WorldWideScience

Sample records for polar regions arctic

  1. Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate

    Science.gov (United States)

    Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten

    2010-01-01

    Recent satellite lidar measurements of cloud properties spanning a period of 5 years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anticorrelation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice!free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7% and 10%, respectively, as year average sea ice extent has decreased by 5% 7%. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Because longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.

  2. AROME-Arctic: New operational NWP model for the Arctic region

    Science.gov (United States)

    Süld, Jakob; Dale, Knut S.; Myrland, Espen; Batrak, Yurii; Homleid, Mariken; Valkonen, Teresa; Seierstad, Ivar A.; Randriamampianina, Roger

    2016-04-01

    In the frame of the EU-funded project ACCESS (Arctic Climate Change, Economy and Society), MET Norway aimed 1) to describe the present monitoring and forecasting capabilities in the Arctic; and 2) to identify the key factors limiting the forecasting capabilities and to give recommendations on key areas to improve the forecasting capabilities in the Arctic. We have observed that the NWP forecast quality is lower in the Arctic than in the regions further south. Earlier research indicated that one of the factors behind this is the composition of the observing system in the Arctic, in particular the scarceness of conventional observations. To further assess possible strategies for alleviating the situation and propose scenarios for a future Arctic observing system, we have performed a set of experiments to gain a more detailed insight in the contribution of the components of the present observing system in a regional state-of-the-art non-hydrostatic NWP model using the AROME physics (Seity et al, 2011) at 2.5 km horizontal resolution - AROME-Arctic. Our observing system experiment studies showed that conventional observations (Synop, Buoys) can play an important role in correcting the surface state of the model, but prove that the present upper-air conventional (Radiosondes, Aircraft) observations in the area are too scarce to have a significant effect on forecasts. We demonstrate that satellite sounding data play an important role in improving forecast quality. This is the case with satellite temperature sounding data (AMSU-A, IASI), as well as with the satellite moisture sounding data (AMSU-B/MHS, IASI). With these sets of observations, the AROME-Arctic clearly performs better in forecasting extreme events, like for example polar lows. For more details see presentation by Randriamampianina et al. in this session. The encouraging performance of AROME-Arctic lead us to implement it with more observations and improved settings into daily runs with the objective to

  3. Protists in the polar regions: comparing occurrence in the Arctic and Southern oceans using pyrosequencing

    Directory of Open Access Journals (Sweden)

    Christian Wolf

    2015-05-01

    Full Text Available In the ongoing discussion of the distribution of protists, whether they are globally distributed or endemic to one or both of the polar regions is the subject of heated debate. In this study, we compared next-generation sequencing data from the Arctic and the Southern oceans to reveal the extent of similarities and dissimilarities between the protist communities in the polar regions. We found a total overlap of operational taxonomic units (OTUs between the two regions of 11.2%. On closer inspection of different taxonomic groups, the overlap ranged between 5.5% (haptophytes and 14.5% (alveolates. Within the different groups, the proportion of OTUs occurring in both regions greatly differed between the polar regions. On the one hand, the overlap between these two regions is remarkable, given the geographical distance between them. On the other hand, one could expect a greater overlap of OTUs between these regions on account of the similar environmental conditions. The overlap suggests a connection between the polar regions for at least certain species or that the evolutionary divergence has been slow, relative to the timescales of isolation. The different proportions of common OTUs among the groups or regions may be a result of different life cycle strategies or environmental adaptations.

  4. The Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate

    Science.gov (United States)

    Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten

    2010-01-01

    Recent satellite lidar measurements of cloud properties spanning a period of five years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anti-correlation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7 and 10 percent, respectively, as year average sea ice extent has decreased by 5 to 7 percent. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Since longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.

  5. Arctic amplification: does it impact the polar jet stream?

    Directory of Open Access Journals (Sweden)

    Valentin P. Meleshko

    2016-10-01

    Full Text Available It has been hypothesised that the Arctic amplification of temperature changes causes a decrease in the northward temperature gradient in the troposphere, thereby enhancing the oscillation of planetary waves leading to extreme weather in mid-latitudes. To test this hypothesis, we study the response of the atmosphere to Arctic amplification for a projected summer sea-ice-free period using an atmospheric model with prescribed surface boundary conditions from a state-of-the-art Earth system model. Besides a standard global warming simulation, we also conducted a sensitivity experiment with sea ice and sea surface temperature anomalies in the Arctic. We show that when global climate warms, enhancement of the northward heat transport provides the major contribution to decrease the northward temperature gradient in the polar troposphere in cold seasons, causing more oscillation of the planetary waves. However, while Arctic amplification significantly enhances near-surface air temperature in the polar region, it is not large enough to invoke an increased oscillation of the planetary waves.

  6. Geographical distribution of organochlorine pesticides (OCPs) in polar bears (Ursus maritimus) in the Norwegian and Russian Arctic

    Science.gov (United States)

    Lie, E.; Bernhoft, A.; Riget, F.; Belikov, Stanislav; Boltunov, Andrei N.; Derocher, A.E.; Garner, G.W.; Wiig, O.; Skaare, J.U.

    2003-01-01

    Geographical variation of organochlorine pesticides (OCPs) was studied in blood samples from 90 adult female polar bear (Ursus maritimus) from Svalbard, Franz Josef Land, Kara Sea, East-Siberian Sea and Chukchi Sea. In all regions, oxychlordane was the dominant OCP. Regional differences in mean levels of HCB, oxychlordane, trans-nonachlor, ??-HCH, ??-HCH and p,p???-DDE were found. The highest levels of oxychlordane, trans-nonachlor and DDE were found in polar bears from Franz Josef Land and Kara Sea. HCB level was lowest in polar bears from Svalbard. Polar bears from Chukchi Sea had the highest level of ??- and ??-HCH. The lowest ??-HCH concentration was found in bears from Kara Sea. In all the bears, ???HCHs was dominated by ??-HCH. The geographical variation in OCP levels and pattern may suggest regional differences in pollution sources and different feeding habits in the different regions. Polar bears from the Western Russian Arctic were exposed to higher levels of chlordanes and p,p???-DDE than polar bears from locations westwards and eastwards from this region. This may imply the presence of a significant pollution source in the Russian Arctic area. The study suggests that the western Russian Arctic is the most contaminated region of the Arctic and warrants further research. ?? 2002 Elsevier Science B.V. All rights reserved.

  7. Carbon dioxide in Arctic and subarctic regions

    Energy Technology Data Exchange (ETDEWEB)

    Gosink, T. A.; Kelley, J. J.

    1981-03-01

    A three year research project was presented that would define the role of the Arctic ocean, sea ice, tundra, taiga, high latitude ponds and lakes and polar anthropogenic activity on the carbon dioxide content of the atmosphere. Due to the large physical and geographical differences between the two polar regions, a comparison of CO/sub 2/ source and sink strengths of the two areas was proposed. Research opportunities during the first year, particularly those aboard the Swedish icebreaker, YMER, provided additional confirmatory data about the natural source and sink strengths for carbon dioxide in the Arctic regions. As a result, the hypothesis that these natural sources and sinks are strong enough to significantly affect global atmospheric carbon dioxide levels is considerably strengthened. Based on the available data we calculate that the whole Arctic region is a net annual sink for about 1.1 x 10/sup 15/ g of CO/sub 2/, or the equivalent of about 5% of the annual anthropogenic input into the atmosphere. For the second year of this research effort, research on the seasonal sources and sinks of CO/sub 2/ in the Arctic will be continued. Particular attention will be paid to the seasonal sea ice zones during the freeze and thaw periods, and the tundra-taiga regions, also during the freeze and thaw periods.

  8. Microbial communities in a High Arctic polar desert landscape

    Directory of Open Access Journals (Sweden)

    Clare M McCann

    2016-03-01

    Full Text Available The High Arctic is dominated by polar desert habitats whose microbial communities are poorly understood. In this study, we used next generation sequencing to describe the α- and β-diversity of polar desert soils from the Kongsfjorden region of Svalbard. Ten phyla consistently dominated the soils and accounted for 95 % of all sequences, with Proteobacteria, Actinobacteria and Chloroflexi being the dominant lineages. In contrast to previous investigations of Arctic soils, Acidobacterial relative abundances were low as were the Archaea throughout the Kongsfjorden polar desert landscape. Lower Acidobacterial abundances were attributed to the circumneutral soil pH in this region which has resulted from the weathering of the underlying carbonate geology. In addition, we correlated previously measured geochemical variables to determine potential controls on the communities. Soil phosphorus, pH, nitrogen and calcium significantly correlated with β-diversity indicating a landscape scale lithological control of soil nutrients which in turn influenced community composition. In addition, soil phosphorus and pH significantly correlated with α- diversity, specifically the Shannon diversity and Chao 1 richness indices.

  9. Polar bear and walrus response to the rapid decline in Arctic sea ice

    Science.gov (United States)

    Oakley, K.; Whalen, M.; Douglas, David C.; Udevitz, Mark S.; Atwood, Todd C.; Jay, C.

    2012-01-01

    The Arctic is warming faster than other regions of the world due to positive climate feedbacks associated with loss of snow and ice. One highly visible consequence has been a rapid decline in Arctic sea ice over the past 3 decades - a decline projected to continue and result in ice-free summers likely as soon as 2030. The polar bear (Ursus maritimus) and the Pacific walrus (Odobenus rosmarus divergens) are dependent on sea ice over the continental shelves of the Arctic Ocean's marginal seas. The continental shelves are shallow regions with high biological productivity, supporting abundant marine life within the water column and on the sea floor. Polar bears use sea ice as a platform for hunting ice seals; walruses use sea ice as a resting platform between dives to forage for clams and other bottom-dwelling invertebrates. How have sea ice changes affected polar bears and walruses? How will anticipated changes affect them in the future?

  10. Projected polar bear sea ice habitat in the Canadian Arctic Archipelago.

    Science.gov (United States)

    Hamilton, Stephen G; Castro de la Guardia, Laura; Derocher, Andrew E; Sahanatien, Vicki; Tremblay, Bruno; Huard, David

    2014-01-01

    Sea ice across the Arctic is declining and altering physical characteristics of marine ecosystems. Polar bears (Ursus maritimus) have been identified as vulnerable to changes in sea ice conditions. We use sea ice projections for the Canadian Arctic Archipelago from 2006 - 2100 to gain insight into the conservation challenges for polar bears with respect to habitat loss using metrics developed from polar bear energetics modeling. Shifts away from multiyear ice to annual ice cover throughout the region, as well as lengthening ice-free periods, may become critical for polar bears before the end of the 21st century with projected warming. Each polar bear population in the Archipelago may undergo 2-5 months of ice-free conditions, where no such conditions exist presently. We identify spatially and temporally explicit ice-free periods that extend beyond what polar bears require for nutritional and reproductive demands. Under business-as-usual climate projections, polar bears may face starvation and reproductive failure across the entire Archipelago by the year 2100.

  11. Projected polar bear sea ice habitat in the Canadian Arctic Archipelago.

    Directory of Open Access Journals (Sweden)

    Stephen G Hamilton

    Full Text Available Sea ice across the Arctic is declining and altering physical characteristics of marine ecosystems. Polar bears (Ursus maritimus have been identified as vulnerable to changes in sea ice conditions. We use sea ice projections for the Canadian Arctic Archipelago from 2006 - 2100 to gain insight into the conservation challenges for polar bears with respect to habitat loss using metrics developed from polar bear energetics modeling.Shifts away from multiyear ice to annual ice cover throughout the region, as well as lengthening ice-free periods, may become critical for polar bears before the end of the 21st century with projected warming. Each polar bear population in the Archipelago may undergo 2-5 months of ice-free conditions, where no such conditions exist presently. We identify spatially and temporally explicit ice-free periods that extend beyond what polar bears require for nutritional and reproductive demands.Under business-as-usual climate projections, polar bears may face starvation and reproductive failure across the entire Archipelago by the year 2100.

  12. Constraining estimates of methane emissions from Arctic permafrost regions with CARVE

    Science.gov (United States)

    Chang, R. Y.; Karion, A.; Sweeney, C.; Henderson, J.; Mountain, M.; Eluszkiewicz, J.; Luus, K. A.; Lin, J. C.; Dinardo, S.; Miller, C. E.; Wofsy, S. C.

    2013-12-01

    Permafrost in the Arctic contains large carbon pools that are currently non-labile, but can be released to the atmosphere as polar regions warm. In order to predict future climate scenarios, we need to understand the emissions of these greenhouse gases under varying environmental conditions. This study presents in-situ measurements of methane made on board an aircraft during the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), which sampled over the permafrost regions of Alaska. Using measurements from May to September 2012, seasonal emission rate estimates of methane from tundra are constrained using the Stochastic Time-Inverted Lagrangian Transport model, a Lagrangian particle dispersion model driven by custom polar-WRF fields. Preliminary results suggest that methane emission rates have not greatly increased since the Arctic Boundary Layer Experiment conducted in southwest Alaska in 1988.

  13. Settlements in an Arctic Resource Frontier Region

    NARCIS (Netherlands)

    Hacquebord, L.; Avango, D.

    2009-01-01

    In this article we use a core-periphery model in order to understand the general trends in the history of natural resource exploitation in the polar regions. The study focuses on whaling, hunting, and coal mining activities on the European High Arctic archipelago of Spitsbergen, from the seventeenth

  14. Development of a pan-Arctic monitoring plan for polar bears: Background paper

    Science.gov (United States)

    Vongraven, Dag; Peacock, Lily

    2011-01-01

    Polar bears (Ursus maritimus), by their very nature, and the extreme, remote environment in which they live, are inherently difficult to study and monitor. Monitoring polar bear populations is both arduous and costly and, to be effective, must be a long-term commitment. There are few jurisdictional governments and management boards with a mandate for polar bear research and management, and many have limited resources. Although population monitoring of polar bears has been a focus to some degree within most jurisdictions around the Arctic, of the 19 subpopulations recognised by the IUCN/Species Survival Commission Polar Bear Specialist Group (PBSG), adequate scientific trend data exist for only three of the subpopulations, fair trend data for five and poor or no trend data for the remaining 11 subpopulations (PBSG 2010a). There are especially critical knowledge gaps for the subpopulations in East Greenland, in the Russian Kara and Laptev seas, and in the Chukchi Sea, which is shared between Russia and the United States. The range covered by these subpopulations represents a third of the total area (approx. 23 million km2) of polar bears’ current range, and more than half if the Arctic Basin is included. If we use popular terms, we know close to nothing about polar bears in this portion of their range.As summer sea-ice extent, and to a lesser degree, spring-time extent, continues to retreat, outpacing model forecasts (Stroeve et al. 2007, Pedersen et al. 2009), polar bears face the challenge of adapting to rapidly changing habitats. There is a need to use current and synthesised information across the Arctic, and to develop new methods that will facilitate monitoring to generate new knowledge at a pan-Arctic scale. The circumpolar dimension can be lost when efforts are channelled into regional monitoring. Developing and implementing a plan that harmonises local, regional and global efforts will increase our power to detect and understand important trends for polar

  15. PolarPortal.org Communicates Real-Time Developments in the Arctic

    Science.gov (United States)

    Langen, P. L.; Andersen, S. B.; Andersen, K. K.; Andersen, M. L.; Ahlstrom, A. P.; van As, D.; Barletta, V. R.; Box, J. E.; Citterio, M.; Colgan, W. T.; Dybkjær, G.; Forsberg, R.; Høyer, J. L.; Jensen, M. B.; Kliem, N.; Mottram, R.; Nielsen, K. P.; Olesen, M.; Quaglia, F. C.; Rasmussen, T. A.; Rodehacke, C. B.; Stendel, M.; Sandberg Sørensen, L.; Tonboe, R. T.

    2014-12-01

    PolarPortal.org was launched in June 2013 by a consortium of Danish institutions, including the Danish Meteorological Institute (DMI), the Geological Survey of Denmark and Greenland (GEUS) and the National Space Institute at the Technical University of Denmark (DTU-Space). Polar Portal is a single web portal presenting a wide range of near real-time information on both the Greenland ice sheet and Arctic sea-ice in a format geared for non-specialists. Polar Portal aims to meet widespread public interest in a diverse range of climate-cryosphere processes in the Arctic: What is the present Greenland ice sheet contribution to sea level rise? How quickly are outlet glaciers retreating or advancing right now? How extensive is Arctic sea-ice or how warm is the Arctic Ocean at this moment? Although public interest in such topics is widely acknowledged, an important primary task for the scientists behind Polar Portal was collaborating with media specialists to establish the knowledge range of the general public on these topics, in order for Polar Portal to appropriately present useful climate-cryosphere information. Consequently, Polar Portal is designed in a highly visual exploratory format, where individual data products are accompanied by plain written summaries, with hyperlinks to relevant journal papers for more scrutinizing users. Numerous satellite and in situ observations, together with model output, are channeled daily into the Greenland ice sheet and Arctic sea-ice divisions of Polar Portal.

  16. Sources and sinks of carbon dioxide in the Arctic regions

    Energy Technology Data Exchange (ETDEWEB)

    Gosink, T. A.; Kelley, J. J.

    1982-01-01

    The data base required to adequately ascertain seasonal source and sink strengths in the arctic regions is difficult to obtain. However, there are now a reasonable quantity of data for this polar region to estimate sources and sinks within the Arctic which may contribute significantly to the annual tropospheric CO/sub 2/ concentration fluctuation. The sea-ice-air and the sea-air interfaces account for most of the contribution to the sources and sinks for carbon dioxide. Although the arctic and subarctic region is small in extent, it certainly is not impervious and ice sealed. Our estimate, based on historical data and current research, indicates that the Arctic, which is about 4% of the earth's surface, is an annual net sink for approx. 10/sup 15/ g CO/sub 2/ accounting for an equivalent of approx. 3% of the annual anthropogenic contribution of CO/sub 2/ to the troposphere.

  17. Dynamic Oxidation of Gaseous Mercury in the Arctic Troposphere at Polar Sunrise

    DEFF Research Database (Denmark)

    Lindberg, S. E.; Brooks, S.; Lin, C.-J.

    2002-01-01

    Gaseous elemental mercury (Hg0) is a globally distributed air toxin with a long atmospheric residence time. Any process that reduces its atmospheric lifetime increases its potential accumulation in the biosphere. Our data from Barrow, AK, at 71 degrees N show that rapid, photochemically driven...... oxidation of boundary-layer Hg0 after polar sunrise, probably by reactive halogens, creates a rapidly depositing species of oxidized gaseous mercury in the remote Arctic troposphere at concentrations in excess of 900 pg m(-3). This mercury accumulates in the snowpack during polar spring at an accelerated...... rate in a form that is bioavailable to bacteria and is released with snowmelt during the summer emergence of the Arctic ecosystem. Evidence suggests that this is a recent phenomenon that may be occurring throughout the earth's polar regions. Udgivelsesdato: 2002-Mar-15...

  18. Anthropogenic Radionuglides in Marine Polar Regions

    Science.gov (United States)

    Holm, Elis

    The polar regions are important for the understanding of long range water and atmospheric transport of anthropogenic substances. Investigations show that atmospheric transport of anthropogenic radionuclides is the most important route of transport to the Antarctic while water transport plays a greater role for the Arctic. Fallout from nuclear detonation tests is the major source in the Antarctic while in the Arctic other sources, especially European reprocessing facilities, dominate for conservatively behaving rdionuclides such as 137Cs . The flux of 137Cs and 239+240Pu in the Antarctic is about 1/10 of that for the Arctic and the resulting concentrations in surface sea-water show the same ratio for the two areas. In the Antarctic concentration factors for 137Cs are higher than in the Arctic for similar species

  19. The Arctic - A New Region for China's Foreign Policy

    Directory of Open Access Journals (Sweden)

    V S Yagiya

    2015-12-01

    Full Text Available Article is devoted to foreign policy of China in the Arctic. Main attention is paid to strategic view of the China concerning the Arctic, to bilateral and multilateral cooperation on the Arctic issues, also to opinion of Russian experts about discussing of Russian-China economic partnership. It was shown interests of the People's Republic of China in the Arctic: use Arctic transport system from the Pacific Rim to Europe; possibility of access to the Arctic resources; seeks of partners for the realized of Arctic projects and programs. It was pointed six directions of China cooperation in the Arctic: a scientific researches, b natural minerals, oil and gas issues, c tourism, d routes of the Arctic navigation, e use of high technologies in development of regional economy, e cooperation in the cultural and educational spheres. Authors are summarized that at the initial stage of the international cooperation in the Arctic polar scientific researches become as the tool of “he soft power”, and in the long term - the Northern Sea Route of the Russian Federation is included in the Strategy of China Economic belt and the Maritime Silk Route in the XXI century.

  20. Hematology of southern Beaufort Sea polar bears (2005-2007): biomarker for an Arctic ecosystem health sentinel.

    Science.gov (United States)

    Kirk, Cassandra M; Amstrup, Steven; Swor, Rhonda; Holcomb, Darce; O'Hara, Todd M

    2010-09-01

    Declines in sea-ice habitats have resulted in declining stature, productivity, and survival of polar bears in some regions. With continuing sea-ice declines, negative population effects are projected to expand throughout the polar bear's range. Precise causes of diminished polar bear life history performance are unknown, however, climate and sea-ice condition change are expected to adversely impact polar bear (Ursus maritimus) health and population dynamics. As apex predators in the Arctic, polar bears integrate the status of lower trophic levels and are therefore sentinels of ecosystem health. Arctic residents feed at the apex of the ecosystem, thus polar bears can serve as indicators of human health in the Arctic. Despite their value as indicators of ecosystem welfare, population-level health data for U.S. polar bears are lacking. We present hematological reference ranges for southern Beaufort Sea polar bears. Hematological parameters in southern Beaufort Sea polar bears varied by age, geographic location, and reproductive status. Total leukocytes, lymphocytes, monocytes, eosinophils, and serum immunoglobulin G were significantly greater in males than females. These measures were greater in nonlactating females ages ≥5, than lactating adult females ages ≥5, suggesting that females encumbered by young may be less resilient to new immune system challenges that may accompany ongoing climate change. Hematological values established here provide a necessary baseline for anticipated changes in health as arctic temperatures warm and sea-ice declines accelerate. Data suggest that females with dependent young may be most vulnerable to these changes and should therefore be a targeted cohort for monitoring in this sentinel.

  1. Arctide2017, a high-resolution regional tidal model in the Arctic Ocean

    DEFF Research Database (Denmark)

    Cancet, M.; Andersen, O. B.; Lyard, F.

    2018-01-01

    The Arctic Ocean is a challenging region for tidal modelling. The accuracy of the global tidal models decreases by several centimeters in the Polar Regions, which has a large impact on the quality of the satellite altimeter sea surface heights and the altimetry-derived products. NOVELTIS, DTU Space...... and LEGOS have developed Arctide2017, a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of an extension of the CryoSat Plus for Ocean (CP4O) ESA STSE (Support to Science Element) project. In particular, this atlas benefits from the assimilation of the most complete satellite...... assimilation and validation. This paper presents the implementation methodology and the performance of this new regional tidal model in the Arctic Ocean, compared to the existing global and regional tidal models....

  2. Advancing Environmental Prediction Capabilities for the Polar Regions and Beyond during The Year of Polar Prediction

    Science.gov (United States)

    Werner, Kirstin; Goessling, Helge; Hoke, Winfried; Kirchhoff, Katharina; Jung, Thomas

    2017-04-01

    Environmental changes in polar regions open up new opportunities for economic and societal operations such as vessel traffic related to scientific, fishery and tourism activities, and in the case of the Arctic also enhanced resource development. The availability of current and accurate weather and environmental information and forecasts will therefore play an increasingly important role in aiding risk reduction and safety management around the poles. The Year of Polar Prediction (YOPP) has been established by the World Meteorological Organization's World Weather Research Programme as the key activity of the ten-year Polar Prediction Project (PPP; see more on www.polarprediction.net). YOPP is an internationally coordinated initiative to significantly advance our environmental prediction capabilities for the polar regions and beyond, supporting improved weather and climate services. Scheduled to take place from mid-2017 to mid-2019, the YOPP core phase covers an extended period of intensive observing, modelling, prediction, verification, user-engagement and education activities in the Arctic and Antarctic, on a wide range of time scales from hours to seasons. The Year of Polar Prediction will entail periods of enhanced observational and modelling campaigns in both polar regions. With the purpose to close the gaps in the conventional polar observing systems in regions where the observation network is sparse, routine observations will be enhanced during Special Observing Periods for an extended period of time (several weeks) during YOPP. This will allow carrying out subsequent forecasting system experiments aimed at optimizing observing systems in the polar regions and providing insight into the impact of better polar observations on forecast skills in lower latitudes. With various activities and the involvement of a wide range of stakeholders, YOPP will contribute to the knowledge base needed to managing the opportunities and risks that come with polar climate change.

  3. Hematology of southern Beaufort Sea polar bears (2005-2007): Biomarker for an arctic ecosystem health sentinel

    Science.gov (United States)

    Kirk, Cassandra M.; Amstrup, Steven C.; Swor, Rhonda; Holcomb, Darce; O'Hara, T. M.

    2010-01-01

    Declines in sea-ice habitats have resulted in declining stature, productivity, and survival of polar bears in some regions. With continuing sea-ice declines, negative population effects are projected to expand throughout the polar bear's range. Precise causes of diminished polar bear life history performance are unknown, however, climate and sea-ice condition change are expected to adversely impact polar bear (Ursus maritimus) health and population dynamics. As apex predators in the Arctic, polar bears integrate the status of lower trophic levels and are therefore sentinels of ecosystem health. Arctic residents feed at the apex of the ecosystem, thus polar bears can serve as indicators of human health in the Arctic. Despite their value as indicators of ecosystem welfare, population-level health data for U.S. polar bears are lacking. We present hematological reference ranges for southern Beaufort Sea polar bears. Hematological parameters in southern Beaufort Sea polar bears varied by age, geographic location, and reproductive status. Total leukocytes, lymphocytes, monocytes, eosinophils, and serum immunoglobulin G were significantly greater in males than females. These measures were greater in nonlactating females ages ???5, than lactating adult females ages ???5, suggesting that females encumbered by young may be less resilient to new immune system challenges that may accompany ongoing climate change. Hematological values established here provide a necessary baseline for anticipated changes in health as arctic temperatures warm and sea-ice declines accelerate. Data suggest that females with dependent young may be most vulnerable to these changes and should therefore be a targeted cohort for monitoring in this sentinel. ?? 2010 International Association for Ecology and Health.

  4. Protecting polar wilderness : Just a western philosophical idea or a useful concept for regulating human activities in the polar regions?

    NARCIS (Netherlands)

    Bastmeijer, Kees; Leary, D.; Koivurova, T.; Alfredsson, G.

    2009-01-01

    Governments involved in Arctic and Antarctic governance have been well aware of the increasing human pressure on the Polar Regions and particularly the last two decades many initiatives have been taken to protect the Arctic and Antarctic environment. But what values are to be protected? This paper

  5. Changing Arctic Ecosystems: Updated forecast: Reducing carbon dioxide (CO2) emissions required to improve polar bear outlook

    Science.gov (United States)

    Oakley, Karen L.; Atwood, Todd C.; Mugel, Douglas N.; Rode, Karyn D.; Whalen, Mary E.

    2015-01-01

    The Arctic is warming faster than other regions of the world due to the loss of snow and ice, which increases the amount of solar energy absorbed by the region. The most visible consequence has been the rapid decline in sea ice over the last 3 decades-a decline projected to bring long ice-free summers if greenhouse gas (GHG) emissions are not significantly reduced. The polar bear (Ursus maritimus) depends on sea ice over the biologically productive continental shelves of the Arctic Ocean as a platform for hunting seals. In 2008, the U.S. Fish and Wildlife Service listed the polar bear as threatened under the Endangered Species Act (ESA) due to the threat posed by sea ice loss. The polar bear was the first species to be listed due to forecasted population declines from climate change.

  6. Plastic ingestion by juvenile polar cod (Boreogadus saida) in the Arctic Ocean

    NARCIS (Netherlands)

    Kühn, Susanne; Schaafsma, Fokje L.; Werven, van Bernike; Flores, Hauke; Bergmann, Melanie; Egelkraut-Holtus, Marion; Tekman, Mine B.; Franeker, van Jan A.

    2018-01-01

    One of the recently recognised stressors in Arctic ecosystems concerns plastic litter. In this study, juvenile polar cod (Boreogadus saida) were investigated for the presence of plastics in their stomachs. Polar cod is considered a key species in the Arctic ecosystem. The fish were collected both

  7. Collaborative Research: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J. [Iowa State Univ., Ames, IA (United States)

    2017-12-28

    This project developed and applied a regional Arctic System model for enhanced decadal predictions. It built on successful research by four of the current PIs with support from the DOE Climate Change Prediction Program, which has resulted in the development of a fully coupled Regional Arctic Climate Model (RACM) consisting of atmosphere, land-hydrology, ocean and sea ice components. An expanded RACM, a Regional Arctic System Model (RASM), has been set up to include ice sheets, ice caps, mountain glaciers, and dynamic vegetation to allow investigation of coupled physical processes responsible for decadal-scale climate change and variability in the Arctic. RASM can have high spatial resolution (~4-20 times higher than currently practical in global models) to advance modeling of critical processes and determine the need for their explicit representation in Global Earth System Models (GESMs). The pan-Arctic region is a key indicator of the state of global climate through polar amplification. However, a system-level understanding of critical arctic processes and feedbacks needs further development. Rapid climate change has occurred in a number of Arctic System components during the past few decades, including retreat of the perennial sea ice cover, increased surface melting of the Greenland ice sheet, acceleration and thinning of outlet glaciers, reduced snow cover, thawing permafrost, and shifts in vegetation. Such changes could have significant ramifications for global sea level, the ocean thermohaline circulation and heat budget, ecosystems, native communities, natural resource exploration, and commercial transportation. The overarching goal of the RASM project has been to advance understanding of past and present states of arctic climate and to improve seasonal to decadal predictions. To do this the project has focused on variability and long-term change of energy and freshwater flows through the arctic climate system. The three foci of this research are: - Changes

  8. Collaborative Proposal: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic System Model (RASM)

    Energy Technology Data Exchange (ETDEWEB)

    Maslowski, Wieslaw [Naval Postgraduate School, Monterey, CA (United States)

    2016-10-17

    This project aims to develop, apply and evaluate a regional Arctic System model (RASM) for enhanced decadal predictions. Its overarching goal is to advance understanding of the past and present states of arctic climate and to facilitate improvements in seasonal to decadal predictions. In particular, it will focus on variability and long-term change of energy and freshwater flows through the arctic climate system. The project will also address modes of natural climate variability as well as extreme and rapid climate change in a region of the Earth that is: (i) a key indicator of the state of global climate through polar amplification and (ii) which is undergoing environmental transitions not seen in instrumental records. RASM will readily allow the addition of other earth system components, such as ecosystem or biochemistry models, thus allowing it to facilitate studies of climate impacts (e.g., droughts and fires) and of ecosystem adaptations to these impacts. As such, RASM is expected to become a foundation for more complete Arctic System models and part of a model hierarchy important for improving climate modeling and predictions.

  9. Potential for an Arctic-breeding migratory bird to adjust spring migration phenology to Arctic amplification

    NARCIS (Netherlands)

    Lameris, T.K.; Scholten, Ilse; Bauer, S.; Cobben, M.M.P.; Ens, B.J.; Nolet, B.A.

    2017-01-01

    Arctic amplification, the accelerated climate warming in the polar regions, is causing a more rapid advancement of the onset of spring in the Arctic than in temperate regions. Consequently, the arrival of many migratory birds in the Arctic is thought to become increasingly mismatched with the onset

  10. The influence of regional Arctic sea-ice decline on stratospheric and tropospheric circulation

    Science.gov (United States)

    McKenna, Christine; Bracegirdle, Thomas; Shuckburgh, Emily; Haynes, Peter

    2016-04-01

    Arctic sea-ice extent has rapidly declined over the past few decades, and most climate models project a continuation of this trend during the 21st century in response to greenhouse gas forcing. A number of recent studies have shown that this sea-ice loss induces vertically propagating Rossby waves, which weaken the stratospheric polar vortex and increase the frequency of sudden stratospheric warmings (SSWs). SSWs have been shown to increase the probability of a negative NAO in the following weeks, thereby driving anomalous weather conditions over Europe and other mid-latitude regions. In contrast, other studies have shown that Arctic sea-ice loss strengthens the polar vortex, increasing the probability of a positive NAO. Sun et al. (2015) suggest these conflicting results may be due to the region of sea-ice loss considered. They find that if only regions within the Arctic Circle are considered in sea-ice projections, the polar vortex weakens; if only regions outwith the Arctic Circle are considered, the polar vortex strengthens. This is because the anomalous Rossby waves forced in the former/latter scenario constructively/destructively interfere with climatological Rossby waves, thus enhancing/suppressing upward wave propagation. In this study, we investigate whether Sun et al.'s results are robust to a different model. We also divide the regions of sea-ice loss they considered into further sub-regions, in order to examine the regional differences in more detail. We do this by using the intermediate complexity climate model, IGCM4, which has a well resolved stratosphere and does a good job of representing stratospheric processes. Several simulations are run in atmosphere only mode, where one is a control experiment and the others are perturbation experiments. In the control run annually repeating historical mean surface conditions are imposed at the lower boundary, whereas in each perturbation run the model is forced by SST perturbations imposed in a specific

  11. Trichinella in arctic, subarctic and temperate regions

    DEFF Research Database (Denmark)

    Kapel, C. M O

    1997-01-01

    The transmission and occurrence of Trichinella spp according to the zoogeography of different climatic conditions, socioeconomy and human activity are discussed. Comparing arctic, subarctic and temperate regions, it appears that the species of Trichinella present, the composition of the fauna...... and the human activity are all very important interacting factors affecting epidemiology. In Greenland, where only sylvatic trichinellosis is present, the high prevalence in wildlife appears closely connected with polar bear hunting. In the Scandinavian countries, the prevalence of both sylvatic and domestic...

  12. Increased Arctic sea ice drift alters adult female polar bear movements and energetics.

    Science.gov (United States)

    Durner, George M; Douglas, David C; Albeke, Shannon E; Whiteman, John P; Amstrup, Steven C; Richardson, Evan; Wilson, Ryan R; Ben-David, Merav

    2017-09-01

    Recent reductions in thickness and extent have increased drift rates of Arctic sea ice. Increased ice drift could significantly affect the movements and the energy balance of polar bears (Ursus maritimus) which forage, nearly exclusively, on this substrate. We used radio-tracking and ice drift data to quantify the influence of increased drift on bear movements, and we modeled the consequences for energy demands of adult females in the Beaufort and Chukchi seas during two periods with different sea ice characteristics. Westward and northward drift of the sea ice used by polar bears in both regions increased between 1987-1998 and 1999-2013. To remain within their home ranges, polar bears responded to the higher westward ice drift with greater eastward movements, while their movements north in the spring and south in fall were frequently aided by ice motion. To compensate for more rapid westward ice drift in recent years, polar bears covered greater daily distances either by increasing their time spent active (7.6%-9.6%) or by increasing their travel speed (8.5%-8.9%). This increased their calculated annual energy expenditure by 1.8%-3.6% (depending on region and reproductive status), a cost that could be met by capturing an additional 1-3 seals/year. Polar bears selected similar habitats in both periods, indicating that faster drift did not alter habitat preferences. Compounding reduced foraging opportunities that result from habitat loss; changes in ice drift, and associated activity increases, likely exacerbate the physiological stress experienced by polar bears in a warming Arctic. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  13. Environmental impact on the polar regions

    International Nuclear Information System (INIS)

    Jaffe, D.A.; Leighton, E.; Tumeo, M.A.

    1994-01-01

    The remote and frigid polar regions are no longer isolated from the activities, pollutants, and controversies that bedevil their more temperate neighbors, say three researchers at the University of Alaska in Fairbanks. For example, Daniel A. Jaffe, Elizabeth Leighton, and Mark A. Tumeo point to traces of DDT, PCBs, and heavy metals that routinely turn up in arctic marine mammals and to the ozone hole over the Antarctic. While similar in environmental makeup, the arctic and Antarctic are poles apart in their political structure and, thus, in their environmental exposure, the researchers note. The Antarctic is managed under a long-standing international treaty, while the arctic is sovereign territory to eight separate nations. The international treaty sets aside the Antarctic for peaceful scientific research within strict environmental boundaries. It bans both military activity and minerals extraction-the two activities that have caused the most damage in the arctic. The main threats to Antarctica's environment come from the intrusion of major scientific research operations and the growing tourism industry. On the other hand, the arctic suffered from the massive Cold War military buildup by both the United States and the former Soviet Union. The environmental residue from that buildup is only now being revealed, the authors say. Major oil and gas drilling and coal and metal-ore mining also have taken a huge environmental toll, they add

  14. Possible Effects of Climate Warming on Selected Populations of Polar Bears (Ursus maritimus) in the Canadian Arctic

    Science.gov (United States)

    Parkinson, Claire L.; Stirling Ian

    2006-01-01

    Polar bears are dependent on sea ice for survival. Climate warming in the Arctic has caused significant declines in coverage and thickness of sea ice in the polar basin and progressively earlier breakup in some areas. In four populations of polar bears in the eastern Canadian Arctic (including Western Hudson Bay), Inuit hunters report more bears near settlements during the open water period in recent years. These observations have been interpreted as evidence of increasing population size, resulting in increases in hunting quotas. However, long-term data on the population size and condition of polar bears in Western Hudson Bay, and population and harvest data from Baffin Bay, make it clear that those two populations at least are declining, not increasing. While the details vary in different arctic regions, analysis of passive-microwave satellite imagery, beginning in the late 1970s, indicates that the sea ice is breaking up at progressively earlier dates, so that bears must fast for longer periods during the open water season. Thus, at least part of the explanation for the appearance of more bears in coastal communities is likely that they are searching for alternative food sources because their stored body fat depots are being exhausted. We hypothesize that, if the climate continues to warm as projected by the IPCC, then polar bears in all five populations discussed in this paper will be stressed and are likely to decline in numbers, probably significantly so. As these populations decline, there will likely also be continuing, possibly increasing, numbers of problem interactions between bears and humans as the bears seek alternate food sources. Taken together, the data reported in this paper suggest that a precautionary approach be taken to the harvesting of polar bears and that the potential effects of climate warming be incorporated into planning for the management and conservation of this species throughout the Arctic.

  15. Pliocene warmth, polar amplification, and stepped Pleistocene cooling recorded in NE Arctic Russia.

    Science.gov (United States)

    Brigham-Grette, Julie; Melles, Martin; Minyuk, Pavel; Andreev, Andrei; Tarasov, Pavel; DeConto, Robert; Koenig, Sebastian; Nowaczyk, Norbert; Wennrich, Volker; Rosén, Peter; Haltia, Eeva; Cook, Tim; Gebhardt, Catalina; Meyer-Jacob, Carsten; Snyder, Jeff; Herzschuh, Ulrike

    2013-06-21

    Understanding the evolution of Arctic polar climate from the protracted warmth of the middle Pliocene into the earliest glacial cycles in the Northern Hemisphere has been hindered by the lack of continuous, highly resolved Arctic time series. Evidence from Lake El'gygytgyn, in northeast (NE) Arctic Russia, shows that 3.6 to 3.4 million years ago, summer temperatures were ~8°C warmer than today, when the partial pressure of CO2 was ~400 parts per million. Multiproxy evidence suggests extreme warmth and polar amplification during the middle Pliocene, sudden stepped cooling events during the Pliocene-Pleistocene transition, and warmer than present Arctic summers until ~2.2 million years ago, after the onset of Northern Hemispheric glaciation. Our data are consistent with sea-level records and other proxies indicating that Arctic cooling was insufficient to support large-scale ice sheets until the early Pleistocene.

  16. Depletion of stratospheric ozone over the Antarctic and Arctic: Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview

    International Nuclear Information System (INIS)

    Rozema, Jelte; Boelen, Peter; Blokker, Peter

    2005-01-01

    Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to experimentally varied UV-B through supplementation or exclusion. In supplementation studies comparing ambient and above ambient UV-B, no effect on growth occurred. UV-B-induced DNA damage, as measured in polar bryophytes, is repaired overnight by photoreactivation. With UV exclusion, growth at near ambient may be less than at below ambient UV-B levels, which relates to the UV response curve of polar plants. UV-B screening foils also alter PAR, humidity, and temperature and interactions of UV with environmental factors may occur. Plant phenolics induced by solar UV-B, as in pollen, spores and lignin, may serve as a climate proxy for past UV. Since the Antarctic and Arctic terrestrial ecosystems differ essentially (e.g. higher species diversity and more trophic interactions in the Arctic), generalization of polar plant responses to UV-B needs caution. - Polar plant responses to UV-B may be different in the Arctic than Antarctic regions

  17. Changing geo-political realities in the Arctic region

    DEFF Research Database (Denmark)

    Sørensen, Camilla T. N.

    2014-01-01

    This article analyzes and discusses how Denmark seeks to manage the changing geopolitical realities in the Arctic region specifically focusing on how Denmark seeks to manage its relations with China in the Arctic region.......This article analyzes and discusses how Denmark seeks to manage the changing geopolitical realities in the Arctic region specifically focusing on how Denmark seeks to manage its relations with China in the Arctic region....

  18. Regional cooperation and sustainable development: The Arctic

    International Nuclear Information System (INIS)

    Vartanov, R.V.

    1993-01-01

    The Arctic is one of the regions most alienated from sustainable development, due to consequences of nuclear testing, long-range pollution transport, large-scale industrial accidents, irrational use of natural resources, and environmentally ignorant socio-economic policies. Revelations of the state of the USSR Arctic shows that air quality in northern cities is below standard, fish harvests are declining, pollution is not being controlled, and native populations are being affected seriously. The presence of immense resources in the Arctic including exploitable offshore oil reserves of 100-200 billion bbl and the prospect of wider utilization of northern sea routes should stimulate establishment of a new international regime of use, research, and protection of Arctic resources in favor of sustainable development in the region. The Arctic marine areas are the key component of the Arctic ecosystem and so should receive special attention. A broad legal framework has already been provided for such cooperation. Included in such cooperation would be native peoples and non-Arctic countries. Specifics of the cooperation would involve exchanging of scientific and technical information, promotion of ecologically sound technologies, equipping Arctic regions with means to control environmental quality, harmonizing environmental protection legislation, and monitoring Arctic environmental quality

  19. Polar bears and sea ice habitat change

    Science.gov (United States)

    Durner, George M.; Atwood, Todd C.; Butterworth, Andy

    2017-01-01

    The polar bear (Ursus maritimus) is an obligate apex predator of Arctic sea ice and as such can be affected by climate warming-induced changes in the extent and composition of pack ice and its impacts on their seal prey. Sea ice declines have negatively impacted some polar bear subpopulations through reduced energy input because of loss of hunting habitats, higher energy costs due to greater ice drift, ice fracturing and open water, and ultimately greater challenges to recruit young. Projections made from the output of global climate models suggest that polar bears in peripheral Arctic and sub-Arctic seas will be reduced in numbers or become extirpated by the end of the twenty-first century if the rate of climate warming continues on its present trajectory. The same projections also suggest that polar bears may persist in the high-latitude Arctic where heavy multiyear sea ice that has been typical in that region is being replaced by thinner annual ice. Underlying physical and biological oceanography provides clues as to why polar bear in some regions are negatively impacted, while bears in other regions have shown no apparent changes. However, continued declines in sea ice will eventually challenge the survival of polar bears and efforts to conserve them in all regions of the Arctic.

  20. Human-polar bear interactions in a changing Arctic: Existing and emerging concerns

    Science.gov (United States)

    Atwood, Todd C.; Simac, Kristin; Breck, Stewart; York, Geoff; Wilder, James

    2017-01-01

    The behavior and sociality of polar bears (Ursus maritimus) have been shaped by evolved preferences for sea ice habitat and preying on marine mammals. However, human behavior is causing changes to the Arctic marine ecosystem through the influence of greenhouse gas emissions that drive long-term change in ecosystem processes and via the presence of in situ stressors associated with increasing human activities. These changes are making it more difficult for polar bears to reliably use their traditional habitats and maintain fitness. Here, we provide an overview of how human activities in the Arctic are likely to change a polar bear’s behavior and to influence their resilience to environmental change. Developing a more thorough understanding of polar bear behavior and their capacity for flexibility in response to anthropogenic disturbances and subsequent mitigations may lead to successful near-term management interventions.

  1. Arctic security in an age of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Kraska, James (ed.)

    2013-03-01

    Publisher review: This book examines Arctic defense policy and military security from the perspective of all eight Arctic states. In light of climate change and melting ice in the Arctic Ocean, Canada, Russia, Denmark (Greenland), Norway and the United States, as well as Iceland, Sweden and Finland, are grappling with an emerging Arctic security paradigm. This volume brings together the world's most seasoned Arctic political-military experts from Europe and North America to analyze how Arctic nations are adapting their security postures to accommodate increased shipping, expanding naval presence, and energy and mineral development in the polar region. The book analyzes the ascent of Russia as the first 'Arctic superpower', the growing importance of polar security for NATO and the Nordic states, and the increasing role of Canada and the United States in the region.(Author)

  2. Wind power in Arctic regions

    International Nuclear Information System (INIS)

    Lundsager, P.; Ahm, P.; Madsen, B.; Krogsgaard, P.

    1993-07-01

    Arctic or semi-arctic regions are often endowed with wind resources adequate for a viable production of electricity from the wind. Only limited efforts have so far been spent to introduce and to demonstrate the obvious synergy of combining wind power technology with the problems and needs of electricity generation in Arctic regions. Several factors have created a gap preventing the wind power technology carrying its full role in this context, including a certain lack of familiarity with the technology on the part of the end-users, the local utilities and communities, and a lack of commonly agreed techniques to adapt the same technology for Arctic applications on the part of the manufacturers. This report is part of a project that intends to contribute to bridging this gap. The preliminary results of a survey conducted by the project are included in this report, which is a working document for an international seminar held on June 3-4, 1993, at Risoe National Laboratory, Denmark. Following the seminar a final report will be published. It is intended that the final report will serve as a basis for a sustained, international effort to develop the wind power potential of the Arctic and semi-arctic regions. The project is carried out by a project group formed by Risoe, PA Energy and BTM Consult. The project is sponsored by the Danish Energy Agency of the Danish Ministry of Energy through grant no. ENS-51171/93-0008. (au)

  3. Differences in mercury bioaccumulation between polar bears (Ursus maritimus) from the Canadian high- and sub-Arctic.

    Science.gov (United States)

    St Louis, Vincent L; Derocher, Andrew E; Stirling, Ian; Graydon, Jennifer A; Lee, Caroline; Jocksch, Erin; Richardson, Evan; Ghorpade, Sarah; Kwan, Alvin K; Kirk, Jane L; Lehnherr, Igor; Swanson, Heidi K

    2011-07-15

    Polar bears (Ursus maritimus) are being impacted by climate change and increased exposure to pollutants throughout their northern circumpolar range. In this study, we quantified concentrations of total mercury (THg) in the hair of polar bears from Canadian high- (southern Beaufort Sea, SBS) and sub- (western Hudson Bay, WHB) Arctic populations. Concentrations of THg in polar bears from the SBS population (14.8 ± 6.6 μg g(-1)) were significantly higher than in polar bears from WHB (4.1 ± 1.0 μg g(-1)). On the basis of δ(15)N signatures in hair, in conjunction with published δ(15)N signatures in particulate organic matter and sediments, we estimated that the pelagic and benthic food webs in the SBS are ∼ 4.7 and ∼ 4.0 trophic levels long, whereas in WHB they are only ∼ 3.6 and ∼ 3.3 trophic levels long. Furthermore, the more depleted δ(13)C ratios in hair from SBS polar bears relative to those from WHB suggests that SBS polar bears feed on food webs that are relatively more pelagic (and longer), whereas polar bears from WHB feed on those that are relatively more benthic (and shorter). Food web length and structure accounted for ∼ 67% of the variation we found in THg concentrations among all polar bears across both populations. The regional difference in polar bear hair THg concentrations was also likely due to regional differences in water-column concentrations of methyl Hg (the toxic form of Hg that biomagnifies through food webs) available for bioaccumulation at the base of the food webs. For example, concentrations of methylated Hg at mid-depths in the marine water column of the northern Canadian Arctic Archipelago were 79.8 ± 37.3 pg L(-1), whereas, in HB, they averaged only 38.3 ± 16.6 pg L(-1). We conclude that a longer food web and higher pelagic concentrations of methylated Hg available to initiate bioaccumulation in the BS resulted in higher concentrations of THg in polar bears from the SBS region compared to those inhabiting the western

  4. Toward Process-resolving Synthesis and Prediction of Arctic Climate Change Using the Regional Arctic System Model

    Science.gov (United States)

    Maslowski, W.

    2017-12-01

    The Regional Arctic System Model (RASM) has been developed to better understand the operation of Arctic System at process scale and to improve prediction of its change at a spectrum of time scales. RASM is a pan-Arctic, fully coupled ice-ocean-atmosphere-land model with marine biogeochemistry extension to the ocean and sea ice models. The main goal of our research is to advance a system-level understanding of critical processes and feedbacks in the Arctic and their links with the Earth System. The secondary, an equally important objective, is to identify model needs for new or additional observations to better understand such processes and to help constrain models. Finally, RASM has been used to produce sea ice forecasts for September 2016 and 2017, in contribution to the Sea Ice Outlook of the Sea Ice Prediction Network. Future RASM forecasts, are likely to include increased resolution for model components and ecosystem predictions. Such research is in direct support of the US environmental assessment and prediction needs, including those of the U.S. Navy, Department of Defense, and the recent IARPC Arctic Research Plan 2017-2021. In addition to an overview of RASM technical details, selected model results are presented from a hierarchy of climate models together with available observations in the region to better understand potential oceanic contributions to polar amplification. RASM simulations are analyzed to evaluate model skill in representing seasonal climatology as well as interannual and multi-decadal climate variability and predictions. Selected physical processes and resulting feedbacks are discussed to emphasize the need for fully coupled climate model simulations, high model resolution and sensitivity of simulated sea ice states to scale dependent model parameterizations controlling ice dynamics, thermodynamics and coupling with the atmosphere and ocean.

  5. Correlations of mesospheric winds with subtle motion of the Arctic polar vortex

    Directory of Open Access Journals (Sweden)

    Y. Bhattacharya

    2010-01-01

    Full Text Available This paper investigates the relationship between high latitude upper mesospheric winds and the state of the stratospheric polar vortex in the absence of major sudden stratospheric warmings. A ground based Michelson Interferometer stationed at Resolute Bay (74°43' N, 94°58' W in the Canadian High Arctic is used to measure mesopause region neutral winds using the hydroxyl (OH Meinel-band airglow emission (central altitude of ~85 km. These observed winds are compared to analysis winds in the upper stratosphere during November and December of 1995 and 1996; years characterized as cold, stable polar vortex periods. Correlation of mesopause wind speeds with those from the upper stratosphere is found to be significant for the 1996 season when the polar vortex is subtly displaced off its initial location by a strong Aleutian High. These mesopause winds are observed to lead stratospheric winds by approximately two days with increasing (decreasing mesospheric winds predictive of decreasing (increasing stratospheric winds. No statistically significant correlations are found for the 1995 season when there is no such displacement of the polar vortex.

  6. The Experience of Barometric Drifter Application for Investigating the World Ocean Arctic Region

    Directory of Open Access Journals (Sweden)

    S.V. Motyzhev

    2016-08-01

    Full Text Available Efficiency of the problem solution to create a regionally-oriented data computing system for marine dynamics and ecosystem evolution modeling and forecasting (that should be capable for providing reliable information for managerial decision making, justifying future economic projects and adjusting the existing ones depends on development level of observational systems, environmental evolution, mathematical models and techniques for observational data assimilation. The analysis of the system as an observational segment of modern geo-informational technology allows us to draw a conclusion that the system of drifter observations is one of the most effective ones nowadays. Surface drifter network, continuously operating in the World Ocean, provides systematic operational data on the surface water circulation, thermal processes in the upper ocean and air pressure. Drifter data, acquired over the past 15 years, allowed one to improve and even change the existing concepts of patterns and mechanisms of regional climatic trend and hydrometeorological anomaly formation under effect of global processes in the Ocean – Atmosphere model (in the high latitudes as well. In the present paper the principle results of the analysis of expediency and feasibility of drifting systematic operative pressure field monitoring establishment in the near-surface atmosphere layer over the Arctic Ocean and the seas of the Russian Federation Arctic Zone have been considered. More than 30 drifters of BTC60/GPS/ice type, whose summarized lifetime as for June 2015 exceeded 6500 days, were deployed in the Arctic in 2012–2015. According to data acquired from the drifters, more than 155 000 air pressure readings were received. The most intensive drifter observations were carried out in two regions: in the Beaufort Sea – Canada Basin and in the Central Arctic. The results of experiments revealed that hardware-software solutions implemented in polar modifications of barometric

  7. Identifying polar bear resource selection patterns to inform offshore development in a dynamic and changing Arctic

    Science.gov (United States)

    Wilson, Ryan R.; Horne, Jon S.; Rode, Karyn D.; Regehr, Eric V.; Durner, George M.

    2014-01-01

    Although sea ice loss is the primary threat to polar bears (Ursus maritimus), little can be done to mitigate its effects without global efforts to reduce greenhouse gas emissions. Other factors, however, could exacerbate the impacts of sea ice loss on polar bears, such as exposure to increased industrial activity. The Arctic Ocean has enormous oil and gas potential, and its development is expected to increase in the coming decades. Estimates of polar bear resource selection will inform managers how bears use areas slated for oil development and to help guide conservation planning. We estimated temporally-varying resource selection patterns for non-denning adult female polar bears in the Chukchi Sea population (2008–2012) at two scales (i.e., home range and weekly steps) to identify factors predictive of polar bear use throughout the year, before any offshore development. From the best models at each scale, we estimated scale-integrated resource selection functions to predict polar bear space use across the population's range and determined when bears were most likely to use the region where offshore oil and gas development in the United States is slated to occur. Polar bears exhibited significant intra-annual variation in selection patterns at both scales but the strength and annual patterns of selection differed between scales for most variables. Bears were most likely to use the offshore oil and gas planning area during ice retreat and growth with the highest predicted use occurring in the southern portion of the planning area. The average proportion of predicted high-value habitat in the planning area was >15% of the total high-value habitat for the population during sea ice retreat and growth and reached a high of 50% during November 2010. Our results provide a baseline on which to judge future changes to non-denning adult female polar bear resource selection in the Chukchi Sea and help guide offshore development in the region. Lastly, our study provides a

  8. Simulating Arctic clouds during Arctic Radiation- IceBridge Sea and Ice Experiment (ARISE)

    Science.gov (United States)

    Bromwich, D. H.; Hines, K. M.; Wang, S. H.

    2015-12-01

    The representation within global and regional models of the extensive low-level cloud cover over polar oceans remains a critical challenge for quantitative studies and forecasts of polar climate. In response, the polar-optimized version of the Weather Research and Forecasting model (Polar WRF) is used to simulate the meteorology, boundary layer, and Arctic clouds during the September-October 2014 Arctic Radiation- IceBridge Sea and Ice Experiment (ARISE) project. Polar WRF was developed with several adjustments to the sea ice thermodynamics in WRF. ARISE was based out of Eielson Air Force Base near Fairbanks, Alaska and included multiple instrumented C-130 aircraft flights over open water and sea ice of the Beaufort Sea. Arctic boundary layer clouds were frequently observed within cold northeasterly flow over the open ocean and ice. Preliminary results indicate these clouds were primarily liquid water, with characteristics differing between open water and sea ice surfaces. Simulated clouds are compared to ARISE observations. Furthermore, Polar WRF simulations are run for the August-September 2008 Arctic Summer Cloud Ocean Study (ASCOS) for comparison to the ARISE. Preliminary analysis shows that simulated low-level water clouds over the sea ice are too extensive during the the second half of the ASCOS field program. Alternatives and improvements to the Polar WRF cloud schemes are considered. The goal is to use the ARISE and ASCOS observations to achieve an improved polar supplement to the WRF code for open water and sea ice that can be provided to the Polar WRF community.

  9. A 21-Year Record of Arctic Sea Ice Extents and Their Regional, Seasonal, and Monthly Variability and Trends

    Science.gov (United States)

    Parkinson, Claire L.; Cavalieri, Donald J.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Satellite passive-microwave data have been used to calculate sea ice extents over the period 1979-1999 for the north polar sea ice cover as a whole and for each of nine regions. Over this 21-year time period, the trend in yearly average ice extents for the ice cover as a whole is -32,900 +/- 6,100 sq km/yr (-2.7 +/- 0.5 %/decade), indicating a reduction in sea ice coverage that has decelerated from the earlier reported value of -34,000 +/- 8,300 sq km/yr (-2.8 +/- 0.7 %/decade) for the period 1979-1996. Regionally, the reductions are greatest in the Arctic Ocean, the Kara and Barents Seas, and the Seas of Okhotsk and Japan, whereas seasonally, the reductions are greatest in summer, for which season the 1979-1999 trend in ice extents is -41,600 +/- 12,900 sq km/ yr (-4.9 +/- 1.5 %/decade). On a monthly basis, the reductions are greatest in July and September for the north polar ice cover as a whole, in September for the Arctic Ocean, in June and July for the Kara and Barents Seas, and in April for the Seas of Okhotsk and Japan. Only two of the nine regions show overall ice extent increases, those being the Bering Sea and the Gulf of St. Lawrence.For neither of these two regions is the increase statistically significant, whereas the 1079 - 1999 ice extent decreases are statistically significant at the 99% confidence level for the north polar region as a whole, the Arctic Ocean, the Seas of Okhotsk and Japan, and Hudson Bay.

  10. Energy Management for Automatic Monitoring Stations in Arctic Regions

    Science.gov (United States)

    Pimentel, Demian

    Automatic weather monitoring stations deployed in arctic regions are usually installed in hard to reach locations. Most of the time they run unsupervised and they face severe environmental conditions: very low temperatures, ice riming, etc. It is usual practice to use a local energy source to power the equipment. There are three main ways to achieve this: (1) a generator whose fuel has to be transported to the location at regular intervals (2) a battery and (3) an energy harvesting generator that exploits a local energy source. Hybrid systems are very common. Polar nights and long winters are typical of arctic regions. Solar radiation reaching the ground during this season is very low or non-existent, depending on the geographical location. Therefore, solar power generation is not very effective. One straightforward, but expensive and inefficient solution is the use of a large bank of batteries that is recharged during sunny months and discharged during the winter. The main purpose of the monitoring stations is to collect meteorological data at regular intervals; interruptions due to a lack of electrical energy can be prevented with the use of an energy management subsystem. Keeping a balance between incoming and outgoing energy flows, while assuring the continuous operation of the station, is the delicate task of energy management strategies. This doctoral thesis explores alternate power generation solutions and intelligent energy management techniques for equipment deployed in the arctic. For instance, harvesting energy from the wind to complement solar generation is studied. Nevertheless, harvested energy is a scarce resource and needs to be used efficiently. Genetic algorithms, fuzzy logic, and common sense are used to efficiently manage energy flows within a simulated arctic weather station.

  11. Review of Arctic fox. Life at the top of the world, by Gary Hamilton

    OpenAIRE

    Ims, Rolf A.

    2009-01-01

    The Arctic fox is the only truly Arctic species among the terrestrial carnivorous mammals of the world. It is distributed across the circumpolar Arctic region. Like polar bears, Arctic foxes regularly traverse the pack ice of the polar basin, a fact that astonished Fridtjof Nansen during his attempt to reach the North Pole more than 100 years ago. However, despite its unique lifestyle, which in some respects is more fascinating than that of the polar bear, there has been no popular book (exce...

  12. Studying the Representation Accuracy of the Earth's Gravity Field in the Polar Regions Based on the Global Geopotential Models

    Science.gov (United States)

    Koneshov, V. N.; Nepoklonov, V. B.

    2018-05-01

    The development of studies on estimating the accuracy of the Earth's modern global gravity models in terms of the spherical harmonics of the geopotential in the problematic regions of the world is discussed. The comparative analysis of the results of reconstructing quasi-geoid heights and gravity anomalies from the different models is carried out for two polar regions selected within a radius of 1000 km from the North and South poles. The analysis covers nine recently developed models, including six high-resolution models and three lower order models, including the Russian GAOP2012 model. It is shown that the modern models determine the quasi-geoid heights and gravity anomalies in the polar regions with errors of 5 to 10 to a few dozen cm and from 3 to 5 to a few dozen mGal, respectively, depending on the resolution. The accuracy of the models in the Arctic is several times higher than in the Antarctic. This is associated with the peculiarities of gravity anomalies in every particular region and with the fact that the polar part of the Antarctic has been comparatively less explored by the gravity methods than the polar Arctic.

  13. Mercury speciation in brain tissue of polar bears (Ursus maritimus) from the Canadian Arctic.

    Science.gov (United States)

    Krey, Anke; Kwan, Michael; Chan, Hing Man

    2012-04-01

    Methylmercury (MeHg) is a neurotoxicant that has been found at elevated concentrations in the Arctic ecosystem. Little is known about its internal dose in wildlife such as polar bears. We measured concentrations of mercury (Hg) in three different brain regions (cerebellum, frontal lobe and brain stem) of 24 polar bears collected from the Nunavik, Canada between 2000 and 2003. Speciation of Hg was measured by High Performance Liquid Chromatography coupled to Inductively Coupled Plasma Mass Spectroscopy (HPLC-ICP-MS). Concentrations of mean total Hg in brain tissue were up to 625 times lower (0.28 ± 0.07 mg kg(-1) dry weight (dw) in frontal lobe, 0.23 ± 0.07 mg kg(-1) dw in cerebellum and 0.12 ± 0.0 3mg kg(-1) dw in brain stem) than the mean total Hg concentration previously reported in polar bear liver collected from Eastern Baffin Island. Methylmercury (MeHg) accounted for 100% of the Hg found in all three brain regions analyzed. These results suggest that polar bear might reduce the toxic effects of Hg by limiting the uptake into the brain and/or decrease the rate of demethylation so that Hg can be excreted from the brain more easily. The toxicokinetics and the blood-brain-barrier mechanisms of polar bears are still unknown and further research is required. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. The Arctic Human Health Initiative: a legacy of the International Polar Year 2007-2009.

    Science.gov (United States)

    Parkinson, Alan J

    2013-01-01

    The International Polar Year (IPY) 2007-2008 represented a unique opportunity to further stimulate cooperation and coordination on Arctic health research and increase the awareness and visibility of Arctic regions. The Arctic Human Health Initiative (AHHI) was a US-led Arctic Council IPY coordinating project that aimed to build and expand on existing International Union for Circumpolar Health (IUCH) and Arctic Council human health interests. The project aimed to link researchers with potential international collaborators and to serve as a focal point for human health research, education, outreach and communication activities during the IPY. The progress of projects conducted as part of this initiative up until the end of the Arctic Council Swedish chairmanship in May 2013 is summarized in this report. The overall goals of the AHHI was to increase awareness and visibility of human health concerns of Arctic peoples, foster human health research, and promote health strategies that will improve health and well-being of all Arctic residents. Proposed activities to be recognized through the initiative included: expanding research networks that will enhance surveillance and monitoring of health issues of concern to Arctic peoples, and increase collaboration and coordination of human health research; fostering research that will examine the health impact of anthropogenic pollution, rapid modernization and economic development, climate variability, infectious and chronic diseases, intentional and unintentional injuries, promoting education, outreach and communication that will focus public and political attention on Arctic health issues, using a variety of publications, printed and electronic reports from scientific conferences, symposia and workshops targeting researchers, students, communities and policy makers; promoting the translation of research into health policy and community action including implementation of prevention strategies and health promotion; and

  15. COLLABORATIVE RESEARCH: TOWARDS ADVANCED UNDERSTANDING AND PREDICTIVE CAPABILITY OF CLIMATE CHANGE IN THE ARCTIC USING A HIGH-RESOLUTION REGIONAL ARCTIC CLIMATE SYSTEM MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J.

    2013-02-07

    The motivation for this project was to advance the science of climate change and prediction in the Arctic region. Its primary goals were to (i) develop a state-of-the-art Regional Arctic Climate system Model (RACM) including high-resolution atmosphere, land, ocean, sea ice and land hydrology components and (ii) to perform extended numerical experiments using high performance computers to minimize uncertainties and fundamentally improve current predictions of climate change in the northern polar regions. These goals were realized first through evaluation studies of climate system components via one-way coupling experiments. Simulations were then used to examine the effects of advancements in climate component systems on their representation of main physics, time-mean fields and to understand variability signals at scales over many years. As such this research directly addressed some of the major science objectives of the BER Climate Change Research Division (CCRD) regarding the advancement of long-term climate prediction.

  16. NSF Antarctic and Arctic Data Consortium; Scientific Research Support & Data Services for the Polar Community

    Science.gov (United States)

    Morin, P. J.; Pundsack, J. W.; Carbotte, S. M.; Tweedie, C. E.; Grunow, A.; Lazzara, M. A.; Carpenter, P.; Sjunneskog, C. M.; Yarmey, L.; Bauer, R.; Adrian, B. M.; Pettit, J.

    2014-12-01

    The U.S. National Science Foundation Antarctic & Arctic Data Consortium (a2dc) is a collaboration of research centers and support organizations that provide polar scientists with data and tools to complete their research objectives. From searching historical weather observations to submitting geologic samples, polar researchers utilize the a2dc to search andcontribute to the wealth of polar scientific and geospatial data.The goals of the Antarctic & Arctic Data Consortium are to increase visibility in the research community of the services provided by resource and support facilities. Closer integration of individual facilities into a "one stop shop" will make it easier for researchers to take advantage of services and products provided by consortium members. The a2dc provides a common web portal where investigators can go to access data and samples needed to build research projects, develop student projects, or to do virtual field reconnaissance without having to utilize expensive logistics to go into the field.Participation by the international community is crucial for the success of a2dc. There are 48 nations that are signatories of the Antarctic Treaty, and 8 sovereign nations in the Arctic. Many of these organizations have unique capabilities and data that would benefit US ­funded polar science and vice versa.We'll present an overview of the Antarctic & Arctic Data Consortium, current participating organizations, challenges & opportunities, and plans to better coordinate data through a geospatial strategy and infrastructure.

  17. United States Naval Academy Polar Science Program's Visual Arctic Observing Buoys; The IceGoat

    Science.gov (United States)

    Woods, J. E.; Clemente-Colon, P.; Nghiem, S. V.; Rigor, I.; Valentic, T. A.

    2012-12-01

    The U.S. Naval Academy Oceanography Department currently has a curriculum based Polar Science Program (USNA PSP). Within the PSP there is an Arctic Buoy Program (ABP) student research component that will include the design, build, testing and deployment of Arctic Buoys. Establishing an active, field-research program in Polar Science will greatly enhance Midshipman education and research, as well as introduce future Naval Officers to the Arctic environment. The Oceanography Department has engaged the USNA Ocean Engineering, Systems Engineering, Aerospace Engineering, and Computer Science Departments and developed a USNA Visual Arctic Observing Buoy, IceGoat1, which was designed, built, and deployed by midshipmen. The experience gained through Polar field studies and data derived from these buoys will be used to enhance course materials and laboratories and will also be used directly in Midshipman independent research projects. The USNA PSP successfully deployed IceGoat1 during the BROMEX 2012 field campaign out of Barrow, AK in March 2012. This buoy reports near real-time observation of Air Temperature, Sea Temperature, Atmospheric Pressure, Position and Images from 2 mounted webcams. The importance of this unique type of buoy being inserted into the U.S. Interagency Arctic Buoy Program and the International Arctic Buoy Programme (USIABP/IABP) array is cross validating satellite observations of sea ice cover in the Arctic with the buoys webcams. We also propose to develop multiple sensor packages for the IceGoat to include a more robust weather suite, and a passive acoustic hydrophone. Remote cameras on buoys have provided crucial qualitative information that complements the quantitative measurements of geophysical parameters. For example, the mechanical anemometers on the IABP Polar Arctic Weather Station at the North Pole Environmental Observatory (NPEO) have at times reported zero winds speeds, and inspection of the images from the NPEO cameras have showed

  18. Molecular epidemiological study of Arctic rabies virus isolates from Greenland and comparison with isolates from throughout the Arctic and Baltic regions

    DEFF Research Database (Denmark)

    Mansfield, K.L.; Racloz, V.; McElhinney, L.M.

    2006-01-01

    We report a Molecular epidemiological study of rabies in Arctic Countries by comparing a panel of novel Greenland isolates to a larger cohort of viral sequences from both Arctic and Baltic regions. Rabies Virus isolates originating from wildlife (Arctic/red foxes, raccoon-dogs and reindeer), from...... sequences from the Arctic and Arctic-like viruses, which were distinct from rabies isolates originating ill the Baltic region of Europe, the Steppes in Russia and from North America. The Arctic-like group consist of isolates from India, Pakistan, southeast Siberia and Japan. The Arctic group...... in northeast Siberia and Alaska. Arctic 2b isolates represent a biotype, which is dispersed throughout the Arctic region. The broad distribution of rabies in the Arctic regions including Greenland, Canada and Alaska provides evidence for the movement of rabies across borders....

  19. SYMPOSIUM ON REMOTE SENSING IN THE POLAR REGIONS

    Science.gov (United States)

    The Arctic Institute of North America long has been interested in encouraging full and specific attention to applications of remote sensing to polar...research problems. The major purpose of the symposium was to acquaint scientists and technicians concerned with remote sensing with some of the...special problems of the polar areas and, in turn, to acquaint polar scientists with the potential of the use of remote sensing . The Symposium therefore was

  20. Longer ice-free seasons increase the risk of nest depredation by polar bears for colonial breeding birds in the Canadian Arctic.

    Science.gov (United States)

    Iverson, Samuel A; Gilchrist, H Grant; Smith, Paul A; Gaston, Anthony J; Forbes, Mark R

    2014-03-22

    Northern polar regions have warmed more than other parts of the globe potentially amplifying the effects of climate change on biological communities. Ice-free seasons are becoming longer in many areas, which has reduced the time available to polar bears (Ursus maritimus) to hunt for seals and hampered bears' ability to meet their energetic demands. In this study, we examined polar bears' use of an ancillary prey resource, eggs of colonial nesting birds, in relation to diminishing sea ice coverage in a low latitude region of the Canadian Arctic. Long-term monitoring reveals that bear incursions onto common eider (Somateria mollissima) and thick-billed murre (Uria lomvia) nesting colonies have increased greater than sevenfold since the 1980s and that there is an inverse correlation between ice season length and bear presence. In surveys encompassing more than 1000 km of coastline during years of record low ice coverage (2010-2012), we encountered bears or bear sign on 34% of eider colonies and estimated greater egg loss as a consequence of depredation by bears than by more customary nest predators, such as foxes and gulls. Our findings demonstrate how changes in abiotic conditions caused by climate change have altered predator-prey dynamics and are leading to cascading ecological impacts in Arctic ecosystems.

  1. Aerosol optical properties over the Svalbard region of Arctic: ground-based measurements and satellite remote sensing

    Science.gov (United States)

    Gogoi, Mukunda M.; Babu, S. Suresh

    2016-05-01

    In view of the increasing anthropogenic presence and influence of aerosols in the northern polar regions, long-term continuous measurements of aerosol optical parameters have been investigated over the Svalbard region of Norwegian Arctic (Ny-Ålesund, 79°N, 12°E, 8 m ASL). This study has shown a consistent enhancement in the aerosol scattering and absorption coefficients during spring. The relative dominance of absorbing aerosols is more near the surface (lower single scattering albedo), compared to that at the higher altitude. This is indicative of the presence of local anthropogenic activities. In addition, long-range transported biomass burning aerosols (inferred from the spectral variation of absorption coefficient) also contribute significantly to the higher aerosol absorption in the Arctic spring. Aerosol optical depth (AOD) estimates from ground based Microtop sun-photometer measurements reveals that the columnar abundance of aerosols reaches the peak during spring season. Comparison of AODs between ground based and satellite remote sensing indicates that deep blue algorithm of Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals over Arctic snow surfaces overestimate the columnar AOD.

  2. Can regional climate engineering save the summer Arctic sea ice?

    Science.gov (United States)

    Tilmes, S.; Jahn, Alexandra; Kay, Jennifer E.; Holland, Marika; Lamarque, Jean-Francois

    2014-02-01

    Rapid declines in summer Arctic sea ice extent are projected under high-forcing future climate scenarios. Regional Arctic climate engineering has been suggested as an emergency strategy to save the sea ice. Model simulations of idealized regional dimming experiments compared to a business-as-usual greenhouse gas emission simulation demonstrate the importance of both local and remote feedback mechanisms to the surface energy budget in high latitudes. With increasing artificial reduction in incoming shortwave radiation, the positive surface albedo feedback from Arctic sea ice loss is reduced. However, changes in Arctic clouds and the strongly increasing northward heat transport both counteract the direct dimming effects. A 4 times stronger local reduction in solar radiation compared to a global experiment is required to preserve summer Arctic sea ice area. Even with regional Arctic dimming, a reduction in the strength of the oceanic meridional overturning circulation and a shut down of Labrador Sea deep convection are possible.

  3. The Arctic Human Health Initiative: a legacy of the International Polar Year 2007–2009

    Directory of Open Access Journals (Sweden)

    Alan J. Parkinson

    2013-08-01

    Full Text Available Background . The International Polar Year (IPY 2007–2008 represented a unique opportunity to further stimulate cooperation and coordination on Arctic health research and increase the awareness and visibility of Arctic regions. The Arctic Human Health Initiative (AHHI was a US-led Arctic Council IPY coordinating project that aimed to build and expand on existing International Union for Circumpolar Health (IUCH and Arctic Council human health interests. The project aimed to link researchers with potential international collaborators and to serve as a focal point for human health research, education, outreach and communication activities during the IPY. The progress of projects conducted as part of this initiative up until the end of the Arctic Council Swedish chairmanship in May 2013 is summarized in this report. Design . The overall goals of the AHHI was to increase awareness and visibility of human health concerns of Arctic peoples, foster human health research, and promote health strategies that will improve health and well-being of all Arctic residents. Proposed activities to be recognized through the initiative included: expanding research networks that will enhance surveillance and monitoring of health issues of concern to Arctic peoples, and increase collaboration and coordination of human health research; fostering research that will examine the health impact of anthropogenic pollution, rapid modernization and economic development, climate variability, infectious and chronic diseases, intentional and unintentional injuries, promoting education, outreach and communication that will focus public and political attention on Arctic health issues, using a variety of publications, printed and electronic reports from scientific conferences, symposia and workshops targeting researchers, students, communities and policy makers; promoting the translation of research into health policy and community action including implementation of prevention

  4. Environmental marine geology of the Arctic Ocean

    International Nuclear Information System (INIS)

    Mudie, P.J.

    1991-01-01

    The Arctic Ocean and its ice cover are major regulators of Northern Hemisphere climate, ocean circulation and marine productivity. The Arctic is also very sensitive to changes in the global environment because sea ice magnifies small changes in temperature, and because polar regions are sinks for air pollutants. Marine geology studies are being carried out to determine the nature and rate of these environmental changes by study of modem ice and sea-bed environments, and by interpretation of geological records imprinted in the sea-floor sediments. Sea ice camps, an ice island, and polar icebreakers have been used to study both western and eastern Arctic Ocean basins. Possible early warning signals of environmental changes in the Canadian Arctic are die-back in Arctic sponge reefs, outbreaks of toxic dinoflagellates, and pesticides in the marine food chain. Eastern Arctic ice and surface waters are contaminated by freon and radioactive fallout from Chernobyl. At present, different sedimentary processes operate in the pack ice-covered Canadian polar margin than in summer open waters off Alaska and Eurasia. The geological records, however, suggest that a temperature increase of 1-4 degree C would result in summer open water throughout the Arctic, with major changes in ocean circulation and productivity of waters off Eastern North America, and more widespread transport of pollutants from eastern to western Arctic basins. More studies of longer sediment cores are needed to confirm these interpretations, but is is now clear that the Arctic Ocean has been the pacemaker of climate change during the past 1 million years

  5. Arctic Energy Resources: Security and Environmental Implications

    Directory of Open Access Journals (Sweden)

    Peter Johnston

    2012-08-01

    Full Text Available n recent years, there has been considerable interest in the Arctic as a source for resources, as a potential zone for commercial shipping, and as a region that might experience conflict due to its strategic importance. With regards to energy resources, some studies suggest that the region contains upwards of 13 percent of global undiscovered oil, 30 percent of undiscovered gas, and multiples more of gas hydrates. The decreasing amount and duration of Arctic ice cover suggests that extraction of these resources will be increasingly commercially viable. Arctic and non-arctic states wish to benefit from the region's resources and the potential circum-polar navigation possibilities. This has led to concerns about the environmental risks of these operations as well as the fear that competition between states for resources might result in conflict. Unresolved offshore boundaries between the Arctic states exacerbate these fears. Yet, the risk of conflict seems overstated considering the bilateral and multilateral steps undertaken by the Arctic states to resolve contentious issues. This article will examine the potential impact of Arctic energy resources on global security as well as the regional environment and examine the actions of concerned states to promote their interests in the region.

  6. MODELING SUSTAINABLE DEVELOPMENT OF THE ARCTIC REGION OF RUSSIA

    Directory of Open Access Journals (Sweden)

    K. N. Kikkas

    2015-01-01

    Full Text Available The article describes a model of six econometric equations, designed for the analysis of the sustainability of development in the Arctic region of the Russian Federation - Chukotka Autonomous Okrug. The article analyzes the spheres of human activity in the Chukchi Autonomous District: social, industrial, natural resources. Each sphere is estimated indicators. The theoretical views of various researchers on sustainable development and defi nes the concept of sustainable development of the spheres of human activity in the Arctic region. Under the sustainable development of the Arctic region of space refers to such changes in the indices of spheres of human activity in the region, which increase the potential for human development. The numerical value of the potential of human development is estimated Human Development Index. The article describes the methodological principles of constructing a model of six equations econometric analysis of the sustainable development of the Arctic region. Each of the six equations presented in the form of ADL-model, because it allows us to estimate the dependence of ADL values of the spheres of human activity in the region from the current and past values of the series of other indicators. Selected endogenous and exogenous variables for the model. We discuss the algorithm for fi nding the model parameters. On the basis of the Chukotka Autonomous Okrug are six coeffi cients of econometric equations. The analysis of the results of the decision model. Methodological principles and results of the decision model can be used to develop strategies for sustainable development of the municipality, a separate Arctic, or a combination of all the Arctic regions of Russia.

  7. 'Unstructured Data' Practices in Polar Institutions and Networks: a Case Study with the Arctic Options Project

    Directory of Open Access Journals (Sweden)

    Paul Arthur Berkman

    2014-10-01

    Full Text Available Arctic Options: Holistic Integration for Arctic Coastal-Marine Sustainability is a new three-year research project to assess future infrastructure associated with the Arctic Ocean regarding: (1 natural and living environment; (2 built environment; (3 natural resource development; and (4 governance. For the assessments, Arctic Options will generate objective relational schema from numeric data as well as textual data. This paper will focus on the ‘long tail of smaller, heterogeneous, and often unstructured datasets’ that ‘usually receive minimal data management consideration’,as observed in the 2013 Communiqué from the International Forum on Polar Data Activities in Global Data Systems.

  8. To the Extremes! A Teacher Research Experience Program in the Polar Regions

    Science.gov (United States)

    Warburton, J.; Bartholow, S.

    2014-12-01

    PolarTREC-Teachers and Researchers Exploring and Collaborating, a teacher professional development program, began with the International Polar Year in 2004 and continues today in the United States. In 2007, the National Science Foundation designated PolarTREC as potentially transformative, meaning that the "research results often do not fit within established models or theories and may initially be unexpected or difficult to interpret; their transformative nature and utility might not be recognized until years later." PolarTREC brings U.S. K-12 educators and polar researchers together through an innovative teacher research experience model. Teachers spend three to six weeks in remote arctic and Antarctic field camps. Since 2007, over 100 teachers have been placed in field experiences throughout the Arctic and Antarctic and with half of them participating in field experiences in Antarctica. During their experience, teachers become research team members filling a variety of roles on the team. They also fulfil a unique role of public outreach officer, conducting live presentations about their field site and research as well as journaling, answering questions, and posting photos. Evaluation data collected over the past eight years on program participants shows that PolarTREC has clearly achieved it goals and strongly suggests programs that link teachers and researchers can have the potential to transform the nature of science education. By giving teachers the content knowledge, pedagogical tools, confidence, understanding of science in the broader society, and experiences with scientific inquiry, participating teachers are using authentic scientific research in their classrooms. Not surprisingly this has also led to increases in student interest and knowledge about the Polar Regions. In this presentation, we will highlight the best practices of teacher research experiences as well as discuss why it is vital to have teachers and researchers work together to communicate

  9. Vulnerability of Polar Oceans to Anthropogenic Acidification: Comparison of Arctic and Antarctic Seasonal Cycles

    OpenAIRE

    E. H. Shadwick; T. W. Trull; H. Thomas; J. A. E. Gibson

    2013-01-01

    Polar oceans are chemically sensitive to anthropogenic acidification due to their relatively low alkalinity and correspondingly weak carbonate buffering capacity. Here, we compare unique CO2 system observations covering complete annual cycles at an Arctic (Amundsen Gulf) and Antarctic site (Prydz Bay). The Arctic site experiences greater seasonal warming (10 vs 3?C), and freshening (3 vs 2), has lower alkalinity (2220 vs 2320??mol/kg), and lower summer pH (8.15 vs 8.5), than the Antarctic sit...

  10. An assessment of ten ocean reanalyses in the polar regions

    Science.gov (United States)

    Uotila, Petteri

    2017-04-01

    Ocean reanalysis (ORA) combines observations either statistically or with a hydrodynamical model, to reconstruct historical changes in the ocean. Global and regional ORA products are increasingly used in polar research, but their quality remains to be systematically assessed. To address this, the Polar ORA Intercomparison Project (PORA-IP) has been established following on from the ORA-IP project (Balmaseda et al. 2015, with other papers in a special issue of Climate Dynamics). The PORA-IP is constituted under the COST EOS initiative with plans to review reanalyses products in both the Arctic and Antarctic, and is endorsed by YOPP - the Year of Polar Prediction project. Currently, the PORA-IP team consists of 21 researchers from 15 institutes and universities. The ORA-IP products with polar physics, such as sea ice, have been updated where necessary and collected in a public database. In addition to model output, available observational polar climatologies are collected and used in the assessments. Due to the extensive variety of products, this database should become a valuable resource outside the PORA-IP community. For a comprehensive evaluation of the ten ORA products (CGLORSv5, ECDA3.1, GECCO2, Glorys2v4, GloSea5_GO5, MOVEG2i, ORAP5, SODA3.3.1, TOPAZ4 and UR025.4) in the Arctic and Southern Oceans several specific diagnostics are assessed. The PORA-IP diagnostics target the following topics: hydrography; heat, salinity and freshwater content; ocean transports and surface currents; mixed layer depth; sea-ice concentration and thickness; and snow thickness over sea ice. Based on these diagnostics, ORA product biases against observed data and their mutual spread are quantified, and possible reasons for discrepancies discussed. So far, we have identified product outliers and evaluated the multi-model mean. We have identified the importance of the atmospheric forcing, air-ocean coupling protocol and sea-ice data assimilation for the product performance. Moreover, we

  11. Arctic tides from GPS on sea ice

    OpenAIRE

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    2012-01-01

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea ice dampens the ocean tide amplitude with the result that global tidal models which use only astronomical data perform less accurately in the polar regions. This study presents a kinematic processing of Global Positioning System (GPS) buoys placed on sea-ice at five different sites north of Greenland for the study of sea level height and tidal analysis to improve tidal models in the Central Arctic....

  12. Crustal structure and tectonic model of the Arctic region

    DEFF Research Database (Denmark)

    Petrov, Oleg; Morozov, Andrey; Shokalsky, Sergey

    2016-01-01

    We present a new model of the crustal and tectonic structure of the Arctic region north of 60° N latitude, constrained as a part of the international Atlas of Geological Maps of the Circumpolar Arctic under the aegis of the Commission for the Geological Map of the World. The region is largely...... formed by (i) Archean-Paleoproterozoic shields and platforms, (ii) orogenic belts of the Neoproterozoic to the Late Mesozoic ages overlain by platform and basin sediments, (iii) Cenozoic rift structures formed in part as a consequence of seafloor spreading in the North East Atlantic Ocean...... and thickness of the sedimentary cover and presents tectonic regionalization based on 18 major crustal types (oceanic, transitional, and continental) recognized in the Arctic. A 7600. km-long crustal geotransect across the region illustrates the details of its crustal and tectonic structure. We discuss...

  13. PolarTREC—A Model Program for Taking Polar Literacy into the Future

    Science.gov (United States)

    Warburton, J.; Timm, K.; Larson, A. M.

    2009-12-01

    Polar TREC—Teachers and Researchers Exploring and Collaborating, is a three-year (2007-2009) NSF-funded International Polar Year (IPY) teacher professional development program that advances Science, Technology, Engineering, and Mathematics (STEM) education by improving teacher content knowledge and instructional practices through Teacher Research Experiences (TRE) in the Arctic and Antarctic. Leveraging profound changes and fascinating science taking place in the polar regions, PolarTREC broadly disseminates activities and products to students, educators, researchers, and the public, connecting them with the Arctic and Antarctica and sustaining the widespread interest in the polar regions and building on the enthusiasm that was generated through IPY. Central to the PolarTREC Teacher Research Experience Model, over 40 teachers have spent two to eight weeks participating in hands-on research in the polar regions and sharing their experiences with diverse audiences via live events, online multimedia journals, and interactive bulletin boards. The Connecting Arctic/Antarctic Researchers and Educators (CARE) Network unifies learning community members participants, alumni, and others, developing a sustainable association of education professionals networking to share and apply polar STEM content and pedagogical skills. Educator and student feedback from preliminary results of the program evaluation has shown that PolarTREC’s comprehensive program activities have many positive impacts on educators and their ability to teach science concepts and improve their teaching methods. Additionally, K-12 students polled in interest surveys showed significant changes in key areas including amount of time spent in school exploring research activities, importance of understanding science for future work, importance of understanding the polar regions as a person in today’s world, as well as increased self-reported knowledge and interest in numerous science content areas. Building

  14. The Arctic Region: A Requirement for New Security Architecture?

    Science.gov (United States)

    2013-03-01

    cooperation and mutually beneficial partnerships . Denmark’s security policy states that existing international law and established forums of cooperation...increase leadership in multinational forum and, develop comprehensive partnerships without the need to create a new security organization. Figure 3...Arctic region. Endnotes 1 Government of Canada, “Canada’s Arctic foreign policy” (Ottawa, Canada, 2007), 2. 2 WWF Global, “Arctic oil and gas”, http

  15. Information security of power enterprises of North-Arctic region

    Science.gov (United States)

    Sushko, O. P.

    2018-05-01

    The role of information technologies in providing technological security for energy enterprises is a component of the economic security for the northern Arctic region in general. Applying instruments and methods of information protection modelling of the energy enterprises' business process in the northern Arctic region (such as Arkhenergo and Komienergo), the authors analysed and identified most frequent risks of information security. With the analytic hierarchy process based on weighting factor estimations, information risks of energy enterprises' technological processes were ranked. The economic estimation of the information security within an energy enterprise considers weighting factor-adjusted variables (risks). Investments in information security systems of energy enterprises in the northern Arctic region are related to necessary security elements installation; current operating expenses on business process protection systems become materialized economic damage.

  16. Arctic Forecasts Available from Polar Bear Exhibit as an Example of Formal/Informal Collaboration

    Science.gov (United States)

    Landis, C. E.; Cervenec, J.

    2012-12-01

    A subset of the general population enjoys and frequents informal education venues, offering an opportunity for lifelong learning that also enhances and supports formal education efforts. The Byrd Polar Research Center (BPRC) at The Ohio State University collaborated with the Columbus Zoo & Aquarium (CZA) in the development of their Polar Frontier exhibit, from its initial planning to the Grand Opening of the exhibit, through the present. Of course, the addition to the Zoo of polar bears and Arctic fox in the Polar Frontier has been very popular, with almost a 7% increase in visitors in 2010 when the exhibit opened. The CZA and BPRC are now investigating ways to increase the climate literacy impact of the exhibit, and to increase engagement with the topics through follow-on activities. For example, individuals or classes anywhere in the world can check forecasts from the Polar Weather and Research Forecasting model and compare them to observed conditions-- allowing deep investigation into changes in the Arctic. In addition, opportunities exist to adapt the Zoo School experience (affecting several Central Ohio school districts) and/or to enable regular participation through social media such as Facebook, Twitter, and other forms of digital communication. BPRC's sustained engagement with the CZA is an example of a trusted and meaningful partnership where open dialogue exists about providing the best learning experience for visitors. This presentation will share some of the lessons learned from this unique partnership, and strategies that are adopted to move it forward.

  17. Anthropogenic antibiotic resistance genes mobilization to the polar regions.

    Science.gov (United States)

    Hernández, Jorge; González-Acuña, Daniel

    2016-01-01

    Anthropogenic influences in the southern polar region have been rare, but lately microorganisms associated with humans have reached Antarctica, possibly from military bases, fishing boats, scientific expeditions, and/or ship-borne tourism. Studies of seawater in areas of human intervention and proximal to fresh penguin feces revealed the presence of Escherichia coli strains least resistant to antibiotics in penguins, whereas E. coli from seawater elsewhere showed resistance to one or more of the following antibiotics: ampicillin, tetracycline, streptomycin, and trim-sulfa. In seawater samples, bacteria were found carrying extended-spectrum β-lactamase (ESBL)-type CTX-M genes in which multilocus sequencing typing (MLST) showed different sequence types (STs), previously reported in humans. In the Arctic, on the contrary, people have been present for a long time, and the presence of antibiotic resistance genes (ARGs) appears to be much more wide-spread than was previously reported. Studies of E coli from Arctic birds (Bering Strait) revealed reduced susceptibility to antibiotics, but one globally spreading clone of E. coli genotype O25b-ST131, carrying genes of ESBL-type CTX-M, was identified. In the few years between sample collections in the same area, differences in resistance pattern were observed, with E. coli from birds showing resistance to a maximum of five different antibiotics. Presence of resistance-type ESBLs (TEM, SHV, and CTX-M) in E. coli and Klebsiella pneumoniae was also confirmed by specified PCR methods. MLST revealed that those bacteria carried STs that connect them to previously described strains in humans. In conclusion, bacteria previously related to humans could be found in relatively pristine environments, and presently human-associated, antibiotic-resistant bacteria have reached a high global level of distribution that they are now found even in the polar regions.

  18. Arctic Risk Management (ARMNet) Network: Linking Risk Management Practitioners and Researchers Across the Arctic Regions of Canada and Alaska To Improve Risk, Emergency and Disaster Preparedness and Mitigation Through Comparative Analysis and Applied Research

    Science.gov (United States)

    Garland, A.

    2015-12-01

    The Arctic Risk Management Network (ARMNet) was conceived as a trans-disciplinary hub to encourage and facilitate greater cooperation, communication and exchange among American and Canadian academics and practitioners actively engaged in the research, management and mitigation of risks, emergencies and disasters in the Arctic regions. Its aim is to assist regional decision-makers through the sharing of applied research and best practices and to support greater inter-operability and bilateral collaboration through improved networking, joint exercises, workshops, teleconferences, radio programs, and virtual communications (eg. webinars). Most importantly, ARMNet is a clearinghouse for all information related to the management of the frequent hazards of Arctic climate and geography in North America, including new and emerging challenges arising from climate change, increased maritime polar traffic and expanding economic development in the region. ARMNet is an outcome of the Arctic Observing Network (AON) for Long Term Observations, Governance, and Management Discussions, www.arcus.org/search-program. The AON goals continue with CRIOS (www.ariesnonprofit.com/ARIESprojects.php) and coastal erosion research (www.ariesnonprofit.com/webinarCoastalErosion.php) led by the North Slope Borough Risk Management Office with assistance from ARIES (Applied Research in Environmental Sciences Nonprofit, Inc.). The constituency for ARMNet will include all northern academics and researchers, Arctic-based corporations, First Responders (FRs), Emergency Management Offices (EMOs) and Risk Management Offices (RMOs), military, Coast Guard, northern police forces, Search and Rescue (SAR) associations, boroughs, territories and communities throughout the Arctic. This presentation will be of interest to all those engaged in Arctic affairs, describe the genesis of ARMNet and present the results of stakeholder meetings and webinars designed to guide the next stages of the Project.

  19. Tolerance of polar phytoplankton communities to metals

    International Nuclear Information System (INIS)

    Echeveste, P.; Tovar-Sánchez, A.; Agustí, S.

    2014-01-01

    Large amounts of pollutants reach polar regions, particularly the Arctic, impacting their communities. In this study we analyzed the toxic levels of Hg, Cd and Pb to natural phytoplankton communities of the Arctic and Southern Oceans, and compared their sensitivities with those observed on phytoplankton natural communities from temperate areas. Mercury was the most toxic metal for both Arctic and Antarctic communities, while both Cd and Pb were toxic only for the Antarctic phytoplankton. Total cell abundance of the populations forming the Arctic community increased under high Cd and Pb concentrations, probably due to a decrease of the grazing pressure or the increase of the most resistant species, although analysis of individual cells indicated that cell death was already induced at the highest levels. These results suggest that phytoplankton may have acquired adapting mechanisms to face high levels of Pb and Cd in the Arctic Ocean. Highlights: • First study analyzing the toxicity of Hg, Cd or Pb to natural polar phytoplankton. • Arctic Ocean communities highly resistant to Cd and Pb, but not to Hg. • Southern Ocean communities sensitive to Cd, Pb and Hg. • Both communities incorporated Pb at a similar level. • Arctic phytoplankton may have acquired adapting mechanisms against Cd and Pb. -- Polar phytoplankton communities are tolerant to Cd and Pb, specially the Arctic ones, suggesting the acquisition of adapting mechanisms to face metals' toxicity

  20. Tourism and Arctic Observation Systems: exploring the relationships

    Directory of Open Access Journals (Sweden)

    Suzanne de la Barre

    2016-03-01

    Full Text Available The Arctic is affected by global environmental change and also by diverse interests from many economic sectors and industries. Over the last decade, various actors have attempted to explore the options for setting up integrated and comprehensive trans-boundary systems for monitoring and observing these impacts. These Arctic Observation Systems (AOS contribute to the planning, implementation, monitoring and evaluation of environmental change and responsible social and economic development in the Arctic. The aim of this article is to identify the two-way relationship between AOS and tourism. On the one hand, tourism activities account for diverse changes across a broad spectrum of impact fields. On the other hand, due to its multiple and diverse agents and far-reaching activities, tourism is also well-positioned to collect observational data and participate as an actor in monitoring activities. To accomplish our goals, we provide an inventory of tourism-embedded issues and concerns of interest to AOS from a range of destinations in the circumpolar Arctic region, including Alaska, Arctic Canada, Iceland, Svalbard, the mainland European Arctic and Russia. The article also draws comparisons with the situation in Antarctica. On the basis of a collective analysis provided by members of the International Polar Tourism Research Network from across the polar regions, we conclude that the potential role for tourism in the development and implementation of AOS is significant and has been overlooked.

  1. Pan-Arctic observations in GRENE Arctic Climate Change Research Project and its successor

    Science.gov (United States)

    Yamanouchi, Takashi

    2016-04-01

    We started a Japanese initiative - "Arctic Climate Change Research Project" - within the framework of the Green Network of Excellence (GRENE) Program, funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT), in 2011. This Project targeted understanding and forecasting "Rapid Change of the Arctic Climate System and its Global Influences." Four strategic research targets are set by the Ministry: 1. Understanding the mechanism of warming amplification in the Arctic; 2. Understanding the Arctic climate system for global climate and future change; 3. Evaluation of the impacts of Arctic change on the weather and climate in Japan, marine ecosystems and fisheries; 4. Projection of sea ice distribution and Arctic sea routes. Through a network of universities and institutions in Japan, this 5-year Project involves more than 300 scientists from 39 institutions and universities. The National Institute of Polar Research (NIPR) works as the core institute and The Japan Agency for Marine- Earth Science and Technology (JAMSTEC) joins as the supporting institute. There are 7 bottom up research themes approved: the atmosphere, terrestrial ecosystems, cryosphere, greenhouse gases, marine ecology and fisheries, sea ice and Arctic sea routes and climate modeling, among 22 applications. The Project will realize multi-disciplinal study of the Arctic region and connect to the projection of future Arctic and global climatic change by modeling. The project has been running since the beginning of 2011 and in those 5 years pan-Arctic observations have been carried out in many locations, such as Svalbard, Russian Siberia, Alaska, Canada, Greenland and the Arctic Ocean. In particular, 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard, and intensive atmospheric observations were carried out in 2014 and 2015. In addition, the Arctic Ocean cruises by R/V "Mirai" (belonging to JAMSTEC) and other icebreakers belonging to other

  2. Integrating Access to Arctic Environmental Change and Human Health Research for the International Polar Year and Beyond

    Science.gov (United States)

    Garrett, C. L.

    2006-12-01

    Each day, people in the communities of the Arctic face challenges to their health and well-being from changing climatic and environmental conditions and increasing levels of pollution to emerging infectious diseases. For this reason, it is critical that Arctic researchers and residents have access to timely, accurate, and relevant information addressing their unique concerns. To meet this need, the National Library of Medicine (NLM) and the University of Alaska Anchorage (UAA) have developed the Arctic Health website, www.arctichealth.org. The website provides an easy-to-use one-stop shop for information on the diverse health-related aspects of the Arctic region. It is organized around relevant topics, including climate change and environmental health, traditional healing and telehealth/telemedicine. The Arctic Health website provides links to the most reliable resources available from local, state, and international agencies, universities, and professional organizations. Two major goals of the site are to create a comprehensive, accessible repository for various media and a listing of research projects, past and present that relate to climate change and human health in the Arctic. To increase the site's relevance, the project has established and continues to create collaborations with researchers, communities, and other organizations to supply publications not available elsewhere, including gray literature, streaming video of traditional healers, and oral histories. These collaborations will also help ensure a database with a comprehensive list of research projects being done in the Arctic, from the international to the local level. Finding ways to negotiate the legal, cultural and national concerns of data sharing are a continuing job for the management team. All of this helps to create a system that will eventually track and ensure that data and reports from the research database translate to the publications database. As part of these efforts, the site is

  3. Chemical ozone losses in Arctic and Antarctic polar winter/spring season derived from SCIAMACHY limb measurements 2002–2009

    Directory of Open Access Journals (Sweden)

    T. Sonkaew

    2013-02-01

    Full Text Available Stratospheric ozone profiles are retrieved for the period 2002–2009 from SCIAMACHY measurements of limb-scattered solar radiation in the Hartley and Chappuis absorption bands of ozone. This data set is used to determine the chemical ozone losses in both the Arctic and Antarctic polar vortices by averaging the ozone in the vortex at a given potential temperature. The chemical ozone losses at isentropic levels between 450 K and 600 K are derived from the difference between observed ozone abundances and the ozone modelled taking diabatic cooling into account, but no chemical ozone loss. Chemical ozone losses of up to 30–40% between mid-January and the end of March inside the Arctic polar vortex are reported. Strong inter-annual variability of the Arctic ozone loss is observed, with the cold winters 2004/2005 and 2006/2007 showing chemical ozone losses inside the polar vortex at 475 K, where 1.7 ppmv and 1.4 ppmv of ozone were removed, respectively, over the period from 22 January to beginning of April and 0.9 ppmv and 1.2 ppmv, respectively, during February. For the winters of 2007/2008 and 2002/2003, ozone losses of about 0.8 ppmv and 0.4 ppmv, respectively are estimated at the 475 K isentropic level for the period from 22 January to beginning of April. Essentially no ozone losses were diagnosed for the relatively warm winters of 2003/2004 and 2005/2006. The maximum ozone loss in the SCIAMACHY data set was found in 2007 at the 600 K level and amounted to about 2.1 ppmv for the period between 22 January and the end of April. Enhanced losses close to this altitude were found in all investigated Arctic springs, in contrast to Antarctic spring. The inter-annual variability of ozone losses and PSC occurrence rates observed during Arctic spring is consistent with the known QBO effects on the Arctic polar vortex, with exception of the unusual Arctic winter 2008/2009.

    The maximum total ozone mass loss of about 25 million tons was found in the

  4. Building AN International Polar Data Coordination Network

    Science.gov (United States)

    Pulsifer, P. L.; Yarmey, L.; Manley, W. F.; Gaylord, A. G.; Tweedie, C. E.

    2013-12-01

    In the spirit of the World Data Center system developed to manage data resulting from the International Geophysical Year of 1957-58, the International Polar Year 2007-2009 (IPY) resulted in significant progress towards establishing an international polar data management network. However, a sustained international network is still evolving. In this paper we argue that the fundamental building blocks for such a network exist and that the time is right to move forward. We focus on the Arctic component of such a network with linkages to Antarctic network building activities. A review of an important set of Network building blocks is presented: i) the legacy of the IPY data and information service; ii) global data management services with a polar component (e.g. World Data System); iii) regional systems (e.g. Arctic Observing Viewer; iv) nationally focused programs (e.g. Arctic Observing Viewer, Advanced Cooperative Arctic Data and Information Service, Polar Data Catalogue, Inuit Knowledge Centre); v) programs focused on the local (e.g. Exchange for Local Observations and Knowledge of the Arctic, Geomatics and Cartographic Research Centre). We discuss current activities and results with respect to three priority areas needed to establish a strong and effective Network. First, a summary of network building activities reports on a series of productive meetings, including the Arctic Observing Summit and the Polar Data Forum, that have resulted in a core set of Network nodes and participants and a refined vision for the Network. Second, we recognize that interoperability for information sharing fundamentally relies on the creation and adoption of community-based data description standards and data delivery mechanisms. There is a broad range of interoperability frameworks and specifications available; however, these need to be adapted for polar community needs. Progress towards Network interoperability is reviewed, and a prototype distributed data systems is demonstrated. We

  5. Polar solar panels: Arctic and Antarctic microbiomes display similar taxonomic profiles.

    Science.gov (United States)

    Tanner, Kristie; Martí, Jose Manuel; Belliure, Josabel; Fernández-Méndez, Mar; Molina-Menor, Esther; Peretó, Juli; Porcar, Manuel

    2018-02-01

    Solar panels located on high (Arctic and Antarctic) latitudes combine the harshness of the climate with that of the solar exposure. We report here that these polar solar panels are inhabited by similar microbial communities in taxonomic terms, dominated by Hymenobacter spp., Sphingomonas spp. and Ascomycota. Our results suggest that solar panels, even on high latitudes, can shape a microbial ecosystem adapted to irradiation and desiccation. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Into the 21st Century with the Istituto Geografico Polare "Silvio Zavatti" and its journal "Il Polo"

    Science.gov (United States)

    Casarini, M.

    2013-12-01

    By Maria Pia Casarini We are now nearing the 70th anniversary of the foundation of this unique institution, established in the city of Fermo in the Marche region of Italy by the late Prof. Silvio Zavatti (d. 1985), a true polar enthusiast working before the time when Italy had any official interest in the polar regions. The Institute has the largest and most comprehensive polar library in Italy; a polar museum with Inuit artifacts and relics of expeditions by the Duke of Abruzzi and Umberto Nobile; and it has published a quarterly journal, "Il Polo", since 1945. Given the increasing official role of Italy in both Arctic and Antarctic research, and the increasing interest of Italian institutions and individuals in the rapidly developing problems of Arctic development, governance and environmental protection, the Institute aims to play an increased role in assisting Italian polar efforts through its resources and scholarship. For instance, the Institute is a member of the Arctic Table at the Italian Foreign Ministry by which Italy's role as an observer in the Arctic Council is mapped. The journal "Il Polo" has become bilingual and is becoming a global polar journal with survey papers by distinguished polar leaders. We are linked with PEI (Polar Educators International), which spreads knowledge of the polar regions in schools.

  7. Mediating Data and Building Community for Informed, Intelligent Decision Making for the Polar Regions

    Science.gov (United States)

    Pulsifer, P. L.; Stieglitz, M.

    2017-12-01

    Much has been written about the state of data and related systems for the polar regions, however work remains to be done to achieve an envisioned integrated and well-defined pan-Arctic observing and data network that enables access to high quality data, expertise and information in support of scientific understanding, stakeholder needs, and agency operations. In this paper we argue that priorities for establishing such a network are in the area of machine-enhanced data mediation and the human aspects of community building. The authors have engaged in a U.S.-based, multi-agency process with the goal of applying modern cyberinfrastructure to improve capabilities for integrating data. A particular case-study focuses on establishing a carbon budget for the Arctic region. This effort contributes to broader global efforts aimed at establishing an international observing and data network. Results are based on a series meetings, workshops, systems design activities, and publications. Analysis reveals that there are a large number of polar data resources interacting in a network that functions as a data ecosystem. Given the size and complexity of the network, achieving broad data discovery and access and meaningful data integration (i.e. developing a carbon budget) will require advanced techniques including machine learning, semantic mediation, and the use of highly connected virtual research environments. To achieve the aforementioned goal will require a community of engaged researchers, technologists, and stakeholders to establish requirements and the social and organizational context needed for effective machine-based approaches. The results imply that: i) the polar research and application community must be more aware of advances in technology; ii) funders must adopt a long-term, sustainable infrastructure approach to systems development; iii) the community must work together to enable interoperability; iv) we must recognize that the challenge is socio-technical and

  8. High bacterial diversity of biological soil crusts in water tracks over permafrost in the high arctic polar desert.

    Science.gov (United States)

    Steven, Blaire; Lionard, Marie; Kuske, Cheryl R; Vincent, Warwick F

    2013-01-01

    In this study we report the bacterial diversity of biological soil crusts (biocrusts) inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N). Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relative abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost.

  9. Cyclone Activity in the Arctic From an Ensemble of Regional Climate Models (Arctic CORDEX)

    Science.gov (United States)

    Akperov, Mirseid; Rinke, Annette; Mokhov, Igor I.; Matthes, Heidrun; Semenov, Vladimir A.; Adakudlu, Muralidhar; Cassano, John; Christensen, Jens H.; Dembitskaya, Mariya A.; Dethloff, Klaus; Fettweis, Xavier; Glisan, Justin; Gutjahr, Oliver; Heinemann, Günther; Koenigk, Torben; Koldunov, Nikolay V.; Laprise, René; Mottram, Ruth; Nikiéma, Oumarou; Scinocca, John F.; Sein, Dmitry; Sobolowski, Stefan; Winger, Katja; Zhang, Wenxin

    2018-03-01

    The ability of state-of-the-art regional climate models to simulate cyclone activity in the Arctic is assessed based on an ensemble of 13 simulations from 11 models from the Arctic-CORDEX initiative. Some models employ large-scale spectral nudging techniques. Cyclone characteristics simulated by the ensemble are compared with the results forced by four reanalyses (ERA-Interim, National Centers for Environmental Prediction-Climate Forecast System Reanalysis, National Aeronautics and Space Administration-Modern-Era Retrospective analysis for Research and Applications Version 2, and Japan Meteorological Agency-Japanese 55-year reanalysis) in winter and summer for 1981-2010 period. In addition, we compare cyclone statistics between ERA-Interim and the Arctic System Reanalysis reanalyses for 2000-2010. Biases in cyclone frequency, intensity, and size over the Arctic are also quantified. Variations in cyclone frequency across the models are partly attributed to the differences in cyclone frequency over land. The variations across the models are largest for small and shallow cyclones for both seasons. A connection between biases in the zonal wind at 200 hPa and cyclone characteristics is found for both seasons. Most models underestimate zonal wind speed in both seasons, which likely leads to underestimation of cyclone mean depth and deep cyclone frequency in the Arctic. In general, the regional climate models are able to represent the spatial distribution of cyclone characteristics in the Arctic but models that employ large-scale spectral nudging show a better agreement with ERA-Interim reanalysis than the rest of the models. Trends also exhibit the benefits of nudging. Models with spectral nudging are able to reproduce the cyclone trends, whereas most of the nonnudged models fail to do so. However, the cyclone characteristics and trends are sensitive to the choice of nudged variables.

  10. Pan-Arctic distributions of continental runoff in the Arctic Ocean.

    Science.gov (United States)

    Fichot, Cédric G; Kaiser, Karl; Hooker, Stanford B; Amon, Rainer M W; Babin, Marcel; Bélanger, Simon; Walker, Sally A; Benner, Ronald

    2013-01-01

    Continental runoff is a major source of freshwater, nutrients and terrigenous material to the Arctic Ocean. As such, it influences water column stratification, light attenuation, surface heating, gas exchange, biological productivity and carbon sequestration. Increasing river discharge and thawing permafrost suggest that the impacts of continental runoff on these processes are changing. Here, a new optical proxy was developed and implemented with remote sensing to determine the first pan-Arctic distribution of terrigenous dissolved organic matter (tDOM) and continental runoff in the surface Arctic Ocean. Retrospective analyses revealed connections between the routing of North American runoff and the recent freshening of the Canada Basin, and indicated a correspondence between climate-driven changes in river discharge and tDOM inventories in the Kara Sea. By facilitating the real-time, synoptic monitoring of tDOM and freshwater runoff in surface polar waters, this novel approach will help understand the manifestations of climate change in this remote region.

  11. Arctic tides from GPS on sea ice

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea ice dampens the ocean tide amplitude with the result that global tidal models which use only astronomical data perform less accurately in the polar regions. This study presents a kinematic processing o......-gauges and altimetry data. Furthermore, we prove that the geodetic reference ellipsoid WGS84, can be interpolated to the tidal defined zero level by applying geophysical corrections to the GPS data....

  12. PeRL: a circum-Arctic Permafrost Region Pond and Lake database

    Science.gov (United States)

    Muster, Sina; Roth, Kurt; Langer, Moritz; Lange, Stephan; Cresto Aleina, Fabio; Bartsch, Annett; Morgenstern, Anne; Grosse, Guido; Jones, Benjamin; Sannel, A. Britta K.; Sjöberg, Ylva; Günther, Frank; Andresen, Christian; Veremeeva, Alexandra; Lindgren, Prajna R.; Bouchard, Frédéric; Lara, Mark J.; Fortier, Daniel; Charbonneau, Simon; Virtanen, Tarmo A.; Hugelius, Gustaf; Palmtag, Juri; Siewert, Matthias B.; Riley, William J.; Koven, Charles D.; Boike, Julia

    2017-06-01

    Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1. 0 × 104 m2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL) database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002-2013) high-resolution aerial and satellite imagery with a resolution of 5 m or better. The database also includes historical imagery from 1948 to 1965 with a resolution of 6 m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1. 4 × 106 km2 across the Arctic, about 17 % of the Arctic lowland ( pangaea.de/10.1594/PANGAEA.868349" target="_blank">https://doi.pangaea.de/10.1594/PANGAEA.868349.

  13. PoLAR Voices: Informing Adult Learners about the Science and Story of Climate Change in the Polar Regions Through Audio Podcast

    Science.gov (United States)

    Quinney, A.; Murray, M. S.; Gobroski, K. A.; Topp, R. M.; Pfirman, S. L.

    2015-12-01

    The resurgence of audio programming with the advent of podcasting in the early 2000s spawned a new medium for communicating advances in science, research, and technology. To capitalize on this informal educational outlet, the Arctic Institute of North America partnered with the International Arctic Research Center, the University of Alaska Fairbanks, and the UA Museum of the North to develop a podcast series called PoLAR Voices for the Polar Learning and Responding (PoLAR) Climate Change Education Partnership. PoLAR Voices is a public education initiative that uses creative storytelling and novel narrative structures to immerse the listener in an auditory depiction of climate change. The programs will feature the science and story of climate change, approaching topics from both the points of view of researchers and Arctic indigenous peoples. This approach will engage the listener in the holistic story of climate change, addressing both scientific and personal perspectives, resulting in a program that is at once educational, entertaining and accessible. Feedback is being collected at each stage of development to ensure the content and format of the program satisfies listener interests and preferences. Once complete, the series will be released on thepolarhub.org and on iTunes. Additionally, blanket distribution of the programs will be accomplished via radio broadcast in urban, rural and remote areas, and in multiple languages to increase distribution and enhance accessibility.

  14. A closer look at Arctic ozone loss and polar stratospheric clouds

    Directory of Open Access Journals (Sweden)

    N. R. P. Harris

    2010-09-01

    Full Text Available The empirical relationship found between column-integrated Arctic ozone loss and the potential volume of polar stratospheric clouds inferred from meteorological analyses is recalculated in a self-consistent manner using the ERA Interim reanalyses. The relationship is found to hold at different altitudes as well as in the column. The use of a PSC formation threshold based on temperature dependent cold aerosol formation makes little difference to the original, empirical relationship. Analysis of the photochemistry leading to the ozone loss shows that activation is limited by the photolysis of nitric acid. This step produces nitrogen dioxide which is converted to chlorine nitrate which in turn reacts with hydrogen chloride on any polar stratospheric clouds to form active chlorine. The rate-limiting step is the photolysis of nitric acid: this occurs at the same rate every year and so the interannual variation in the ozone loss is caused by the extent and persistence of the polar stratospheric clouds. In early spring the ozone loss rate increases as the solar insolation increases the photolysis of the chlorine monoxide dimer in the near ultraviolet. However the length of the ozone loss period is determined by the photolysis of nitric acid which also occurs in the near ultraviolet. As a result of these compensating effects, the amount of the ozone loss is principally limited by the extent of original activation rather than its timing. In addition a number of factors, including the vertical changes in pressure and total inorganic chlorine as well as denitrification and renitrification, offset each other. As a result the extent of original activation is the most important factor influencing ozone loss. These results indicate that relatively simple parameterisations of Arctic ozone loss could be developed for use in coupled chemistry climate models.

  15. Sensitivity of simulated regional Arctic climate to the choice of coupled model domain

    Directory of Open Access Journals (Sweden)

    Dmitry V. Sein

    2014-07-01

    Full Text Available The climate over the Arctic has undergone changes in recent decades. In order to evaluate the coupled response of the Arctic system to external and internal forcing, our study focuses on the estimation of regional climate variability and its dependence on large-scale atmospheric and regional ocean circulations. A global ocean–sea ice model with regionally high horizontal resolution is coupled to an atmospheric regional model and global terrestrial hydrology model. This way of coupling divides the global ocean model setup into two different domains: one coupled, where the ocean and the atmosphere are interacting, and one uncoupled, where the ocean model is driven by prescribed atmospheric forcing and runs in a so-called stand-alone mode. Therefore, selecting a specific area for the regional atmosphere implies that the ocean–atmosphere system can develop ‘freely’ in that area, whereas for the rest of the global ocean, the circulation is driven by prescribed atmospheric forcing without any feedbacks. Five different coupled setups are chosen for ensemble simulations. The choice of the coupled domains was done to estimate the influences of the Subtropical Atlantic, Eurasian and North Pacific regions on northern North Atlantic and Arctic climate. Our simulations show that the regional coupled ocean–atmosphere model is sensitive to the choice of the modelled area. The different model configurations reproduce differently both the mean climate and its variability. Only two out of five model setups were able to reproduce the Arctic climate as observed under recent climate conditions (ERA-40 Reanalysis. Evidence is found that the main source of uncertainty for Arctic climate variability and its predictability is the North Pacific. The prescription of North Pacific conditions in the regional model leads to significant correlation with observations, even if the whole North Atlantic is within the coupled model domain. However, the inclusion of the

  16. The freshwater balance of polar regions in transient simulations from 1500 to 2100 AD using a comprehensive coupled climate model

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, Flavio; Raible, Christoph C.; Hofer, Dominik; Stocker, Thomas F. [University of Bern, Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, Bern (Switzerland)

    2012-07-15

    The ocean and sea ice in both polar regions are important reservoirs of freshwater within the climate system. While the response of these reservoirs to future climate change has been studied intensively, the sensitivity of the polar freshwater balance to natural forcing variations during preindustrial times has received less attention. Using an ensemble of transient simulations from 1500 to 2100 AD we put present-day and future states of the polar freshwater balance in the context of low frequency variability of the past five centuries. This is done by focusing on different multi-decadal periods of characteristic external forcing. In the Arctic, freshwater is shifted from the ocean to sea ice during the Maunder Minimum while the total amount of freshwater within the Arctic domain remains unchanged. In contrast, the subsequent Dalton Minimum does not leave an imprint on the slow-reacting reservoirs of the ocean and sea ice, but triggers a drop in the import of freshwater through the atmosphere. During the twentieth and twenty-first century the build-up of freshwater in the Arctic Ocean leads to a strengthening of the liquid export. The Arctic freshwater balance is shifted towards being a large source of freshwater to the North Atlantic ocean. The Antarctic freshwater cycle, on the other hand, appears to be insensitive to preindustrial variations in external forcing. In line with the rising temperature during the industrial era the freshwater budget becomes increasingly unbalanced and strengthens the high latitude's Southern Ocean as a source of liquid freshwater to lower latitude oceans. (orig.)

  17. Polar bears at risk

    Energy Technology Data Exchange (ETDEWEB)

    Norris, S.; Rosentrater, L.; Eid, P.M. [WWF International Arctic Programme, Oslo (Norway)

    2002-05-01

    Polar bears, the world's largest terrestrial carnivore, spend much of their lives on the arctic sea ice. This is where they hunt and move between feeding, denning, and resting areas. The world population, estimated at 22,000 bears, is made up of 20 relatively distinct populations varying in size from a few hundred to a few thousand animals. About 60 per cent of all polar bears are found in Canada. In general, the status of this species is stable, although there are pronounced differences between populations. Reductions in the extent and thickness of sea ice has lead the IUCN Polar Bear Specialist Group to describe climate change as one of the major threats facing polar bears today. Though the long-term effects of climate change will vary in different areas of the Arctic, impacts on the condition and reproductive success of polar bears and their prey are likely to be negative. Longer ice-free periods resulting from earlier break-up of sea ice in the spring and later formation in the fall is already impacting polar bears in the southern portions of their range. In Canada's Hudson Bay, for example, bears hunt on the ice through the winter and into early summer, after which the ice melts completely, forcing bears ashore to fast on stored fat until freeze-up in the fall. The time bears have on the ice to hunt and build up their body condition is cut short when the ice melts early. Studies from Hudson Bay show that for every week earlier that ice break-up occurs, bears will come ashore 10 kg lighter and in poorer condition. It is likely that populations of polar bears dividing their time between land and sea will be severely reduced and local extinctions may occur as greenhouse gas emissions continue to rise and sea ice melts. Expected changes in regional weather patterns will also impact polar bears. Rain in the late winter can cause maternity dens to collapse before females and cubs have departed, thus exposing occupants to the elements and to predators. Such

  18. The Arctic Marine Pulses Model: Linking Contiguous Domains in the Pacific Arctic Region

    Science.gov (United States)

    Moore, S. E.; Stabeno, P. J.

    2016-02-01

    The Pacific Arctic marine ecosystem extends from the northern Bering Sea, across the Chukchi and into the East Siberian and Beaufort seas. Food webs in this domain are short, a simplicity that belies the biophysical complexity underlying trophic linkages from primary production to humans. Existing biophysical models, such as pelagic-benthic coupling and advective processes, provide frameworks for connecting certain aspects of the marine food web, but do not offer a full accounting of events that occur seasonally across the Pacific Arctic. In the course of the Synthesis of Arctic Research (SOAR) project, a holistic Arctic Marine Pulses (AMP) model was developed that depicts seasonal biophysical `pulses' across a latitudinal gradient, and linking four previously-described contiguous domains, including the: (i) Pacific-Arctic domain = the focal region; (ii) seasonal ice zone domain; (iii) Pacific marginal domain; and (iv) riverine coastal domain. The AMP model provides a spatial-temporal framework to guide research on dynamic ecosystem processes during this period of rapid biophysical changes in the Pacific Arctic. Some of the processes included in the model, such as pelagic-benthic coupling in the Northern Bering and Chukchi seas, and advection and upwelling along the Beaufort shelf, are already the focus of sampling via the Distributed Biological Observatory (DBO) and other research programs. Other aspects such as biological processes associated with the seasonal ice zone and trophic responses to riverine outflow have received less attention. The AMP model could be enhanced by the application of visualization tools to provide a means to watch a season unfold in space and time. The capability to track sea ice dynamics and water masses and to move nutrients, prey and upper-trophic predators in space and time would provide a strong foundation for the development of predictive human-inclusive ecosystem models for the Pacific Arctic.

  19. Genomics of Arctic cod

    Science.gov (United States)

    Wilson, Robert E.; Sage, George K.; Sonsthagen, Sarah A.; Gravley, Megan C.; Menning, Damian; Talbot, Sandra L.

    2017-01-01

    The Arctic cod (Boreogadus saida) is an abundant marine fish that plays a vital role in the marine food web. To better understand the population genetic structure and the role of natural selection acting on the maternally-inherited mitochondrial genome (mitogenome), a molecule often associated with adaptations to temperature, we analyzed genetic data collected from 11 biparentally-inherited nuclear microsatellite DNA loci and nucleotide sequence data from from the mitochondrial DNA (mtDNA) cytochrome b (cytb) gene and, for a subset of individuals, the entire mitogenome. In addition, due to potential of species misidentification with morphologically similar Polar cod (Arctogadus glacialis), we used ddRAD-Seq data to determine the level of divergence between species and identify species-specific markers. Based on the findings presented here, Arctic cod across the Pacific Arctic (Bering, Chukchi, and Beaufort Seas) comprise a single panmictic population with high genetic diversity compared to other gadids. High genetic diversity was indicated across all 13 protein-coding genes in the mitogenome. In addition, we found moderate levels of genetic diversity in the nuclear microsatellite loci, with highest diversity found in the Chukchi Sea. Our analyses of markers from both marker classes (nuclear microsatellite fragment data and mtDNA cytb sequence data) failed to uncover a signal of microgeographic genetic structure within Arctic cod across the three regions, within the Alaskan Beaufort Sea, or between near-shore or offshore habitats. Further, data from a subset of mitogenomes revealed no genetic differentiation between Bering, Chukchi, and Beaufort seas populations for Arctic cod, Saffron cod (Eleginus gracilis), or Walleye pollock (Gadus chalcogrammus). However, we uncovered significant differences in the distribution of microsatellite alleles between the southern Chukchi and central and eastern Beaufort Sea samples of Arctic cod. Finally, using ddRAD-Seq data, we

  20. The Polar Crust Project- BSC Diversity and Variability in the Arctic and Antarctica

    Science.gov (United States)

    Williams, Laura; Borchhardt, Nadine; Komisc-Buchmann, Karin; Becker, Burkhard; Karsten, Ulf; Büdel, Burkhard

    2015-04-01

    The Polar Crust Project is a newly funded DFG initiative that aims to provide a precise evaluation of the biodiversity of eukaryotic green microalgae and cyanobacteria in Biological Soil Crusts (BSC) isolated from the Antarctic Peninsula and Arctic Svalbard. This project will include a thorough investigation into the composition of BSC in the Polar regions, this especially is important for Svalbard due to the severe lack of any previous research on such communities in this area. During our expedition to Spitsbergen, Svalbard in August 2014 we were particularly surprised to find that the coverage of BSC is extremely high and is certainly the dominant vegetation type around Ny Ålesund. Due to this discovery the project has now been extended to include long term measurements of CO2 gas exchange in order to gain exact seasonal carbon fixation rates and therefore discovering how the BSC contributes to the ecosystems carbon balance. The research areas of Spitsbergen were centred around 2 localities: Ny-Ålesund is a research town, home to the AWIPEV station, on the Brøgger peninsula. Longyearbyen, which is the largest settlement on the island, is found in the valley Longyeardalen on the shore of Adventfjorden. Areas where BSC is the prevalent vegetation type were identified, 6 around Ny-Ålesund and 4 for Longyearbyen, and vegetation surveys were conducted. This entailed 625 single point measurements at each site and identifying the crust/or other cover type. For example, green algal lichen, cyanobacterial crust, higher plant, open soil. Samples were also taken at every location in order to study the green algal and cyanobacterial diversity. The vegetation survey will allow us to get a good overview of the BSC composition at the different sites. In January 2015 an expedition to the Antarctic Peninsular took place, here the sampling method was repeated and therefore both Polar Regions BSC composition can be described and compared. Here, we wish to introduce the Polar

  1. Integrated regional changes in arctic climate feedbacks: Implications for the global climate system

    Science.gov (United States)

    McGuire, A.D.; Chapin, F. S.; Walsh, J.E.; Wirth, C.; ,

    2006-01-01

    The Arctic is a key part of the global climate system because the net positive energy input to the tropics must ultimately be resolved through substantial energy losses in high-latitude regions. The Arctic influences the global climate system through both positive and negative feedbacks that involve physical, ecological, and human systems of the Arctic. The balance of evidence suggests that positive feedbacks to global warming will likely dominate in the Arctic during the next 50 to 100 years. However, the negative feedbacks associated with changing the freshwater balance of the Arctic Ocean might abruptly launch the planet into another glacial period on longer timescales. In light of uncertainties and the vulnerabilities of the climate system to responses in the Arctic, it is important that we improve our understanding of how integrated regional changes in the Arctic will likely influence the evolution of the global climate system. Copyright ?? 2006 by Annual Reviews. All rights reserved.

  2. Arctic climate change in an ensemble of regional CORDEX simulations

    Directory of Open Access Journals (Sweden)

    Torben Koenigk

    2015-03-01

    Full Text Available Fifth phase Climate Model Intercomparison Project historical and scenario simulations from four global climate models (GCMs using the Representative Concentration Pathways greenhouse gas concentration trajectories RCP4.5 and RCP8.5 are downscaled over the Arctic with the regional Rossby Centre Atmosphere model (RCA. The regional model simulations largely reflect the circulation bias patterns of the driving global models in the historical period, indicating the importance of lateral and lower boundary conditions. However, local differences occur as a reduced winter 2-m air temperature bias over the Arctic Ocean and increased cold biases over land areas in RCA. The projected changes are dominated by a strong warming in the Arctic, exceeding 15°K in autumn and winter over the Arctic Ocean in RCP8.5, strongly increased precipitation and reduced sea-level pressure. Near-surface temperature and precipitation are linearly related in the Arctic. The wintertime inversion strength is reduced, leading to a less stable stratification of the Arctic atmosphere. The diurnal temperature range is reduced in all seasons. The large-scale change patterns are dominated by the surface and lateral boundary conditions so future response is similar in RCA and the driving global models. However, the warming over the Arctic Ocean is smaller in RCA; the warming over land is larger in winter and spring but smaller in summer. The future response of winter cloud cover is opposite in RCA and the GCMs. Precipitation changes in RCA are much larger during summer than in the global models and more small-scale change patterns occur.

  3. Promoting Diversity Through Polar Interdisciplinary Coordinated Education (Polar ICE)

    Science.gov (United States)

    McDonnell, J. D.; Hotaling, L. A.; Garza, C.; Van Dyk, P. B.; Hunter-thomson, K. I.; Middendorf, J.; Daniel, A.; Matsumoto, G. I.; Schofield, O.

    2017-12-01

    Polar Interdisciplinary Coordinated Education (ICE) is an education and outreach program designed to provide public access to the Antarctic and Arctic regions through polar data and interactions with the scientists. The program provides multi-faceted science communication training for early career scientists that consist of a face-to face workshop and opportunities to apply these skills. The key components of the scientist training workshop include cultural competency training, deconstructing/decoding science for non-expert audiences, the art of telling science stories, and networking with members of the education and outreach community and reflecting on communication skills. Scientists partner with educators to provide professional development for K-12 educators and support for student research symposia. Polar ICE has initiated a Polar Literacy initiative that provides both a grounding in big ideas in polar science and science communication training designed to underscore the importance of the Polar Regions to the public while promoting interdisciplinary collaborations between scientists and educators. Our ultimate objective is to promote STEM identity through professional development of scientists and educators while developing career awareness of STEM pathways in Polar science.

  4. The Arctic Circle

    Science.gov (United States)

    McDonald, Siobhan

    2016-04-01

    My name is Siobhan McDonald. I am a visual artist living and working in Dublin. My studio is based in The School of Science at University College Dublin where I was Artist in Residence 2013-2015. A fascination with time and the changeable nature of landmass has led to ongoing conversations with scientists and research institutions across the interweaving disciplines of botany, biology and geology. I am developing a body of work following a recent research trip to the North Pole where I studied the disappearing landscape of the Arctic. Prompted by my experience of the Arctic shelf receding, this new work addresses issues of the instability of the earth's materiality. The work is grounded in an investigation of material processes, exploring the dynamic forces that transform matter and energy. This project combines art and science in a fascinating exploration of one of the Earth's last relatively untouched wilderness areas - the High Arctic to bring audiences on journeys to both real and artistically re-imagined Arctic spaces. CRYSTALLINE'S pivotal process is collaboration: with The European Space Agency; curator Helen Carey; palaeontologist Prof. Jenny McElwain, UCD; and with composer Irene Buckley. CRYSTALLINE explores our desire to make corporeal contact with geological phenomena in Polar Regions. From January 2016, in my collaboration with Jenny McElwain, I will focus on the study of plants and atmospheres from the Arctic regions as far back as 400 million years ago, to explore the essential 'nature' that, invisible to the eye, acts as imaginary portholes into other times. This work will be informed by my arctic tracings of sounds and images recorded in the glaciers of this disappearing frozen landscape. In doing so, the urgencies around the tipping of natural balances in this fragile region will be revealed. The final work will emerge from my forthcoming residency at the ESA in spring 2016. Here I will conduct a series of workshops in ESA Madrid to work with

  5. Assessing performance of gravity models in the Arctic and the implications for polar oceanography

    Science.gov (United States)

    Thomas, S. F.; McAdoo, D. C.; Farrell, S. L.; Brozena, J. M.; Childers, V. A.; Ziebart, M. K.; Shepherd, A.

    2014-12-01

    The circulation of the Arctic Ocean is of great interest to both the oceanographic and cryospheric communities. Understanding both the steady state and variations of this circulation is essential to building our knowledge of Arctic climate. With the advent of high inclination altimeter missions such as CryoSat and ICESat, it is now feasible to produce Mean Dynamic Topography (MDT) products for the region, which allow a comprehensive investigation of geostrophic currents. However, the accuracy of these products is largely limited by our knowledge of the marine geoid in the Arctic. There are a number of publicly available gravity models commonly used to derive the geoid. These use different combinations of available data (satellite gravimetry, altimetry, laser ranging, and in-situ) and are calculated using different mathematical techniques. However, the effect of these differences on the real world performance of these models when used for oceanographic studies in the Arctic is not well known. Given the unique problems for gravimetry in the region (especially data gaps) and their potential impact on MDT products, it is especially important that the relative performance of these models be assessed We consider the needs of the "end user" satellite oceanographer in the Arctic with respect to gravimetry, and the relationship between the precision of gravity data and the accuracy of a final MDT/current velocity product. Using high-precision aerogravity data collected over 3 years of campaigns by NASA's Operation IceBridge we inter-compare 10 of the leading gravity models and assess their performance in the Arctic. We also use historical data from campaigns flown by the US Naval Research Laboratory (NRL) to demonstrate the impact of gravity errors on MDT products. We describe how gravity models for the region might be improved in the future, in an effort to maximize the level at which Arctic currents may be resolved.

  6. Using satellite telemetry to define spatial population structure in polar bears in the Norwegian and western Russian Arctic

    Science.gov (United States)

    Mauritzen, Mette; Derocher, Andrew E.; Wiig, Øystein; Belikov, Stanislav; Boltunov, Andrei N.; Garner, Gerald W.

    2002-01-01

    1. Animal populations, defined by geographical areas within a species’ distribution where population dynamics are largely regulated by births and deaths rather than by migration from surrounding areas, may be the correct unit for wildlife management. However, in heterogeneous landscapes varying habitat quality may yield subpopulations with distinct patterns in resource use and demography significant to the dynamics of populations.2. To define the spatial population structure of polar bears Ursus maritimus in the Norwegian and western Russian Arctic, and to assess the existence of a shared population between the two countries, we analysed satellite telemetry data obtained from 105 female polar bears over 12 years.3. Using both cluster analyses and home-range estimation methods, we identified five population units inhabiting areas with different sea-ice characteristics and prey availability.4. The continuous distribution of polar bear positions indicated that the different subpopulations formed one continuous polar bear population in the Norwegian and western Russian Arctic. Hence, Norway and Russia have a shared management responsibility.5. The spatial population structure identified will provide a guide for evaluating geographical patterns in polar bear ecology, the dynamics of polar bear–seal relationships and the effects of habitat alteration due to climate change. The work illustrates the importance of defining population borders and subpopulation structure in understanding the dynamics and management of larger animals.

  7. Arctic Tides from GPS on sea-ice

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    2013-01-01

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea-ice dampens the ocean tide amplitude with the result that global tidal models perform less accurately in the polar regions. This paper presents, a kinematic processing of global positioning system (GPS....... The results show coherence between the GPS buoy measurements, and the tide model. Furthermore, we have proved that the reference ellipsoid of WGS84, can be interpolated to the tidal defined zero level by applying geophysical corrections to the GPS data....

  8. Polar marine ecosystems: major threats and future change

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, A. [British Antarctic Survey, Cambridge (United Kingdom); Harris, C.M. [Environmental Research and Assessment, Grantchester (United Kingdom)

    2003-07-01

    This review of polar marine ecosystems covers both the Arctic and Antarctic, identifying the major threats and, where possible, predicting their possible state(s) in 2025. Although the two polar regions are similar in their extreme photoperiod, low temperatures, and in being heavily influenced by snow and ice, in almost all other respects they are very different. The Arctic Ocean is a basin surrounded by continental landmasses close to, and influenced by, large populations and industrial activities. In contrast, the Southern Ocean is contiguous with all the other great oceans and surrounds a single land mass; Antarctica is remote from major centres of population and sources of pollution. Marine environments in both Polar Regions have been highly disturbed by fishing activity, but, in terms of pollution, some areas remain among the most pristine in the world. There are, however, both local and global pressures. Over the 2025 time horizon, the greatest concern for the Arctic is probably the ecological implications of climate change, particularly insofar as sea ice extent and duration are likely to be affected. Such changes are not expected to be as pronounced in the Southern Ocean over this time period, and concerns are related more to direct threats from harvesting of marine living resources, and the ability to manage these fisheries sustainably. In both Polar Regions, the capacity of marine ecosystems to withstand the cumulative impact of a number of pressures, including climate change, pollution and overexploitation, acting synergistically is of greatest concern. (author)

  9. Live from the Arctic

    Science.gov (United States)

    Warnick, W. K.; Haines-Stiles, G.; Warburton, J.; Sunwood, K.

    2003-12-01

    residents speak in eloquent terms of the changes they see around them, manifested in new patterns of vegetation, the melting of permafrost and the absence of game species that used to be abundant. Meanwhile, new satellites and more sophisticated sensors on the ground and in the ice, add scientific testimony that seems to support and even extend native perceptions. Live from the Arctic will unify both perspectives, and use todays most powerful and effective communications media to connect young people and general audiences all across America to researchers and communities living and working in the Arctic. During IPY there will be a level of interest in the Polar regions unprecedented in a generation. Live from the Arctic offers unique resources to satisfy that curiosity, and encourage active participation and engagement in understanding some of Earths most significant peoples, places and rapidly changing conditions.

  10. Radiative Forcing from Emissivity Response in Polar Regions

    Science.gov (United States)

    Kuo, C.; Feldman, D.; Huang, X.; Flanner, M.; Chen, X.; Yang, P.; Kuo, C.

    2016-12-01

    A detailed assessment of the radiative balance and its controlling factors in polar regions is a critical prerequisite for understanding and predicting the polar amplification of climate change. Accordingly, we investigate the role of infrared surface emissivity in polar regions as a potential feedback mechanism following Feldman et al, 2014. In this work, we investigate the climatic response of the Community Earth System Model (CESM) with spectral emissivity values that are implemented in a physically consistent manner for non-vegetated surfaces. In a control model run where 1850 CO2 volume mixing ratio (vmr) is fixed, the updated spectral emissivity values are imposed for modified surface boundary conditions in the atmospheric model component. Climatic stability in the emergent globally averaged surface temperature is observed on decadal scales for an unforced (control) run. Analytic kernels representing the change in top of the atmosphere OLR given changes in emissivity are calculated on-line during the model runs, incorporating spatially and temporally varied humidity profiles impactful to transmission. Globally averaged kernels of the sensitivity of OLR to surface emissivity calculated for control and ramped CO2 runs exhibit temporal evolution with statistically significant differences in shape. Additionally, kernel and spectrally-averaged emissivity differences between monthly-averaged maps of control and ramped runs demonstrate a seasonal cycle. Similar to the treatment of cryosphere radiative forcing in Flanner et al, 2011, we define emissivity response as the product of the emissivity kernel and the change in month-to-month emissivity. At the end of 20th century, the 10-year emissivity forcing averaged at latitudes > 60°, is found to be negative (positive) in January (July), due to increasing (decreasing) sea-ice. These findings indicate that differences in surface emissivity between frozen and unfrozen surfaces decrease wintertime and increase summertime

  11. Comparative analysis of military security policy of Norway and Denmark in the Arctic region

    Directory of Open Access Journals (Sweden)

    Igor S. Doroshenko

    2017-01-01

    Full Text Available The interest of Western countries in the Arctic region is growing with each new statement about the sharp climate change and the melting of the Arctic Ocean’s glaciers. In addition to the threats related to the environmental situation in the Arctic zone, the desire to participate in shelf research and development, the potential of using the sea routes of the region by both the Arctic and non-Arctic states creates threats to the security of the Nordic countries.The coastal states, which in case of the escalation of tensions will be in the midst of a regional conflict in the Arctic, are Norway and Denmark. Therefore, the analysis of a level of Norwegian and Danish military security against a backdrop of increasing confrontation between Russia and West and changing climate situation in the region is urgent ., Nevertheless, to ensure a necessary level of defence capability as well as security of borders and zones of exceptional economic interests in the conditions of low temperatures is not so easy. This article examines the Norwegian and Danish approaches to the new military security challenges in the Arctic region. The paper contains examination of the doctrinal basis of military security along with the main documents that form the security concepts of the two countries in the Arctic region, and the reports of the defense ministries and scientific institutions surveys of military activities in the Arctic.Three directions of coastal countries’ policy making in the issues of military security were chosen for comparison. Firstly, the relationships with the USA, the leader of the North Atlantic alliance, which allow us to determine the significance of Norway and Denmark in building NATO security in the north. Secondly, the relationships with the EU and separately with the Nordic countries are considered. This case shows the level of involvement of the European community in the issue of ensuring the Arctic security . Thirdly, the relationships with

  12. Humidity estimate for the middle Eocene Arctic rain forest

    Science.gov (United States)

    Jahren, A. Hope; Silveira Lobo Sternberg, Leonel

    2003-05-01

    The exquisite preservation of fossilized Metasequoia trees that grew near 80°N latitude during the middle Eocene (ca. 45 Ma) in Nunavut, Canada, allowed for δD and δ18O analyses of cellulose, techniques previously restricted to wood <30,000 yr old. From the isotopic results, we determined that the middle Eocene Arctic atmosphere contained ˜2× the water found in the region's atmosphere today. This water vapor contributed to a middle Eocene greenhouse effect that insulated the polar region during dark polar winters.

  13. Biological responses to current UV-B radiation in Arctic regions

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2008-01-01

    on high-arctic vegetation. They supplement previous investigations from the Arctic focussing on other variables like growth etc., which have reported no or minor plant responses to UV-B, and clearly indicates that UV-B radiation is an important factor affecting plant life at high-arctic Zackenberg......Depletion of the ozone layer and the consequent increase in solar ultraviolet-B radiation (UV-B) may impact living conditions for arctic plants significantly. In order to evaluate how the prevailing UV-B fluxes affect the heath ecosystem at Zackenberg (74°30'N, 20°30'W) and other high......-arctic regions, manipulation experiments with various set-ups have been performed. Activation of plant defence mechanisms by production of UV-B absorbing compounds was significant in ambient UV-B in comparison to a filter treatment reducing the UV-B radiation. Despite the UV-B screening response, ambient UV...

  14. Demographic and economic disparities among Arctic regions

    OpenAIRE

    Schmidt, Jennifer Irene; Aanesen, Margrethe; Klokov, Konstantin; Kruschov, Sergei; Hausner, Vera Helene

    2015-01-01

    Accepted manuscript version. Published version at http://doi.org/10.1080/1088937X.2015.1065926. We use demographic and economic indicators to analyze spatial differences and temporal trends across 18 regions surrounding the Arctic Ocean. Multifactor and cluster analysis were used on 10 indicators reflecting income, employment and demography from 1995 to 2008. The main difference is between regions with high population densities, low natural growth rate, and low unemployment (Ru...

  15. Tropospheric ozone variations in polar regions; Troposphaerische Ozonvariationen in Polarregionen

    Energy Technology Data Exchange (ETDEWEB)

    Wessel, S.

    1997-08-01

    An extensive analysis for the description of chemical and dynamical processes during tropospheric ozone minima in the Arctic and Antarctic was carried out in this work. One main task was the analysis of the source regions of tropospheric ozone destruction and the following transport of ozone depleted air masses to the measuring site. Furtheron the ozone destruction mechanism itself should be examined as well as the efficiency of heterogeneous reactions for the regeneration of non-reative bromine compounds, which seems to be necessary because bromine may be the key component in the destruction of tropospheric ozone in polar regions. (orig./KW) [Deutsch] In der vorliegenden Arbeit wurde eine umfangreiche Analyse zur Beschreibung der chemischen und dynamischen Prozesse waehrend troposphaerischer Ozonminima in der Arktis und Antarktis durchgefuehrt. Ziel war es, die Quellregion des Ozonabbaus sowie den ausloesenden ozonabbauenden Mechanismus zu benennen, die Effizienz heterogener Reaktionen zur Regenerierung nichtreaktiver Bromverbindungen waehrend des Ozonabbaus zu ermitteln und den Transport der ozonarmen Luftmassen zum Messort zu untersuchen. (orig./KW)

  16. Connecting Arctic Research Across Boundaries through the Arctic Research Consortium of the United States (ARCUS)

    Science.gov (United States)

    Rich, R. H.; Myers, B.; Wiggins, H. V.; Zolkos, J.

    2017-12-01

    The complexities inherent in Arctic research demand a unique focus on making connections across the boundaries of discipline, institution, sector, geography, knowledge system, and culture. Since 1988, ARCUS has been working to bridge these gaps through communication, coordination, and collaboration. Recently, we have worked with partners to create a synthesis of the Arctic system, to explore the connectivity across the Arctic research community and how to strengthen it, to enable the community to have an effective voice in research funding policy, to implement a system for Arctic research community knowledge management, to bridge between global Sea Ice Prediction Network researchers and the science needs of coastal Alaska communities through the Sea Ice for Walrus Outlook, to strengthen ties between Polar researchers and educators, and to provide essential intangible infrastructure that enables cost-effective and productive research across boundaries. Employing expertise in managing for collaboration and interdisciplinarity, ARCUS complements and enables the work of its members, who constitute the Arctic research community and its key stakeholders. As a member-driven organization, everything that ARCUS does is achieved through partnership, with strong volunteer leadership of each activity. Key organizational partners in the United States include the U.S. Arctic Research Commission, Interagency Arctic Research Policy Committee, National Academy of Sciences Polar Research Board, and the North Slope Science Initiative. Internationally, ARCUS maintains strong bilateral connections with similarly focused groups in each Arctic country (and those interested in the Arctic), as well as with multinational organizations including the International Arctic Science Committee, the Association of Polar Early Career Educators, the University of the Arctic, and the Arctic Institute of North America. Currently, ARCUS is applying the best practices of the science of team science

  17. Polar politics : sovereignty tussles over Arctic territory threaten to impede oil and gas exploration

    International Nuclear Information System (INIS)

    Lorenz, A.W.

    2007-01-01

    Competition to secure oil and gas leases is concerning scientists who believe that the exploitation of mineral resources in the Arctic will damage the region faster than climate change. Scientists in the region have noted that hydrogen sulphide induced by sulphur-oxidizing bacteria are now thriving within glaciers in the Arctic. Imperial Oil and ExxonMobil Canada recently purchased 205,000 hectares in the Beaufort Sea, and the purchase is seen as a harbinger of further development in the region. Disputes between Canada and the United States are now beginning to cause controversy in the region. Climatic change may mean that the region will be ice-free in 50 years. Climatic change will also result in the destabilization of permafrost and in rises in sea levels. Melting of permafrost could cause subsidence and further difficulties for exploration engineers. If Canada is not able to convince the United Nations that the Northwest Passage constitutes internal waters, the environmental impacts of Russian resource development could be profound. In addition, offshore boundaries between the Yukon and Alaska are interpreted differently by Canadians and Americans. It was suggested that discussions are needed to ensure Canada's role in the Arctic. 2 figs

  18. Transport Regimes of Air Masses Affecting the Tropospheric Composition of the Canadian and European Arctic During RACEPAC 2014 and NETCARE 2014/2015

    Science.gov (United States)

    Bozem, H.; Hoor, P. M.; Koellner, F.; Kunkel, D.; Schneider, J.; Schulz, C.; Herber, A. B.; Borrmann, S.; Wendisch, M.; Ehrlich, A.; Leaitch, W. R.; Willis, M. D.; Burkart, J.; Thomas, J. L.; Abbatt, J.

    2015-12-01

    The Arctic is warming much faster than any other place in the world and undergoes a rapid change dominated by a changing climate in this region. The impact of polluted air masses traveling to the Arctic from various remote sources significantly contributes to the observed climate change, in contrast there are additional local emission sources contributing to the level of pollutants (trace gases and aerosol). Processes affecting the emission and transport of these pollutants are not well understood and need to be further investigated. We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories we analyze the transport regimes prevalent during spring (RACEPAC 2014 and NETCARE 2015) and summer (NETCARE 2014) in the observed region. Whereas the eastern part of the Canadian Arctic is affected by air masses with their origin in Asia, in the central and western parts of the Canadian and European Arctic air masses from North America are predominant at the time of the measurement. In general the more northern parts of the Arctic were relatively unaffected by pollution from mid-latitudes since air masses mostly travel within the polar dome, being quite isolated. Associated mixing ratios of CO and CO2 fit into the seasonal cycle observed at NOAA ground stations throughout the Arctic, but show a more mid-latitudinal characteristic at higher altitudes. The transition is remarkably sharp and allows for a chemical definition of the polar dome. At low altitudes, synoptic disturbances transport polluted air masses from mid-latitudes into regions of the polar dome. These air masses contribute to the Arctic pollution background, but also

  19. Contamination of the Arctic by exotic air toxics

    International Nuclear Information System (INIS)

    Ford, J.; Landers, D.

    1991-01-01

    Various kinds of atmospheric pollutants are commonly known to occur in arctic environments. These include organic contaminants, pollutants associated with fossil fuel combustion, smelting, industrial development, and radionuclides. Recently, additional concern has arisen from studies suggesting that at least some atmospheric contaminants may be susceptible to poleward redistribution as a result of their physical and chemical properties. Thus, contamination of the arctic may be exacerbated by the tendency of selected contaminants produced at lower latitudes to be transported to polar regions and incorporated into high latitude food chains. Although awareness of exotic contaminants in high latitude food chains is not new, regional baseline data are needed to document the spatial extent and magnitude of this potentially serious problem. The US Arctic is little studied in this regard relative to several other circumpolar nations (e.g., Canada, Sweden); over the next year the authors will be designing a regional survey to begin remedying this information gap. A major focus of this activity will be to ensure compatibility with both ongoing international studies of arctic contamination, and the USEPA Environmental Monitoring and Assessment Program. Issues related to sampling design will be outlined and discussed

  20. DEVELOPMENT AREAS IN THE ARCTIC REGION FORMATION OF A NEW INSTITUTIONAL SPACE

    Directory of Open Access Journals (Sweden)

    M. Dudin

    2015-01-01

    Full Text Available In this article we presented and disclosed some abstracts related to the problems of development of the Arctic and subarctic areas, which according to various expert estimates contain from 15 to 25% of the world reserves of primary energy resources, as well as the study examines the current situation and prospects of the Russian Federation the process of development of the Arctic territories.The purpose of this article is to study Russia's priorities at the national and regional levels related to the extraction of minerals that can be used to enhance the competitiveness of Russia on the world level and to ensure national energy security. Also, a study of this article is aimed at addressing issues related to the development of recommendations for the development of the global system of economic and energy security in the context of exploitation of prospective deposits in the Arctic region.Methodology. The methodological basis of this article are comparative and economic-statistical methods of analysis.Results: In this article were subsequently solved the problem, to achieve this goal, in particular: examined the general trends of energy development of civilization, considered the legal issues concerning the status of the Arctic and the Arctic regions, the basic global trends of world energy development and justifi ed system for ensuring global energy security.Conclusions. There were obtained the following basic conclusions: First, the Arctic and the Arctic area are world heritage, so the development of deposits on them should be in the interest of the world community on a non-discriminatory basis; secondly, energy future civilization will be based on the harmonious combination of traditional and renewable energy sources, which determines the need to rationalize the consumption of energy resources in the present; Third, environmental issues prospects of development of the Arctic and subarctic areas suffi ciently sharp and

  1. Videographic Education: Owning the Polar Crisis

    Science.gov (United States)

    Vachon, R. W.; Buhr, S. M.

    2007-12-01

    Television and internet-served video is an increasingly important media tool for reaching into society. This talk will present clips from a film designed to educate the public about warming in the polar regions, the socioeconomic and environmental implications of this warming; and the actions we can take to slow down human contributions to climate change. This talk will present a short film Owning the Polar Crisis, which is drawn from footage for Polar Visions, a four segment film available for educational audiences and the public.. The films are unique in that they draw from the perspectives of well-known climate scientists, citizens from all over the planet and natives of the Arctic. The compelling images were taken from numerous locations around the Arctic, including Alaska and Greenland. Owning the Polar Crisis was filmed, directed and produced by Dr. Ryan Vachon, a climate scientist and videographer with an intimate knowledge of the subject matter.

  2. Arctic air pollution: New insights from POLARCAT-IPY

    International Nuclear Information System (INIS)

    Law, Katharine S.; Ancellet, Gerard; Pelon, Jacques; Thomas, Jennie L.; Stohl, Andreas; Quinn, Patricia K.; Brock, Charles A.; Burkhart, John F.

    2014-01-01

    Given the rapid nature of climate change occurring in the Arctic and the difficulty climate models have in quantitatively reproducing observed changes such as sea ice loss, it is important to improve understanding of the processes leading to climate change in this region, including the role of short-lived climate pollutants such as aerosols and ozone. It has long been known that pollution produced from emissions at mid latitudes can be transported to the Arctic, resulting in a winter/spring aerosol maximum known as Arctic haze. However, many uncertainties remain about the composition and origin of Arctic pollution throughout the troposphere; for example, many climate-chemistry models fail to reproduce the strong seasonality of aerosol abundance observed at Arctic surface sites, the origin and deposition mechanisms of black carbon (soot) particles that darken the snow and ice surface in the Arctic is poorly understood, and chemical processes controlling the abundance of tropospheric ozone are not well quantified. The International Polar Year (IPY) Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, Climate, Chemistry, Aerosols and Transport (POLARCAT) core project had the goal to improve understanding about the origins of pollutants transported to the Arctic; to detail the chemical composition, optical properties, and climate forcing potential of Arctic aerosols; to evaluate the processes governing tropospheric ozone; and to quantify the role of boreal forest fires. This article provides a review of the many results now available based on analysis of data collected during the POLARCAT aircraft-, ship-, and ground-based field campaigns in spring and summer 2008. Major findings are highlighted and areas requiring further investigation are discussed. (authors)

  3. Can polar bear hairs absorb environmental energy?

    Directory of Open Access Journals (Sweden)

    He Ji-Huan

    2011-01-01

    Full Text Available A polar bear (Ursus maritimus has superior ability to survive in harsh Arctic regions, why does the animal have such an excellent thermal protection? The present paper finds that the unique labyrinth cavity structure of the polar bear hair plays an important role. The hair can not only prevent body temperature loss but can also absorb energy from the environment.

  4. Spherical Slepian as a new method for ionospheric modeling in arctic region

    Science.gov (United States)

    Etemadfard, Hossein; Hossainali, Masoud Mashhadi

    2016-03-01

    From the perspective of the physical, chemical and biological balance in the world, the Arctic has gradually turned into an important region opening ways for new researchers and scientific expeditions. In other words, various researches have been funded in order to study this frozen frontier in details. The current study can be seen in the same milieu where researchers intend to propose a set of new base functions for modeling ionospheric in the Arctic. As such, to optimize the Spherical Harmonic (SH) functions, the spatio-spectral concentration is applied here using the Slepian theory that was developed by Simons. For modeling the ionosphere, six International GNSS Service (IGS) stations located in the northern polar region were taken into account. Two other stations were left out for assessing the accuracy of the proposed model. The adopted GPS data starts at DOY 69 (Day of Year) and ends at DOY 83 (totally 15 successive days) in 2013. Three Spherical Slepian models respectively with the maximal degrees of K=15, 20 & 25 were used. Based on the results, K=15 is the optimum degree for the proposed model. The accuracy and precision of the Slepian model are about 0.1 and 0.05 TECU, respectively (TEC Unit=1016 electron/m2). To understand the advantage of this model, it is compared with polynomial and trigonometric series which are developed using the same set of measurements. The accuracy and precision of trigonometric and polynomial models are at least 4 times worse than the Slepian one.

  5. A lunar polar expedition

    Science.gov (United States)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-09-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  6. Polar bears from space: Assessing satellite imagery as a tool to track Arctic wildlife

    Science.gov (United States)

    Stapleton, Seth P.; LaRue, Michelle A.; Lecomte, Nicolas; Atkinson, Stephen N.; Garshelis, David L.; Porter, Claire; Atwood, Todd C.

    2014-01-01

    Development of efficient techniques for monitoring wildlife is a priority in the Arctic, where the impacts of climate change are acute and remoteness and logistical constraints hinder access. We evaluated high resolution satellite imagery as a tool to track the distribution and abundance of polar bears. We examined satellite images of a small island in Foxe Basin, Canada, occupied by a high density of bears during the summer ice-free season. Bears were distinguished from other light-colored spots by comparing images collected on different dates. A sample of ground-truthed points demonstrated that we accurately classified bears. Independent observers reviewed images and a population estimate was obtained using mark- recapture models. This estimate (N: 94; 95% Confidence Interval: 92-105) was remarkably similar to an abundance estimate derived from a line transect aerial survey conducted a few days earlier (N: 102; 95% CI: 69-152). Our findings suggest that satellite imagery is a promising tool for monitoring polar bears on land, with implications for use with other Arctic wildlife. Large scale applications may require development of automated detection processes to expedite review and analysis. Future research should assess the utility of multi-spectral imagery and examine sites with different environmental characteristics.

  7. Polar bears from space: assessing satellite imagery as a tool to track Arctic wildlife.

    Directory of Open Access Journals (Sweden)

    Seth Stapleton

    Full Text Available Development of efficient techniques for monitoring wildlife is a priority in the Arctic, where the impacts of climate change are acute and remoteness and logistical constraints hinder access. We evaluated high resolution satellite imagery as a tool to track the distribution and abundance of polar bears. We examined satellite images of a small island in Foxe Basin, Canada, occupied by a high density of bears during the summer ice-free season. Bears were distinguished from other light-colored spots by comparing images collected on different dates. A sample of ground-truthed points demonstrated that we accurately classified bears. Independent observers reviewed images and a population estimate was obtained using mark-recapture models. This estimate (N: 94; 95% Confidence Interval: 92-105 was remarkably similar to an abundance estimate derived from a line transect aerial survey conducted a few days earlier (N: 102; 95% CI: 69-152. Our findings suggest that satellite imagery is a promising tool for monitoring polar bears on land, with implications for use with other Arctic wildlife. Large scale applications may require development of automated detection processes to expedite review and analysis. Future research should assess the utility of multi-spectral imagery and examine sites with different environmental characteristics.

  8. Polar bears from space: assessing satellite imagery as a tool to track Arctic wildlife.

    Science.gov (United States)

    Stapleton, Seth; LaRue, Michelle; Lecomte, Nicolas; Atkinson, Stephen; Garshelis, David; Porter, Claire; Atwood, Todd

    2014-01-01

    Development of efficient techniques for monitoring wildlife is a priority in the Arctic, where the impacts of climate change are acute and remoteness and logistical constraints hinder access. We evaluated high resolution satellite imagery as a tool to track the distribution and abundance of polar bears. We examined satellite images of a small island in Foxe Basin, Canada, occupied by a high density of bears during the summer ice-free season. Bears were distinguished from other light-colored spots by comparing images collected on different dates. A sample of ground-truthed points demonstrated that we accurately classified bears. Independent observers reviewed images and a population estimate was obtained using mark-recapture models. This estimate (N: 94; 95% Confidence Interval: 92-105) was remarkably similar to an abundance estimate derived from a line transect aerial survey conducted a few days earlier (N: 102; 95% CI: 69-152). Our findings suggest that satellite imagery is a promising tool for monitoring polar bears on land, with implications for use with other Arctic wildlife. Large scale applications may require development of automated detection processes to expedite review and analysis. Future research should assess the utility of multi-spectral imagery and examine sites with different environmental characteristics.

  9. Sea Ice Charts of the Russian Arctic in Gridded Format, 1933-2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Arctic and Antarctic Research Institute (AARI) in St. Petersburg, Russia, produces sea ice charts for safety of navigation in the polar regions and for other...

  10. Invited review: climate change impacts in polar regions: lessons from Antarctic moss bank archives.

    Science.gov (United States)

    Royles, Jessica; Griffiths, Howard

    2015-03-01

    Mosses are the dominant plants in polar and boreal regions, areas which are experiencing rapid impacts of regional warming. Long-term monitoring programmes provide some records of the rate of recent climate change, but moss peat banks contain an unrivalled temporal record of past climate change on terrestrial plant Antarctic systems. We summarise the current understanding of climatic proxies and determinants of moss growth for contrasting continental and maritime Antarctic regions, as informed by 13C and 18O signals in organic material. Rates of moss accumulation are more than three times higher in the maritime Antarctic than continental Antarctica with growing season length being a critical determinant of growth rate, and high carbon isotope discrimination values reflecting optimal hydration conditions. Correlation plots of 13C and 18O values show that species (Chorisodontium aciphyllum / Polytrichum strictum) and growth form (hummock / bank) are the major determinants of measured isotope ratios. The interplay between moss growth form, photosynthetic physiology, water status and isotope composition are compared with developments of secondary proxies, such as chlorophyll fluorescence. These approaches provide a framework to consider the potential impact of climate change on terrestrial Antarctic habitats as well as having implications for future studies of temperate, boreal and Arctic peatlands. There are many urgent ecological and environmental problems in the Arctic related to mosses in a changing climate, but the geographical ranges of species and life-forms are difficult to track individually. Our goal was to translate what we have learned from the more simple systems in Antarctica, for application to Arctic habitats. © 2014 John Wiley & Sons Ltd.

  11. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    Science.gov (United States)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Padolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Mahoney, Michael J.; Richard, Erik

    2002-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE III-Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999/2000 winter season. Aircraft-based water vapor, carbon monoxide, and ozone measurements were analyzed so as to establish how deeply tropospheric air mixes into the Arctic lowermost stratosphere and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to-stratosphere exchange extends into the Arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases with altitude most rapidly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of above 5ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20% of the parcels which have ozone values of 300-350 ppbv experiencing ice saturation in a given 10 day period. Third, during early spring, temperatures at the troposphere are cold enough so that 5-10% of parcels experience relative humidities above 100%, even if the water content is as low as 5 ppmv. The implication is that during this period, dynamical processes near the Arctic tropopause can dehydrate air and keep the Arctic tropopause region very dry during early spring.

  12. Three decades of BGR airborne geophysical surveys over the polar regions - a review

    Science.gov (United States)

    Damaske, Detlef

    2013-04-01

    smaller scale surveys - getting close to industry standards - targeted specific geological questions, the reconnaissance type of aerogeophysical projects continued in Dronning Maud Land, now in close cooperation with the Alfred-Wegener-Institute (AWI). This very successful cooperation between the two German institutions - both working continuously in the polar regions - was already established in Arctic projects, namely in northern Greenland. Also, since the late 1990's BGR conducted together with Canada airborne surveys as part of PMAP (Polar Margins Aeromagnetic Program), thematically linked to the predominantly geological CASE (Circum Arctic Structural Events) program of BGR. A joint project of GSC (Geological Survey of Canada) and BGR in the Nares Strait was a highlight of combined geological and aeromagnetic research addressing the still widely discussed Wegener fault between Greenland and Ellesmere Island and the extent of tertiary basins in the Nares Strait itself. BGR intends to continue its successful combined geological-geophysical work in both polar regions. The increasing logistic and financial challenges to work in these extreme areas will demand not only a continuation but an intensification of national and international collaboration.

  13. One-dimensional heat conduction equation of the polar bear hair

    Directory of Open Access Journals (Sweden)

    Zhu Wei-Hong

    2015-01-01

    Full Text Available Hairs of a polar bear (Ursus maritimus possess special membrane-pore structure. The structure enables the polar bear to survive in the harsh Arctic regions. In this paper, the membrane-pore structure be approximately considered as fractal space, 1-D heat conduction equation of the polar bear hair is established and the solution of the equation is obtained.

  14. Improving health in the Arctic region through safe and affordable access to household running water and sewer services: an Arctic Council initiative.

    Science.gov (United States)

    Hennessy, Thomas W; Bressler, Jonathan M

    2016-01-01

    Important health disparities have been documented among the peoples of the Arctic and subarctic, including those related to limited access to in-home improved drinking water and sanitation services. Although improving water, sanitation and hygiene (WASH) has been a focus of the United Nations for decades, the Arctic region has received little attention in this regard. A growing body of evidence highlights inequalities across the region for the availability of in-home drinking WASH services and for health indicators associated with these services. In this review, we highlight relevant data and describe an initiative through the Arctic Council's Sustainable Development Working Group to characterize the extent of WASH services in Arctic nations, the related health indicators and climate-related vulnerabilities to WASH services. With this as a baseline, efforts to build collaborations across the Arctic will be undertaken to promote innovations that can extend the benefits of water and sanitation services to all residents.

  15. Biological Environmental Arctic Project (BEAP) Preliminary Data (Arctic West Summer 1986 Cruise).

    Science.gov (United States)

    1986-11-01

    predictive model of bioluminescence in near-surface arctic waters . Data were collected during Arctic West Summer 1986 from USCG POLAR STAR (WAGB 10). . %. J...2 20ODISTRIBUTION AVAILABILIT "Y OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION C]UNCLASSIFIED UNLIMITED SAME AS RPT C] DTIC USERS UNCLASSIFIED David...correlates for a predictive model of bioluminescence in near-surface arctic waters . - In previous years, these measurements were conducted from the USCG

  16. Cloud Statistics and Discrimination in the Polar Regions

    Science.gov (United States)

    Chan, M.; Comiso, J. C.

    2012-12-01

    -sheet). The immediate impact of the new algorithm is that it can minimize large biases of MODIS-derived cloud amount over the Polar Regions and thus a more realistic and high quality global cloud statistics. In particular, our results show that cloud fraction in the Arctic is typically 81.2 % during daytime and 84.0% during nighttime. This is significantly higher than the 71.8% and 58.5%, respectively, derived from standard MODIS cloud product.

  17. Features of ozone intraannual variability in polar regions based on ozone sounding data obtained at the Resolute and Amundsen-Scott stations

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, A.N.; Sitnov, S.A. (AN SSSR, Institut Fiziki Atmosfery, Moscow (USSR))

    1991-04-01

    Ozone sounding data obtained at the Resolute and Amundsen-Scott stations are used to analyze ozone intraannual variability in Southern and Northern polar regions. For the Arctic, in particular, features associated with winter stratospheric warmings, stratospheric-tropospheric exchange, and the isolated evolution of surface ozone are noted. Correlative connections between ozone and temperature making it possible to concretize ozone variability mechanisms are analyzed. 31 refs.

  18. Monitoring the welfare of polar bear populations in a rapidly changing Arctic

    Science.gov (United States)

    Atwood, Todd C.; Duncan, Colleen G.; Patyk, Kelly A.; Sonsthagen, Sarah A.

    2017-01-01

    Most programs for monitoring the welfare of wildlife populations support efforts aimed at reaching discrete management objectives, like mitigating conflict with humans. While such programs can be effective, their limited scope may preclude systemic evaluations needed for large-scale conservation initiatives, like the recovery of at-risk species. We discuss select categories of metrics that can be used to monitor how polar bears (Ursus maritimus) are responding to the primary threat to their long-term persistence—loss of sea ice habitat due to the unabated rise in atmospheric greenhouse gas (GHG; e.g., CO2) concentrations—that can also provide information on ecosystem function and health. Monitoring key aspects of polar bear population dynamics, spatial behavior, health and resiliency can provide valuable insight into ecosystem state and function, and could be a powerful tool for achieving Arctic conservation objectives, particularly those that have transnational policy implications.

  19. How Rapid Change Affects Deltas in the Arctic Region

    Science.gov (United States)

    Overeem, I.; Bendixen, M.

    2017-12-01

    Deltas form where the river drains into the ocean. Consequently, delta depositional processes are impacted by either changes in the respective river drainage basin or by changes in the regional marine environment. In a warming Arctic region rapid change has occurred over the last few decades in both the terrestrial domain as well as in the marine domain. Important terrestrial controls include 1) change in permafrost possibly destabilizing river banks, 2) strong seasonality of river discharge due to a short melting season, 3) high sediment supply if basins are extensively glaciated, 4) lake outbursts and ice jams favoring river flooding. Whereas in the Arctic marine domain sea ice loss promotes wave and storm surge impact, and increased longshore transport. We here ask which of these factors dominate any morphological change in Arctic deltas. First, we analyze hydrological data to assess change in Arctic-wide river discharge characteristics and timing, and sea ice concentration data to map changes in sea ice regime. Based on this observational analysis we set up a number of scenarios of change. We then model hypothetical small-scale delta formation considering change in these primary controls by setting up a numerical delta model, and combining it dynamically with a permafrost model. We find that for typical Greenlandic deltas changes in river forcing due to ice sheet melt dominate the morphological change, which is corroborated by mapping of delta progradation from aerial photos and satellite imagery. Whereas in other areas, along the North Slope and the Canadian Arctic small deltas are more stable or experienced retreat. Our preliminary coupled model allows us to further disentangle the impact of major forcing factors on delta evolution in high-latitude systems.

  20. Tsunami in the Arctic

    Science.gov (United States)

    Kulikov, Evgueni; Medvedev, Igor; Ivaschenko, Alexey

    2017-04-01

    The severity of the climate and sparsely populated coastal regions are the reason why the Russian part of the Arctic Ocean belongs to the least studied areas of the World Ocean. In the same time intensive economic development of the Arctic region, specifically oil and gas industry, require studies of potential thread natural disasters that can cause environmental and technical damage of the coastal and maritime infrastructure of energy industry complex (FEC). Despite the fact that the seismic activity in the Arctic can be attributed to a moderate level, we cannot exclude the occurrence of destructive tsunami waves, directly threatening the FEC. According to the IAEA requirements, in the construction of nuclear power plants it is necessary to take into account the impact of all natural disasters with frequency more than 10-5 per year. Planned accommodation in the polar regions of the Russian floating nuclear power plants certainly requires an adequate risk assessment of the tsunami hazard in the areas of their location. Develop the concept of tsunami hazard assessment would be based on the numerical simulation of different scenarios in which reproduced the hypothetical seismic sources and generated tsunamis. The analysis of available geological, geophysical and seismological data for the period of instrumental observations (1918-2015) shows that the highest earthquake potential within the Arctic region is associated with the underwater Mid-Arctic zone of ocean bottom spreading (interplate boundary between Eurasia and North American plates) as well as with some areas of continental slope within the marginal seas. For the Arctic coast of Russia and the adjacent shelf area, the greatest tsunami danger of seismotectonic origin comes from the earthquakes occurring in the underwater Gakkel Ridge zone, the north-eastern part of the Mid-Arctic zone. In this area, one may expect earthquakes of magnitude Mw ˜ 6.5-7.0 at a rate of 10-2 per year and of magnitude Mw ˜ 7.5 at a

  1. The Power of the Capability Constraint: On Russia’s Strength in the Arctic Territorial Dispute

    Directory of Open Access Journals (Sweden)

    Valko Irina

    2016-04-01

    Full Text Available Based on a geographical-administrative definition of the region, the theoretical assumptions of contemporary French structuralist geopolitics, cross-sectional data for 1990, 1995, 2000, 2005 and 2010 from the Updated Arctic Regional Attributes Dataset, and the technical capabilities of MS Office Excel 2010, this research (a reveals and contrasts the Arctic states’ capability constraints deriving from their longitudinal material and virtual power potential (physical potential, socio-economic potential, military potential, and symbolic potential; and (b analyses the role of this constraint in the process of preference formation in case of one specific Arctic actor, Russia, in the Arctic territorial dispute. This study confirms that Russia’s capability constraint is the lowest in the region and that the latter does not form a stable trend throughout the period studied. It also suggests the preference formation framework for Russia in the Arctic dispute based on the evolution of its polar capability constraint.

  2. A case study of high Arctic anthropogenic disturbance to polar desert permafrost and ecosystems

    Science.gov (United States)

    Becker, M. S.; Pollard, W. H.

    2013-12-01

    One of the indirect impacts of climate change on Arctic ecosystems is the expected increase of industrial development in high latitudes. The scale of terrestrial impacts cannot be known ahead of time, particularly due to a lack of long-term impact studies in this region. With one of the slowest community recovery rates of any ecosystem, the high Artic biome will be under a considerable threat that is exacerbated by a high susceptibility to change in the permafrost thermal balance. One such area that provides a suitable location for study is an old airstrip near Eureka, Ellesmere Island, Nunavut (80.0175°N, 85.7340°W). While primarily used as an ice-runway for winter transport, the airstrip endured a yearly summer removal of vegetation that continued from 1947 until its abandonment in 1951. Since then, significant vegetative and geomorphic differences between disturbed and undisturbed areas have been noted in the literature throughout the decades (Bruggemann, 1953; Beschel, 1963; Couture and Pollard, 2007), but no system wide assessment of both the ecosystem and near-surface permafrost has been conducted. Key to our study is that the greatest apparent geomorphic and vegetative changes have occurred and persisted in areas where underlying ice-wedges have been disturbed. This suggests that the colonizing communities rapidly filled new available thermokarst niches and have produced an alternative ice-wedge stable state than the surrounding polar desert. We hypothesize that disturbed areas will currently have greater depths of thaw (deeper active layers) and degraded ice-wedges, with decreased vegetation diversity but higher abundance due to a changed hydrological balance. To test this a comprehensive set of near-surface active layer and ecosystem measurements were conducted. Permafrost dynamics were characterized using probing and high-frequency Ground Penetrating Radar (500 MHz) to map the near-surface details of ice-wedges and active layer. Vegetation was measured

  3. An International Polar Year Adventure in the Arctic

    Science.gov (United States)

    Wartes, D.

    2008-12-01

    Native students in the UA system who participated in RAHI are nearly twice as likely to earn a bachelor's degree, than those who did not attend RAHI. The past two summers, in celebration of the International Polar Year, in collaboration with Ilisagvik College, at the completion of the traditional RAHI program, ten RAHI students flew to Barrow for an additional two weeks of study. Five students participated in an archaeological dig and five students performed research with the Barrow Arctic Science Consortium scientists studying climate change. And another student was the Alaskan delegate to the Students on Ice, a 2-week ship-based adventure in northern Canada. In addition, ten students from Greenland visited the program, with plans to more fully participate next summer. This added dimension to the program has proved successful, allowing the students to compare and contrast between their own countries and indigenous perspectives. Global warming was an issue that was hotly debated, as its effects are so evident in the Polar Regions. In the Arctic, one's life is directly tied to the ice and snow. As the ice disappears and/or changes, the Indigenous people have to adapt. RAHI would like to share with you some of the results of this past summer's IPY activities.

  4. Using fluorescent dissolved organic matter to trace and distinguish the origin of Arctic surface waters

    Science.gov (United States)

    Gonçalves-Araujo, Rafael; Granskog, Mats A.; Bracher, Astrid; Azetsu-Scott, Kumiko; Dodd, Paul A.; Stedmon, Colin A.

    2016-01-01

    Climate change affects the Arctic with regards to permafrost thaw, sea-ice melt, alterations to the freshwater budget and increased export of terrestrial material to the Arctic Ocean. The Fram and Davis Straits represent the major gateways connecting the Arctic and Atlantic. Oceanographic surveys were performed in the Fram and Davis Straits, and on the east Greenland Shelf (EGS), in late summer 2012/2013. Meteoric (fmw), sea-ice melt, Atlantic and Pacific water fractions were determined and the fluorescence properties of dissolved organic matter (FDOM) were characterized. In Fram Strait and EGS, a robust correlation between visible wavelength fluorescence and fmw was apparent, suggesting it as a reliable tracer of polar waters. However, a pattern was observed which linked the organic matter characteristics to the origin of polar waters. At depth in Davis Strait, visible wavelength FDOM was correlated to apparent oxygen utilization (AOU) and traced deep-water DOM turnover. In surface waters FDOM characteristics could distinguish between surface waters from eastern (Atlantic + modified polar waters) and western (Canada-basin polar waters) Arctic sectors. The findings highlight the potential of designing in situ multi-channel DOM fluorometers to trace the freshwater origins and decipher water mass mixing dynamics in the region without laborious samples analyses. PMID:27667721

  5. The polar mesosphere

    International Nuclear Information System (INIS)

    Morris, Ray; Murphy, Damian

    2008-01-01

    The mesosphere region, which lies at the edge of space, contains the coldest layer of the Earth's atmosphere, with summer temperatures as low as minus 130 °C. In this extreme environment ice aerosol layers have appeared since the dawn of industrialization—whose existence may arguably be linked to human influence—on yet another layer of the Earth's fragile atmosphere. Ground-based and space-based experiments conducted in the Arctic and Antarctic during the International Polar Year (IPY) aim to address limitations in our knowledge and to advance our understanding of thermal and dynamical processes at play in the polar mesosphere

  6. What About Sea Ice? People, animals, and climate change in the polar regions: An online resource for the International Polar Year and beyond

    Science.gov (United States)

    Renfrow, S.; Meier, W. N.; Wolfe, J.; Scott, D.; Leon, A.; Weaver, R.

    2005-12-01

    Decreasing Arctic sea ice has been one of the most noticeable changes on Earth over the past quarter-century. The years 2002 through 2005 have had much lower summer sea ice extents than the long-term (1979-2000). Reduced sea ice extent has a direct impact on Arctic wildlife and people, as well as ramifications for regional and global climate. Students, educators, and the general public want and need to have a better understanding of sea ice. Most of us are unfamiliar with sea ice: what it is, where it occurs, and how it affects global climate. The upcoming International Polar Year will provide an opportunity for the public to learn about sea ice. Here, we provide an overview of sea ice, the changes that the sea ice is undergoing, and information about the relation between sea ice and climate. The information presented here is condensed from the National Snow and Ice Data Center's new 'All About Sea Ice' Web site (http://www.nsidc.org/seaice/), a comprehensive resource of information for sea ice.

  7. Atmospheric transport of pollution to the Arctic

    International Nuclear Information System (INIS)

    Iversen, T.

    1984-01-01

    If the atmospheric processes are assumed to be nearly adiabatic, the conclusion is that the possible source areas of Arctic air pollution detected at ground level have to be situated in areas with almost the same temperature as observed in the Arctic itself. Sources south of the polar front system can only contribute to high-altitude (or upper level) Arctic pollution. The amplitude and phase of long, planetary waves are important since they determine the position of the polar front, and provide conditions for meridional transport of air at certain longitudes

  8. High Arctic summer warming tracked by increased Cassiope tetragona growth in the world's northernmost polar desert.

    Science.gov (United States)

    Weijers, Stef; Buchwal, Agata; Blok, Daan; Löffler, Jörg; Elberling, Bo

    2017-11-01

    Rapid climate warming has resulted in shrub expansion, mainly of erect deciduous shrubs in the Low Arctic, but the more extreme, sparsely vegetated, cold and dry High Arctic is generally considered to remain resistant to such shrub expansion in the next decades. Dwarf shrub dendrochronology may reveal climatological causes of past changes in growth, but is hindered at many High Arctic sites by short and fragmented instrumental climate records. Moreover, only few High Arctic shrub chronologies cover the recent decade of substantial warming. This study investigated the climatic causes of growth variability of the evergreen dwarf shrub Cassiope tetragona between 1927 and 2012 in the northernmost polar desert at 83°N in North Greenland. We analysed climate-growth relationships over the period with available instrumental data (1950-2012) between a 102-year-long C. tetragona shoot length chronology and instrumental climate records from the three nearest meteorological stations, gridded climate data, and North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) indices. July extreme maximum temperatures (JulT emx ), as measured at Alert, Canada, June NAO, and previous October AO, together explained 41% of the observed variance in annual C. tetragona growth and likely represent in situ summer temperatures. JulT emx explained 27% and was reconstructed back to 1927. The reconstruction showed relatively high growing season temperatures in the early to mid-twentieth century, as well as warming in recent decades. The rapid growth increase in C. tetragona shrubs in response to recent High Arctic summer warming shows that recent and future warming might promote an expansion of this evergreen dwarf shrub, mainly through densification of existing shrub patches, at High Arctic sites with sufficient winter snow cover and ample water supply during summer from melting snow and ice as well as thawing permafrost, contrasting earlier notions of limited shrub growth sensitivity to

  9. Collaborative Proposal: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic System Model (RASM)

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, William [Univ. of Texas, El Paso, TX (United States)

    2016-11-18

    RASM is a multi-disciplinary project, which brings together researchers from six state universities, one military postgraduate school, and one DoE laboratory to address the core modeling objectives of the arctic research community articulated in the Arctic System Modeling report by Roberts et al. (2010b). This report advocates the construction of a regional downscaling tool to generate probabilistic decadal projections of Greenland ice sheet retreat, evolution of arctic sea ice cover, changes in land surface vegetation, and regional processes leading to arctic amplification. Unified coupled models such as RASM are ideal for this purpose because they simulate fine-scale physics, essential for the realistic representation of intra-annual variability, in addition to processes fundamental to long term climatic shifts (Hurrell et al. 2009). By using RASM with boundary conditions from a global model, we can generate many-member ensembles essential for understanding uncertainty in regional climate projections (Hawkins and Sutton 2009). This probabilistic approach is computationally prohibitive for high-resolution global models in the foreseeable future, and also for regional models interactively nested within global simulations. Yet it is fundamental for quantifying uncertainty in decadal forecasts to make them useful for decision makers (Doherty et al. 2009). For this reason, we have targeted development of ensemble generation techniques as a core project task (Task 4.5). Environmental impact assessment specialists need high-fidelity regional ensemble projections to improve the accuracy of their work (Challinor et al. 2009; Moss et al. 2010). This is especially true of the Arctic, where economic, social and national interests are rapidly reshaping the high north in step with regional climate change. During the next decade, considerable oil and gas discoveries are expected across many parts of the marine and terrestrial Arctic (Gautier et al. 2009), the economics of the

  10. Arctic Warming as News - Perils and Possibilities

    Science.gov (United States)

    Revkin, A. C.

    2015-12-01

    A science journalist in his 30th year covering human-driven climate change, including on three Arctic reporting trips, reflects on successes and setbacks as news media, environmentalists and Arctic communities have tried to convey the significance of polar change to a public for which the ends of the Earth will always largely be a place of the imagination.Novel challenges are arising in the 24/7 online media environment, as when a paper by a veteran climate scientist proposing a mechanism for abrupt sea-level rise became a big news story before it was accepted by the open-review journal to which it had been submitted. New science is digging in on possible connections between changing Arctic sea ice and snow conditions and disruptive winter weather in more temperate northern latitudes, offering a potential link between this distant region and the lives of ordinary citizens. As cutting-edge research, such work gets substantial media attention. But, as with all new areas of inquiry, uncertainty dominates - creating the potential for distracting the public and policymakers from the many aspects of anthropogenic climate change that are firmly established - but, in a way, boring because of that.With the challenges, there are unprecedented opportunities for conveying Arctic science. In some cases, researchers on expeditions are partnering with media, offering both scientists and news outlets fresh ways to convey the story of Arctic change in an era of resource constraints.Innovative uses of crittercams, webcams, and satellite observations offer educators and interested citizens a way to track and appreciate Arctic change. But more can be done to engage the public directly without the news media as an intermediary, particularly if polar scientists or their institutions test some of the established practices honed by more experienced communicators at NASA.

  11. The University of Delaware Carlson International Polar Year Events: Collaborative and Educational Outreach

    Science.gov (United States)

    Nelson, F. E.; Bryant, T.; Wellington, P.; Dooley, J.; Bird, M.

    2008-12-01

    Delaware is a small state with, by virtue of its coastal location, a large stake in climatic change in the polar regions. The University of Delaware has maintained a strong presence in cold-regions research since the mid-1940s, when William Samuel Carlson, a highly accomplished Arctic explorer, military strategist, and earth scientist, was named 20th President (1946-50) of the University. Carlson played a leading role in two of the University of Michigan's Greenland expeditions in the late 1920s and early 1930s. As Director of the Arctic, Desert, and Tropic Branch of the US Army Air Forces Tactical Center during World War II, Colonel Carlson played a role in developing several air transportation routes through the Arctic that helped to facilitate the Allied victory in Europe. Carlson authored many scientific and popular publications concerned with the Arctic, including the books Greenland Lies North (1940) and Lifelines Through the Arctic (1962). Although the University of Delaware has maintained a vigorous and continuous program of polar research since Carlson's tenure, the faculty, staff, and students involved are diffused throughout the University's colleges and departments, without an institutional focal point. Consequently, although many of these individuals are well known in their respective fields, the institution has not until recently been perceived widely as a center of polar-oriented research. The goals of the Carlson International Polar Year Events are to: (a) develop a sense of community among UD's diffuse polar-oriented researchers and educators; (b) create a distinctive and highly visible role for UD in the milieu of IPY activities; (c) promote interest in and knowledge about the polar regions in the State of Delaware, at all educational levels; (d) forge a close relationship between UD and the American Geographical Society, a national organization involved closely with previous International Polar Years; and (e) create a new basis for development

  12. A new fractional derivative and its application to explanation of polar bear hairs

    OpenAIRE

    Ji-Huan He; Zheng-Biao Li; Qing-li Wang

    2016-01-01

    A new fractional derivative is defined through the variational iteration method, and its application in explaining the excellent thermal protection of polar bear hairs is elucidated. The fractal porosity of its inner structure makes a polar bear mathematically adapted for living in a harsh Arctic region.

  13. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum

    Science.gov (United States)

    Sluijs, A.; Schouten, S.; Pagani, M.; Woltering, M.; Brinkhuis, H.; Damste, J.S.S.; Dickens, G.R.; Huber, M.; Reichart, G.-J.; Stein, R.; Matthiessen, J.; Lourens, L.J.; Pedentchouk, N.; Backman, J.; Moran, K.; Clemens, S.; Cronin, T.; Eynaud, F.; Gattacceca, J.; Jakobsson, M.; Jordan, R.; Kaminski, M.; King, J.; Koc, N.; Martinez, N.C.; McInroy, D.; Moore, T.C.; O'Regan, M.; Onodera, J.; Palike, H.; Rea, B.; Rio, D.; Sakamoto, T.; Smith, D.C.; St John, K.E.K.; Suto, I.; Suzuki, N.; Takahashi, K.; Watanabe, M. E.; Yamamoto, M.

    2006-01-01

    The Palaeocene/Eocene thermal maximum, ???55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from ???18??C to over 23??C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10??C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms-perhaps polar stratospheric clouds or hurricane-induced ocean mixing-to amplify early Palaeogene polar temperatures. ?? 2006 Nature Publishing Group.

  14. Simulation of Extreme Arctic Cyclones in IPCC AR5 Experiments

    Science.gov (United States)

    Vavrus, S. J.

    2012-12-01

    Although impending Arctic climate change is widely recognized, a wild card in its expression is how extreme weather events in this region will respond to greenhouse warming. Intense polar cyclones represent one type of high-latitude phenomena falling into this category, including very deep synoptic-scale cyclones and mesoscale polar lows. These systems inflict damage through high winds, heavy precipitation, and wave action along coastlines, and their impact is expected to expand in the future, when reduced sea ice cover allows enhanced wave energy. The loss of a buffering ice pack could greatly increase the rate of coastal erosion, which has already been increasing in the Arctic. These and related threats may amplify if extreme Arctic cyclones become more frequent and/or intense in a warming climate with much more open water to fuel them. This possibility has merit on the basis of GCM experiments, which project that greenhouse forcing causes lower mean sea level pressure (SLP) in the Arctic and a strengthening of the deepest storms over boreal high latitudes. In this study, the latest Coupled Model Intercomparison Project (CMIP5) climate model output is used to investigate the following questions: (1) What are the spatial and seasonal characteristics of extreme Arctic cyclones? (2) How well do GCMs simulate these phenomena? (3) Are Arctic cyclones already showing the expected response to greenhouse warming in climate models? To address these questions, a retrospective analysis is conducted of the transient 20th century simulations among the CMIP5 GCMs (spanning years 1850-2005). The results demonstrate that GCMs are able to reasonably represent extreme Arctic cyclones and that the simulated characteristics do not depend significantly on model resolution. Consistent with observational evidence, climate models generate these storms primarily during winter and within the climatological Aleutian and Icelandic Low regions. Occasionally the cyclones remain very intense

  15. IS THE POLAR REGION DIFFERENT FROM THE QUIET REGION OF THE SUN?

    International Nuclear Information System (INIS)

    Ito, Hiroaki; Shiota, Daikou; Tokumaru, Munetoshi; Fujiki, Ken'ichi; Tsuneta, Saku

    2010-01-01

    Observations of the polar region of the Sun are critically important for understanding the solar dynamo and the acceleration of solar wind. We carried out precise magnetic observations on both the north polar region and the quiet Sun at the east limb with the spectropolarimeter of the Solar Optical Telescope aboard Hinode to characterize the polar region with respect to the quiet Sun. The average area and the total magnetic flux of the kilo-Gauss magnetic concentrations in the polar region appear to be larger than those of the quiet Sun. The magnetic field vectors classified as vertical in the quiet Sun have symmetric histograms around zero in the strengths, showing balanced positive and negative fluxes, while the histogram in the north polar region is clearly asymmetric, showing a predominance of the negative polarity. The total magnetic flux of the polar region is larger than that of the quiet Sun. In contrast, the histogram of the horizontal magnetic fields is exactly the same for both the polar region and the quiet Sun. This is consistent with the idea that a local dynamo process is responsible for the horizontal magnetic fields. A high-resolution potential field extrapolation shows that the majority of magnetic field lines from the kG-patches in the polar region are open with a fanning-out structure very low in the atmosphere, while in the quiet Sun, almost all the field lines are closed.

  16. Toward Sub-seasonal to Seasonal Arctic Sea Ice Forecasting Using the Regional Arctic System Model (RASM)

    Science.gov (United States)

    Kamal, S.; Maslowski, W.; Roberts, A.; Osinski, R.; Cassano, J. J.; Seefeldt, M. W.

    2017-12-01

    The Regional Arctic system model has been developed and used to advance the current state of Arctic modeling and increase the skill of sea ice forecast. RASM is a fully coupled, limited-area model that includes the atmosphere, ocean, sea ice, land hydrology and runoff routing components and the flux coupler to exchange information among them. Boundary conditions are derived from NCEP Climate Forecasting System Reanalyses (CFSR) or Era Iterim (ERA-I) for hindcast simulations or from NCEP Coupled Forecast System Model version 2 (CFSv2) for seasonal forecasts. We have used RASM to produce sea ice forecasts for September 2016 and 2017, in contribution to the Sea Ice Outlook (SIO) of the Sea Ice Prediction Network (SIPN). Each year, we produced three SIOs for the September minimum, initialized on June 1, July 1 and August 1. In 2016, predictions used a simple linear regression model to correct for systematic biases and included the mean September sea ice extent, the daily minimum and the week of the minimum. In 2017, we produced a 12-member ensemble on June 1 and July 1, and 28-member ensemble August 1. The predictions of September 2017 included the pan-Arctic and regional Alaskan sea ice extent, daily and monthly mean pan-Arctic maps of sea ice probability, concentration and thickness. No bias correction was applied to the 2017 forecasts. Finally, we will also discuss future plans for RASM forecasts, which include increased resolution for model components, ecosystem predictions with marine biogeochemistry extensions (mBGC) to the ocean and sea ice components, and feasibility of optional boundary conditions using the Navy Global Environmental Model (NAVGEM).

  17. PeRL: A circum-Arctic Permafrost Region Pond and Lake database

    Science.gov (United States)

    Muster, Sina; Roth, Kurt; Langer, Moritz; Lange, Stephan; Cresto Aleina, Fabio; Bartsch, Annett; Morgenstern, Anne; Grosse, Guido; Jones, Benjamin; Sannel, A.B.K.; Sjoberg, Ylva; Gunther, Frank; Andresen, Christian; Veremeeva, Alexandra; Lindgren, Prajna R.; Bouchard, Frédéric; Lara, Mark J.; Fortier, Daniel; Charbonneau, Simon; Virtanen, Tarmo A.; Hugelius, Gustaf; Palmtag, J.; Siewert, Matthias B.; Riley, William J.; Koven, Charles; Boike, Julia

    2017-01-01

    Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1. 0 × 104 m2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL) database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002–2013) high-resolution aerial and satellite imagery with a resolution of 5 m or better. The database also includes historical imagery from 1948 to 1965 with a resolution of 6 m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1. 4 × 106 km2 across the Arctic, about 17 % of the Arctic lowland ( s.l.) land surface area. PeRL waterbodies with sizes of 1. 0 × 106 m2 down to 1. 0 × 102 m2 contributed up to 21 % to the total water fraction. Waterbody density ranged from 1. 0 × 10 to 9. 4 × 101 km−2. Ponds are the dominant waterbody type by number in all landscapes representing 45–99 % of the total waterbody number. The implementation of PeRL size distributions in land surface models will greatly improve the investigation and projection of surface inundation and carbon fluxes in permafrost lowlands. Waterbody maps, study area

  18. Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors

    Directory of Open Access Journals (Sweden)

    Seongsuk Lee

    2016-12-01

    Full Text Available The spatial size and variation of Arctic sea ice play an important role in Earth’s climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP F13 Special Sensor Microwave/Imagers (SSMI and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily and monthly sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole even during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA.

  19. A new fractional derivative and its application to explanation of polar bear hairs

    Directory of Open Access Journals (Sweden)

    Ji-Huan He

    2016-04-01

    Full Text Available A new fractional derivative is defined through the variational iteration method, and its application in explaining the excellent thermal protection of polar bear hairs is elucidated. The fractal porosity of its inner structure makes a polar bear mathematically adapted for living in a harsh Arctic region.

  20. Final Technical Report for Project 'Improving the Simulation of Arctic Clouds in CCSM3 (SGER Award)'

    International Nuclear Information System (INIS)

    Vavrus, Stephen J.

    2008-01-01

    This project has focused on the simulation of Arctic clouds in CCSM3 and how the modeled cloud amount (and climate) can be improved substantially by altering the parameterized low cloud fraction. The new formula, dubbed 'freeezedry', alleviates the bias of excessive low clouds during polar winter by reducing the cloud amount under very dry conditions. During winter, freezedry decreases the low cloud amount over the coldest regions in high latitudes by over 50% locally and more than 30% averaged across the Arctic (Fig. 1). The cloud reduction causes an Arctic-wide drop of 15 W m -2 in surface cloud radiative forcing (CRF) during winter and about a 50% decrease in mean annual Arctic CRF. Consequently, wintertime surface temperatures fall by up to 4 K on land and 2-8 K over the Arctic Ocean, thus significantly reducing the model's pronounced warm bias (Fig. 1). While improving the polar climate simulation in CCSM3, freezedry has virtually no influence outside of very cold regions (Fig. 2) or during summer (Fig. 3), which are space and time domains that were not targeted. Furthermore, the simplicity of this parameterization allows it to be readily incorporated into other GCMs, many of which also suffer from excessive wintertime polar cloudiness, based on the results from the CMIP3 archive (Vavrus et al., 2008). Freezedry also affects CCSM3's sensitivity to greenhouse forcing. In a transient-CO 2 experiment, the model version with freezedry warms up to 20% less in the North Polar and South Polar regions (1.5 K and 0.5 K smaller warming, respectively) (Fig. 4). Paradoxically, the muted high-latitude response occurs despite a much larger increase in cloud amount with freezedry during non-summer months (when clouds warm the surface), apparently because of the colder modern reference climate. These results of the freezedry parameterization have recently been published (Vavrus and D. Waliser, 2008: An improved parameterization for simulating Arctic cloud amount in the CCSM3

  1. A changing world: Using nuclear techniques to investigate the impact of climate change on polar and mountainous regions

    International Nuclear Information System (INIS)

    Henriques, Sasha

    2015-01-01

    Nuclear techniques are being used in polar and mountainous regions to study climate change and its impact on the quality of land, water and ecosystems in order to better conserve and manage these resources. Researchers from around the world will be using data from 13 benchmark sites to draw conclusions about the effects of the rapidly changing climate on the Arctic, mountains and the western part of Antarctica, which have alarmed communities, environmentalists, scientists and policy makers. Between July 2015 and July 2016 they will be using isotopic and nuclear techniques, as well as geochemical and biological analytical methods from other scientific disciplines. This will enable them to track soil and water, to monitor the movement of soil and sediment and to assess the effects of melting permafrost on the atmosphere, as well as on the land, water and fragile ecosystems of mountainous and polar regions. The measurements follow numerous on-site tests carried out since November 2014 to perfect the sampling technique.

  2. Distributions of Polycyclic Aromatic Hydrocarbons, Aromatic Ketones, Carboxylic Acids, and Trace Metals in Arctic Aerosols: Long-Range Atmospheric Transport, Photochemical Degradation/Production at Polar Sunrise.

    Science.gov (United States)

    Singh, Dharmendra Kumar; Kawamura, Kimitaka; Yanase, Ayako; Barrie, Leonard A

    2017-08-15

    The distributions, correlations, and source apportionment of aromatic acids, aromatic ketones, polycyclic aromatic hydrocarbons (PAHs), and trace metals were studied in Canadian high Arctic aerosols. Nineteen PAHs including minor sulfur-containing heterocyclic PAH (dibenzothiophene) and major 6 carcinogenic PAHs were detected with a high proportion of fluoranthene followed by benzo[k]fluoranthene, pyrene, and chrysene. However, in the sunlit period of spring, their concentrations significantly declined likely due to photochemical decomposition. During the polar sunrise from mid-March to mid-April, benzo[a]pyrene to benzo[e]pyrene ratios significantly dropped, and the ratios diminished further from late April to May onward. These results suggest that PAHs transported over the Arctic are subjected to strong photochemical degradation at polar sunrise. Although aromatic ketones decreased in spring, concentrations of some aromatic acids such as benzoic and phthalic acids increased during the course of polar sunrise, suggesting that aromatic hydrocarbons are oxidized to result in aromatic acids. However, PAHs do not act as the major source for low molecular weight (LMW) diacids such as oxalic acid that are largely formed at polar sunrise in the arctic atmosphere because PAHs are 1 to 2 orders of magnitude less abundant than LMW diacids. Correlations of trace metals with organics, their sources, and the possible role of trace transition metals are explained.

  3. Sea-ice indicators of polar bear habitat

    Science.gov (United States)

    Stern, Harry L.; Laidre, Kristin L.

    2016-09-01

    Nineteen subpopulations of polar bears (Ursus maritimus) are found throughout the circumpolar Arctic, and in all regions they depend on sea ice as a platform for traveling, hunting, and breeding. Therefore polar bear phenology - the cycle of biological events - is linked to the timing of sea-ice retreat in spring and advance in fall. We analyzed the dates of sea-ice retreat and advance in all 19 polar bear subpopulation regions from 1979 to 2014, using daily sea-ice concentration data from satellite passive microwave instruments. We define the dates of sea-ice retreat and advance in a region as the dates when the area of sea ice drops below a certain threshold (retreat) on its way to the summer minimum or rises above the threshold (advance) on its way to the winter maximum. The threshold is chosen to be halfway between the historical (1979-2014) mean September and mean March sea-ice areas. In all 19 regions there is a trend toward earlier sea-ice retreat and later sea-ice advance. Trends generally range from -3 to -9 days decade-1 in spring and from +3 to +9 days decade-1 in fall, with larger trends in the Barents Sea and central Arctic Basin. The trends are not sensitive to the threshold. We also calculated the number of days per year that the sea-ice area exceeded the threshold (termed ice-covered days) and the average sea-ice concentration from 1 June through 31 October. The number of ice-covered days is declining in all regions at the rate of -7 to -19 days decade-1, with larger trends in the Barents Sea and central Arctic Basin. The June-October sea-ice concentration is declining in all regions at rates ranging from -1 to -9 percent decade-1. These sea-ice metrics (or indicators of habitat change) were designed to be useful for management agencies and for comparative purposes among subpopulations. We recommend that the National Climate Assessment include the timing of sea-ice retreat and advance in future reports.

  4. Adapting the HSV polarization-color mapping for regions with low irradiance and high polarization.

    Science.gov (United States)

    Scott Tyo, J; Ratliff, Bradley M; Alenin, Andrey S

    2016-10-15

    Many mappings from polarization into color have been developed so that polarization information can be displayed. One of the most common of these maps the angle of linear polarization into color hue and degree of linear polarization into color saturation, while preserving the irradiance information from the polarization data. While this strategy enjoys wide popularity, there is a large class of polarization images for which it is not ideal. It is common to have images where the strongest polarization signatures (in terms of degree of polarization) occur in regions of relatively low irradiance: either in shadow in reflective bands or in cold regions in emissive bands. Since the irradiance is low, the chromatic properties of the resulting images are generally not apparent. Here we present an alternate mapping that uses the statistics of the angle of polarization as a measure of confidence in the polarization signature, then amplifies the irradiance in regions of high confidence, and leaves it unchanged in regions of low confidence. Results are shown from an LWIR and a visible spectrum imager.

  5. Chemical cycling and deposition of atmospheric mercury in polar regions: review of recent measurements and comparison with models

    Directory of Open Access Journals (Sweden)

    H. Angot

    2016-08-01

    Full Text Available Mercury (Hg is a worldwide contaminant that can cause adverse health effects to wildlife and humans. While atmospheric modeling traces the link from emissions to deposition of Hg onto environmental surfaces, large uncertainties arise from our incomplete understanding of atmospheric processes (oxidation pathways, deposition, and re-emission. Atmospheric Hg reactivity is exacerbated in high latitudes and there is still much to be learned from polar regions in terms of atmospheric processes. This paper provides a synthesis of the atmospheric Hg monitoring data available in recent years (2011–2015 in the Arctic and in Antarctica along with a comparison of these observations with numerical simulations using four cutting-edge global models. The cycle of atmospheric Hg in the Arctic and in Antarctica presents both similarities and differences. Coastal sites in the two regions are both influenced by springtime atmospheric Hg depletion events and by summertime snowpack re-emission and oceanic evasion of Hg. The cycle of atmospheric Hg differs between the two regions primarily because of their different geography. While Arctic sites are significantly influenced by northern hemispheric Hg emissions especially in winter, coastal Antarctic sites are significantly influenced by the reactivity observed on the East Antarctic ice sheet due to katabatic winds. Based on the comparison of multi-model simulations with observations, this paper discusses whether the processes that affect atmospheric Hg seasonality and interannual variability are appropriately represented in the models and identifies research gaps in our understanding of the atmospheric Hg cycling in high latitudes.

  6. Cross-Border Assessment of Environmental Radioactivity in the Euro-Arctic Region

    Energy Technology Data Exchange (ETDEWEB)

    Nalbandyan, Anna; Gwynn, Justin P.; Moeller, Bredo [Norwegian Radiation Protection Authority (NRPA), Section High North, 9296 Tromsoe (Norway); Leppaenen, Ari-Pekka; Rasilainen, Tiina [STUK Radiation and Nuclear Safety Authority, Regional Laboratory in Northern Finland, 96400 Rovaniemi (Finland); Kasatkina, Nadezhda; Usiagina, Irina [Murmansk Marine Biological Institute (MMBI), 183010 Murmansk (Russian Federation)

    2014-07-01

    The Euro-Arctic region is currently experiencing rapid changes in environmental, social and economic conditions. The issue of environmental radioactivity is of special concern to the Arctic region due to numerous existing and potential sources of radioactive pollution in the immediate and adjacent areas. Due to cross-border nature of any potential radioactive contamination and common challenges in border countries, one should consider risks related to radioactivity, monitoring and protection at a regional and international level. This research presents results of cross-border cooperation between Norway, Finland and Russia and joint assessment of the status of terrestrial radioactivity in the Euro-Arctic region and in particular across Troms and Finnmark (Norway), Lapland (Finland) and Murmansk Oblast (Russia). To assess current environmental radioactivity levels in the terrestrial environment, environmental samples were collected in each country in 2010-2012. The main focus was comparison of radioactivity levels in the natural food products such as berries, mushrooms and freshwater fish. The results showed that large variations in activity concentrations exist between species and sampling areas. However, activity concentrations of {sup 137}Cs in all berries and mushrooms in Northern Norway, Finland and Russia were below the national limits set for commercial retail and well below the national limits for freshwater fish from Northern Norway and Finland. The sampled species from three countries were analysed in order to find out reference species available for further monitoring and data comparison. The doses to man arising from consumption of berries, mushrooms and freshwater fish were calculated. To compare overall terrestrial radioactivity levels in the Euro-Arctic region, partners exchanged long-term monitoring data available in the three countries such as data for soil, vegetation, berries, mushrooms, lichens, reindeer meat, freshwater fish, whole body counting

  7. Hydrocarbons in the Arctic: Economic prospects and environmental issues

    International Nuclear Information System (INIS)

    Eschard, Remi; Vially, Roland; Benard, Francine

    2011-01-01

    Petroleum installations in the Arctic differ widely owing to the region's complex geological history. They are classical, but prospecting and producing from 'polar' fields represent a technological challenge given the extreme climatic conditions. The distance of oil and gas fields from zones of consumption and the transportation difficulties entail gigantic investments for working these fields and bringing their production to the marketplace

  8. Comparative hepatic in vitro depletion and metabolite formation of major perfluorooctane sulfonate precursors in Arctic polar bear, beluga whale, and ringed seal.

    Science.gov (United States)

    Letcher, Robert J; Chu, Shaogang; McKinney, Melissa A; Tomy, Gregg T; Sonne, Christian; Dietz, Rune

    2014-10-01

    Perfluorooctane sulfonate (PFOS) has been reported to be among the most concentrated persistent organic pollutants in Arctic marine wildlife. The present study examined the in vitro depletion of major PFOS precursors, N-ethyl-perfluorooctane sulfonamide (N-EtFOSA) and perfluorooctane sulfonamide (FOSA), as well as metabolite formation using an assay based on enzymatically viable liver microsomes for three top Arctic marine mammalian predators, polar bear (Ursus maritimus), beluga whale (Delphinapterus leucas), and ringed seal (Pusa hispida), and in laboratory rat (Rattus rattus) serving as a general mammalian model and positive control. Rat assays showed that N-EtFOSA (38 nM or 150 ng mL(-1)) to FOSA metabolism was >90% complete after 10 min, and at a rate of 23 pmol min(-1) mg(-1) protein. Examining all species in a full 90 min incubation assay, there was >95% N-EtFOSA depletion for the rat active control and polar bear microsomes, ∼65% for ringed seals, and negligible depletion of N-EtFOSA for beluga whale. Concomitantly, the corresponding in vitro formation of FOSA from N-EtFOSA was also quantitatively rat≈polar bear>ringed seal>beluga whale. A lack of enzymatic ability and/or a rate too slow to be detected likely explains the lack of N-EtFOSA to FOSA transformation for beluga whale. In the same assays, the depletion of the FOSA metabolite was insignificant (p>0.01) and with no concomitant formation of PFOS metabolite. This suggests that, in part, a source of FOSA is the biotransformation of accumulated N-EtFOSA in free-ranging Arctic ringed seal and polar bear. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  9. A new high resolution tidal model in the arctic ocean

    DEFF Research Database (Denmark)

    Cancet, M.; Andersen, Ole Baltazar; Lyard, F.

    The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence, the accu......The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence......, the accuracy of the global tidal models decreases by several centimeters in the Polar Regions. In particular, it has a large impact on the quality of the satellite altimeter sea surface heights in these regions (ERS1/2, Envisat, CryoSat-2, SARAL/AltiKa and the future Sentinel-3 mission). Better knowledge......-growing maritime and industrial activities in this region. NOVELTIS and DTU Space have developed a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of the CryoSat Plus for Ocean (CP4O) ESA project. In particular, this atlas benefits from the assimilation of the most complete satellite...

  10. Arctic Observing Experiment (AOX) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Rigor, Ignatius [Applied Physics Lab, University of Washington; Johnson, Jim [Applied Physics Lab, University of Washington; Motz, Emily [National Ice Center; Bisic, Aaron [National Ice Center

    2017-06-30

    Our ability to understand and predict weather and climate requires an accurate observing network. One of the pillars of this network is the observation of the fundamental meteorological parameters: temperature, air pressure, and wind. We plan to assess our ability to measure these parameters for the polar regions during the Arctic Observing Experiment (AOX, Figure 1) to support the International Arctic Buoy Programme (IABP), Arctic Observing Network (AON), International Program for Antarctic Buoys (IPAB), and Southern Ocean Observing System (SOOS). Accurate temperature measurements are also necessary to validate and improve satellite measurements of surface temperature across the Arctic. Support for research associated with the campaign is provided by the National Science Foundation, and by other US agencies contributing to the US Interagency Arctic Buoy Program. In addition to the support provided by the U.S Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s North Slope of Alaska (NSA) site at Barrow and the National Science Foundation (NSF), the U.S. IABP is supported by the U.S. Coast Guard (USCG), the National Aeronautics and Space Administration (NASA), the National Ice Center (NIC), the National Oceanic and Atmospheric Administration (NOAA), and the Office of Naval Research (ONR).

  11. Roshydromet system of environment radioactive contamination monitoring in the Arctic region of Russia

    International Nuclear Information System (INIS)

    Chelukanov, V.

    1995-01-01

    159 arctic hydrometerological stations take measurements of gamma radiation. 51 stations monitor the density of atmospheric radioactive fallout and 12 stations monitor the concentration of aerosols. 13 hydrological stations sited in the mouths of main Arctic Ocean rivers take water samples. Regional laboratories carry out isotop analysis of samples. Information on high levels of a radioactivity measured at the monitoring stations, as well as information on abnormal radioactivity from regional laboratories are transmitted to the Information Centers on the monitoring system (Moscow and Obnisk) by cable. 2 figs., 1 tab

  12. Understanding Mesoscale Land-Atmosphere Interactions in Arctic Region

    Science.gov (United States)

    Hong, X.; Wang, S.; Nachamkin, J. E.

    2017-12-01

    Land-atmosphere interactions in Arctic region are examined using the U.S. Navy Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS©*) with the Noah Land Surface Model (LSM). Initial land surface variables in COAMPS are interpolated from the real-time NASA Land Information System (LIS). The model simulations are configured for three nest grids with 27-9-3 km horizontal resolutions. The simulation period is set for October 2015 with 12-h data assimilation update cycle and 24-h integration length. The results are compared with those simulated without using LSM and evaluated with observations from ONR Sea State R/V Sikuliaq cruise and the North Slope of Alaska (NSA). There are complex soil and vegetation types over the surface for simulation with LSM, compared to without LSM simulation. The results show substantial differences in surface heat fluxes between bulk surface scheme and LSM, which may have an important impact on the sea ice evolution over the Arctic region. Evaluations from station data show surface air temperature and relative humidity have smaller biases for simulation using LSM. Diurnal variation of land surface temperature, which is necessary for physical processes of land-atmosphere, is also better captured than without LSM.

  13. What is happening in the International Polar Year? Latest news about the climate changes

    International Nuclear Information System (INIS)

    Orheim, Olav

    2008-01-01

    The International Polar (IPY) Year 2007-2008 is a large scientific programme focused on the Arctic and the Antarctic. Scientists from over 60 nations participates. The IPY have two primary objectives: to improve weather forecasts especially regarding extreme weather and to improve climatic models for better understanding of possible instabilities, especially regarding ocean currents. The presentation includes data on natural climate change, temperature anomaly, the ice in the Arctic Ocean and Northern and Southern Hemisphere sea ice area, current in Southern and Northern hemisphere sea ice area and variations of the surface temperature ice arctic regions antarctic regions. The presentation was held at the MNT-Forum, 29. January 2008

  14. Modeling the summertime Arctic cloudy boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J.A.; Pinto, J.O. [Univ. of Colorado, Boulder, CO (United States); McInnes, K.L. [CSIRO Division of Atmospheric Research, Mordialloc (Australia)

    1996-04-01

    Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.

  15. The alien terrestrial invertebrate fauna of the High Arctic archipelago of Svalbard: potential implications for the native flora and fauna

    OpenAIRE

    Stephen J. Coulson

    2015-01-01

    Experience from the Antarctic indicates that the establishment of alien species may have significant negative effects on native flora and fauna in polar regions and is considered to be amongst the greatest threats to biodiversity. But, there have been few similar studies from the Arctic. Although the terrestrial invertebrate inventory of the Svalbard Archipelago is amongst the most complete for any region of the Arctic, no consideration has yet been made of alien terrestrial invertebrate spec...

  16. DNA-based and culture-based characterization of a hydrocarbon-degrading consortium enriched from Arctic soil

    Energy Technology Data Exchange (ETDEWEB)

    Thomassin-Lacroix, E. J. M.; Reimer, K. J. [Royal Military College, Dept. of Chemistry and Chemical Engineering, Kingston, On (Canada); Yu, Z.; Mohn, W. W. [British Columbia Univ., Dept. of Microbiology and Immunology, Vancouver, BC (Canada); Eriksson, M. [Royal Inst. of Technology, Dept. of Biotechnology, Stockholm (Sweden)

    2001-12-01

    Oil spills are fairly common in polar tundra regions, including remote locations, and are a threat to the relatively fragile ecosystem. Remediation must be done economically and with minimum additional damage. Bioremediation is considered to be the appropriate technology, although its application in polar tundra regions is not well documented. Most studies of hydrocarbon remediation in polar regions have concerned marine oil spills, while a few studies have demonstrated on-site polar tundra soil remediation. A few of these demonstrated the presence of psychrotolerant hydrocarbon-degrading bacteria in polar tundra soils. Because fuels are complex mixtures of hydrocarbons, microbial consortia rather than pure cultures may be the most effective agents in degrading fuels. Despite their potential advantages for bioaugmentation applications, consortia are difficult to characterize and monitor. Molecular methods based on DNA analysis partially address these difficulties. One such approach is to randomly clone rRNA gene (rDNA) fragments and to sequence as a set of clones. The relative abundance of individual sequences in the clone library is related to the relative abundance of the corresponding organism in the community. In this study a psychrotolerant, fuel-degrading consortium was enriched with Arctic tundra soil. The enrichment substrate for the consortium was Jet A-1 fuel, which is very similar to Arctic diesel fuel, a common contaminant in the region. The objectives of the study were to (1) characterize thr consortium by DNA- and culture-based methods, (2) develop quantitative polymerase chain reaction assays for populations of predominant consortium members, and (3) determine the dynamics of those populations during incubation of the consortium. Result showed that is possible to quantitatively monitor members of a microbial consortium, with potential application for bioremediation of Arctic tundra soil. The relative abundance of consortium members was found to vary

  17. Collaborative Project. Understanding the effects of tides and eddies on the ocean dynamics, sea ice cover and decadal/centennial climate prediction using the Regional Arctic Climate Model (RACM)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, Jennifer [Univ. of Alaska, Fairbanks, AK (United States); Joseph, Renu [Univ. of Alaska, Fairbanks, AK (United States)

    2013-09-14

    The goal of this project is to develop an eddy resolving ocean model (POP) with tides coupled to a sea ice model (CICE) within the Regional Arctic System Model (RASM) to investigate the importance of ocean tides and mesoscale eddies in arctic climate simulations and quantify biases associated with these processes and how their relative contribution may improve decadal to centennial arctic climate predictions. Ocean, sea ice and coupled arctic climate response to these small scale processes will be evaluated with regard to their influence on mass, momentum and property exchange between oceans, shelf-basin, ice-ocean, and ocean-atmosphere. The project will facilitate the future routine inclusion of polar tides and eddies in Earth System Models when computing power allows. As such, the proposed research addresses the science in support of the BER’s Climate and Environmental Sciences Division Long Term Measure as it will improve the ocean and sea ice model components as well as the fully coupled RASM and Community Earth System Model (CESM) and it will make them more accurate and computationally efficient.

  18. Chlorinated hydrocarbon contaminants in arctic marine mammals.

    Science.gov (United States)

    Norstrom, R J; Muir, D C

    1994-09-16

    By 1976, the presence of chlorinated hydrocarbon contaminants (CHCs) had been demonstrated in fur seal (Callorhinus ursinus), ringed seal (Phoca hispida), hooded seal (Cystophora cristata), bearded seal (Erignathus barbatus), walrus (Obdobenus rosmarus divergens), beluga (Delphinapterus leucas), porpoise (Phocoena phocoena) and polar bear (Ursus maritimus) in various parts of the Arctic. In spite of this early interest, very little subsequent research on contaminants in Arctic marine mammals was undertaken until the mid-1980s. Since that time, there has been an explosion of interest, resulting in a much expanded data base on contaminants in Arctic marine mammals. Except in the Russian Arctic, data have now been obtained on the temporospatial distribution of PCBs and other contaminants in ringed seal, beluga and polar bear. Contaminants in narwhal (Monodon monoceros) have also now been measured. On a fat weight basis, the sum of DDT-related compounds (S-DDT) and PCB levels are lowest in walrus (Polar bears have similar levels of PCBs as cetaceans (1-10 micrograms/g), but with a much simpler congener pattern. DDE levels are lowest in polar bear, indicating rapid metabolism. Effects of age and sex on residue levels are found for all species where this was measured. Among cetaceans and ringed seal, sexually mature females have lower levels than males due to lactation. Although PCB levels in adult male polar bears are about twice as high as females, there is only a trivial age effect in either sex apart from an initial decrease from birth to sexual maturity (age 0-5). Comparison of levels of S-DDT and PCBs in Arctic beluga and ringed seal with those in beluga in the Gulf of St. Lawrence and ringed seal in the Baltic Sea, indicate that overall contamination of the Arctic marine ecosystem is 10-50 times less than the most highly contaminated areas in the northern hemisphere temperate latitude marine environment. Geographic distribution of residue levels in polar bears

  19. Arctic potential - Could more structured view improve the understanding of Arctic business opportunities?

    Science.gov (United States)

    Hintsala, Henna; Niemelä, Sami; Tervonen, Pekka

    2016-09-01

    The increasing interest towards the Arctic has been witnessed during the past decades. However, the commonly shared definitions of the Arctic key concepts have not yet penetrated national and international arenas for political and economic decision making. The lack of jointly defined framework has made different analyses related to the Arctic quite limited considering the magnitude of economic potential embedded in Arctic. This paper is built on the key findings of two separate, yet connected projects carried out in the Oulu region, Finland. In this paper's approach, the Arctic context has been defined as a composition of three overlapping layers. The first layer is the phenomenological approach to define the Arctic region. The second layer is the strategy-level analysis to define different Arctic paths as well as a national level description of a roadmap to Arctic specialization. The third layer is the operationalization of the first two layers to define the Arctic business context and business opportunities. The studied case from Oulu region indicates that alternative futures for the Arctic competences and business activities are in resemblance with only two of the four identified strategic pathways. Introduction of other pathways to regional level actors as credible and attractive options would require additional, systematic efforts.

  20. Changes in aerobic performance, body composition, and physical activity in polar explorers during a year-long stay at the polar station in the Arctic

    Science.gov (United States)

    Maciejczyk, Marcin; Araźny, Andrzej; Opyrchał, Marta

    2017-04-01

    The aim of this study was to evaluate changes in physical activity, aerobic performance, and body composition in polar explorers during a 1-year stay at the polar station. The study group consisted of 10 people, including 8 men and 2 women. Aerobic performance (maximal oxygen uptake), physical activity, body mass, and composition were evaluated for the polar explores of the Polish Polar Station prior to departure, and then during their stay at the station for a period of 1 year. The measurements were performed every 3 months. Compared to the measurements taken before going to the polar station, aerobic performance significantly ( p = 0.02) increased in the first 3 months of residing at the polar station and then remained relatively stable for the following duration of the stay. In the first 3 months of the stay, we also observed the highest level of physical activity in participants. In the polar explorers, no significant ( p > 0.05) body fatness changes were noted. Nonetheless, lean body mass, body mass, and BMI significantly increased compared to the measurements taken before departure to the polar station. The greatest changes in aerobic performance, physical activity, and body composition were observed during the first 3 months after arrival to the Arctic and then, despite changing biometeorological conditions, they remained stable for the next months of the stay. We recommend the introduction of a physical preparation program before departing to the polar station to improve explorers' physical fitness, so that they can meet the physical challenges they are faced with immediately after arrival to the polar station.

  1. POLAR-PALOOZA Polar Researchers and Arctic Residents Engage, Inform and Inspire Diverse Public Audiences by sharing Polar Science and Global Connections during the International Polar Year, using a New Model of Informal Science Education

    Science.gov (United States)

    Haines-Stiles, G.; Akuginow, E.

    2006-12-01

    (Please note that the POLAR-PALOOZA initiative described in this Abstract is-as of 9/7/2006-"pending" for possible support from NSF and NASA as part of this year's IPY solicitation. Subject to decisions expected by 9/30, this presentation would either be withdrawn, or amplified with specific participants, locations and dates.) Despite the success of well-regarded movies like "March of the Penguins", the polar regions remain a great unknown for most people. Public knowledge about the Arctic and Antarctic, and the critical role of the Poles in the entire Earth system, is nonexistent, incomplete or burdened with misperceptions. The International Polar Years of 2007-2009-and associated "I*Y" science years such as IHY, IYPE and eGY-present a unique opportunity to change this. The people who can best effect this change are those who know the Poles best, through living or working there. Based on innovative but proven models, POLAR-PALOOZA will use three complementary strategies to engage, inform and inspire large public audiences. (1) A national tour, under the working title "Stories from a Changing Planet", will include in-person presentations at science centers, museums, libraries and schools across North America, including Canada and Mexico. The presentations will be augmented by High Definition Video taped on location at the Poles, audio and video podcasts, and special education and outreach activities for targeted audiences. "Stories from a Changing Planet" will provide diverse audiences with an exciting opportunity to meet and interact directly with polar experts, and to appreciate why the Poles and the research done there are directly relevant to their lives. (2) The "HiDef Video Science Story Capture Corps" is a team of professional videographers, using the latest generation of low-cost, high-quality cameras, deployed to both Poles. They will document the work of multiple researchers and projects, rather than focusing on one topic for a single broadcast program

  2. Advancement into the Arctic Region for Bioactive Sponge Secondary Metabolites

    Science.gov (United States)

    Abbas, Samuel; Kelly, Michelle; Bowling, John; Sims, James; Waters, Amanda; Hamann, Mark

    2011-01-01

    Porifera have long been a reservoir for the discovery of bioactive compounds and drug discovery. Most research in the area has focused on sponges from tropical and temperate waters, but more recently the focus has shifted to the less accessible colder waters of the Antarctic and, to a lesser extent, the Arctic. The Antarctic region in particular has been a more popular location for natural products discovery and has provided promising candidates for drug development. This article reviews groups of bioactive compounds that have been isolated and reported from the southern reaches of the Arctic Circle, surveys the known sponge diversity present in the Arctic waters, and details a recent sponge collection by our group in the Aleutian Islands, Alaska. The collection has yielded previously undescribed sponge species along with primary activity against opportunistic infectious diseases, malaria, and HCV. The discovery of new sponge species and bioactive crude extracts gives optimism for the isolation of new bioactive compounds from a relatively unexplored source. PMID:22163194

  3. The greenhouse effect and the Arctic ice

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern

    2002-01-01

    The impact on the Arctic ice of global warming is important for many people and for the environment. Less ice means changed conditions for the Inuits, hard times for the polar bears and changed conditions for the fishing sector. There is at present some uncertainty about the thickness of the ice and what might be the cause of its oscillation. It was reported a few years ago that the thickness of the ice had almost been reduced by 50 per cent since the 1950s and some researchers suggested that within a few decades the ice would disappear during the summer. These measurements have turned out not to be representative for the whole Arctic region, and it now appears that a great deal of the measured thickness variation can be attributed to changes in the atmospheric circulation. The article discusses the Arctic Oscillation and the North Atlantic Oscillation in relation to the ice thickness, and climate models. Feedback mechanisms such as reduced albedo may have a big impact in the Arctic in a global greenhouse warming. Model simulations are at variance, and the scenarios for the future are uncertain

  4. The polar bear in the room: diseases of poverty in the Arctic

    Directory of Open Access Journals (Sweden)

    Chris Nelson

    2013-08-01

    Full Text Available In the face of global warming, budgetary austerity and impoverished Arctic residents, the nations of the circumpolar region are presented with a number of difficult choices regarding the provision of health care to the far-flung and isolated regions of their northernmost provinces. Complicating that picture is the reality of neglected tropical diseases in areas far from their perceived normal equatorial range as well as endemic food-borne diseases, including protozoan and helminth parasites, respiratory and gastrointestinal diseases and vaccine-preventable illnesses. This paper discusses the problems of caring for the health and well-being of indigenous populations suffering from extreme poverty, isolation and discrimination in the circumpolar region. After presenting difficulties as supported by the extant literature, the paper continues by suggesting solutions that include novel telenursing applications, targeted distance-educational programs and local community-based health care assistant (HCA vocational training. These programs will provide cost-effective care that increases life-spans, improves quality of life and provides opportunities to distressed populations in isolated rural communities of the Far North. The toolkit presented in the paper is intended to spur discussion on community health programs that could be adopted to provide proper and humane care for marginalized Arctic populations in an extreme and rapidly changing environment.

  5. Evaluation of an ensemble of Arctic regional climate models

    DEFF Research Database (Denmark)

    Rinke, A.; Dethloff, K.; Cassano, J. J.

    2006-01-01

    Simulations of eight different regional climate models (RCMs) have been performed for the period September 1997-September 1998, which coincides with the Surface Heat Budget of the Arctic Ocean (SHEBA) project period. Each of the models employed approximately the same domain covering the western......, temperature, cloud cover, and long-/shortwave downward radiation between the individual model simulations are investigated. With this work, we quantify the scatter among the models and therefore the magnitude of disagreement and unreliability of current Arctic RCM simulations. Even with the relatively...... constrained experimental design we notice a considerable scatter among the different RCMs. We found the largest across-model scatter in the 2 m temperature over land, in the surface radiation fluxes, and in the cloud cover which implies a reduced confidence level for these variables....

  6. Polar gravity fields from GOCE and airborne gravity

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Yidiz, Hasan

    2011-01-01

    Airborne gravity, together with high-quality surface data and ocean satellite altimetric gravity, may supplement GOCE to make consistent, accurate high resolution global gravity field models. In the polar regions, the special challenge of the GOCE polar gap make the error characteristics...... of combination models especially sensitive to the correct merging of satellite and surface data. We outline comparisons of GOCE to recent airborne gravity surveys in both the Arctic and the Antarctic. The comparison is done to new 8-month GOCE solutions, as well as to a collocation prediction from GOCE gradients...... in Antarctica. It is shown how the enhanced gravity field solutions improve the determination of ocean dynamic topography in both the Arctic and in across the Drake Passage. For the interior of Antarctica, major airborne gravity programs are currently being carried out, and there is an urgent need...

  7. Environmental impacts of shipping in 2030 with a particular focus on the Arctic region

    Directory of Open Access Journals (Sweden)

    S. B. Dalsøren

    2013-02-01

    Full Text Available We quantify the concentrations changes and Radiative Forcing (RF of short-lived atmospheric pollutants due to shipping emissions of NOx, SOx, CO, NMVOCs, BC and OC. We use high resolution ship emission inventories for the Arctic that are more suitable for regional scale evaluation than those used in former studies. A chemical transport model and a RF model are used to evaluate the time period 2004–2030, when we expect increasing traffic in the Arctic region. Two datasets for ship emissions are used that characterize the potential impact from shipping and the degree to which shipping controls may mitigate impacts: a high (HIGH scenario and a low scenario with Maximum Feasible Reduction (MFR of black carbon in the Arctic. In MFR, BC emissions in the Arctic are reduced with 70% representing a combination technology performance and/or reasonable advances in single-technology performance. Both scenarios result in moderate to substantial increases in concentrations of pollutants both globally and in the Arctic. Exceptions are black carbon in the MFR scenario, and sulfur species and organic carbon in both scenarios due to the future phase-in of current regulation that reduces fuel sulfur content. In the season with potential transit traffic through the Arctic in 2030 we find increased concentrations of all pollutants in large parts of the Arctic. Net global RFs from 2004–2030 of 53 mW m−2 (HIGH and 73 mW m−2 (MFR are similar to those found for preindustrial to present net global aircraft RF. The found warming contrasts with the cooling from historical ship emissions. The reason for this difference and the higher global forcing for the MFR scenario is mainly the reduced future fuel sulfur content resulting in less cooling from sulfate aerosols. The Arctic RF is largest in the HIGH scenario. In the HIGH scenario ozone dominates the RF during the transit season (August–October. RF due to BC in air, and

  8. Predictability of the 2012 Great Arctic Cyclone on medium-range timescales

    Science.gov (United States)

    Yamagami, Akio; Matsueda, Mio; Tanaka, Hiroshi L.

    2018-03-01

    Arctic Cyclones (ACs) can have a significant impact on the Arctic region. Therefore, the accurate prediction of ACs is important in anticipating their associated environmental and societal costs. This study investigates the predictability of the 2012 Great Arctic Cyclone (AC12) that exhibited a minimum central pressure of 964 hPa on 6 August 2012, using five medium-range ensemble forecasts. We show that the development and position of AC12 were better predicted in forecasts initialized on and after 4 August 2012. In addition, the position of AC12 was more predictable than its development. A comparison of ensemble members, classified by the error in predictability of the development and position of AC12, revealed that an accurate prediction of upper-level fields, particularly temperature, was important for the prediction of this event. The predicted position of AC12 was influenced mainly by the prediction of the polar vortex, whereas the predicted development of AC12 was dependent primarily on the prediction of the merging of upper-level warm cores. Consequently, an accurate prediction of the polar vortex position and the development of the warm core through merging resulted in better prediction of AC12.

  9. Optimizing Communications Between Arctic Residents and IPY Scientific Researchers

    Science.gov (United States)

    Stapleton, M.; Carpenter, L.

    2007-12-01

    BACKGROUND International Polar Year, which was launched in March 2007, is an international program of coordinated, interdisciplinary scientific research on Earth's polar regions. The northern regions of the eight Arctic States (Canada, Alaska (USA), Russia, Sweden, Norway, Finland. Iceland and Greenland (Denmark) have significant indigenous populations. The circumpolar Arctic is one of the least technologically connected regions in the world, although Canada and others have been pioneers in developing and suing Information and Communication Technology (ICT) in remote areas. The people living in this vast geographic area have been moving toward taking their rightful place in the global information society, but are dependent on the outreach and cooperation of larger mainstream societies. The dominant medium of communication is radio, which is flexible in accommodating multiple cultures, languages, and factors of time and distance. The addition of newer technologies such as streaming on the Internet can increase access and content for all communities of interest, north and south. The Arctic Circle of Indigenous Communicators (ACIC) is an independent association of professional Northern indigenous media workers in the print, radio, television, film and Internet industries. ACIC advocates the development of all forms of communication in circumpolar North areas. It is international in scope. Members are literate in English, French, Russian and many indigenous languages. ACIC has proposed the establishment of a headquarters for monitoring IPY projects are in each area, and the use of community radio broadcasters to collect and disseminate information about IPY. The cooperation of Team IPY at the University of Colorado, Arctic Net at Laval University, and others, is being developed. ACIC is committed to making scientific knowledge gained in IPY accessible to those most affected - residents of the Arctic. ABSTRACT The meeting of the American Geophysical Union will be held

  10. Sea-ice indicators of polar bear habitat

    Directory of Open Access Journals (Sweden)

    H. L. Stern

    2016-09-01

    Full Text Available Nineteen subpopulations of polar bears (Ursus maritimus are found throughout the circumpolar Arctic, and in all regions they depend on sea ice as a platform for traveling, hunting, and breeding. Therefore polar bear phenology – the cycle of biological events – is linked to the timing of sea-ice retreat in spring and advance in fall. We analyzed the dates of sea-ice retreat and advance in all 19 polar bear subpopulation regions from 1979 to 2014, using daily sea-ice concentration data from satellite passive microwave instruments. We define the dates of sea-ice retreat and advance in a region as the dates when the area of sea ice drops below a certain threshold (retreat on its way to the summer minimum or rises above the threshold (advance on its way to the winter maximum. The threshold is chosen to be halfway between the historical (1979–2014 mean September and mean March sea-ice areas. In all 19 regions there is a trend toward earlier sea-ice retreat and later sea-ice advance. Trends generally range from −3 to −9 days decade−1 in spring and from +3 to +9 days decade−1 in fall, with larger trends in the Barents Sea and central Arctic Basin. The trends are not sensitive to the threshold. We also calculated the number of days per year that the sea-ice area exceeded the threshold (termed ice-covered days and the average sea-ice concentration from 1 June through 31 October. The number of ice-covered days is declining in all regions at the rate of −7 to −19 days decade−1, with larger trends in the Barents Sea and central Arctic Basin. The June–October sea-ice concentration is declining in all regions at rates ranging from −1 to −9 percent decade−1. These sea-ice metrics (or indicators of habitat change were designed to be useful for management agencies and for comparative purposes among subpopulations. We recommend that the National Climate Assessment include the timing of sea-ice retreat and advance in

  11. Cases of Lightweight Structures for Polar Areas

    DEFF Research Database (Denmark)

    Pedreros, Jessica Fernandoy; Christ, Julian; Shepherd, Paul

    2017-01-01

    The paper focuses on what the authors call ‘Polar Lightweight Structures’. The first part presents a collection of lightweight structures (LWS) designed and built for Antarctic conditions, with the aim of demonstrating the diversity of approaches attempted by designers. The second part of the paper...... presents two studies where different computational methods were applied for the design of generic LWS based on the local conditions of two particular Polar locations; namely, the Arctic region and Glacier Union in the Antarctic plateau. Both studies were conducted independently with the aim...

  12. Comparative analysis of marine paleogene sections and biota from West Siberia and the Arctic Region

    Science.gov (United States)

    Akhmet'ev, M. A.; Zaporozhets, N. I.; Iakovleva, A. I.; Aleksandrova, G. N.; Beniamovsky, V. N.; Oreshkina, T. V.; Gnibidenko, Z. N.; Dolya, Zh. A.

    2010-12-01

    The analysis of the main biospheric events that took place in West Siberia and the Arctic region during the Early Paleogene revealed the paleogeographic and paleobiogeographic unity of marine sedimentation basins and close biogeographic relations between their separate parts. Most biotic and abiotic events of the first half of the Paleogene in the Arctic region and West Siberia were synchronous, unidirectional, and interrelated. Shelf settings, sedimentation breaks, and microfaunal assemblages characteristic of these basins during the Paleogene are compared. The comparative analysis primarily concerned events of the Paleocene-Eocene thermal maximum (PETM) and beds with Azolla (aquatic fern). The formation of the Eocene Azolla Beds in the Arctic region and West Siberia was asynchronous, although it proceeded in line with a common scenario related to the development of a system of estuarine-type currents in a sea basin partly isolated from the World Ocean.

  13. Polar Voices: Relaying the Science and Story of Polar Climate Change through Podcast

    Science.gov (United States)

    Moloney, M.; Quinney, A.; Murray, M. S.

    2016-12-01

    The resurgence of audio programming with the advent of podcasting in the early 2000's spawned a new medium for communicating advances in science, research, and technology. To capitalize on this informal educational outlet, the Arctic Institute of North America (AINA) partnered with the International Arctic Research Center, the University of Alaska Fairbanks, and the UA Museum of the North to develop a podcast series called PoLAR Voices for the Polar Learning and Responding (PoLAR) Climate Change Education Partnership. Now entering its third season of production, PoLAR Voices has facilitated the communication of scientific knowledge regarding the impact of climate change on the Arctic and Antarctic from the perspectives of both scientific researchers and Arctic indigenous peoples. We present a holistic program detailing both data and research related to climate change in addition to personal stories from those people and communities most affected. An evaluation of the program has been conducted by the Goodman Research Group to assess the effectiveness of the program for relaying the whole story of climate change to the public. The results of this assessment will be used to further develop the program to effectively reach larger and more diverse audiences. The series is currently available on thepolarhub.org and iTunes, and we are exploring opportunities to air the program on radio to reach as many people as possible.

  14. Human-induced Arctic moistening.

    Science.gov (United States)

    Min, Seung-Ki; Zhang, Xuebin; Zwiers, Francis

    2008-04-25

    The Arctic and northern subpolar regions are critical for climate change. Ice-albedo feedback amplifies warming in the Arctic, and fluctuations of regional fresh water inflow to the Arctic Ocean modulate the deep ocean circulation and thus exert a strong global influence. By comparing observations to simulations from 22 coupled climate models, we find influence from anthropogenic greenhouse gases and sulfate aerosols in the space-time pattern of precipitation change over high-latitude land areas north of 55 degrees N during the second half of the 20th century. The human-induced Arctic moistening is consistent with observed increases in Arctic river discharge and freshening of Arctic water masses. This result provides new evidence that human activity has contributed to Arctic hydrological change.

  15. The "Physical feedbacks of Arctic PBL, Sea ice, Cloud and AerosoL (PASCAL)" campaign during the Arctic POLARSTERN expedition PS106 in spring 2017.

    Science.gov (United States)

    Macke, A.

    2017-12-01

    The Polar regions are important components in the global climate system. The widespread surface snow and ice cover strongly impacts the surface energy budget, which is tightly coupled to global atmospheric and oceanic circulations. The coupling of sea ice, clouds and aerosol in the transition zone between Open Ocean and sea ice is the focus of the PASCAL investigations to improve our understanding of the recent dramatic reduction in Arctic sea-ice. A large variety of active/passive remote sensing, in-situ-aerosol observation, and spectral irradiance measurements have been obtained during the German research icebreaker POLARSTERN expedition PS106, and provided detailed information on the atmospheric spatiotemporal structure, aerosol and cloud chemical and microphysical properties as well as the resulting surface radiation budget. Nearly identical measurements at the AWIPEV Base (German - French Research Base) in Ny-Ålesund close to the Open Ocean and collocated airborne activities of the POLAR 5 and POLAR 6 AWI aircraft in the framework of the ACLOUD project have been carried out in parallel. The airborne observations have been supplemented by observations of the boundary layer structure (mean and turbulent quantities) from a tethered balloon reaching up to 1500 m, which was operated at an ice floe station nearby POLARSTERN for two weeks. All observational activities together with intense modelling at various scales are part of the German Collaborative Research Cluster TR 172 "Arctic Amplification" that aims to provide an unprecedented picture of the complex Arctic weather and climate system. The presentation provides an overview of the measurements on-board POLARSTERN and on the ice floe station during PASCAL from May 24 to July 21 2017. We conclude how these and future similar measurements during the one-year ice drift of POLARSTERN in the framework of MOSAiC help to reduce uncertainties in Arctic aerosol-cloud interaction, cloud radiative forcing, and surface

  16. The Arctic Coastal Erosion Problem

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Matthew Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Craig A. [Integral Consulting Inc., San Francisco, CA (United States); Roberts, Jesse D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    Permafrost-dominated coastlines in the Arctic are rapidly disappearing. Arctic coastal erosion rates in the United States have doubled since the middle of the twentieth century and appear to be accelerating. Positive erosion trends have been observed for highly-variable geomorphic conditions across the entire Arctic, suggesting a major (human-timescale) shift in coastal landscape evolution. Unfortunately, irreversible coastal land loss in this region poses a threat to native, industrial, scientific, and military communities. The Arctic coastline is vast, spanning more than 100,000 km across eight nations, ten percent of which is overseen by the United States. Much of area is inaccessible by all-season roads. People and infrastructure, therefore, are commonly located near the coast. The impact of the Arctic coastal erosion problem is widespread. Homes are being lost. Residents are being dispersed and their villages relocated. Shoreline fuel storage and delivery systems are at greater risk. The U.S. Department of Energy (DOE) and Sandia National Laboratories (SNL) operate research facilities along some of the most rapidly eroding sections of coast in the world. The U.S. Department of Defense (DOD) is struggling to fortify coastal radar sites, operated to ensure national sovereignty in the air, against the erosion problem. Rapid alterations to the Arctic coastline are facilitated by oceanographic and geomorphic perturbations associated with climate change. Sea ice extent is declining, sea level is rising, sea water temperature is increasing, and permafrost state is changing. The polar orientation of the Arctic exacerbates the magnitude and rate of the environmental forcings that facilitate coastal land area loss. The fundamental mechanics of these processes are understood; their non-linear combination poses an extreme hazard. Tools to accurately predict Arctic coastal erosion do not exist. To obtain an accurate predictive model, a coupling of the influences of

  17. Arctic Tundra Greening and Browning at Circumpolar and Regional Scales

    Science.gov (United States)

    Epstein, H. E.; Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Yang, X.

    2017-12-01

    Remote sensing data have historically been used to assess the dynamics of arctic tundra vegetation. Until recently the scientific literature has largely described the "greening" of the Arctic; from a remote sensing perspective, an increase in the Normalized Difference Vegetation Index (NDVI), or a similar satellite-based vegetation index. Vegetation increases have been heterogeneous throughout the Arctic, and were reported to be up to 25% in certain areas over a 30-year timespan. However, more recently, arctic tundra vegetation dynamics have gotten more complex, with observations of more widespread tundra "browning" being reported. We used a combination of remote sensing data, including the Global Inventory Monitoring and Modeling System (GIMMS), as well as higher spatial resolution Landsat data, to evaluate the spatio-temporal patterns of arctic tundra vegetation dynamics (greening and browning) at circumpolar and regional scales over the past 3-4 decades. At the circumpolar scale, we focus on the spatial heterogeneity (by tundra subzone and continent) of tundra browning over the past 5-15 years, followed by a more recent recovery (greening since 2015). Landsat time series allow us to evaluate the landscape-scale heterogeneity of tundra greening and browning for northern Alaska and the Yamal Peninsula in northwestern Siberia, Russia. Multi-dataset analyses reveal that tundra greening and browning (i.e. increases or decreases in the NDVI respectively) are generated by different sets of processes. Tundra greening is largely a result of either climate warming, lengthening of the growing season, or responses to disturbances, such as fires, landslides, and freeze-thaw processes. Browning on the other hand tends to be more event-driven, such as the shorter-term decline in vegetation due to fire, insect defoliation, consumption by larger herbivores, or extreme weather events (e.g. winter warming or early summer frost damage). Browning can also be caused by local or

  18. A Hero in the Friendly Arctic: Deconstructing Vilhjalmur Stefansson's Rhetorical Maneuver

    Directory of Open Access Journals (Sweden)

    Silje Gaupseth

    2012-05-01

    Full Text Available The article deals with Arctic explorer and anthropologist Vilhjalmur Stefansson's self-presentation in the expedition account The Friendly Arctic: The Story of Five Years in Polar Regions (1921, which tells the story of his travels and trials in the Canadian High Arctic in the years between 1913-1918. The account has been considered a key text to Stefansson's Arctic career, and provides a textbook example of his characteristic theory of living off the country in the so-called Eskimo way. Against the background of Stefansson's debated position as Arctic expert and visionary, I ask if it is possible to read the kind of criticism with which Stefansson frequently was met as rooted in some of the narrative aspects of his account. The narrative persona or implied author is a central element in the literature of exploration, as several literary scholars have pointed out. My reading is centred around the implied author of The Friendly Arctic, which I argue must be read in light of the sometimes conflicting roles given to Stefansson as protagonist and narrator in his own story. Close-readings of passages from the account raise the dilemma of how it is possible to present oneself as a hero in an essentially friendly Arctic.

  19. Global Hawk dropsonde observations of the Arctic atmosphere obtained during the Winter Storms and Pacific Atmospheric Rivers (WISPAR field campaign

    Directory of Open Access Journals (Sweden)

    J. M. Intrieri

    2014-11-01

    Full Text Available In February and March of 2011, the Global Hawk unmanned aircraft system (UAS was deployed over the Pacific Ocean and the Arctic during the Winter Storms and Pacific Atmospheric Rivers (WISPAR field campaign. The WISPAR science missions were designed to (1 mprove our understanding of Pacific weather systems and the polar atmosphere; (2 evaluate operational use of unmanned aircraft for investigating these atmospheric events; and (3 demonstrate operational and research applications of a UAS dropsonde system at high latitudes. Dropsondes deployed from the Global Hawk successfully obtained high-resolution profiles of temperature, pressure, humidity, and wind information between the stratosphere and surface. The 35 m wingspan Global Hawk, which can soar for ~ 31 h at altitudes up to ~ 20 km, was remotely operated from NASA's Dryden Flight Research Center at Edwards Air Force Base (AFB in California. During the 25 h polar flight on 9–10 March 2011, the Global Hawk released 35 sondes between the North Slope of Alaska and 85° N latitude, marking the first UAS Arctic dropsonde mission of its kind. The polar flight transected an unusually cold polar vortex, notable for an associated record-level Arctic ozone loss, and documented polar boundary layer variations over a sizable ocean–ice lead feature. Comparison of dropsonde observations with atmospheric reanalyses reveal that, for this day, large-scale structures such as the polar vortex and air masses are captured by the reanalyses, while smaller-scale features, including low-level jets and inversion depths, are mischaracterized. The successful Arctic dropsonde deployment demonstrates the capability of the Global Hawk to conduct operations in harsh, remote regions. The limited comparison with other measurements and reanalyses highlights the potential value of Arctic atmospheric dropsonde observations where routine in situ measurements are practically nonexistent.

  20. Aerosol indirect effects on the nighttime Arctic Ocean surface from thin, predominantly liquid clouds

    Directory of Open Access Journals (Sweden)

    L. M. Zamora

    2017-06-01

    Full Text Available Aerosol indirect effects have potentially large impacts on the Arctic Ocean surface energy budget, but model estimates of regional-scale aerosol indirect effects are highly uncertain and poorly validated by observations. Here we demonstrate a new way to quantitatively estimate aerosol indirect effects on a regional scale from remote sensing observations. In this study, we focus on nighttime, optically thin, predominantly liquid clouds. The method is based on differences in cloud physical and microphysical characteristics in carefully selected clean, average, and aerosol-impacted conditions. The cloud subset of focus covers just ∼ 5 % of cloudy Arctic Ocean regions, warming the Arctic Ocean surface by ∼ 1–1.4 W m−2 regionally during polar night. However, within this cloud subset, aerosol and cloud conditions can be determined with high confidence using CALIPSO and CloudSat data and model output. This cloud subset is generally susceptible to aerosols, with a polar nighttime estimated maximum regionally integrated indirect cooling effect of ∼ −0.11 W m−2 at the Arctic sea ice surface (∼ 8 % of the clean background cloud effect, excluding cloud fraction changes. Aerosol presence is related to reduced precipitation, cloud thickness, and radar reflectivity, and in some cases, an increased likelihood of cloud presence in the liquid phase. These observations are inconsistent with a glaciation indirect effect and are consistent with either a deactivation effect or less-efficient secondary ice formation related to smaller liquid cloud droplets. However, this cloud subset shows large differences in surface and meteorological forcing in shallow and higher-altitude clouds and between sea ice and open-ocean regions. For example, optically thin, predominantly liquid clouds are much more likely to overlay another cloud over the open ocean, which may reduce aerosol indirect effects on the surface. Also, shallow clouds over

  1. SIOS: A regional cooperation of international research infrastructures as a building block for an Arctic observing system

    Science.gov (United States)

    Holmen, K. J.; Lønne, O. J.

    2016-12-01

    The Svalbard Integrated Earth Observing System (SIOS) is a regional response to the Earth System Science (ESS) challenges posed by the Amsterdam Declaration on Global Change. SIOS is intended to develop and implement methods for how observational networks in the Arctic are to be designed in order to address such issues in a regional scale. SIOS builds on the extensive observation capacity and research installations already in place by many international institutions and will provide upgraded and relevant Observing Systems and Research Facilities of world class in and around Svalbard. It is a distributed research infrastructure set up to provide a regional observational system for long term measurements under a joint framework. As one of the large scale research infrastructure initiatives on the ESFRI roadmap (European Strategy Forum on Research Infrastructures), SIOS is now being implemented. The new research infrastructure organization, the SIOS Knowledge Center (SIOS-KC), is instrumental in developing methods and solutions for setting up its regional contribution to a systematically constructed Arctic observational network useful for global change studies. We will discuss cross-disciplinary research experiences some case studies and lessons learned so far. SIOS aims to provide an effective, easily accessible data management system which makes use of existing data handling systems in the thematic fields covered by SIOS. SIOS will, implement a data policy which matches the ambitions that are set for the new European research infrastructures, but at the same time be flexible enough to consider `historical' legacies. Given the substantial international presence in the Svalbard archipelago and the pan-Arctic nature of the issue, there is an opportunity to build SIOS further into a wider regional network and pan-Arctic context, ideally under the umbrella of the Sustaining Arctic Observing Networks (SAON) initiative. It is necessary to anchor SIOS strongly in a European

  2. White Arctic vs. Blue Arctic: Making Choices

    Science.gov (United States)

    Pfirman, S. L.; Newton, R.; Schlosser, P.; Pomerance, R.; Tremblay, B.; Murray, M. S.; Gerrard, M.

    2015-12-01

    As the Arctic warms and shifts from icy white to watery blue and resource-rich, tension is arising between the desire to restore and sustain an ice-covered Arctic and stakeholder communities that hope to benefit from an open Arctic Ocean. If emissions of greenhouse gases to the atmosphere continue on their present trend, most of the summer sea ice cover is projected to be gone by mid-century, i.e., by the time that few if any interventions could be in place to restore it. There are many local as well as global reasons for ice restoration, including for example, preserving the Arctic's reflectivity, sustaining critical habitat, and maintaining cultural traditions. However, due to challenges in implementing interventions, it may take decades before summer sea ice would begin to return. This means that future generations would be faced with bringing sea ice back into regions where they have not experienced it before. While there is likely to be interest in taking action to restore ice for the local, regional, and global services it provides, there is also interest in the economic advancement that open access brings. Dealing with these emerging issues and new combinations of stakeholders needs new approaches - yet environmental change in the Arctic is proceeding quickly and will force the issues sooner rather than later. In this contribution we examine challenges, opportunities, and responsibilities related to exploring options for restoring Arctic sea ice and potential pathways for their implementation. Negotiating responses involves international strategic considerations including security and governance, meaning that along with local communities, state decision-makers, and commercial interests, national governments will have to play central roles. While these issues are currently playing out in the Arctic, similar tensions are also emerging in other regions.

  3. Relation between extinction and assisted colonization of plants in the arctic-alpine and boreal regions.

    Science.gov (United States)

    Pykälä, Juha

    2017-06-01

    Assisted colonization of vascular plants is considered by many ecologists an important tool to preserve biodiversity threatened by climate change. I argue that assisted colonization may have negative consequences in arctic-alpine and boreal regions. The observed slow movement of plants toward the north has been an argument for assisted colonization. However, these range shifts may be slow because for many plants microclimatic warming (ignored by advocates of assisted colonization) has been smaller than macroclimatic warming. Arctic-alpine and boreal plants may have limited possibilities to disperse farther north or to higher elevations. I suggest that arctic-alpine species are more likely to be driven to extinction because of competitive exclusion by southern species than by increasing temperatures. If so, the future existence of arctic-alpine and boreal flora may depend on delaying or preventing the migration of plants toward the north to allow northern species to evolve to survive in a warmer climate. In the arctic-alpine region, preventing the dispersal of trees and shrubs may be the most important method to mitigate the negative effects of climate change. The purported conservation benefits of assisted colonization should not be used to promote the migration of invasive species by forestry. © 2016 Society for Conservation Biology.

  4. Genetic signatures of adaptation revealed from transcriptome sequencing of Arctic and red foxes.

    Science.gov (United States)

    Kumar, Vikas; Kutschera, Verena E; Nilsson, Maria A; Janke, Axel

    2015-08-07

    The genus Vulpes (true foxes) comprises numerous species that inhabit a wide range of habitats and climatic conditions, including one species, the Arctic fox (Vulpes lagopus) which is adapted to the arctic region. A close relative to the Arctic fox, the red fox (Vulpes vulpes), occurs in subarctic to subtropical habitats. To study the genetic basis of their adaptations to different environments, transcriptome sequences from two Arctic foxes and one red fox individual were generated and analyzed for signatures of positive selection. In addition, the data allowed for a phylogenetic analysis and divergence time estimate between the two fox species. The de novo assembly of reads resulted in more than 160,000 contigs/transcripts per individual. Approximately 17,000 homologous genes were identified using human and the non-redundant databases. Positive selection analyses revealed several genes involved in various metabolic and molecular processes such as energy metabolism, cardiac gene regulation, apoptosis and blood coagulation to be under positive selection in foxes. Branch site tests identified four genes to be under positive selection in the Arctic fox transcriptome, two of which are fat metabolism genes. In the red fox transcriptome eight genes are under positive selection, including molecular process genes, notably genes involved in ATP metabolism. Analysis of the three transcriptomes and five Sanger re-sequenced genes in additional individuals identified a lower genetic variability within Arctic foxes compared to red foxes, which is consistent with distribution range differences and demographic responses to past climatic fluctuations. A phylogenomic analysis estimated that the Arctic and red fox lineages diverged about three million years ago. Transcriptome data are an economic way to generate genomic resources for evolutionary studies. Despite not representing an entire genome, this transcriptome analysis identified numerous genes that are relevant to arctic

  5. Arctic Newcomers

    DEFF Research Database (Denmark)

    Tonami, Aki

    2013-01-01

    Interest in the Arctic region and its economic potential in Japan, South Korea and Singapore was slow to develop but is now rapidly growing. All three countries have in recent years accelerated their engagement with Arctic states, laying the institutional frameworks needed to better understand...... and influence policies relating to the Arctic. But each country’s approach is quite different, writes Aki Tonami....

  6. Canadian Ice Service Arctic Regional Sea Ice Charts in SIGRID-3 Format

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Canadian Ice Service (CIS) produces digital Arctic regional sea ice charts for marine navigation, climate research, and input to the Global Digital Sea Ice Data...

  7. [BIODIVERSITY OF ACANTHOCEPHALANS (ACANTHOCEPHALA) IN FRESHWATER FISHES OF ASIATIC SUB-ARCTIC REGION].

    Science.gov (United States)

    Atrashkevich, G I; Mikhailova, E I; Orlovskaya, O M; Pospekhov, V V

    2016-01-01

    The analysis of taxonomical and ecological diversity of acanthocephalans in fishes of Asiatic sub-Arctic region freshwaters, summarizing changes in modern views on species composition, life cycles, and ecology of background groups of these parasites is given. A priority role of studies provided by O. N. Bauer and his scientific school in organization and development of these aspects of acanthocephalology is demonstrated. Special attention is paid to the assessment of acanthocephalan biodiversity of the genus Neoechinorhynchus, the background group of freshwater fish parasites of the Asiatic sub-Arctic region, and an original key for their species is given. The distribution of acanthocephalans of the genus Acanthocephalus in northeastern Asia is analyzed and prospective study of this parasite group, evolutionary associated with freshwater isopods of the genus Asellus as intermediate hosts, is outlined. The absence of documented evidences on intermediate hosts of other background parasites of freshwater fishes in the region, acanthocephalans of the genus Metechinorhynchus, is revealed. It is assumed that subsequent taxonomic revisions based both on morphological and molecular genetic studies are necessary for the reliable revealing of species composition in each genus of the background acanthocephalans from freshwater fishes of Northern Asia. Theoretical significance of the study of acanthocephalan life cycles and revealing their natural intermediate hosts for the reliable estimation of structural and functional organization of their host-parasite systems in different parts of the range is substantiated and the possibility of the distribution of taxonomic conclusions in new territories is analyzed. A brief annotated taxonomical list of freshwater acanthocephalans of the Asiatic sub-Arctic region is given.

  8. Long-range transport of persistent pollutants into Arctic regions; Schadstoff-Ferntransport in die Arktis

    Energy Technology Data Exchange (ETDEWEB)

    Kallenborn, R.; Herzke, D. [Norwegian Inst. for Air Research, The Polar Environmental Centre, Tromso (Norway)

    2001-07-01

    In recent years, high concentrations of persistent pollutants (organic chemicals, metals) were detected in top predators of the Arctic food chain and indigenous peoples from the Canadian and Greenland Arctic, although no local contamination sources are known. The comprehensive, scientific investigations of the past 20 years confirmed that the combination of atmospheric and waterborne long-range transport is the major source of the high concentrations of persistent organic pollutants (POPs) in the pristine Arctic environment. However, also pelagic marine organisms (e.g. Atlantic cod, marine mammals) can transport large amounts of persistent pollutants in their lipids and introduce contaminants into the Arctic food web. Thus, the pollutants are transported into the Arctic and subsequently accumulated through the short and unbranched Arctic food web of the top predators. The most accepted theory nowadays describes the long-range transport of persistent pollutants as a combination of atmospheric and sea current transport, or as a 'global distillation' process. Depending on such physical properties of the substances as vapour pressure and the ambient temperature, persistent (semivolatile) contaminants are transported over different distances prior to deposition (sea surface, sediment, soil). After the deposition, however, and depending on the weather conditions and surrounding temperature, persistent pollutants will be re-evaporated into the atmosphere and undergo further atmospheric transport to the Arctic region. This process is also called the 'grasshopper effect'. The global transport of persistent pollutants into Arctic regions can be described as a repeatedly occurring combination of atmospheric and waterborne transport in which the main transport vehicle depends on the physical properties of the transported compound. The role of characteristic meteorological conditions in the respective climate zones through which the contaminant is

  9. The Temperature of the Arctic and Antarctic Lower Stratosphere

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The temperature of the polar lower stratosphere during spring is the key factor in changing the magnitude of ozone loss in the polar vortices. In this talk, we will review the results of Newman et al. [2000] that quantitatively demonstrate that the polar lower stratospheric temperature is primarily controlled by planetary-scale waves. In particular, the tropospheric eddy heat flux in middle to late winter (January--February) is highly correlated with the mean polar stratospheric temperature during March. Strong midwinter planetary wave forcing leads to a warmer spring Arctic lower stratosphere in early spring, while weak midwinter forcing leads to cooler spring Arctic temperatures. In addition, this planetary wave driving also has a strong impact on the strength of the polar vortex. These results from the Northern Hemisphere will be contrasted with the Southern Hemisphere.

  10. What Controls the Temperature of the Arctic Stratosphere during the Spring?

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Rosenfield, Joan E.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding the mechanisms that control the temperature of the polar lower stratosphere during spring is key to understanding ozone loss in the Arctic polar vortex. Spring ozone loss rates are directly tied to polar stratospheric temperatures by the formation of polar stratospheric clouds, and the conversion of chlorine species to reactive forms on these cloud particle surfaces. In this paper, we study those factors that control temperatures in the polar lower stratosphere. We use the National Centers for Environmental Prediction (NCEP)/NCAR reanalysis data covering the last two decades to investigate how planetary wave driving of the stratosphere is connected to polar temperatures. In particular, we show that planetary waves forced in the troposphere in mid- to late winter (January-February) are principally responsible for the mean polar temperature during the March period. These planetary waves are forced by both thermal and orographic processes in the troposphere, and propagate into the stratosphere in the mid and high latitudes. Strong mid-winter planetary wave forcing leads to a warmer Arctic lower stratosphere in early spring, while weak mid-winter forcing leads to cooler Arctic temperatures.

  11. Absolute Geostrophic Velocity Inverted from the Polar Science Center Hydrographic Climatology (PHC3.0) of the Arctic Ocean with the P-Vector Method (NCEI Accession 0156425)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset (called PHC-V) comprises 3D gridded climatological fields of absolute geostrophic velocity of the Arctic Ocean inverted from the Polar science center...

  12. Integrating surface and mantle constraints for palaeo-ocean evolution: a tour of the Arctic and adjacent regions (Arne Richter Award for Outstanding Young Scientists Lecture)

    Science.gov (United States)

    Shephard, Grace E.

    2016-04-01

    Plate tectonic reconstructions heavily rely on absolute motions derived from hotspot trails or palaeomagnetic data and ocean-floor magnetic anomaies and fracture-zone geometries to constrain the detailed history of ocean basins. However, as oceanic lithosphere is progressively recycled into the mantle, kinematic data regarding the history of these now extinct-oceans is lost. In order to better understand their evolution, novel workflows, which integrate a wide range of complementary yet independent geological and geophysical datasets from both the surface and deep mantle, must be utilised. In particular, the emergence of time-dependent, semi or self-consistent geodynamic models of ever-increasing temporal and spatial resolution are revealing some critical constraints on the evolution and fate of oceanic slabs. The tectonic evolution of the circum-Arctic is no exception; since the breakup of Pangea, this enigmatic region has seen major plate reorganizations and the opening and closure of several ocean basins. At the surface, a myriad of potential kinematic scenarios including polarity, timing, geometry and location of subduction have emerged, including for systems along continental margins and intra-oceanic settings. Furthermore, recent work has reignited a debate about the origins of 'anchor' slabs, such as the Farallon and Mongol-Okhotsk slabs, which have been used to refine absolute plate motions. Moving to the mantle, seismic tomography models reveal a region peppered with inferred slabs, however assumptions about their affinities and subduction location, timing, geometry and polarity are often made in isolation. Here, by integrating regional plate reconstructions with insights from seismic tomography, satellite derived gravity gradients, slab sinking rates and geochemistry, I explore some Mesozoic examples from the palaeo-Arctic, northern Panthalassa and western margin of North America, including evidence for a discrete and previously undescribed slab under

  13. Arctic carbon cycling

    NARCIS (Netherlands)

    Christensen, Torben R; Rysgaard, SØREN; Bendtsen, JØRGEN; Else, Brent; Glud, Ronnie N; van Huissteden, J.; Parmentier, F.J.W.; Sachs, Torsten; Vonk, J.E.

    2017-01-01

    The marine Arctic is considered a net carbon sink, with large regional differences in uptake rates. More regional modelling and observational studies are required to reduce the uncertainty among current estimates. Robust projections for how the Arctic Ocean carbon sink may evolve in the future are

  14. A History of Coastal Research in the Arctic (Invited)

    Science.gov (United States)

    Walker, H. J.; McGraw, M.

    2009-12-01

    The arctic shoreline is, according to the CIA World Factbook, 45,389 km long. However, a more realistic length from the standpoint of detailed research is the 200,000 km proposed at the 1999 Arctic Coastal Dynamics Workshop. Highly varied in form and material it is dominated by a variety of processes, is relatively remote, is ice-bound much of the year, and has generally been neglected by the scientific community. Before the 20th century, most of the information about its geology, hydrology, geomorphology, and biology was recorded in ship's logs or in explorer's books and was for the most part incidental to the narrative being related. The paucity of specific research is indicated by the relatively few relevant papers included in the more than 100,000 annotated entries published in the 15 volumes of the Arctic Bibliography (1953-1971) and in the nearly as extensive 27 volume bibliography prepared by the Cold Regions Research and Engineering Laboratory (CRREL) between 1952 and 1973. Nonetheless, there were some distinctive research endeavors during the early part of the 20th century; e.g., Leffingwell's 1919 Alaskan Arctic Coast observations, Nansen's 1921 strandflat studies, and Zenkovich's 1937 Murmansk research. During that period some organizations devoted to polar research, especially the USSR's Arctic and Antarctic Research Institute and the Scott Polar Research Institute (both in 1920) were established, although the amount of their research that could be considered coastal and arctic was limited. Specific research of the arctic's shoreline was mainly academic until after World War II when military, economic, industrial, and archaeological interests began demanding reliable, contemporary data. At the time numerous organizations with a primary focus on the Arctic were formed. Included are the Arctic Institute of North America (1945), the Snow, Ice, and Permafrost Research Establishment (latter to become CRREL) and the Office of Naval Research's Arctic Research

  15. Regional Arctic System Model (RASM): A Tool to Advance Understanding and Prediction of Arctic Climate Change at Process Scales

    Science.gov (United States)

    Maslowski, W.; Roberts, A.; Osinski, R.; Brunke, M.; Cassano, J. J.; Clement Kinney, J. L.; Craig, A.; Duvivier, A.; Fisel, B. J.; Gutowski, W. J., Jr.; Hamman, J.; Hughes, M.; Nijssen, B.; Zeng, X.

    2014-12-01

    The Arctic is undergoing rapid climatic changes, which are some of the most coordinated changes currently occurring anywhere on Earth. They are exemplified by the retreat of the perennial sea ice cover, which integrates forcing by, exchanges with and feedbacks between atmosphere, ocean and land. While historical reconstructions from Global Climate and Global Earth System Models (GC/ESMs) are in broad agreement with these changes, the rate of change in the GC/ESMs remains outpaced by observations. Reasons for that stem from a combination of coarse model resolution, inadequate parameterizations, unrepresented processes and a limited knowledge of physical and other real world interactions. We demonstrate the capability of the Regional Arctic System Model (RASM) in addressing some of the GC/ESM limitations in simulating observed seasonal to decadal variability and trends in the sea ice cover and climate. RASM is a high resolution, fully coupled, pan-Arctic climate model that uses the Community Earth System Model (CESM) framework. It uses the Los Alamos Sea Ice Model (CICE) and Parallel Ocean Program (POP) configured at an eddy-permitting resolution of 1/12° as well as the Weather Research and Forecasting (WRF) and Variable Infiltration Capacity (VIC) models at 50 km resolution. All RASM components are coupled via the CESM flux coupler (CPL7) at 20-minute intervals. RASM is an example of limited-area, process-resolving, fully coupled earth system model, which due to the additional constraints from lateral boundary conditions and nudging within a regional model domain facilitates detailed comparisons with observational statistics that are not possible with GC/ESMs. In this talk, we will emphasize the utility of RASM to understand sensitivity to variable parameter space, importance of critical processes, coupled feedbacks and ultimately to reduce uncertainty in arctic climate change projections.

  16. Approaching a Postcolonial Arctic

    DEFF Research Database (Denmark)

    Jensen, Lars

    2016-01-01

    This article explores different postcolonially configured approaches to the Arctic. It begins by considering the Arctic as a region, an entity, and how the customary political science informed approaches are delimited by their focus on understanding the Arctic as a region at the service...... of the contemporary neoliberal order. It moves on to explore how different parts of the Arctic are inscribed in a number of sub-Arctic nation-state binds, focusing mainly on Canada and Denmark. The article argues that the postcolonial can be understood as a prism or a methodology that asks pivotal questions to all...... approaches to the Arctic. Yet the postcolonial itself is characterised by limitations, not least in this context its lack of interest in the Arctic, and its bias towards conventional forms of representation in art. The article points to the need to develop a more integrated critique of colonial and neo...

  17. Lidar measurements of ozone and aerosol distributions during the 1992 airborne Arctic stratospheric expedition

    Science.gov (United States)

    Browell, Edward V.; Butler, Carolyn F.; Fenn, Marta A.; Grant, William B.; Ismail, Syed; Carter, Arlen F.

    1994-01-01

    The NASA Langley airborne differential absorption lidar system was operated from the NASA Ames DC-8 aircraft during the 1992 Airborne Arctic Stratospheric Expedition to investigate the distribution of stratospheric aerosols and ozone (O3) across the Arctic vortex from January to March 1992. Aerosols from the Mt. Pinatubo eruption were found outside and inside the Arctic vortex with distinctly different scattering characteristics and spatial distributions in the two regions. The aerosol and O3 distributions clearly identified the edge of the vortex and provided additional information on vortex dynamics and transport processes. Few polar stratospheric clouds were observed during the AASE-2; however, those that were found had enhanced scattering and depolarization over the background Pinatubo aerosols. The distribution of aerosols inside the vortex exhibited relatively minor changes during the AASE-2. Ozone depletion inside the vortex as limited to less than or equal to 20 percent in the altitude region from 15-20 km.

  18. Pristine Arctic: Background mapping of PAHs, PAH metabolites and inorganic trace elements in the North-Atlantic Arctic and sub-Arctic coastal environment

    Energy Technology Data Exchange (ETDEWEB)

    Jörundsdóttir, Hrönn Ólína, E-mail: hronn.o.jorundsdottir@matis.is [Matis Ltd., Icelandic Food and Biotech R and D, Vinlandsleid 12, 113 Reykjavik (Iceland); Jensen, Sophie [Matis Ltd., Icelandic Food and Biotech R and D, Vinlandsleid 12, 113 Reykjavik (Iceland); Hylland, Ketil; Holth, Tor Fredrik [Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo (Norway); Gunnlaugsdóttir, Helga [Matis Ltd., Icelandic Food and Biotech R and D, Vinlandsleid 12, 113 Reykjavik (Iceland); Svavarsson, Jörundur [University of Iceland, Department of Life and Environmental Sciences, Askja - Natural Science Building, Sturlugata 7, 101 Reykjavík (Iceland); Ólafsdóttir, Ásdís [The University of Iceland´s Research Centre in Sudurnes, Gardvegi 1, 245 Sandgerdi (Iceland); El-Taliawy, Haitham [Matis Ltd., Icelandic Food and Biotech R and D, Vinlandsleid 12, 113 Reykjavik (Iceland); Rigét, Frank; Strand, Jakob [Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde (Denmark); Nyberg, Elisabeth; Bignert, Anders [Swedish Museum of Natural History, P.O. Box 50007, 104 05 Stockholm (Sweden); Hoydal, Katrin S. [The Faroese Environment Agency, Traðagøta 38, P.O. Box 2048, FO-165 Argir, the Faroe Islands (Faroe Islands); Halldórsson, Halldór Pálmar [The University of Iceland´s Research Centre in Sudurnes, Gardvegi 1, 245 Sandgerdi (Iceland)

    2014-09-15

    As the ice cap of the Arctic diminishes due to global warming, the polar sailing route will be open larger parts of the year. These changes are likely to increase the pollution load on the pristine Arctic due to large vessel traffic from specific contaminant groups, such as polycyclic aromatic hydrocarbons (PAHs). A well-documented baseline for PAH concentrations in the biota in the remote regions of the Nordic Seas and the sub-Arctic is currently limited, but will be vital in order to assess future changes in PAH contamination in the region. Blue mussels (Mytilus edulis) were collected from remote sites in Greenland, Iceland, the Faroe Islands, Norway and Sweden as well as from urban sites in the same countries for comparison. Cod (Gadus morhua) was caught north of Iceland and along the Norwegian coast. Sixteen priority PAH congeners and the inorganic trace elements arsenic, cadmium, mercury and lead were analysed in the blue mussel samples as well as PAH metabolites in cod bile. Σ{sub 16}PAHs ranged from 28 ng/g dry weight (d.w.) (Álftafjörður, NW Iceland) to 480 ng/g d.w. (Ísafjörður, NW Iceland). Mussel samples from Mjóifjörður, East Iceland and Maarmorilik, West Greenland, contained elevated levels of Σ{sub 16}PAHs, 370 and 280 ng/g d.w., respectively. Levels of inorganic trace elements varied with highest levels of arsenic in mussels from Ísafjörður, Iceland (79 ng/g d.w.), cadmium in mussels from Mjóifjörður, Iceland (4.3 ng/g d.w.), mercury in mussels from Sørenfjorden, Norway (0.23 ng/g d.w.) and lead in mussels from Maarmorilik, Greenland (21 ng/g d.w.). 1-OH-pyrene was only found above limits of quantification (0.5 ng/mL) in samples from the Norwegian coast, ranging between 44 and 140 ng/ml bile. Generally, PAH levels were low in mussels from the remote sites investigated in the study, which indicates limited current effect on the environment. - Highlights: • Low levels of PAHs in blue mussels from remote areas of the Arctic. • Low

  19. Multinational Experiment 7. Maritime Security Region: The Arctic

    Science.gov (United States)

    2013-07-08

    increasingly affect human communities , natural systems, and infrastructure. Resources and Trade Routes in the Arctic Climate change in the Far...capelin, herring, navaga, and wolffishes. Some areas of the Arctic and sub-Arctic suffer from high levels of illegal fishing and overfishing , and...maneuvering, joint air defense drills, communications and search and rescue operations. The exercise is normally held every second year. 8 In

  20. Collaborative Proposal: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic System Model (RASM)

    Energy Technology Data Exchange (ETDEWEB)

    Maslowski, Wieslaw [Naval Postgraduate School, Monterey, CA (United States). Dept. of Oceanography; Cassano, John J. [Univ. of Colorado, Boulder, CO (United States); Gutowski, Jr., William J. [Iowa State Univ., Ames, IA (United States); Lipscomb, William H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nijssen, Bart [Univ. of Washington, Seattle, WA (United States); Roberts, Andrew [Naval Postgraduate School, Monterey, CA (United States). Dept. of Oceanography; Robertson, William [Univ. of Texas, El Paso, TX (United States); Tulaczyk, Slawek [Univ. of California, Santa Cruz, CA (United States); Zeng, Xubin [Univ. of Arizona, Tucson, AZ (United States)

    2011-05-15

    The primary outcome of the project was the development of the Regional Arctic System Model (RASM) and evaluation of its individual model components, coupling among them and fully coupled model results. Overall, we have demonstrated that RASM produces realistic mean and seasonal surface climate as well as its interannual and decadal variability and trends.

  1. Contemporary Arctic Sea Level

    Science.gov (United States)

    Cazenave, A. A.

    2017-12-01

    During recent decades, the Arctic region has warmed at a rate about twice the rest of the globe. Sea ice melting is increasing and the Greenland ice sheet is losing mass at an accelerated rate. Arctic warming, decrease in the sea ice cover and fresh water input to the Arctic ocean may eventually impact the Arctic sea level. In this presentation, we review our current knowledge of contemporary Arctic sea level changes. Until the beginning of the 1990s, Arctic sea level variations were essentially deduced from tide gauges located along the Russian and Norwegian coastlines. Since then, high inclination satellite altimetry missions have allowed measuring sea level over a large portion of the Arctic Ocean (up to 80 degree north). Measuring sea level in the Arctic by satellite altimetry is challenging because the presence of sea ice cover limits the full capacity of this technique. However adapted processing of raw altimetric measurements significantly increases the number of valid data, hence the data coverage, from which regional sea level variations can be extracted. Over the altimetry era, positive trend patterns are observed over the Beaufort Gyre and along the east coast of Greenland, while negative trends are reported along the Siberian shelf. On average over the Arctic region covered by satellite altimetry, the rate of sea level rise since 1992 is slightly less than the global mea sea level rate (of about 3 mm per year). On the other hand, the interannual variability is quite significant. Space gravimetry data from the GRACE mission and ocean reanalyses provide information on the mass and steric contributions to sea level, hence on the sea level budget. Budget studies show that regional sea level trends over the Beaufort Gyre and along the eastern coast of Greenland, are essentially due to salinity changes. However, in terms of regional average, the net steric component contributes little to the observed sea level trend. The sea level budget in the Arctic

  2. Public Perceptions of Arctic Change

    Science.gov (United States)

    Hamilton, L.

    2014-12-01

    What does the general US public know, or think they know, about Arctic change? Two broad nationwide surveys in 2006 and 2010 addressed this topic in general terms, before and after the International Polar Year (IPY). Since then a series of representative national or statewide surveys have carried this research farther. The new surveys employ specific questions that assess public knowledge of basic Arctic facts, along with perceptions about the possible consequences of future Arctic change. Majorities know that late-summer Arctic sea ice area has declined compared with 30 years ago, although substantial minorities -- lately increasing -- believe instead that it has now recovered to historical levels. Majorities also believe that, if the Arctic warms in the future, this will have major effects on the weather where they live. Their expectation of local impacts from far-away changes suggests a degree of global thinking. On the other hand, most respondents do poorly when asked whether melting Arctic sea ice, melting Greenland/Antarctic land ice, or melting Himalayan glaciers could have more effect on sea level. Only 30% knew or guessed the right answer to this question. Similarly, only 33% answered correctly on a simple geography quiz: whether the North Pole could best be described as ice a few feet or yards thick floating over a deep ocean, ice more than a mile thick over land, or a rocky, mountainous landscape. Close analysis of response patterns suggests that people often construct Arctic "knowledge" on items such as sea ice increase/decrease from their more general ideology or worldview, such as their belief (or doubt) that anthropogenic climate change is real. When ideology or worldviews provide no guidance, as on the North Pole or sealevel questions, the proportion of accurate answers is no better than chance. These results show at least casual public awareness and interest in Arctic change, unfortunately not well grounded in knowledge. Knowledge problems seen on

  3. PeRL: a circum-Arctic Permafrost Region Pond and Lake database

    Directory of Open Access Journals (Sweden)

    S. Muster

    2017-06-01

    Full Text Available Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1. 0 × 104 m2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002–2013 high-resolution aerial and satellite imagery with a resolution of 5 m or better. The database also includes historical imagery from 1948 to 1965 with a resolution of 6 m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1. 4 × 106 km2 across the Arctic, about 17 % of the Arctic lowland ( <  300 m a.s.l. land surface area. PeRL waterbodies with sizes of 1. 0 × 106 m2 down to 1. 0 × 102 m2 contributed up to 21 % to the total water fraction. Waterbody density ranged from 1. 0 × 10 to 9. 4 × 101 km−2. Ponds are the dominant waterbody type by number in all landscapes representing 45–99 % of the total waterbody number. The implementation of PeRL size distributions in land surface models will greatly improve the investigation and projection of surface inundation and carbon fluxes in permafrost lowlands

  4. A dynamical link between the Arctic and the global climate system

    DEFF Research Database (Denmark)

    Dethloff, K.; Rinke, A.; Benkel, A.

    2006-01-01

    and snow albedo treatment changes the ice-albedo feedback and the radiative exchange between the atmosphere and the ocean-sea-ice system. The planetary wave energy fluxes in the middle troposphere of mid-latitudes between 30 and 50°N are redistributed, which induces perturbations in the zonal...... and meridional planetary wave trains from the tropics over the mid-latitudes into the Arctic. It is shown, that the improved parameterization of Arctic sea-ice and snow albedo can trigger changes in the Arctic and North Atlantic Oscillation pattern with strong implications for the European climate.......By means of simulations with a global coupled AOGCM it is shown that changes in the polar energy sink region can exert a strong influence on the mid- and high-latitude climate by modulating the strength of the mid-latitude westerlies and storm tracks. It is found, that a more realistic sea-ice...

  5. Ecological risk analysis as a key factor in environmental safety system development in the Arctic region of the Russian Federation

    International Nuclear Information System (INIS)

    Bolsunovskaya, Y A; Bolsunovskaya, L M

    2015-01-01

    Due to specific natural and climatic conditions combined with human intervention, the Arctic is regarded as a highly sensitive region to any environmental pressures. Arctic projects require continuous environmental monitoring. This poses for the government of the Russian Federation (RF) a tremendous task concerning the formation and implementation of sustainable nature management policy within the international framework. The current article examines the basic constraints to the effective ecological safety system implementation in the Arctic region of the RF. The ecological risks and their effects which influence the sustainable development of the region were analyzed. The model of complex environmental safety system was proposed

  6. PolarTREC: Successful Methods and Tools for Attaining Broad Educational Impacts with Interdisciplinary Polar Science

    Science.gov (United States)

    Timm, K. M.; Warburton, J.; Owens, R.; Warnick, W. K.

    2008-12-01

    PolarTREC--Teachers and Researchers Exploring and Collaborating, a program of the Arctic Research Consortium of the U.S. (ARCUS), is a National Science Foundation (NSF)-funded International Polar Year (IPY) project in which K-12 educators participate in hands-on field experiences in the polar regions, working closely with IPY scientists as a pathway to improving science education. Developing long-term teacher- researcher collaborations through PolarTREC ensures up-to-date climate change science content will permeate the K-12 education system long after the IPY. By infusing education with the cutting edge science from the polar regions, PolarTREC has already shown an increase in student and public knowledge of and interest in the polar regions and global climate change. Preliminary evaluations have shown that PolarTREC's program activities have many positive impacts on educators and their ability to teach science concepts and improve their teaching methods. Additionally, K-12 students polled in interest surveys showed significant changes regarding the importance of understanding the polar regions as a person in today's world. Researchers have been overwhelmingly satisfied with PolarTREC and cited several specific strengths, including the program's crucial link between the teachers' field research experiences and their classroom and the extensive training provided to teachers prior to their expedition. This presentation will focus on other successful components of the PolarTREC program and how researchers and organizations might use these tools to reach out to the public for long-term impacts. Best practices include strategies for working with educators and the development of an internet-based platform for teachers and researchers to interact with the public, combining several communication tools such as online journals and forums, real-time Internet seminars, lesson plans, activities, audio, and other educational resources that address a broad range of scientific

  7. Application of Terrestrial Ecosystem Monitoring under the CAFF Circumpolar Biodiversity Monitoring Program: Designing and Implementing Terrestrial Monitoring to Establish the Canadian High Arctic Research Station as a Flagship Arctic Environmental Monitoring Site

    Science.gov (United States)

    McLennan, D.; Kehler, D.

    2016-12-01

    The Canadian High Arctic Research Station (CHARS) is scheduled for completion in July 2017 and is the northern science component of Polar Knowledge Canada (POLAR). A mandated goal for POLAR is to establish the adjacent Experimental and Reference Area (ERA) as an Arctic Flagship monitoring site that will track change in Arctic terrestrial, freshwater and marine ecosystems. Situated in the community of Cambridge Bay, CHARS provides the opportunity to draw on the Indigenous Knowledge of local residents to help design and conduct the monitoring, and to operate 12 months a year. Monitoring at CHARS will be linked to networks nationally and internationally, and is being designed so that change in key indicators can be understood in terms of drivers and processes, modeled and scaled up regionally, and used to predict important changes in critical indicators. As a partner in the Circumpolar Biodiversity Monitoring Program (CBMP), the monitoring design for terrestrial ecosystems follows approaches outlined by the CBMP Terrestrial Expert Monitoring Group, who have listed key monitoring questions and identified a list of important Focal Ecosystem Components (FECs). To link drivers to FECs we are proposing a multi-scaled approach: 1) an Intensive Monitoring Area to establish replicated monitoring plots that track change in snow depth and condition, active layer depth, soil temperature, soil moisture, and soil solution chemistry that are spatially and temporally linked to changes in microbiological activity, CO2/CH4 net ecosystem flux, vegetation relative frequency, species composition, growth and foliar nutrient concentration, arthropod abundance, lemming abundance and health, and shorebird/songbird abundance and productivity. 2) These intensive observations are supported by watershed scale measures that will monitor, during the growing season, lemming winter nest abundance, songbird, shorebird and waterfowl staging and nesting, and other observations; in the winter we will

  8. Collaboration across the Arctic

    DEFF Research Database (Denmark)

    Huppert, Verena Gisela; Chuffart, Romain François R.

    2017-01-01

    The Arctic is witnessing the rise of a new paradigm caused by an increase in pan-Arctic collaborations which co-exist with the region’s traditional linkages with the South. Using an analysis of concrete examples of regional collaborations in the Arctic today in the fields of education, health...... and infrastructure, this paper questions whether pan-Arctic collaborations in the Arctic are more viable than North-South collaborations, and explores the reasons behind and the foreseeable consequences of such collaborations. It shows that the newly emerging East-West paradigm operates at the same time...... as the traditional North-South paradigm, with no signs of the East-West paradigm being more viable in the foreseeable future. However, pan-Arctic collaboration, both due to pragmatic reasons and an increased awareness of similarities, is likely to increase in the future. The increased regionalization process...

  9. Phytoplankton data collected using net casts in the Arctic Ocean from the USCGC POLAR SEA from 26 July 1994 to 26 August 1994 (NODC Accession 0000770)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Phytoplankton data were collected using net casts from the USCGC POLAR SEA in the Arctic Ocean. Data were collected from 26 July 1994 to 26 August 1994. Data were...

  10. Arctic Region Space Weather Customers and SSA Services

    DEFF Research Database (Denmark)

    Høeg, Per; Kauristi, Kirsti; Wintoft, Peter

    Arctic inhabitants, authorities, and companies rely strongly on precise localization information and communication covering vast areas with low infrastructure and population density. Thus modern technology is crucial for establishing knowledge that can lead to growth in the region. At the same time...... and communication can be established without errors resulting from Space Weather effects. An ESA project have identified and clarified, how the products of the four ESA Space Weather Expert Service Centres (SWE) in the ESA Space Situational Awareness Programme (SSA), can contribute to the requirements of SSA...

  11. Limnological characteristics of 56 lakes in the Central Canadian Arctic Treeline Region

    Directory of Open Access Journals (Sweden)

    John P. SMOL

    2003-02-01

    Full Text Available Measured environmental variables from 56 lakes across the Central Canadian Treeline Region exhibited clear limnological differences among subpolar ecozones, reflecting strong latitudinal changes in biome characteristics (e.g. vegetation, permafrost, climate. Principal Components Analysis (PCA clearly separated forested sites from tundra sites based on distinct differences in limnological characteristics. Increases in major ions and related variables (e.g. dissolved inorganic carbon, DIC were higher in boreal forest sites in comparison to arctic tundra sites. The higher values recorded in the boreal forest lakes may be indirectly related to differences in climatic factors in these zones, such as the degree of permafrost development, higher precipitation and runoff, duration of ice-cover on the lakes, and thicker and better soil development. Similar to trends observed in DIC, substantially higher values for dissolved organic carbon (DOC were measured in boreal forest lakes than in arctic tundra lakes. This was likely due to higher amounts of catchment-derived DOC entering the lakes from coniferous leaf litter sources. Relative to arctic tundra lakes, boreal forest lakes had higher nutrient concentrations, particularly total nitrogen (TN, likely due to warmer conditions, a longer growing season, and higher precipitation, which would enhance nutrient cycling and primary productivity. Results suggest that modern aquatic environments at opposite sides of the central Canadian arctic treeline (i.e. boreal forest and arctic tundra exhibit distinct differences in water chemistry and physical conditions. These limnological trends may provide important information on possible future changes with additional warming.

  12. The Influence of Sea Ice on Arctic Low Cloud Properties and Radiative Effects

    Science.gov (United States)

    Taylor, Patrick C.

    2015-01-01

    The Arctic is one of the most climatically sensitive regions of the Earth. Climate models robustly project the Arctic to warm 2-3 times faster than the global mean surface temperature, termed polar warming amplification (PWA), but also display the widest range of surface temperature projections in this region. The response of the Arctic to increased CO2 modulates the response in tropical and extra-tropical regions through teleconnections in the atmospheric circulation. An increased frequency of extreme precipitation events in the northern mid-latitudes, for example, has been linked to the change in the background equator-to-pole temperature gradient implied by PWA. Understanding the Arctic climate system is therefore important for predicting global climate change. The ice albedo feedback is the primary mechanism driving PWA, however cloud and dynamical feedbacks significantly contribute. These feedback mechanisms, however, do not operate independently. How do clouds respond to variations in sea ice? This critical question is addressed by combining sea ice, cloud, and radiation observations from satellites, including CERES, CloudSAT, CALIPSO, MODIS, and microwave radiometers, to investigate sea ice-cloud interactions at the interannual timescale in the Arctic. Cloud characteristics are strongly tied to the atmospheric dynamic and thermodynamic state. Therefore, the sensitivity of Arctic cloud characteristics, vertical distribution and optical properties, to sea ice anomalies is computed within atmospheric dynamic and thermodynamic regimes. Results indicate that the cloud response to changes in sea ice concentration differs significantly between atmospheric state regimes. This suggests that (1) the atmospheric dynamic and thermodynamic characteristics and (2) the characteristics of the marginal ice zone are important for determining the seasonal forcing by cloud on sea ice variability.

  13. Brominated flame retardants in the Arctic. An overview of spatial and temporal trends

    Energy Technology Data Exchange (ETDEWEB)

    Wit, C de [Institute of Applied Environmental Research, Stockholm (Sweden); Alaee, M; Muir, D [National Water Research Institute, Burlington, MA (United States)

    2004-09-15

    The Stockholm Convention on Persistent Organic Pollutants (POPs), which entered into force on May 17, 2004, includes wording that chemicals with the characteristics of POPs are those found in locations ''distant from sources'' and those for which ''monitoring data showing that long-range environmental transport of the chemical may have occurred''. Thus, the Arctic has become an important indicator region for assessment of persistence and bioaccumulation. The Arctic environment is well suited as a region in which to evaluate POPs. Some regions of thee Arctic, particularly the Barents Sea area north of Norway and western Russia are relatively close to source regions of POPs. Cold conditions favor persistence of POPs relative to temperate or tropical environments. The presence of fourth level carnivores (e.g. polar bears and seabirds), and storage of lipid as an energy source, make Arctic food webs vulnerable to bioaccumulative chemicals. Indigenous people in the Arctic utilizing a traditional diet, which is high in nutritionally beneficial fat, results in their elevated exposure to some POPs. The first indication that brominated flame retardants (BFRs) were reaching the Arctic was the detection by Jansson et al. of lower molecular weight polybrominated diphenyl ethers (PBDEs) in Svalbard Brunnichfs guillemots (130 ng/g lipid weight) and ringed seals (40 ng/g lw) collected in 1981. Whitefish collected from Lake Storvindeln in 1986, a pristine mountain lake in the Swedish mountains near Ammarnas, had {sigma}PBDE levels of 26 ng/g lw. Despite these early findings, only recently have the spatial and temporal trends of BFRs been studied in detail in the Arctic. The purpose of this paper is to review the new data on BFRs in the Arctic and assess whether this information supports the view that PBDEs and other BFRs of similar molecular weight are POPs and potential global pollutants. This review is based on a recent assessment of POPs in the Arctic combined with newer data

  14. Brominated flame retardants in the Arctic. An overview of spatial and temporal trends

    Energy Technology Data Exchange (ETDEWEB)

    Wit, C. de [Institute of Applied Environmental Research, Stockholm (Sweden); Alaee, M.; Muir, D. [National Water Research Institute, Burlington, MA (United States)

    2004-09-15

    The Stockholm Convention on Persistent Organic Pollutants (POPs), which entered into force on May 17, 2004, includes wording that chemicals with the characteristics of POPs are those found in locations ''distant from sources'' and those for which ''monitoring data showing that long-range environmental transport of the chemical may have occurred''. Thus, the Arctic has become an important indicator region for assessment of persistence and bioaccumulation. The Arctic environment is well suited as a region in which to evaluate POPs. Some regions of thee Arctic, particularly the Barents Sea area north of Norway and western Russia are relatively close to source regions of POPs. Cold conditions favor persistence of POPs relative to temperate or tropical environments. The presence of fourth level carnivores (e.g. polar bears and seabirds), and storage of lipid as an energy source, make Arctic food webs vulnerable to bioaccumulative chemicals. Indigenous people in the Arctic utilizing a traditional diet, which is high in nutritionally beneficial fat, results in their elevated exposure to some POPs. The first indication that brominated flame retardants (BFRs) were reaching the Arctic was the detection by Jansson et al. of lower molecular weight polybrominated diphenyl ethers (PBDEs) in Svalbard Brunnichfs guillemots (130 ng/g lipid weight) and ringed seals (40 ng/g lw) collected in 1981. Whitefish collected from Lake Storvindeln in 1986, a pristine mountain lake in the Swedish mountains near Ammarnas, had {sigma}PBDE levels of 26 ng/g lw. Despite these early findings, only recently have the spatial and temporal trends of BFRs been studied in detail in the Arctic. The purpose of this paper is to review the new data on BFRs in the Arctic and assess whether this information supports the view that PBDEs and other BFRs of similar molecular weight are POPs and potential global pollutants. This review is based on a recent assessment of POPs

  15. Palynology in a polar desert, eastern North Greenland

    DEFF Research Database (Denmark)

    Funder, Svend Visby; Abrahamsen, Niels

    1988-01-01

    history back to c. 7,000 years calBP (6,000 years convBP) in this·extreme environment, which presents the coldest thermal regime where vascular plants can grow. The diagram shows that polar desert developed from sparse high arctic tundra at c. 4,300 years calBP (3,900 years convBP), owing...... to reduced summer heat. Also adjacent parts of high arctic Greenland, Canada and Svalbard suffered environmental decline, and polar deserts- presently restricted to a narrow fringe of land at the shores of the Arctic Ocean-were even more restricted before this time. Like other arctic vegetation types, polar...... desert is highly sensitive to summer temperatures, and its southern limit coincides with the isotherm for mean July temperatures of 3.5'C, A comparison with the Northwest European ice-age pollen record shows no evidence of summers as cold as those now prevailing in the extreme north, and the results...

  16. Arctic Rabies – A Review

    Directory of Open Access Journals (Sweden)

    Prestrud Pål

    2004-03-01

    Full Text Available Rabies seems to persist throughout most arctic regions, and the northern parts of Norway, Sweden and Finland, is the only part of the Arctic where rabies has not been diagnosed in recent time. The arctic fox is the main host, and the same arctic virus variant seems to infect the arctic fox throughout the range of this species. The epidemiology of rabies seems to have certain common characteristics in arctic regions, but main questions such as the maintenance and spread of the disease remains largely unknown. The virus has spread and initiated new epidemics also in other species such as the red fox and the racoon dog. Large land areas and cold climate complicate the control of the disease, but experimental oral vaccination of arctic foxes has been successful. This article summarises the current knowledge and the typical characteristics of arctic rabies including its distribution and epidemiology.

  17. The Arctic zone: possibilities and risks of development

    Science.gov (United States)

    Sentsov, A.; Bolsunovskaya, Y.; Melnikovich, E.

    2016-09-01

    The authors analyze the Arctic region innovative possibilities from the perspective of political ideology and strategy. The Arctic region with its natural resources and high economic potential attracts many companies and it has become an important area of transnational development. At present, the Arctic region development is of great importance in terms of natural resource management and political system development. However, the most important development issue in the Arctic is a great risk of different countries’ competing interests in economic, political, and legal context. These are challenges for international partnership creating in the Arctic zone, Russian future model developing for the Arctic, and recognition of the Arctic as an important resource for the Russians. The Russian economic, military, and political expansion in the Arctic region has the potential to strengthen the national positions. The authors present interesting options for minimizing and eliminating political risks during the Arctic territories development and define an effective future planning model for the Russian Arctic.

  18. Arctic Security

    DEFF Research Database (Denmark)

    Wang, Nils

    2013-01-01

    The inclusion of China, India, Japan, Singapore and Italy as permanent observers in the Arctic Council has increased the international status of this forum significantly. This chapter aims to explain the background for the increased international interest in the Arctic region through an analysis...

  19. Performance and microbial community structure of a polar Arctic Circle aerobic granular sludge system operating at low temperature.

    Science.gov (United States)

    Gonzalez-Martinez, Alejandro; Muñoz-Palazon, Barbara; Maza-Márquez, Paula; Rodriguez-Sanchez, Alejandro; Gonzalez-Lopez, Jesus; Vahala, Riku

    2018-05-01

    The aim of this work was to study the performance and microbial community structure of a polar Arctic Circle aerobic granular sludge (AGS) system operating at low temperature. Thus, an AGS bioreactor was operated at 7, 5 and 3 °C of temperature using a cold-adapted sludge from Lapland. At 5 °C, it yielded acceptable conversion rates, in terms of nitrogen, phosphorous, and organic matter. However, under 3 °C a negligible nitrogen and phosphorous removal performance was observed. Below 5 °C, scanning electron microscopy studies showed a wispy, non-dense and irregular granular structure with a strong outgrowth of filamentous. Moreover, Illumina next-generation sequencing showed a heterogeneous microbial population where SM1K20 (Archaea), Trichosporon domesticum (Fungus), and Zooglea, Arcobacter and Acinetobacter (Bacteria) were the dominant phylotypes. Our study suggests that AGS technologies inoculated with North Pole sludge could be operated, in cold regions for a period longer than 3 months (winter season) under 5 °C of water temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. A one stop website for sharing sea ice, ocean and ice sheet data over the polar regions

    Science.gov (United States)

    Chen, Z.; Cheng, X.; Liu, J.; Hui, F.; Ding, Y.

    2017-12-01

    The polar regions, including the Arctic and Antarctic, are changing rapidly. Our capabilities to remotely monitor the state of the polar regions are increasing greatly. Satellite and airborne technologies have been deployed and further improvements are underway. Meanwhile, various algorithms have been developed to retrieve important parameters to maximize the effectiveness of available remote sensing data. These technologies and algorithms promise to greatly increase our understanding of variations in sea ice, ocean and ice sheet. However, so much information is scattered out there. It is challenging to find exactly what you are looking for by just searching it through the network. Therefore, we try to establish a common platform to sharing some key parameters for the polar regions. A group of scientists from Beijing Normal University and University at Albany developed a website as a "one-stop shop" for the current state of the polar regions. The website provides real-time (or near real-time) key parameters derived from a variety of operational satellites in an understandable, accessible and credible way. Three types of parameter, which are sea ice, ocean and ice sheet respectively, are shown and available to be downloaded in the website. Several individual parameters are contained in a specific type of parameter. The parameters of sea ice include sea ice concentration, sea ice thickness, melt pond, sea ice leads and sea ice drift. The ocean parameters contain sea surface temperature and sea surface wind. Ice sheet balance, ice velocity and some other parameters are classified into the type of ice sheet parameter. Some parameters are well-calibrated and available to be obtained from other websites, such as sea ice concentration, sea ice thickness sea surface temperature. Since these parameters are retrieved from different sensors, such as SSMI, AMSR2 etc., data format, spatial resolution of the parameters are not unified. We collected and reprocessed these

  1. Comparative responses of phenology and reproductive development to simulated environmental change in sub-arctic and high arctic plants

    Energy Technology Data Exchange (ETDEWEB)

    Wookey, P A; Welker, J M; Callaghan, T V [Inst. of Terrestrial Ecology, Merlewood Research Station, Grange-over-Sands, Cumbria (United Kingdom); Parsons, A N; Potter, J A; Lee, J A; Press, M C [Dept. of Environmental Biology, Univ. of Manchester, Manchester (United Kingdom)

    1993-01-01

    The effects of temperature, precipitation and nutrient perturbations, and their interactions, are being assessed on two contrasting arctic ecosystems to simulate impacts of climate change. One, a high arctic polar semi-desert community, is characterized by a sparse, low and aggregated vegetation cover where plant proliferation is by seedlings, whereas the other, a sub-arctic dwarf shrub health, is characterized by a complete, vegetation cover of erect, clonal dwarf shrubs which spread vegetatively. The developmental processes of seed production were shown to be highly sensitive, even within one growing season to specific environmental perturbations which differed between sites. At the polar semi-desert site, there was a striking effect of the temperature enhancement treatments on phenology and seed-setting of Dryas octopetala ssp. octopetala, with almost no seed-setting occurring in plots experiencing ambient temperatures. By contrast, there were no significant effects of temperature enhancement alone on fruit production of Empetrum hermaphroditum at the sub-Arctic dwarf shrub heath site, although fruit production was significantly influenced by the application of nutrients and/or water. The response of dominant high arctic dwarf shrub to increased temperature suggests that any climate warming may stimulate seed-set. This could be particularly important in the high Arctic where colonization can proceed in areas dominated by bare ground and where genetic recombination may be needed to generate tolerance to predicted changes of great magnitude. In the sub-Arctic, however the closed vegetation is dominated by clonally-proliferating species. Plant fitness will increase here in response to any increased vegetative growth resulting from higher nutrient availability in warmer organic soils. (ua) (59 refs.)

  2. The regional species richness and genetic diversity of Arctic vegetation reflect both past glaciations and current climate

    DEFF Research Database (Denmark)

    Stewart, L.; Alsos, Inger G.; Bay, Christian

    2016-01-01

    Aim The Arctic has experienced marked climatic differences between glacial and interglacial periods and is now subject to a rapidly warming climate. Knowledge of the effects of historical processes on current patterns of diversity may aid predictions of the responses of vegetation to future climate...... species richness of the vascular plant flora of 21 floristic provinces and examined local species richness in 6215 vegetation plots distributed across the Arctic. We assessed levels of genetic diversity inferred from amplified fragment length polymorphism variation across populations of 23 common Arctic...... size compared to the models of bryophyte and lichen richness. Main conclusion Our study suggests that imprints of past glaciations in Arctic vegetation diversity patterns at the regional scale are still detectable today. Since Arctic vegetation is still limited by post-glacial migration lag...

  3. Bacterial diversity in faeces from polar bear (Ursus maritimus in Arctic Svalbard

    Directory of Open Access Journals (Sweden)

    Brusetti Lorenzo

    2010-01-01

    Full Text Available Abstract Background Polar bears (Ursus maritimus are major predators in the Arctic marine ecosystem, feeding mainly on seals, and living closely associated with sea ice. Little is known of their gut microbial ecology and the main purpose of this study was to investigate the microbial diversity in faeces of polar bears in Svalbard, Norway (74-81°N, 10-33°E. In addition the level of blaTEM alleles, encoding ampicillin resistance (ampr were determined. In total, ten samples were collected from ten individual bears, rectum swabs from five individuals in 2004 and faeces samples from five individuals in 2006. Results A 16S rRNA gene clone library was constructed, and all sequences obtained from 161 clones showed affiliation with the phylum Firmicutes, with 160 sequences identified as Clostridiales and one sequence identified as unclassified Firmicutes. The majority of the sequences (70% were affiliated with the genus Clostridium. Aerobic heterotrophic cell counts on chocolate agar ranged between 5.0 × 104 to 1.6 × 106 colony forming units (cfu/ml for the rectum swabs and 4.0 × 103 to 1.0 × 105 cfu/g for the faeces samples. The proportion of ampr bacteria ranged from 0% to 44%. All of 144 randomly selected ampr isolates tested positive for enzymatic β-lactamase activity. Three % of the ampr isolates from the rectal samples yielded positive results when screened for the presence of blaTEM genes by PCR. BlaTEM alleles were also detected by PCR in two out of three total faecal DNA samples from polar bears. Conclusion The bacterial diversity in faeces from polar bears in their natural environment in Svalbard is low compared to other animal species, with all obtained clones affiliating to Firmicutes. Furthermore, only low levels of blaTEM alleles were detected in contrast to their increasing prevalence in some clinical and commensal bacterial populations.

  4. Bacterial diversity in faeces from polar bear (Ursus maritimus) in Arctic Svalbard.

    Science.gov (United States)

    Glad, Trine; Bernhardsen, Pål; Nielsen, Kaare M; Brusetti, Lorenzo; Andersen, Magnus; Aars, Jon; Sundset, Monica A

    2010-01-14

    Polar bears (Ursus maritimus) are major predators in the Arctic marine ecosystem, feeding mainly on seals, and living closely associated with sea ice. Little is known of their gut microbial ecology and the main purpose of this study was to investigate the microbial diversity in faeces of polar bears in Svalbard, Norway (74-81 degrees N, 10-33 degrees E). In addition the level of blaTEM alleles, encoding ampicillin resistance (ampr) were determined. In total, ten samples were collected from ten individual bears, rectum swabs from five individuals in 2004 and faeces samples from five individuals in 2006. A 16S rRNA gene clone library was constructed, and all sequences obtained from 161 clones showed affiliation with the phylum Firmicutes, with 160 sequences identified as Clostridiales and one sequence identified as unclassified Firmicutes. The majority of the sequences (70%) were affiliated with the genus Clostridium. Aerobic heterotrophic cell counts on chocolate agar ranged between 5.0 x 10(4) to 1.6 x 10(6) colony forming units (cfu)/ml for the rectum swabs and 4.0 x 10(3) to 1.0 x 10(5) cfu/g for the faeces samples. The proportion of ampr bacteria ranged from 0% to 44%. All of 144 randomly selected ampr isolates tested positive for enzymatic beta-lactamase activity. Three % of the ampr isolates from the rectal samples yielded positive results when screened for the presence of blaTEM genes by PCR. BlaTEM alleles were also detected by PCR in two out of three total faecal DNA samples from polar bears. The bacterial diversity in faeces from polar bears in their natural environment in Svalbard is low compared to other animal species, with all obtained clones affiliating to Firmicutes. Furthermore, only low levels of blaTEM alleles were detected in contrast to their increasing prevalence in some clinical and commensal bacterial populations.

  5. Bacterial diversity in faeces from polar bear (Ursus maritimus) in Arctic Svalbard

    Science.gov (United States)

    2010-01-01

    Background Polar bears (Ursus maritimus) are major predators in the Arctic marine ecosystem, feeding mainly on seals, and living closely associated with sea ice. Little is known of their gut microbial ecology and the main purpose of this study was to investigate the microbial diversity in faeces of polar bears in Svalbard, Norway (74-81°N, 10-33°E). In addition the level of blaTEM alleles, encoding ampicillin resistance (ampr) were determined. In total, ten samples were collected from ten individual bears, rectum swabs from five individuals in 2004 and faeces samples from five individuals in 2006. Results A 16S rRNA gene clone library was constructed, and all sequences obtained from 161 clones showed affiliation with the phylum Firmicutes, with 160 sequences identified as Clostridiales and one sequence identified as unclassified Firmicutes. The majority of the sequences (70%) were affiliated with the genus Clostridium. Aerobic heterotrophic cell counts on chocolate agar ranged between 5.0 × 104 to 1.6 × 106 colony forming units (cfu)/ml for the rectum swabs and 4.0 × 103 to 1.0 × 105 cfu/g for the faeces samples. The proportion of ampr bacteria ranged from 0% to 44%. All of 144 randomly selected ampr isolates tested positive for enzymatic β-lactamase activity. Three % of the ampr isolates from the rectal samples yielded positive results when screened for the presence of blaTEM genes by PCR. BlaTEM alleles were also detected by PCR in two out of three total faecal DNA samples from polar bears. Conclusion The bacterial diversity in faeces from polar bears in their natural environment in Svalbard is low compared to other animal species, with all obtained clones affiliating to Firmicutes. Furthermore, only low levels of blaTEM alleles were detected in contrast to their increasing prevalence in some clinical and commensal bacterial populations. PMID:20074323

  6. The Sensitivity of Arctic Ozone Loss to Polar Stratospheric Cloud Volume and Chlorine and Bromine Loading in a Chemistry and Transport Model

    Science.gov (United States)

    Douglass, A. R.; Stolarski, R. S.; Strahan, S. E.; Polansky, B. C.

    2006-01-01

    The sensitivity of Arctic ozone loss to polar stratospheric cloud volume (V(sub PSC)) and chlorine and bromine loading is explored using chemistry and transport models (CTMs). A simulation using multi-decadal output from a general circulation model (GCM) in the Goddard Space Flight Center (GSFC) CTM complements one recycling a single year s GCM output in the Global Modeling Initiative (GMI) CTM. Winter polar ozone loss in the GSFC CTM depends on equivalent effective stratospheric chlorine (EESC) and polar vortex characteristics (temperatures, descent, isolation, polar stratospheric cloud amount). Polar ozone loss in the GMI CTM depends only on changes in EESC as the dynamics repeat annually. The GSFC CTM simulation reproduces a linear relationship between ozone loss and Vpsc derived from observations for 1992 - 2003 which holds for EESC within approx.85% of its maximum (approx.1990 - 2020). The GMI simulation shows that ozone loss varies linearly with EESC for constant, high V(sub PSC).

  7. Net Ecosystem Exchange of CO2 with Rapidly Changing High Arctic Landscapes

    Science.gov (United States)

    Emmerton, C. A.

    2015-12-01

    High Arctic landscapes are expansive and changing rapidly. However our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO2 with polar semidesert and meadow wetland landscapes at the highest-latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near zero sink of atmospheric CO2 (NEE: -0.3±13.5 g C m-2). A nearby meadow wetland accumulated over two magnitudes more carbon (NEE: -79.3±20.0 g C m-2) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southern latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on site was low (mean: 0.120-0.157) and similar to satellite measurements (mean: 0.155-0.163). However, weak plant growth resulted in poor satellite NDVI-NEE relationships and created challenges for remotely-detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote-sensing, however high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases substantially, climate-related changes of dry high Arctic landscapes may be restricted by poor soil moisture retention, and therefore have some inertia against

  8. Relationships between Indian summer monsoon rainfall and ice cover over selected oceanic regions

    Digital Repository Service at National Institute of Oceanography (India)

    Gopinathan, C.K.

    The variations in oceanic ice cover at selected polar regions during 1973 to 1987 have been analysed in relation to the seasonal Indian summer monsoon rainfall. The ice cover over the Arctic regions in June has negative relationship (correlation...

  9. Impacts of urban and industrial development on Arctic land surface temperature in Lower Yenisei River Region.

    Science.gov (United States)

    Li, Z.; Shiklomanov, N. I.

    2015-12-01

    Urbanization and industrial development have significant impacts on arctic climate that in turn controls settlement patterns and socio-economic processes. In this study we have analyzed the anthropogenic influences on regional land surface temperature of Lower Yenisei River Region of the Russia Arctic. The study area covers two consecutive Landsat scenes and includes three major cities: Norilsk, Igarka and Dudingka. Norilsk industrial region is the largest producer of nickel and palladium in the world, and Igarka and Dudingka are important ports for shipping. We constructed a spatio-temporal interpolated temperature model by including 1km MODIS LST, field-measured climate, Modern Era Retrospective-analysis for Research and Applications (MERRA), DEM, Landsat NDVI and Landsat Land Cover. Those fore-mentioned spatial data have various resolution and coverage in both time and space. We analyzed their relationships and created a monthly spatio-temporal interpolated surface temperature model at 1km resolution from 1980 to 2010. The temperature model then was used to examine the characteristic seasonal LST signatures, related to several representative assemblages of Arctic urban and industrial infrastructure in order to quantify anthropogenic influence on regional surface temperature.

  10. Coarse mode aerosols in the High Arctic

    Science.gov (United States)

    Baibakov, K.; O'Neill, N. T.; Chaubey, J. P.; Saha, A.; Duck, T. J.; Eloranta, E. W.

    2014-12-01

    Fine mode (submicron) aerosols in the Arctic have received a fair amount of scientific attention in terms of smoke intrusions during the polar summer and Arctic haze pollution during the polar winter. Relatively little is known about coarse mode (supermicron) aerosols, notably dust, volcanic ash and sea salt. Asian dust is a regular springtime event whose optical and radiative forcing effects have been fairly well documented at the lower latitudes over North America but rarely reported for the Arctic. Volcanic ash, whose socio-economic importance has grown dramatically since the fear of its effects on aircraft engines resulted in the virtual shutdown of European civil aviation in the spring of 2010 has rarely been reported in the Arctic in spite of the likely probability that ash from Iceland and the Aleutian Islands makes its way into the Arctic and possibly the high Arctic. Little is known about Arctic sea salt aerosols and we are not aware of any literature on the optical measurement of these aerosols. In this work we present preliminary results of the combined sunphotometry-lidar analysis at two High Arctic stations in North America: PEARL (80°N, 86°W) for 2007-2011 and Barrow (71°N,156°W) for 2011-2014. The multi-years datasets were analyzed to single out potential coarse mode incursions and study their optical characteristics. In particular, CIMEL sunphotometers provided coarse mode optical depths as well as information on particle size and refractive index. Lidar measurements from High Spectral Resolution lidars (AHSRL at PEARL and NSHSRL at Barrow) yielded vertically resolved aerosol profiles and gave an indication of particle shape and size from the depolarization ratio and color ratio profiles. Additionally, we employed supplementary analyses of HYSPLIT backtrajectories, OMI aerosol index, and NAAPS (Navy Aerosol Analysis and Prediction System) outputs to study the spatial context of given events.

  11. Polar Bear Population Status in the Southern Beaufort Sea

    Science.gov (United States)

    Regehr, Eric V.; Amstrup, Steven C.; Stirling, Ian

    2006-01-01

    Polar bears depend entirely on sea ice for survival. In recent years, a warming climate has caused major changes in the Arctic sea ice environment, leading to concerns regarding the status of polar bear populations. Here we present findings from long-term studies of polar bears in the southern Beaufort Sea (SBS) region of the U.S. and Canada, which are relevant to these concerns. We applied open population capture-recapture models to data collected from 2001 to 2006, and estimated there were 1,526 (95% CI = 1,211; 1,841) polar bears in the SBS region in 2006. The number of polar bears in this region was previously estimated to be approximately 1,800. Because precision of earlier estimates was low, our current estimate of population size and the earlier ones cannot be statistically differentiated. For the 2001-06 period, the best fitting capture-recapture model provided estimates of total apparent survival of 0.43 for cubs of the year (COYs), and 0.92 for all polar bears older than COYs. Because the survival rates for older polar bears included multiple sex and age strata, they could not be compared to previous estimates. Survival rates for COYs, however, were significantly lower than estimates derived in earlier studies (P = 0.03). The lower survival of COYs was corroborated by a comparison of the number of COYs per adult female for periods before (1967-89) and after (1990-2006) the winter of 1989-90, when warming temperatures and altered atmospheric circulation caused an abrupt change in sea ice conditions in the Arctic basin. In the latter period, there were significantly more COYs per adult female in the spring (P = 0.02), and significantly fewer COYs per adult female in the autumn (P adult males captured from 1990 to 2006 were smaller than those captured before 1990. The smaller stature of males was especially notable because it corresponded with a higher mean age of adult males. Male polar bears continue to grow into their teens, and if adequately nourished

  12. Attribution of polar warming to human influence

    OpenAIRE

    Gillett, NP; Stone, DA; Stott, PA; Nozawa, T; Karpechko, AY; Hegerl, GC; Wehner, MF; Jones, PD

    2008-01-01

    The polar regions have long been expected to warm strongly as a result of anthropogenic climate change, because of the positive feedbacks associated with melting ice and snow. Several studies have noted a rise in Arctic temperatures over recent decades, but have not formally attributed the changes to human influence, owing to sparse observations and large natural variability. Both warming and cooling trends have been observed in Antarctica, which the Intergovernmental Panel on Climate Change ...

  13. Biological responses to current UV-B radiation in Arctic regions

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2008-01-01

    Depletion of the ozone layer and the consequent increase in solar ultraviolet-B radiation (UV-B) may impact living conditions for arctic plants significantly. In order to evaluate how the prevailing UV-B fluxes affect the heath ecosystem at Zackenberg (74°30'N, 20°30'W) and other high......-arctic regions, manipulation experiments with various set-ups have been performed. Activation of plant defence mechanisms by production of UV-B absorbing compounds was significant in ambient UV-B in comparison to a filter treatment reducing the UV-B radiation. Despite the UV-B screening response, ambient UV...... (mycorrhiza) or in the biomass of microbes in the soil of the root zone. However, the composition of the soil microbial community was different in the soils under ambient and reduced UV radiation after three treatment years. These results provide new insight into the negative impact of current UV-B fluxes...

  14. The role of DOM in nitrogen processing in streams across arctic regions affected by fire

    Science.gov (United States)

    Rodriguez-Cardona, B.; Schade, J. D.; Holmes, R. M.; Natali, S.; Mann, P. J.; Wymore, A.; Coble, A. A.; Prokishkin, A. S.; Zito, P.; Podgorski, D. C.; Spencer, R. G.; McDowell, W. H.

    2017-12-01

    In stream ecosystems, inputs of dissolved organic carbon (DOC) have a strong influence on nitrogen (N) processing. Previous studies have demonstrated that increases in DOC concentrations can promote greater N removal in many stream ecosystems. Most of what we know about C and N coupling comes from studies of temperate streams; less is known about this relationship in the Arctic. Streams in Arctic ecosystems are facing rapid changes in climate and disturbance regimes, in particular increasing fire frequencies that are likely to alter biogeochemical cycles. Although fires can lead to increases in NO3 concentrations in streams, the effects of fire on DOC (concentration and composition) have been difficult to generalize. We studied the relationships between DOC and N in two locations; the Central Siberian Plateau, Russia and the Yukon-Kuskokwim (YK) River Delta, Alaska. Streams in both regions show increases in NO3 concentrations after fire, while DOC concentrations decrease in Siberia but increase in streams within the YK-Delta. These patterns in DOC and NO3 create a gradient in DOC and nutrient concentrations, allowing us to study this coupling in a wider Pan-Arctic scope. In order to assess the role of DOC in Arctic N processing, we conducted NO3 and NH4 additions to stream microcosms at the Alaskan site as well as whole-stream additions in Siberia. We hypothesized that nutrient uptake would be high in older burn sites of Siberia and recently burned sites in the YK-Delta, due to greater DOC concentrations and availability. Our results suggest that nitrogen dynamics in the Alaskan sites is strongly responsive to C availability, but is less so in Siberian sites. The potential impacts of permafrost thawing and fires on DOM and nutrient dynamics thus appear to not be consistent across the Arctic suggesting that different regions of the Arctic have unique biogeochemical controls.

  15. Seasonal patterns in Arctic prasinophytes and inferred ecology of Bathycoccus unveiled in an Arctic winter metagenome.

    Science.gov (United States)

    Joli, Nathalie; Monier, Adam; Logares, Ramiro; Lovejoy, Connie

    2017-06-01

    Prasinophytes occur in all oceans but rarely dominate phytoplankton populations. In contrast, a single ecotype of the prasinophyte Micromonas is frequently the most abundant photosynthetic taxon reported in the Arctic from summer through autumn. However, seasonal dynamics of prasinophytes outside of this period are little known. To address this, we analyzed high-throughput V4 18S rRNA amplicon data collected from November to July in the Amundsen Gulf Region, Beaufort Sea, Arctic. Surprisingly during polar sunset in November and December, we found a high proportion of reads from both DNA and RNA belonging to another prasinophyte, Bathycoccus. We then analyzed a metagenome from a December sample and the resulting Bathycoccus metagenome assembled genome (MAG) covered ~90% of the Bathycoccus Ban7 reference genome. In contrast, only ~20% of a reference Micromonas genome was found in the metagenome. Our phylogenetic analysis of marker genes placed the Arctic Bathycoccus in the B1 coastal clade. In addition, substitution rates of 129 coding DNA sequences were ~1.6% divergent between the Arctic MAG and coastal Chilean upwelling MAGs and 17.3% between it and a South East Atlantic open ocean MAG in the B2 Clade. The metagenomic analysis also revealed a winter viral community highly skewed toward viruses targeting Micromonas, with a much lower diversity of viruses targeting Bathycoccus. Overall a combination of Micromonas being relatively less able to maintain activity under dark winter conditions and viral suppression of Micromonas may have contributed to the success of Bathycoccus in the Amundsen Gulf during winter.

  16. The 2008 Circum-Arctic Resource Appraisal

    Science.gov (United States)

    Moore, Thomas E.; Gautier, Donald L.

    2017-11-15

    Professional Paper 1824 comprises 30 chapters by various U.S. Geological Survey authors, including introduction and methodology chapters, which together provide documentation of the geological basis and methodology of the 2008 Circum-Arctic Resource Appraisal, results of which were first released in August 2008.  Twenty-eight chapters summarize the petroleum geology and resource potential of individual, geologically defined provinces north of the Arctic Circle, including those of northern Alaska, northern Canada, east and west Greenland, and most of Arctic Russia, as well as certain offshore areas of the north Atlantic Basin and the Polar Sea. Appendixes tabulate the input and output information used during the assessment.

  17. Arctic and Antarctic Sea Ice Changes and Impacts (Invited)

    Science.gov (United States)

    Nghiem, S. V.

    2013-12-01

    The extent of springtime Arctic perennial sea ice, important to preconditioning summer melt and to polar sunrise photochemistry, continues its precipitous reduction in the last decade marked by a record low in 2012, as the Bromine, Ozone, and Mercury Experiment (BROMEX) was conducted around Barrow, Alaska, to investigate impacts of sea ice reduction on photochemical processes, transport, and distribution in the polar environment. In spring 2013, there was further loss of perennial sea ice, as it was not observed in the ocean region adjacent to the Alaskan north coast, where there was a stretch of perennial sea ice in 2012 in the Beaufort Sea and Chukchi Sea. In contrast to the rapid and extensive loss of sea ice in the Arctic, Antarctic sea ice has a trend of a slight increase in the past three decades. Given the significant variability in time and in space together with uncertainties in satellite observations, the increasing trend of Antarctic sea ice may arguably be considered as having a low confidence level; however, there was no overall reduction of Antarctic sea ice extent anywhere close to the decreasing rate of Arctic sea ice. There exist publications presenting various factors driving changes in Arctic and Antarctic sea ice. After a short review of these published factors, new observations and atmospheric, oceanic, hydrological, and geological mechanisms contributed to different behaviors of sea ice changes in the Arctic and Antarctic are presented. The contribution from of hydrologic factors may provide a linkage to and enhance thermal impacts from lower latitudes. While geological factors may affect the sensitivity of sea ice response to climate change, these factors can serve as the long-term memory in the system that should be exploited to improve future projections or predictions of sea ice changes. Furthermore, similarities and differences in chemical impacts of Arctic and Antarctic sea ice changes are discussed. Understanding sea ice changes and

  18. Climate Change: Science and Policy in the Arctic Climate Change: Science and Policy in the Arctic

    Science.gov (United States)

    Bigras, S. C.

    2009-12-01

    It is an accepted fact that the Earth’s climate is warming. Recent research has demonstrated the direct links between the Arctic regions and the rest of the planet. We have become more aware that these regions are feeling the effects of global climate change more intensely than anywhere else on Earth -- and that they are fast becoming the new frontiers for resources and political disputes. This paper examines some of the potential climate change impacts in the Arctic and how the science of climate change can be used to develop policies that will help mitigate some of these impacts. Despite the growing body of research we do not yet completely understand the potential consequences of climate change in the Arctic. Climate models predict significant changes and impacts on the northern physical environment and renewable resources, and on the communities and societies that depend on them. Policies developed and implemented as a result of the research findings will be designed to help mitigate some of the more serious consequences. Given the importance of cost in making policy decisions, the financial implications of different scenarios will need to be considered. The Arctic Ocean Basin is a complex and diverse environment shared by five Arctic states. Cooperation among the states surrounding the Arctic Ocean is often difficult, as each country has its own political and social agenda. Northerners and indigenous peoples should be engaged and able to influence the direction of northern adaptation policies. Along with climate change, the Arctic environment and Arctic residents face many other challenges, among them safe resource development. Resource development in the Arctic has always been a controversial issue, seen by some as a solution to high unemployment and by others as an unacceptably disruptive and destructive force. Its inherent risks need to be considered: there are needs for adaptation, for management frameworks, for addressing cumulative effects, and for

  19. Role of polar anticyclones and mid-latitude cyclones for Arctic summertime sea-ice melting

    Science.gov (United States)

    Wernli, Heini; Papritz, Lukas

    2018-02-01

    Annual minima in Arctic sea-ice extent and volume have been decreasing rapidly since the late 1970s, with substantial interannual variability. Summers with a particularly strong reduction of Arctic sea-ice extent are characterized by anticyclonic circulation anomalies from the surface to the upper troposphere. Here, we investigate the origin of these seasonal circulation anomalies by identifying individual Arctic anticyclones (with a lifetime of typically ten days) and analysing the air mass transport into these systems. We reveal that these episodic upper-level induced Arctic anticyclones are relevant for generating seasonal circulation anomalies. Sea-ice reduction is systematically enhanced during the transient episodes with Arctic anticyclones and the seasonal reduction of sea-ice volume correlates with the area-averaged frequency of Arctic anticyclones poleward of 70° N (correlation coefficient of 0.57). A trajectory analysis shows that these anticyclones result from extratropical cyclones injecting extratropical air masses with low potential vorticity into the Arctic upper troposphere. Our results emphasize the fundamental role of extratropical cyclones and associated diabatic processes in establishing Arctic anticyclones and, in turn, seasonal circulation anomalies, which are of key importance for understanding the variability of summertime Arctic sea-ice melting.

  20. Polar cloud observatory at Ny-Ålesund in GRENE Arctic Climate Change Research Project

    Science.gov (United States)

    Yamanouchi, Takashi; Takano, Toshiaki; Shiobara, Masataka; Okamoto, Hajime; Koike, Makoto; Ukita, Jinro

    2016-04-01

    Cloud is one of the main processes in the climate system and especially a large feed back agent for Arctic warming amplification (Yoshimori et al., 2014). From this reason, observation of polar cloud has been emphasized and 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard in 2013 as one of the basic infrastructure in the GRENE (Green Network of Excellence Program) Arctic Climate Change Research Project. The radar, "FALCON-A", is a FM-CW (frequency modulated continuous wave) Doppler radar, developed for Arctic use by Chiba University (PI: T. Takano) in 2012, following its prototype, "FALCON-1" which was developed in 2006 (Takano et al., 2010). The specifications of the radar are, central frequency: 94.84 GHz; antenna power: 1 W; observation height: up to 15 km; range resolution: 48 m; beam width: 0.2 degree (15 m at 5 km); Doppler width: 3.2 m/s; time interval: 10 sec, and capable of archiving high sensitivity and high spatial and time resolution. An FM-CW type radar realizes similar sensitivity with much smaller parabolic antennas separated 1.4 m from each other used for transmitting and receiving the wave. Polarized Micro-Pulse Lidar (PMPL, Sigma Space MPL-4B-IDS), which is capable to measure the backscatter and depolarization ratio, has also been deployed to Ny-Ålesund in March 2012, and now operated to perform collocated measurements with FALCON-A. Simultaneous measurement data from collocated PMPL and FALCON-A are available for synergetic analyses of cloud microphysics. Cloud mycrophysics, such as effective radius of ice particles and ice water content, are obtained from the analysis based on algorithm, which is modified for ground-based measurements from Okamoto's retrieval algorithm for satellite based cloud profiling radar and lidar (CloudSat and CALIPSO; Okamoto et al., 2010). Results of two years will be shown in the presentation. Calibration is a point to derive radar reflectivity (dBZ) from original intensity data

  1. The Impact of Oil and Gas Resources In the Arctic on the Development of the Transport System in the Region

    Directory of Open Access Journals (Sweden)

    Valeriy I. Salygin

    2015-01-01

    Full Text Available One of the main problems of the Russian economy today is the development of the Arctic region. Given the key role of the energy sector in the economic balance of the country, as well as the problem of exhaustion of hydrocarbon resources, the Arctic is of particular interest from an economic and geopolitical point of view, ensuring the energy security of Russia. Active development of the region leads to the development of transport infrastructure, which is one of the priorities of Russia's energy policy. The issue of transportation plays a leading role in the context of the development of Arctic resources and involves a number of tasks. The first step is to ensure the safety of navigation in the Arctic ice. Also existing infrastructure needs substantial upgrading, as well as construction of new facilities (including ports, railways, roads, etc.. Of particular note is a unique transcontinental route - the Northern Sea Route. There is a need to modernize the Arctic Fleet, including the construction of modern icebreakers of the Arctic class. The current state of the port system, which does not fully meet the latest international standards, is of crucial importance as well. In addition, along the route the development of railway infrastructure is required. In addition, there is the problem of underdevelopment of the road network, which leads to a re-run and lack of access of some are as to the road network of Russia. Thus, the development of hydrocarbon resources in the Arctic region contributes to the development of infrastructure of the transport system in the region and, consequently, its economic development that contributes to the economic well-being of the country as a whole.

  2. Acquatorialities of the Arctic Region

    DEFF Research Database (Denmark)

    Harste, Gorm

    2013-01-01

    In order to describe the Arctic system I propose using a concept functionally equivalent to territoriality, namely aquatoriality. Whether communicating about territoriality or aquatoriality, concepts and delimitations are both contingent to forms of communication systems. I will distinguish between...

  3. An assessment of the toxicological significance of anthropogenic contaminants in Canadian arctic wildlife

    International Nuclear Information System (INIS)

    Fisk, Aaron T.; Wit, Cynthia A. de; Wayland, Mark; Kuzyk, Zou Zou; Burgess, Neil; Letcher, Robert; Braune, Birgit; Norstrom, Ross; Blum, Susan Polischuk; Sandau, Courtney; Lie, Elisabeth; Larsen, Hans Jorgen S.; Skaare, Janneche Utne; Muir, Derek C.G.

    2005-01-01

    , with the possible exception of PCBs in burbot (Lota lota) in some Yukon lakes, Greenland shark (Somniosus microcephalus), glaucous and great black-backed gulls (Larus hyperboreus and L. marinus), and TEQs of dioxin-like chemicals in seabird eggs. PCB and DDT concentrations in several arctic marine mammal species exceed effects thresholds, although evidence of stress in these populations is lacking. There is little evidence that contaminants are having widespread effects on the health of Canadian arctic organisms, with the possible exception of polar bears. However, further research and better understanding of organohalogen exposure in arctic biota is needed considering factors such as tissue levels that exceed effects thresholds, exposure to 'new' organohalogen contaminants of concern, contaminated regions, and climate change

  4. An assessment of the toxicological significance of anthropogenic contaminants in Canadian arctic wildlife

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, Aaron T. [Warnell School of Forest Resources, University of Georgia, Athens, GA 30602-2152 (United States)]. E-mail: afisk@forestry.uga.edu; Wit, Cynthia A. de [Department of Applied Environmental Science, Stockholm University, Stockholm (Sweden); Wayland, Mark [Prairie and Northern Wildlife Research Centre, Environment Canada, 115 Perimeter Rd., Saskatoon, SK, S7N 0X4 (Canada); Kuzyk, Zou Zou [Environmental Sciences Group, Royal Military College of Canada, Kingston, ON, K7K 7B4 (Canada); Burgess, Neil [Canadian Wildlife Service, Environment Canada, 6 Bruce St. Mt. Pearl, NL, A1N4T3 (Canada); Letcher, Robert [National Wildlife Research Centre, Environment Canada, Ottawa, ON, K1A 0H3 (Canada); Braune, Birgit [National Wildlife Research Centre, Environment Canada, Ottawa, ON, Canada K1A 0H3 (Canada); Norstrom, Ross [National Wildlife Research Centre, Environment Canada, Ottawa, ON, K1A 0H3 (Canada); Blum, Susan Polischuk [Office of Research Services, University of Saskatchewan, Saskatoon, SK, S7N 4J8 (Canada); Sandau, Courtney [Jacques Whitford Limited, Calgary, AB, T2R 0E4 (Canada); Lie, Elisabeth [National Veterinary Institute, P.O. Box 8156, Dep 0033, Oslo (Norway); Larsen, Hans Jorgen S. [Norwegian School of Veterinary Science, P.O. Box 8146, Dep 0033, Oslo (Norway); Skaare, Janneche Utne [National Veterinary Institute, P.O. Box 8156, Dep 0033, Oslo (Norway); Norwegian School of Veterinary Science, P.O. Box 8146, Dep 0033, Oslo (Norway); Muir, Derek C.G. [National Water Research Institute, Environment Canada, Burlington, ON, L7R 4A6 (Canada)

    2005-12-01

    , with the possible exception of PCBs in burbot (Lota lota) in some Yukon lakes, Greenland shark (Somniosus microcephalus), glaucous and great black-backed gulls (Larus hyperboreus and L. marinus), and TEQs of dioxin-like chemicals in seabird eggs. PCB and DDT concentrations in several arctic marine mammal species exceed effects thresholds, although evidence of stress in these populations is lacking. There is little evidence that contaminants are having widespread effects on the health of Canadian arctic organisms, with the possible exception of polar bears. However, further research and better understanding of organohalogen exposure in arctic biota is needed considering factors such as tissue levels that exceed effects thresholds, exposure to 'new' organohalogen contaminants of concern, contaminated regions, and climate change.

  5. Comprehensive analysis of Curie-point depths and lithospheric effective elastic thickness at Arctic Region

    Science.gov (United States)

    Lu, Y.; Li, C. F.

    2017-12-01

    Arctic Ocean remains at the forefront of geological exploration. Here we investigate its deep geological structures and geodynamics on the basis of gravity, magnetic and bathymetric data. We estimate Curie-point depth and lithospheric effective elastic thickness to understand deep geothermal structures and Arctic lithospheric evolution. A fractal exponent of 3.0 for the 3D magnetization model is used in the Curie-point depth inversion. The result shows that Curie-point depths are between 5 and 50 km. Curie depths are mostly small near the active mid-ocean ridges, corresponding well to high heat flow and active shallow volcanism. Large curie depths are distributed mainly at continental marginal seas around the Arctic Ocean. We present a map of effective elastic thickness (Te) of the lithosphere using a multitaper coherence technique, and Te are between 5 and 110 km. Te primarily depends on geothermal gradient and composition, as well as structures in the lithosphere. We find that Te and Curie-point depths are often correlated. Large Te are distributed mainly at continental region and small Te are distributed at oceanic region. The Alpha-Mendeleyev Ridge (AMR) and The Svalbard Archipelago (SA) are symmetrical with the mid-ocean ridge. AMR and SA were formed before an early stage of Eurasian basin spreading, and they are considered as conjugate large igneous provinces, which show small Te and Curie-point depths. Novaya Zemlya region has large Curie-point depths and small Te. We consider that fault and fracture near the Novaya Zemlya orogenic belt cause small Te. A series of transform faults connect Arctic mid-ocean ridge with North Atlantic mid-ocean ridge. We can see large Te near transform faults, but small Curie-point depths. We consider that although temperature near transform faults is high, but mechanically the lithosphere near transform faults are strengthened.

  6. SeaWinds - Oceans, Land, Polar Regions

    Science.gov (United States)

    1999-01-01

    The SeaWinds scatterometer on the QuikScat satellite makes global radar measurements -- day and night, in clear sky and through clouds. The radar data over the oceans provide scientists and weather forecasters with information on surface wind speed and direction. Scientists also use the radar measurements directly to learn about changes in vegetation and ice extent over land and polar regions.This false-color image is based entirely on SeaWinds measurements obtained over oceans, land, and polar regions. Over the ocean, colors indicate wind speed with orange as the fastest wind speeds and blue as the slowest. White streamlines indicate the wind direction. The ocean winds in this image were measured by SeaWinds on September 20, 1999. The large storm in the Atlantic off the coast of Florida is Hurricane Gert. Tropical storm Harvey is evident as a high wind region in the Gulf of Mexico, while farther west in the Pacific is tropical storm Hilary. An extensive storm is also present in the South Atlantic Ocean near Antarctica.The land image was made from four days of SeaWinds data with the aid of a resolution enhancement algorithm developed by Dr. David Long at Brigham Young University. The lightest green areas correspond to the highest radar backscatter. Note the bright Amazon and Congo rainforests compared to the dark Sahara desert. The Amazon River is visible as a dark line running horizontally though the bright South American rain forest. Cities appear as bright spots on the images, especially in the U.S. and Europe.The image of Greenland and the north polar ice cap was generated from data acquired by SeaWinds on a single day. In the polar region portion of the image, white corresponds to the largest radar return, while purple is the lowest. The variations in color in Greenland and the polar ice cap reveal information about the ice and snow conditions present.NASA's Earth Science Enterprise is a long-term research and technology program designed to examine Earth

  7. INTERNATIONAL EXPERIENCE AND TRENDS OF INNOVATIVE DEVELOPMENT OF ARCTIC TERRITORIES

    Directory of Open Access Journals (Sweden)

    M. Dudin

    2015-01-01

    Full Text Available In this article and summarized the regularities of formation of foreign experience and trends of development of Arctic territories. Set out the important points predetermine orientation and specificity of manifestations of national interests – potential participants of the subsoil in the Arctic zone. On the basis of the illuminated materials were obtained the following conclusions: Signifi cant interest in the Arctic show today, not only the fi ve countries (Russia, USA, Canada, Norway, Denmark, who own Arctic territories, but also polar state (Iceland, Sweden, Finland, the European Union and Asia. As a consequence of that, it is expected that in the XXI century the Arctic region will be the focus of attention as an official Arctic 45, and a number of states whose territory is quite removed from it; For Russia, given the current, acute political conditions (sanctions, confrontation with the West, Ukrainian crisis and war in the Middle East development of Arctic territories, some moved away, moved on tomorrow and the day after tomorrow on the agenda. This approach is fundamentally fl awed and fraught with a number of threats, because other countries do not decrease, but only increase their interest in this issue; Territorial opposition to all those involved in the topic of causing instability in the Arctic region, but does not represent a real threat for the emergence of large-scale conflict. Therefore, making the choice between the hard pressure of national interests and the interests of harmonization of the Arctic states, Russia must be based on international cooperationand mutual consideration of interests in the development of its Arctic strategy; Considering the cooperation of the countries of the Arctic Council and their cooperation in the framework of a global economic forum G8, there are prerequisites for the decision of the Arctic confl ict through negotiation and compromise. In this context it is very important to develop

  8. Local Perceptions of Corporate Social Responsibility for Arctic Petroleum in the Barents Region

    Directory of Open Access Journals (Sweden)

    Ilan Kelman

    2016-11-01

    Full Text Available Corporate social responsibility (CSR is promoted and critiqued by many players involved in or opposed to petroleum exploration and extraction, although a common understanding of CSR's theoretical and practical meanings rarely exists. This paper uses Arctic petroleum in the Barents region (Norway and Russia to investigate local perceptions of CSR. We conducted open-ended, semi-structured interviews in four locations: Hammerfest, Murmansk, Komi Republic, and Nenets Autonomous Okrug (NAO. Interviewees included the local population, regional and local authorities, non-governmental organisations (NGOs, and petroleum company representatives. The field research suggests that those who gain directly from the petroleum industry and do not directly experience negative impacts were more inclined to be positive about the industry, although overall, general support for petroleum activity was high. In some cases, positive economic benefits resulted in greater tolerance of environmental risk. Sometimes, the industry and government were criticised by locals for failing to support a more equitable distribution of broader economic benefits. Rather than splitting along for-profit/NGO or indigenous/non-indigenous lines, our analysis suggests that those who are closer to the petroleum industry or its benefits, termed ‘insiders’, tend to be more positive than ‘outsiders’. This study is perhaps the first of its kind in its focus on local perceptions of CSR for Arctic petroleum across the Barents region. The findings of this study not only match with that of the previous literature on Arctic petroleum but also provide further practical and theoretical insights by indicating subtleties and nuances within the localities examined.

  9. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears

    DEFF Research Database (Denmark)

    Liu, Shiping; Lorenzen, Eline; Fumagalli, Matteo

    2014-01-01

    Polar bears are uniquely adapted to life in the High Arctic and have undergone drastic physiological changes in response to Arctic climates and a hyperlipid diet of primarily marine mammal prey. We analyzed 89 complete genomes of polar bear and brown bear using population genomic modeling and sho...

  10. “An Arctic Great Power”? Recent Developments in Danish Arctic Policy

    DEFF Research Database (Denmark)

    Rahbek-Clemmensen, Jon

    2016-01-01

    Denmark has been a firm advocate for Arctic cooperation in the recent decade, most importantly as the initiator of the 2008 Ilulissat meeting. Two new strategic publications – a foreign policy report (Danish Diplomacy and Defence in a Time of Change) and a defense report (The Ministry of Defence......’s Future Activities in the Arctic), which were published in May and June 2016 –highlight the Kingdom of Denmark’s status as “an Arctic great power” and the importance of pursuing Danish interests, which could indicate a shift away from a cooperation-oriented policy. This article investigates whether...... the documents represent a break in Danish Arctic policy. It argues that the two documents represent continuation, rather than change. They show that the High North continues to become steadily more important on the Danish foreign policy agenda, although the region remains just one of several regional priorities...

  11. Internet Blogs, Polar Bears, and Climate-Change Denial by Proxy.

    Science.gov (United States)

    Harvey, Jeffrey A; van den Berg, Daphne; Ellers, Jacintha; Kampen, Remko; Crowther, Thomas W; Roessingh, Peter; Verheggen, Bart; Nuijten, Rascha J M; Post, Eric; Lewandowsky, Stephan; Stirling, Ian; Balgopal, Meena; Amstrup, Steven C; Mann, Michael E

    2018-04-01

    Increasing surface temperatures, Arctic sea-ice loss, and other evidence of anthropogenic global warming (AGW) are acknowledged by every major scientific organization in the world. However, there is a wide gap between this broad scientific consensus and public opinion. Internet blogs have strongly contributed to this consensus gap by fomenting misunderstandings of AGW causes and consequences. Polar bears (Ursus maritimus) have become a "poster species" for AGW, making them a target of those denying AGW evidence. Here, focusing on Arctic sea ice and polar bears, we show that blogs that deny or downplay AGW disregard the overwhelming scientific evidence of Arctic sea-ice loss and polar bear vulnerability. By denying the impacts of AGW on polar bears, bloggers aim to cast doubt on other established ecological consequences of AGW, aggravating the consensus gap. To counter misinformation and reduce this gap, scientists should directly engage the public in the media and blogosphere.

  12. AURORA BOREALIS: a polar-dedicated European Research Platform

    Science.gov (United States)

    Wolff-Boenisch, Bonnie; Egerton, Paul; Thiede, Joern; Roberto, Azzolini; Lembke-Jene, Lester

    2010-05-01

    Polar research and in particular the properties of northern and southern high latitude oceans are currently a subject of intense scientific debate and investigations, because they are subject to rapid and dramatic climatic variations. Polar regions react more rapidly and intensively to global change than other regions of the earth. A shrinking of the Arctic sea-ice cover, potentially leading to an opening of sea passages to the north of North America and Eurasia, on the long to a "blue" Arctic Ocean would additionally have a strong impact on transport, commerce and tourism bearing potential risk for humans and complex ecosystems in the future. In spite of their critical role processes and feedbacks, especially in winter but not exclusively, are virtually unknown: The Arctic Ocean for example, it is the only basin of the world's oceans that has essentially not been sampled by the drill ships of the Deep-Sea Drilling Project (DSDP) or the Ocean Drilling Program (ODP) and its long-term environmental history and tectonic structure is therefore poorly known. Exceptions are the ODP Leg 151 and the more recent very successful ACEX-expedition of the Integrated Ocean Drilling Program (IODP) in 2004. To help to address the most pressing questions regarding climate change and related processes, a Pan-European initiative in the field of Earth system science has been put in place: AURORA BOREALIS is the largest environmental research infrastructure on the ESFRI roadmap of the European Community. AURORA BOREALIS is a very powerful research icebreaker, which will enable year-round operations in the Arctic and the Antarctic as well as in the adjacent ocean basins. Equipped with its drilling rig, the vessel is also capable to explore the presently completely unknown Arctic deep-sea floor. Last but not least, the ship is a floating observatory and mobile monitoring platform that permits to measure on a long-term basis comprehensive time series in all research fields relevant to

  13. Leveraging scientific credibility about Arctic sea ice trends in a polarized political environment.

    Science.gov (United States)

    Jamieson, Kathleen Hall; Hardy, Bruce W

    2014-09-16

    This work argues that, in a polarized environment, scientists can minimize the likelihood that the audience's biased processing will lead to rejection of their message if they not only eschew advocacy but also, convey that they are sharers of knowledge faithful to science's way of knowing and respectful of the audience's intelligence; the sources on which they rely are well-regarded by both conservatives and liberals; and the message explains how the scientist arrived at the offered conclusion, is conveyed in a visual form that involves the audience in drawing its own conclusions, and capsulizes key inferences in an illustrative analogy. A pilot experiment raises the possibility that such a leveraging-involving-visualizing-analogizing message structure can increase acceptance of the scientific claims about the downward cross-decade trend in Arctic sea ice extent and elicit inferences consistent with the scientific consensus on climate change among conservatives exposed to misleadingly selective data in a partisan news source.

  14. The Arctic Turn

    DEFF Research Database (Denmark)

    Rahbek-Clemmensen, Jon

    2018-01-01

    In October 2006, representatives of the Arctic governments met in Salekhard in northern Siberia for the biennial Arctic Council ministerial meeting to discuss how the council could combat regional climate change, among other issues. While most capitals were represented by their foreign minister......, a few states – Canada, Denmark, and the United States – sent other representatives. There was nothing unusual about the absence of Per Stig Møller, the Danish foreign minister – a Danish foreign minister had only once attended an Arctic Council ministerial meeting (Arctic Council 2016). Møller......’s nonappearance did, however, betray the low status that Arctic affairs had in the halls of government in Copenhagen. Since the end of the Cold War, where Greenland had helped tie Denmark and the US closer together due to its geostrategically important position between North America and the Soviet Union, Arctic...

  15. A consistent definition of the Arctic polar vortex breakup in both the lower and upper stratosphere

    Science.gov (United States)

    Choi, W.; Seo, J.

    2014-12-01

    Breakup of the polar vortex is a dominant feature of the seasonal transition from winter to summer in the stratosphere, which significantly affects stratospheric O3 concentration and tropospheric weather. Previously several criteria for the vortex breakup have been suggested based on the potential vorticity (PV) and wind speed, however, those mainly have focused on the lower stratospheric vortex of which spatiotemporal evolution and decay are more continuous than those of the upper stratospheric vortex. To find a consistent criterion for the vortex breakup in both the lower and upper stratosphere, the present study defined a polar vortex breakup day as when PV gradient at the polar vortex edge becomes lower than that at the subtropical edge on the area equivalent latitude based on PV. With applying the new definition to the UK Met Office reanalysis data, the breakup days of the Arctic polar vortices on 18 isentropic levels from 450 K to 1300 K were calculated for the period of 1993-2005. In comparison with CH4, N2O and O3 measured by the ILAS and POAM II/III satellite instruments, the breakup days are well consistent with changes in the distribution of such tracers as well as their zonal standard deviations associated with the vortex structure breaking and irreversible mixing. The vortex breakup in the upper stratosphere occurs more or less a month prior to that in the middle and lower stratosphere while the stratospheric final warming events occurs simultaneously in the upper and lower stratosphere.

  16. Thermal Thresholds of Phytoplankton Growth in Polar Waters and Their Consequences for a Warming Polar Ocean

    KAUST Repository

    Coello-Camba, Alexandra

    2017-06-02

    Polar areas are experiencing the steepest warming rates on Earth, a trend expected to continue in the future. In these habitats, phytoplankton communities constitute the basis of the food web and their thermal tolerance may dictate how warming affects these delicate environments. Here, we compiled available data on thermal responses of phytoplankton growth in polar waters. We assembled 53 growth-vs.-temperature curves (25 from the Arctic, 28 from the Southern oceans), indicating the limited information available for these ecosystems. Half of the data from Arctic phytoplankton came from natural communities where low ambient concentrations could limit growth rates. Phytoplankton from polar waters grew faster under small temperature increases until reaching an optimum (TOPT), and slowed when temperatures increased beyond this value. This left-skewed curves were characterized by higher activation energies (Ea) for phytoplankton growth above than below the TOPT. Combining these thermal responses we obtained a community TOPT of 6.5°C (±0.2) and 5.2°C (±0.1) for Arctic and Southern Ocean phytoplankton communities, respectively. These threshold temperatures were already exceeded at 70°N during the first half of August 2013, evidenced by sea surface temperatures (SSTs, satellite data, http://www.ncdc.noaa.gov). We forecasted SSTs for the end of the twenty-first century by assuming an overall 3°C increase, equivalent to a low emission scenario. Our forecasts show that SSTs at 70°N are expected to exceed TOPT during summer by 2100, and during the first half of August at 75°N. While recent Arctic spring temperatures average 0.5°C and −0.7°C at 70°N and 75°N, respectively, they could increase to 2.8°C at 70°N and 2.2°C at 75°N as we approach 2100. Such temperature increases could lead to intense phytoplankton blooms, shortened by fast nutrient consumption. As SSTs increase, thermal thresholds for phytoplankton growth would be eventually exceeded during bloom

  17. Thermal Thresholds of Phytoplankton Growth in Polar Waters and Their Consequences for a Warming Polar Ocean

    Directory of Open Access Journals (Sweden)

    Alexandra Coello-Camba

    2017-06-01

    Full Text Available Polar areas are experiencing the steepest warming rates on Earth, a trend expected to continue in the future. In these habitats, phytoplankton communities constitute the basis of the food web and their thermal tolerance may dictate how warming affects these delicate environments. Here, we compiled available data on thermal responses of phytoplankton growth in polar waters. We assembled 53 growth-vs.-temperature curves (25 from the Arctic, 28 from the Southern oceans, indicating the limited information available for these ecosystems. Half of the data from Arctic phytoplankton came from natural communities where low ambient concentrations could limit growth rates. Phytoplankton from polar waters grew faster under small temperature increases until reaching an optimum (TOPT, and slowed when temperatures increased beyond this value. This left-skewed curves were characterized by higher activation energies (Ea for phytoplankton growth above than below the TOPT. Combining these thermal responses we obtained a community TOPT of 6.5°C (±0.2 and 5.2°C (±0.1 for Arctic and Southern Ocean phytoplankton communities, respectively. These threshold temperatures were already exceeded at 70°N during the first half of August 2013, evidenced by sea surface temperatures (SSTs, satellite data, http://www.ncdc.noaa.gov. We forecasted SSTs for the end of the twenty-first century by assuming an overall 3°C increase, equivalent to a low emission scenario. Our forecasts show that SSTs at 70°N are expected to exceed TOPT during summer by 2100, and during the first half of August at 75°N. While recent Arctic spring temperatures average 0.5°C and −0.7°C at 70°N and 75°N, respectively, they could increase to 2.8°C at 70°N and 2.2°C at 75°N as we approach 2100. Such temperature increases could lead to intense phytoplankton blooms, shortened by fast nutrient consumption. As SSTs increase, thermal thresholds for phytoplankton growth would be eventually exceeded

  18. Thermal Thresholds of Phytoplankton Growth in Polar Waters and Their Consequences for a Warming Polar Ocean

    KAUST Repository

    Coello-Camba, Alexandra; Agusti, Susana

    2017-01-01

    Polar areas are experiencing the steepest warming rates on Earth, a trend expected to continue in the future. In these habitats, phytoplankton communities constitute the basis of the food web and their thermal tolerance may dictate how warming affects these delicate environments. Here, we compiled available data on thermal responses of phytoplankton growth in polar waters. We assembled 53 growth-vs.-temperature curves (25 from the Arctic, 28 from the Southern oceans), indicating the limited information available for these ecosystems. Half of the data from Arctic phytoplankton came from natural communities where low ambient concentrations could limit growth rates. Phytoplankton from polar waters grew faster under small temperature increases until reaching an optimum (TOPT), and slowed when temperatures increased beyond this value. This left-skewed curves were characterized by higher activation energies (Ea) for phytoplankton growth above than below the TOPT. Combining these thermal responses we obtained a community TOPT of 6.5°C (±0.2) and 5.2°C (±0.1) for Arctic and Southern Ocean phytoplankton communities, respectively. These threshold temperatures were already exceeded at 70°N during the first half of August 2013, evidenced by sea surface temperatures (SSTs, satellite data, http://www.ncdc.noaa.gov). We forecasted SSTs for the end of the twenty-first century by assuming an overall 3°C increase, equivalent to a low emission scenario. Our forecasts show that SSTs at 70°N are expected to exceed TOPT during summer by 2100, and during the first half of August at 75°N. While recent Arctic spring temperatures average 0.5°C and −0.7°C at 70°N and 75°N, respectively, they could increase to 2.8°C at 70°N and 2.2°C at 75°N as we approach 2100. Such temperature increases could lead to intense phytoplankton blooms, shortened by fast nutrient consumption. As SSTs increase, thermal thresholds for phytoplankton growth would be eventually exceeded during bloom

  19. An evaluation of Arctic cloud and radiation processes during the SHEBA year: simulation results from eight Arctic regional climate models

    Energy Technology Data Exchange (ETDEWEB)

    Wyser, K.; Willen, U. [Rossby Centre, SMHI, Norrkoeping (Sweden); Jones, C.G.; Du, P.; Girard, E.; Laprise, R. [Universite du Quebec a Montreal, Canadian Regional Climate Modelling and Diagnostics Network, Montreal (Canada); Cassano, J.; Serreze, M.; Shaw, M.J. [University of Colorado, Cooperative Institute for Research in Environmental Sciences and Department of Atmospheric and Oceanic Sciences, Boulder, CO (United States); Christensen, J.H. [Danish Meteorological Institute, Copenhagen (Denmark); Curry, J.A. [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA (United States); Dethloff, K.; Rinke, A. [Alfred Wegener Institute for Polar and Marine Research, Research Unit, Potsdam (Germany); Haugen, J.-E.; Koeltzow, M. [Norwegian Meteorological Institute, Oslo (Norway); Jacob, D.; Pfeifer, S. [Max Planck Institute for Meteorology, Hamburg (Germany); Lynch, A. [Monash University, School of Geography and Environmental Science, Melbourne (Australia); Tjernstroem, M.; Zagar, M. [Stockholm University, Department of Meteorology, Stockholm (Sweden)

    2008-02-15

    Eight atmospheric regional climate models (RCMs) were run for the period September 1997 to October 1998 over the western Arctic Ocean. This period was coincident with the observational campaign of the Surface Heat Budget of the Arctic Ocean (SHEBA) project. The RCMs shared common domains, centred on the SHEBA observation camp, along with a common model horizontal resolution, but differed in their vertical structure and physical parameterizations. All RCMs used the same lateral and surface boundary conditions. Surface downwelling solar and terrestrial radiation, surface albedo, vertically integrated water vapour, liquid water path and cloud cover from each model are evaluated against the SHEBA observation data. Downwelling surface radiation, vertically integrated water vapour and liquid water path are reasonably well simulated at monthly and daily timescales in the model ensemble mean, but with considerable differences among individual models. Simulated surface albedos are relatively accurate in the winter season, but become increasingly inaccurate and variable in the melt season, thereby compromising the net surface radiation budget. Simulated cloud cover is more or less uncorrelated with observed values at the daily timescale. Even for monthly averages, many models do not reproduce the annual cycle correctly. The inter-model spread of simulated cloud-cover is very large, with no model appearing systematically superior. Analysis of the co-variability of terms controlling the surface radiation budget reveal some of the key processes requiring improved treatment in Arctic RCMs. Improvements in the parameterization of cloud amounts and surface albedo are most urgently needed to improve the overall performance of RCMs in the Arctic. (orig.)

  20. GeoMapApp as a platform for visualizing marine data from Polar Regions

    Science.gov (United States)

    Nitsche, F. O.; Ryan, W. B.; Carbotte, S. M.; Ferrini, V.; Goodwillie, A. M.; O'hara, S. H.; Weissel, R.; McLain, K.; Chinhong, C.; Arko, R. A.; Chan, S.; Morton, J. J.; Pomeroy, D.

    2012-12-01

    To maximize the investment in expensive fieldwork the resulting data should be re-used as much as possible. In addition, unnecessary duplication of data collection effort should be avoided. This becomes even more important if access to field areas is as difficult and expensive as it is in Polar Regions. Making existing data discoverable in an easy to use platform is key to improve re-use and avoid duplication. A common obstacle is that use of existing data is often limited to specialists who know of the data existence and also have the right tools to view and analyze these data. GeoMapApp is a free, interactive, map based tool that allows users to discover, visualize, and analyze a large number of data sets. In addition to a global view, it provides polar map projections for displaying data in Arctic and Antarctic areas. Data that have currently been added to the system include Arctic swath bathymetry data collected from the USCG icebreaker Healy. These data are collected almost continuously including from cruises where bathymetry is not the main objective and for which existence of the acquired data may not be well known. In contrast, existence of seismic data from the Antarctic continental margin is well known in the seismic community. They are archived at and can be accessed through the Antarctic Seismic Data Library System (SDLS). Incorporating these data into GeoMapApp makes an even broader community aware of these data and the custom interface, which includes capabilities to visualize and explore these data, allows users without specific software or knowledge of the underlying data format to access the data. In addition to investigating these datasets, GeoMapApp provides links to the actual data sources to allow specialists the opportunity to re-use the original data. Important identification of data sources and data references are achieved on different levels. For access to the actual Antarctic seismic data GeoMapApp links to the SDLS site, where users have

  1. Arctic research vessel design would expand science prospects

    Science.gov (United States)

    Elsner, Robert; Kristensen, Dirk

    The U.S. polar marine science community has long declared the need for an arctic research vessel dedicated to advancing the study of northern ice-dominated seas. Planning for such a vessel began 2 decades ago, but competition for funding has prevented construction. A new design program is underway, and it shows promise of opening up exciting possibilities for new research initiatives in arctic marine science.With its latest design, the Arctic Research Vessel (ARV) has grown to a size and capability that will make it the first U.S. academic research vessel able to provide access to the Arctic Ocean. This ship would open a vast arena for new studies in the least known of the world's seas. These studies promise to rank high in national priority because of the importance of the Arctic Ocean as a source of data relating to global climate change. Other issues that demand attention in the Arctic include its contributions to the world's heat budget, the climate history buried in its sediments, pollution monitoring, and the influence of arctic conditions on marine renewable resources.

  2. Disparities in Arctic Health

    Centers for Disease Control (CDC) Podcasts

    Life at the top of the globe is drastically different. Harsh climate devoid of sunlight part of the year, pockets of extreme poverty, and lack of physical infrastructure interfere with healthcare and public health services. Learn about the challenges of people in the Arctic and how research and the International Polar Year address them.

  3. Remarkable link between projected uncertainties of Arctic sea-ice decline and winter Eurasian climate

    Science.gov (United States)

    Cheung, Hoffman H. N.; Keenlyside, Noel; Omrani, Nour-Eddine; Zhou, Wen

    2018-01-01

    We identify that the projected uncertainty of the pan-Arctic sea-ice concentration (SIC) is strongly coupled with the Eurasian circulation in the boreal winter (December-March; DJFM), based on a singular value decomposition (SVD) analysis of the forced response of 11 CMIP5 models. In the models showing a stronger sea-ice decline, the Polar cell becomes weaker and there is an anomalous increase in the sea level pressure (SLP) along 60°N, including the Urals-Siberia region and the Iceland low region. There is an accompanying weakening of both the midlatitude westerly winds and the Ferrell cell, where the SVD signals are also related to anomalous sea surface temperature warming in the midlatitude North Atlantic. In the Mediterranean region, the anomalous circulation response shows a decreasing SLP and increasing precipitation. The anomalous SLP responses over the Euro-Atlantic region project on to the negative North Atlantic Oscillation-like pattern. Altogether, pan-Arctic SIC decline could strongly impact the winter Eurasian climate, but we should be cautious about the causality of their linkage.

  4. Arctic polynya and glacier interactions

    Science.gov (United States)

    Edwards, Laura

    2013-04-01

    Major uncertainties surround future estimates of sea level rise attributable to mass loss from the polar ice sheets and ice caps. Understanding changes across the Arctic is vital as major potential contributors to sea level, the Greenland Ice Sheet and the ice caps and glaciers of the Canadian Arctic archipelago, have experienced dramatic changes in recent times. Most ice mass loss is currently focused at a relatively small number of glacier catchments where ice acceleration, thinning and calving occurs at ocean margins. Research suggests that these tidewater glaciers accelerate and iceberg calving rates increase when warming ocean currents increase melt on the underside of floating glacier ice and when adjacent sea ice is removed causing a reduction in 'buttressing' back stress. Thus localised changes in ocean temperatures and in sea ice (extent and thickness) adjacent to major glacial catchments can impact hugely on the dynamics of, and hence mass lost from, terrestrial ice sheets and ice caps. Polynyas are areas of open water within sea ice which remain unfrozen for much of the year. They vary significantly in size (~3 km2 to > ~50,000 km2 in the Arctic), recurrence rates and duration. Despite their relatively small size, polynyas play a vital role in the heat balance of the polar oceans and strongly impact regional oceanography. Where polynyas develop adjacent to tidewater glaciers their influence on ocean circulation and water temperatures may play a major part in controlling subsurface ice melt rates by impacting on the water masses reaching the calving front. Areas of open water also play a significant role in controlling the potential of the atmosphere to carry moisture, as well as allowing heat exchange between the atmosphere and ocean, and so can influence accumulation on (and hence thickness of) glaciers and ice caps. Polynya presence and size also has implications for sea ice extent and therefore potentially the buttressing effect on neighbouring

  5. Recent dynamics of arctic and sub-arctic vegetation

    International Nuclear Information System (INIS)

    Epstein, Howard E; Myers-Smith, Isla; Walker, Donald A

    2013-01-01

    We present a focus issue of Environmental Research Letters on the ‘Recent dynamics of arctic and sub-arctic vegetation’. The focus issue includes three perspective articles (Verbyla 2011 Environ. Res. Lett. 6 041003, Williams et al 2011 Environ. Res. Lett. 6 041004, Loranty and Goetz 2012 Environ. Res. Lett. 7 011005) and 22 research articles. The focus issue arose as a result of heightened interest in the response of high-latitude vegetation to natural and anthropogenic changes in climate and disturbance regimes, and the consequences that these vegetation changes might have for northern ecosystems. A special session at the December 2010 American Geophysical Union Meeting on the ‘Greening of the Arctic’ spurred the call for papers. Many of the resulting articles stem from intensive research efforts stimulated by International Polar Year projects and the growing acknowledgment of ongoing climate change impacts in northern terrestrial ecosystems. (synthesis and review)

  6. Military aspects of Russia's Arctic policy

    Energy Technology Data Exchange (ETDEWEB)

    Zysk, Katarzyna

    2013-03-01

    Russia's Arctic policies have a strong bearing on the regional strategic environment for a number of factors. One obvious reason is the geography and the fact that Russia's Arctic shoreline covers nearly half of the latitudinal circle, which gives the country a unique potential to influence future Arctic activities. Second, despite radical changes in the regional security environment after the end of the Cold War, the Arctic and the High North (the European Arctic), in particular has maintained its central role in Russian strategic thinking and defense policy. Russia still has a strong military presence in the region, with a variety of activities and interests, despite weaknesses and problems facing the Russian armed forces. Third, and finally, Russia has enormous petroleum and other natural riches in the Arctic, and the leadership is laying on ambitious plans for development of commercial activities in the region. Understanding Russia's approaches to security is thus clearly important to surrounding Arctic nations and other stakeholders. Russian military activity in the Arctic has tangibly increased in recent years, adding perhaps the most controversial topic in debates on the region's future security. Combined with political assertiveness and rhetorical hostility toward the West, which was a particular feature of Vladimir Putin's second presidential term (2004#En Dash#2008), the intensified presence of the Russian naval and air forces operating in the region has drawn much of the international attention and contributed to the image of Russia as the wild card in the Arctic strategic equation.(Author)

  7. The Arctic tourism in Russia

    Directory of Open Access Journals (Sweden)

    Yury F. Lukin

    2016-12-01

    Full Text Available In the new book "Arctic tourism in Russia" the basic concepts, resource potential, attractiveness (from Lat. Attrahere: to attract, opportunities and threats of environmental, cruise, international, and other types of tourism in the Arctic are system-based analyzed, for the first time in the literature. The sphere of tourism has becoming an integral sector of the economy, having a multiplicative effect for the development of infrastructure, social services, employment. Reference materials about the tourism products in the Russian Arctic and Far North regions are published, including the Arkhangelsk and Murmansk regions; Republic of Karelia, Komi, Sakha (Yakutia; Nenets, the Yamalo-Nenets, Khanty-Mansiysk, the Chukotka Autonomous Districts; Taimyr Dolgan-Nenets Municipal District, Turukhansk district, the city of Norilsk of the Krasnoyarsk region; Magadan region, Kamchatka region.

  8. Changing Arctic: A Strategic Analysis of United States Arctic Policy and the United Nations Convention on the Law of the Sea

    Science.gov (United States)

    2013-05-01

    is below the constellation Ursa Minor, or the Great Bear . Hence, the word Arctic comes from the Greek word arktos or “ bear .” 7 The generally...13 David Curtis Wright , Canadian Defence and Foreign Affairs Institute., and Canadian Electronic Library (Firm), "The Panda ... Bear Readies to Meet the Polar Bear China and Canada’s Arctic Sovereignty Challenge," Canadian Defence & Foreign Affairs Institute, p. 4 67

  9. Periodic analysis of solar activity and its link with the Arctic oscillation phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Weizheng; Li, Chun; Du, Ling; Huang, Fei [Ocean University of China, 14-1' -601, 2117 Jinshui Road, Qingdao 266100 (China); Li, Yanfang, E-mail: quweizhe@ouc.edu.cn [Yantai Institute of Coastal Zone Research Chinese Academy of Sciences (China)

    2014-12-01

    Based on spectrum analysis, we provide the arithmetic expressions of the quasi 11 yr cycle, 110 yr century cycle of relative sunspot numbers, and quasi 22 yr cycle of solar magnetic field polarity. Based on a comparative analysis of the monthly average geopotential height, geopotential height anomaly, and temperature anomaly of the northern hemisphere at locations with an air pressure of 500 HPa during the positive and negative phases of AO (Arctic Oscillation), one can see that the abnormal warming period in the Arctic region corresponds to the negative phase of AO, while the anomalous cold period corresponds to its positive phase. This shows that the abnormal change in the Arctic region is an important factor in determining the anomalies of AO. In accordance with the analysis performed using the successive filtering method, one can see that the AO phenomenon occurring in January shows a clear quasi 88 yr century cycle and quasi 22 yr decadal cycle, which are closely related to solar activities. The results of our comparative analysis show that there is a close inverse relationship between the solar activities (especially the solar magnetic field index changes) and the changes in the 22 yr cycle of the AO occurring in January, and that the two trends are basically opposite of each other. That is to say, in most cases after the solar magnetic index MI rises from the lowest value, the solar magnetic field turns from north to south, and the high-energy particle flow entering the Earth's magnetosphere increases to heat the polar atmosphere, thus causing the AO to drop from the highest value; after the solar magnetic index MI drops from the highest value, the solar magnetic field turns from south to north, and the solar high-energy particle flow passes through the top of the Earth's magnetosphere rather than entering it to heat the polar atmosphere. Thus the polar temperature drops, causing the AO to rise from the lowest value. In summary, the variance

  10. Demographic potential of the Russia’s northern regions as a factor and condition of economic development of the Arctic

    Directory of Open Access Journals (Sweden)

    Victor Vilgelmovich Fauzer

    2014-12-01

    Full Text Available Nowadays, the research relevance of all aspects of development of the Arctic zone of the Russian Federation consists the fact that in spite of limited stocks in the old rendered habitable regions of the country, Arctic is considered as a source of resources for socio-economic development of Russia. Based on the recognition that the territory is like a separate object of state observation, it is noted that the best resources for labor of the economy of Arctic may become demographic potential of adjacent northern regions. The different points of view and approaches to the definition of the demographic potential and a set of indicators by its assessment are given. On the basis of the statistical analysis of population dynamics and a level of birth rate and mortality, it is shown that quantitative demographic potential of the northern regions since 1990s significantly decreased. It was affected by the migratory outflow. It is revealed that in northern regions, there are still positive differences in age and sexual structure. Regional governments can use the results while drawing up Strategic plans of socio-economic development of territories. The article concludes with recommendations

  11. Regional polarization sensitivity of articular cartilage by using polarization sensitive optical coherence tomography

    Science.gov (United States)

    Xie, Tuqiang; Guo, Shuguang; Chen, Zhongping; Peavy, George M.

    2007-02-01

    In this study, PS-OCT is used to image fresh bovine joints to investigate the orientation of collagen fibrils in relation to optical phase retardation to better understand the distribution of normal matrix orientation and articular cartilage birefringence in different regions of a whole joint. Understanding and mapping variations in matrix organization and orientation within the normal joint is an important issue in potential applications of PS-OCT for evaluation and diagnosis of degenerative joint disease (DJD). The experimental results demonstrate that articular cartilage is not polarization sensitive on the edge of the medial, but polarization sensitive on the lateral edge of the tibial plateau. The collagen orientation on the edge of the joint is different from the central areas of the joint. Normal articular cartilage demonstrates regional polarization sensitivity within joints that is important to understand in order to accurately assess cartilage health by PS-OCT.

  12. Simulated and observed trends in key variables of the Arctic marine carbon cycle

    Science.gov (United States)

    Goris, Nadine; Heinze, Christoph; Lauvset, Siv; Petrenko, Dmitry; Pozdnyakov, Dmitry; Schwinger, Jörg

    2013-04-01

    For the Arctic region, a thorough monitoring of the marine carbon cycle is important, as the general "polar amplification" of climate change also translates into the biogeochemical realm. As compared to the global ocean, the sink for human-produced CO2 is fairly small in the Arctic Ocean itself. Nevertheless, it is important to follow up this Arctic sink as a further control of the regional carbon budget and to record changes in the marine carbon cycle on the way towards a "blue Arctic". Since observations on the Arctic are rare, the EU FP7 MONARCH-A project tries to enable adequate descriptions of the status and evolution of the Arctic region Earth system components by generating time series of observation datasets and model hindcasts. In terms of the marine carbon cycle, this analysis focuses mainly on the key variables pCO2 and primary productivity. For oceanic pCO2, the comprehensive data-sets SOCAT and LDEO were combined, while measurements of atmospheric CO2 were collected from the GLOBALVIEW-CO2 data integration project. Monthly Primary Production fields were retrieved from the sensors MODIS and SeaWiFs. In order to get an overall picture of the behavior and trends of those key variables, in addition the physical-biogeochemical model MICOM-HAMOCC-M was employed. The investigation showed that both oceanic and atmospheric pCO2 are consistent variables which have a regular annual cycle and a similar behaviour all over the Arctic for both model and data. In contrast, primary production shows an irregular annual cycle in both range and form, varying over the Arctic. While a few well distributed measurement stations with continuous observations are sufficient to get a comprehensive picture for consistent variables like pCO2, it is relatively difficult and costly to get a comprehensive record of non-consistent variables. Since the provided data-set for primary production covers a relatively short time-scale, it was neither possible to confidently validate the model

  13. Public Nature of the Concepts for Economic Development in the Northern and Arctic Regions of Russia

    Directory of Open Access Journals (Sweden)

    Vitalii Nikolaevich Lazhentsev

    2016-09-01

    Full Text Available In a situation when Russia’s economic development is unbalanced by factors and financial sources, there emerges a threat of depletion of its natural resources in the Northern and Arctic regions, which does not bring any apparent benefit to Russia itself, and especially to its northern dwellers. In order to work out a proper policy with relation to the North, it is necessary to consider not only the specifics of the raw material specialization of the Northern and Arctic territories and their structural-functional organization, but also the crucial public nature of this specialization and this organization. It is from the point of view of public interest and national security of our country that residents of the North should be viewed not as a tool to provide the world economy with raw materials and fuel, but as an inherently valued reality, competing for their “place under the sun” and capable of equipping this place based on their own abilities, needs and perceptions of well-being. The purpose of the present paper is to show the social character of the interdependence between internal and external factors in the development of the North and the Arctic: the national and world market of mineral raw materials and fuel, the transcontinental, regional and local environmental functions of the tundra and taiga, the general trends of improving economic federalism and a special approach to stimulating regions that have extreme and difficult conditions of life and production, the priority of social welfare of the population rooted in the North and in the Arctic along with the desire for national socio-territorial equity

  14. Arctic Haze Analysis

    Science.gov (United States)

    Mei, Linlu; Xue, Yong

    2013-04-01

    The Arctic atmosphere is perturbed by nature/anthropogenic aerosol sources known as the Arctic haze, was firstly observed in 1956 by J. Murray Mitchell in Alaska (Mitchell, 1956). Pacyna and Shaw (1992) summarized that Arctic haze is a mixture of anthropogenic and natural pollutants from a variety of sources in different geographical areas at altitudes from 2 to 4 or 5 km while the source for layers of polluted air at altitudes below 2.5 km mainly comes from episodic transportation of anthropogenic sources situated closer to the Arctic. Arctic haze of low troposphere was found to be of a very strong seasonal variation characterized by a summer minimum and a winter maximum in Alaskan (Barrie, 1986; Shaw, 1995) and other Arctic region (Xie and Hopke, 1999). An anthropogenic factor dominated by together with metallic species like Pb, Zn, V, As, Sb, In, etc. and nature source such as sea salt factor consisting mainly of Cl, Na, and K (Xie and Hopke, 1999), dust containing Fe, Al and so on (Rahn et al.,1977). Black carbon and soot can also be included during summer time because of the mix of smoke from wildfires. The Arctic air mass is a unique meteorological feature of the troposphere characterized by sub-zero temperatures, little precipitation, stable stratification that prevents strong vertical mixing and low levels of solar radiations (Barrie, 1986), causing less pollutants was scavenged, the major revival pathway for particulates from the atmosphere in Arctic (Shaw, 1981, 1995; Heintzenberg and Larssen, 1983). Due to the special meteorological condition mentioned above, we can conclude that Eurasian is the main contributor of the Arctic pollutants and the strong transport into the Arctic from Eurasia during winter caused by the high pressure of the climatologically persistent Siberian high pressure region (Barrie, 1986). The paper intends to address the atmospheric characteristics of Arctic haze by comparing the clear day and haze day using different dataset

  15. Arctic sea ice melt leads to atmospheric new particle formation.

    Science.gov (United States)

    Dall Osto, M; Beddows, D C S; Tunved, P; Krejci, R; Ström, J; Hansson, H-C; Yoon, Y J; Park, Ki-Tae; Becagli, S; Udisti, R; Onasch, T; O Dowd, C D; Simó, R; Harrison, Roy M

    2017-06-12

    Atmospheric new particle formation (NPF) and growth significantly influences climate by supplying new seeds for cloud condensation and brightness. Currently, there is a lack of understanding of whether and how marine biota emissions affect aerosol-cloud-climate interactions in the Arctic. Here, the aerosol population was categorised via cluster analysis of aerosol size distributions taken at Mt Zeppelin (Svalbard) during a 11 year record. The daily temporal occurrence of NPF events likely caused by nucleation in the polar marine boundary layer was quantified annually as 18%, with a peak of 51% during summer months. Air mass trajectory analysis and atmospheric nitrogen and sulphur tracers link these frequent nucleation events to biogenic precursors released by open water and melting sea ice regions. The occurrence of such events across a full decade was anti-correlated with sea ice extent. New particles originating from open water and open pack ice increased the cloud condensation nuclei concentration background by at least ca. 20%, supporting a marine biosphere-climate link through sea ice melt and low altitude clouds that may have contributed to accelerate Arctic warming. Our results prompt a better representation of biogenic aerosol sources in Arctic climate models.

  16. Climate Change and Arctic Issues in the Marine and Environmental Science Curriculum at the U.S. Coast Guard Academy

    Science.gov (United States)

    Vlietstra, L.; McConnell, M. C.; Bergondo, D. L.; Mrakovcich, K. L.; Futch, V.; Stutzman, B. S.; Fleischmann, C. M.

    2016-02-01

    As global climate change becomes more evident, demand will likely increase for experts with a detailed understanding of the scientific basis of climate change, the ocean's role in the earth-atmosphere system, and forecasted impacts, especially in Arctic regions where effects may be most pronounced. As a result, programs in marine and environmental sciences are uniquely poised to prepare graduates for the formidable challenges posed by changing climates. Here we present research evaluating the prevalence and themes of courses focusing on anthropogenic climate change in 125 Marine Science and Environmental Science undergraduate programs at 86 institutions in the United States. These results, in addition to the increasing role of the Coast Guard in the Arctic, led to the development of two new courses in the curriculum. Climate Change Science, a one-credit seminar, includes several student-centered activities supporting key learning objectives. Polar Oceanography, a three-credit course, incorporates a major outreach component to Coast Guard units and members of the scientific community. Given the importance of climate change in Arctic regions in particular, we also propose six essential "Arctic Literacy Principles" around which courses or individual lesson plans may be organized. We show how these principles are incorporated into an additional new three-credit course, Model Arctic Council, which prepares students to participate in a week-long simulation exercise of Arctic Council meetings, held in Fairbanks, Alaska. Students examine the history and mission of the Arctic Council and explore some of the issues on which the council has deliberated. Special attention is paid to priorities of the current U.S. chairmanship of the Arctic Council which include climate change impacts on, and stewardship of, the Arctic Ocean.

  17. Mars: Stratigraphy of Western Highlands and Polar Regions

    Science.gov (United States)

    Tanaka, K. L.; Scott, D. H.; Tuesink, M. F.

    1985-01-01

    Geologic mapping and stratigraphic studies of Mars based on Viking images improved knowledge of the relative age and occurrence of geologic units on a global scale. Densities of geologic units or features during the Noarchian, Hesperian, and Amazonian periods are indicated for the North and South polar regions as well as the equatorial region of Mars. Cumulative counts of crater size frequencies for craters larger than 2 km in diameter on plateau units mapped in the western region of Mars counts indicate that the plateau terrain as a whole was thinly resurfaced during the Hesperian Period, and a large proportion of pre-existing craters less than 10 to 15 km in diameter was buried. The formation of northern plains, subpolar highlands, and both polar regions is also described.

  18. Foreword to the thematic cluster: the Arctic in Rapid Transition—marine ecosystems

    Directory of Open Access Journals (Sweden)

    Monika Kędra

    2015-12-01

    Full Text Available The Arctic is warming and losing sea ice. Happening at a much faster rate than previously expected, these changes are causing multiple ecosystem feedbacks in the Arctic Ocean. The Arctic in Rapid Transition (ART initiative was developed by early-career scientists as an integrative, international, multidisciplinary, long-term pan-Arctic network to study changes and feedbacks among the physical and biogeochemical components of the Arctic Ocean and their ultimate impacts on biological productivity on different timescales. In 2012, ART jointly organized with the Association of Polar Early Career Scientists their second science workshop—Overcoming Challenges of Observation to Model Integration in Marine Ecosystem Response to Sea Ice Transitions—at the Institute of Oceanology, Polish Academy of Sciences, in Sopot. This workshop aimed to identify linkages and feedbacks between atmosphere–ice–ocean forcing and biogeochemical processes, which are critical for ecosystem function, land–ocean interactions and productive capacity of the Arctic Ocean. This special thematic cluster of Polar Research brings together seven papers that grew out of workgroup discussions. Papers examine the climate change impacts on various ecosystem elements, providing important insights on the marine ecological and biogeochemical processes on various timescales. They also highlight priority areas for future research.

  19. Polar energy resources potential. Report prepared for the Committee on Science and Technology, U. S. House of Representatives, Ninety-Fourth Congress, Second Session by the Congressional Research Service, Library of Congress

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The study covers both Antarctic and Arctic energy resources including oil, coal, natural gas, hydroelectric power, geothermal energy, oil shale, uranium, solar energy, and wind power. The environment, geology, topography, climate, and weather are also treated. Consideration is given to the international relations involved in energy resource exploitation in both polar regions, and the technologies necessary to develop polar resources are discussed. The potential resources in each area are described. Resource potentials south of 60 degrees in Antartica and north of 60 degrees in the Arctic are summarized. (MCW)

  20. Arctic Riverine CDOM and its effects on the Polar Marine Light Field

    Energy Technology Data Exchange (ETDEWEB)

    Orandle, Zoe Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weijer, Wilbert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Elliott, Scott M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wang, Shanlin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-28

    It is well-known that CDOM (Chromophoric Dissolved Organic Matter) can have a significant effect on biological activity in the photic zones of aquatic ecosystems. However, the extent of CDOM’s interference with biological activity is not well-known. We examined this issue in great detail in the mixed surface layer of the Arctic Ocean. We studied the impacts of CDOM’s light attenuation on Arctic phytoplankton populations to discover if riverine CDOM’s presence in the Arctic ocean could inhibit and possibly prevent local phytoplankton populations from performing photosynthesis. We incorporated biogeochemistry concepts and data with oceanographic models and calculations to approach the problem. The results showed that riverine CDOM can indeed significantly impact the productivity of phytoplankton populations during the spring and summer months near the major Arctic river mouths we chose to examine. Although our study was detailed and inclusive of many variables, the issue of CDOM’s light attenuation and its effects on phytoplankton populations must be explored on a global scale to help understand if riverine CDOM could prove disastrous for phytoplankton populations.

  1. Towards an International Polar Data Coordination Network

    Directory of Open Access Journals (Sweden)

    P L Pulsifer

    2014-10-01

    Full Text Available Data management is integral to sound polar science. Through analysis of documents reporting on meetings of the Arctic data management community, a set of priorities and strategies are identified. These include the need to improve data sharing, make use of existing resources, and better engage stakeholders. Network theory is applied to a preliminary inventory of polar and global data management actors to improve understanding of the emerging community of practice. Under the name the Arctic Data Coordination Network, we propose a model network that can support the community in achieving their goals through improving connectivity between existing actors.

  2. Improving Arctic Sea Ice Observations and Data Access to Support Advances in Sea Ice Forecasting

    Science.gov (United States)

    Farrell, S. L.

    2017-12-01

    The economic and strategic importance of the Arctic region is becoming apparent. One of the most striking and widely publicized changes underway is the declining sea ice cover. Since sea ice is a key component of the climate system, its ongoing loss has serious, and wide-ranging, socio-economic implications. Increasing year-to-year variability in the geographic location, concentration, and thickness of the Arctic ice cover will pose both challenges and opportunities. The sea ice research community must be engaged in sustained Arctic Observing Network (AON) initiatives so as to deliver fit-for-purpose remote sensing data products to a variety of stakeholders including Arctic communities, the weather forecasting and climate modeling communities, industry, local, regional and national governments, and policy makers. An example of engagement is the work currently underway to improve research collaborations between scientists engaged in obtaining and assessing sea ice observational data and those conducting numerical modeling studies and forecasting ice conditions. As part of the US AON, in collaboration with the Interagency Arctic Research Policy Committee (IARPC), we are developing a strategic framework within which observers and modelers can work towards the common goal of improved sea ice forecasting. Here, we focus on sea ice thickness, a key varaible of the Arctic ice cover. We describe multi-sensor, and blended, sea ice thickness data products under development that can be leveraged to improve model initialization and validation, as well as support data assimilation exercises. We will also present the new PolarWatch initiative (polarwatch.noaa.gov) and discuss efforts to advance access to remote sensing satellite observations and improve communication with Arctic stakeholders, so as to deliver data products that best address societal needs.

  3. Estimating Vegetation Height from WorldView-02 and ArcticDEM Data for Broad Ecological Applications

    Science.gov (United States)

    Meddens, A. J.; Vierling, L. A.; Eitel, J.; Jennewein, J. S.; White, J. C.; Wulder, M.

    2017-12-01

    Boreal and arctic regions are warming at an unprecedented rate, and at a rate higher than in other regions across the globe. Ecological processes are highly responsive to temperature and therefore substantial changes in these northern ecosystems are expected. Recently, NASA initiated the Arctic-Boreal Vulnerability Experiment (ABoVE), which is a large-scale field campaign that aims to gain a better understanding of how the arctic responds to environmental change. High-resolution data products that quantify vegetation structure and function will improve efforts to assess these environmental change impacts. Our objective was to develop and test an approach that allows for mapping vegetation height at a 5m grid cell resolution across the ABoVE domain. To accomplish this, we selected three study areas across a north-south gradient in Alaska, representing an area of approximately 130 km2. We developed a RandomForest modeling approach for predicting vegetation height using the ArcticDEM (a digital surface model produced across the Arctic by the Polar Geospatial Center) and high-resolution multispectral satellite data (WorldView-2) in conjunction with aerial lidar data for calibration and validation. Vegetation height was successfully predicted across the three study areas and evaluated using an independent dataset, with R2 ranging from 0.58 to 0.76 and RMSEs ranging from 1.8 to 2.4 m. This predicted vegetation height dataset also led to the development of a digital terrain model using the ArcticDEM digital surface model by removing canopy heights from the surface heights. Our results show potential to establish a high resolution pan-arctic vegetation height map, which will provide useful information to a broad range of ongoing and future ecological research in high northern latitudes.

  4. Rim versus Non-Rim States in the Arctic Region: Prospects for a Zero-Sum Game or a Win-Win One?

    Directory of Open Access Journals (Sweden)

    Ana-Maria Ghimiş

    2013-09-01

    Full Text Available The present paper aims to develop a critical approach on one of the most urgent energy security challenges: the Arctic region. Until recently, it was considered to be a frozen desert, upon which no one raised any legal demands or interests. The global warming, the technological development and the increased need for energy resources had transformed the frozen High North into a very hot spot, where states like US, Canada, Norway, Denmark or Russia started an energy race that threatens to escalate. The Arctic became a strategic area given its opportunities: besides the energy resources, new commercial routes could become available for a longer period of time. But, due to legal uncertainties, the lack of coherent and direct legal procedures of international law, the Arctic game is an open one, in which any state can intervene and ask for a solution that is suitable for its interests. This aspect complicates even further the already unstable region. Some of the actors see the region as an international area, as a common good, where everyone has the right to explore or exploit, while the rim states see the Arctic in sovereign rights terms. Therefore, the game tends to complicate as non-rim players (the EU, China, Japan, NATO and South Korea want to intervene in the region and try to influence its development.

  5. Navigation GPS/GLONASS in the Arctic and aurora

    Directory of Open Access Journals (Sweden)

    Chernouss S. A.

    2016-12-01

    Full Text Available The correspondence of the time-spatial distribution of the radiances of the aurora oval and time-spatial changes in the parameters of the navigation satellites' signal has been shown. For this aim the experimental data on the regional and local heterogeneities of the Total Electron Content (or TEC and the data on the signal delays in the polar ionosphere have been analyzed. Using the data concerning aurora as the indicator of disturbances in the work of the GPS/GLONASS systems can give the opportunity to increase considerably the accuracy of positioning in the Arctic with the help of satellite navigation systems (SNS.

  6. Immune function in arctic mammals

    DEFF Research Database (Denmark)

    Desforges, Jean-Pierre; Jasperse, Lindsay; Jensen, Trine Hammer

    2018-01-01

    Natural killer (NK) cells are a vital part of the rapid and non-specific immune defense against invading pathogens and tumor cells. This study evaluated NK cell-like activity by flow cytometry for the first time in three ecologically and culturally important Arctic mammal species: polar bear (Ursus...... the effector:target cell ratio increased. Comparing NK activity between fresh and cryopreserved mouse lymphocytes revealed little to no difference in function, highlighting the applicability of cryopreserving cells in field studies. The evaluation of this important innate immune function in Arctic mammals can...... contribute to future population health assessments, especially as pollution-induced suppression of immune function may increase infectious disease susceptibility....

  7. Diversity and distribution of lichen-associated fungi in the Ny-Ålesund Region (Svalbard, High Arctic) as revealed by 454 pyrosequencing

    Science.gov (United States)

    Zhang, Tao; Wei, Xin-Li; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2015-01-01

    This study assessed the diversity and distribution of fungal communities associated with seven lichen species in the Ny-Ålesund Region (Svalbard, High Arctic) using Roche 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Lichen-associated fungal communities showed high diversity, with a total of 42,259 reads belonging to 370 operational taxonomic units (OTUs) being found. Of these OTUs, 294 belonged to Ascomycota, 54 to Basidiomycota, 2 to Zygomycota, and 20 to unknown fungi. Leotiomycetes, Dothideomycetes, and Eurotiomycetes were the major classes, whereas the dominant orders were Helotiales, Capnodiales, and Chaetothyriales. Interestingly, most fungal OTUs were closely related to fungi from various habitats (e.g., soil, rock, plant tissues) in the Arctic, Antarctic and alpine regions, which suggests that living in association with lichen thalli may be a transient stage of life cycle for these fungi and that long-distance dispersal may be important to the fungi in the Arctic. In addition, host-related factors shaped the lichen-associated fungal communities in this region. Taken together, these results suggest that lichens thalli act as reservoirs of diverse fungi from various niches, which may improve our understanding of fungal evolution and ecology in the Arctic. PMID:26463847

  8. Diversity and distribution of lichen-associated fungi in the Ny-Ålesund Region (Svalbard, High Arctic) as revealed by 454 pyrosequencing.

    Science.gov (United States)

    Zhang, Tao; Wei, Xin-Li; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2015-10-14

    This study assessed the diversity and distribution of fungal communities associated with seven lichen species in the Ny-Ålesund Region (Svalbard, High Arctic) using Roche 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Lichen-associated fungal communities showed high diversity, with a total of 42,259 reads belonging to 370 operational taxonomic units (OTUs) being found. Of these OTUs, 294 belonged to Ascomycota, 54 to Basidiomycota, 2 to Zygomycota, and 20 to unknown fungi. Leotiomycetes, Dothideomycetes, and Eurotiomycetes were the major classes, whereas the dominant orders were Helotiales, Capnodiales, and Chaetothyriales. Interestingly, most fungal OTUs were closely related to fungi from various habitats (e.g., soil, rock, plant tissues) in the Arctic, Antarctic and alpine regions, which suggests that living in association with lichen thalli may be a transient stage of life cycle for these fungi and that long-distance dispersal may be important to the fungi in the Arctic. In addition, host-related factors shaped the lichen-associated fungal communities in this region. Taken together, these results suggest that lichens thalli act as reservoirs of diverse fungi from various niches, which may improve our understanding of fungal evolution and ecology in the Arctic.

  9. Arctic Intermediate Water in the Nordic Seas, 1991-2009

    Science.gov (United States)

    Jeansson, Emil; Olsen, Are; Jutterström, Sara

    2017-10-01

    The evolution of the different types of Arctic Intermediate Water (AIW) in the Nordic Seas is evaluated and compared utilising hydro-chemical data from 1991 to 2009. It has been suggested that these waters are important components of the Norwegian Sea Arctic Intermediate Water (NSAIW), and of the dense overflows to the North Atlantic. Thus, it is important to understand how their properties and distribution vary with time. The AIWs from the Greenland and Iceland Seas, show different degrees of variability during the studied period; however, only the Greenland Sea Arctic Intermediate Water (GSAIW) shows an increasing temperature and salinity throughout the 2000s, which considerably changed the properties of this water mass. Optimum multiparameter (OMP) analysis was conducted to assess the sources of the NSAIW. The analysis shows that the Iceland Sea Arctic Intermediate Water (ISAIW) and the GSAIW both contribute to NSAIW, at different densities corresponding to their respective density range. This illustrates that they flow largely isopycnally from their source regions to the Norwegian Sea. The main source of the NSAIW, however, is the upper Polar Deep Water, which explains the lower concentrations of oxygen and chlorofluorocarbons, and higher salinity and nutrient concentrations of the NSAIW layer compared with the ISAIW and GSAIW. This shows how vital it is to include chemical tracers in any water mass analysis to correctly assess the sources of the water mass being studied.

  10. Some like it cold: microbial transformations of mercury in polar regions

    DEFF Research Database (Denmark)

    Barkay, Tamar; Kroer, Niels A.; Poulain, Alexandre J.

    2011-01-01

    The contamination of polar regions with mercury that is transported from lower latitudes as inorganic mercury has resulted in the accumulation of methylmercury (MeHg) in food chains, risking the health of humans and wildlife. While production of MeHg has been documented in polar marine and terres......The contamination of polar regions with mercury that is transported from lower latitudes as inorganic mercury has resulted in the accumulation of methylmercury (MeHg) in food chains, risking the health of humans and wildlife. While production of MeHg has been documented in polar marine...

  11. Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic Using a High-Resolution Regional Arctic Climate Model

    Energy Technology Data Exchange (ETDEWEB)

    Cassano, John [Principal Investigator

    2013-06-30

    The primary research task completed for this project was the development of the Regional Arctic Climate Model (RACM). This involved coupling existing atmosphere, ocean, sea ice, and land models using the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) coupler (CPL7). RACM is based on the Weather Research and Forecasting (WRF) atmospheric model, the Parallel Ocean Program (POP) ocean model, the CICE sea ice model, and the Variable Infiltration Capacity (VIC) land model. A secondary research task for this project was testing and evaluation of WRF for climate-scale simulations on the large pan-Arctic model domain used in RACM. This involved identification of a preferred set of model physical parameterizations for use in our coupled RACM simulations and documenting any atmospheric biases present in RACM.

  12. The Evolving Arctic: Current State of U.S. Arctic Policy

    Science.gov (United States)

    2013-09-01

    to advance national interests. The U.S. has not yet acceded to UNCLOS, and trails its Arctic neighbors in regards to national policy and direction...maritime transportation, and maritime tourism are expanding exponentially. As commercial opportunities increase in the region, the U.S. needs an...UNCLOS without having ratified it, it trails behind the remainder of the Arctic states on its policy and in asserting its

  13. A cluster of three cases of trichinellosis linked to bear meat consumption in the Arctic.

    Science.gov (United States)

    Dupouy-Camet, Jean; Yera, Hélène; Dahane, Naïma; Bouthry, Elise; Kapel, Christian M O

    2016-05-01

    We report here three cases of trichinellosis due to polar bear meat consumption in East Greenland. In the past 20 years, 31 cases of trichinellosis have been reported in French travellers to the Arctic (North Quebec, Nunavut and Greenland) who consumed undercooked meat from black, brown, or polar bears. If local communities are increasingly becoming aware of the risk of trichinellosis, travellers visiting regions where bear meat is consumed should be informed of the risk of eating raw or non-heat-processed meats. © International Society of Travel Medicine, 2016. All rights reserved. Published by Oxford University Press. For permissions, please e-mail: journals.permissions@oup.com.

  14. Regional interests of Russia in the concept of development of the Arctic

    Directory of Open Access Journals (Sweden)

    Bogachev V. F.

    2015-12-01

    Full Text Available The paper analyzes the current state and prospects of development of the Arctic in the context of its growing value in connection with expansion of demand for strategic types of raw materials, increased interest in the region of the concerned states and transnational consortia, as well as with the development of the international transport corridors and new technologies facilitating access to sources of raw materials

  15. Mechanisms of impact of greenhouse gases on the Earth's ozone layer in the Polar Regions

    Science.gov (United States)

    Zadorozhny, Alexander; Dyominov, Igor

    A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the atmosphere including aerosol physics is used to examine the impact of the greenhouse gases CO2, CH4, and N2O on the future long-term changes of the Earth's ozone layer, in particular on its expected recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circu-lation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the North to South Poles, as well as distribution of sulphate aerosol particles and polar strato-spheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abun-dance of the greenhouse gases on the long-term changes of the Earth's ozone layer in the Polar Regions, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2, essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weak-ness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification be-gins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard

  16. ARCTIC «UPGRADE» OF V. V. PUTIN, PRESIDENT OF THE RUSSIAN FEDERATION

    Directory of Open Access Journals (Sweden)

    I. S. Zonn

    2017-01-01

    Full Text Available After establishment of the Soviet power the Arctic for seven decades had been in the focus of attention accomplishing the heroic, repressive, “educational”, economic, political and ideological functions. In 1930-1950 General Secretary of the Central Committee of the Bolshevik Communist Party I.V. Stalin created the first Soviet Arctic shield that included the economic and military strategic power, transport targeted to protection of entirety and security of the Soviet country. The Stalin’s large-scale project of Arctic development was made public in 1931 and was targeted to the enhanced protection of the polar waters by establishing the naval base on the Barents Sea. For implementation of this project the White Sea-Baltic canal was constructed. The Trust “Arktikugol” was established on the Spitsbergen Archipelago to supply coal to the Northern Navy Fleet. The sea expedition over the Northern Sea Route was also organized to prove the possibility of shipping along this route for one navigation season. Upon its successful completion the Chief Department “Sevmorput” was set up here. The epoch of airship construction was opened to explore the Arctic air expanses. Later on there were expeditions to the North Pole, deployment of army on the Chukotka Peninsula, new expeditions to high latitude terrains, construction of high-capacity icebreakers, aerodromes and military bases on the coast of the Arctic Ocean. Unfortunately, in the 1990s in the time of the Soviet Union breakup and perestroika many facilities of the Stalin’s Arctic Shield had been lost and ceased to exist.The early 21st century witnessed the second energetic and goal-oriented breakthrough into the Arctic region and establishment of the second Arctic Shield or bastion based on the key principles of the Soviet Arctic Shield or, in other words, its upgrade in the new conditions of the polycentric world, which is justly connected with the name of Russian President Putin

  17. 75 FR 17763 - Arctic National Wildlife Refuge, Fairbanks, AK

    Science.gov (United States)

    2010-04-07

    ... diversity, including, but not limited to, the Porcupine caribou herd (including participation in coordinated ecological studies and management of this herd and the Western Arctic caribou herd), polar bears, grizzly...

  18. Deep and shallow structures in the Arctic region imaged by satellite magnetic and gravity data

    Science.gov (United States)

    Gaina, Carmen; Panet, Isabelle; Shephard, Grace

    2016-07-01

    The last decade has seen an increase in geoscientific data collection, which, together with available and older classified data made publicly available, is contributing to increasing our knowledge about Earth's structure and evolution. Despite this development, there are many gaps in data coverage in remote, hard-to-access regions. Satellite data have the advantage of acquiring measurements steadily and covering the entire globe. From a tectonics point of view, the specific heights of various satellites allow for the identification of moderate to large tectonic features, and can shed light on Earth's lower crust and lithosphere structure. In this contribution I discuss the use of magnetic and gravity models based on satellite data in deciphering the tectonic structure of remote areas. The present day Circum-Arctic region comprises a variety of tectonic settings: from active seafloor spreading in the North Atlantic and Eurasian Basin, and subduction in the North Pacific, to long-lived stable continental platforms in North America and Asia. A series of rifted margins, abandoned rifted areas and presumably extinct oceanic basins fringe these regions. Moreover, rifting- and seafloor spreading-related processes formed many continental splinters and terranes that were transported and docked at higher latitudes. Volcanic provinces of different ages have also been identified, from the Permian-Triassic Siberian traps at ca. 251 Ma to the (presumably) Cretaceous HALIP and smaller Cenozoic provinces in northern Greenland and the Barents Sea. We inspect global lithospheric magnetic data in order to identify the signature of the main volcanic provinces in the High Arctic. One of the most striking features in the Arctic domain is the strong magnetic anomaly close to the North Pole that correlates with a large, igneous oceanic plateau called the Alpha Mendeleev Ridge. The intensity and extent of the magnetic anomalies recorded by aircraft or satellites point towards a very thick

  19. Effective Planning of the Future of the Arctic

    Science.gov (United States)

    Sentsov, A.; Bolsunovskaya, Yu; Bolsunovskaya, L.

    2014-08-01

    The problems of the Arctic region have become the most important ones in the world. Political risks hinder the industrial development of the region. This paper addresses the problem of planning and modeling the future of this region. It presents the problems of developing a model of the future due to the ideologies and strategies of two main actors in the Arctic, the United States and the Russian Federation. The effects of a bipolar perception of the future of the region and of the whole world are shown. A model of the effective planning of the future of the Arctic region is proposed.

  20. THE ARCTIC: A DIALOGUE FOR DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Yury Mazurov

    2010-01-01

    Full Text Available In September 2010, Moscow hosted the International Arctic Forum “The Arctic—Territory of Dialogue.” The Arctic Forum focused its attention on elements of sustainable development in the Arctic region, i.e., ecology, economics, infrastructure, social services, security, and geopolitics. Many Russian experts and many well-known politicians and experts from leading research centers of the Arctic countries (Canada, Denmark, Finland, Iceland, Norway, Sweden, and USA, as well as by participants from France, Germany, Netherlands, and other countries attended the forum. Scholars and public figures from the European countries, representatives of the NATO, the Organization for Security and Cooperation in Europe and other institutions were also present at the conference. In his key-note speech the Chairman of the Board of Trustees of the Russian Geographical Society (RGS, Prime Minister of the Russian Federation, Vladimir V. Putin formulated the principles of Russian national policy in the Arctic. Russian and foreign participants supported the idea of continuing dialogue on the Arctic under the RGS’s aegis and the transformation of the Arctic Forum into a permanent platform for discussions on the most urgent issues of the region.

  1. Organochlorine contaminant and stable isotope profiles in Arctic fox (Alopex lagopus) from the Alaskan and Canadian Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Hoekstra, P.F.; Braune, B.M.; O' Hara, T.M.; Elkin, B.; Solomon, K.R.; Muir, D.C.G

    2003-04-01

    PCBs in Arctic fox are lower than reported in other Arctic populations and unlikely to cause significant impairment of reproductive success. - Arctic fox (Alopex lagopus) is a circumpolar species distributed across northern Canada and Alaska. Arctic fox muscle and liver were collected at Barrow, AK, USA (n=18), Holman, NT, Canada (n=20), and Arviat, NU, Canada (n=20) to elucidate the feeding ecology of this species and relate these findings to body residue patterns of organochlorine contaminants (OCs). Stable carbon ({delta}{sup 13}C) and nitrogen ({delta}{sup 15}N) isotope analyses of Arctic fox muscle indicated that trophic position (estimated by {delta}{sup 15}N) is positively correlated with increasing {delta}{sup 13}C values, suggesting that Arctic fox with a predominately marine-based foraging strategy occupy a higher trophic level than individuals mostly feeding from a terrestrial-based carbon source. At all sites, the rank order for OC groups in muscle was polychlorinated biphenyls ({sigma}PCB) > chlordane-related compounds ({sigma}CHLOR) > hexachlorocyclohexane ({sigma}HCH) > total toxaphene (TOX) {>=}chlorobenzenes ({sigma}ClBz) > DDT-related isomers ({sigma}DDT). In liver, {sigma}CHLOR was the most abundant OC group, followed by {sigma}PCB > TOX > {sigma}HCH > {sigma}ClBz > {sigma}DDT. The most abundant OC analytes detected from Arctic fox muscle and liver were oxychlordane, PCB-153, and PCB-180. The comparison of {delta}{sup 15}N with OC concentrations indicated that relative trophic position might not accurately predict OC bioaccumulation in Arctic fox. The bioaccumulation pattern of OCs in the Arctic fox is similar to the polar bear. While {sigma}PCB concentrations were highly variable, concentrations in the Arctic fox were generally below those associated with the toxicological endpoints for adverse effects on mammalian reproduction. Further research is required to properly elucidate the potential health impacts to this species from exposure to OCs.

  2. Organochlorine contaminant and stable isotope profiles in Arctic fox (Alopex lagopus) from the Alaskan and Canadian Arctic

    International Nuclear Information System (INIS)

    Hoekstra, P.F.; Braune, B.M.; O'Hara, T.M.; Elkin, B.; Solomon, K.R.; Muir, D.C.G.

    2003-01-01

    PCBs in Arctic fox are lower than reported in other Arctic populations and unlikely to cause significant impairment of reproductive success. - Arctic fox (Alopex lagopus) is a circumpolar species distributed across northern Canada and Alaska. Arctic fox muscle and liver were collected at Barrow, AK, USA (n=18), Holman, NT, Canada (n=20), and Arviat, NU, Canada (n=20) to elucidate the feeding ecology of this species and relate these findings to body residue patterns of organochlorine contaminants (OCs). Stable carbon (δ 13 C) and nitrogen (δ 15 N) isotope analyses of Arctic fox muscle indicated that trophic position (estimated by δ 15 N) is positively correlated with increasing δ 13 C values, suggesting that Arctic fox with a predominately marine-based foraging strategy occupy a higher trophic level than individuals mostly feeding from a terrestrial-based carbon source. At all sites, the rank order for OC groups in muscle was polychlorinated biphenyls (ΣPCB) > chlordane-related compounds (ΣCHLOR) > hexachlorocyclohexane (ΣHCH) > total toxaphene (TOX) ≥chlorobenzenes (ΣClBz) > DDT-related isomers (ΣDDT). In liver, ΣCHLOR was the most abundant OC group, followed by ΣPCB > TOX > ΣHCH > ΣClBz > ΣDDT. The most abundant OC analytes detected from Arctic fox muscle and liver were oxychlordane, PCB-153, and PCB-180. The comparison of δ 15 N with OC concentrations indicated that relative trophic position might not accurately predict OC bioaccumulation in Arctic fox. The bioaccumulation pattern of OCs in the Arctic fox is similar to the polar bear. While ΣPCB concentrations were highly variable, concentrations in the Arctic fox were generally below those associated with the toxicological endpoints for adverse effects on mammalian reproduction. Further research is required to properly elucidate the potential health impacts to this species from exposure to OCs

  3. Arctic Collaboration: Developing a Successful Researcher/Teacher Expedition

    Science.gov (United States)

    Skotnicki, S.; Loranty, M. M.

    2016-12-01

    Are you a researcher working in the polar regions of the world or a K-12 science teacher who would like to be part of a field research expedition in the polar regions? Researchers and K-12 science teachers can apply for funding from PolarTREC, a program that pairs researchers and teachers to conduct field science in Antarctica and the Arctic. Our poster presentation will offer details of one such successful researcher/teacher partnership. During the summer of 2016, Science Teacher Stan Skotnicki (Cheektowaga Central Middle School in Buffalo, NY) was teamed up with Assistant Professor Mike Loranty (Colgate University) to study vegetation and ecosystem impacts on permafrost vulnerability. Stan joined Mike and his research team in Northeastern Siberia preparing field sites, collecting data, processing samples, discussing methods, and planning daily activities. In order to raise awareness and broaden the impact of the research being conducted, Stan communicated the science through a series of journals on the PolarTREC website with his students, staff, and members of the community. Additionally, Mike and Stan held a live webinar from Siberia discussing the content of the research, the nature of the fieldwork, and why it was important to travel so far for this information. This expedition allowed Stan to experience working with a field research team for an extended period of time. Mike benefited from having a team member dedicated to learning about and communicating project details that also provided valuable field assistance. Stan gets to bring his hands-on experience back to his classroom in Buffalo and Mike has the opportunity to share his research with a new and different audience, including presenting to students at Cheektowaga Central with the help of his undergraduate students. This model of collaboration provides a number of valuable benefits for both teachers and researchers. While the PolarTREC program provides necessary logistics and funding to conduct these

  4. O+ trough zones in the polar cap ionosphere-magnetosphere coupling region

    Science.gov (United States)

    Horwitz, James; Zeng, Wen; Jaafari, Fajer

    Regions of low-density troughs in O+ have been observed at 1 RE altitude in the polar cap ionosphere-magnetosphere region by the Thermal Ion Dynamics Experiment(TIDE) on the POLAR spacecraft. In this presentation, the UT Arlington Dynamic Fluid-Kinetic (DyFK) code is employed to investigate the formation of such O+ density troughs. We utilize convection paths of flux tubes in the high-latitude region as prescribed by an empirical convection model with solar wind inputs to track the evolution of ionospheric plasma transport and in particular O+ densities along these tubes with time/space. The flux tubes are subjected to auroral processes of precipitation and wave-driven ion heating when they pass through the auroral oval, which tends to elevate the plasma densities in these tubes. When the F-regions of such tubes traverse locations where the F-region is in darkness, recombination there causes the higher-altitude regions to drain and the densities to decline throughout. Owing to the varying effects of these processes, significant and low trough-like densities at higher altitudes developed along these flux tubes. The modeled densities near 6000 km altitudes will be compared with multiple POLAR passes featuring POLAR/TIDE-measured O+ densities for inside and outside of such trough regions.

  5. Changes in Ocean Circulation with an Ice-Free Arctic: Reconstructing Early Holocene Arctic Ocean Circulation Using Geochemical Signals from Individual Neogloboquadrina pachyderma (sinistral) Shells

    Science.gov (United States)

    Livsey, C.; Spero, H. J.; Kozdon, R.

    2016-12-01

    The impacts of sea ice decrease and consequent hydrologic changes in the Arctic Ocean will be experienced globally as ocean and atmospheric temperatures continue to rise, though it is not evident to what extent. Understanding the structure of the Arctic water column during the early/mid Holocene sea ice minimum ( 6-10 kya), a post-glacial analogue of a seasonally ice-free Arctic, will help us to predict what the changes we can expect as the Earth warms over the next century. Neogloboquadrina pachyderma (sinistral; Nps) is a species of planktonic foraminifera that dominates assemblages in the polar oceans. This species grows its chambers (ontogenetic calcite) in the surface waters and subsequently descends through the water column to below the mixed layer where it quickly adds a thick crust of calcite (Kohfeld et al., 1996). Therefore, geochemical signals from both the surface waters and sub-mixed layer depths are captured within single Nps shells. We were able to target ion mass spectrometry (SIMS), therefore capturing signals from both the ontogenetic and crust calcite in single Nps shells. This data was combined with laser ablation- inductively coupled mass spectrometry (LA-ICPMS) Mg/Ca profiles of trace metals through the two layers of calcite of the same shells, to determine the thermal structure of the water column. Combining δ18O, temperature, and salinity gradients from locations across the Arctic basin allow us to reconstruct the hydrography of the early Holocene Arctic sea ice minimum. These results will be compared with modern Arctic water column characteristics in order to develop a conceptual model of Arctic Ocean oceanographic change due to global warming. Kohfeld, K.E., Fairbanks, R.G., Smith, S.L., Walsh, I.D., 1996. Neogloboquadrina pachyderma(sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence from northeast water polynya plankton tows, sediment traps, and surface sediments. Paleoceanography 11, 679-699.

  6. Engaging Local Communities in Arctic Observing Networks: A Collaborative Shoreline Change Risk WebGIS for Alaska's Arctic Slope Region

    Science.gov (United States)

    Brady, M.

    2017-12-01

    This study engaged local community stakeholders in Alaska's Arctic Slope Region to develop a web-based shoreline change risk geographic information system (WebGIS) in collaboration with the North Slope Borough and its residents. The value of the effort includes rich spatial documentation of local risks across the vast, remote, and rapidly changing shoreline, and identification of local manager information needs to direct WebGIS development. The study advances our understanding of shoreline change problems from the perspective of local Arctic communities beyond municipal impacts while building decision support. Over fifty local residents in three communities with collective coastal knowledge that extends across the National Petroleum Reserve - Alaska and Arctic National Wildlife Refuge shared their perspectives on hard copy maps. Sixteen managers provided usability perceptions of a beta WebGIS with shoreline change susceptibility information summarized at relevant asset locations such as subsistence camps. The hard copy maps with 300 "problem places" were digitized for analysis, which revealed problems across the coastline, especially challenges to boating for subsistence hunting such as shoaling cutting off access and creating hazards. The usability workshop revealed specific information needs including the need to monitor impacts at decommissioned national defense radar sites repurposed by locals to centralize oil and gas activity. These results were analyzed using an Instructional Systems Design (ISD) framework consisting of front-end and formative WebGIS evaluation phases. The front-end evaluation is the local input on hard copy maps, which provided local verification of coastal risks. The formative evaluation is the usability workshop with managers, which informed WebGIS development while promoting user buy-in. In terms of product and process, the local knowledge and information needs collected are significant because they establish local engagement with the

  7. Synthesizing International Understanding of Changes in the Arctic Hydrological System

    Science.gov (United States)

    Pundsack, J. W.; Vorosmarty, C. J.; Hinzman, L. D.

    2009-12-01

    There are several notable gaps in our current level of understanding of Arctic hydrological systems. At the same time, rapidly emerging data sets, technologies, and modeling resources provide us with an unprecedented opportunity to move substantially forward. The Arctic Community-Wide Hydrological Analysis and Monitoring Program (Arctic-CHAMP), funded by NSF/ARCSS, was established to initiate a major effort to improve our current monitoring of water cycle variables, and to foster collaboration with the many relevant U.S. and international arctic research initiatives. These projects, funded under ARCSS through the ‘Freshwater Integration (FWI) study’, links CHAMP, the Arctic/Subarctic Ocean Fluxes (ASOF) Programme, and SEARCH. As part of the overall synthesis and integration efforts of the NSF-ARCSS Freshwater Integration (FWI) study, the program carried-out a major International Synthesis Capstone Workshop in Fall 2009 as an International Polar Year (IPY) affiliated meeting. The workshop, "Synthesizing International Understanding of Changes in the Arctic Hydrological System,” was held 30 September to 4 October 2009 in Stockholm at the Beijer Auditorium of the Royal Swedish Academy. The workshop was sponsored by the NSF-ARCSS Arctic-CHAMP Science Management Office (City College of New York / Univ. of New Hampshire), the International Study of Arctic Change (ISAC), and the International Arctic Research Center (IARC; Univ. of Alaska Fairbanks). The overarching goals of the meeting were to stage a post-IPY lessons-learned workshop with co-equal numbers of FWI, IPY, and ICARP-II researchers, using insights from recent scientific findings, data, and strategies to afford synthesis. The workshop aimed to: (1) take stock of recent advances in our understanding of changes in the Arctic hydrological system; (2) identify key remaining research gaps / unanswered questions; and (3) gather insight on where to focus future research efforts/initiatives (nationally and

  8. Recent Changes in the Arctic Melt Season

    Science.gov (United States)

    Stroeve, Julienne; Markus, Thorsten; Meier, Walter N.; Miller, Jeff

    2007-01-01

    Melt-season duration, melt-onset and freeze-up dates are derived from satellite passive microwave data and analyzed from 1979 to 2005 over Arctic sea ice. Results indicate a shift towards a longer melt season, particularly north of Alaska and Siberia, corresponding to large retreats of sea ice observed in these regions. Although there is large interannual and regional variability in the length of the melt season, the Arctic is experiencing an overall lengthening of the melt season at a rate of about 2 weeks decade(sup -1). In fact, all regions in the Arctic (except for the central Arctic) have statistically significant (at the 99% level or higher) longer melt seasons by greater than 1 week decade(sup -1). The central Arctic shows a statistically significant trend (at the 98% level) of 5.4 days decade(sup -1). In 2005 the Arctic experienced its longest melt season, corresponding with the least amount of sea ice since 1979 and the warmest temperatures since the 1880s. Overall, the length of the melt season is inversely correlated with the lack of sea ice seen in September north of Alaska and Siberia, with a mean correlation of -0.8.

  9. Globalising the Arctic Climate:

    DEFF Research Database (Denmark)

    Corry, Olaf

    2017-01-01

    This chapter uses an object-oriented approach to explore how the Arctic is being constituted as an object of global governance within an emerging ‘global polity’, partly through geoengineering plans and political visions ('imaginaries'). It suggests that governance objects—the socially constructed...... on world politics. The emergence of the Arctic climate as a potential target of governance provides a case in point. The Arctic climate is becoming globalised, pushing it up the political agenda but drawing it away from its local and regional context....

  10. Soil Carbon in North American, Arctic, and Boreal Regions

    Science.gov (United States)

    Lajtha, K.; Bailey, V. L.; Schuur, E.; McGuire, D.; Romanovsky, V. E.

    2017-12-01

    Globally, soils contain more than 3 times as much as C as the atmosphere and >4 times more C than the world's biota, therefore even small changes in soil C stocks could lead to large changes in the atmospheric concentration of CO2. Since SOCCR-1, improvements have been made in quantifying stocks and uncertainties in stocks of soil C to a depth of 1 m across North America. Estimates for soil carbon stocks in the US (CONUS + Alaska) range from 151 - 162 Pg C, based on extensive sampling and analysis. Estimates for Canada average about 262 Pg C, but sampling is not as extensive. Soil C for Mexico is calculated as 18 Pg C, but there is a great deal of uncertainty surrounding this value. These soil carbon stocks are sensitive to agricultural management, land use and land cover change, and development and loss of C-rich soils such as wetlands. Climate change is a significant threat although may be partially mitigated by increased plant production. Carbon stored in permafrost zone circumpolar soils is equal to 1330-1580 Pg C, almost twice that contained in the atmosphere and about order of magnitude greater than carbon contained in plant biomass, woody debris, and litter in the boreal and tundra biomes combined. Surface air temperature change is amplified in high latitude regions such that Arctic temperature rise is about 2.5 times faster than for the globe as a whole, and thus 5 - 15% of this carbon is considered vulnerable to release to the atmosphere by the year 2100 following the current trajectory of global and Arctic warming. This amount is likely to be up to an order of magnitude larger loss than the increase in carbon stored in plant biomass under the same changing conditions. Models of soil organic matter dynamics have been greatly improved in the last decade by including greater process-level understanding of factors that affect soil C stabilization and destabilization, yet structural features of many models are still limited in representing Arctic and boreal

  11. A distributed atmosphere-sea ice-ocean observatory in the central Arctic Ocean: concept and first results

    Science.gov (United States)

    Hoppmann, Mario; Nicolaus, Marcel; Rabe, Benjamin; Wenzhöfer, Frank; Katlein, Christian; Scholz, Daniel; Valcic, Lovro

    2017-04-01

    To understand the current evolution of the Arctic Ocean towards a less extensive, thinner and younger sea ice cover is one of the biggest challenges in climate research. Especially the lack of simultaneous in-situ observations of sea ice, ocean and atmospheric properties leads to significant knowledge gaps in their complex interactions, and how the associated processes impact the polar marine ecosystem. Here we present a concept for the implementation of a long-term strategy to monitor the most essential climate- and ecosystem parameters in the central Arctic Ocean, year round and synchronously. The basis of this strategy is the development and enhancement of a number of innovative autonomous observational platforms, such as rugged weather stations, ice mass balance buoys, ice-tethered bio-optical buoys and upper ocean profilers. The deployment of those complementing platforms in a distributed network enables the simultaneous collection of physical and biogeochemical in-situ data on basin scales and year round, including the largely undersampled winter periods. A key advantage over other observatory systems is that the data is sent via satellite in near-real time, contributing to numerical weather predictions through the Global Telecommunication System (GTS) and to the International Arctic Buoy Programme (IABP). The first instruments were installed on ice floes in the Eurasian Basin in spring 2015 and 2016, yielding exceptional records of essential climate- and ecosystem-relevant parameters in one of the most inaccessible regions of this planet. Over the next 4 years, and including the observational periods of the Year of Polar Prediction (YOPP, 2017-2019) and the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC, 2020), the distributed observatory will be maintained by deployment of additional instruments in the central Arctic each year, benefitting from international logistical efforts.

  12. Demographic change, economic conditions, and subsistence salmon harvests in Alaska’s Arctic-Yukon-Kuskokwim region

    OpenAIRE

    Howe, E. Lance; Martin, Stephanie

    2009-01-01

    This paper addresses broad demographic and economic characteristics of the Arctic-Yukon-Kuskokwim region (AYK) of Alaska. AYK human population growth has generally been moderate over time. Because out-migration regularly exceeds in-migration, especially in the villages, population growth is mainly a product of natality. We anticipate future population growth patterns will be similar. In terms of regional characteristics, the linguistically and geographically distinct populations of the AYK re...

  13. Orbital-scale Central Arctic Ocean Temperature Records from Benthic Foraminiferal δ18O and Ostracode Mg/Ca Ratios

    Science.gov (United States)

    Keller, K.; Cronin, T. M.; Dwyer, G. S.; Farmer, J. R.; Poirier, R. K.; Schaller, M. F.

    2017-12-01

    Orbital-scale climate variability is often amplified in the polar region, for example in changes in seawater temperature, sea-ice cover, deep-water formation, ecosystems, heat storage and carbon cycling. Yet, the relationship between the Arctic Ocean and global climate remains poorly understood due largely to limited orbital-scale paleoclimate records, the complicated nature of sea-ice response to climate and limited abundance of deep sea biological proxies. Here we reconstruct central Arctic Ocean bottom temperatures over the last 600 kyr using ostracode Mg/Ca ratios (genus Krithe) and benthic foraminiferal oxygen isotope ratios (δ18Obf - I. teretis, O. tener, P. bulloides, C. reniforme, C. wuellerstorfi) in six sediment cores recovered from the Mendeleev and Northwind Ridges (700- 2726 m water depth). We examined glacial-interglacial cycles in Arctic seawater temperatures and Arctic δ18Obf chronostratigraphy to reconcile effects of changing bottom water temperature, ice volume and regional hydrography on δ18Obf records. Results show lower ( 10-12 mmol/mol) interglacial and higher ( 16-23 mmol/mol) glacial Mg/Ca ratios, signifying intermediate depth ocean warming during glacials of up to 2 ºC. These temperature maxima are likely related to a deepening of the halocline and the corresponding deeper influence of warm Atlantic water. Glacial-interglacial δ18Obf ranges are smaller in the Arctic ( 0.8-1‰ VPDB) than in the global ocean ( 1.8 ‰). However, when the distinct glacial-interglacial temperature histories of the Arctic (glacial warming) and global ocean (glacial cooling) are accounted for, both Arctic and global ocean seawater δ18O values (δ18Osw) exhibit similar 1.2-1.3 ‰ glacial-interglacial ranges. Thus, Arctic δ18Obf confirms glacial Arctic warming inferred from ostracode Mg/Ca. This study will discuss the strengths and limitations of applying paired Mg/Ca and oxygen isotope proxies in reconstructing more robust paleoceanographic changes in the

  14. Research with Arctic peoples

    DEFF Research Database (Denmark)

    Smith, H Sally; Bjerregaard, Peter; Chan, Hing Man

    2006-01-01

    Arctic peoples are spread over eight countries and comprise 3.74 million residents, of whom 9% are indigenous. The Arctic countries include Canada, Finland, Greenland (Denmark), Iceland, Norway, Russia, Sweden and the United States. Although Arctic peoples are very diverse, there are a variety...... of environmental and health issues that are unique to the Arctic regions, and research exploring these issues offers significant opportunities, as well as challenges. On July 28-29, 2004, the National Heart, Lung, and Blood Institute and the Canadian Institutes of Health Research co-sponsored a working group...... entitled "Research with Arctic Peoples: Unique Research Opportunities in Heart, Lung, Blood and Sleep Disorders". The meeting was international in scope with investigators from Greenland, Iceland and Russia, as well as Canada and the United States. Multiple health agencies from Canada and the United States...

  15. Application of Visible/near Infrared derivative spectroscopy to Arctic paleoceanography

    Science.gov (United States)

    Ortiz, Joseph D.

    2011-05-01

    The lack of well-preserved carbonate in much of the Arctic marine environment dictates the need for alternative methods of paleoceanographic reconstruction. The broad variety of physical properties measurements makes them well suited for use in a variety of environments, but they provide unique opportunities when employed in the Arctic. Because Arctic sediment is introduced and reworked by a variety of mechanisms, the signature from multiple processes becomes intermixed with the sediment. Many of these processes operate in other ocean basins, while some function only in Polar Regions. A strategy to address this mixing problem is to employ spectrally-resolved physical properties measurements, or to use multiple methods in conjunction to generate multivariate data sets, which can differentiate concurrent processes. Data of this type is well suited to multivariate analysis techniques such as sample-based or variable-based, varimax-rotated, principle component analysis (VPCA). These are methods that decompose the data matrix to infer process from orthogonal functions. The method is applied to cores from the Chukchi sea to document that visible derivative spectroscopy provides a powerful means of reconstructing sediment provenance. In the Chukchi Sea, diffuse spectral reflectance provides a proxy to monitor variations in Holocene flow through the Bering Strait.

  16. Application of Visible/near Infrared derivative spectroscopy to Arctic paleoceanography

    International Nuclear Information System (INIS)

    Ortiz, Joseph D

    2011-01-01

    The lack of well-preserved carbonate in much of the Arctic marine environment dictates the need for alternative methods of paleoceanographic reconstruction. The broad variety of physical properties measurements makes them well suited for use in a variety of environments, but they provide unique opportunities when employed in the Arctic. Because Arctic sediment is introduced and reworked by a variety of mechanisms, the signature from multiple processes becomes intermixed with the sediment. Many of these processes operate in other ocean basins, while some function only in Polar Regions. A strategy to address this mixing problem is to employ spectrally-resolved physical properties measurements, or to use multiple methods in conjunction to generate multivariate data sets, which can differentiate concurrent processes. Data of this type is well suited to multivariate analysis techniques such as sample-based or variable-based, varimax-rotated, principle component analysis (VPCA). These are methods that decompose the data matrix to infer process from orthogonal functions. The method is applied to cores from the Chukchi sea to document that visible derivative spectroscopy provides a powerful means of reconstructing sediment provenance. In the Chukchi Sea, diffuse spectral reflectance provides a proxy to monitor variations in Holocene flow through the Bering Strait.

  17. Determination of a Critical Sea Ice Thickness Threshold for the Central Arctic Ocean

    Science.gov (United States)

    Ford, V.; Frauenfeld, O. W.; Nowotarski, C. J.

    2017-12-01

    While sea ice extent is readily measurable from satellite observations and can be used to assess the overall survivability of the Arctic sea ice pack, determining the spatial variability of sea ice thickness remains a challenge. Turbulent and conductive heat fluxes are extremely sensitive to ice thickness but are dominated by the sensible heat flux, with energy exchange expected to increase with thinner ice cover. Fluxes over open water are strongest and have the greatest influence on the atmosphere, while fluxes over thick sea ice are minimal as heat conduction from the ocean through thick ice cannot reach the atmosphere. We know that turbulent energy fluxes are strongest over open ocean, but is there a "critical thickness of ice" where fluxes are considered non-negligible? Through polar-optimized Weather Research and Forecasting model simulations, this study assesses how the wintertime Arctic surface boundary layer, via sensible heat flux exchange and surface air temperature, responds to sea ice thinning. The region immediately north of Franz Josef Land is characterized by a thickness gradient where sea ice transitions from the thickest multi-year ice to the very thin marginal ice seas. This provides an ideal location to simulate how the diminishing Arctic sea ice interacts with a warming atmosphere. Scenarios include both fixed sea surface temperature domains for idealized thickness variability, and fixed ice fields to detect changes in the ocean-ice-atmosphere energy exchange. Results indicate that a critical thickness threshold exists below 1 meter. The threshold is between 0.4-1 meters thinner than the critical thickness for melt season survival - the difference between first year and multi-year ice. Turbulent heat fluxes and surface air temperature increase as sea ice thickness transitions from perennial ice to seasonal ice. While models predict a sea ice free Arctic at the end of the warm season in future decades, sea ice will continue to transform

  18. Stratigraphy of the south polar region of Ganymede

    Science.gov (United States)

    Dehon, R. A.

    1987-01-01

    A preliminary assessment is made of the stratigraphy and geology in the south polar region of the Jovian satellite, Ganymede. Geologic mapping is based on inspection of Voyager images and compilation on an airbrush base map at a scale of 1:5M. Illumination and resolution vary greatly in the region. Approximately half of the quadripole is beyond the terminator. Low angle illumination over a large part of the area precludes distinction of some units by albedo characteristics. Several types of grooved terrain and groove related terrain occur in the southern polar region. Grooves typically occur in straight to curvilinear sets or lanes. Bright lanes and grooved lanes intersect at high angles outlining polygons of dark cratered terrain. Groove sets exhibit a range of ages as shown by superposition or truncation and by crater superposition ages.

  19. Economic Valuation of Ecosystem Goods and Services in a Melting Arctic

    Science.gov (United States)

    O'Garra, T.

    2014-12-01

    The Arctic region is composed of unique ecosystems that provide a range of goods and services to local and global populations. However, Arctic sea-ice is melting at an unprecedented rate, threatening many of these ecosystems and the services they provide. Yet as the ice melts and certain goods and services are lost, other resources such as oil and minerals will become accessible. The question is: how do the losses compare with the opportunities? And how are the losses and potential gains likely to be distributed? To address these questions, this study provides a preliminary assessment of the quantity, distribution and economic value of the ecosystem services (ES) provided by Arctic ecosystems, both now and in the future given a scenario of sure climate change. Using biophysical and economic data from existing studies (and some primary data), preliminary estimates indicate that the Arctic currently provides 357m/yr (in 2014 US) in subsistence hunting value to local communities, of which reindeer/caribou comprise 83%. Reindeer herding provides 110m/yr to Arctic communities. Interestingly, 'non-use (existence/cultural) values' associated with Arctic species are very high at 11bn/yr to members of Arctic states. The Arctic also provides ES that accrue to the global community: oil resources (North Slope; 5bn profits in 2013), commercial fisheries ( 515mn/yr) and most importantly, climate regulation services. Recent models (Whiteman; Euskirchen) estimate that the loss of climate regulation services provided by Arctic ice will cost 200 - 500bn/yr, a value which dwarfs all others. Assuming no change in atmospheric temperature compared to 2014, the net present value of the Arctic by 2050 (1.4% discount rate) comes to over $9 trillion. However, given Wang and Overland (2009) predictions of ice-free summers by 2037, we expect many of these benefits will be lost. For example, it is fairly well-established that endemic species, such as polar bears, will decline with sea-ice melt

  20. The Distributed Biological Observatory (DBO): A Change Detection Array in the Pacific Arctic Region

    Science.gov (United States)

    Grebmeier, J. M.; Moore, S. E.; Cooper, L. W.; Frey, K. E.; Pickart, R. S.

    2012-12-01

    The Pacific region of the Arctic Ocean is experiencing major reductions in seasonal sea ice extent and increases in sea surface temperatures. One of the key uncertainties in this region is how the marine ecosystem will respond to seasonal shifts in the timing of spring sea ice retreat and/or delays in fall sea ice formation. Climate changes are likely to result in shifts in species composition and abundance, northward range expansions, and changes in lower trophic level productivity that can directly cascade and affect the life cycles of higher trophic level organisms. The developing Distributed Biological Observatory (DBO) is composed of focused biological and oceanographic sampling at biological "hot spot" sites for lower and higher trophic organisms on a latitudinal S-to-N array. The DBO is being developed by an international consortium of scientists in the Pacific Arctic as a change detection array to systematically track the broad biological response to sea ice retreat and associated environmental change. Coordinated ship-based observations over various seasons, together with satellite and mooring data collections at the designated sites, can provide an early detection system for biological and ecosystem response to climate warming. The data documenting the importance of these ecosystem "hotspots" provide a growing marine time-series from the northern Bering Sea to Barrow Canyon at the boundary of the Chukchi and Beaufort seas. Results from these studies show spatial changes in carbon production and export to the sediments as indicated by infaunal community composition and biomass, shifts in sediment grain size on a S-to-N latitudinal gradient, and range extensions for lower trophic levels and further northward migration of higher trophic organisms, such as gray whales. There is also direct evidence of negative impacts on ice dependent species, such as walrus and polar bears. As a ramp up to a fully operational observatory, hydrographic transects and select

  1. Squaring the Arctic Circle: connecting Arctic knowledge with societal needs

    Science.gov (United States)

    Wilkinson, J.

    2017-12-01

    Over the coming years the landscape of the Arctic will change substantially- environmentally, politically, and economically. Furthermore, Arctic change has the potential to significantly impact Arctic and non-Arctic countries alike. Thus, our science is in-demand by local communities, politicians, industry leaders and the public. During these times of transition it is essential that the links between science and society be strengthened further. Strong links between science and society is exactly what is needed for the development of better decision-making tools to support sustainable development, enable adaptation to climate change, provide the information necessary for improved management of assets and operations in the Arctic region, and and to inform scientific, economic, environmental and societal policies. By doing so tangible benefits will flow to Arctic societies, as well as for non-Arctic countries that will be significantly affected by climate change. Past experience has shown that the engagement with a broad range of stakeholders is not always an easy process. Consequently, we need to improve collaborative opportunities between scientists, indigenous/local communities, private sector, policy makers, NGOs, and other relevant stakeholders. The development of best practices in this area must build on the collective experiences of successful cross-sectorial programmes. Within this session we present some of the outreach work we have performed within the EU programme ICE-ARC, from community meetings in NW Greenland through to sessions at the United Nations Framework Convention on Climate Change COP Conferences, industry round tables, and an Arctic side event at the World Economic Forum in Davos.

  2. Disparities in Arctic Health

    Centers for Disease Control (CDC) Podcasts

    2008-02-04

    Life at the top of the globe is drastically different. Harsh climate devoid of sunlight part of the year, pockets of extreme poverty, and lack of physical infrastructure interfere with healthcare and public health services. Learn about the challenges of people in the Arctic and how research and the International Polar Year address them.  Created: 2/4/2008 by Emerging Infectious Diseases.   Date Released: 2/20/2008.

  3. Arctic Ocean Regional Climatology (NCEI Accession 0115771)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To provide an improved oceanographic foundation and reference for multi-disciplinary studies of the Arctic Ocean, NCEI developed a new set of high-resolution...

  4. The PLOT (Paleolimnological Transect) Project in the Russian Arctic

    Science.gov (United States)

    Gromig, R.; Andreev, A.; Baumer, M.; Bolshiyanov, D.; Fedorov, G.; Frolova, L.; Krastel, S.; Lebas, E.; Ludikova, A.; Melles, M.; Meyer, H.; Nazarova, L.; Pestryakova, L.; Savelieva, L.; Shumilovskikh, L.; Subetto, D.; Wagner, B.; Wennrich, V.

    2017-12-01

    The joint Russian- German project 'PLOT - Paleolimnological Transec' aims to recover lake sediment sequences along a >6000 km long longitudinal transect across the Eurasian Arctic in order to investigate the Late Quaternary climatic and environmental history. The climate history of the Arctic is of particular interest since it is the region, which is experiencing major impact of the current climate change. The project is funded for three years (2015-2018) by the Russian and German Ministries of Research. Since 2013 extensive fieldwork, including seismic surveys, coring, and hydrological investigations, was carried out at lakes Ladoga (NW Russia, pilot study), Bolshoye Shuchye (Polar Urals), Emanda (Verkhoyansk Range, field campaign planned for August 2017), Levinson-Lessing and Taymyr (Taymyr Peninsula). Fieldwork at lakes Bolshoye Shuchye, Levinson-Lessing and Taymyr was conducted in collaboration with the Russian-Norwegian CHASE (Climate History along the Arctic Seaboard of Eurasia) project. A major objective of the PLOT project was to recover preglacial sediments. A multiproxy approach was applied to the analytical work of all cores, including (bio-)geochemical, sedimentological, geophysical, and biological analyses. First data implies the presence of preglacial sediments in the cores from all lakes so far visited. Age-depth models, based on radiocarbon dating, OSL dating, paleomagnetic measurements, identification of cryptotephra, and varve counting (where applicable), are in progress. Climate variability in the records shall be compared to that recorded at Lake Eĺgygytgyn (NE Russia), which represents the master record for the Siberian Arctic. The outcome of the PLOT project will be a better understanding of the temporal and spatial variability and development of the Arctic climate. Here, we present the major results and first key interpretations of the PLOT project, along with an outlook on the future strategy and foci. First results from lakes Ladoga

  5. Selection of cooling fluid for an organic Rankine cycle unit recovering heat on a container ship sailing in the Arctic region

    DEFF Research Database (Denmark)

    Suárez de la Fuente, Santiago; Larsen, Ulrik; Pierobon, Leonardo

    2017-01-01

    As Arctic sea ice coverage declines it is expected that marine traffic could increase in this northern region due to shorter routes. Navigating in the Arctic offers opportunities and challenges for waste heat recovery systems (WHRS). Lower temperatures require larger heating power on board, hence...... air as coolant. This paper explores the use of two different coolants, air and seawater, for an organic Rankine cycle (ORC) unit using the available waste heat in the scavenge air system of a container ship navigating in Arctic Circle. Using a two-step single objective optimisation process, detailed...

  6. Games in the Arctic: applying game theory insights to Arctic challenges

    Directory of Open Access Journals (Sweden)

    Scott Cole

    2014-08-01

    Full Text Available We illustrate the benefits of game theoretic analysis for assisting decision-makers in resolving conflicts and other challenges in a rapidly evolving region. We review a series of salient Arctic issues with global implications—managing open-access fisheries, opening Arctic areas for resource extraction and ensuring effective environmental regulation for natural resource extraction—and provide insights to help reach socially preferred outcomes. We provide an overview of game theoretic analysis in layman's terms, explaining how game theory can help researchers and decision-makers to better understand conflicts, and how to identify the need for, and improve the design of, policy interventions. We believe that game theoretic tools are particularly useful in a region with a diverse set of players ranging from countries to firms to individuals. We argue that the Arctic Council should take a more active governing role in the region by, for example, dispersing information to “players” in order to alleviate conflicts regarding the management of common-pool resources such as open-access fisheries and natural resource extraction. We also identify side payments—that is, monetary or in-kind compensation from one party of a conflict to another—as a key mechanism for reaching a more biologically, culturally and economically sustainable Arctic future. By emphasizing the practical insights generated from an academic discipline, we present game theory as an influential tool in shaping the future of the Arctic—for individual researchers, for inter-disciplinary research and for policy-makers themselves.

  7. Estimation of the Cloud condensation nuclei concentration(CCN) and aerosol optical depth(AOD) relation in the Arctic region

    Science.gov (United States)

    Jung, C. H.; Yoon, Y. J.; Ahn, S. H.; Kang, H. J.; Gim, Y. T.; Lee, B. Y.

    2017-12-01

    Information of the spatial and temporal variations of cloud condensation nuclei (CCN) concentrations is important in estimating aerosol indirect effects. Generally, CCN aerosol is difficult to estimate using remote sensing methods. Although there are many CCN measurements data, extensive measurements of CCN are not feasible because of the complex nature of the operation and high cost, especially in the Arctic region. Thus, there have been many attempts to estimate CCN concentrations from more easily obtainable parameters such as aerosol optical depth (AOD) because AOD has the advantage of being readily observed by remote sensing from space by several sensors. For example, some form of correlation was derived between AOD and the number concentration of cloud condensation nuclei (CCN) through the comparison results from AERONET network and CCN measurements (Andreae 2009). In this study, a parameterization of CCN concentration as a function of AOD at 500 nm is given in the Arctic region. CCN data was collected during the period 2007-2013 at the Zeppelin observatory (78.91° N, 11.89° E, 474 masl). The AERONET network and MODIS AOD data are compared with ground measured CCN measurement and the relations between AOD and CCN are parameterized. The seasonal characteristics as well as long term trends are also considered. Through the measurement, CCN concentration remains high during spring because of aerosol transportation from the mid-latitudes, known as Arctic Haze. Lowest CCN number densities were observed during Arctic autumn and early winter when aerosol long-range transport into the Arctic is not effective and new particle formation ceases. The results show that the relation between AOD and CCN shows a different parameter depending on the seasonal aerosol and CCN characteristics. This seasonal different CCN-AOD relation can be interpreted as many physico-chemical aerosol properties including aerosol size distribution, composition. ReferenceAndreae, M. O. (2009

  8. The Impact of Stratospheric Circulation Extremes on Minimum Arctic Sea Ice Extent

    Science.gov (United States)

    Smith, K. L.; Polvani, L. M.; Tremblay, B.

    2017-12-01

    The interannual variability of summertime Arctic sea ice extent (SIE) is anti-correlated with the leading mode of extratropical atmospheric variability in preceding winter, the Arctic Oscillation (AO). Given this relationship and the need for better seasonal predictions of Arctic SIE, we here examine the role of stratospheric circulation extremes and stratosphere-troposphere coupling in linking the AO and Arctic SIE variability. We show that extremes in the stratospheric circulation during the winter season, namely stratospheric sudden warming (SSW) and strong polar vortex (SPV) events, are associated with significant anomalies in sea ice concentration in the Bering Straight and the Sea of Okhotsk in winter, the Barents Sea in spring and along the Eurasian coastline in summer in both observations and a fully-coupled, stratosphere-resolving general circulation model. The accompanying figure shows the composite mean sea ice concentration anomalies from the Whole Atmosphere Community Climate Model (WACCM) for SSWs (N = 126, top row) and SPVs (N = 99, bottom row) for winter (a,d), spring (b,e) and summer (c,f). Consistent with previous work on the AO, we find that SSWs, which are followed by the negative phase of the AO at the surface, result in sea ice growth, whereas SPVs, which are followed by the positive phase of the AO at the surface, result in sea ice loss, although the dynamic and thermodynamic processes driving these sea ice anomalies in the three Arctic regions, noted above, are different. Our analysis suggests that the presence or absence of stratospheric circulation extremes in winter may play a non-trivial role in determining total September Arctic SIE when combined with other factors.

  9. Polarization images of the inner regions of Comet Halley

    International Nuclear Information System (INIS)

    Eaton, N.; Scarrott, S.M.; Warren-Smith, R.F.

    1988-01-01

    The present CCD polarimeter images of intensity and polarization within the near-nucleus regions of Comet Halley show the occurrence of dust jets on two days in January, 1986, which exhibit increased polarizations above the level of the surrounding coma. Three possible reasons for the enhanced polarization in the jets are considered, assuming that the polarization increase is due to dust grains: (1) the size distribution of the grains could be different from the surrounding coma; (2) the material of the grains could have a different refractive index; and (3) the ratio of dust to gas emission could be different in the jets. 13 references

  10. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples

    Science.gov (United States)

    Lusher, Amy L.; Tirelli, Valentina; O’Connor, Ian; Officer, Rick

    2015-01-01

    Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment. PMID:26446348

  11. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples

    Science.gov (United States)

    Lusher, Amy L.; Tirelli, Valentina; O'Connor, Ian; Officer, Rick

    2015-10-01

    Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment.

  12. Polar oceans in a changing climate.

    Science.gov (United States)

    Barnes, David K A; Tarling, Geraint A

    2017-06-05

    environmentally constant surface regions for several millions of years, with most land ice-covered and much of the ocean seasonally freezing. The two poles have much in common, such as light climate, temperature and water viscosity, winter calm and summer (iceberg and storm) disturbance and resources. However, they are also regions of striking contrasts: the Arctic Ocean is near surrounded by land compared with the Antarctic continent, which is surrounded by the Southern Ocean. Polar oceans contrast in size, age, isolation, depth, oceanography, biology and human factors, such as governance and human habitation. The simplest foodwebs with the smallest residents live on the 1% of Antarctica that is ice free, whilst the largest animals that have ever lived on Earth (Blue and Fin whales) feed in the Arctic and Southern Oceans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Arctic-HYCOS: a Large Sample observing system for estimating freshwater fluxes in the drainage basin of the Arctic Ocean

    Science.gov (United States)

    Pietroniro, Al; Korhonen, Johanna; Looser, Ulrich; Hardardóttir, Jórunn; Johnsrud, Morten; Vuglinsky, Valery; Gustafsson, David; Lins, Harry F.; Conaway, Jeffrey S.; Lammers, Richard; Stewart, Bruce; Abrate, Tommaso; Pilon, Paul; Sighomnou, Daniel; Arheimer, Berit

    2015-04-01

    The Arctic region is an important regulating component of the global climate system, and is also experiencing a considerable change during recent decades. More than 10% of world's river-runoff flows to the Arctic Ocean and there is evidence of changes in its fresh-water balance. However, about 30% of the Arctic basin is still ungauged, with differing monitoring practices and data availability from the countries in the region. A consistent system for monitoring and sharing of hydrological information throughout the Arctic region is thus of highest interest for further studies and monitoring of the freshwater flux to the Arctic Ocean. The purpose of the Arctic-HYCOS project is to allow for collection and sharing of hydrological data. Preliminary 616 stations were identified with long-term daily discharge data available, and around 250 of these already provide online available data in near real time. This large sample will be used in the following scientific analysis: 1) to evaluate freshwater flux to the Arctic Ocean and Seas, 2) to monitor changes and enhance understanding of the hydrological regime and 3) to estimate flows in ungauged regions and develop models for enhanced hydrological prediction in the Arctic region. The project is intended as a component of the WMO (World Meteorological Organization) WHYCOS (World Hydrological Cycle Observing System) initiative, covering the area of the expansive transnational Arctic basin with participation from Canada, Denmark, Finland, Iceland, Norway, Russian Federation, Sweden and United States of America. The overall objective is to regularly collect, manage and share high quality data from a defined basic network of hydrological stations in the Arctic basin. The project focus on collecting data on discharge and possibly sediment transport and temperature. Data should be provisional in near-real time if available, whereas time-series of historical data should be provided once quality assurance has been completed. The

  14. Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish.

    Science.gov (United States)

    Letcher, Robert J; Bustnes, Jan Ove; Dietz, Rune; Jenssen, Bjørn M; Jørgensen, Even H; Sonne, Christian; Verreault, Jonathan; Vijayan, Mathilakath M; Gabrielsen, Geir W

    2010-07-01

    Persistent organic pollutants (POPs) encompass an array of anthropogenic organic and elemental substances and their degradation and metabolic byproducts that have been found in the tissues of exposed animals, especially POPs categorized as organohalogen contaminants (OHCs). OHCs have been of concern in the circumpolar arctic for decades. For example, as a consequence of bioaccumulation and in some cases biomagnification of legacy (e.g., chlorinated PCBs, DDTs and CHLs) and emerging (e.g., brominated flame retardants (BFRs) and in particular polybrominated diphenyl ethers (PBDEs) and perfluorinated compounds (PFCs) including perfluorooctane sulfonate (PFOS) and perfluorooctanic acid (PFOA) found in Arctic biota and humans. Of high concern are the potential biological effects of these contaminants in exposed Arctic wildlife and fish. As concluded in the last review in 2004 for the Arctic Monitoring and Assessment Program (AMAP) on the effects of POPs in Arctic wildlife, prior to 1997, biological effects data were minimal and insufficient at any level of biological organization. The present review summarizes recent studies on biological effects in relation to OHC exposure, and attempts to assess known tissue/body compartment concentration data in the context of possible threshold levels of effects to evaluate the risks. This review concentrates mainly on post-2002, new OHC effects data in Arctic wildlife and fish, and is largely based on recently available effects data for populations of several top trophic level species, including seabirds (e.g., glaucous gull (Larus hyperboreus)), polar bears (Ursus maritimus), polar (Arctic) fox (Vulpes lagopus), and Arctic charr (Salvelinus alpinus), as well as semi-captive studies on sled dogs (Canis familiaris). Regardless, there remains a dearth of data on true contaminant exposure, cause-effect relationships with respect to these contaminant exposures in Arctic wildlife and fish. Indications of exposure effects are largely

  15. Radiative Impacts of Further Arctic Sea Ice Melt: Using past Observations to Inform Future Climate Impacts

    Science.gov (United States)

    Pistone, K.; Eisenman, I.; Ramanathan, V.

    2017-01-01

    The Arctic region has seen dramatic changes over the past several decades, from polar amplification of global temperature rise to ecosystem changes to the decline of the sea ice. While there has been much speculation as to when the world will see an ice-free Arctic, the radiative impacts of an eventual disappearance of the Arctic sea ice are likely to be significant regardless of the timing. Using CERES radiation and microwave satellite sea ice data, Pistone et al (2014) estimated the radiative forcing due to albedo changes associated with the Arctic sea ice retreat over the 30 years of the satellite data record. In this study, we found that the Arctic Ocean saw a decrease in all-sky albedo of 4% (from 52% to 48%), for an estimated increase in solar heating of 6.4 W/m(exp 2) between 1979 and 2011, or 0.21 W/m(exp 2) when averaged over the globe. This value is substantial--approximately 25% as large as the forcing due to the change in CO2 during the same period. Here we update and expand upon this previous work and use the CERES broadband shortwave observations to explore the radiative impacts of a transition to completely ice-free Arctic Ocean. We estimate the annually-averaged Arctic Ocean planetary albedo under ice-free and cloud-free conditions to be 14% over the region, or approximately 25% lower in absolute terms than the Arctic Ocean cloud-free albedo in 1979. However, the question of all-sky conditions (i.e. including the effects of clouds) introduces a new level of complexity. We explore several cloud scenarios and the resultant impact on albedo. In each of these cases, the estimated forcing is not uniformly distributed throughout the year. We describe the relative contributions of ice loss by month as well as the spatial distributions of the resulting changes in absorbed solar energy. The seasonal timing and location—in addition to magnitude—of the altered solar absorption may have significant implications for atmospheric and ocean dynamics in the

  16. Evidence for ephemeral middle Eocene to early Oligocene Greenland glacial ice and pan-Arctic sea ice.

    Science.gov (United States)

    Tripati, Aradhna; Darby, Dennis

    2018-03-12

    Earth's modern climate is defined by the presence of ice at both poles, but that ice is now disappearing. Therefore understanding the origin and causes of polar ice stability is more critical than ever. Here we provide novel geochemical data that constrain past dynamics of glacial ice on Greenland and Arctic sea ice. Based on accurate source determinations of individual ice-rafted Fe-oxide grains, we find evidence for episodic glaciation of distinct source regions on Greenland as far-ranging as ~68°N and ~80°N synchronous with ice-rafting from circum-Arctic sources, beginning in the middle Eocene. Glacial intervals broadly coincide with reduced CO 2 , with a potential threshold for glacial ice stability near ~500 p.p.m.v. The middle Eocene represents the Cenozoic onset of a dynamic cryosphere, with ice in both hemispheres during transient glacials and substantial regional climate heterogeneity. A more stable cryosphere developed at the Eocene-Oligocene transition, and is now threatened by anthropogenic emissions.

  17. High interannual variability of sea ice thickness in the Arctic region.

    Science.gov (United States)

    Laxon, Seymour; Peacock, Neil; Smith, Doug

    2003-10-30

    Possible future changes in Arctic sea ice cover and thickness, and consequent changes in the ice-albedo feedback, represent one of the largest uncertainties in the prediction of future temperature rise. Knowledge of the natural variability of sea ice thickness is therefore critical for its representation in global climate models. Numerical simulations suggest that Arctic ice thickness varies primarily on decadal timescales owing to changes in wind and ocean stresses on the ice, but observations have been unable to provide a synoptic view of sea ice thickness, which is required to validate the model results. Here we use an eight-year time-series of Arctic ice thickness, derived from satellite altimeter measurements of ice freeboard, to determine the mean thickness field and its variability from 65 degrees N to 81.5 degrees N. Our data reveal a high-frequency interannual variability in mean Arctic ice thickness that is dominated by changes in the amount of summer melt, rather than by changes in circulation. Our results suggest that a continued increase in melt season length would lead to further thinning of Arctic sea ice.

  18. Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: Implications for the configuration of late Quaternary oceanic and atmospheric circulation in the Arctic

    Science.gov (United States)

    Phillips, R.L.; Grantz, A.

    2001-01-01

    The composition and distribution of ice-rafted glacial erratics in late Quaternary sediments define the major current systems of the Arctic Ocean and identify two distinct continental sources for the erratics. In the southern Amerasia basin up to 70% of the erratics are dolostones and limestones (the Amerasia suite) that originated in the carbonate-rich Paleozoic terranes of the Canadian Arctic Islands. These clasts reached the Arctic Ocean in glaciers and were ice-rafted to the core sites in the clockwise Beaufort Gyre. The concentration of erratics decreases northward by 98% along the trend of the gyre from southeastern Canada basin to Makarov basin. The concentration of erratics then triples across the Makarov basin flank of Lomonosov Ridge and siltstone, sandstone and siliceous clasts become dominant in cores from the ridge and the Eurasia basin (the Eurasia suite). The bedrock source for the siltstone and sandstone clasts is uncertain, but bedrock distribution and the distribution of glaciation in northern Eurasia suggest the Taymyr Peninsula-Kara Sea regions. The pattern of clast distribution in the Arctic Ocean sediments and the sharp northward decrease in concentration of clasts of Canadian Arctic Island provenance in the Amerasia basin support the conclusion that the modem circulation pattern of the Arctic Ocean, with the Beaufort Gyre dominant in the Amerasia basin and the Transpolar drift dominant in the Eurasia basin, has controlled both sea-ice and glacial iceberg drift in the Arctic Ocean during interglacial intervals since at least the late Pleistocene. The abruptness of the change in both clast composition and concentration on the Makarov basin flank of Lomonosov Ridge also suggests that the boundary between the Beaufort Gyre and the Transpolar Drift has been relatively stable during interglacials since that time. Because the Beaufort Gyre is wind-driven our data, in conjunction with the westerly directed orientation of sand dunes that formed during

  19. Comparative assessment of single and joint effects of diuron and Irgarol 1051 on Arctic and temperate microalgae using chlorophyll a fluorescence imaging

    KAUST Repository

    Kottuparambil, Sreejith

    2017-02-06

    Ship groundings and ice-breakers can cause pollution of the polar environment with antifouling biocides such as diuron and Irgarol 1051. The present study used pulse amplitude modulated fluorometry to compare single and joint toxicities of diuron and Irgarol 1051 on two freshwater taxa of microalgae (Chlorella and Chlamydomonas) originating from Arctic and temperate regions. 30min acute toxicity tests using chlorophyll a (Chl a) fluorescence revealed that Arctic strains of microalgae were more sensitive to herbicides than their temperate counterparts. Diuron and Irgarol 1051 had equal toxicities in the Arctic species, while Irgarol 1051 was more toxic (EC50=5.55–14.70μgL−1) than diuron (EC50=12.90–>40μgL−1) in the temperate species. Toxicity assessment of various mixtures of diuron and Irgarol 1051 revealed antagonistic, additive, and synergistic effects. Our data suggest that herbicides can adversely affect photosynthesis in Arctic microalgae at relatively low levels, and their impact can increase under complex mixture conditions.

  20. Comparative assessment of single and joint effects of diuron and Irgarol 1051 on Arctic and temperate microalgae using chlorophyll a fluorescence imaging

    KAUST Repository

    Kottuparambil, Sreejith; Brown, Murray T.; Park, Jihae; Choi, Soyeon; Lee, Hojun; Choi, Han-Gu; Depuydt, Stephen; Han, Taejun

    2017-01-01

    Ship groundings and ice-breakers can cause pollution of the polar environment with antifouling biocides such as diuron and Irgarol 1051. The present study used pulse amplitude modulated fluorometry to compare single and joint toxicities of diuron and Irgarol 1051 on two freshwater taxa of microalgae (Chlorella and Chlamydomonas) originating from Arctic and temperate regions. 30min acute toxicity tests using chlorophyll a (Chl a) fluorescence revealed that Arctic strains of microalgae were more sensitive to herbicides than their temperate counterparts. Diuron and Irgarol 1051 had equal toxicities in the Arctic species, while Irgarol 1051 was more toxic (EC50=5.55–14.70μgL−1) than diuron (EC50=12.90–>40μgL−1) in the temperate species. Toxicity assessment of various mixtures of diuron and Irgarol 1051 revealed antagonistic, additive, and synergistic effects. Our data suggest that herbicides can adversely affect photosynthesis in Arctic microalgae at relatively low levels, and their impact can increase under complex mixture conditions.

  1. Association of climatic factors with infectious diseases in the Arctic and subarctic region--a systematic review.

    Science.gov (United States)

    Hedlund, Christina; Blomstedt, Yulia; Schumann, Barbara

    2014-01-01

    The Arctic and subarctic area are likely to be highly affected by climate change, with possible impacts on human health due to effects on food security and infectious diseases. To investigate the evidence for an association between climatic factors and infectious diseases, and to identify the most climate-sensitive diseases and vulnerable populations in the Arctic and subarctic region. A systematic review was conducted. A search was made in PubMed, with the last update in May 2013. Inclusion criteria included human cases of infectious disease as outcome, climate or weather factor as exposure, and Arctic or subarctic areas as study origin. Narrative reviews, case reports, and projection studies were excluded. Abstracts and selected full texts were read and evaluated by two independent readers. A data collection sheet and an adjusted version of the SIGN methodology checklist were used to assess the quality grade of each article. In total, 1953 abstracts were initially found, of which finally 29 articles were included. Almost half of the studies were carried out in Canada (n=14), the rest from Sweden (n=6), Finland (n=4), Norway (n=2), Russia (n=2), and Alaska, US (n=1). Articles were analyzed by disease group: food- and waterborne diseases, vector-borne diseases, airborne viral- and airborne bacterial diseases. Strong evidence was found in our review for an association between climatic factors and food- and waterborne diseases. The scientific evidence for a link between climate and specific vector- and rodent-borne diseases was weak due to that only a few diseases being addressed in more than one publication, although several articles were of very high quality. Air temperature and humidity seem to be important climatic factors to investigate further for viral- and bacterial airborne diseases, but from our results no conclusion about a causal relationship could be drawn. More studies of high quality are needed to investigate the adverse health impacts of weather and

  2. Evaluation of the functional activity of activated sludge from local waste water treatment plant in the Arctic region

    Directory of Open Access Journals (Sweden)

    Il'inskiy V. V.

    2017-03-01

    Full Text Available The paper considers characteristics of the activated sludge in the local wastewater treatment plant (LWTP and its ability to purify fully domestic sewage water in the Far North. Biochemical process of destruction of organic pollutants is influenced by a microbial complex functioning in aeration tanks. Taking into account climatic conditions of the region where the organic matter degradation processes are slowed, and lack of control over the operation, efficiency and occupational safety of LWTPs, it seems to be important to study the physiological characteristics of the bacteria used in bioremediation, and their ability to maximize the purifying domestic sewage in the Arctic region. Undue intervention in the biosphere systems leads to disruption of the balance of internal and external ecosystems communications. The goal of research is studying structural determination and functioning of activated sludge bacteriocenosis of LWTP TOPAS-5 (GK "Topol-ECO" in certain physical and chemical conditions of the habitat, and establishing completeness of cleaning process in this treatment plant. The paper considers the structure (quantitative and qualitative composition and function of LWTP activated sludge bacteriocenosis functioning in the Arctic region. The estimation of the activated sludge of full waste water treatment process of the LWTP has been given. The research's results have allowed to identify and determine the bacterial count of physiological groups of microorganisms purified domestic sewage; to isolate from activated sludge the bioflocculant-producing microorganisms' on the experimental medium; to evaluate efficiency of LWTP work in the Arctic region

  3. Record-low primary productivity and high plant damage in the Nordic Arctic Region in 2012 caused by multiple weather events and pest outbreaks

    International Nuclear Information System (INIS)

    Bjerke, Jarle W; Jepsen, Jane U; Lovibond, Sarah; Tømmervik, Hans; Rune Karlsen, Stein; Arild Høgda, Kjell; Malnes, Eirik; Vikhamar-Schuler, Dagrun

    2014-01-01

    The release of cold temperature constraints on photosynthesis has led to increased productivity (greening) in significant parts (32–39%) of the Arctic, but much of the Arctic shows stable (57–64%) or reduced productivity (browning, <4%). Summer drought and wildfires are the best-documented drivers causing browning of continental areas, but factors dampening the greening effect of more maritime regions have remained elusive. Here we show how multiple anomalous weather events severely affected the terrestrial productivity during one water year (October 2011–September 2012) in a maritime region north of the Arctic Circle, the Nordic Arctic Region, and contributed to the lowest mean vegetation greenness (normalized difference vegetation index) recorded this century. Procedures for field data sampling were designed during or shortly after the events in order to assess both the variability in effects and the maximum effects of the stressors. Outbreaks of insect and fungal pests also contributed to low greenness. Vegetation greenness in 2012 was 6.8% lower than the 2000–11 average and 58% lower in the worst affected areas that were under multiple stressors. These results indicate the importance of events (some being mostly neglected in climate change effect studies and monitoring) for primary productivity in a high-latitude maritime region, and highlight the importance of monitoring plant damage in the field and including frequencies of stress events in models of carbon economy and ecosystem change in the Arctic. Fourteen weather events and anomalies and 32 hypothesized impacts on plant productivity are summarized as an aid for directing future research. (letter)

  4. Arctic security and Norway

    Energy Technology Data Exchange (ETDEWEB)

    Tamnes, Rolf

    2013-03-01

    Global warming is one of the most serious threats facing mankind. Many regions and countries will be affected, and there will be many losers. The earliest and most intense climatic changes are being experienced in the Arctic region. Arctic average temperature has risen at twice the rate of the global average in the past half century. These changes provide an early indication for the world of the environmental and societal significance of global warming. For that reason, the Arctic presents itself as an important scientific laboratory for improving our understanding of the causes and patterns of climate changes. The rapidly rising temperature threatens the Arctic ecosystem, but the human consequences seem to be far less dramatic there than in many other places in the world. According to the U.S. National Intelligence Council, Russia has the potential to gain the most from increasingly temperate weather, because its petroleum reserves become more accessible and because the opening of an Arctic waterway could provide economic and commercial advantages. Norway might also be fortunate. Some years ago, the Financial Times asked: #Left Double Quotation Mark#What should Norway do about the fact that global warming will make their climate more hospitable and enhance their financial situation, even as it inflicts damage on other parts of the world?#Right Double Quotation Mark#(Author)

  5. Arctic-COLORS (Coastal Land Ocean Interactions in the Arctic) - a NASA field campaign scoping study to examine land-ocean interactions in the Arctic

    Science.gov (United States)

    Hernes, P.; Tzortziou, M.; Salisbury, J.; Mannino, A.; Matrai, P.; Friedrichs, M. A.; Del Castillo, C. E.

    2014-12-01

    The Arctic region is warming faster than anywhere else on the planet, triggering rapid social and economic changes and impacting both terrestrial and marine ecosystems. Yet our understanding of critical processes and interactions along the Arctic land-ocean interface is limited. Arctic-COLORS is a Field Campaign Scoping Study funded by NASA's Ocean Biology and Biogeochemistry Program that aims to improve understanding and prediction of land-ocean interactions in a rapidly changing Arctic coastal zone, and assess vulnerability, response, feedbacks and resilience of coastal ecosystems, communities and natural resources to current and future pressures. Specific science objectives include: - Quantify lateral fluxes to the arctic inner shelf from (i) rivers and (ii) the outer shelf/basin that affect biology, biodiversity, biogeochemistry (i.e. organic matter, nutrients, suspended sediment), and the processing rates of these constituents in coastal waters. - Evaluate the impact of the thawing of Arctic permafrost within the river basins on coastal biology, biodiversity and biogeochemistry, including various rates of community production and the role these may play in the health of regional economies. - Assess the impact of changing Arctic landfast ice and coastal sea ice dynamics. - Establish a baseline for comparison to future change, and use state-of-the-art models to assess impacts of environmental change on coastal biology, biodiversity and biogeochemistry. A key component of Arctic-COLORS will be the integration of satellite and field observations with coupled physical-biogeochemical models for predicting impacts of future pressures on Arctic, coastal ocean, biological processes and biogeochemical cycles. Through interagency and international collaborations, and through the organization of dedicated workshops, town hall meetings and presentations at international conferences, the scoping study engages the broader scientific community and invites participation of

  6. Nostalgisk erindring og polar karrierehistorie. Fridtjof Nansen: Blant sel og bjørn: min første ishavs-ferd (1924

    Directory of Open Access Journals (Sweden)

    Silje Solheim Karlsen

    2012-05-01

    Full Text Available In Fridtjof Nansens Hunting & adventure in the Arctic (1924, the last polar travel account Nansen wrote, he writes about his first experience with the Arctic; when he as a young student in 1882 joined the sealboat Viking to the sealing grounds outsideGreenland. The account is a polyphonic book where both the young student and the 63 year old scientist and polar hero alternately speaks. The young Nansen seems overwhelmed by the Arctic surroundings, he tells enthusiastically of ice, polar bears, hunting and the sealing. The old scientist explains the nature and whole fauna in the Arctic, supported by his own experiences and all research available. The result is, on the one hand, a nostalgic travelbook which also functions as a memoir over the totalof Nansen´s Arctic travels and expeditions. On the other hand, the convincing andthorough scientific material in the book positions Nansen as an authority both what regards science, but perhaps just as important: as a successful polar explorer and hero.

  7. Australian and Canadian perspectives and regulations for protecting the polar marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Rothwell, Donald R.

    1997-12-31

    The report compares Australian and Canadian responses for protecting polar marine environments. Vast areas of the polar seas fall within their potential combined EEZ/continental shelf jurisdiction. The Antarctic Treaty provisions, doubts on the status of the Northwest Passage waters and the capacity to enforce legislative initiatives against foreign vessels have been constraints. Australia`s enactment of legislation prohibiting mining within the AAT continental shelf and whaling within the AAT EEZ has tested the Antarctic Treaty. Canada`s reaction to the Manhattan and the enactment of the Arctic Waters Pollution Prevention Act is an example of unilateral action. While the countries have made noteworthy initiatives to enhance the protection of their polar marine environments, doubts remain in some instances on their capacity to give effect to the initiatives. However, sovereignty remains at the heart of their response. Failure to address Antarctic marine environmental issues will rebound on the environment and reflect poorly upon Australia`s sovereignty claim to the AAT. For Canada it is a sovereignty issue and has directly impact upon its citizens inhabiting the islands and coastal areas of the Canadian Arctic. The Madrid Protocol provides the strongest legal basis for the Antarctic Treaty parties to enact laws and regulations in Antarctica. Conservation measures adopted under the Convention for the Conservation of Antarctic Marine Living Resources focuses increasingly on environmental concerns. The most significant regional initiative adopted by Arctic states is the AEPS which does not have a legal foundation. It`s co-operative programs provide basis for co-operation in dealing with environmental problems. It clearly recognises that only co-operative responses will achieve significant outcomes. The 1990s have posed new challenges for marine environmental protection such as ship-based tourism in Antarctica and the growing pressure to use the Northwest Passage on a

  8. Arctic Vortex changes alter the sources and isotopic values of precipitation in northeastern US

    Science.gov (United States)

    Puntsag, Tamir; Mitchell, Myron J.; Campbell, John L.; Klein, Eric S.; Likens, Gene E.; Welker, Jeffrey M.

    2016-03-01

    Altered atmospheric circulation, reductions in Arctic sea ice, ocean warming, and changes in evaporation and transpiration are driving changes in the global hydrologic cycle. Precipitation isotopic (δ18O and δ2H) measurements can help provide a mechanistic understanding of hydrologic change at global and regional scales. To study the changing water cycle in the northeastern US, we examined the longest (1968-2010) record of precipitation isotope values, collected at the Hubbard Brook Experimental Forest in New Hampshire, US (43o56‧N, 71o45‧W). We found a significant reduction in δ18O and δ2H values over the 43-year record, coupled with a significant increase in d-excess values. This gradual reduction in δ18O and δ2H values unexpectedly occurred during a period of regional warming. We provide evidence that these changes are governed by the interactions among the Atlantic Multidecadal Oscillation, loss of Arctic sea ice, the fluctuating jet stream, and regular incursions of polar air into the northeastern US.

  9. Pan-Arctic TV Series on Inuit wellness: a northern model of communication for social change?

    Science.gov (United States)

    Johnson, Rhonda; Morales, Robin; Leavitt, Doreen; Carry, Catherine; Kinnon, Dianne; Rideout, Denise; Clarida, Kath

    2011-06-01

    This paper provides highlights of a utilization-focused evaluation of a collaborative Pan-Arctic Inuit Wellness TV Series that was broadcast live in Alaska and Canada in May 2009. This International Polar Year (IPY) communication and outreach project intended to (1) share information on International Polar Year research progress, disseminate findings and explore questions with Inuit in Alaska, Canada and Greenland; (2) provide a forum for Inuit in Alaska, Canada and Greenland to showcase innovative health and wellness projects; (3) ensure Inuit youth and adult engagement throughout; and (4) document and reflect on the overall experience for the purposes of developing and "testing" a participatory communication model. Utilization-focused formative evaluation of the project, with a focus on overall objectives, key messages and lessons learned to facilitate program improvement. Participant observation, surveys, key informant interviews, document review and website tracking. Promising community programs related to 3 themes - men's wellness, maternity care and youth resilience - in diverse circumpolar regions were highlighted, as were current and stillevolving findings from ongoing Arctic research. Multiple media methods were used to effectively deliver and receive key messages determined by both community and academic experts. Local capacity and new regional networks were strengthened. Evidence-based resources for health education and community action were archived in digital formats (websites and DVDs), increasing accessibility to otherwise isolated individuals and remote communities. The Pan-Arctic Inuit Wellness TV Series was an innovative, multi-dimensional communication project that raised both interest and awareness about complex health conditions in the North and stimulated community dialogue and potential for increased collaborative action. Consistent with a communication for social change approach, the project created new networks, increased motivation to act

  10. Marine Corps Equities in the Arctic

    Science.gov (United States)

    2013-04-18

    reduces the shipping time from Yokohama, Japan, to Hamburg , Germany, by 11 days as compared to the Suez Canal. Ships average approximately a 20...areas within the Arctic Circle. 10 Warming ocean water is causing fisheries to shift north as well. Fish populations usually found in the...people live in the Arctic region. Commercial fishing fleets are following these populations. 29 Russia holds the majority of the Arctic population

  11. Improvements to TOVS retrievals over sea ice and applications to estimating Arctic energy fluxes

    Science.gov (United States)

    Francis, Jennifer A.

    1994-01-01

    Modeling studies suggest that polar regions play a major role in modulating the Earth's climate and that they may be more sensitive than lower latitudes to climate change. Until recently, however, data from meteorological stations poleward of 70 degs have been sparse, and consequently, our understanding of air-sea-ice interaction processes is relatively poor. Satellite-borne sensors now offer a promising opportunity to observe polar regions and ultimately to improve parameterizations of energy transfer processes in climate models. This study focuses on the application of the TIROS-N operational vertical sounder (TOVS) to sea-ice-covered regions in the nonmelt season. TOVS radiances are processed with the improved initialization inversion ('3I') algorithm, providng estimates of layer-average temperature and moisture, cloud conditions, and surface characteristics at a horizontal resolution of approximately 100 km x 100 km. Although TOVS has flown continuously on polar-orbiting satellites since 1978, its potential has not been realized in high latitudes because the quality of retrievals is often significantly lower over sea ice and snow than over the surfaces. The recent availability of three Arctic data sets has provided an opportunity to validate TOVS retrievals: the first from the Coordinated Eastern Arctic Experiment (CEAREX) in winter 1988/1989, the second from the LeadEx field program in spring 1992, and the third from Russian drifting ice stations. Comparisons with these data reveal deficiencies in TOVS retrievals over sea ice during the cold season; e.g., ice surface temperature is often 5 to 15 K too warm, microwave emissivity is approximately 15% too low at large view angles, clear/cloudy scenes are sometimes misidentified, and low-level inversions are often not captured. In this study, methods to reduce these errors are investigated. Improvements to the ice surface temperature retrieval have reduced rms errors from approximately 7 K to 3 K; correction of

  12. Long-term trends of black carbon and sulphate aerosol in the Arctic: changes in atmospheric transport and source region emissions

    Directory of Open Access Journals (Sweden)

    D. Hirdman

    2010-10-01

    Full Text Available As a part of the IPY project POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols and Transport and building on previous work (Hirdman et al., 2010, this paper studies the long-term trends of both atmospheric transport as well as equivalent black carbon (EBC and sulphate for the three Arctic stations Alert, Barrow and Zeppelin. We find a general downward trend in the measured EBC concentrations at all three stations, with a decrease of −2.1±0.4 ng m−3 yr−1 (for the years 1989–2008 and −1.4±0.8 ng m−3 yr−1 (2002–2009 at Alert and Zeppelin respectively. The decrease at Barrow is, however, not statistically significant. The measured sulphate concentrations show a decreasing trend at Alert and Zeppelin of −15±3 ng m−3 yr−1 (1985–2006 and −1.3±1.2 ng m−3 yr−1 (1990–2008 respectively, while there is no trend detectable at Barrow.

    To reveal the contribution of different source regions on these trends, we used a cluster analysis of the output of the Lagrangian particle dispersion model FLEXPART run backward in time from the measurement stations. We have investigated to what extent variations in the atmospheric circulation, expressed as variations in the frequencies of the transport from four source regions with different emission rates, can explain the long-term trends in EBC and sulphate measured at these stations. We find that the long-term trend in the atmospheric circulation can only explain a minor fraction of the overall downward trend seen in the measurements of EBC (0.3–7.2% and sulphate (0.3–5.3% at the Arctic stations. The changes in emissions are dominant in explaining the trends. We find that the highest EBC and sulphate concentrations are associated with transport from Northern Eurasia and decreasing emissions in this region drive the

  13. Chapter 4: Regional magnetic domains of the Circum-Arctic: A framework for geodynamic interpretation

    Science.gov (United States)

    Saltus, R.W.; Miller, E.L.; Gaina, C.; Brown, P.J.

    2011-01-01

    We identify and discuss 57 magnetic anomaly pattern domains spanning the Circum-Arctic. The domains are based on analysis of a new Circum-Arctic data compilation. The magnetic anomaly patterns can be broadly related to general geodynamic classification of the crust into stable, deformed (magnetic and nonmagnetic), deep magnetic high, oceanic and large igneous province domains. We compare the magnetic domains with topography/bathymetry, regional geology, regional free air gravity anomalies and estimates of the relative magnetic 'thickness' of the crust. Most of the domains and their geodynamic classification assignments are consistent with their topographic/bathymetric and geological expression. A few of the domains are potentially controversial. For example, the extent of the Iceland Faroe large igneous province as identified by magnetic anomalies may disagree with other definitions for this feature. Also the lack of definitive magnetic expression of oceanic crust in Baffin Bay, the Norwegian-Greenland Sea and the Amerasian Basin is at odds with some previous interpretations. The magnetic domains and their boundaries provide clues for tectonic models and boundaries within this poorly understood portion of the globe. ?? 2011 The Geological Society of London.

  14. Future Marine Polar Research Capacities - Science Planning and Research Services for a Multi-National Research Icebreaker

    Science.gov (United States)

    Biebow, N.; Lembke-Jene, L.; Wolff-Boenisch, B.; Bergamasco, A.; De Santis, L.; Eldholm, O.; Mevel, C.; Willmott, V.; Thiede, J.

    2011-12-01

    Despite significant advances in Arctic and Antarctic marine science over the past years, the polar Southern Ocean remains a formidable frontier due to challenging technical and operational requirements. Thus, key data and observations from this important region are still missing or lack adequate lateral and temporal coverage, especially from time slots outside optimal weather seasons and ice conditions. These barriers combined with the obligation to efficiently use financial resources and funding for expeditions call for new approaches to create optimally equipped, but cost-effective infrastructures. These must serve the international science community in a dedicated long-term mode and enable participation in multi-disciplinary expeditions, with secured access to optimally equipped marine platforms for world-class research in a wide range of Antarctic science topics. The high operational and technical performance capacity of a future joint European Research Icebreaker and Deep-sea Drilling Vessel (the AURORA BOREALIS concept) aims at integrating still separately operating national science programmes with different strategic priorities into joint development of long-term research missions with international cooperation both in Arctic and Antarctica. The icebreaker is planned to enable, as a worldwide first, autonomous year-round operations in the central Arctic and polar Southern Ocean, including severest ice conditions in winter, and serving all polar marine disciplines. It will facilitate the implementation of atmospheric, oceanographic, cryospheric or geophysical observatories for long-term monitoring of the polar environment. Access to the biosphere and hydrosphere e.g. beneath ice shelves or in remote regions is made possible by acting as advanced deployment platform for instruments, robotic and autonomous vehicles and ship-based air operations. In addition to a report on the long-term strategic science and operational planning objectives, we describe foreseen

  15. Large-scale temperature and salinity changes in the upper Canadian Basin of the Arctic Ocean at a time of a drastic Arctic Oscillation inversion

    Directory of Open Access Journals (Sweden)

    P. Bourgain

    2013-04-01

    Full Text Available Between 2008 and 2010, the Arctic Oscillation index over Arctic regions shifted from positive values corresponding to more cyclonic conditions prevailing during the 4th International Polar Year (IPY period (2007–2008 to extremely negative values corresponding to strong anticyclonic conditions in 2010. In this context, we investigated the recent large-scale evolution of the upper western Arctic Ocean, based on temperature and salinity summertime observations collected during icebreaker campaigns and from ice-tethered profilers (ITPs drifting across the region in 2008 and 2010. Particularly, we focused on (1 the freshwater content which was extensively studied during previous years, (2 the near-surface temperature maximum due to incoming solar radiation, and (3 the water masses advected from the Pacific Ocean into the Arctic Ocean. The observations revealed a freshwater content change in the Canadian Basin during this time period. South of 80° N, the freshwater content increased, while north of 80° N, less freshening occurred in 2010 compared to 2008. This was more likely due to the strong anticyclonicity characteristic of a low AO index mode that enhanced both a wind-generated Ekman pumping in the Beaufort Gyre and a possible diversion of the Siberian River runoff toward the Eurasian Basin at the same time. The near-surface temperature maximum due to incoming solar radiation was almost 1 °C colder in the southern Canada Basin (south of 75° N in 2010 compared to 2008, which contrasted with the positive trend observed during previous years. This was more likely due to higher summer sea ice concentration in 2010 compared to 2008 in that region, and surface albedo feedback reflecting more sun radiation back in space. The Pacific water (PaW was also subjected to strong spatial and temporal variability between 2008 and 2010. In the Canada Basin, both summer and winter PaW signatures were stronger between 75° N and 80° N. This was more likely

  16. Psychrophilic and Psychrotolerant Microbial Extremophiles in Polar Environments

    Science.gov (United States)

    Hoover, Richard B.; Pikuta, Elena V.

    2010-01-01

    The microbial extremophiles that inhabit the polar regions of our planet are of tremendous significance. The psychrophilic and psychrotolerant microorganisms, which inhabit all of the cold environments on Earth have important applications to Bioremediation, Medicine, Pharmaceuticals, and many other areas of Biotechnology. Until recently, most of the research on polar microorganisms was confined to studies of polar diatoms, yeast, fungi and cyanobacteria. However, within the past three decades, extensive studies have been conducted to understand the bacteria and archaea that inhabit the Arctic and Antarctic sea-ice, glaciers, ice sheets, permafrost and the cryptoendolithic, cryoconite and ice-bubble environments. These investigations have resulted in the discovery of many new genera and species of anaerobic and aerobic microbial extremophiles. Exotic enzymes, cold-shock proteins and pigments produced by some of the extremophiles from polar environments have the potential to be of great benefit to Mankind. Knowledge about microbial life in the polar regions is crucial to understanding the limitations and biodiversity of life on Earth and may provide valuable clues to the Origin of Life on Earth. The discovery of viable microorganisms in ancient ice from the Fox Tunnel, Alaska and the deep Vostok Ice has shown that microorganisms can remain alive while cryopreserved in ancient ice. The psychrophilic lithoautotrophic homoacetogen isolated from the deep anoxic trough of Lake Untersee is an ideal candidate for life that might inhabit comets or the polar caps of Mars. The spontaneous release of gas from within the Anuchin Glacier above Lake Untersee may provide clues to the ice geysers that erupt from the tiger stripe regions of Saturn s moon Enceladus. The methane productivity in the lower regimes of Lake Untersee may also provide insights into possible mechanisms for the recently discovered methane releases on Mars. Since most of the other water bearing bodies of our

  17. Trophic relationships in an Arctic food web and implications for trace metal transfer

    Energy Technology Data Exchange (ETDEWEB)

    Dehn, Larissa-A. [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7000 (United States)]. E-mail: ftld@uaf.edu; Follmann, Erich H. [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7000 (United States); Thomas, Dana L. [Department of Mathematical Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-6660 (United States); Sheffield, Gay G. [Alaska Department of Fish and Game, Fairbanks, Division of Wildlife Conservation, Fairbanks, Alaska, 99701-1599 (United States); Rosa, Cheryl [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7000 (United States); Duffy, Lawrence K. [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7000 (United States); O' Hara, Todd M. [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7000 (United States)

    2006-06-01

    Tissues of subsistence-harvested Arctic mammals were analyzed for silver (Ag), cadmium (Cd), and total mercury (THg). Muscle (or total body homogenates of potential fish and invertebrate prey) was analyzed for stable carbon ({delta} {sup 13}C) and nitrogen ({delta} {sup 15}N) isotopes to establish trophic interactions within the Arctic food chain. Food web magnification factors (FWMFs) and biomagnification factors for selected predator-prey scenarios (BMFs) were calculated to describe pathways of heavy metals in the Alaskan Arctic. FWMFs in this study indicate that magnification of selected heavy metals in the Arctic food web is not significant. Biomagnification of Cd occurs mainly in kidneys; calculated BMFs are higher for hepatic THg than renal THg for all predator-prey scenarios with the exception of polar bears (Ursus maritimus). In bears, the accumulation of renal THg is approximately 6 times higher than in liver. Magnification of hepatic Ag is minimal for all selected predator-prey scenarios. Though polar bears occupy a higher trophic level than belugas (Delphinapterus leucas), based on {delta} {sup 15}N, the metal concentrations are either not statistically different between the two species or lower for bears. Similarly, concentrations of renal and hepatic Cd are significantly lower or not statistically different in polar bears compared to ringed (Phoca hispida) and bearded seals (Erignathus barbatus), their primary prey. THg, on the other hand, increased significantly from seal to polar bear tissues. Mean {delta} {sup 15}N was lowest in muscle of Arctic fox (Alopex lagopus) and foxes also show the lowest levels of Hg, Cd and Ag in liver and kidney compared to the other species analyzed. These values are in good agreement with a diet dominated by terrestrial prey. Metal deposition in animal tissues is strongly dependent on biological factors such as diet, age, sex, body condition and health, and caution should be taken when interpreting magnification of

  18. Trophic relationships in an Arctic food web and implications for trace metal transfer

    International Nuclear Information System (INIS)

    Dehn, Larissa-A.; Follmann, Erich H.; Thomas, Dana L.; Sheffield, Gay G.; Rosa, Cheryl; Duffy, Lawrence K.; O'Hara, Todd M.

    2006-01-01

    Tissues of subsistence-harvested Arctic mammals were analyzed for silver (Ag), cadmium (Cd), and total mercury (THg). Muscle (or total body homogenates of potential fish and invertebrate prey) was analyzed for stable carbon (δ 13 C) and nitrogen (δ 15 N) isotopes to establish trophic interactions within the Arctic food chain. Food web magnification factors (FWMFs) and biomagnification factors for selected predator-prey scenarios (BMFs) were calculated to describe pathways of heavy metals in the Alaskan Arctic. FWMFs in this study indicate that magnification of selected heavy metals in the Arctic food web is not significant. Biomagnification of Cd occurs mainly in kidneys; calculated BMFs are higher for hepatic THg than renal THg for all predator-prey scenarios with the exception of polar bears (Ursus maritimus). In bears, the accumulation of renal THg is approximately 6 times higher than in liver. Magnification of hepatic Ag is minimal for all selected predator-prey scenarios. Though polar bears occupy a higher trophic level than belugas (Delphinapterus leucas), based on δ 15 N, the metal concentrations are either not statistically different between the two species or lower for bears. Similarly, concentrations of renal and hepatic Cd are significantly lower or not statistically different in polar bears compared to ringed (Phoca hispida) and bearded seals (Erignathus barbatus), their primary prey. THg, on the other hand, increased significantly from seal to polar bear tissues. Mean δ 15 N was lowest in muscle of Arctic fox (Alopex lagopus) and foxes also show the lowest levels of Hg, Cd and Ag in liver and kidney compared to the other species analyzed. These values are in good agreement with a diet dominated by terrestrial prey. Metal deposition in animal tissues is strongly dependent on biological factors such as diet, age, sex, body condition and health, and caution should be taken when interpreting magnification of dynamic and actively regulated trace metals

  19. Arctic Nuclear Waste Assessment Program

    International Nuclear Information System (INIS)

    Edson, R.

    1995-01-01

    The Arctic Nuclear Waste Assessment Program (ANWAP) was initiated in 1993 as a result of US congressional concern over the disposal of nuclear materials by the former Soviet Union into the Arctic marine environment. The program is comprised of appr. 70 different projects. To date appr. ten percent of the funds has gone to Russian institutions for research and logistical support. The collaboration also include the IAEA International Arctic Seas Assessment Program. The major conclusion from the research to date is that the largest signals for region-wide radionuclide contamination in the Arctic marine environment appear to arise from the following: 1) atmospheric testing of nuclear weapons, a practice that has been discontinued; 2) nuclear fuel reprocessing wastes carried in the Arctic from reprocessing facilities in Western Europe, and 3) accidents such as Chernobyl and the 1957 explosion at Chelyabinsk-65

  20. Global Warming Threatens National Interests in the Arctic

    Science.gov (United States)

    2009-03-26

    Global warming has impacted the Arctic Ocean by significantly reducing the extent of the summer ice cover allowing greater access to the region...increased operations in the Arctic region, and DoD must continue to research and develop new and alternate energy sources for its forces. Global warming is

  1. Why the Arctic isn’t a ‘global commons’

    DEFF Research Database (Denmark)

    Burke, Danita Catherine

    2018-01-01

    — in the politics of the region due to their jurisdictional claims there. But some have argued against that supremacy. They see the Arctic as what’s known as a global commons. Additionally, they see the abundant resources and economic opportunities there as common goods. This broadly means that the Arctic is seen...... an international, borderless area and the resources there, such as fish stocks, are available for any state to access. This point of view raises the question: If the Arctic region is a global commons, why should the Arctic states be leading discussions about it?...

  2. Radio-positioning for arctic seismic refraction surveys

    Energy Technology Data Exchange (ETDEWEB)

    Dearnley-Davison, J. (Dept. of Fisheries and Oceans, Dartmouth, NS (Canada)); Forsyth, D.A. (Continental Geoscience Div., Geological Survey of Canada, Ottawa, ON (Canada))

    1989-12-01

    The full extent of hydrocarbon reserves within Canada's Arctic margin is not appreciated at present. With the exception of the southern Beaufort Sea, the crustal structure of most of Canada's offshore polar margin remains a mystery, even at reconnaissance level. Navigation to support offshore Arctic surveys have required a special application and adaptation of the conventional SYLEDIS (SYsteme LEgere de DIStance) range-range navigational system to perform under the northeast Actic margin's environment. Once adapted, the system has proven very effective with a few Arctic environment servicing problems. The total number of locations involved in the earlier surveys ranged from 20 to aproximately 50 per project in a season. The SYLEDIS operation has enabled real-time positioning with a precision of better than 10 metres for approximately 350 separate sites in the 1985 and 1986 surveys inclusive. 2 refs., 3 figs.

  3. Perturbation of an arctic soil microbial community by metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Niraj [Department of Biology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); Shah, Vishal [Department of Biology, Dowling College, Oakdale, NY 11769 (United States); Walker, Virginia K., E-mail: walkervk@queensu.ca [Department of Biology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); Department of Biology, School of Environmental Studies and Department of Microbiology and Immunology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada)

    2011-06-15

    Highlights: {yields} Silver, copper and silica nanoparticles had an impact on arctic soil {yields} A microbial community toxicity indicator was developed {yields} Community surveys using pyrosequencing confirmed a shift in bacterial biodiversity {yields} Troublingly, silver nanoparticles were highly toxic to a plant beneficial bacterium - Abstract: Technological advances allowing routine nanoparticle (NP) manufacture have enabled their use in electronic equipment, foods, clothing and medical devices. Although some NPs have antibacterial activity, little is known about their environmental impact and there is no information on the influence of NPs on soil in the possibly vulnerable ecosystems of polar regions. The potential toxicity of 0.066% silver, copper or silica NPs on a high latitude (>78{sup o}N) soil was determined using community level physiological profiles (CLPP), fatty acid methyl ester (FAME) assays and DNA analysis, including sequencing and denaturing gradient gel electrophoresis (DGGE). The results of these different investigations were amalgamated in order to develop a community toxicity indicator, which revealed that of the three NPs examined, silver NPs could be classified as highly toxic to these arctic consortia. Subsequent culture-based studies confirmed that one of the community-identified plant-associating bacteria, Bradyrhizobium canariense, appeared to have a marked sensitivity to silver NPs. Thus, NP contamination of arctic soils particularly by silver NPs is a concern and procedures for mitigation and remediation of such pollution should be a priority for investigation.

  4. Perturbation of an arctic soil microbial community by metal nanoparticles

    International Nuclear Information System (INIS)

    Kumar, Niraj; Shah, Vishal; Walker, Virginia K.

    2011-01-01

    Highlights: → Silver, copper and silica nanoparticles had an impact on arctic soil → A microbial community toxicity indicator was developed → Community surveys using pyrosequencing confirmed a shift in bacterial biodiversity → Troublingly, silver nanoparticles were highly toxic to a plant beneficial bacterium - Abstract: Technological advances allowing routine nanoparticle (NP) manufacture have enabled their use in electronic equipment, foods, clothing and medical devices. Although some NPs have antibacterial activity, little is known about their environmental impact and there is no information on the influence of NPs on soil in the possibly vulnerable ecosystems of polar regions. The potential toxicity of 0.066% silver, copper or silica NPs on a high latitude (>78 o N) soil was determined using community level physiological profiles (CLPP), fatty acid methyl ester (FAME) assays and DNA analysis, including sequencing and denaturing gradient gel electrophoresis (DGGE). The results of these different investigations were amalgamated in order to develop a community toxicity indicator, which revealed that of the three NPs examined, silver NPs could be classified as highly toxic to these arctic consortia. Subsequent culture-based studies confirmed that one of the community-identified plant-associating bacteria, Bradyrhizobium canariense, appeared to have a marked sensitivity to silver NPs. Thus, NP contamination of arctic soils particularly by silver NPs is a concern and procedures for mitigation and remediation of such pollution should be a priority for investigation.

  5. Arctic Glass: Innovative Consumer Technology in Support of Arctic Research

    Science.gov (United States)

    Ruthkoski, T.

    2015-12-01

    The advancement of cyberinfrastructure on the North Slope of Alaska is drastically limited by location-specific conditions, including: unique geophysical features, remoteness of location, and harsh climate. The associated cost of maintaining this unique cyberinfrastructure also becomes a limiting factor. As a result, field experiments conducted in this region have historically been at a technological disadvantage. The Arctic Glass project explored a variety of scenarios where innovative consumer-grade technology was leveraged as a lightweight, rapidly deployable, sustainable, alternatives to traditional large-scale Arctic cyberinfrastructure installations. Google Glass, cloud computing services, Internet of Things (IoT) microcontrollers, miniature LIDAR, co2 sensors designed for HVAC systems, and portable network kits are several of the components field-tested at the Toolik Field Station as part of this project. Region-specific software was also developed, including a multi featured, voice controlled Google Glass application named "Arctic Glass". Additionally, real-time sensor monitoring and remote control capability was evaluated through the deployment of a small cluster of microcontroller devices. Network robustness was analyzed as the devices delivered streams of abiotic data to a web-based dashboard monitoring service in near real time. The same data was also uploaded synchronously by the devices to Amazon Web Services. A detailed overview of solutions deployed during the 2015 field season, results from experiments utilizing consumer sensors, and potential roles consumer technology could play in support of Arctic science will be discussed.

  6. Assessment of neurotoxic effects of mercury in beluga whales (Delphinapterus leucas), ringed seals (Pusa hispida), and polar bears (Ursus maritimus) from the Canadian Arctic.

    Science.gov (United States)

    Krey, Anke; Ostertag, Sonja K; Chan, Hing Man

    2015-03-15

    Marine mammals are indicator species of the Arctic ecosystem and an integral component of the traditional Inuit diet. The potential neurotoxic effects of increased mercury (Hg) in beluga whales (Delphinapterus leucas), ringed seals (Pusa hispida), and polar bears (Ursus maritimus) are not clear. We assessed the risk of Hg-associated neurotoxicity to these species by comparing their brain Hg concentrations with threshold concentrations for toxic endpoints detected in laboratory animals and field observations: clinical symptoms (>6.75 mg/kg wet weight (ww)), neuropathological signs (>4 mg/kg ww), neurochemical changes (>0.4 mg/kg ww), and neurobehavioral changes (>0.1mg/kg ww). The total Hg (THg) concentrations in the cerebellum and frontal lobe of ringed seals and polar bears were 3mg/kg ww. Our results suggest that brain THg levels in polar bears are below levels that induce neurobehavioral effects as reported in the literature, while THg concentrations in ringed seals are within the range that elicit neurobehavioral effects and individual ringed seals exceed the threshold for neurochemical changes. The relatively high THg concentration in beluga whales exceeds all of the neurotoxicity thresholds assessed. High brain selenium (Se):Hg molar ratios were observed in all three species, suggesting that Se could protect the animals from Hg-associated neurotoxicity. This assessment was limited by several factors that influence neurotoxic effects in animals, including: animal species; form of Hg in the brain; and interactions with modifiers of Hg-associated toxicity, such as Se. Comparing brain Hg concentrations in wildlife with concentrations of appropriate laboratory studies can be used as a tool for risk characterization of the neurotoxic effects of Hg in Arctic marine mammals. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Possible connections of the opposite trends in Arctic and Antarctic sea-ice cover.

    Science.gov (United States)

    Yu, Lejiang; Zhong, Shiyuan; Winkler, Julie A; Zhou, Mingyu; Lenschow, Donald H; Li, Bingrui; Wang, Xianqiao; Yang, Qinghua

    2017-04-05

    Sea ice is an important component of the global climate system and a key indicator of climate change. A decreasing trend in Arctic sea-ice concentration is evident in recent years, whereas Antarctic sea-ice concentration exhibits a generally increasing trend. Various studies have investigated the underlying causes of the observed trends for each region, but possible linkages between the regional trends have not been studied. Here, we hypothesize that the opposite trends in Arctic and Antarctic sea-ice concentration may be linked, at least partially, through interdecadal variability of the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). Although evaluation of this hypothesis is constrained by the limitations of the sea-ice cover record, preliminary statistical analyses of one short-term and two long-term time series of observed and reanalysis sea-ice concentrations data suggest the possibility of the hypothesized linkages. For all three data sets, the leading mode of variability of global sea-ice concentration is positively correlated with the AMO and negatively correlated with the PDO. Two wave trains related to the PDO and the AMO appear to produce anomalous surface-air temperature and low-level wind fields in the two polar regions that contribute to the opposite changes in sea-ice concentration.

  8. Arctic Research Plan: FY2017-2021

    Science.gov (United States)

    Starkweather, Sandy; Jeffries, Martin O; Stephenson, Simon; Anderson, Rebecca D.; Jones, Benjamin M.; Loehman, Rachel A.; von Biela, Vanessa R.

    2016-01-01

    The United States is an Arctic nation—Americans depend on the Arctic for biodiversity and climate regulation and for natural resources. America’s Arctic—Alaska—is at the forefront of rapid climate, environmental, and socio-economic changes that are testing the resilience and sustainability of communities and ecosystems. Research to increase fundamental understanding of these changes is needed to inform sound, science-based decision- and policy-making and to develop appropriate solutions for Alaska and the Arctic region as a whole. Created by an Act of Congress in 1984, and since 2010 a subcommittee of the National Science and Technology Council (NSTC) in the Executive Office of the President, the Interagency Arctic Research Policy Committee (IARPC) plays a critical role in advancing scientific knowledge and understanding of the changing Arctic and its impacts far beyond the boundaries of the Arctic. Comprising 14 Federal agencies, offices, and departments, IARPC is responsible for the implementation of a 5-year Arctic Research Plan in consultation with the U.S. Arctic Research Commission, the Governor of the State of Alaska, residents of the Arctic, the private sector, and public interest groups.

  9. Polar front associated variation in prokaryotic community structure in Arctic shelf seafloor.

    Science.gov (United States)

    Nguyen, Tan T; Landfald, Bjarne

    2015-01-01

    Spatial variations in composition of marine microbial communities and its causes have largely been disclosed in studies comprising rather large environmental and spatial differences. In the present study, we explored if a moderate but temporally permanent climatic division within a contiguous arctic shelf seafloor was traceable in the diversity patterns of its bacterial and archaeal communities. Soft bottom sediment samples were collected at 10 geographical locations, spanning spatial distances of up to 640 km, transecting the oceanic polar front in the Barents Sea. The northern sampling sites were generally colder, less saline, shallower, and showed higher concentrations of freshly sedimented phytopigments compared to the southern study locations. Sampling sites depicted low variation in relative abundances of taxa at class level, with persistent numerical dominance by lineages of Gamma- and Deltaproteobacteria (57-66% of bacterial sequence reads). The Archaea, which constituted 0.7-1.8% of 16S rRNA gene copy numbers in the sediment, were overwhelmingly (85.8%) affiliated with the Thaumarchaeota. Beta-diversity analyses showed the environmental variations throughout the sampling range to have a stronger impact on the structuring of both the bacterial and archaeal communities than spatial effects. While bacterial communities were significantly influenced by the combined effect of several weakly selective environmental differences, including temperature, archaeal communities appeared to be more uniquely structured by the level of freshly sedimented phytopigments.

  10. Comparison of publically available Moho depth and crustal thickness grids with newly derived grids by 3D gravity inversion for the High Arctic region.

    Science.gov (United States)

    Lebedeva-Ivanova, Nina; Gaina, Carmen; Minakov, Alexander; Kashubin, Sergey

    2016-04-01

    We derived Moho depth and crustal thickness for the High Arctic region by 3D forward and inverse gravity modelling method in the spectral domain (Minakov et al. 2012) using lithosphere thermal gravity anomaly correction (Alvey et al., 2008); a vertical density variation for the sedimentary layer and lateral crustal variation density. Recently updated grids of bathymetry (Jakobsson et al., 2012), gravity anomaly (Gaina et al, 2011) and dynamic topography (Spasojevic & Gurnis, 2012) were used as input data for the algorithm. TeMAr sedimentary thickness grid (Petrov et al., 2013) was modified according to the most recently published seismic data, and was re-gridded and utilized as input data. Other input parameters for the algorithm were calibrated using seismic crustal scale profiles. The results are numerically compared with publically available grids of the Moho depth and crustal thickness for the High Arctic region (CRUST 1 and GEMMA global grids; the deep Arctic Ocean grids by Glebovsky et al., 2013) and seismic crustal scale profiles. The global grids provide coarser resolution of 0.5-1.0 geographic degrees and not focused on the High Arctic region. Our grids better capture all main features of the region and show smaller error in relation to the seismic crustal profiles compare to CRUST 1 and GEMMA grids. Results of 3D gravity modelling by Glebovsky et al. (2013) with separated geostructures approach show also good fit with seismic profiles; however these grids cover the deep part of the Arctic Ocean only. Alvey A, Gaina C, Kusznir NJ, Torsvik TH (2008). Integrated crustal thickness mapping and plate recon-structions for the high Arctic. Earth Planet Sci Lett 274:310-321. Gaina C, Werner SC, Saltus R, Maus S (2011). Circum-Arctic mapping project: new magnetic and gravity anomaly maps of the Arctic. Geol Soc Lond Mem 35, 39-48. Glebovsky V.Yu., Astafurova E.G., Chernykh A.A., Korneva M.A., Kaminsky V.D., Poselov V.A. (2013). Thickness of the Earth's crust in the

  11. Circumpolar measurements of speciated mercury, ozone and carbon monoxide in the boundary layer of the Arctic Ocean

    Science.gov (United States)

    Sommar, J.; Andersson, M. E.; Jacobi, H.-W.

    2010-06-01

    Using the Swedish icebreaker Oden as a platform, continuous measurements of airborne mercury (gaseous elemental mercury (Hg0), divalent gaseous mercury species HgIIX2(g) (acronym RGM) and mercury attached to particles (PHg)) and some long-lived trace gases (carbon monoxide CO and ozone O3) were performed over the North Atlantic and the Arctic Ocean. The measurements were performed for nearly three months (July-September 2005) during the Beringia 2005 expedition (from Göteborg, Sweden via the proper Northwest Passage to the Beringia region Alaska - Chukchi Penninsula - Wrangel Island and in-turn via a north-polar transect to Longyearbyen, Spitsbergen). The Beringia 2005 expedition was the first time that these species have been measured during summer over the Arctic Ocean going from 60° to 90° N. During the North Atlantic transect, concentration levels of Hg0, CO and O3 were measured comparable to typical levels for the ambient mid-hemispheric average. However, a rapid increase of Hg0 in air and surface water was observed when entering the ice-covered waters of the Canadian Arctic archipelago. Large parts of the measured waters were supersaturated with respect to Hg0, reflecting a strong disequilibrium. Heading through the sea ice of the Arctic Ocean, a fraction of the strong Hg0 pulse in the water was transferred with some time-delay into the air samples collected ~20 m above sea level. Several episodes of elevated Hg0 in air were encountered along the sea ice route with higher mean concentration (1.81±0.43 ng m-3) compared to the marine boundary layer over ice-free Arctic oceanic waters (1.55±0.21 ng m-3). In addition, the bulk of the variance in the temporal series of Hg0 concentrations was observed during July. The Oden Hg0 observations compare in this aspect very favourably with those at the coastal station Alert. Atmospheric boundary layer O3 mixing ratios decreased when initially sailing northward. In the Arctic, an O3 minimum around 15-20 ppbV was

  12. What Controls the Arctic Lower Stratosphere Temperature?

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The temperature of the Arctic lower stratosphere is critical for understanding polar ozone levels. As temperatures drop below about 195 K, polar stratospheric clouds form, which then convert HCl and ClONO2 into reactive forms that are catalysts for ozone loss reactions. Hence, the lower stratospheric temperature during the March period is a key parameter for understanding polar ozone losses. The temperature is basically understood to be a result of planetary waves which drive the polar temperature away from a cold "radiative equilibrium" state. This is demonstrated using NCEP/NCAR reanalysis calculations of the heat flux and the mean polar temperature. The temperature during the March period is fundamentally driven by the integrated impact of large scale waves moving from the troposphere to the stratosphere during the January through February period. We will further show that the recent cold years in the northern polar vortex are a result of this weakened wave driving of the stratosphere.

  13. On the gate of Arctic footsteps: Doors open to foreign high schools

    Science.gov (United States)

    Manno, C.; Pecchiar, I.

    2012-12-01

    With the increased attention on the changing Arctic Region effective science education, outreach and communication need to be higher priorities within the scientific communities. In order to encourage the dissemination of polar research at educational levels foreign high school students and teachers were visiting Tromso University for a week. The project highlights the role of the universities as link between research and outreach. The first aim of this project was to increase awareness of foreign schools on major topics concerning the Arctic issues (from the economic/social to the environmental/climatic point of view). Forty three Italian high school students were involved in the laboratory activities running at the UiT and participated in seminars. Topics of focus were Ocean Acidification, Global Warming and the combined effects with other anthropogenic stressors. During their stay, students interviewed several scientists in order to allow them to edit a "visiting report" and to elaborate all the material collected. Back in Italy they performed an itinerant exhibition (presentation of a short movie, posters, and pictures) in various Italian schools in order to pass on their Arctic education experience. The project highlights the role of University as communicator of "climate related issues" in the international frame of the "new generation" of students.

  14. The Arctic : the great breakup

    International Nuclear Information System (INIS)

    Lemieux, R.

    2007-01-01

    The impact that climate change has had on the famous Northwest passage in Canada's Arctic was discussed. The water channel through the Arctic Islands is now navigable during the summer and it has been predicted that in 40 years, it may be navigable throughout the entire year. Although the Arctic is still covered with snow, the icebergs which navigators have feared no longer exist. Environment Canada has cautioned that Canada's extreme north would be most at risk from global warming, with temperatures increasing by 6 degrees, or 3 times higher than in moderate zones. The joint Canadian-United States program Surface Heat Budget of the Arctic has also confirmed that the waters of the Beaufort Sea are less salty and relatively warmer. Climatologists also project that the predicted increase in snowfall will act as an insulation blanket, thereby preventing the ice from thickening. Scientists stated that the gigantic polar cap, which has been frozen for the past 3.2 million years, will have fissures everywhere by 2080. The Northwest passage will become easily accessible in less than 10 years. This article raised questions regarding the role of the Northwest passage as an international maritime route. It presented the case of the first successful passage of a U.S. commercial oil tanker in 1969 which created controversy regarding Canada's territorial waters. Fourty years later, this issue is still not resolved. The article questioned whether there should be more cooperation on both the Canadian and American sides in light of the shared common interests such as commerce, science and security. It was noted that although Canada has sovereignty of the Arctic Islands, there are eight other countries who share the Arctic. 4 figs

  15. Implications of rapid environmental change for polar bear behavior and sociality

    Science.gov (United States)

    Atwood, Todd C.

    2017-01-01

    Historically, the Arctic sea ice has functioned as a structural barrier that has limited the nature and extent of interactions between humans and polar bears (Ursus maritimus). However, declining sea ice extent, brought about by global climate change, is increasing the potential for human-polar bear interactions. Loss of sea ice habitat is driving changes to both human and polar bear behavior—it is facilitating increases in human activities (e.g., offshore oil and gas exploration and extraction, trans-Arctic shipping, recreation), while also causing the displacement of bears from preferred foraging habitat (i.e., sea ice over biologically productive shallow) to land in some portions of their range. The end result of these changes is that polar bears are spending greater amounts of time in close proximity to people. Coexistence between humans and polar bears will require imposing mechanisms to manage further development, as well as mitigation strategies that reduce the burden to local communities.

  16. Evidence of recent changes in the ice regime of lakes in the Canadian High Arctic from spaceborne satellite observations

    Science.gov (United States)

    Surdu, Cristina M.; Duguay, Claude R.; Fernández Prieto, Diego

    2016-05-01

    Arctic lakes, through their ice cover phenology, are a key indicator of climatic changes that the high-latitude environment is experiencing. In the case of lakes in the Canadian Arctic Archipelago (CAA), many of which are ice covered more than 10 months per year, warmer temperatures could result in ice regime shifts. Within the dominant polar-desert environment, small local warmer areas have been identified. These relatively small regions - polar oases - with longer growing seasons and greater biological productivity and diversity are secluded from the surrounding barren polar desert. The ice regimes of 11 lakes located in both polar-desert and polar-oasis environments, with surface areas between 4 and 542 km2, many of unknown bathymetry, were documented. In order to investigate the response of ice cover of lakes in the CAA to climate conditions during recent years, a 15-year time series (1997-2011) of RADARSAT-1/2 ScanSAR Wide Swath, ASAR Wide Swath, and Landsat acquisitions were analyzed. Results show that melt onset occurred earlier for all observed lakes. With the exception of Lower Murray Lake, all lakes experienced earlier summer ice minimum and water-clear-of-ice (WCI) dates, with greater changes being observed for polar-oasis lakes (9-24 days earlier WCI dates for lakes located in polar oases and 2-20 days earlier WCI dates for polar-desert lakes). Additionally, results suggest that some lakes may be transitioning from a perennial/multiyear to a seasonal ice regime, with only a few lakes maintaining a multiyear ice cover on occasional years. Aside Lake Hazen and Murray Lakes, which preserved their ice cover during the summer of 2009, no residual ice was observed on any of the other lakes from 2007 to 2011.

  17. PolarTREC-Teachers and Researchers Exploring and Collaborating: Innovative Science Education from the Poles to the World

    Science.gov (United States)

    Warnick, W. K.; Warburton, J.; Breen, K.; Wiggins, H. V.; Larson, A.; Behr, S.

    2006-12-01

    PolarTREC-Teachers and Researchers Exploring and Collaborating is a three-year (2007-2009) teacher professional development program celebrating the International Polar Year (IPY) that will advance polar science education by bringing K-12 educators and polar researchers together in hands-on field experiences in the Arctic and Antarctic. PolarTREC builds on the strengths of the existing TREC program in the Arctic, an NSF supported program managed by the Arctic Research Consortium of the US (ARCUS), to embrace a wide range of activities occurring at both poles during and after IPY. PolarTREC will foster the integration of research and education to produce a legacy of long-term teacher-researcher collaborations, improved teacher content knowledge through experiences in scientific inquiry, and broad public interest and engagement in polar science and IPY. PolarTREC will enable thirty-six teachers to spend two to six weeks in the Arctic or Antarctic, working closely with researchers investigating a wide range of IPY science themed topics such as sea-ice dynamics, terrestrial ecology, marine biology, atmospheric chemistry, and long-term climate change. While in the field, teachers and researchers will communicate extensively with their colleagues, communities, and hundreds of students of all ages across the globe, using a variety of tools including satellite phones, online journals, podcasts and interactive "Live from IPY" calls and web-based seminars. The online outreach elements of the project convey these experiences to a broad audience far beyond the classrooms of the PolarTREC teachers. In addition to field research experiences, PolarTREC will support teacher professional development and a sustained community of teachers, scientists, and the public through workshops, Internet seminars, an e-mail listserve, and teacher peer groups. For further information on PolarTREC, contact Wendy Warnick, ARCUS Executive Director at warnick@arcus.org or 907-474-1600 or visit www.arcus.org/trec/

  18. Sexual Polarities: Shelley’s Frankenstein and Polar Exploration as a Search for Origins Beyond ‘woman’

    Directory of Open Access Journals (Sweden)

    Polly Gould

    2008-02-01

    Full Text Available This paper is about our parents and our predecessors in life and in literature. It specifically interrogates the choice of Polar landscapes for the playing out of narratives of gender difference in stories of Arctic and Antarctic exploration. I have chosen to pay attention to three narratives: Shackleton's South, Mary Shelley's Frankenstein and Ursula Le Guin's short story Sur. They all take place in the icy expanse of the Arctic and Antarctic. I will read them in the light of the question of origins: ‘where do I come from?'

  19. Romantic notions about the arctic must include indigenous rights

    DEFF Research Database (Denmark)

    Burke, Danita Catherine

    2017-01-01

    The Arctic plays a big role in Canada's national identity. But as Canada's relationship with the region evolves, the interests of Indigenous peoples must be better represented. This article summarizes the research in my book 'International Disputes and Cultural Ideas in the Canadian Arctic: Arctic...

  20. Vital arctic graphics. People and global heritage on our last wild shores

    International Nuclear Information System (INIS)

    Ahlenius, H.; Johnsen, K; Nellemann, C.

    2005-02-01

    Vital Arctic Graphics is a compilation of illustrations and case studies intended to describe the Arctic, the livelihoods of Arctic indigenous peoples and the future well-being of this region. It summarizes some of the key threats to the future sustainability of the Arctic including the rapid pace of climate change, worrying levels of persistent organic and heavy metal pollutants, and increasing natural resource exploration. The coastal regions are particularly important to the peoples of the Arctic and their current protection status is therefore given particular focus

  1. What are the toxicological effects of mercury in Arctic biota?

    DEFF Research Database (Denmark)

    Dietz, Rune; Sonne, Christian; Basu, Niladri

    2013-01-01

    effects. Species whose concentrations exceed threshold values include the polar bears (Ursus maritimus), beluga whale (Delphinapterus leucas), pilot whale (Globicephala melas), hooded seal (Cystophora cristata), a few seabird species, and landlocked Arctic char (Salvelinus alpinus). Toothed whales appear...

  2. Changes in Arctic and Antarctic Sea Ice as a Microcosm of Global Climate Change

    Science.gov (United States)

    Parkinson, Claire L.

    2014-01-01

    Polar sea ice is a key element of the climate system and has now been monitored through satellite observations for over three and a half decades. The satellite observations reveal considerable information about polar ice and its changes since the late 1970s, including a prominent downward trend in Arctic sea ice coverage and a much lesser upward trend in Antarctic sea ice coverage, illustrative of the important fact that climate change entails spatial contrasts. The decreasing ice coverage in the Arctic corresponds well with contemporaneous Arctic warming and exhibits particularly large decreases in the summers of 2007 and 2012, influenced by both preconditioning and atmospheric conditions. The increasing ice coverage in the Antarctic is not as readily explained, but spatial differences in the Antarctic trends suggest a possible connection with atmospheric circulation changes that have perhaps been influenced by the Antarctic ozone hole. The changes in the polar ice covers and the issues surrounding those changes have many commonalities with broader climate changes and their surrounding issues, allowing the sea ice changes to be viewed in some important ways as a microcosm of global climate change.

  3. Future scientific drilling in the Arctic Ocean: Key objectives, areas, and strategies

    Science.gov (United States)

    Stein, R.; Coakley, B.; Mikkelsen, N.; O'Regan, M.; Ruppel, C.

    2012-04-01

    In spite of the critical role of the Arctic Ocean in climate evolution, our understanding of the short- and long-term paleoceanographic and paleoclimatic history through late Mesozoic-Cenozoic times, as well as its plate-tectonic evolution, remains behind that from the other world's oceans. This lack of knowledge is mainly caused by the major technological/logistic problems in reaching this permanently ice-covered region with normal research vessels and in retrieving long and undisturbed sediment cores. With the Arctic Coring Expedition - ACEX (or IODP Expedition 302), the first Mission Specific Platform (MSP) expedition within IODP, a new era in Arctic research began (Backman, Moran, Mayer, McInroy et al., 2006). ACEX proved that, with an intensive ice-management strategy, successful scientific drilling in the permanently ice-covered central Arctic Ocean is possible. ACEX is certainly a milestone in Arctic Ocean research, but - of course - further drilling activities are needed in this poorly studied ocean. Furthermore, despite the success of ACEX fundamental questions related to the long- and short-term climate history of the Arctic Ocean during Mesozoic-Cenozoic times remain unanswered. This is partly due to poor core recovery during ACEX and, especially, because of a major mid-Cenozoic hiatus in this single record. Since ACEX, a series of workshops were held to develop a scientific drilling strategy for investigating the tectonic and paleoceanographic history of the Arctic Ocean and its role in influencing the global climate system: - "Arctic Ocean History: From Speculation to Reality" (Bremerhaven/Germany, November 2008); - "Overcoming barriers to Arctic Ocean scientific drilling: the site survey challenge" (Copenhagen/Denmark, November 2011); - Circum-Arctic shelf/upper continental slope scientific drilling workshop on "Catching Climate Change in Progress" (San Francisco/USA, December 2011); - "Coordinated Scientific Drilling in the Beaufort Sea: Addressing

  4. China in the Arctic: interests, actions and challenges

    Directory of Open Access Journals (Sweden)

    Njord Wegge

    2014-07-01

    Full Text Available This article gives an overview of China’s interest in and approach to the Arctic region. The following questions are raised: 1.Why is China getting involved in the Arctic, 2. How is China’s engagement in the Arctic playing out? 3, What are the most important issues that need to be solved in order for China to increase its relevance and importance as a political actor and partner in the Arctic. In applying a rationalist approach when answering the research questions, I identify how China in the last few years increasingly has been accepted as a legitimate stakeholder in the Arctic, with important stakes and activities in areas such as shipping, resource utilization and environmental science.  The article concludes with pointing out some issues that remain to be solved including Chinas role in issues of global politics, the role of observers in the Arctic Council as well as pointing out how China itself needs to decide important aspects of their future role in the region.

  5. Distribution of irregularities in the northern polar region determined from Hilat observations

    International Nuclear Information System (INIS)

    Macdougall, J.W.

    1990-01-01

    Three years' observations of the Hilat satellite from stations Sondre, Churchill, and Tromso have been used to study the distributions of scintillations over the northern polar region. Two regions showed enhancement. Region (1) was an enhancement of phase scintillations when the line of sight to the satellite lay along an L shell and the observing station was under the auroral oval. Region (2) is revealed most clearly by amplitude scintillations and maximizes in an annular region several degrees poleward of the auroral oval. Region (1) is most likely associated with large-scale 'blobs' of ionization in the auroral zone; region (2) appears to be due to km-scale irregularities generated in the polar cap. 17 refs

  6. Sources of mercury in the Arctic

    International Nuclear Information System (INIS)

    Pacyna, J.M.; Keeler, G.J.

    1995-01-01

    Global and regional emission inventories of mercury are reviewed with special emphasis on the source regions with potential impact on the Arctic environment. These sources are located mostly in Eurasia and North America and emit almost 1300 t of Hg to the air annually. Combustion of fossil-fuels to produce electricity and heat is the major source of Hg. Major portion of the element emissions from this source is in a gaseous phase. A small portion of Hg emissions in Eurasia and North America is deposited in the Arctic region, perhaps 60 to 80 t annually. Additional amounts of Hg in the Arctic air originate from natural sources, although it is very difficult to quantify them. A small decrease of anthropogenic Hg emissions is observed in Europe at present. These emissions are expected to increase again in the near future. 28 refs., 1 fig., 3 tabs

  7. Science Partnerships for a Sustainable Arctic: the Marine Mammal Nexus (Invited)

    Science.gov (United States)

    Moore, S. E.

    2010-12-01

    Marine mammals are both icons of Arctic marine ecosystems and fundamental to Native subsistence nutrition and culture. Eight species are endemic to the Pacific Arctic, including the polar bear, walrus, ice seals (4 species), beluga and bowhead whales. Studies of walrus and bowheads have been conducted over the past 30 years, to estimate population size and elucidate patterns of movement and abundance. With regard to the three pillars of the SEARCH program, these long-term OBSERVATIONS provide a foundation for research seeking to UNDERSTAND and RESPOND to the effects of rapid climate change on the marine ecosystem. Specifically, research on the coastal ecosystem near Barrow, Alaska focuses on late-summer feeding habitat for bowheads in an area where whales are hunted in autumn. This work is a partnership among agency, academic and local scientists and the residents of Barrow, all of whom seek to better UNDERSTAND how recent dramatic changes in sea ice, winds and offshore industrial activities influence whale movements and behavior. In regard to RESPONDING to climate change, the nascent Sea Ice for Walrus Outlook (SIWO) is a science partnership that projects sea ice and wind conditions for five villages in the Bering Strait region. The objective of the SIWO is to provide information on physical conditions in the marine environment at spatial and temporal scales relevant to walrus hunters. Marine mammals are a strong and dynamic nexus for partnerships among scientists, Arctic residents, resource managers and the general public - as such, they are essential elements to any science plan for a sustainable Arctic.

  8. Advancing NOAA NWS Arctic Program Development

    Science.gov (United States)

    Timofeyeva-Livezey, M. M.; Horsfall, F. M. C.; Meyers, J. C.; Churma, M.; Thoman, R.

    2016-12-01

    Environmental changes in the Arctic require changes in the way the National Oceanic and Atmospheric Administration (NOAA) delivers hydrological and meteorological information to prepare the region's societies and indigenous population for emerging challenges. These challenges include changing weather patterns, changes in the timing and extent of sea ice, accelerated soil erosion due to permafrost decline, increasing coastal vulnerably, and changes in the traditional food supply. The decline in Arctic sea ice is opening new opportunities for exploitation of natural resources, commerce, tourism, and military interest. These societal challenges and economic opportunities call for a NOAA integrated approach for delivery of environmental information including climate, water, and weather data, forecasts, and warnings. Presently the NOAA Arctic Task Force provides leadership in programmatic coordination across NOAA line offices. National Weather Service (NWS) Alaska Region and the National Centers for Environmental Prediction (NCEP) provide the foundational operational hydro-meteorological products and services in the Arctic. Starting in 2016, NOAA's NWS will work toward improving its role in programmatic coordination and development through assembling an NWS Arctic Task Team. The team will foster ties in the Arctic between the 11 NWS national service programs in climate, water, and weather information, as well as between Arctic programs in NWS and other NOAA line offices and external partners. One of the team outcomes is improving decision support tools for the Arctic. The Local Climate Analysis Tool (LCAT) currently has more than 1100 registered users, including NOAA staff and technical partners. The tool has been available online since 2013 (http://nws.weather.gov/lcat/ ). The tool links trusted, recommended NOAA data and analytical capabilities to assess impacts of climate variability and climate change at local levels. A new capability currently being developed will

  9. Initial Alignment for SINS Based on Pseudo-Earth Frame in Polar Regions.

    Science.gov (United States)

    Gao, Yanbin; Liu, Meng; Li, Guangchun; Guang, Xingxing

    2017-06-16

    An accurate initial alignment must be required for inertial navigation system (INS). The performance of initial alignment directly affects the following navigation accuracy. However, the rapid convergence of meridians and the small horizontalcomponent of rotation of Earth make the traditional alignment methods ineffective in polar regions. In this paper, from the perspective of global inertial navigation, a novel alignment algorithm based on pseudo-Earth frame and backward process is proposed to implement the initial alignment in polar regions. Considering that an accurate coarse alignment of azimuth is difficult to obtain in polar regions, the dynamic error modeling with large azimuth misalignment angle is designed. At the end of alignment phase, the strapdown attitude matrix relative to local geographic frame is obtained without influence of position errors and cumbersome computation. As a result, it would be more convenient to access the following polar navigation system. Then, it is also expected to unify the polar alignment algorithm as much as possible, thereby further unifying the form of external reference information. Finally, semi-physical static simulation and in-motion tests with large azimuth misalignment angle assisted by unscented Kalman filter (UKF) validate the effectiveness of the proposed method.

  10. Conservation of rare species of marine flora and fauna of the Russian Arctic National Park, included in the Red Data Book of the Russian Federation and in the IUCN Red List

    Directory of Open Access Journals (Sweden)

    Maria V. Gavrilo

    2017-05-01

    Full Text Available The Russian Arctic National Park is a marine Protected Area playing a significant role in conservation of rare and protected endemic species of the Arctic fauna and flora, included in the IUCN Red List and/or in the Red Data Book of the Russian Federation. The Russian Arctic National Park is considered to be: (1 the major ground for the reproduction of the Atlantic walrus stock inhabiting the north-eastern Kara-Barents Sea Region; (2 the key area maintaining the globally threatened Svalbard population of the bowhead whale; (3 the principal denning grounds of the Barents Sea sub-population of the polar bear in Russia; (4 important summer feeding grounds of the beluga whale; (5 the key breeding ground of the ivory gull in the European Arctic; (6 the only proved breeding grounds of the light-bellied brent goose in Russia. The major efforts in studying rare species in the Russian Arctic National Park are aimed at the monitoring and research on the ivory gull, Atlantic walrus and the polar bear. These studies are performed both by the scientists and staff of the National Park and by specialists working in other scientific institutes. The data on the other species are obtained occasionally. Here, we state the major threat for the rare marine species and define the activities of high priority for further conservation, monitoring and research.

  11. Investigating the occurrence of persistent organic pollutants (POPs) in the arctic: their atmospheric behaviour and interaction with the seasonal snow pack

    International Nuclear Information System (INIS)

    Halsall, Crispin J.

    2004-01-01

    POPs in the Arctic are the focus of international concern due to their occurrence and accumulation in Arctic food webs. This paper presents an overview of the major pathways into the Arctic and details contemporary studies that have focused on the occurrence and transfer of POPs between the major Arctic compartments, highlighting areas where there is a lack of quantitative information. The behaviour of these chemicals in the Arctic atmosphere is scrutinised with respect to long-term trends and seasonal behaviour. Subtle differences between the PCBs and OC pesticides are demonstrated and related to sources outside of the Arctic as well as environmental processes within the Arctic. Unlike temperate regions, contaminant fate is strongly affected by the presence of snow and ice. A description of the high Arctic snow pack is given and the physical characteristics that determine chemical fate, namely the specific surface area of snow and wind driven ventilation, are discussed. Using a well-characterised fresh snow event observed at Alert (Canadian high Arctic) [Atmos. Environ. 36(2002) 2767] the flux of γ-HCH out of the snow is predicted following snow ageing. Under conditions of wind (10 m/s) it is estimated that ∼75% of the chemical may be re-emitted to the atmosphere within 24 h following snowfall, compared with just ∼5% under conditions of no wind. The implications of this are raised and areas of further research suggested. - The fluxes and fate of POPs in snowpacks are key to their behaviour in polar systems

  12. Insights into bird wing evolution and digit specification from polarizing region fate maps.

    Science.gov (United States)

    Towers, Matthew; Signolet, Jason; Sherman, Adrian; Sang, Helen; Tickle, Cheryll

    2011-08-09

    The proposal that birds descended from theropod dinosaurs with digits 2, 3 and 4 was recently given support by short-term fate maps, suggesting that the chick wing polarizing region-a group that Sonic hedgehog-expressing cells-gives rise to digit 4. Here we show using long-term fate maps that Green fluorescent protein-expressing chick wing polarizing region grafts contribute only to soft tissues along the posterior margin of digit 4, supporting fossil data that birds descended from theropods that had digits 1, 2 and 3. In contrast, digit IV of the chick leg with four digits (I-IV) arises from the polarizing region. To determine how digit identity is specified over time, we inhibited Sonic hedgehog signalling. Fate maps show that polarizing region and adjacent cells are specified in parallel through a series of anterior to posterior digit fates-a process of digit specification that we suggest is involved in patterning all vertebrate limbs with more than three digits.

  13. International Disputes and Cultural Ideas in the Canadian Arctic

    DEFF Research Database (Denmark)

    Burke, Danita Catherine

    of the Canadian-Arctic relationship. Using Canada as the focus for the analysis, the purpose of this project is to contribute to the existing Arctic studies and international relations literature by examining how interests and disputes in the Canadian Arctic region have been affected by domestic cultural...

  14. Black Carbon in Arctic Snow: Preliminary Results from Recent Field Measurements

    Science.gov (United States)

    Warren, S. G.; Grenfell, T. C.; Radionov, V. F.; Clarke, A. D.

    2007-12-01

    Annual snowpacks act to amplify variations in regional solar heating of the surface due to positive feedback processes associated with areal melting and precipitation. Small amounts of black carbon (BC) in the snow can reduce the albedo and modulate shortwave absorption and transmission affecting the onset of melt and heating of the snow pack. The effect of black carbon on the albedo of snow in the Arctic is estimated to be up to a few percent. The only prior survey of arctic snow was that of Clarke and Noone in 1983-84. We have begun a wide- area survey of the BC content of arctic snow in order to update and expand the 1983/84 survey. Samples of snow have been collected in mid to late spring when the entire winter snowpack was accessible. The samples have been melted and filtered, and the filters analyzed for absorptive impurities. To date, sites in Alaska, Canada, Greenland, and in the Arctic Basin have been sampled. In March and April 2007 we also carried out a field program at four sites in northwestern Russia as part of the International Polar Year. Preliminary results based on visual comparison with the standard filters indicate that the snow cover in arctic North America and the Beaufort Sea have lower BC concentrations now than 20 years ago while levels in Greenland are about the same. Background levels of BC in Russia are approximately twice those in North America consistent with modeling predictions of Flanner et al., 2007. More accurate values of absorption will be obtained by measurement of spectral transmission of the filters, which will also allow the relative contributions of BC and soil dust to be determined.

  15. High contributions of sea ice derived carbon in polar bear (Ursus maritimus) tissue.

    Science.gov (United States)

    Brown, Thomas A; Galicia, Melissa P; Thiemann, Gregory W; Belt, Simon T; Yurkowski, David J; Dyck, Markus G

    2018-01-01

    Polar bears (Ursus maritimus) rely upon Arctic sea ice as a physical habitat. Consequently, conservation assessments of polar bears identify the ongoing reduction in sea ice to represent a significant threat to their survival. However, the additional role of sea ice as a potential, indirect, source of energy to bears has been overlooked. Here we used the highly branched isoprenoid lipid biomarker-based index (H-Print) approach in combination with quantitative fatty acid signature analysis to show that sympagic (sea ice-associated), rather than pelagic, carbon contributions dominated the marine component of polar bear diet (72-100%; 99% CI, n = 55), irrespective of differences in diet composition. The lowest mean estimates of sympagic carbon were found in Baffin Bay bears, which were also exposed to the most rapidly increasing open water season. Therefore, our data illustrate that for future Arctic ecosystems that are likely to be characterised by reduced sea ice cover, polar bears will not only be impacted by a change in their physical habitat, but also potentially in the supply of energy to the ecosystems upon which they depend. This data represents the first quantifiable baseline that is critical for the assessment of likely ongoing changes in energy supply to Arctic predators as we move into an increasingly uncertain future for polar ecosystems.

  16. Cryptosporidium hominis Is a Newly Recognized Pathogen in the Arctic Region of Nunavik, Canada: Molecular Characterization of an Outbreak.

    Directory of Open Access Journals (Sweden)

    Karine Thivierge

    2016-04-01

    Full Text Available Cryptosporidium is a leading cause of childhood diarrhea in low-resource settings, and has been repeatedly associated with impaired physical and cognitive development. In May 2013, an outbreak of diarrhea caused by Cryptosporidium hominis was identified in the Arctic region of Nunavik, Quebec. Human cryptosporidiosis transmission was previously unknown in this region, and very few previous studies have reported it elsewhere in the Arctic. We report clinical, molecular, and epidemiologic details of a multi-village Cryptosporidium outbreak in the Canadian Arctic.We investigated the occurrence of cryptosporidiosis using a descriptive study of cases with onset between April 2013 and April 2014. Cases were defined as Nunavik inhabitants of any age presenting with diarrhea of any duration, in whom Cryptosporidium oocysts were detected by stool microscopy in a specialised reference laboratory. Cryptosporidium was identified in stool from 51 of 283 individuals. The overall annual incidence rate (IR was 420 / 100,000 inhabitants. The IR was highest among children aged less than 5 years (1290 /100,000 persons. Genetic subtyping for stool specimens from 14/51 cases was determined by DNA sequence analysis of the 60 kDa glycoprotein (gp60 gene. Sequences aligned with C. hominis subtype Id in all cases. No common food or water source of infection was identified.In this first observed outbreak of human cryptosporidiosis in this Arctic region, the high IR seen is cause for concern about the possible long-term effects on growth and development of children in Inuit communities, who face myriad other challenges such as overcrowding and food-insecurity. The temporal and geographic distribution of cases, as well as the identification of C. hominis subtype Id, suggest anthroponotic rather than zoonotic transmission. Barriers to timely diagnosis delayed the recognition of human cryptosporidiosis in this remote setting.

  17. Socio-Economic Priorities for the Sustainable Development of Russian Arctic Macro-Region

    Directory of Open Access Journals (Sweden)

    Vladimir Nikolaevich Leksin

    2017-12-01

    Full Text Available To properly justify the priorities for the Russian Arctic Zone sustainable development is methodologically challenging for two reasons. Firstly, this challenge is due to fast changes of external and internal conditions for the development of the Arctic Zone of the Russian Federation (AZRF. Secondly, the interpretation of the concept of “sustainability” is too wide inconsistent. As the concepts of “sustainability” as well as the concept of “sustainable growth” in this wide sense are frequently used to characterize economic, social and other processes and systems, these key categories are difficult to apply as development’ targets and evaluation criteria practice of public administration in Russia. Using the case of Arctic macro-region, the paper substantiates the concept of spatial systems’ sustainability as their ability to maintain functionality under destabilizing impact of exogenous and endogenous factors. Such an ability is particularly important because of variations in structure and intensity of these negative impacts, including from climate change. Within this methodological framework, we have specified the indicators of sustainability relating to the practice of public management in the AZRF development. The paper has discussed the existing and emerging exogenous and endogenous impacts on the AZRF development sustainability. We set two priorities among the goals and objectives for ensuring the AZRF sustainable functioning under the conditions of climate. In social (socio-economic sphere, it is necessary to maintain and improve the public health. In economic sphere, the most needed are strengthening of coherency and reliability of the transportation system, energy supplies to distant consumers, and stimulating of investment and industrial activities of the large industrial corporations.

  18. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Polar Winds from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains the Level 3 Polar Winds Northern and Southern Hemisphere datasets. The Level 3 Polar Winds data from VIIRS for the Arctic and Antarctic from 65...

  19. Arctic action against climatic changes

    International Nuclear Information System (INIS)

    Njaastad, Birgit

    2000-01-01

    The articles describes efforts to map the climatic changes in the Arctic regions through the Arctic Climate Impact Assessment Project which is a joint venture between eight Arctic countries: Denmark, Canada, the USA, Russia, Finland, Sweden and Norway. The project deals with the consequences of the changes such as the UV radiation due to diminishing ozone layers. The aims are: Evaluate and integrate existing knowledge in the field and evaluate and predict the consequences particularly on the environment both in the present and the future and produce reliable and useful information in order to aid the decision-making processes

  20. Frequent ultrafine particle formation and growth in Canadian Arctic marine and coastal environments

    Science.gov (United States)

    Collins, Douglas B.; Burkart, Julia; Chang, Rachel Y.-W.; Lizotte, Martine; Boivin-Rioux, Aude; Blais, Marjolaine; Mungall, Emma L.; Boyer, Matthew; Irish, Victoria E.; Massé, Guillaume; Kunkel, Daniel; Tremblay, Jean-Éric; Papakyriakou, Tim; Bertram, Allan K.; Bozem, Heiko; Gosselin, Michel; Levasseur, Maurice; Abbatt, Jonathan P. D.

    2017-11-01

    The source strength and capability of aerosol particles in the Arctic to act as cloud condensation nuclei have important implications for understanding the indirect aerosol-cloud effect within the polar climate system. It has been shown in several Arctic regions that ultrafine particle (UFP) formation and growth is a key contributor to aerosol number concentrations during the summer. This study uses aerosol number size distribution measurements from shipboard expeditions aboard the research icebreaker CCGS Amundsen in the summers of 2014 and 2016 throughout the Canadian Arctic to gain a deeper understanding of the drivers of UFP formation and growth within this marine boundary layer. UFP number concentrations (diameter > 4 nm) in the range of 101-104 cm-3 were observed during the two seasons, with concentrations greater than 103 cm-3 occurring more frequently in 2016. Higher concentrations in 2016 were associated with UFP formation and growth, with events occurring on 41 % of days, while events were only observed on 6 % of days in 2014. Assessment of relevant parameters for aerosol nucleation showed that the median condensation sink in this region was approximately 1.2 h-1 in 2016 and 2.2 h-1 in 2014, which lie at the lower end of ranges observed at even the most remote stations reported in the literature. Apparent growth rates of all observed events in both expeditions averaged 4.3 ± 4.1 nm h-1, in general agreement with other recent studies at similar latitudes. Higher solar radiation, lower cloud fractions, and lower sea ice concentrations combined with differences in the developmental stage and activity of marine microbial communities within the Canadian Arctic were documented and help explain differences between the aerosol measurements made during the 2014 and 2016 expeditions. These findings help to motivate further studies of biosphere-atmosphere interactions within the Arctic marine environment to explain the production of UFP and their growth to sizes

  1. Biogeography of photoautotrophs in the high polar biome

    Directory of Open Access Journals (Sweden)

    Stephen Brian Pointing

    2015-09-01

    Full Text Available The global latitudinal gradient in biodiversity weakens in the high polar biome and so an alternative explanation for distribution of Arctic and Antarctic photoautotrophs is required. Here we identify how temporal, microclimate and evolutionary drivers of biogeography are important, rather than the macroclimate features that drive plant diversity patterns elsewhere. High polar ecosystems are biologically unique, with a more central role for bryophytes, lichens and microbial photoautotrophs over that of vascular plants. Constraints on vascular plants arise mainly due to stature and ontogenetic barriers. Conversely non-vascular plant and microbial photoautotroph distribution is correlated with favourable microclimates and the capacity for poikilohydric dormancy. Contemporary distribution also depends on evolutionary history, with adaptive and dispersal traits as well as legacy influencing biogeography. We highlight the relevance of these findings to predicting future impacts on polar plant diversity and to the current status of plants in Arctic and Antarctic conservation policy frameworks.

  2. The Norwegian Radiation Protection Authority's Environmental Unit - 10 years in the Polar Environmental Centre, Tromsoe

    International Nuclear Information System (INIS)

    2009-01-01

    The Norwegian Radiation Protection Authority (NRPA) established an Environmental Unit at the Polar Environmental Centre in Tromsoe in the summer of 1999. The aim of establishing the unit in Tromsoe was to further the monitoring programmes of the NRPA in the Arctic and to the promote collaboration within the Polar Environmental Centre. Over the last 10 years, the NRPA's Environmental Unit has undertaken a range of research and monitoring activities in close cooperation with other institutes in the Polar Environmental Centre that have helped to further understand the current radiological status of the Norwegian Arctic. (Author)

  3. Coordinating for Arctic Conservation: Implementing Integrated Arctic Biodiversity Monitoring, Data Management and Reporting

    Science.gov (United States)

    Gill, M.; Svoboda, M.

    2012-12-01

    themes (Marine, Freshwater, and Terrestrial). Each group, representing a diversity of disciplines, is tasked with developing and implementing pan-arctic integrated biodiversity monitoring plans for the Arctic's ecosystems. To facilitate effective reporting and data management, the CBMP is developing a suite of indices and indicators and a web-based data portal that will be used to report on the current state of arctic biodiversity at various scales and levels of detail to suit a wide range of audiences (e.g. local Arctic communities, regional and national governments and the Convention on Biological Diversity). The current and planned CBMP biodiversity monitoring underpins these indicators and indices. The presentation will highlight the CBMP approach and provide some examples of how integrated monitoring, data management and reporting are leading to more informed decision-making.

  4. Beyond Thin Ice: Co-Communicating the Many Arctics

    Science.gov (United States)

    Druckenmiller, M. L.; Francis, J. A.; Huntington, H.

    2015-12-01

    Science communication, typically defined as informing non-expert communities of societally relevant science, is persuaded by the magnitude and pace of scientific discoveries, as well as the urgency of societal issues wherein science may inform decisions. Perhaps nowhere is the connection between these facets stronger than in the marine and coastal Arctic where environmental change is driving advancements in our understanding of natural and socio-ecological systems while paving the way for a new assortment of arctic stakeholders, who generally lack adequate operational knowledge. As such, the Arctic provides opportunity to advance the role of science communication into a collaborative process of engagement and co-communication. To date, the communication of arctic change falls within four primary genres, each with particular audiences in mind. The New Arctic communicates an arctic of new stakeholders scampering to take advantage of unprecedented access. The Global Arctic conveys the Arctic's importance to the rest of the world, primarily as a regulator of lower-latitude climate and weather. The Intra-connected Arctic emphasizes the increasing awareness of the interplay between system components, such as between sea ice loss and marine food webs. The Transforming Arctic communicates the region's trajectory relative to the historical Arctic, acknowledging the impacts on indigenous peoples. The broad societal consensus on climate change in the Arctic as compared to other regions in the world underscores the opportunity for co-communication. Seizing this opportunity requires the science community's engagement with stakeholders and indigenous peoples to construct environmental change narratives that are meaningful to climate responses relative to non-ecological priorities (e.g., infrastructure, food availability, employment, or language). Co-communication fosters opportunities for new methods of and audiences for communication, the co-production of new interdisciplinary

  5. Oil and Gas in a New Arctic. Developments of the Energy Issue and Regional Strategic Dynamic; Olja och gas i ett nytt och foeraendrat Arktis. Energifraagans utveckling mot bakgrund av regionens strategiska dynamik

    Energy Technology Data Exchange (ETDEWEB)

    Granholm, Niklas; Kiesow, Ingolf

    2010-03-15

    This study has as its point of departure that large reserves of energy and minerals are deposited in the Arctic. There is uncertainty on how large these reserves are and if extraction of them is technically and economically feasible. As the Arctic gradually becomes more accessible as the melting of the sea-ice in the Arctic Ocean progresses, the region becomes more open to human activities than ever before. The energy issue in the Arctic develops against the background of the region's increasing geostrategic importance. Russia shows no hesitation, Norway also put considerable resources into energy extraction in the Arctic. Environ-mental protection is a more prominent issue in Norway, Canada and the USA than in Russia. In addition to the energy issue, other factors in the Arctic are also changing. Shipping, climate change, military strategy, nuclear weapons, overlapping territorial claims, developments in international security and national policies and efforts, are all parts of a development that does not easily let itself be described and analysed. The different factors under change develop according to their own character and inner logic and how they interact will be hard to foresee. Uncertainties of future developments in the Arctic therefore remain. The Arctic will become more clearly linked into developments in the rest of the world than hitherto. The region will no longer be exclusively an issue for the states in the region. The interest in the Arctic is on the increase, not only from the Arctic states, but also from external state actors in Europe and Asia, as well as multilateral organisations such as the European Union and NATO

  6. Behavioral interactions of penned red and arctic foxes

    Science.gov (United States)

    Rudzinski, D.R.; Graves, H.B.; Sargeant, A.B.; Storm, G.L.

    1982-01-01

    Expansion of the geographical distribution of red foxes (Vulpes vulpes) into the far north tundra region may lead to competition between arctic (Alopex lagopus) and red foxes for space and resources. Behavioral interactions between red and arctic foxes were evaluated during 9 trials conducted in a 4.05-ha enclosure near Woodworth, North Dakota. Each trial consisted of introducing a male-female pair of arctic foxes into the enclosure and allowing them to acclimate for approximately a week before releasing a female red fox into the enclosure, followed by her mate a few days later. In 8 of 9 trials, red foxes were dominant over arctic foxes during encounters. Activity of the arctic foxes decreased upon addition of red foxes. Arctic foxes tried unsuccessfully to defend preferred den, resting, and feeding areas. Even though the outcome of competition between red and arctic foxes in the Arctic is uncertain, the more aggressive red fox can dominate arctic foxes in direct competition for den sites and other limited resources.

  7. A SCAT manual for Arctic regions and cold climates

    International Nuclear Information System (INIS)

    Owens, E.H.; Sergy, G.A.

    2004-01-01

    The Shoreline Cleanup Assessment Technique (SCAT) has been used on many oil spills in a variety of ways to meet a broad range of specific spill conditions. SCAT was created in response to the Exxon Valdez oil spill in Prince William Sound Alaska. Environment Canada developed generic second-generation SCAT protocols to standardize the documentation and description of oiled shorelines. As the SCAT process becomes more widely accepted and used during spill response operations, the need for flexibility and modifications has grown. For that reason, the Arctic SCAT Manual was created to address the need for guidelines, standardized definitions, standardized terminology and forms that can be applied for oiled shorelines or riverbanks in Arctic environments and cold climates. Unique Arctic shoreline types such as tundra cliffs, inundated low-lying tundra and peat shorelines are included in the manual along with a new set of shoreline oiling forms for marine coasts, tidal flats, wetlands, lake shores, riverbanks, and stream banks. A First Responders guide has been included with the manual to help local inhabitants during the initial phases of an oiled shoreline assessment. 5 refs., 2 tabs., 20 figs

  8. Climate Change, Globalization and Geopolitics in the New Maritime Arctic

    Science.gov (United States)

    Brigham, L. W.

    2011-12-01

    Early in the 21st century a confluence of climate change, globalization and geopolitics is shaping the future of the maritime Arctic. This nexus is also fostering greater linkage of the Arctic to the rest of the planet. Arctic sea ice is undergoing a historic transformation of thinning, extent reduction in all seasons, and reduction in the area of multiyear ice in the central Arctic Ocean. Global Climate Model simulations of Arctic sea ice indicate multiyear ice could disappear by 2030 for a short period of time each summer. These physical changes invite greater marine access, longer seasons of navigation, and potential, summer trans-Arctic voyages. As a result, enhanced marine safety, environmental protection, and maritime security measures are under development. Coupled with climate change as a key driver of regional change is the current and future integration of the Arctic's natural wealth with global markets (oil, gas and hard minerals). Abundant freshwater in the Arctic could also be a future commodity of value. Recent events such as drilling for hydrocarbons off Greenland's west coast and the summer marine transport of natural resources from the Russian Arctic to China across the top of Eurasia are indicators of greater global economic ties to the Arctic. Plausible Arctic futures indicate continued integration with global issues and increased complexity of a range of regional economic, security and environmental challenges.

  9. The Contribution to Arctic Climate Change from Countries in the Arctic Council

    Science.gov (United States)

    Schultz, T.; MacCracken, M. C.

    2013-12-01

    The conventional accounting frameworks for greenhouse gas (GHG) emissions used today, established under the Kyoto Protocol 25 years ago, exclude short lived climate pollutants (SLCPs), and do not include regional effects on the climate. However, advances in climate science now suggest that mitigation of SLCPs can reduce up to 50% of global warming by 2050. It has also become apparent that regions such as the Arctic have experienced a much greater degree of anthropogenic warming than the globe as a whole, and that efforts to slow this warming could benefit the larger effort to slow climate change around the globe. A draft standard for life cycle assessment (LCA), LEO-SCS-002, being developed under the American National Standards Institute process, has integrated the most recent climate science into a unified framework to account for emissions of all radiatively significant GHGs and SLCPs. This framework recognizes four distinct impacts to the oceans and climate caused by GHGs and SLCPs: Global Climate Change; Arctic Climate Change; Ocean Acidification; and Ocean Warming. The accounting for Arctic Climate Change, the subject of this poster, is based upon the Absolute Regional Temperature Potential, which considers the incremental change to the Arctic surface temperature resulting from an emission of a GHG or SLCP. Results are evaluated using units of mass of carbon dioxide equivalent (CO2e), which can be used by a broad array of stakeholders, including scientists, consumers, policy makers, and NGOs. This poster considers the contribution to Arctic Climate Change from emissions of GHGs and SLCPs from the eight member countries of the Arctic Council; the United States, Canada, Russia, Denmark, Finland, Iceland, Norway, and Sweden. Of this group of countries, the United States was the largest contributor to Arctic Climate Change in 2011, emitting 9600 MMT CO2e. This includes a gross warming of 11200 MMT CO2e (caused by GHGs, black and brown carbon, and warming effects

  10. Climate-induced behavioral changes influence exposure of an Arctic apex predator to pathogens and contaminants

    Science.gov (United States)

    Polar bears (Ursus maritimus) may serve as sentinels for pathogens and contaminants, providing insight into changing Arctic ecosystems and health risks to wildlife and humans. Recent changes in the availability of sea ice habitat have coincided with increased use of land by polar bears from the sout...

  11. Political risks of hydrocarbon deposit development in the Arctic seas of the Russian Federation

    International Nuclear Information System (INIS)

    Bolsunovskaya, Y A; Boyarko, G Yu; Bolsunovskaya, L M

    2014-01-01

    Nowadays the process of Arctic development has a long-term international cooperation character. Economic and geopolitical interests of both arctic and non-arctic countries meet in the region. Apart from resource development issues, there are problems concerning security, sustainable development and some others issues conditioned by climate and geographical characteristics of the region. Strategic analysis of political risks for the Russian Federation is carried out. The analysis reveals that political risks of hydrocarbon deposits development in the RF arctic seas appear as lack of coordination with arctic countries in solving key regional problems, failure to follow international agreements. Such inconsistency may lead to political risks, which results in strained situation in the region

  12. In-situ observation of Asian pollution transported into the Arctic lowermost stratosphere

    Directory of Open Access Journals (Sweden)

    A. Roiger

    2011-11-01

    Full Text Available On a research flight on 10 July 2008, the German research aircraft Falcon sampled an air mass with unusually high carbon monoxide (CO, peroxyacetyl nitrate (PAN and water vapour (H2O mixing ratios in the Arctic lowermost stratosphere. The air mass was encountered twice at an altitude of 11.3 km, ~800 m above the dynamical tropopause. In-situ measurements of ozone, NO, and NOy indicate that this layer was a mixed air mass containing both air from the troposphere and stratosphere. Backward trajectory and Lagrangian particle dispersion model analysis suggest that the Falcon sampled the top of a polluted air mass originating from the coastal regions of East Asia. The anthropogenic pollution plume experienced strong up-lift in a warm conveyor belt (WCB located over the Russian east-coast. Subsequently the Asian air mass was transported across the North Pole into the sampling area, elevating the local tropopause by up to ~3 km. Mixing with surrounding Arctic stratospheric air most likely took place during the horizontal transport when the tropospheric streamer was stretched into long and narrow filaments. The mechanism illustrated in this study possibly presents an important pathway to transport pollution into the polar tropopause region.

  13. Calibration and application of the IP25 biomarker for Arctic sea ice reconstructions

    Science.gov (United States)

    Cabedo Sanz, P.; Navarro Rodriguez, A.; Belt, S. T.; Brown, T. A.; Knies, J.; Husum, K.; Giraudeau, J.; Andrews, J.

    2012-04-01

    The presence of the sea ice diatom biomarker IP25 in Arctic marine sediments has been used in previous studies as a proxy for past spring sea ice occurrence and as an indicator of wider palaeoenvironmental conditions for different regions of the Arctic over various timescales [e.g. 1, 3]. In addition, measurement of IP25 has also been applied as a sea ice origin tracer for studying the transfer of organic carbon through Arctic food-webs [2]. The current study focuses on three main areas: (1) In order to improve on the quantitative analytical aspects of IP25 based research, we present here the results of a large scale extraction, purification and identification procedure for IP25 from marine sediments. This has confirmed the structure of IP25 in sediments and enabled more robust quantitative measurements by gas chromatography - mass spectrometry (GC-MS) to be established. (2) Quantitative measurements of IP25 from a sediment core from Andfjord (continental shelf, Tromsø, Norway) have been determined for the period 6.3 to 14.3 ka BP. The results of this study add significant further information to that reported previously from other biomarker studies for this core (e.g. brassicasterol) [4]. (3) Analytical detection issues (GC-MS) regarding the occurrence of IP25 in other sub-Arctic regions (e.g. East Greenland - North Iceland area) will be presented and discussed with relation to other proxy data (e.g. IRD). Belt, S. T., Vare, L. L., Massé, G., Manners, H. R., Price, J. C., MacLachlan, S. E., Andrews, J. T. & Schmidt, S. (2010) 'Striking similarities in temporal changes to spring sea ice occurrence across the central Canadian Arctic Archipelago over the last 7000 years', Quaternary Science Reviews, 29 (25-26), pp. 3489-3504. Brown, T. A. & Belt, S. T. (2012) 'Identification of the sea ice diatom biomarker IP25 in Arctic benthic macrofauna: direct evidence for a sea ice diatom diet in Arctic heterotrophs', Polar Biology, 35, pp. 131-137. Müller, J., Massé, G

  14. Potential impacts of offshore oil spills on polar bears in the Chukchi Sea.

    Science.gov (United States)

    Wilson, Ryan R; Perham, Craig; French-McCay, Deborah P; Balouskus, Richard

    2018-04-01

    Sea ice decline is anticipated to increase human access to the Arctic Ocean allowing for offshore oil and gas development in once inaccessible areas. Given the potential negative consequences of an oil spill on marine wildlife populations in the Arctic, it is important to understand the magnitude of impact a large spill could have on wildlife to inform response planning efforts. In this study we simulated oil spills that released 25,000 barrels of oil for 30 days in autumn originating from two sites in the Chukchi Sea (one in Russia and one in the U.S.) and tracked the distribution of oil for 76 days. We then determined the potential impact such a spill might have on polar bears (Ursus maritimus) and their habitat by overlapping spills with maps of polar bear habitat and movement trajectories. Only a small proportion (1-10%) of high-value polar bear sea ice habitat was directly affected by oil sufficient to impact bears. However, 27-38% of polar bears in the region were potentially exposed to oil. Oil consistently had the highest probability of reaching Wrangel and Herald islands, important areas of denning and summer terrestrial habitat. Oil did not reach polar bears until approximately 3 weeks after the spills. Our study found the potential for significant impacts to polar bears under a worst case discharge scenario, but suggests that there is a window of time where effective containment efforts could minimize exposure to bears. Our study provides a framework for wildlife managers and planners to assess the level of response that would be required to treat exposed wildlife and where spill response equipment might be best stationed. While the size of spill we simulated has a low probability of occurring, it provides an upper limit for planners to consider when crafting response plans. Published by Elsevier Ltd.

  15. Modeling polar cap F-region patches using time varying convection

    International Nuclear Information System (INIS)

    Sojka, J.J.; Bowline, M.D.; Schunk, R.W.; Decker, D.T.; Valladares, C.E.; Sheehan, R.; Anderson, D.N.; Heelis, R.A.

    1993-01-01

    Here the authors present the results of computerized simulations of the polar cap regions which were able to model the formation of polar cap patches. They used the Utah State University Time-Dependent Ionospheric Model (TDIM) and the Phillips Laboratory (PL) F-region models in this work. By allowing a time varying magnetospheric electric field in the models, they were able to generate the patches. This time varying field generates a convection in the ionosphere. This convection is similar to convective changes observed in the ionosphere at times of southward pointing interplanetary magnetic field, due to changes in the B y component of the IMF

  16. Fine-scale population genetic structure of arctic foxes (Vulpes lagopus) in the High Arctic.

    Science.gov (United States)

    Lai, Sandra; Quiles, Adrien; Lambourdière, Josie; Berteaux, Dominique; Lalis, Aude

    2017-12-01

    The arctic fox (Vulpes lagopus) is a circumpolar species inhabiting all accessible Arctic tundra habitats. The species forms a panmictic population over areas connected by sea ice, but recently, kin clustering and population differentiation were detected even in regions where sea ice was present. The purpose of this study was to examine the genetic structure of a population in the High Arctic using a robust panel of highly polymorphic microsatellites. We analyzed the genotypes of 210 individuals from Bylot Island, Nunavut, Canada, using 15 microsatellite loci. No pattern of isolation-by-distance was detected, but a spatial principal component analysis (sPCA) revealed the presence of genetic subdivisions. Overall, the sPCA revealed two spatially distinct genetic clusters corresponding to the northern and southern parts of the study area, plus another subdivision within each of these two clusters. The north-south genetic differentiation partly matched the distribution of a snow goose colony, which could reflect a preference for settling into familiar ecological environments. Secondary clusters may result from higher-order social structures (neighbourhoods) that use landscape features to delimit their borders. The cryptic genetic subdivisions found in our population may highlight ecological processes deserving further investigations in arctic foxes at larger, regional spatial scales.

  17. Impacts of projected sea ice changes on trans-Arctic navigation

    Science.gov (United States)

    Stephenson, S. R.; Smith, L. C.

    2012-12-01

    Reduced Arctic sea ice continues to be a palpable signal of global change. Record lows in September sea ice extent from 2007 - 2011 have fueled speculation that trans-Arctic navigation routes may become physically viable in the 21st century. General Circulation Models project a nearly ice-free Arctic Ocean in summer by mid-century; however, how reduced sea ice will realistically impact navigation is not well understood. Using the ATAM (Arctic Transportation Accessibility Model) we present simulations of 21st-century trans-Arctic voyages as a function of climatic (ice) conditions and vessel class. Simulations are based on sea ice projections for three climatic forcing scenarios (RCP 4.5, 6.0, and 8.5 W/m^2) representing present-day and mid-century conditions, assuming Polar Class 6 (PC6) and open-water vessels (OW) with medium and no ice-breaking capability, respectively. Optimal least-cost routes (minimizing travel time while avoiding ice impassible to a given vessel class) between the North Atlantic and the Bering Strait were calculated for summer months of each time window. While Arctic navigation depends on other factors besides sea ice including economics, infrastructure, bathymetry, current, and weather, these projections should be useful for strategic planning by governments, regulatory and environmental agencies, and the global maritime industry to assess potential changes in the spatial and temporal ranges of Arctic marine operations.

  18. Some like it cold: microbial transformations of mercury in polar regions

    Directory of Open Access Journals (Sweden)

    Niels Kroer

    2011-12-01

    Full Text Available The contamination of polar regions with mercury that is transported from lower latitudes as inorganic mercury has resulted in the accumulation of methylmercury (MeHg in food chains, risking the health of humans and wildlife. While production of MeHg has been documented in polar marine and terrestrial environments, little is known about the responsible transformations and transport pathways and the processes that control them. We posit that as in temperate environments, microbial transformations play a key role in mercury geochemical cycling in polar regions by: (1 methylating mercury by one of four proposed pathways, some not previously described; (2 degrading MeHg by activities of mercury resistant and other bacteria; and (3 carrying out redox transformations that control the supply of the mercuric ion, the substrate of methylation reactions. Recent analyses have identified a high potential for mercury-resistant microbes that express the enzyme mercuric reductase to affect the production of gaseous elemental mercury when and where daylight is limited. The integration of microbially mediated processes in the paradigms that describe mercury geochemical cycling is therefore of high priority especially in light of concerns regarding the effect of global warming and permafrost thawing on input of MeHg to polar regions.

  19. U.S. Arctic research in a technological age

    International Nuclear Information System (INIS)

    Johnson, P.L.

    1993-01-01

    The United States Arctic Research Commission was established in 1984 primarily as an advisory agency. An Interagency Arctic Research Policy Committee is one of the main recipients of the Commission's recommendations. The Committee formulated an Arctic research policy calling for research focused on national security concerns, regional development with minimal environmental or adverse social impact, and scientific research on Arctic phenomena and processes. In basic science, emphasis is placed on the need to understand Arctic processes as part of the global earth system. These processes include those that affect and are affected by climatic change. A new research program in Arctic systems science has three components: paleoenvironmental studies on ice core from Greenland; ocean-atmosphere interactions; and land-atmosphere interactions. The Commission also recognizes a need to focus on issues relevant to the Arctic as an integral component of the world economic system, since the Arctic is a significant source of petroleum and minerals. The Commission recommended that the Committee develop an Arctic engineering research plan with emphasis on such topics as oil spill prevention, waste disposal, small-scale power generation, and Arctic construction techniques. The USA is also cooperating in international Arctic research through the International Arctic Science Committee, the Arctic Environmental Protection Strategy, and the North Pacific Marine Science Organization

  20. Greenland and the international politics of a changing arctic

    DEFF Research Database (Denmark)

    Greenland and the International Politics of a Changing Arctic examines the international politics of semi-independent Greenland in a changing and increasingly globalised Arctic. Without sovereign statehood, but with increased geopolitical importance, independent foreign policy ambitions......, and a solidified self-image as a trailblazer for Arctic indigenous peoples’ rights, Greenland is making its mark on the Arctic and is in turn affected – and empowered – by Arctic developments. The chapters in this collection analyse how a distinct Greenlandic foreign policy identity shapes political ends and means...... for regional change in the Arctic. This is the first comprehensive and interdisciplinary examination of Greenland’s international relations and how they are connected to wider Arctic politics. It will be essential reading for students and scholars interested in Arctic governance and security, international...

  1. The Arctic Vortex in March 2011: A Dynamical Perspective

    Science.gov (United States)

    Hurwitz, Margaret M.; Newman, Paul A.; Garfinkel,Chaim I.

    2011-01-01

    Despite the record ozone loss observed in March 2011, dynamical conditions in the Arctic stratosphere were unusual but not unprecedented. Weak planetary wave driving in February preceded cold anomalies in t he polar lower stratosphere in March and a relatively late breakup of the Arctic vortex in April. La Nina conditions and the westerly phas e of the quasi-biennial oscillation (QBO) were observed in March 201 1. Though these conditions are generally associated with a stronger vortex in mid-winter, the respective cold anomalies do not persist t hrough March. Therefore, the La Nina and QBO-westerly conditions cannot explain the observed cold anomalies in March 2011. In contrast, po sitive sea surface temperature anomalies in the North Pacific may ha ve contributed to the unusually weak tropospheric wave driving and s trong Arctic vortex in late winter 2011.

  2. Arctic Legal System: a New Sustainable Development Model

    Directory of Open Access Journals (Sweden)

    Kumar Sahu Manjeet

    2016-01-01

    Full Text Available Historically, the term ‘Arctic’ was used synonymously with the term ‘ice’, but climate change and Arctic hydrocarbon grabbed the attention of the world community as an opportunity to make the Arctic an ‘Energy Hub’. Exploration of oil and gas over the past six decades in the Arctic has made the region as places in the world. All major players in the market have endeavored to approach this new energy basket to utilize its maximum benefit. Commercial exploitation of natural resources has made this place a center for the regulation of oil and gas activities. However, petroleum exploration and its operation have had significant local detrimental impacts on the atmosphere, inhabitants and marine environment. Geologists have always believed in the huge reserves of oil and gas in the Arctic Region. However, the exploration of oil and gas started as recently as the mid-1950s. An increase in the demand of oil and gas in the international market, as well as its growing scarcity, compelled the world to locate oil and gas reserves in various regions. It is significant to note that the Arctic states are strategically going to control the excessive exploitation of Arctic hydrocarbon with much profitability. However, it is still a far sighted question ‘whether Arctic will provide direct competition to the Middle East’ and become another hub in the energy market.

  3. (Arbo)viruses in high European Arctic

    OpenAIRE

    ELSTEROVÁ, Jana

    2016-01-01

    Since an ongoing climate change covers strongly the polar areas. Higher temperatures and related climate parameters bring the emergence of new parasites and their pathogens to higher latitudes. This may influence zoonotic diseases including arthropod-transmitted diseases. The tick species Ixodes uriae, parasitizing seabirds in the Arctic, may transmit many pathogens including various arboviruses, Borrelia spirochetes and Babesia apicomplexans. In the study we diagnosed 89 individuals of seabi...

  4. Process contributions to the intermodel spread in amplified Arctic warming

    Science.gov (United States)

    Boeke, R.; Taylor, P. C.

    2016-12-01

    The Arctic is warming at a rate more than twice the global average. This robust climate system response to an external forcing is referred to as Arctic Amplification (AA). While Coupled Model Intercomparison Project 5 (CMIP5) climate models simulate AA, the largest intermodel spread in projected warming is also found in the Arctic. Quantifying the amount of polar warming relative to global warming influences how society adapts to climate change; a 2°C increase in global mean temperature would result in a polar warming between 4-8°C according to the intermodel spread in CMIP5 simulations. A trove of previous work has considered AA diagnostically using variations in the surface energy budget to attribute the intermodel spread in AA to an assortment of feedbacks—surface albedo, cloud, surface turbulent flux, and atmospheric and oceanic energy transport. We consider a systems-thinking approach treating AA as a process that evolves over time. We hypothesize that two specific components of the AA process are most important and influence the intermodel spread. (1) The inability of the Arctic system to effectively remove excess heat sourced from natural variability. The change in the efficiency of the `Arctic air conditioner' is thought to be due to thinner and less extensive sea ice and the resulting ice albedo feedback. (2) The process through which energy is stored in the ocean and exchanged with the atmosphere within the context of the sea ice annual cycle is also important. This study uses CMIP5 simulations from the historical and RCP8.5 (Representative Concentration Pathway; an emission scenario with forcing increasing to 8.5 W m-2 by 2100) to analyze how the AA process operates in present and future climate. The intermodel spread in these processes and the influence on the spread in AA are discussed. This approach identifies models that more realistically simulate the AA process and will aid in narrowing intermodel spread in Arctic surface temperature

  5. A cluster of three cases of trichinellosis linked to bear meat consumption in the Arctic

    DEFF Research Database (Denmark)

    Dupouy-Camet, Jean; Yera, Hélène; Dahane, Naïma

    2016-01-01

    We report here three cases of trichinellosis due to polar bear meat consumption in East Greenland. In the past 20 years, 31 cases of trichinellosis have been reported in French travellers to the Arctic (North Quebec, Nunavut and Greenland) who consumed undercooked meat from black, brown, or polar...

  6. Brain region-specific perfluoroalkylated sulfonate (PFSA) and carboxylic acid (PFCA) accumulation and neurochemical biomarker responses in east Greenland polar bears (Ursus maritimus).

    Science.gov (United States)

    Eggers Pedersen, Kathrine; Basu, Niladri; Letcher, Robert; Greaves, Alana K; Sonne, Christian; Dietz, Rune; Styrishave, Bjarne

    2015-04-01

    Perfluoroalkyl substances (PFASs) is a growing class of contaminants in the Arctic environment, and include the established perfluorinated sulfonates (PFSAs; especially perfluorooctane sulfonate (PFOS)) and carboxylic acids (PFCAs). PFSAs and PFCAs of varying chain length have been reported to bioaccumulate in lipid rich tissues of the brain among other tissues such as liver, and can reach high concentrations in top predators including the polar bear. PFCA and PFSA bioaccummulation in the brain has the potential to pose neurotoxic effects and therefore we conducted a study to investigate if variations in neurochemical transmitter systems i.e. the cholinergic, glutaminergic, dopaminergic and GABAergic, could be related to brain-specific bioaccumulation of PFASs in East Greenland polar bears. Nine brain regions from nine polar bears were analyzed for enzyme activity (monoamine oxidase (MAO), acetylcholinesterase (AChE) and glutamine synthetase (GS)) and receptor density (dopamine-2 (D2), muscarinic cholinergic (mAChR) and gamma-butyric acid type A (GABA-A)) along with PFSA and PFCA concentrations. Average brain ∑PFSA concentration was 25ng/g ww where PFOS accounted for 91%. Average ∑PFCA concentration was 88ng/g ww where PFUnDA, PFDoDA and PFTrDA combined accounted for 79%. The highest concentrations of PFASs were measured in brain stem, cerebellum and hippocampus. Correlative analyses were performed both across and within brain regions. Significant positive correlations were found between PFASs and MAO activity in occipital lobe (e.g. ∑PFCA; rp=0.83, p=0.041, n=6) and across brain regions (e.g. ∑PFCA; rp=0.47, p=0.001, ∑PFSA; rp=0.44, p>0.001; n=50). GABA-A receptor density was positively correlated with two PFASs across brain regions (PFOS; rp=0.33, p=0.02 and PFDoDA; rp=0.34, p=0.014; n=52). Significant negative correlations were found between mAChR density and PFASs in cerebellum (e.g. ∑PFCA; rp=-0.95, p=0.013, n=5) and across brain regions (e.g.

  7. Recent Arctic Sea Level Variations from Satellites

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Piccioni, Gaia

    2016-01-01

    Sea level monitoring in the Arctic region has always been an extreme challenge for remote sensing, and in particular for satellite altimetry. Despite more than two decades of observations, altimetry is still limited in the inner Arctic Ocean. We have developed an updated version of the Danish...... Technical University's (DTU) Arctic Ocean altimetric sea level timeseries starting in 1993 and now extended up to 2015 with CryoSat-2 data. The time-series covers a total of 23 years, which allows higher accuracy in sea level trend determination. The record shows a sea level trend of 2.2 ± 1.1 mm....../y for the region between 66°N and 82°N. In particular, a local increase of 15 mm/y is found in correspondence to the Beaufort Gyre. An early estimate of the mean sea level trend budget closure in the Arctic for the period 2005–2015 was derived by using the Equivalent Water Heights obtained from GRACE Tellus...

  8. Test and Evaluation of CGC POLAR STAR WAGB 10. Volume III. Background.

    Science.gov (United States)

    1978-09-01

    through Solid Ice," Problems of the Arctic and Antartic No. 5. Smith, N., (1969), "Determining the Dynamic Properties of Snow and Ice by Forced Valuation...Experiments," Thesis, Arctic and Antartic Institute, Leningrad. Voelker, R.P., and Koch, E., (1968), "The Design of a Ship’s Control Space in Polar Icebreakers

  9. Responses of invertebrates to temperature and water stress: A polar perspective.

    Science.gov (United States)

    Everatt, Matthew J; Convey, Pete; Bale, Jeffrey S; Worland, M Roger; Hayward, Scott A L

    2015-12-01

    As small bodied poikilothermic ectotherms, invertebrates, more so than any other animal group, are susceptible to extremes of temperature and low water availability. In few places is this more apparent than in the Arctic and Antarctic, where low temperatures predominate and water is unusable during winter and unavailable for parts of summer. Polar terrestrial invertebrates express a suite of physiological, biochemical and genomic features in response to these stressors. However, the situation is not as simple as responding to each stressor in isolation, as they are often faced in combination. We consider how polar terrestrial invertebrates manage this scenario in light of their physiology and ecology. Climate change is also leading to warmer summers in parts of the polar regions, concomitantly increasing the potential for drought. The interaction between high temperature and low water availability, and the invertebrates' response to them, are therefore also explored. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Observations of bromine monoxide transport in the Arctic sustained on aerosol particles

    Directory of Open Access Journals (Sweden)

    P. K. Peterson

    2017-06-01

    Full Text Available The return of sunlight in the polar spring leads to the production of reactive halogen species from the surface snowpack, significantly altering the chemical composition of the Arctic near-surface atmosphere and the fate of long-range transported pollutants, including mercury. Recent work has shown the initial production of reactive bromine at the Arctic surface snowpack; however, we have limited knowledge of the vertical extent of this chemistry, as well as the lifetime and possible transport of reactive bromine aloft. Here, we present bromine monoxide (BrO and aerosol particle measurements obtained during the March 2012 BRomine Ozone Mercury EXperiment (BROMEX near Utqiaġvik (Barrow, AK. The airborne differential optical absorption spectroscopy (DOAS measurements provided an unprecedented level of spatial resolution, over 2 orders of magnitude greater than satellite observations and with vertical resolution unable to be achieved by satellite methods, for BrO in the Arctic. This novel method provided quantitative identification of a BrO plume, between 500 m and 1 km aloft, moving at the speed of the air mass. Concurrent aerosol particle measurements suggest that this lofted reactive bromine plume was transported and maintained at elevated levels through heterogeneous reactions on colocated supermicron aerosol particles, independent of surface snowpack bromine chemistry. This chemical transport mechanism explains the large spatial extents often observed for reactive bromine chemistry, which impacts atmospheric composition and pollutant fate across the Arctic region, beyond areas of initial snowpack halogen production. The possibility of BrO enhancements disconnected from the surface potentially contributes to sustaining BrO in the free troposphere and must also be considered in the interpretation of satellite BrO column observations, particularly in the context of the rapidly changing Arctic sea ice and snowpack.

  11. Arctic Ocean Scientific Drilling: The Next Frontier

    Directory of Open Access Journals (Sweden)

    Ruediger Stein

    2010-04-01

    Full Text Available The modern Arctic Ocean appears to be changing faster than any other region on Earth. To understand the potential extent of high latitude climate change, it is necessary to sample the history stored in the sediments filling the basins and covering the ridges of the Arctic Ocean. These sediments have been imaged with seismic reflection data, but except for the superficial record, which has been piston cored, they have been sampled only on the Lomonosov Ridge in 2004 during the Arctic Coring Expedition (ACEX-IODP Leg 302; Backman et al., 2006 and in 1993 in the ice-free waters in the Fram Strait/Yermak Plateau area (ODP Leg 151; Thiede et al., 1996.Although major progress in Arctic Ocean research has been made during the last few decades, the short- and long-term paleoceanographic and paleoclimatic history as well as its plate-tectonic evolution are poorly known compared to the other oceans. Despite the importance of the Arctic in the climate system, the database we have from this area is still very weak. Large segments of geologic time have not been sampled in sedimentary sections. The question of regional variations cannot be addressed.

  12. Pan-Arctic aerosol number size distributions: seasonality and transport patterns

    Science.gov (United States)

    Freud, Eyal; Krejci, Radovan; Tunved, Peter; Leaitch, Richard; Nguyen, Quynh T.; Massling, Andreas; Skov, Henrik; Barrie, Leonard

    2017-07-01

    The Arctic environment has an amplified response to global climatic change. It is sensitive to human activities that mostly take place elsewhere. For this study, a multi-year set of observed aerosol number size distributions in the diameter range of 10 to 500 nm from five sites around the Arctic Ocean (Alert, Villum Research Station - Station Nord, Zeppelin, Tiksi and Barrow) was assembled and analysed.A cluster analysis of the aerosol number size distributions revealed four distinct distributions. Together with Lagrangian air parcel back-trajectories, they were used to link the observed aerosol number size distributions with a variety of transport regimes. This analysis yields insight into aerosol dynamics, transport and removal processes, on both an intra- and an inter-monthly scale. For instance, the relative occurrence of aerosol number size distributions that indicate new particle formation (NPF) event is near zero during the dark months, increases gradually to ˜ 40 % from spring to summer, and then collapses in autumn. Also, the likelihood of Arctic haze aerosols is minimal in summer and peaks in April at all sites.The residence time of accumulation-mode particles in the Arctic troposphere is typically long enough to allow tracking them back to their source regions. Air flow that passes at low altitude over central Siberia and western Russia is associated with relatively high concentrations of accumulation-mode particles (Nacc) at all five sites - often above 150 cm-3. There are also indications of air descending into the Arctic boundary layer after transport from lower latitudes.The analysis of the back-trajectories together with the meteorological fields along them indicates that the main driver of the Arctic annual cycle of Nacc, on the larger scale, is when atmospheric transport covers the source regions for these particles in the 10-day period preceding the observations in the Arctic. The scavenging of these particles by precipitation is shown to be

  13. Emergent Behavior of Arctic Precipitation in Response to Enhanced Arctic Warming

    Science.gov (United States)

    Anderson, Bruce T.; Feldl, Nicole; Lintner, Benjamin R.

    2018-03-01

    Amplified warming of the high latitudes in response to human-induced emissions of greenhouse gases has already been observed in the historical record and is a robust feature evident across a hierarchy of model systems, including the models of the Coupled Model Intercomparison Project Phase 5 (CMIP5). The main aims of this analysis are to quantify intermodel differences in the Arctic amplification (AA) of the global warming signal in CMIP5 RCP8.5 (Representative Concentration Pathway 8.5) simulations and to diagnose these differences in the context of the energy and water cycles of the region. This diagnosis reveals an emergent behavior between the energetic and hydrometeorological responses of the Arctic to warming: in particular, enhanced AA and its associated reduction in dry static energy convergence is balanced to first order by latent heating via enhanced precipitation. This balance necessitates increasing Arctic precipitation with increasing AA while at the same time constraining the magnitude of that precipitation increase. The sensitivity of the increase, 1.25 (W/m2)/K ( 240 (km3/yr)/K), is evident across a broad range of historical and projected AA values. Accounting for the energetic constraint on Arctic precipitation, as a function of AA, in turn informs understanding of both the sign and magnitude of hydrologic cycle changes that the Arctic may experience.

  14. The Rapid Arctic Warming and Its Impact on East Asian Winter Weather in Recent Decade

    Science.gov (United States)

    Kim, S. J.; Kim, B. M.; Kim, J. H.

    2015-12-01

    The Arctic is warming much more rapidly than the lower latitudes. In contrast to the rapid Arctic warming, in winters of the recent decade, the cold-air outbreaks over East Asia occur more frequently and stronger than in 1990s. By accompanying the snow over East Asia, the strong cold surges have led to a severe socio-economic impact. Such severe cold surges in recent decade over east Asia is consistent with the more dominant negative phase of the Arctic Oscillation (AO), that may be attributed by the Arctic amplification. In both observation-based reanalysis and numerical model experiments, the Arctic sea ice melting leads to the weakening of the AO polarity by reducing the meridional temperature gradient through a heat flux feedback. The Arctic warming and associated sea ice melting over the Kara-Barents area in late fall and early winter first release a lot of heat to the atmosphere from the ocean by a strong contrast in temperature and moisture and higher height anomaly is developed over the Kara/Barents and the Ural mountains The anomalous anticyclonic anomaly over the Arctic strengthen the Siberian High and at the same time the east Asian trough is developed over the western coast of the North Pacific. Through the passage between the margin of the Siberian High and east Asian tough, an extremely cold air is transported from east Siberia to east Asia for sometimes more than a week. Such a severe sold air brings about the moisture from nearby ocean, largely influencing the daily lives and economy in north East China, Korea, and Japan. The recent Arctic and associated sea ice melting is not only contributed to the local climate and weather, but also a severe weather in mid-latitudes through a modulation in polar vortex.

  15. High contributions of sea ice derived carbon in polar bear (Ursus maritimus tissue.

    Directory of Open Access Journals (Sweden)

    Thomas A Brown

    Full Text Available Polar bears (Ursus maritimus rely upon Arctic sea ice as a physical habitat. Consequently, conservation assessments of polar bears identify the ongoing reduction in sea ice to represent a significant threat to their survival. However, the additional role of sea ice as a potential, indirect, source of energy to bears has been overlooked. Here we used the highly branched isoprenoid lipid biomarker-based index (H-Print approach in combination with quantitative fatty acid signature analysis to show that sympagic (sea ice-associated, rather than pelagic, carbon contributions dominated the marine component of polar bear diet (72-100%; 99% CI, n = 55, irrespective of differences in diet composition. The lowest mean estimates of sympagic carbon were found in Baffin Bay bears, which were also exposed to the most rapidly increasing open water season. Therefore, our data illustrate that for future Arctic ecosystems that are likely to be characterised by reduced sea ice cover, polar bears will not only be impacted by a change in their physical habitat, but also potentially in the supply of energy to the ecosystems upon which they depend. This data represents the first quantifiable baseline that is critical for the assessment of likely ongoing changes in energy supply to Arctic predators as we move into an increasingly uncertain future for polar ecosystems.

  16. Documenting PyroCb Development on High-Intensity Boreal Fires: Implications for the Arctic Atmosphere

    Science.gov (United States)

    Stocks, B. J.; Fromm, M. D.; Servranckx, R.; Lindsey, D.

    2007-12-01

    The recent confirmation that smoke from high-intensity boreal forest fires can reach the Upper Troposphere/Lower Stratosphere (UTLS) through pyroconvection and be transported long distances has raised concern over the wider-scale environmental impact of boreal fire smoke. This concern is further elevated as climate change projections indicate a significant increase in the frequency and severity of boreal forest fires over the next century. Smoke in the UTLS is frequently transported to the Arctic and may have important implications for the radiative energy budget in the polar region. Soot deposition from fires may lead to enhanced melting of sea ice and glaciers, and the chemical impact of fire emissions at high altitudes is largely unknown. This knowledge gap will be addressed during the International Polar Year (IPY), as boreal fire emissions will be tracked and documented in detail through aerial, satellite and ground-based measurements, as a key component of the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) and ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) projects to be conducted in 2008. A large fire in the Canadian Northwest Territories burned throughout the month of June 2007, in a remote region where forest fires are not actively suppressed, eventually reaching 90,000 hectares in size. This fire was monitored for blowup one week in advance; it erupted into pyroconvection on June 25, 2007. We present an analysis of this event combining satellite data with ground-based measurements to document the development and impact of this classic pyroCb event. Under extreme fire danger conditions, the fire burned close to 20,000 hectares on that day. Fire behavior was consistent with predictions using the Canadian Fire Behavior Prediction System, with the fire spreading at 2.7 km/hr, consuming 33,000 kg of fuel hourly, generating an

  17. Warm Arctic—cold continents: climate impacts of the newly open Arctic Sea

    Directory of Open Access Journals (Sweden)

    James E. Overland

    2011-12-01

    Full Text Available Recent Arctic changes are likely due to coupled Arctic amplification mechanisms with increased linkage between Arctic climate and sub-Arctic weather. Historically, sea ice grew rapidly in autumn, a strong negative radiative feedback. But increased sea-ice mobility, loss of multi-year sea ice, enhanced heat storage in newly sea ice-free ocean areas, and modified wind fields form connected positive feedback processes. One-way shifts in the Arctic system are sensitive to the combination of episodic intrinsic atmospheric and ocean variability and persistent increasing greenhouse gases. Winter 2009/10 and December 2010 showed a unique connectivity between the Arctic and more southern weather patterns when the typical polar vortex was replaced by high geopotential heights over the central Arctic and low heights over mid-latitudes that resulted in record snow and low temperatures, a warm Arctic—cold continents pattern. The negative value of the winter (DJF 2009/10 North Atlantic Oscillation (NAO index associated with enhanced meridional winds was the lowest observed value since the beginning of the record in 1865. Wind patterns in December 2007 and 2008 also show an impact of warmer Arctic temperatures. A tendency for higher geopotential heights over the Arctic and enhanced meridional winds are physically consistent with continued loss of sea ice over the next 40 years. A major challenge is to understand the interaction of Arctic changes with climate patterns such as the NAO, Pacific North American and El Niño–Southern Oscillation.

  18. A Decade of High-Resolution Arctic Sea Ice Measurements from Airborne Altimetry

    Science.gov (United States)

    Duncan, K.; Farrell, S. L.; Connor, L. N.; Jackson, C.; Richter-Menge, J.

    2017-12-01

    Satellite altimeters carried on board ERS-1,-2, EnviSat, ICESat, CryoSat-2, AltiKa and Sentinel-3 have transformed our ability to map the thickness and volume of the polar sea ice cover, on seasonal and decadal time-scales. The era of polar satellite altimetry has coincided with a rapid decline of the Arctic ice cover, which has thinned, and transitioned from a predominantly multi-year to first-year ice cover. In conjunction with basin-scale satellite altimeter observations, airborne surveys of the Arctic Ocean at the end of winter are now routine. These surveys have been targeted to monitor regions of rapid change, and are designed to obtain the full snow and ice thickness distribution, across a range of ice types. Sensors routinely deployed as part of NASA's Operation IceBridge (OIB) campaigns include the Airborne Topographic Mapper (ATM) laser altimeter, the frequency-modulated continuous-wave snow radar, and the Digital Mapping System (DMS). Airborne measurements yield high-resolution data products and thus present a unique opportunity to assess the quality and characteristics of the satellite observations. We present a suite of sea ice data products that describe the snow depth and thickness of the Arctic ice cover during the last decade. Fields were derived from OIB measurements collected between 2009-2017, and from reprocessed data collected during ad-hoc sea ice campaigns prior to OIB. Our bespoke algorithms are designed to accommodate the heterogeneous sea ice surface topography, that varies at short spatial scales. We assess regional and inter-annual variability in the sea ice thickness distribution. Results are compared to satellite-derived ice thickness fields to highlight the sensitivities of satellite footprints to the tails of the thickness distribution. We also show changes in the dynamic forcing shaping the ice pack over the last eight years through an analysis of pressure-ridge sail-height distributions and surface roughness conditions

  19. Radioactive contamination in the Arctic - Present situation and future challenges

    International Nuclear Information System (INIS)

    Strand, P.

    2002-01-01

    There is currently a focus on radioactivity and the Arctic region. The reason for this is the high number of nuclear sources in parts of the Arctic and the vulnerability of Arctic systems to radioactive contamination. The Arctic environment is also perceived as a wilderness and the need for the protection of this wilderness against contamination is great. In 1991, the International Arctic Environmental Protection Strategy (IAEPS) was launched and the Arctic Monitoring and Assessment Programme (AMAP) established. AMAP is undertaking an assessment of the radioactive contamination of the Arctic and its radiological consequences. This paper summarises some of current knowledge about sources of radioactive contamination, vulnerability, exposure of man, and potential sources for radioactive contamination within Arctic and some views on the future needs for work concerning radioactivity in Arctic. (author)

  20. The future of Arctic benthos: Expansion, invasion, and biodiversity

    Science.gov (United States)

    Renaud, Paul E.; Sejr, Mikael K.; Bluhm, Bodil A.; Sirenko, Boris; Ellingsen, Ingrid H.

    2015-12-01

    One of the logical predictions for a future Arctic characterized by warmer waters and reduced sea-ice is that new taxa will expand or invade Arctic seafloor habitats. Specific predictions regarding where this will occur and which taxa are most likely to become established or excluded are lacking, however. We synthesize recent studies and conduct new analyses in the context of climate forecasts and a paleontological perspective to make concrete predictions as to relevant mechanisms, regions, and functional traits contributing to future biodiversity changes. Historically, a warmer Arctic is more readily invaded or transited by boreal taxa than it is during cold periods. Oceanography of an ice-free Arctic Ocean, combined with life-history traits of invading taxa and availability of suitable habitat, determine expansion success. It is difficult to generalize as to which taxonomic groups or locations are likely to experience expansion, however, since species-specific, and perhaps population-specific autecologies, will determine success or failure. Several examples of expansion into the Arctic have been noted, and along with the results from the relatively few Arctic biological time-series suggest inflow shelves (Barents and Chukchi Seas), as well as West Greenland and the western Kara Sea, are most likely locations for expansion. Apparent temperature thresholds were identified for characteristic Arctic and boreal benthic fauna suggesting strong potential for range constrictions of Arctic, and expansions of boreal, fauna in the near future. Increasing human activities in the region could speed introductions of boreal fauna and reduce the value of a planktonic dispersal stage. Finally, shelf regions are likely to experience a greater impact, and also one with greater potential consequences, than the deep Arctic basin. Future research strategies should focus on monitoring as well as compiling basic physiological and life-history information of Arctic and boreal taxa, and

  1. Recent Arctic sea level variations from satellites

    OpenAIRE

    Ole Baltazar Andersen; Gaia ePiccioni

    2016-01-01

    Sea level monitoring in the Arctic region has always been an extreme challenge for remote sensing, and in particular for satellite altimetry. Despite more than two decades of observations, altimetry is still limited in the inner Arctic Ocean. We have developed an updated version of the Danish Technical University's (DTU) Arctic Ocean altimetric sea level timeseries starting in 1993 and now extended up to 2015 with CryoSat-2 data. The time-series covers a total of 23 years, which allows higher...

  2. An Arctic predator-prey system in flux: climate change impacts on coastal space use by polar bears and ringed seals.

    Science.gov (United States)

    Hamilton, Charmain D; Kovacs, Kit M; Ims, Rolf A; Aars, Jon; Lydersen, Christian

    2017-09-01

    Climate change is impacting different species at different rates, leading to alterations in biological interactions with ramifications for wider ecosystem functioning. Understanding these alterations can help improve predictive capacity and inform management efforts designed to mitigate against negative impacts. We investigated how the movement and space use patterns of polar bears (Ursus maritimus) in coastal areas in Svalbard, Norway, have been altered by a sudden decline in sea ice that occurred in 2006. We also investigated whether the spatial overlap between polar bears and their traditionally most important prey, ringed seals (Pusa hispida), has been affected by the sea-ice decline, as polar bears are dependent on a sea-ice platform for hunting seals. We attached biotelemetry devices to ringed seals (n = 60, both sexes) and polar bears (n = 67, all females) before (2002-2004) and after (2010-2013) a sudden decline in sea ice in Svalbard. We used linear mixed-effects models to evaluate the association of these species to environmental features and an approach based on Time Spent in Area to investigate changes in spatial overlap between the two species. Following the sea-ice reduction, polar bears spent the same amount of time close to tidal glacier fronts in the spring but less time in these areas during the summer and autumn. However, ringed seals did not alter their association with glacier fronts during summer, leading to a major decrease in spatial overlap values between these species in Svalbard's coastal areas. Polar bears now move greater distances daily and spend more time close to ground-nesting bird colonies, where bear predation can have substantial local effects. Our results indicate that sea-ice declines have impacted the degree of spatial overlap and hence the strength of the predator-prey relationship between polar bears and ringed seals, with consequences for the wider Arctic marine and terrestrial ecosystems. Shifts in ecological

  3. The influence of short-term cold stress on the metabolism of non-structural carbohydrates in polar grasses

    OpenAIRE

    Łopieńska-Biernat Elżbieta; Pastorczyk Marta; Giełwanowska Irena; Żółtowska Krystyna; Stryiński Robert; Zaobidna Ewa

    2017-01-01

    Plants adapt to extremely low temperatures in polar regions by maximizing their photosynthetic efficiency and accumulating cryoprotective and osmoprotective compounds. Flowering plants of the family Poaceae growing in the Arctic and in the Antarctic were investigated. Their responses to cold stress were analyzed under laboratory conditions. Samples were collected after 24 h and 48 h of cold treatment. Quantitative and qualitative changes of sugars are found among different species, but they c...

  4. Seasonality of global and Arctic black carbon processes in the Arctic Monitoring and Assessment Programme models: Global and Arctic Black Carbon Processes

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, Rashed [School of Earth and Ocean Sciences, University of Victoria, Victoria British Columbia Canada; Department of Meteorology, COMSATS Institute of Information Technology, Islamabad Pakistan; von Salzen, Knut [School of Earth and Ocean Sciences, University of Victoria, Victoria British Columbia Canada; Canadian Center for Climate Modelling and Analysis, Environment and Climate Change Canada, University of Victoria, Victoria British Columbia Canada; Flanner, Mark [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor Michigan USA; Sand, Maria [Center for International Climate and Environmental Research-Oslo, Oslo Norway; Langner, Joakim [Swedish Meteorological and Hydrological Institute, Norrköping Sweden; Wang, Hailong [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Huang, Lin [Climate Chemistry Measurements and Research, Environment and Climate Change Canada, Toronto Ontario Canada

    2016-06-22

    This study quantifies black carbon (BC) processes in three global climate models and one chemistry transport model, with focus on the seasonality of BC transport, emissions, wet and dry deposition in the Arctic. In the models, transport of BC to the Arctic from lower latitudes is the major BC source for this region while Arctic emissions are very small. All models simulated a similar annual cycle of BC transport from lower latitudes to the Arctic, with maximum transport occurring in July. Substantial differences were found in simulated BC burdens and vertical distributions, with CanAM (NorESM) producing the strongest (weakest) seasonal cycle. CanAM also has the shortest annual mean residence time for BC in the Arctic followed by SMHI-MATCH, CESM and NorESM. The relative contribution of wet and dry deposition rates in removing BC varies seasonally and is one of the major factors causing seasonal variations in BC burdens in the Arctic. Overall, considerable differences in wet deposition efficiencies in the models exist and are a leading cause of differences in simulated BC burdens. Results from model sensitivity experiments indicate that scavenging of BC in convective clouds acts to substantially increase the overall efficiency of BC wet deposition in the Arctic, which leads to low BC burdens and a more pronounced seasonal cycle compared to simulations without convective BC scavenging. In contrast, the simulated seasonality of BC concentrations in the upper troposphere is only weakly influenced by wet deposition in stratiform (layer) clouds whereas lower tropospheric concentrations are highly sensitive.

  5. The scramble for the Arctic? A discourse analysis of Norway and the EU's strategies towards the European Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Grindheim, Astrid

    2009-11-15

    This report examines the discourses on engagement in the European Arctic. Since 2006, both Norway and the EU have launched strategies directed toward engagement in the North. By means of discourse analysis, the report will investigate how the two actors have portrayed and discussed the European Arctic. Taking a social constructivist approach, it is assumed that regions are what we make them to be, and that discourse analysis can indicate the area of action for the region. Special attention will be paid to climate change, environmental issues and energy, as these issues play a prominent role in the Arctic. The region shows evident signs of climate change - but it also contains perhaps 25% of the world's untapped energy resources. This creates tension between the wish to preserve the environment and the climate, and the business potential of the energy reservoirs. The European Arctic was of high geostrategic importance during the Cold War, and there is now talk of a possible renewal of that role. The report applies the theoretical approach developed by Buzan, Waever and de Wilde (1998) about the widened security concept in examining whether the two actors' discourses are framed within security terms and within a security framework. (Author)

  6. Environment, vegetation and greenness (NDVI) along the North America and Eurasia Arctic transects

    International Nuclear Information System (INIS)

    Walker, D A; Raynolds, M K; Kuss, P; Kade, A N; Epstein, H E; Frost, G V; Kopecky, M A; Daniëls, F J A; Leibman, M O; Moskalenko, N G; Khomutov, A V; Matyshak, G V; Khitun, O V; Forbes, B C; Bhatt, U S; Vonlanthen, C M; Tichý, L

    2012-01-01

    Satellite-based measurements of the normalized difference vegetation index (NDVI; an index of vegetation greenness and photosynthetic capacity) indicate that tundra environments are generally greening and becoming more productive as climates warm in the Arctic. The greening, however, varies and is even negative in some parts of the Arctic. To help interpret the space-based observations, the International Polar Year (IPY) Greening of the Arctic project conducted ground-based surveys along two >1500 km transects that span all five Arctic bioclimate subzones. Here we summarize the climate, soil, vegetation, biomass, and spectral information collected from the North America Arctic transect (NAAT), which has a more continental climate, and the Eurasia Arctic transect (EAT), which has a more oceanic climate. The transects have broadly similar summer temperature regimes and overall vegetation physiognomy, but strong differences in precipitation, especially winter precipitation, soil texture and pH, disturbance regimes, and plant species composition and structure. The results indicate that summer warmth and NDVI increased more strongly along the more continental transect. (letter)

  7. Human disturbances of denning polar bears in Alaska

    International Nuclear Information System (INIS)

    Amstrup, S.C.

    1993-01-01

    Polar bears (Ursus maritimus) give birth in dens of snow and ice. The altricial neonates cannot leave the den for >2 months post-partum and are potentially vulnerable to disturbances near dens. The coastal plain (1002) area of Alaska's Arctic National Wildlife Refuge (ANWR) lies in a region of known polar bear denning and also may contain >9 billion barrels of recoverable oil. Polar bears in dens could be affected in many ways by hydrocarbon development. The distribution of dens on ANWR was documented between 1981 and 1992 and responses of bears in dens to various anthropogenic disturbances were observed. Of 44 dens located by radiotelemetry on the mainland coast of Alaska and Canada, 20 (45%) were on ANWR and 15 (34%) were within the 1002 area. Thus, development of ANWR will increase the potential that denning polar bears are disturbed by human activities. However, perturbations resulting from capture, marking, and radiotracking maternal bears did not affect litter sizes or stature of cubs produced. Likewise, 10 of 12 denned polar bears tolerated exposure to exceptional levels of activity. This tolerance and the fact that investment in the denning effort increases through the winter indicated that spatial and temporal restrictions on developments could prevent the potential for many disruptions of denned bears from being realized. 16 refs., 1 fig., 2 tabs

  8. Estimation of Melt Pond Fractions on First Year Sea Ice Using Compact Polarization SAR

    Science.gov (United States)

    Li, Haiyan; Perrie, William; Li, Qun; Hou, Yijun

    2017-10-01

    Melt ponds are a common feature on Arctic sea ice. They are linked to the sea ice surface albedo and transmittance of energy to the ocean from the atmosphere and thus constitute an important process to parameterize in Arctic climate models and simulations. This paper presents a first attempt to retrieve the melt pond fraction from hybrid-polarized compact polarization (CP) SAR imagery, which has wider swath and shorter revisit time than the quad-polarization systems, e.g., from RADARSAT-2 (RS-2). The co-polarization (co-pol) ratio has been verified to provide estimates of melt pond fractions. However, it is a challenge to link CP parameters and the co-pol ratio. The theoretical possibility is presented, for making this linkage with the CP parameter C22/C11 (the ratio between the elements of the coherence matrix of CP SAR) for melt pond detection and monitoring with the tilted-Bragg scattering model for the ocean surface. The empirical transformed formulation, denoted as the "compact polarization and quad-pol" ("CPQP") model, is proposed, based on 2062 RS-2 quad-pol SAR images, collocated with in situ measurements. We compared the retrieved melt pond fraction with CP parameters simulated from quad-pol SAR data with results retrieved from the co-pol ratio from quad-pol SAR observations acquired during the Arctic-Ice (Arctic-Ice Covered Ecosystem in a Rapidly Changing Environment) field project. The results are shown to be comparable for observed melt pond measurements in spatial and temporal distributions. Thus, the utility of CP mode SAR for melt pond fraction estimation on first year level ice is presented.

  9. Atmospheric Modeling of the Martian Polar Regions: CRISM EPF Coverage During the South Polar Spring Recession

    Science.gov (United States)

    Brown, A. J.; McGuire, P.; Wolff, M. J.

    2008-03-01

    We describe efforts to model dust and ice aerosols content and soils and icy surface reflectance in the Martian southern polar region during spring recession (Ls = 152-320) using CRISM emission phase function (EPF) observations.

  10. Polarization Signatures of Kink Instabilities in the Blazar Emission Region from Relativistic Magnetohydrodynamic Simulations

    International Nuclear Information System (INIS)

    Zhang, Haocheng; Taylor, Greg; Li, Hui; Guo, Fan

    2017-01-01

    Kink instabilities are likely to occur in the current-carrying magnetized plasma jets. Recent observations of the blazar radiation and polarization signatures suggest that the blazar emission region may be considerably magnetized. While the kink instability has been studied with first-principle magnetohydrodynamic (MHD) simulations, the corresponding time-dependent radiation and polarization signatures have not been investigated. In this paper, we perform comprehensive polarization-dependent radiation modeling of the kink instability in the blazar emission region based on relativistic MHD (RMHD) simulations. We find that the kink instability may give rise to strong flares with polarization angle (PA) swings or weak flares with polarization fluctuations, depending on the initial magnetic topology and magnetization. These findings are consistent with observations. Compared with the shock model, the kink model generates polarization signatures that are in better agreement with the general polarization observations. Therefore, we suggest that kink instabilities may widely exist in the jet environment and provide an efficient way to convert the magnetic energy and produce multiwavelength flares and polarization variations.

  11. Polarization Signatures of Kink Instabilities in the Blazar Emission Region from Relativistic Magnetohydrodynamic Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haocheng; Taylor, Greg [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Li, Hui; Guo, Fan [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-02-01

    Kink instabilities are likely to occur in the current-carrying magnetized plasma jets. Recent observations of the blazar radiation and polarization signatures suggest that the blazar emission region may be considerably magnetized. While the kink instability has been studied with first-principle magnetohydrodynamic (MHD) simulations, the corresponding time-dependent radiation and polarization signatures have not been investigated. In this paper, we perform comprehensive polarization-dependent radiation modeling of the kink instability in the blazar emission region based on relativistic MHD (RMHD) simulations. We find that the kink instability may give rise to strong flares with polarization angle (PA) swings or weak flares with polarization fluctuations, depending on the initial magnetic topology and magnetization. These findings are consistent with observations. Compared with the shock model, the kink model generates polarization signatures that are in better agreement with the general polarization observations. Therefore, we suggest that kink instabilities may widely exist in the jet environment and provide an efficient way to convert the magnetic energy and produce multiwavelength flares and polarization variations.

  12. High resolution modelling of the decreasing Arctic sea ice

    DEFF Research Database (Denmark)

    Madsen, K. S.; Rasmussen, T. A. S.; Blüthgen, Jonas

    2012-01-01

    The Arctic sea ice cover has been rapidly decreasing and thinning over the last decade, with minimum ice extent in 2007 and almost as low extent in 2011. This study investigates two aspects of the decreasing ice cover; first the large scale thinning and changing dynamics of the polar sea ice, and...

  13. The “keep in the ground future” of Arctic fossil fuel resources

    Directory of Open Access Journals (Sweden)

    Sandi Lansetti

    2016-12-01

    Full Text Available It is extremely important to understand which role Arctic fossil fuel resources will play in the development and geopolitics of the Arctic region. The article analyses the recent trends in the world energy supply with special focus on renewable energy and future demand for fossil fuels. Focusing on the Arctic LNG projects it comes to the conclusion that there is a growing possibility that the majority of Arctic oil and natural gas will be kept in the ground. Such an outcome would strongly influence the sustainable development and geopolitics of the region.

  14. The changing seasonal climate in the Arctic.

    Science.gov (United States)

    Bintanja, R; van der Linden, E C

    2013-01-01

    Ongoing and projected greenhouse warming clearly manifests itself in the Arctic regions, which warm faster than any other part of the world. One of the key features of amplified Arctic warming concerns Arctic winter warming (AWW), which exceeds summer warming by at least a factor of 4. Here we use observation-driven reanalyses and state-of-the-art climate models in a variety of standardised climate change simulations to show that AWW is strongly linked to winter sea ice retreat through the associated release of surplus ocean heat gained in summer through the ice-albedo feedback (~25%), and to infrared radiation feedbacks (~75%). Arctic summer warming is surprisingly modest, even after summer sea ice has completely disappeared. Quantifying the seasonally varying changes in Arctic temperature and sea ice and the associated feedbacks helps to more accurately quantify the likelihood of Arctic's climate changes, and to assess their impact on local ecosystems and socio-economic activities.

  15. Research Experience for Undergraduates: Understanding the Arctic as a System

    Science.gov (United States)

    Alexeev, V. A.; Walsh, J. E.; Arp, C. D.; Hock, R.; Euskirchen, E. S.; Kaden, U.; Polyakov, I.; Romanovsky, V. E.; Trainor, S.

    2017-12-01

    Today, more than ever, an integrated cross-disciplinary approach is necessary to understand and explain changes in the Arctic and the implications of those changes. Responding to needs in innovative research and education for understanding high-latitude rapid climate change, scientists at the International Arctic research Center of the University of Alaska Fairbanks (UAF) established a new REU (=Research Experience for Undergraduates) NSF-funded site, aiming to attract more undergraduates to arctic sciences. The science focus of this program, building upon the research strengths of UAF, is on understanding the Arctic as a system with emphasis on its physical component. The goals, which were to disseminate new knowledge at the frontiers of polar science and to ignite the enthusiasm of the undergraduates about the Arctic, are pursued by involving undergraduate students in research and educational projects with their mentors using the available diverse on-campus capabilities. IARC hosted the first group of eight students this past summer, focusing on a variety of different disciplines of the Arctic System Science. Students visited research sites around Fairbanks and in remote parts of Alaska (Toolik Lake Field Station, Gulkana glacier, Bonanza Creek, Poker Flats, the CRREL Permafrost Tunnel and others) to see and experience first-hand how the arctic science is done. Each student worked on a research project guided by an experienced instructor. The summer program culminated with a workshop that consisted of reports from the students about their experiences and the results of their projects.

  16. Chromophoric Dissolved Organic Matter across a Marine Distributed Biological Observatory in the Pacific Arctic Region

    Science.gov (United States)

    Berman, S. L.; Frey, K. E.; Shake, K. L.; Cooper, L. W.; Grebmeier, J. M.

    2014-12-01

    Dissolved organic matter (DOM) plays an important role in marine ecosystems as both a carbon source for the microbial food web (and thus a source of CO2 to the atmosphere) and as a light inhibitor in marine environments. The presence of chromophoric dissolved organic matter (CDOM; the optically active portion of total DOM) can have significant controlling effects on transmittance of sunlight through the water column and therefore on primary production as well as the heat balance of the upper ocean. However, CDOM is also susceptible to photochemical degradation, which decreases the flux of solar radiation that is absorbed. Knowledge of the current spatial and temporal distribution of CDOM in marine environments is thus critical for understanding how ongoing and future changes in climate may impact these biological, biogeochemical, and physical processes. We describe the quantity and quality of CDOM along five key productive transects across a developing Distributed Biological Observatory (DBO) in the Pacific Arctic region. The samples were collected onboard the CCGS Sir Wilfred Laurier in July 2013 and 2014. Monitoring of the variability of CDOM along transects of high productivity can provide important insights into biological and biogeochemical cycling across the region. Our analyses include overall concentrations of CDOM, as well as proxy information such as molecular weight, lability, and source (i.e., autochthonous vs. allochthonous) of organic matter. We utilize these field observations to compare with satellite-derived CDOM concentrations determined from the Aqua MODIS satellite platform, which ultimately provides a spatially and temporally continuous synoptic view of CDOM concentrations throughout the region. Examining the current relationships among CDOM, sea ice variability, biological productivity, and biogeochemical cycling in the Pacific Arctic region will likely provide key insights for how ecosystems throughout the region will respond in future

  17. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears.

    Science.gov (United States)

    Liu, Shiping; Lorenzen, Eline D; Fumagalli, Matteo; Li, Bo; Harris, Kelley; Xiong, Zijun; Zhou, Long; Korneliussen, Thorfinn Sand; Somel, Mehmet; Babbitt, Courtney; Wray, Greg; Li, Jianwen; He, Weiming; Wang, Zhuo; Fu, Wenjing; Xiang, Xueyan; Morgan, Claire C; Doherty, Aoife; O'Connell, Mary J; McInerney, James O; Born, Erik W; Dalén, Love; Dietz, Rune; Orlando, Ludovic; Sonne, Christian; Zhang, Guojie; Nielsen, Rasmus; Willerslev, Eske; Wang, Jun

    2014-05-08

    Polar bears are uniquely adapted to life in the High Arctic and have undergone drastic physiological changes in response to Arctic climates and a hyper-lipid diet of primarily marine mammal prey. We analyzed 89 complete genomes of polar bear and brown bear using population genomic modeling and show that the species diverged only 479-343 thousand years BP. We find that genes on the polar bear lineage have been under stronger positive selection than in brown bears; nine of the top 16 genes under strong positive selection are associated with cardiomyopathy and vascular disease, implying important reorganization of the cardiovascular system. One of the genes showing the strongest evidence of selection, APOB, encodes the primary lipoprotein component of low-density lipoprotein (LDL); functional mutations in APOB may explain how polar bears are able to cope with life-long elevated LDL levels that are associated with high risk of heart disease in humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. The relation between Arctic Ocean circulation and the Arctic Oscillation as revealed by satellite altimetry and gravimetry

    Science.gov (United States)

    Morison, J.; Kwok, R.; Peralta Ferriz, C.; Dickinson, S.; Morison, D.; Andersen, R.; Dewey, S.

    2017-12-01

    Arctic Ocean circulation is commonly characterized by the persistent anticyclonic Beaufort Gyre in the Canada Basin and the Transpolar Drift. While these are clearly important features, their role in changing Arctic Ocean circulation is at times distorted by sampling biases inherent in drifting buoy and standard shipboard measurements of western nations. Hydrographic measurements from SCICEX submarine cruises for science in the early 1990s revealed an increasingly cyclonic circulation along the Russian side of the Arctic Ocean related to the low sea level pressure pattern in the same region associated with a high Arctic Oscillation (AO) index. More recently satellite altimetry (ICESat and CryoSat2) and gravimetry (GRACE) have provided the basin-wide observational coverage needed to see shifts to increased cyclonic circulation in 2004 to 2008 and decreased cyclonic circulation in 2008 to 2015. These shifts are related to changes in the AO and are important for their effect on the trajectories of sea ice and freshwater through the Arctic Ocean.

  19. The expedition ARCTIC `96 of RV `Polarstern` (ARK XII) with the Arctic Climate System Study (ACSYS). Cruise report; Die Expedition ARCTIC `96 des FS `Polarstern` (ARK XII) mit der Arctic Climate System Study (ACSYS). Fahrtbericht

    Energy Technology Data Exchange (ETDEWEB)

    Augstein, E.

    1997-11-01

    The multinational expedition ARCTIC `96 was carried out jointly by two ships, the German RV POLARSTERN and the Swedish RV ODEN. The research programme was developed by scientists from British, Canadian, Finish, German, Irish, Norwegian, Russian, Swedish and US American research institutions and universities. The physical programme on POLARSTERN was primarily designed to foster the Arctic Climte System Study (ACSYS) in the framework of the World Climate Research Programme (WCRP). Investigations during the recent years have provided substantial evidence that the Arctic Ocean and the adjacent shelf seas play a significant role in the thermohaline oceanic circulation and may therefore have a distinct influence on global climate. Consequently the main ACSYS goals are concerned with studies of the governing oceanic, atmospheric and hydrological processes in the entire Arctic region. (orig.) [Deutsch] Die Expedition ARCTIC `96 wurde von zwei Forschungsschiffen, der deutschen POLARSTERN und der schwedischen ODEN unter Beteiligung von Wissenschaftlern und Technikern aus Deutschland, Finnland, Grossbritannien, Irland, Kanada, Norwegen, Russland, Schweden und den Vereinigten Staaten von Amerika durchgefuehrt. Die physikalischen Projekte auf der POLARSTERN dienten ueberwiegend der Unterstuetzung der Arctic Climate System Study (ACSYS) des Weltklimaforschungsprogramms, die auf die Erforschung der vorherrschenden ozeanischen, atmosphaerischen, kryosphaerischen und hydrologischen Prozesse der Arktisregion ausgerichtet ist. (orig.)

  20. Survival and breeding of polar bears in the southern Beaufort Sea in relation to sea ice.

    Science.gov (United States)

    Regehr, Eric V; Hunter, Christine M; Caswell, Hal; Amstrup, Steven C; Stirling, Ian

    2010-01-01

    1. Observed and predicted declines in Arctic sea ice have raised concerns about marine mammals. In May 2008, the US Fish and Wildlife Service listed polar bears (Ursus maritimus) - one of the most ice-dependent marine mammals - as threatened under the US Endangered Species Act. 2. We evaluated the effects of sea ice conditions on vital rates (survival and breeding probabilities) for polar bears in the southern Beaufort Sea. Although sea ice declines in this and other regions of the polar basin have been among the greatest in the Arctic, to date population-level effects of sea ice loss on polar bears have only been identified in western Hudson Bay, near the southern limit of the species' range. 3. We estimated vital rates using multistate capture-recapture models that classified individuals by sex, age and reproductive category. We used multimodel inference to evaluate a range of statistical models, all of which were structurally based on the polar bear life cycle. We estimated parameters by model averaging, and developed a parametric bootstrap procedure to quantify parameter uncertainty. 4. In the most supported models, polar bear survival declined with an increasing number of days per year that waters over the continental shelf were ice free. In 2001-2003, the ice-free period was relatively short (mean 101 days) and adult female survival was high (0.96-0.99, depending on reproductive state). In 2004 and 2005, the ice-free period was longer (mean 135 days) and adult female survival was low (0.73-0.79, depending on reproductive state). Breeding rates and cub litter survival also declined with increasing duration of the ice-free period. Confidence intervals on vital rate estimates were wide. 5. The effects of sea ice loss on polar bears in the southern Beaufort Sea may apply to polar bear populations in other portions of the polar basin that have similar sea ice dynamics and have experienced similar, or more severe, sea ice declines. Our findings therefore are

  1. Modeling dynamic exchange of gaseous elemental mercury at polar sunrise.

    Science.gov (United States)

    Dastoor, Ashu P; Davignon, Didier; Theys, Nicolas; Van Roozendael, Michel; Steffen, Alexandra; Ariya, Parisa A

    2008-07-15

    At polar sunrise, gaseous elemental mercury (GEM) undergoes an exceptional dynamic exchange in the air and at the snow surface during which GEM can be rapidly removed from the atmosphere (the so-called atmospheric mercury depletion events (AMDEs)) as well as re-emitted from the snow within a few hours to days in the Polar Regions. Although high concentrations of total mercury in snow following AMDEs is well documented, there is very little data available on the redox transformation processes of mercury in the snow and the fluxes of mercury at the air/snow interface. Therefore, the net gain of mercury in the Polar Regions as a result of AMDEs is still an open question. We developed a new version of the global mercury model, GRAHM, which includes for the first time bidirectional surface exchange of GEM in Polar Regions in spring and summer by developing schemes for mercury halogen oxidation, deposition, and re-emission. Also for the first time, GOME satellite data-derived boundary layer concentrations of BrO have been used in a global mercury model for representation of halogen mercury chemistry. Comparison of model simulated and measured atmospheric concentrations of GEM at Alert, Canada, for 3 years (2002-2004) shows the model's capability in simulating the rapid cycling of mercury during and after AMDEs. Brooks et al. (1) measured mercury deposition, reemission, and net surface gain fluxes of mercury at Barrow, AK, during an intensive measurement campaign for a 2 week period in spring (March 25 to April 7, 2003). They reported 1.7, 1.0 +/- 0.2, and 0.7 +/- 0.2 microg m(-2) deposition, re-emission, and net surface gain, respectively. Using the optimal configuration of the model, we estimated 1.8 microg m(-2) deposition, 1.0 microg m(-2) re-emission, and 0.8 microg m(-2) net surface gain of mercury for the same time period at Barrow. The estimated net annual accumulation of mercury within the Arctic Circle north of 66.5 degrees is approximately 174 t with +/-7 t of

  2. Towards Arctic Resource Governance of Marine Invasive Species

    DEFF Research Database (Denmark)

    Kourantidou, Melina; Kaiser, Brooks; Fernandez, Linda

    2015-01-01

    Scientific and policy-oriented publications highlighting the magnitude of uncertainty in the changing Arctic and the possibilities for effective regional governance are proliferating, yet it remains a challenging task to examine Arctic marine biodiversity. Limited scientific data are currently...... available. Through analysis of marine invasions in the Arctic, we work to identify and assess patterns in the knowledge gaps regarding invasive species in the Arctic that affect the ability to generate improved governance outcomes. These patterns are expected to depend on multiple aspects of scientific...... research into invasive species threats in the Arctic, including the ways in which known marine invasions are related to different stakeholder groups and existing disparate national and international experiences with invasive species. Stakeholdergroups include dominant industries (fishing, shipping, tourism...

  3. Adaptive polarization image fusion based on regional energy dynamic weighted average

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yong-qiang; PAN Quan; ZHANG Hong-cai

    2005-01-01

    According to the principle of polarization imaging and the relation between Stokes parameters and the degree of linear polarization, there are much redundant and complementary information in polarized images. Since man-made objects and natural objects can be easily distinguished in images of degree of linear polarization and images of Stokes parameters contain rich detailed information of the scene, the clutters in the images can be removed efficiently while the detailed information can be maintained by combining these images. An algorithm of adaptive polarization image fusion based on regional energy dynamic weighted average is proposed in this paper to combine these images. Through an experiment and simulations,most clutters are removed by this algorithm. The fusion method is used for different light conditions in simulation, and the influence of lighting conditions on the fusion results is analyzed.

  4. Polish polar research (outline

    Directory of Open Access Journals (Sweden)

    Krzysztof Ludwik Birkenmajer

    2017-12-01

    Full Text Available The article describes Polish research and discoveries in the Arctic and the Antarctic since the 19th century. The author is a geologist and since 1956 has been engaged in scientific field research on Spitsbergen, Greenland and Antarctica (23 expeditions. For many years chairman of the Committee on Polar Research of the Polish Academy of Sciences, he is now its Honorary Chairman.

  5. Polar bears, Ursus maritimus

    Science.gov (United States)

    Rode, Karyn D.; Stirling, Ian

    2017-01-01

    Polar bears are the largest of the eight species of bears found worldwide and are covered in a pigment-free fur giving them the appearance of being white. They are the most carnivorous of bear species consuming a high-fat diet, primarily of ice-associated seals and other marine mammals. They range throughout the circumpolar Arctic to the southernmost extent of seasonal pack ice.

  6. Effect of Recent Sea Surface Temperature Trends on the Arctic Stratospheric Vortex

    Science.gov (United States)

    Garfinkel, Chaim I.; Oman, Luke; Hurwitz, Margaret

    2015-01-01

    The springtime Arctic polar vortex has cooled significantly over the satellite era, with consequences for ozone concentrations in the springtime transition season. The causes of this cooling trend are deduced by using comprehensive chemistry-climate model experiments. Approximately half of the satellite era early springtime cooling trend in the Arctic lower stratosphere was caused by changing sea surface temperatures (SSTs). An ensemble of experiments forced only by changing SSTs is compared to an ensemble of experiments in which both the observed SSTs and chemically- and radiatively-active trace species are changing. By comparing the two ensembles, it is shown that warming of Indian Ocean, North Pacific, and North Atlantic SSTs, and cooling of the tropical Pacific, have strongly contributed to recent polar stratospheric cooling in late winter and early spring, and to a weak polar stratospheric warming in early winter. When concentrations of ozone-depleting substances and greenhouse gases are fixed, polar ozone concentrations show a small but robust decline due to changing SSTs. Ozone changes are magnified in the presence of changing gas concentrations. The stratospheric changes can be understood by examining the tropospheric height and heat flux anomalies generated by the anomalous SSTs. Finally, recent SST changes have contributed to a decrease in the frequency of late winter stratospheric sudden warmings.

  7. Building Resilience and Adaptation to Manage Arctic Change

    Energy Technology Data Exchange (ETDEWEB)

    Chapin, F. Stuart III [Univ. of Alaska, Fairbanks (United States). Inst. of Arctic Biology; Hoel, Michael [Oslo Univ. (Norway). Dept. of Economics; Carpenter, Steven R. [Wisconsin Univ., Madison, WI, (US). Center for Limnology] (and others)

    2006-06-15

    Unprecedented global changes caused by human actions challenge society's ability to sustain the desirable features of our planet. This requires proactive management of change to foster both resilience (sustaining those attributes that are important to society in the face of change) and adaptation (developing new socio- ecological configurations that function effectively under new conditions). The Arctic may be one of the last remaining opportunities to plan for change in a spatially extensive region where many of the ancestral ecological and social processes and feedbacks are still intact. If the feasibility of this strategy can be demonstrated in the Arctic, our improved understanding of the dynamics of change can be applied to regions with greater human modification. Conditions may now be ideal to implement policies to manage Arctic change because recent studies provide the essential scientific understanding, appropriate international institutions are in place, and Arctic nations have the wealth to institute necessary changes, if they choose to do so.

  8. The role of the Arctic in future global petroleum supply

    OpenAIRE

    Lars Lindholt; Solveig Glomsrød

    2011-01-01

    The Arctic has a substantial share of global petroleum resources, but at higher costs than in most other petroleum provinces. Arctic states and petroleum companies are carefully considering the potential for future extraction in the Arctic. This paper studies the oil and gas supply from 6 arctic regions during 2010-2050 along with global economic growth and different assumptions regarding petroleum prices and resource endowments. Supply is calculated based on a global model of oil and gas mar...

  9. China's policy in the Arctic: tradition and modernity

    Directory of Open Access Journals (Sweden)

    Valery N. Konyshev

    2017-01-01

    Full Text Available Abstract: The article describes the features of China's policy in the Arctic region, taking into account their relationship with the political and cultural traditions, which have a long history. Ambiguities in the assessments of intentions and prospects of China's policy in the Arctic is largely due underestimation of ties by the Western experts. The authors believe that the current China's foreign policy in general and toward the Arctic, in particular, is formed under the infl uence of such factors as the combination of «soft» and «hard» methods of management, existing sharp contradictions between the elites in the political leadership of the state, and the tradition of long-term planning in strategy. In accordance with this, the Arctic dimension of modern China foreign policy, seeks to achieve the strategic goal of access to the resources of the region in many directions simultaneously. The most important instruments include the revision of the legal status of the Arctic, an active part in the work of international organizations and active bilateral inter-state cooperation, avoiding open confrontation, “waiting” policy and incremental measures aimed at the gradual squeezing of competitors.

  10. Papposphaera obpyramidalis (Haptophyta, Papposphaeraceae): New findings from both Polar Regions

    DEFF Research Database (Denmark)

    Thomsen, Helge Abildhauge; Egge, Jorun Karin; Heldal, Mikal

    2016-01-01

    Papposphaera obpyramidalis is reinvestigated based on additional high latitude sampling from the southern hemisphere. The material used here comprises better preserved transmission electron microscope (TEM) material including several cells with complete flagellation, as well as light microscopy (....... However, here we present also findings of the species from Arctic realms based on recent SEM surveys from the Svalbard region, indicating a bipolar distribution.......) of living material. The re-examination basically confirms the findings that were part of the species description but also adds details on, for example, nutritional mode and the presence of an underlayer of unmineralized scales. P. obpyramidalis has hitherto been considered confined to Antarctic waters...

  11. It's the Physics: Organized Complexity in the Arctic/Midlatitude Weather Controversy

    Science.gov (United States)

    Overland, J. E.; Francis, J. A.; Wang, M.

    2017-12-01

    There is intense scientific and public interest in whether major Arctic changes can and will impact mid-latitude weather. Despite numerous workshops and a growing literature, convergence of understanding is lacking, with major objections about possible large impacts within the scientific community. Yet research on the Arctic as a new potential driver in improving subseasonal forecasting at midlatitudes remains a priority. A recent review laid part of the controversy on shortcomings in experimental design and ill-suited metrics, such as examining the influence of only sea-ice loss rather than overall Arctic temperature amplification, and/or calculating averages over large regions, long time periods, or many ensemble members that would tend to obscure event-like Arctic connections. The present analysis lays the difficulty at a deeper level owing to the inherently complex physics. Jet-stream dynamics and weather linkages on the scale of a week to months has characteristics of an organized complex system, with large-scale processes that operate in patterned, quasi-geostrophic ways but whose component feedbacks are continually changing. Arctic linkages may be state dependent, i.e., relationships may be more robust in one atmospheric wave pattern than another, generating intermittency. The observational network is insufficient to fully initialize such a system and the inherent noise obscures linkage signals, leading to an underdetermined problem; often more than one explanation can fit the data. Further, the problem may be computationally irreducible; the only way to know the result of these interactions is to trace out their path over time. Modeling is a suggested approach, but at present it is unclear whether previous model studies fully resolve anticipated complexity. The jet stream from autumn to early winter is characterized by non-linear interactions among enhanced atmospheric planetary waves, irregular transitions between the zonal and meridional flows, and the

  12. Arctic air pollution: Challenges and opportunities for the next decade

    Directory of Open Access Journals (Sweden)

    S.R. Arnold

    2016-05-01

    Full Text Available Abstract The Arctic is a sentinel of global change. This region is influenced by multiple physical and socio-economic drivers and feedbacks, impacting both the natural and human environment. Air pollution is one such driver that impacts Arctic climate change, ecosystems and health but significant uncertainties still surround quantification of these effects. Arctic air pollution includes harmful trace gases (e.g. tropospheric ozone and particles (e.g. black carbon, sulphate and toxic substances (e.g. polycyclic aromatic hydrocarbons that can be transported to the Arctic from emission sources located far outside the region, or emitted within the Arctic from activities including shipping, power production, and other industrial activities. This paper qualitatively summarizes the complex science issues motivating the creation of a new international initiative, PACES (air Pollution in the Arctic: Climate, Environment and Societies. Approaches for coordinated, international and interdisciplinary research on this topic are described with the goal to improve predictive capability via new understanding about sources, processes, feedbacks and impacts of Arctic air pollution. Overarching research actions are outlined, in which we describe our recommendations for 1 the development of trans-disciplinary approaches combining social and economic research with investigation of the chemical and physical aspects of Arctic air pollution; 2 increasing the quality and quantity of observations in the Arctic using long-term monitoring and intensive field studies, both at the surface and throughout the troposphere; and 3 developing improved predictive capability across a range of spatial and temporal scales.

  13. The Arctic Summer Cloud-Ocean Study (ASCOS): overview and experimental design

    Science.gov (United States)

    Tjernström, M.; Leck, C.; Birch, C. E.; Brooks, B. J.; Brooks, I. M.; Bäcklin, L.; Chang, R. Y.-W.; Granath, E.; Graus, M.; Hansel, A.; Heintzenberg, J.; Held, A.; Hind, A.; de la Rosa, S.; Johnston, P.; Knulst, J.; de Leeuw, G.; Di Liberto, L.; Martin, M.; Matrai, P. A.; Mauritsen, T.; Müller, M.; Norris, S. J.; Orellana, M. V.; Orsini, D. A.; Paatero, J.; Persson, P. O. G.; Gao, Q.; Rauschenberg, C.; Ristovski, Z.; Sedlar, J.; Shupe, M. D.; Sierau, B.; Sirevaag, A.; Sjogren, S.; Stetzer, O.; Swietlicki, E.; Szczodrak, M.; Vaattovaara, P.; Wahlberg, N.; Westberg, M.; Wheeler, C. R.

    2013-05-01

    The climate in the Arctic is changing faster than anywhere else on Earth. Poorly understood feedback processes relating to Arctic clouds and aerosol-cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of future climate in the Arctic. The problem is exacerbated by the paucity of research-quality observations in the central Arctic. Improved formulations in climate models require such observations, which can only come from measurements in-situ in this difficult to reach region with logistically demanding environmental conditions. The Arctic Summer Cloud-Ocean Study (ASCOS) was the most extensive central Arctic Ocean expedition with an atmospheric focus during the International Polar Year (IPY) 2007-2008. ASCOS focused on the study of the formation and life cycle of low-level Arctic clouds. ASCOS departed from Longyearbyen on Svalbard on 2 August and returned on 9 September 2008. In transit into and out of the pack ice, four short research stations were undertaken in the Fram Strait; two in open water and two in the marginal ice zone. After traversing the pack-ice northward an ice camp was set up on 12 August at 87°21' N 01°29' W and remained in operation through 1 September, drifting with the ice. During this time extensive measurements were taken of atmospheric gas and particle chemistry and physics, mesoscale and boundary-layer meteorology, marine biology and chemistry, and upper ocean physics. ASCOS provides a unique interdisciplinary data set for development and testing of new hypotheses on cloud processes, their interactions with the sea ice and ocean and associated physical, chemical, and biological processes and interactions. For example, the first ever quantitative observation of bubbles in Arctic leads, combined with the unique discovery of marine organic material, polymer gels with an origin in the ocean, inside cloud droplets suggest the possibility of primary

  14. The Arctic Summer Cloud Ocean Study (ASCOS): overview and experimental design

    Science.gov (United States)

    Tjernström, M.; Leck, C.; Birch, C. E.; Bottenheim, J. W.; Brooks, B. J.; Brooks, I. M.; Bäcklin, L.; Chang, R. Y.-W.; de Leeuw, G.; Di Liberto, L.; de la Rosa, S.; Granath, E.; Graus, M.; Hansel, A.; Heintzenberg, J.; Held, A.; Hind, A.; Johnston, P.; Knulst, J.; Martin, M.; Matrai, P. A.; Mauritsen, T.; Müller, M.; Norris, S. J.; Orellana, M. V.; Orsini, D. A.; Paatero, J.; Persson, P. O. G.; Gao, Q.; Rauschenberg, C.; Ristovski, Z.; Sedlar, J.; Shupe, M. D.; Sierau, B.; Sirevaag, A.; Sjogren, S.; Stetzer, O.; Swietlicki, E.; Szczodrak, M.; Vaattovaara, P.; Wahlberg, N.; Westberg, M.; Wheeler, C. R.

    2014-03-01

    The climate in the Arctic is changing faster than anywhere else on earth. Poorly understood feedback processes relating to Arctic clouds and aerosol-cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of future climate in the Arctic. The problem is exacerbated by the paucity of research-quality observations in the central Arctic. Improved formulations in climate models require such observations, which can only come from measurements in situ in this difficult-to-reach region with logistically demanding environmental conditions. The Arctic Summer Cloud Ocean Study (ASCOS) was the most extensive central Arctic Ocean expedition with an atmospheric focus during the International Polar Year (IPY) 2007-2008. ASCOS focused on the study of the formation and life cycle of low-level Arctic clouds. ASCOS departed from Longyearbyen on Svalbard on 2 August and returned on 9 September 2008. In transit into and out of the pack ice, four short research stations were undertaken in the Fram Strait: two in open water and two in the marginal ice zone. After traversing the pack ice northward, an ice camp was set up on 12 August at 87°21' N, 01°29' W and remained in operation through 1 September, drifting with the ice. During this time, extensive measurements were taken of atmospheric gas and particle chemistry and physics, mesoscale and boundary-layer meteorology, marine biology and chemistry, and upper ocean physics. ASCOS provides a unique interdisciplinary data set for development and testing of new hypotheses on cloud processes, their interactions with the sea ice and ocean and associated physical, chemical, and biological processes and interactions. For example, the first-ever quantitative observation of bubbles in Arctic leads, combined with the unique discovery of marine organic material, polymer gels with an origin in the ocean, inside cloud droplets suggests the possibility of

  15. Enabling Arctic Research Through Science and Engineering Partnerships

    Science.gov (United States)

    Kendall, E. A.; Valentic, T. A.; Stehle, R. H.

    2014-12-01

    Under an Arctic Research Support and Logistics contract from NSF (GEO/PLR), SRI International, as part of the CH2M HILL Polar Services (CPS) program, forms partnerships with Arctic research teams to provide data transfer, remote operations, and safety/operations communications. This teamwork is integral to the success of real-time science results and often allows for unmanned operations which are both cost-effective and safer. The CPS program utilizes a variety of communications networks, services and technologies to support researchers and instruments throughout the Arctic, including Iridium, VSAT, Inmarsat BGAN, HughesNet, TeleGreenland, radios, and personal locator beacons. Program-wide IT and communications limitations are due to the broad categories of bandwidth, availability, and power. At these sites it is essential to conserve bandwidth and power through using efficient software, coding and scheduling techniques. There are interesting new products and services on the horizon that the program may be able to take advantage of in the future such as Iridium NEXT, Inmarsat Xpress, and Omnispace mobile satellite services. Additionally, there are engineering and computer software opportunities to develop more efficient products. We will present an overview of science/engineering partnerships formed by the CPS program, discuss current limitations and identify future technological possibilities that could further advance Arctic science goals.

  16. The genetic prehistory of the New World Arctic

    DEFF Research Database (Denmark)

    Raghavan, Maanasa; DeGiorgio, Michael; Albrechtsen, Anders

    2014-01-01

    The New World Arctic, the last region of the Americas to be populated by humans, has a relatively well-researched archaeology, but an understanding of its genetic history is lacking. We present genome-wide sequence data from ancient and present-day humans from Greenland, Arctic Canada, Alaska, Al...

  17. ArcticDEM Year 3; Improving Coverage, Repetition and Resolution

    Science.gov (United States)

    Morin, P. J.; Porter, C. C.; Cloutier, M.; Howat, I.; Noh, M. J.; Willis, M. J.; Candela, S. G.; Bauer, G.; Kramer, W.; Bates, B.; Williamson, C.

    2017-12-01

    Surface topography is among the most fundamental data sets for geosciences, essential for disciplines ranging from glaciology to geodynamics. The ArcticDEM project is using sub-meter, commercial imagery licensed by the National Geospatial-Intelligence Agency, petascale computing, and open source photogrammetry software to produce a time-tagged 2m posting elevation model and a 5m posting mosaic of the entire Arctic region. As ArcticDEM enters its third year, the region has gone from having some of the sparsest and poorest elevation data to some of the most precise and complete data of any region on the globe. To date, we have produced and released over 80,000,000 km2 as 57,000 - 2m posting, time-stamped DEMs. The Arctic, on average, is covered four times though there are hotspots with more than 100 DEMs. In addition, the version 1 release includes a 5m posting mosaic covering the entire 20,000,000 km2 region. All products are publically available through arctidem.org, ESRI web services, and a web viewer. The final year of the project will consist of a complete refiltering of clouds/water and re-mosaicing of all elevation data. Since inception of the project, post-processing techniques have improved significantly, resulting in fewer voids, better registration, sharper coastlines, and fewer inaccuracies due to clouds. All ArcticDEM data will be released in 2018. Data, documentation, web services and web viewer are available at arcticdem.org

  18. Illumination Conditions of the Lunar Polar Regions Using LOLA Topography

    Science.gov (United States)

    Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.; Torrence, M. H.

    2011-01-01

    We use high-resolution altimetry data obtained by the Lunar Orbiter Laser Altimeter instrument onboard the Lunar Reconnaissance Orbiter to characterize present illumination conditions in the polar regions of the Moon. Compared to previous studies, both the spatial and temporal extent of the simulations are increased significantly, as well as the coverage (fill ratio) of the topographic maps used, thanks to the 28 Hz firing rate of the five-beam instrument. We determine the horizon elevation in a number of directions based on 240 m-resolution polar digital elevation models reaching down to 75 latitude. The illumination of both polar regions extending to 80 can be calculated for any geometry from those horizon longitudinal profiles. We validated our modeling with recent Lunar Reconnaissance Orbiter Wide-Angle Camera images. We assessed the extent of permanently shadowed regions (PSRs, defined as areas that never receive direct solar illumination), and obtained total areas generally larger than previous studies (12,866 and 16,055 km2, in the north and south respectively). We extended our direct illumination model to account for singly-scattered light, and found that every PSR does receive some amount of scattered light during the year. We conducted simulations over long periods (several 18.6-years lunar precession cycles) with a high temporal resolution (6 h), and identified the most illuminated locations in the vicinity of both poles. Because of the importance of those sites for exploration and engineering considerations, we characterized their illumination more precisely over the near future. Every year, a location near the Shackleton crater rim in the south polar region is sunlit continuously for 240 days, and its longest continuous period in total darkness is about 1.5 days. For some locations small height gains ( 10 m) can dramatically improve their average illumination and reduce the night duration, rendering some of those particularly attractive energy-wise as

  19. Population genetic studies of the polar bear (Ursus maritimus): A summary of available data and interpretation of results

    Science.gov (United States)

    Scribner, Kim T.; Garner, G.W.; Amstrup, Steven C.; Cronin, M.A.; Dizon, Andrew E.; Chivers, Susan J.; Perrin, William F.

    1997-01-01

    A summary of existing population genetics literature is presented for polar bears (Ursus maritimus) and interpreted in the context of the species' life-history characteristics and regional heterogeneity in environmental regimes and movement patterns. Several nongenetic data sets including morphology, contaminant levels, geographic variation in reproductive characteristics, and the location and distribution of open-water foraging habitat suggest some degree of spatial structuring. Eleven populations are recognized by the IUCN Polar Bear Specialist Group. Few genetics studies exist for polar bears. Interpretation and generalizations of regional variation in intra- and interpopulation levels of genetic variability are confounded by the paucity of data from many regions and by the fact that no single informative genetic marker has been employed in multiple regions. Early allozyme studies revealed comparatively low levels of genetic variability and no compelling evidence of spatial structuring. Studies employing mitochondrial DNA (mtDNA) also found low levels of genetic variation, a lack of phylogenetic structure, and no significant evidence for spatial variation in haplotype frequency. In contrast, microsatellite variable number of tandem repeat (VNTR) loci have revealed significant heterogeneity in allele frequency among populations in the Canadian Arctic. These regions are characterized by archipelgic patterns of sea-ice movements. Further studies using highly polymorphic loci are needed in regions characterized by greater polar bear dependency on pelagic sea-ice movements and in regions for which no data currently exist (i.e., Laptev and Novaya Zemlya/Franz Josef).

  20. Physiologically-based pharmacokinetic modelling of immune, reproductive and carcinogenic effects from contaminant exposure in polar bears (Ursus maritimus) across the Arctic.

    Science.gov (United States)

    Dietz, Rune; Gustavson, Kim; Sonne, Christian; Desforges, Jean-Pierre; Rigét, Frank F; Pavlova, Viola; McKinney, Melissa A; Letcher, Robert J

    2015-07-01

    Polar bears (Ursus maritimus) consume large quantities of seal blubber and other high trophic marine mammals and consequently have some of the highest tissue concentrations of organohalogen contaminants (OHCs) among Arctic biota. In the present paper we carried out a risk quotient (RQ) evaluation on OHC-exposed polar bears harvested from 1999 to 2008 and from 11 circumpolar subpopulations spanning from Alaska to Svalbard in order to evaluate the risk of OHC-mediated reproductive effects (embryotoxicity, teratogenicity), immunotoxicity and carcinogenicity (genotoxicity). This RQ evaluation was based on the Critical Body Residue (CBR) concept and a Physiologically-Based Pharmacokinetic Modelling (PBPK) approach using OHC concentrations measured in polar bear adipose or liver tissue. The range of OHC concentrations within polar bear populations were as follows for adipose, sum polychlorinated biphenyls ∑PCBs (1797-10,537 ng/g lw), sum methylsulphone-PCB ∑MeSO2-PCBs (110-672 ng/g lw), sum chlordanes ∑CHLs (765-3477 ng/g lw), α-hexachlorocyclohexane α-HCH (8.5-91.3 ng/g lw), β-hexachlorocyclohexane β-HCH (65.5-542 ng/g lw), sum chlorbenzenes ∑ClBzs (145-304 ng/g lw), dichlorodiphenyltrichloroethane ∑DDTs (31.5-206 ng/g lw), dieldrin (69-249 ng/g lw), polybrominated diphenyl ethers ∑PBDEs (4.6-78.4 ng/g lw). For liver, the perfluorooctanesulfonic acid (PFOS) concentrations ranged from 231-2792 ng/g ww. The total additive RQ from all OHCs ranged from 4.3 in Alaska to 28.6 in East Greenland bears for effects on reproduction, immune health and carcinogenicity, highlighting the important result that the toxic effect threshold (i.e. RQ>1) was exceeded for all polar bear populations assessed. PCBs were the main contributors for all three effect categories, contributing from 70.6% to 94.3% of the total risk and a RQ between 3.8-22.5. ∑MeSO2-PCBs were the second highest effect contributor for reproductive and immunological effects (0.17polar bears. We therefore