and their positions on the place of these issues within science teacher education and the science classroom.

  3. Computer science education for medical informaticians.

    Science.gov (United States)

    Logan, Judith R; Price, Susan L

    2004-03-18

    The core curriculum in the education of medical informaticians remains a topic of concern and discussion. This paper reports on a survey of medical informaticians with Master's level credentials that asked about computer science (CS) topics or skills that they need in their employment. All subjects were graduates or "near-graduates" of a single medical informatics Master's program that they entered with widely varying educational backgrounds. The survey instrument was validated for face and content validity prior to use. All survey items were rated as having some degree of importance in the work of these professionals, with retrieval and analysis of data from databases, database design and web technologies deemed most important. Least important were networking skills and object-oriented design and concepts. These results are consistent with other work done in the field and suggest that strong emphasis on technical skills, particularly databases, data analysis, web technologies, computer programming and general computer science are part of the core curriculum for medical informatics.

  4. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 3. Science Academies Refresher Course on Crustal Strength Rheology and Seismicity (CSRS-2017). Information and Announcements Volume 22 Issue 3 March 2017 pp 328-328 ...

  5. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 8. Science Academies' Refresher Course in Foundations of Physical Chemistry and its Applications. Information and Announcements Volume 22 Issue 8 August 2017 pp 816-816 ...

  6. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 9. Science Academies Refresher Course on Traditional and Modern Approaches in Plant Taxonomy'. Information and Announcements Volume 17 Issue 9 September 2012 pp 921-921 ...

  7. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 10. Science Academies' Refresher Course on Modern and Ancient Environment and Ecology: Sediments and Biota. Information and Announcements Volume 22 Issue 10 October 2017 pp 973-973 ...

  8. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 12. Science Academies' Refresher Course on Modern Genetics: Concepts and Practice. Information and Announcements Volume 17 Issue 12 December 2012 pp 1198-1198 ...

  9. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 2. Science Academies' Refresher Course on Modern Biiotechnology: Concepts and Practice. Information and Announcements Volume 18 Issue 2 February 2013 pp 197-197 ...

  10. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Science Academies' Refresher Course on Experimental Biology: Orthodox to Modern. Information and Announcements Volume 21 Issue 9 September 2016 pp 858-858 ...

  11. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Science Academies' Summer Research Fellowship Programme for Students and Teachers - 2017. Information and Announcements Volume 21 Issue 9 September 2016 pp 861-861 ...

  12. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 12. Science Academies' Summer Research Fellowship Programme for Students and Teachers - 2008. Information and Announcements Volume 12 Issue 12 December 2007 pp 74-74 ...

  13. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 10. Science Academies' Refresher Course on Experimental Approaches to Molecular Microbiology and Cell Biology. Information and Announcements Volume 22 Issue 10 October 2017 pp 971-971 ...

  14. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 8. Science Academies' Refresher Course on Classical Mechanics and Electromagnetism. Information and Announcements Volume 19 Issue 8 August 2014 pp 775-775 ...

  15. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 9. Refresher Course on Water: Its Fascinating Science and Diverse Implications in the Natural World. Information and Announcements Volume 20 Issue 9 September 2015 pp 861-861 ...

  16. Science Instructors' Perceptions of the Risks of Biotechnology: Implications for Science Education

    Science.gov (United States)

    Gardner, Grant Ean; Jones, M. Gail

    2011-01-01

    Developing scientifically literate students who understand the socially contextualized nature of science and technology is a national focus of science education reform. Science educators' perceptions of risks and benefits of new technologies (such as biotechnology) may shape their instructional approaches. This study examined the perceived risk of…

  17. Modern Publishing Approach of Journal of Astronomy & Earth Sciences Education

    Science.gov (United States)

    Slater, Timothy F.

    2015-01-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education - JAESE published its first volume and issue in 2014. The Journal of Astronomy & Earth Sciences Education - JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute of Denver, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and

  18. Elementary science education: Dilemmas facing preservice teachers

    Science.gov (United States)

    Sullivan, Sherry Elaine

    Prospective teachers are involved in a process of induction into a culture of teaching that has rules, or codes of conduct for engaging in teaching practice. This same culture of teaching exists within a larger culture of schooling that also has values and norms for behaviors, that over time have become institutionalized. Teacher educators are faced with the challenging task of preparing preservice teachers to resolve dilemmas that arise from conflicts between the pressure to adopt traditional teaching practices of schooling, or to adopt inquiry-based teaching practices from their university methods classes. One task for researchers in teacher education is to define with greater precision what factors within the culture of schooling hinder or facilitate implementation of inquiry-based methods of science teaching in schools. That task is the focus of this study. A qualitative study was undertaken using a naturalistic research paradigm introduced by Lincoln and Guba in 1985. Participant observation, interviews, discourse analysis of videotapes of lessons from the methods classroom and written artifacts produced by prospective teachers during the semester formed the basis of a grounded theory based on inductive analysis and emergent design. Unstructured interviews were used to negotiate outcomes with participants. Brief case reports of key participants were also written. This study identified three factors that facilitated or hindered the prospective teachers in this research success in implementing inquiry-based science teaching in their field placement classrooms: (a) the culture of teaching/teacher role-socialization, (b) the culture of schooling and its resistance to change, and (c) the culture of teacher education, especially in regards to grades and academic standing. Some recommendations for overcoming these persistent obstacles to best practice in elementary science teaching include: (a) preparing prospective teachers to understand and cope with change

  19. Administrators' perspectives of support for elementary science education

    Science.gov (United States)

    Hanegan, Nikki Notias

    This investigation examines administrators' perspectives of support for elementary science education through naturalistic inquiry methodologies. Determining how administrators, as instructional leaders, define and demonstrate support for innovative reform in one curriculum area, specifically in science, has a direct impact on teacher effectiveness to implement change and new curricula into classrooms. Six major areas of current literature were reviewed for this study. They were (1) the need for Elementary Science Education, (2) the current status of Elementary Science Education, (3) the need for science professional development, (4) key components for effective professional development implementation, (5) leadership for elementary science education, and (6) administrative support. These critical issues were selected to deepen the understanding and purpose of this study. As a result of emergent interviews, five major themes developed from this study. They are: (1) knowledge of science instruction and implementation, (2) demonstration of administrative leadership to promote science education, (3) providing necessary resources or materials, (4) providing professional development opportunities, and (5) fostering teacher leadership for science instruction. These themes are discussed with supporting evidence from respondent interviews and verified through teacher interviews, newsletters, web sites, school observations, or curriculum sources. Administrative support for elementary science education is defined as action taken to ascertain that students are receiving quality science instruction. Chapter Five includes a discussion on the effectiveness of managers versus leaders in science education reform. Administrators need more direct involvement and participation in professional development aimed at science education to develop leadership skills, science content knowledge, and tools necessary to develop leaders for future district and school planning to implement science

  20. Learning from education to communicate science as a good story.

    Science.gov (United States)

    Negrete, Aquiles; Lartigue, Cecilia

    2004-09-01

    Science communicators must learn from science educators in their crusade to counteract the traditional boring and inefficient approaches to convey science. Educators encounter a need for methods of teaching that portray science as 'hard fun' and resources that encourage students' minds to burst into action. Narratives are considered by several authors as highly valuable resources for science education. However, little research has been undertaken to measure the efficiency of narratives in the context of science communication to the general public. Recent work however, suggests that narratives are indeed an alternative and an important means for science communication to convey information in an accurate, attractive, imaginative and memorable way. To present scientific information through stories, novels, comics and plays should be regarded as an important means to transmit information in the repertoire of both science teachers and science communicators.

  1. Tailoring science education graduate programs to the needs of science educators in low-income countries

    Science.gov (United States)

    Lunetta, Vincent N.; van den Berg, Euwe

    Science education graduate programs in high-income countries frequently enroll students from low-income countries. Upon admission these students have profiles of knowledge, skills, and experiences which can be quite different from those of students from the host high-income countries. Upon graduation, they will normally return to work in education systems with conditions which differ greatly from those in high-income countries. This article attempts to clarify some of the differences and similarities between such students. It offers suggestions for making graduate programs more responsive to the special needs of students from low-income countries and to the opportunities they offer for enhancing cross-cultural sensitivity. Many of the suggestions can be incorporated within existing programs through choices of elective courses and topics for papers, projects, and research. Many references are provided to relevant literature on cultural issues and on science education in low-income countries.

  2. 3rd International conference on social sciences & education research

    OpenAIRE

    ÇAM, Handan

    2017-01-01

    Abstract. The 3rd International Conference on Social Sciences & Education Research is an academic and scientific conference which was held  at Hotel Rome Pisana in Rome, Italy between April 27-29, 2017. ICSSER was organized by International Center of Social Science & Education Research, and hosted by Università degli Studi di Bergamo (Italy) and supported IJSSER-International Journal of Social Sciences & Education and JTTR-Journal of Tourism Theory and Research ICSSER has provided...

  3. The New England Space Science Initiative in Education (NESSIE)

    Science.gov (United States)

    Waller, W. H.; Clemens, C. M.; Sneider, C. I.

    2002-12-01

    Founded in January 2002, NESSIE is the NASA/OSS broker/facilitator for education and public outreach (E/PO) within the six-state New England region. NESSIE is charged with catalyzing and fostering collaborations among space scientists and educators within both the formal and informal education communities. NESSIE itself is a collaboration of scientists and science educators at the Museum of Science, Harvard-Smithsonian Center for Astrophysics, and Tufts University. Its primary goals are to 1) broker partnerships among space scientists and educators, 2) facilitate a wide range of educational and public outreach activities, and 3) examine and improve space science education methods. NESSIE's unique strengths reside in its prime location (the Museum of Science), its diverse mix of scientists and educators, and its dedicated board of advisors. NESSIE's role as a clearinghouse and facilitator of space science education is being realized through its interactive web site and via targeted meetings, workshops, and conferences involving scientists and educators. Special efforts are being made to reach underserved groups by tailoring programs to their particular educational needs and interests. These efforts are building on the experiences of prior and ongoing programs in space science education at the Museum of Science, the Harvard-Smithsonian Center for Astrophysics, Tufts University, and NASA.

  4. Exploring Girls' Science Affinities Through an Informal Science Education Program

    Science.gov (United States)

    Todd, Brandy; Zvoch, Keith

    2017-10-01

    This study examines science interests, efficacy, attitudes, and identity—referred to as affinities, in the context of an informal science outreach program for girls. A mixed methods design was used to explore girls' science affinities before, during, and after participation in a cohort-based summer science camp. Multivariate analysis of survey data revealed that girls' science affinities varied as a function of the joint relationship between family background and number of years in the program, with girls from more affluent families predicted to increase affinities over time and girls from lower income families to experience initial gains in affinities that diminish over time. Qualitative examination of girls' perspectives on gender and science efficacy, attitudes toward science, and elements of science identities revealed a complex interplay of gendered stereotypes of science and girls' personal desires to prove themselves knowledgeable and competent scientists. Implications for the best practice in fostering science engagement and identities in middle school-aged girls are discussed.

  5. The Third Force: Humanistic Psychology and Science Education

    Science.gov (United States)

    Bybee, Rodger W.; Welch, I. David

    1972-01-01

    Describes briefly the basic principles of humanistic psychology in contrast with behaviorism and Fraudianism. Presents some guidelines for science educator's use of humanistic psychology in the classroom. (PS)

  6. PolarTREC—A Model Program for Taking Polar Literacy into the Future

    Science.gov (United States)

    Warburton, J.; Timm, K.; Larson, A. M.

    2009-12-01

    Polar TREC—Teachers and Researchers Exploring and Collaborating, is a three-year (2007-2009) NSF-funded International Polar Year (IPY) teacher professional development program that advances Science, Technology, Engineering, and Mathematics (STEM) education by improving teacher content knowledge and instructional practices through Teacher Research Experiences (TRE) in the Arctic and Antarctic. Leveraging profound changes and fascinating science taking place in the polar regions, PolarTREC broadly disseminates activities and products to students, educators, researchers, and the public, connecting them with the Arctic and Antarctica and sustaining the widespread interest in the polar regions and building on the enthusiasm that was generated through IPY. Central to the PolarTREC Teacher Research Experience Model, over 40 teachers have spent two to eight weeks participating in hands-on research in the polar regions and sharing their experiences with diverse audiences via live events, online multimedia journals, and interactive bulletin boards. The Connecting Arctic/Antarctic Researchers and Educators (CARE) Network unifies learning community members participants, alumni, and others, developing a sustainable association of education professionals networking to share and apply polar STEM content and pedagogical skills. Educator and student feedback from preliminary results of the program evaluation has shown that PolarTREC’s comprehensive program activities have many positive impacts on educators and their ability to teach science concepts and improve their teaching methods. Additionally, K-12 students polled in interest surveys showed significant changes in key areas including amount of time spent in school exploring research activities, importance of understanding science for future work, importance of understanding the polar regions as a person in today’s world, as well as increased self-reported knowledge and interest in numerous science content areas. Building

  7. It's not rocket science : Developing pupils’ science talent in out-of-school science education for Primary Schools

    NARCIS (Netherlands)

    Geveke, Catherina

    2017-01-01

    Out-of-school science educational activities, such as school visits to a science center, aim at stimulating pupils’ science talent. Science talent is a developmental potential that takes the form of talented behaviors such as curiosity and conceptual understanding. This dissertation investigates

  8. PHYSICAL EDUCATION BETWEEN ART AND SCIENCE

    Directory of Open Access Journals (Sweden)

    Goran Šekeljić

    2011-08-01

    Full Text Available Physical Education has its own definition inside the system of anthropomorphological sciences. But, there is a question whether it is possible to explain the phenomenon of physical education only inside of the system of abstrct atitudes based on an objective observation of reality or it is (at least some of its parts are an activity which has for an object the stimulation of human senses, mind or spirit. In this essey we discuss, in a very subjective way, the matter which concerns the culture in order to define the position of physical education inside the art system. The word "art" can relate to the variety of subjects, feelings or activities. Because of it, the fragments of art can be defined as creative interpretations of indefinite concepts or ideas. Having in mind the fact that in a world of art it is not possible to define standards that determine the art itself, according to the criteria which are generally accepted, it is still possible to make connection between sport and art by some rational observation. This work can enter the history thanks to the initiative to accept the sport as an aspect of art

  9. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    . Articles written in Resonance – Journal of Science Education. Volume 16 Issue 2 February 2011 pp 180-187 Classroom. Environmental Education in a Green Classroom · Jürgen Drissner Hans-Martin Haase Mara Nikolajek Katrin Hille.

  10. Persistent Issues in Library and Information Science Education in Africa.

    Science.gov (United States)

    Alemna, A. A.

    1994-01-01

    Discusses issues relating to library and information science education in Africa. Topics include a historical background; professional recognition; standards; student recruitment; physical facilities; relevance of the curricula; financial constraints; research degrees; continuing education; paraprofessional library staff training; employment…

  11. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 11. National Seminar on the History and Cultural Aspects of Mathematics Education. Information and Announcements Volume 16 Issue 11 November 2011 pp 1102-1102 ...

  12. The culture of power and science education: Learning from Miguel

    Science.gov (United States)

    Calabrese Barton, Angela; Yang, Kimberley

    2000-10-01

    In this paper we begin a discussion around the need for science educators to understand the relationship between cultural and socioeconomic issues and the science education of inner-city students. We refer to the works of critical scholars in science, education, and sociology in order to help us deconstruct the relationship between sociopolitical agendas and the lack of opportunity in science education for students from lower socioeconomic inner-city enclaves. Through our ethnographic case study of a homeless family in a major metropolitan area in the Northeast, we frame our analysis through the pedagogical questions of representation of science through culture, socioeconomic status, and culture capital. We use this analysis to raise questions for further research on the significance of understanding, accessing, and critiquing the culture of power in science education.

  13. Lonergan's Theory of Cognition, Constructivism and Science Education

    Science.gov (United States)

    Roscoe, Keith

    Recent research literature in science education, science curriculum documents, and science methods texts have been highly influenced by constructivist views of how students learn science. But the widespread and often uncritical acceptance of constructivism in science education does not reflect the heated debate between constructivists and realist science educators over its underlying philosophy, and the curricular and pedagogical implications of constructivism. This paper aims to show that Bernard Lonergan's theory of cognition can inform this debate by (a) suggesting ways to see the merit in the views of constructivists and realists and bridge the gap between them, (b) illustrating how Lonergan's thought can be brought to bear on science curriculum documents and teaching-learning resources for science teachers. Lonergan's Theory of Cognition suggests that human knowing is not a single operation, but a dynamic and integral whole whose parts are sensory experience, understanding, and judging.

  14. Science education for sustainability, epistemological reflections and educational practices: from natural sciences to trans-disciplinarity

    Science.gov (United States)

    Colucci-Gray, Laura; Perazzone, Anna; Dodman, Martin; Camino, Elena

    2013-03-01

    In this three-part article we seek to establish connections between the emerging framework of sustainability science and the methodological basis of research and practice in science education in order to bring forth knowledge and competences for sustainability. The first and second parts deal with the implications of taking a sustainability view in relation to knowledge processes. The complexity, uncertainty and urgency of global environmental problems challenge the foundations of reductionist Western science. Within such debate, the proposal of sustainability science advocates for inter-disciplinary and inter-paradigmatic collaboration and it includes the requirements of post- normal science proposing a respectful dialogue between experts and non-experts in the construction of new scientific knowledge. Such a change of epistemology is rooted into participation, deliberation and the gathering of extended-facts where cultural framings and values are the hard components in the face of soft facts. A reflection on language and communication processes is thus the focus of knowledge practices and educational approaches aimed at sustainability. Language contains the roots of conceptual thinking (including scientific knowledge) and each culture and society are defined and limited by the language that is used to describe and act upon the world. Within a scenario of sustainability, a discussion of scientific language is in order to retrace the connections between language and culture, and to promote a holistic view based on pluralism and dialogue. Drawing on the linguistic reflection, the third part gives examples of teaching and learning situations involving prospective science teachers in action-research contexts: these activities are set out to promote linguistic integration and to introduce reflexive process into science learning. Discussion will focus on the methodological features of a learning process that is akin to a communal and emancipatory research process within

  15. Mt. Kilimanjaro expedition in earth science education

    Science.gov (United States)

    Sparrow, Elena; Yoshikawa, Kenji; Narita, Kenji; Brettenny, Mark; Yule, Sheila; O'Toole, Michael; Brettenny, Rogeline

    2010-05-01

    Mt. Kilimanjaro, Africa's highest mountain is 5,895 meters above sea level and is located 330 km south of the equator in Tanzania. In 1976 glaciers covered most of Mt. Kilimanjaro's summit; however in 2000, an estimated eighty percent of the ice cap has disappeared since the last thorough survey done in 1912. There is increased scientific interest in Mt. Kilimanjaro with the increase in global and African average temperatures. A team of college and pre-college school students from Tanzania, South Africa and Kenya, teachers from South Africa and the United States, and scientists from the University of Alaska Fairbanks in the United States and Akita University in Japan, climbed to the summit of Mt Kilimanjaro in October 2009. They were accompanied by guides, porters, two expedition guests, and a videographer. This expedition was part of the GLOBE Seasons and Biomes Earth System Science Project and the GLOBE Africa science education initiative, exploring and contributing to climate change studies. Students learned about earth science experientially by observing their physical and biological surroundings, making soil and air temperature measurements, participating in discussions, journaling their experience, and posing research questions. The international trekkers noted the change in the biomes as the altitude, temperature and conditions changed, from cultivated lands, to rain forest, heath zone, moorland, alpine desert, and summit. They also discovered permafrost, but not at the summit as expected. Rather, it was where the mountain was not covered by a glacier and thus more exposed to low extreme temperatures. This was the first report of permafrost on Mt. Kilimanjaro. Classrooms from all over the world participated in the expedition virtually. They followed the trek through the expedition website (http://www.xpeditiononline.com/) where pictures and journals were posted, and posed their own questions which were answered by the expedition and base camp team members

  16. Young children's imagination in science education and education for sustainability

    Science.gov (United States)

    Caiman, Cecilia; Lundegård, Iann

    2017-09-01

    This research is concerned with how children's processes of imagination, situated in cultural and social practices, come into play when they invent, anticipate, and explore a problem that is important to them. To enhance our understanding of young children's learning and meaning-making related to science and sustainability, research that investigates children's use of imagination is valuable. The specific aim of this paper is to empirically scrutinize how children's imaginations emerge, develop, and impact their experiences in science. We approach imagination as a situated, open, and unscripted act that emerges within transactions. This empirical study was conducted in a Swedish pre-school, and the data was collected `in between' a science inquiry activity and lunchtime. We gathered specific video-sequences wherein the children, lived through the process of imagination, invented a problem together and produced something new. Our analysis showed that imagination has a great significance when children provide different solutions which may be useful in the future to sustainability-related problems. If the purpose of an educational experience in some way supports children's imaginative flow, then practicing an open, listening approach becomes vital. Thus, by encouraging children to explore their concerns and questions related to sustainability issues more thoroughly without incautious recommendations or suggestions from adults, the process of imagination might flourish.

  17. Conference Modern Engineering : Science and Education

    CERN Document Server

    2017-01-01

    This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2016 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.

  18. COMPUTATIONAL SCIENCE IN IN THE EDUCATIONAL CURRICULUM

    Directory of Open Access Journals (Sweden)

    José Manuel Cabrera Delgado

    2017-06-01

    Full Text Available How to incorporate Computer Science (CS into the basic education curriculum continues to be subject of controversy at the European level. Without there being a defined strategy on behalf of the European Union in this respect, several countries have begun their incorporation showing us the advantages and difficulties of such action. Main elements of CS, such as computational thinking and coding, are already being taught in schools, establishing the need for a curriculum adapted to the ages of the students, training for teachers and enough resources. The purpose of this article, from the knowledge of the experience of these countries, is to respond, or at least to reflect, on the answers to the following questions: what is CS?, what are their main elements?, why is it necessary?, at what age should CS be taught?, what requirements are needed for their incorporation?

  19. French language space science educational outreach

    Science.gov (United States)

    Schofield, I.; Masongsong, E. V.; Connors, M. G.

    2015-12-01

    Athabasca University's AUTUMNX ground-based magnetometer array to measure and report geomagnetic conditions in eastern Canada is located in the heart of French speaking Canada. Through the course of the project, we have had the privilege to partner with schools, universities, astronomy clubs and government agencies across Quebec, all of which operate primarily in French. To acknowledge and serve the needs of our research partners, we have endeavored to produce educational and outreach (EPO) material adapted for francophone audiences with the help of UCLA's department of Earth, Planetary and Space Sciences (EPSS). Not only will this provide greater understanding and appreciation of the geospace environment unique to Quebec and surrounding regions, it strengthens our ties with our francophone, first nations (native Americans) and Inuit partners, trailblazing new paths of research collaboration and inspiring future generations of researchers.

  20. Restructuring STM (Science, Technology, and Mathematics) Education for Entrepreneurship

    Science.gov (United States)

    Ezeudu, F. O.; Ofoegbu, T. O.; Anyaegbunnam, N. J.

    2013-01-01

    This paper discussed the need to restructure STM (science, technology, and mathematics) education to reflect entrepreneurship. This is because the present STM education has not achieved its aim of making graduates self-reliant. Entrepreneurship education if introduced in the STM education will produce graduate who can effectively manage their…

  1. Humanistic Model in Adult Education and Science and Technology ...

    African Journals Online (AJOL)

    Humanistic Model in Adult Education and Science and Technology: Challenges of the 21 st Century Developing Nation. ... Annals of Modern Education ... is the result of the scientific and technological advancement, this paper considers humanistic model in adult education as liberal education appropriate for adult age.

  2. Reforms in Nigerian education sector: Implications for Science and ...

    African Journals Online (AJOL)

    This paper examines the state of Education in Nigeria, the current educational reforms and their implications for science and technology education. It reviews various score sheets for the state of the countries educational system pointing to indicators of the system being inefficient, and attendantly calling for a reformation.

  3. NASA Science Mission Directorate Science Education and Public Outreach Forums: A Six-Year Retrospective

    Science.gov (United States)

    Smith, Denise Anne; Peticolas, Laura; Schwerin, Theresa; Shipp, Stephanie; Lawton, Brandon L.; Meinke, Bonnie; Manning, James G.; Bartolone, Lindsay; Schultz, Gregory

    2015-08-01

    NASA’s Science Mission Directorate (SMD) created four competitively awarded Science Education and Public Outreach Forums (Astrophysics, Heliophysics, Planetary Science, Earth Science) in 2009. The NASA SMD education and public engagement community and Forum teams have worked together to share the science, the story, and the adventure of SMD's science missions with students, educators, and the public. In doing so, SMD's programs have emphasized collaboration between scientists with content expertise and educators with pedagogy expertise. The goal of the Education Forums has been to maximize program efficiency, effectiveness, and coherence by organizing collaborations that reduce duplication of effort; sharing best practices; aligning products to national education standards; creating and maintaining the NASA Wavelength online catalog of SMD education products; and disseminating metrics and evaluation findings. We highlight examples of our activities over the past six years, along with the role of the scientist-educator partnership and examples of program impact. We also discuss our community’s coordinated efforts to expand the Astro4Girls pilot program into the NASA Science4Girls and Their Families initiative, which partners NASA science education programs with public libraries to engage underrepresented audiences in science.

  4. Naturalized Philosophy of Science and Natural Science Education.

    Science.gov (United States)

    Siegel, Harvey

    1993-01-01

    Reviews the philosophical controversy concerning naturalism, and investigates the role it might play in the science classroom. Argues that science students can benefit from explicit study of this controversy and from explicit consideration of the extent to which philosophy of science can be studied naturalistically. (PR)

  5. On the way to a philosophy of science education

    Science.gov (United States)

    Schulz, Roland M.

    This Thesis argues the case that a philosophy of science education is required for improving science education as a research field as well as curriculum and teacher pedagogy. It seeks to re-think science education as an educational endeavor by examining why past reform efforts have been only partially successful, including why the fundamental goal of achieving scientific literacy after several "reform waves" has proven to be so elusive. The identity of such a philosophy is first defined in relation to the fields of philosophy, philosophy of science, and philosophy of education. Considering science education as a research discipline it is emphasized a new field should be broached with the express purpose of developing a discipline-specific "philosophy of science education" (largely neglected since Dewey). A conceptual shift towards the philosophy of education. is needed, thereto, on developing and demarcating true educational theories which could in addition serve to reinforce science education's growing sense of academic autonomy and independence from socio-economic demands. Two educational metatheories are contrasted, those of Kieran Egan and the Northern European Bildung tradition, to illustrate the task of such a philosophy. Egan's cultural-linguistic metatheory is presented for two primary purposes: it is offered as a possible solution to the deadlock of the science literacy conceptions within the discipline; regarding practice, examples are provided how it can better guide the instructional practice of teachers, specifically how it reinforces the work of other researchers in the History and Philosophy of Science (HPS) reform movement who value narrative in learning science. Considering curriculum and instruction, a philosophy of science education is conceptualized as a "second order" reflective capacity of the teacher. This notion is aligned with Shulman's idea of Pedagogical Content Knowledge. It is argued that for educators the nature of science learning

  6. What is `Agency'? Perspectives in Science Education Research

    Science.gov (United States)

    Arnold, Jenny; Clarke, David John

    2014-03-01

    The contemporary interest in researching student agency in science education reflects concerns about the relevance of schooling and a shift in science education towards understanding learning in science as a complex social activity. The purpose of this article is to identify problems confronting the science education community in the development of this new research agenda and to argue that there is a need for research in science education that attends to agency as a social practice. Despite increasing interest in student agency in educational research, the term 'agency' has lacked explicit operationalisation and, across the varied approaches, such as critical ethnography, ethnographies of communication, discourse analysis and symbolic interactionism, there has been a lack of coherence in its research usage. There has also been argument concerning the validity of the use of the term 'agency' in science education research. This article attempts to structure the variety of definitions of 'student agency' in science education research, identifies problems in the research related to assigning intentionality to research participants and argues that agency is a kind of discursive practice. The article also draws attention to the need for researchers to be explicit in the assumptions they rely upon in their interpretations of social worlds. Drawing upon the discursive turn in the social sciences, a definition of agency is provided, that accommodates the discursive practices of both individuals and the various functional social groups from whose activities classroom practice is constituted. The article contributes to building a focused research agenda concerned with understanding and promoting student agency in science.

  7. Science education as an exercise in foreign affairs

    Science.gov (United States)

    Cobern, William W.

    1995-07-01

    In Kuhnian terms, science education has been a process of inducting students into the reigning paradigms of science. In 1985, Duschl noted that science education had not kept pace with developments in the history and philosophy of science. The claim of certainty for scientific knowledge which science educators grounded in positivist philosophy was rendered untenable years ago and it turns out that social and cultural factors surrounding discovery may be at least as important as the justification of knowledge. Capitalizing on these new developments, Duschl, Hamilton, and Grandy (1990) wrote a compelling argument for the need to have a joint research effort in science education involving the philosophy and history of science along with cognitive psychology. However, the issue of discovery compels the research community go one step further. If the science education community has been guilty of neglecting historical and philosophical issues in science, let it not now be guilty of ignoring sociological issues in science. A collaborative view ought also to include the sociological study of cultural milieu in which scientific ideas arise. In other words, an external sociological perspective on science. The logic of discovery from a sociological point of view implies that conceptual change can also be viewed from a sociological perspective.

  8. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Ravinder Kumar Banyal. Articles written in Resonance – Journal of Science Education. Volume 10 Issue 6 June 2005 pp 43-59 General Article. Alfred Wegener – From Continental Drift to Plate Tectonics · A J Saigeetha Ravinder Kumar Banyal · More Details ...

  9. Virtual Science Museums as Learning Environments: Interaction for Education.

    Science.gov (United States)

    Orfinger, Becky

    1998-01-01

    Explores the use of Web virtual science museums in the classroom. Discusses the educational advantages of using virtual museums for both students and teacher. Qualitative research shows that virtual museum visits can have comparable educational value to actual science-museum field trips. Lists and examines sites which support classroom…

  10. Augmented Reality in science education – affordances for student learning

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Swensen, Hakon

    2016-01-01

    Most extant studies examining augmented reality (AR) have focused on the technology itself. This paper presents findings addressing the issue of AR for educational purposes based on a sequential survey distributed to 35 expert science teachers, ICT designers and science education researchers from...

  11. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. C V R Murty. Articles written in Resonance – Journal of Science Education. Volume 9 Issue 8 August 2004 pp 75-78 Classroom. Learning Earthquake Design and Construction – 1. What causes Earthquakes? C V R Murty · More Details Fulltext PDF. Volume 9 ...

  12. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Adil Ghani Khan. Articles written in Resonance – Journal of Science Education. Volume 8 Issue 6 June 2003 pp 8-16 General Article. Woodward's Synthesis of Vitamin B12 · Adil Ghani Khan S V Eswaran · More Details Fulltext PDF ...

  13. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. K Hussian Reddy. Articles written in Resonance – Journal of Science Education. Volume 4 Issue 6 June 1999 pp 67-77 General Article. Coordination Compounds in Biology - The Chemistry of Vitamin B12 and Model Compounds · K Hussian Reddy.

  14. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. G Wayne Craig. Articles written in Resonance – Journal of Science Education. Volume 19 Issue 7 July 2014 pp 624-640 General Article. Eschenmoser Approach to Vitamin B12 by A/D Strategy: An Unexpected Journey · G Wayne Craig · More Details Fulltext PDF ...

  15. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Setty Mallikarjuna Babu. Articles written in Resonance – Journal of Science Education. Volume 19 Issue 7 July 2014 pp 593-623 General Article. The Spirit of Adventure and the Art of Creation: Camphor to Vitamin B12 · Setty Mallikarjuna Babu Subramania ...

  16. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Deepa Khushalani. Articles written in Resonance – Journal of Science Education. Volume 23 Issue 3 March 2018 pp 355-369 General Article. Exploiting Sun's Energy Effectively as a Source of Renewable Energy · Deepa Khushalani · More Details Abstract ...

  17. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. G Ambika. Articles written in Resonance – Journal of Science Education. Volume 20 Issue 3 March 2015 pp 198-205 General Article. Ed Lorenz: Father of the 'Butterfly Effect' · G Ambika · More Details Fulltext PDF ...

  18. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Krushnamegh J Kunte. Articles written in Resonance – Journal of Science Education. Volume 5 Issue 3 March 2000 pp 86-97 Classroom. Project Lifescape: Butterfly Accounts · Krushnamegh J Kunte · More Details Fulltext PDF ...

  19. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Edward U Lorenz. Articles written in Resonance – Journal of Science Education. Volume 20 Issue 3 March 2015 pp 260-263 Classics. Predictability: Does the Flap of a Butterfly's Wings in Brazil Set off a Tornado in Texas? Edward U Lorenz · More Details Fulltext ...

  20. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. A John Wilson. Articles written in Resonance – Journal of Science Education. Volume 11 Issue 7 July 2006 pp 70-76 Classroom. Inverting Matrices Constructed from Roots of Unity · A John Wilson · More Details Fulltext PDF ...

  1. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Uwe Storch. Articles written in Resonance – Journal of Science Education. Volume 14 Issue 7 July 2009 pp 691-703 General Article. Pythagoras and Diophantus · Uwe Storch · More Details Fulltext PDF ...

  2. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. B S Sheshadri. Articles written in Resonance – Journal of Science Education. Volume 9 Issue 2 February 2004 pp 88-89 Book Review. Environmental Chemistry · B S Sheshadri G Nagendrappa · More Details Fulltext PDF ...

  3. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. S Parthiban. Articles written in Resonance – Journal of Science Education. Volume 1 Issue 4 April 1996 pp 82-86 Research News. Environmental Chemists Share the 1995 Chemistry Nobel Prize · S Parthiban · More Details Fulltext PDF ...

  4. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. M D Subhash Chandran. Articles written in Resonance – Journal of Science Education. Volume 3 Issue 5 May 1998 pp 81-82 Book Review. Environmental Biology - Man and his Environment · M D Subhash Chandran · More Details Fulltext PDF ...

  5. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. M K Chandrashekaran. Articles written in Resonance – Journal of Science Education. Volume 1 Issue 7 July 1996 pp 44-51 General Article. A Crab in the Lab that Identified High and Low Tides in the Sea Two Miles Away - The Rediscovery of Tidal Rhythms in ...

  6. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. A Sarangarajan. Articles written in Resonance – Journal of Science Education. Volume 5 Issue 10 October 2000 pp 81-89 Classroom. On IBM's Millennial Puzzle · A Sarangarajan · More Details Fulltext PDF ...

  7. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. D K Saxena. Articles written in Resonance – Journal of Science Education. Volume 9 Issue 6 June 2004 pp 56-65 General Article. Uses of Bryophytes · D K Saxena Harinder · More Details Fulltext PDF ...

  8. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Cihan Saclioglu. Articles written in Resonance – Journal of Science Education. Volume 15 Issue 2 February 2010 pp 104-115 General Article. Swinging in Imaginary Time - More on the Not-So-Simple Pendulum · Cihan Saclioglu · More Details Fulltext PDF ...

  9. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. H P Kaumudi. Articles written in Resonance – Journal of Science Education. Volume 14 Issue 4 April 2009 pp 357-366 Classroom. The Simple Pendulum: Not So Simple After All · H P Kaumudi Vasant Natarajan · More Details Fulltext PDF ...

  10. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. R Bar. Articles written in Resonance – Journal of Science Education. Volume 18 Issue 8 August 2013 pp 732-737 General Article. The Sacred Lotus - An Incredible Wealth of Wetlands · R N Mandal R Bar · More Details Fulltext PDF ...

  11. Science Teachers' Response to the Digital Education Revolution

    Science.gov (United States)

    Nielsen, Wendy; Miller, K. Alex; Hoban, Garry

    2015-01-01

    We report a case study of two highly qualified science teachers as they implemented laptop computers in their Years 9 and 10 science classes at the beginning of the "Digital Education Revolution," Australia's national one-to-one laptop program initiated in 2009. When a large-scale investment is made in a significant educational change,…

  12. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. G J Mclachlan. Articles written in Resonance – Journal of Science Education. Volume 4 Issue 6 June 1999 pp 20-26 General Article. Mahalanobis Distance · G J Mclachlan · More Details Fulltext PDF ...

  13. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. S N Maitra. Articles written in Resonance – Journal of Science Education. Volume 7 Issue 7 July 2002 ... More Details Fulltext PDF. Volume 8 Issue 10 October 2003 pp 85-86 Classroom. Minimizing the Time of Travel for a Long-distance Train Journey: A Model.

  14. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. E Fermi. Articles written in Resonance – Journal of Science Education. Volume 19 Issue 1 January 2014 pp 82-96 Classics. Quantization of an Ideal Monoatomic Gas · E Fermi · More Details Fulltext PDF ...

  15. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Niranjan Kambi. Articles written in Resonance – Journal of Science Education. Volume 17 Issue 11 November 2012 pp 1054-1064 General Article. Landmark Discoveries in Neurosciences · Niranjan Kambi Neeraj Jain · More Details Fulltext PDF ...

  16. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Neeraj Jain. Articles written in Resonance – Journal of Science Education. Volume 17 Issue 11 November 2012 pp 1054-1064 General Article. Landmark Discoveries in Neurosciences · Niranjan Kambi Neeraj Jain · More Details Fulltext PDF ...

  17. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Bhaskar G Maiya. Articles written in Resonance – Journal of Science Education. Volume 5 Issue 4 April 2000 pp 6-18 Series Article. Photodynamic Therapy (PDT) - Basic Principles · Bhaskar G Maiya · More Details Fulltext PDF. Volume 5 Issue 6 June 2000 pp ...

  18. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. L Giribabu. Articles written in Resonance – Journal of Science Education. Volume 5 Issue 8 August 2000 pp 13-21 Series Article. Photodynamic Therapy (PDT) - New Approaches and Newer Applications · Bhaskar G Maiya G Hariprasad L Giribabu · More Details ...

  19. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. M Kannan. Articles written in Resonance – Journal of Science Education. Volume 7 Issue 9 September 2002 pp 49-55 General Article. Lightning Bugs · B Gajendra Babu M Kannan · More Details Fulltext PDF ...

  20. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Meena Mahajan. Articles written in Resonance – Journal of Science Education. Volume 7 Issue 12 December 2002 pp 84-90 Research News. Madhu Sudan Receives Nevanlinna Prize · Meena Mahajan Priti Shankar · More Details Fulltext PDF ...

  1. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Madhu Sudan. Articles written in Resonance – Journal of Science Education. Volume 10 Issue 1 January 2005 pp 74-82 Classroom. MacWilliams Identities? Madhu Sudan · More Details Fulltext PDF ...

  2. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Anupam Choudhury. Articles written in Resonance – Journal of Science Education. Volume 7 Issue 2 February 2002 pp 33-45 General Article. Untangling the Mystery of Alzheimer's Disease - Understanding Molecular Mechanisms for Novel Therapeutic ...

  3. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. T N Avinash. Articles written in Resonance – Journal of Science Education. Volume 7 Issue 2 February 2002 pp 33-45 General Article. Untangling the Mystery of Alzheimer's Disease - Understanding Molecular Mechanisms for Novel Therapeutic Approaches.

  4. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. T S Mahesh. Articles written in Resonance – Journal of Science Education. Volume 20 Issue 11 November 2015 pp 1053-1065 General Article. Quantum Information Processing by NMR · T S Mahesh · More Details Fulltext PDF ...

  5. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. A K Mittal. Articles written in Resonance – Journal of Science Education. Volume 7 Issue 2 February 2002 pp 6-19 General Article. Fractals and the Large-Scale Structure in the Universe - Introduction and Basic Concepts · A K Mittal T R Seshadri · More Details ...

  6. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Carl Hirschie Johnson. Articles written in Resonance – Journal of Science Education. Volume 11 Issue 5 May 2006 pp 22-31 General Article. Reminiscences from Pittendrigh's Last PhD Student · Carl Hirschie Johnson · More Details Fulltext PDF ...

  7. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Harlan J Smith. Articles written in Resonance – Journal of Science Education. Volume 7 Issue 8 August 2002 pp 2-4 Article-in-a-Box. Tribute to Prof. M. K. V. Bappu · Harlan J Smith · More Details Fulltext PDF ...

  8. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. N Sahoo. Articles written in Resonance – Journal of Science Education. Volume 2 Issue 8 August 1997 pp 60-66 General Article. Lignin Macromolecule · R S Rohella N Sahoo V Chakravortty · More Details Fulltext PDF ...

  9. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. V Chakravortty. Articles written in Resonance – Journal of Science Education. Volume 2 Issue 8 August 1997 pp 60-66 General Article. Lignin Macromolecule · R S Rohella N Sahoo V Chakravortty · More Details Fulltext PDF ...

  10. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. C S Sunandana. Articles written in Resonance – Journal of Science Education. Volume 12 Issue 5 May 2007 pp 31-36 General Article. Nanomaterials for Hydrogen Storage - The van't Hoff Connection · C S Sunandana · More Details Fulltext PDF ...

  11. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Filler. Articles in Resonance – Journal of Science Education. Volume 20 Issue 1 January 2015 pp 75-75 Filler. A Short Proof of Euler's Inequality · Samer Seraj · More Details Fulltext PDF ...

  12. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Pramod Chandra P Bhatt. Articles written in Resonance – Journal of Science Education. Volume 19 Issue 6 June 2014 pp 549-569 General Article. What's New in Computers: Cryptocurrencies: An Introduction · Pramod Chandra P Bhatt · More Details Fulltext PDF ...

  13. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Ripudaman Malhotra. Articles written in Resonance – Journal of Science Education. Volume 22 Issue 12 December 2017 pp 1109-1110 Article-in-a-Box. In Memoriam: George Andrew Olah · Ripudaman Malhotra · More Details Abstract Fulltext PDF. Volume 22 ...

  14. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. S Vatsala. Articles written in Resonance – Journal of Science Education. Volume 3 Issue 11 November 1998 pp 75-81 General Article. There is Much More to Mendeleev's Periodic Table Than Meets the Eye · S Vatsala · More Details Fulltext PDF ...

  15. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Jyoti Rao. Articles written in Resonance – Journal of Science Education. Volume 22 Issue 9 September 2017 pp 829-833 General Article. Nobel Prize in Physiology or Medicine 2016 · Shekhar C Mande Jyoti Rao · More Details Abstract Fulltext PDF. The Nobel ...

  16. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. L J Mordell. Articles written in Resonance – Journal of Science Education. Volume 3 Issue 9 September 1998 pp 83-89 Reflections. Hardy's “A Mathematician's Apology” · L J Mordell · More Details Fulltext PDF ...

  17. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Ramanathan Natesh. Articles written in Resonance – Journal of Science Education. Volume 19 Issue 12 December 2014 pp 1177-1196 General Article. Crystallography Beyond Crystals: PX and SPCryoEM · Ramanathan Natesh · More Details Fulltext PDF ...

  18. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Film Review. Articles in Resonance – Journal of Science Education. Volume 22 Issue 3 March 2017 pp 317-318 Film Review. The Untold Story of NASA's Trailblazers: Hidden Figures sheds light on the contributions of black women to the US Space Race.

  19. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Rama Rao Nadendla. Articles written in Resonance – Journal of Science Education. Volume 9 Issue 5 May 2004 pp 51-60 General Article. Molecular Modeling: A Powerful Tool for Drug Design and Molecular Docking · Rama Rao Nadendla · More Details Fulltext ...

  20. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Ann C Neville. Articles written in Resonance – Journal of Science Education. Volume 23 Issue 2 February 2018 pp 235-239 Classics. Observations of Radio Galaxies with the One-mile Telescope at Cambridge · Martin Ryle B Elsmore Ann C Neville · More Details ...