WorldWideScience

Sample records for polar programs arctic

  1. United States Naval Academy Polar Science Program's Visual Arctic Observing Buoys; The IceGoat

    Science.gov (United States)

    Woods, J. E.; Clemente-Colon, P.; Nghiem, S. V.; Rigor, I.; Valentic, T. A.

    2012-12-01

    The U.S. Naval Academy Oceanography Department currently has a curriculum based Polar Science Program (USNA PSP). Within the PSP there is an Arctic Buoy Program (ABP) student research component that will include the design, build, testing and deployment of Arctic Buoys. Establishing an active, field-research program in Polar Science will greatly enhance Midshipman education and research, as well as introduce future Naval Officers to the Arctic environment. The Oceanography Department has engaged the USNA Ocean Engineering, Systems Engineering, Aerospace Engineering, and Computer Science Departments and developed a USNA Visual Arctic Observing Buoy, IceGoat1, which was designed, built, and deployed by midshipmen. The experience gained through Polar field studies and data derived from these buoys will be used to enhance course materials and laboratories and will also be used directly in Midshipman independent research projects. The USNA PSP successfully deployed IceGoat1 during the BROMEX 2012 field campaign out of Barrow, AK in March 2012. This buoy reports near real-time observation of Air Temperature, Sea Temperature, Atmospheric Pressure, Position and Images from 2 mounted webcams. The importance of this unique type of buoy being inserted into the U.S. Interagency Arctic Buoy Program and the International Arctic Buoy Programme (USIABP/IABP) array is cross validating satellite observations of sea ice cover in the Arctic with the buoys webcams. We also propose to develop multiple sensor packages for the IceGoat to include a more robust weather suite, and a passive acoustic hydrophone. Remote cameras on buoys have provided crucial qualitative information that complements the quantitative measurements of geophysical parameters. For example, the mechanical anemometers on the IABP Polar Arctic Weather Station at the North Pole Environmental Observatory (NPEO) have at times reported zero winds speeds, and inspection of the images from the NPEO cameras have showed

  2. Arctic Nuclear Waste Assessment Program

    International Nuclear Information System (INIS)

    Edson, R.

    1995-01-01

    The Arctic Nuclear Waste Assessment Program (ANWAP) was initiated in 1993 as a result of US congressional concern over the disposal of nuclear materials by the former Soviet Union into the Arctic marine environment. The program is comprised of appr. 70 different projects. To date appr. ten percent of the funds has gone to Russian institutions for research and logistical support. The collaboration also include the IAEA International Arctic Seas Assessment Program. The major conclusion from the research to date is that the largest signals for region-wide radionuclide contamination in the Arctic marine environment appear to arise from the following: 1) atmospheric testing of nuclear weapons, a practice that has been discontinued; 2) nuclear fuel reprocessing wastes carried in the Arctic from reprocessing facilities in Western Europe, and 3) accidents such as Chernobyl and the 1957 explosion at Chelyabinsk-65

  3. SCICEX: Submarine Arctic Science Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Submarine Arctic Science Program, SCICEX, is a federal interagency collaboration among the operational Navy, research agencies, and the marine research community...

  4. Pacific Northwest Laboratory Alaska (ARCTIC) research program

    International Nuclear Information System (INIS)

    Hanson, W.C.; Eberhardt, L.E.

    1980-03-01

    The current program continues studies of arctic ecosystems begun in 1959 as part of the Cape Thompson Program. Specific ecosystem aspects include studies of the ecology of arctic and red foxes, small mammel and bird population studies, lichen studies, and radiation ecology studies

  5. An International Polar Year Adventure in the Arctic

    Science.gov (United States)

    Wartes, D.

    2008-12-01

    Native students in the UA system who participated in RAHI are nearly twice as likely to earn a bachelor's degree, than those who did not attend RAHI. The past two summers, in celebration of the International Polar Year, in collaboration with Ilisagvik College, at the completion of the traditional RAHI program, ten RAHI students flew to Barrow for an additional two weeks of study. Five students participated in an archaeological dig and five students performed research with the Barrow Arctic Science Consortium scientists studying climate change. And another student was the Alaskan delegate to the Students on Ice, a 2-week ship-based adventure in northern Canada. In addition, ten students from Greenland visited the program, with plans to more fully participate next summer. This added dimension to the program has proved successful, allowing the students to compare and contrast between their own countries and indigenous perspectives. Global warming was an issue that was hotly debated, as its effects are so evident in the Polar Regions. In the Arctic, one's life is directly tied to the ice and snow. As the ice disappears and/or changes, the Indigenous people have to adapt. RAHI would like to share with you some of the results of this past summer's IPY activities.

  6. Arctic amplification: does it impact the polar jet stream?

    Directory of Open Access Journals (Sweden)

    Valentin P. Meleshko

    2016-10-01

    Full Text Available It has been hypothesised that the Arctic amplification of temperature changes causes a decrease in the northward temperature gradient in the troposphere, thereby enhancing the oscillation of planetary waves leading to extreme weather in mid-latitudes. To test this hypothesis, we study the response of the atmosphere to Arctic amplification for a projected summer sea-ice-free period using an atmospheric model with prescribed surface boundary conditions from a state-of-the-art Earth system model. Besides a standard global warming simulation, we also conducted a sensitivity experiment with sea ice and sea surface temperature anomalies in the Arctic. We show that when global climate warms, enhancement of the northward heat transport provides the major contribution to decrease the northward temperature gradient in the polar troposphere in cold seasons, causing more oscillation of the planetary waves. However, while Arctic amplification significantly enhances near-surface air temperature in the polar region, it is not large enough to invoke an increased oscillation of the planetary waves.

  7. Arctic Marine Transportation Program 1979-1986

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this program was to collect data relevant to developing year-round transportation capabilities in the Arctic Ocean. The US Maritime Administration...

  8. Advancing NOAA NWS Arctic Program Development

    Science.gov (United States)

    Timofeyeva-Livezey, M. M.; Horsfall, F. M. C.; Meyers, J. C.; Churma, M.; Thoman, R.

    2016-12-01

    Environmental changes in the Arctic require changes in the way the National Oceanic and Atmospheric Administration (NOAA) delivers hydrological and meteorological information to prepare the region's societies and indigenous population for emerging challenges. These challenges include changing weather patterns, changes in the timing and extent of sea ice, accelerated soil erosion due to permafrost decline, increasing coastal vulnerably, and changes in the traditional food supply. The decline in Arctic sea ice is opening new opportunities for exploitation of natural resources, commerce, tourism, and military interest. These societal challenges and economic opportunities call for a NOAA integrated approach for delivery of environmental information including climate, water, and weather data, forecasts, and warnings. Presently the NOAA Arctic Task Force provides leadership in programmatic coordination across NOAA line offices. National Weather Service (NWS) Alaska Region and the National Centers for Environmental Prediction (NCEP) provide the foundational operational hydro-meteorological products and services in the Arctic. Starting in 2016, NOAA's NWS will work toward improving its role in programmatic coordination and development through assembling an NWS Arctic Task Team. The team will foster ties in the Arctic between the 11 NWS national service programs in climate, water, and weather information, as well as between Arctic programs in NWS and other NOAA line offices and external partners. One of the team outcomes is improving decision support tools for the Arctic. The Local Climate Analysis Tool (LCAT) currently has more than 1100 registered users, including NOAA staff and technical partners. The tool has been available online since 2013 (http://nws.weather.gov/lcat/ ). The tool links trusted, recommended NOAA data and analytical capabilities to assess impacts of climate variability and climate change at local levels. A new capability currently being developed will

  9. Microbial communities in a High Arctic polar desert landscape

    Directory of Open Access Journals (Sweden)

    Clare M McCann

    2016-03-01

    Full Text Available The High Arctic is dominated by polar desert habitats whose microbial communities are poorly understood. In this study, we used next generation sequencing to describe the α- and β-diversity of polar desert soils from the Kongsfjorden region of Svalbard. Ten phyla consistently dominated the soils and accounted for 95 % of all sequences, with Proteobacteria, Actinobacteria and Chloroflexi being the dominant lineages. In contrast to previous investigations of Arctic soils, Acidobacterial relative abundances were low as were the Archaea throughout the Kongsfjorden polar desert landscape. Lower Acidobacterial abundances were attributed to the circumneutral soil pH in this region which has resulted from the weathering of the underlying carbonate geology. In addition, we correlated previously measured geochemical variables to determine potential controls on the communities. Soil phosphorus, pH, nitrogen and calcium significantly correlated with β-diversity indicating a landscape scale lithological control of soil nutrients which in turn influenced community composition. In addition, soil phosphorus and pH significantly correlated with α- diversity, specifically the Shannon diversity and Chao 1 richness indices.

  10. Plastic ingestion by juvenile polar cod (Boreogadus saida) in the Arctic Ocean

    NARCIS (Netherlands)

    Kühn, Susanne; Schaafsma, Fokje L.; Werven, van Bernike; Flores, Hauke; Bergmann, Melanie; Egelkraut-Holtus, Marion; Tekman, Mine B.; Franeker, van Jan A.

    2018-01-01

    One of the recently recognised stressors in Arctic ecosystems concerns plastic litter. In this study, juvenile polar cod (Boreogadus saida) were investigated for the presence of plastics in their stomachs. Polar cod is considered a key species in the Arctic ecosystem. The fish were collected both

  11. Monitoring the welfare of polar bear populations in a rapidly changing Arctic

    Science.gov (United States)

    Atwood, Todd C.; Duncan, Colleen G.; Patyk, Kelly A.; Sonsthagen, Sarah A.

    2017-01-01

    Most programs for monitoring the welfare of wildlife populations support efforts aimed at reaching discrete management objectives, like mitigating conflict with humans. While such programs can be effective, their limited scope may preclude systemic evaluations needed for large-scale conservation initiatives, like the recovery of at-risk species. We discuss select categories of metrics that can be used to monitor how polar bears (Ursus maritimus) are responding to the primary threat to their long-term persistence—loss of sea ice habitat due to the unabated rise in atmospheric greenhouse gas (GHG; e.g., CO2) concentrations—that can also provide information on ecosystem function and health. Monitoring key aspects of polar bear population dynamics, spatial behavior, health and resiliency can provide valuable insight into ecosystem state and function, and could be a powerful tool for achieving Arctic conservation objectives, particularly those that have transnational policy implications.

  12. PolarTREC—A Model Program for Taking Polar Literacy into the Future

    Science.gov (United States)

    Warburton, J.; Timm, K.; Larson, A. M.

    2009-12-01

    Polar TREC—Teachers and Researchers Exploring and Collaborating, is a three-year (2007-2009) NSF-funded International Polar Year (IPY) teacher professional development program that advances Science, Technology, Engineering, and Mathematics (STEM) education by improving teacher content knowledge and instructional practices through Teacher Research Experiences (TRE) in the Arctic and Antarctic. Leveraging profound changes and fascinating science taking place in the polar regions, PolarTREC broadly disseminates activities and products to students, educators, researchers, and the public, connecting them with the Arctic and Antarctica and sustaining the widespread interest in the polar regions and building on the enthusiasm that was generated through IPY. Central to the PolarTREC Teacher Research Experience Model, over 40 teachers have spent two to eight weeks participating in hands-on research in the polar regions and sharing their experiences with diverse audiences via live events, online multimedia journals, and interactive bulletin boards. The Connecting Arctic/Antarctic Researchers and Educators (CARE) Network unifies learning community members participants, alumni, and others, developing a sustainable association of education professionals networking to share and apply polar STEM content and pedagogical skills. Educator and student feedback from preliminary results of the program evaluation has shown that PolarTREC’s comprehensive program activities have many positive impacts on educators and their ability to teach science concepts and improve their teaching methods. Additionally, K-12 students polled in interest surveys showed significant changes in key areas including amount of time spent in school exploring research activities, importance of understanding science for future work, importance of understanding the polar regions as a person in today’s world, as well as increased self-reported knowledge and interest in numerous science content areas. Building

  13. 'Unstructured Data' Practices in Polar Institutions and Networks: a Case Study with the Arctic Options Project

    Directory of Open Access Journals (Sweden)

    Paul Arthur Berkman

    2014-10-01

    Full Text Available Arctic Options: Holistic Integration for Arctic Coastal-Marine Sustainability is a new three-year research project to assess future infrastructure associated with the Arctic Ocean regarding: (1 natural and living environment; (2 built environment; (3 natural resource development; and (4 governance. For the assessments, Arctic Options will generate objective relational schema from numeric data as well as textual data. This paper will focus on the ‘long tail of smaller, heterogeneous, and often unstructured datasets’ that ‘usually receive minimal data management consideration’,as observed in the 2013 Communiqué from the International Forum on Polar Data Activities in Global Data Systems.

  14. Pliocene warmth, polar amplification, and stepped Pleistocene cooling recorded in NE Arctic Russia.

    Science.gov (United States)

    Brigham-Grette, Julie; Melles, Martin; Minyuk, Pavel; Andreev, Andrei; Tarasov, Pavel; DeConto, Robert; Koenig, Sebastian; Nowaczyk, Norbert; Wennrich, Volker; Rosén, Peter; Haltia, Eeva; Cook, Tim; Gebhardt, Catalina; Meyer-Jacob, Carsten; Snyder, Jeff; Herzschuh, Ulrike

    2013-06-21

    Understanding the evolution of Arctic polar climate from the protracted warmth of the middle Pliocene into the earliest glacial cycles in the Northern Hemisphere has been hindered by the lack of continuous, highly resolved Arctic time series. Evidence from Lake El'gygytgyn, in northeast (NE) Arctic Russia, shows that 3.6 to 3.4 million years ago, summer temperatures were ~8°C warmer than today, when the partial pressure of CO2 was ~400 parts per million. Multiproxy evidence suggests extreme warmth and polar amplification during the middle Pliocene, sudden stepped cooling events during the Pliocene-Pleistocene transition, and warmer than present Arctic summers until ~2.2 million years ago, after the onset of Northern Hemispheric glaciation. Our data are consistent with sea-level records and other proxies indicating that Arctic cooling was insufficient to support large-scale ice sheets until the early Pleistocene.

  15. PolarPortal.org Communicates Real-Time Developments in the Arctic

    Science.gov (United States)

    Langen, P. L.; Andersen, S. B.; Andersen, K. K.; Andersen, M. L.; Ahlstrom, A. P.; van As, D.; Barletta, V. R.; Box, J. E.; Citterio, M.; Colgan, W. T.; Dybkjær, G.; Forsberg, R.; Høyer, J. L.; Jensen, M. B.; Kliem, N.; Mottram, R.; Nielsen, K. P.; Olesen, M.; Quaglia, F. C.; Rasmussen, T. A.; Rodehacke, C. B.; Stendel, M.; Sandberg Sørensen, L.; Tonboe, R. T.

    2014-12-01

    PolarPortal.org was launched in June 2013 by a consortium of Danish institutions, including the Danish Meteorological Institute (DMI), the Geological Survey of Denmark and Greenland (GEUS) and the National Space Institute at the Technical University of Denmark (DTU-Space). Polar Portal is a single web portal presenting a wide range of near real-time information on both the Greenland ice sheet and Arctic sea-ice in a format geared for non-specialists. Polar Portal aims to meet widespread public interest in a diverse range of climate-cryosphere processes in the Arctic: What is the present Greenland ice sheet contribution to sea level rise? How quickly are outlet glaciers retreating or advancing right now? How extensive is Arctic sea-ice or how warm is the Arctic Ocean at this moment? Although public interest in such topics is widely acknowledged, an important primary task for the scientists behind Polar Portal was collaborating with media specialists to establish the knowledge range of the general public on these topics, in order for Polar Portal to appropriately present useful climate-cryosphere information. Consequently, Polar Portal is designed in a highly visual exploratory format, where individual data products are accompanied by plain written summaries, with hyperlinks to relevant journal papers for more scrutinizing users. Numerous satellite and in situ observations, together with model output, are channeled daily into the Greenland ice sheet and Arctic sea-ice divisions of Polar Portal.

  16. Polar bear and walrus response to the rapid decline in Arctic sea ice

    Science.gov (United States)

    Oakley, K.; Whalen, M.; Douglas, David C.; Udevitz, Mark S.; Atwood, Todd C.; Jay, C.

    2012-01-01

    The Arctic is warming faster than other regions of the world due to positive climate feedbacks associated with loss of snow and ice. One highly visible consequence has been a rapid decline in Arctic sea ice over the past 3 decades - a decline projected to continue and result in ice-free summers likely as soon as 2030. The polar bear (Ursus maritimus) and the Pacific walrus (Odobenus rosmarus divergens) are dependent on sea ice over the continental shelves of the Arctic Ocean's marginal seas. The continental shelves are shallow regions with high biological productivity, supporting abundant marine life within the water column and on the sea floor. Polar bears use sea ice as a platform for hunting ice seals; walruses use sea ice as a resting platform between dives to forage for clams and other bottom-dwelling invertebrates. How have sea ice changes affected polar bears and walruses? How will anticipated changes affect them in the future?

  17. Integrating Access to Arctic Environmental Change and Human Health Research for the International Polar Year and Beyond

    Science.gov (United States)

    Garrett, C. L.

    2006-12-01

    hosting the Arctic Human Health Initiative (AHHI), the human health focus of the International Polar Year activities. AHHI will coordinate research in the areas of infectious disease; the effects of anthropogenic pollution, UV radiation, and climate variability on human health; and telehealth innovations. A major goal of AHHI is the better integration of the findings of Arctic health research through outreach programs and public education.

  18. Human-polar bear interactions in a changing Arctic: Existing and emerging concerns

    Science.gov (United States)

    Atwood, Todd C.; Simac, Kristin; Breck, Stewart; York, Geoff; Wilder, James

    2017-01-01

    The behavior and sociality of polar bears (Ursus maritimus) have been shaped by evolved preferences for sea ice habitat and preying on marine mammals. However, human behavior is causing changes to the Arctic marine ecosystem through the influence of greenhouse gas emissions that drive long-term change in ecosystem processes and via the presence of in situ stressors associated with increasing human activities. These changes are making it more difficult for polar bears to reliably use their traditional habitats and maintain fitness. Here, we provide an overview of how human activities in the Arctic are likely to change a polar bear’s behavior and to influence their resilience to environmental change. Developing a more thorough understanding of polar bear behavior and their capacity for flexibility in response to anthropogenic disturbances and subsequent mitigations may lead to successful near-term management interventions.

  19. NSF Antarctic and Arctic Data Consortium; Scientific Research Support & Data Services for the Polar Community

    Science.gov (United States)

    Morin, P. J.; Pundsack, J. W.; Carbotte, S. M.; Tweedie, C. E.; Grunow, A.; Lazzara, M. A.; Carpenter, P.; Sjunneskog, C. M.; Yarmey, L.; Bauer, R.; Adrian, B. M.; Pettit, J.

    2014-12-01

    The U.S. National Science Foundation Antarctic & Arctic Data Consortium (a2dc) is a collaboration of research centers and support organizations that provide polar scientists with data and tools to complete their research objectives. From searching historical weather observations to submitting geologic samples, polar researchers utilize the a2dc to search andcontribute to the wealth of polar scientific and geospatial data.The goals of the Antarctic & Arctic Data Consortium are to increase visibility in the research community of the services provided by resource and support facilities. Closer integration of individual facilities into a "one stop shop" will make it easier for researchers to take advantage of services and products provided by consortium members. The a2dc provides a common web portal where investigators can go to access data and samples needed to build research projects, develop student projects, or to do virtual field reconnaissance without having to utilize expensive logistics to go into the field.Participation by the international community is crucial for the success of a2dc. There are 48 nations that are signatories of the Antarctic Treaty, and 8 sovereign nations in the Arctic. Many of these organizations have unique capabilities and data that would benefit US ­funded polar science and vice versa.We'll present an overview of the Antarctic & Arctic Data Consortium, current participating organizations, challenges & opportunities, and plans to better coordinate data through a geospatial strategy and infrastructure.

  20. Changes in aerobic performance, body composition, and physical activity in polar explorers during a year-long stay at the polar station in the Arctic

    Science.gov (United States)

    Maciejczyk, Marcin; Araźny, Andrzej; Opyrchał, Marta

    2017-04-01

    The aim of this study was to evaluate changes in physical activity, aerobic performance, and body composition in polar explorers during a 1-year stay at the polar station. The study group consisted of 10 people, including 8 men and 2 women. Aerobic performance (maximal oxygen uptake), physical activity, body mass, and composition were evaluated for the polar explores of the Polish Polar Station prior to departure, and then during their stay at the station for a period of 1 year. The measurements were performed every 3 months. Compared to the measurements taken before going to the polar station, aerobic performance significantly ( p = 0.02) increased in the first 3 months of residing at the polar station and then remained relatively stable for the following duration of the stay. In the first 3 months of the stay, we also observed the highest level of physical activity in participants. In the polar explorers, no significant ( p > 0.05) body fatness changes were noted. Nonetheless, lean body mass, body mass, and BMI significantly increased compared to the measurements taken before departure to the polar station. The greatest changes in aerobic performance, physical activity, and body composition were observed during the first 3 months after arrival to the Arctic and then, despite changing biometeorological conditions, they remained stable for the next months of the stay. We recommend the introduction of a physical preparation program before departing to the polar station to improve explorers' physical fitness, so that they can meet the physical challenges they are faced with immediately after arrival to the polar station.

  1. Dynamic Oxidation of Gaseous Mercury in the Arctic Troposphere at Polar Sunrise

    DEFF Research Database (Denmark)

    Lindberg, S. E.; Brooks, S.; Lin, C.-J.

    2002-01-01

    Gaseous elemental mercury (Hg0) is a globally distributed air toxin with a long atmospheric residence time. Any process that reduces its atmospheric lifetime increases its potential accumulation in the biosphere. Our data from Barrow, AK, at 71 degrees N show that rapid, photochemically driven...... oxidation of boundary-layer Hg0 after polar sunrise, probably by reactive halogens, creates a rapidly depositing species of oxidized gaseous mercury in the remote Arctic troposphere at concentrations in excess of 900 pg m(-3). This mercury accumulates in the snowpack during polar spring at an accelerated...... rate in a form that is bioavailable to bacteria and is released with snowmelt during the summer emergence of the Arctic ecosystem. Evidence suggests that this is a recent phenomenon that may be occurring throughout the earth's polar regions. Udgivelsesdato: 2002-Mar-15...

  2. Vulnerability of Polar Oceans to Anthropogenic Acidification: Comparison of Arctic and Antarctic Seasonal Cycles

    OpenAIRE

    E. H. Shadwick; T. W. Trull; H. Thomas; J. A. E. Gibson

    2013-01-01

    Polar oceans are chemically sensitive to anthropogenic acidification due to their relatively low alkalinity and correspondingly weak carbonate buffering capacity. Here, we compare unique CO2 system observations covering complete annual cycles at an Arctic (Amundsen Gulf) and Antarctic site (Prydz Bay). The Arctic site experiences greater seasonal warming (10 vs 3?C), and freshening (3 vs 2), has lower alkalinity (2220 vs 2320??mol/kg), and lower summer pH (8.15 vs 8.5), than the Antarctic sit...

  3. High Arctic summer warming tracked by increased Cassiope tetragona growth in the world's northernmost polar desert.

    Science.gov (United States)

    Weijers, Stef; Buchwal, Agata; Blok, Daan; Löffler, Jörg; Elberling, Bo

    2017-11-01

    Rapid climate warming has resulted in shrub expansion, mainly of erect deciduous shrubs in the Low Arctic, but the more extreme, sparsely vegetated, cold and dry High Arctic is generally considered to remain resistant to such shrub expansion in the next decades. Dwarf shrub dendrochronology may reveal climatological causes of past changes in growth, but is hindered at many High Arctic sites by short and fragmented instrumental climate records. Moreover, only few High Arctic shrub chronologies cover the recent decade of substantial warming. This study investigated the climatic causes of growth variability of the evergreen dwarf shrub Cassiope tetragona between 1927 and 2012 in the northernmost polar desert at 83°N in North Greenland. We analysed climate-growth relationships over the period with available instrumental data (1950-2012) between a 102-year-long C. tetragona shoot length chronology and instrumental climate records from the three nearest meteorological stations, gridded climate data, and North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) indices. July extreme maximum temperatures (JulT emx ), as measured at Alert, Canada, June NAO, and previous October AO, together explained 41% of the observed variance in annual C. tetragona growth and likely represent in situ summer temperatures. JulT emx explained 27% and was reconstructed back to 1927. The reconstruction showed relatively high growing season temperatures in the early to mid-twentieth century, as well as warming in recent decades. The rapid growth increase in C. tetragona shrubs in response to recent High Arctic summer warming shows that recent and future warming might promote an expansion of this evergreen dwarf shrub, mainly through densification of existing shrub patches, at High Arctic sites with sufficient winter snow cover and ample water supply during summer from melting snow and ice as well as thawing permafrost, contrasting earlier notions of limited shrub growth sensitivity to

  4. Development of a pan-Arctic monitoring plan for polar bears: Background paper

    Science.gov (United States)

    Vongraven, Dag; Peacock, Lily

    2011-01-01

    Polar bears (Ursus maritimus), by their very nature, and the extreme, remote environment in which they live, are inherently difficult to study and monitor. Monitoring polar bear populations is both arduous and costly and, to be effective, must be a long-term commitment. There are few jurisdictional governments and management boards with a mandate for polar bear research and management, and many have limited resources. Although population monitoring of polar bears has been a focus to some degree within most jurisdictions around the Arctic, of the 19 subpopulations recognised by the IUCN/Species Survival Commission Polar Bear Specialist Group (PBSG), adequate scientific trend data exist for only three of the subpopulations, fair trend data for five and poor or no trend data for the remaining 11 subpopulations (PBSG 2010a). There are especially critical knowledge gaps for the subpopulations in East Greenland, in the Russian Kara and Laptev seas, and in the Chukchi Sea, which is shared between Russia and the United States. The range covered by these subpopulations represents a third of the total area (approx. 23 million km2) of polar bears’ current range, and more than half if the Arctic Basin is included. If we use popular terms, we know close to nothing about polar bears in this portion of their range.As summer sea-ice extent, and to a lesser degree, spring-time extent, continues to retreat, outpacing model forecasts (Stroeve et al. 2007, Pedersen et al. 2009), polar bears face the challenge of adapting to rapidly changing habitats. There is a need to use current and synthesised information across the Arctic, and to develop new methods that will facilitate monitoring to generate new knowledge at a pan-Arctic scale. The circumpolar dimension can be lost when efforts are channelled into regional monitoring. Developing and implementing a plan that harmonises local, regional and global efforts will increase our power to detect and understand important trends for polar

  5. Projected polar bear sea ice habitat in the Canadian Arctic Archipelago.

    Directory of Open Access Journals (Sweden)

    Stephen G Hamilton

    Full Text Available Sea ice across the Arctic is declining and altering physical characteristics of marine ecosystems. Polar bears (Ursus maritimus have been identified as vulnerable to changes in sea ice conditions. We use sea ice projections for the Canadian Arctic Archipelago from 2006 - 2100 to gain insight into the conservation challenges for polar bears with respect to habitat loss using metrics developed from polar bear energetics modeling.Shifts away from multiyear ice to annual ice cover throughout the region, as well as lengthening ice-free periods, may become critical for polar bears before the end of the 21st century with projected warming. Each polar bear population in the Archipelago may undergo 2-5 months of ice-free conditions, where no such conditions exist presently. We identify spatially and temporally explicit ice-free periods that extend beyond what polar bears require for nutritional and reproductive demands.Under business-as-usual climate projections, polar bears may face starvation and reproductive failure across the entire Archipelago by the year 2100.

  6. Projected polar bear sea ice habitat in the Canadian Arctic Archipelago.

    Science.gov (United States)

    Hamilton, Stephen G; Castro de la Guardia, Laura; Derocher, Andrew E; Sahanatien, Vicki; Tremblay, Bruno; Huard, David

    2014-01-01

    Sea ice across the Arctic is declining and altering physical characteristics of marine ecosystems. Polar bears (Ursus maritimus) have been identified as vulnerable to changes in sea ice conditions. We use sea ice projections for the Canadian Arctic Archipelago from 2006 - 2100 to gain insight into the conservation challenges for polar bears with respect to habitat loss using metrics developed from polar bear energetics modeling. Shifts away from multiyear ice to annual ice cover throughout the region, as well as lengthening ice-free periods, may become critical for polar bears before the end of the 21st century with projected warming. Each polar bear population in the Archipelago may undergo 2-5 months of ice-free conditions, where no such conditions exist presently. We identify spatially and temporally explicit ice-free periods that extend beyond what polar bears require for nutritional and reproductive demands. Under business-as-usual climate projections, polar bears may face starvation and reproductive failure across the entire Archipelago by the year 2100.

  7. Polar cloud observatory at Ny-Ålesund in GRENE Arctic Climate Change Research Project

    Science.gov (United States)

    Yamanouchi, Takashi; Takano, Toshiaki; Shiobara, Masataka; Okamoto, Hajime; Koike, Makoto; Ukita, Jinro

    2016-04-01

    Cloud is one of the main processes in the climate system and especially a large feed back agent for Arctic warming amplification (Yoshimori et al., 2014). From this reason, observation of polar cloud has been emphasized and 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard in 2013 as one of the basic infrastructure in the GRENE (Green Network of Excellence Program) Arctic Climate Change Research Project. The radar, "FALCON-A", is a FM-CW (frequency modulated continuous wave) Doppler radar, developed for Arctic use by Chiba University (PI: T. Takano) in 2012, following its prototype, "FALCON-1" which was developed in 2006 (Takano et al., 2010). The specifications of the radar are, central frequency: 94.84 GHz; antenna power: 1 W; observation height: up to 15 km; range resolution: 48 m; beam width: 0.2 degree (15 m at 5 km); Doppler width: 3.2 m/s; time interval: 10 sec, and capable of archiving high sensitivity and high spatial and time resolution. An FM-CW type radar realizes similar sensitivity with much smaller parabolic antennas separated 1.4 m from each other used for transmitting and receiving the wave. Polarized Micro-Pulse Lidar (PMPL, Sigma Space MPL-4B-IDS), which is capable to measure the backscatter and depolarization ratio, has also been deployed to Ny-Ålesund in March 2012, and now operated to perform collocated measurements with FALCON-A. Simultaneous measurement data from collocated PMPL and FALCON-A are available for synergetic analyses of cloud microphysics. Cloud mycrophysics, such as effective radius of ice particles and ice water content, are obtained from the analysis based on algorithm, which is modified for ground-based measurements from Okamoto's retrieval algorithm for satellite based cloud profiling radar and lidar (CloudSat and CALIPSO; Okamoto et al., 2010). Results of two years will be shown in the presentation. Calibration is a point to derive radar reflectivity (dBZ) from original intensity data

  8. Polar solar panels: Arctic and Antarctic microbiomes display similar taxonomic profiles.

    Science.gov (United States)

    Tanner, Kristie; Martí, Jose Manuel; Belliure, Josabel; Fernández-Méndez, Mar; Molina-Menor, Esther; Peretó, Juli; Porcar, Manuel

    2018-02-01

    Solar panels located on high (Arctic and Antarctic) latitudes combine the harshness of the climate with that of the solar exposure. We report here that these polar solar panels are inhabited by similar microbial communities in taxonomic terms, dominated by Hymenobacter spp., Sphingomonas spp. and Ascomycota. Our results suggest that solar panels, even on high latitudes, can shape a microbial ecosystem adapted to irradiation and desiccation. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Arctic Forecasts Available from Polar Bear Exhibit as an Example of Formal/Informal Collaboration

    Science.gov (United States)

    Landis, C. E.; Cervenec, J.

    2012-12-01

    A subset of the general population enjoys and frequents informal education venues, offering an opportunity for lifelong learning that also enhances and supports formal education efforts. The Byrd Polar Research Center (BPRC) at The Ohio State University collaborated with the Columbus Zoo & Aquarium (CZA) in the development of their Polar Frontier exhibit, from its initial planning to the Grand Opening of the exhibit, through the present. Of course, the addition to the Zoo of polar bears and Arctic fox in the Polar Frontier has been very popular, with almost a 7% increase in visitors in 2010 when the exhibit opened. The CZA and BPRC are now investigating ways to increase the climate literacy impact of the exhibit, and to increase engagement with the topics through follow-on activities. For example, individuals or classes anywhere in the world can check forecasts from the Polar Weather and Research Forecasting model and compare them to observed conditions-- allowing deep investigation into changes in the Arctic. In addition, opportunities exist to adapt the Zoo School experience (affecting several Central Ohio school districts) and/or to enable regular participation through social media such as Facebook, Twitter, and other forms of digital communication. BPRC's sustained engagement with the CZA is an example of a trusted and meaningful partnership where open dialogue exists about providing the best learning experience for visitors. This presentation will share some of the lessons learned from this unique partnership, and strategies that are adopted to move it forward.

  10. The Arctic Human Health Initiative: a legacy of the International Polar Year 2007–2009

    Directory of Open Access Journals (Sweden)

    Alan J. Parkinson

    2013-08-01

    Full Text Available Background . The International Polar Year (IPY 2007–2008 represented a unique opportunity to further stimulate cooperation and coordination on Arctic health research and increase the awareness and visibility of Arctic regions. The Arctic Human Health Initiative (AHHI was a US-led Arctic Council IPY coordinating project that aimed to build and expand on existing International Union for Circumpolar Health (IUCH and Arctic Council human health interests. The project aimed to link researchers with potential international collaborators and to serve as a focal point for human health research, education, outreach and communication activities during the IPY. The progress of projects conducted as part of this initiative up until the end of the Arctic Council Swedish chairmanship in May 2013 is summarized in this report. Design . The overall goals of the AHHI was to increase awareness and visibility of human health concerns of Arctic peoples, foster human health research, and promote health strategies that will improve health and well-being of all Arctic residents. Proposed activities to be recognized through the initiative included: expanding research networks that will enhance surveillance and monitoring of health issues of concern to Arctic peoples, and increase collaboration and coordination of human health research; fostering research that will examine the health impact of anthropogenic pollution, rapid modernization and economic development, climate variability, infectious and chronic diseases, intentional and unintentional injuries, promoting education, outreach and communication that will focus public and political attention on Arctic health issues, using a variety of publications, printed and electronic reports from scientific conferences, symposia and workshops targeting researchers, students, communities and policy makers; promoting the translation of research into health policy and community action including implementation of prevention

  11. The Arctic Human Health Initiative: a legacy of the International Polar Year 2007-2009.

    Science.gov (United States)

    Parkinson, Alan J

    2013-01-01

    The International Polar Year (IPY) 2007-2008 represented a unique opportunity to further stimulate cooperation and coordination on Arctic health research and increase the awareness and visibility of Arctic regions. The Arctic Human Health Initiative (AHHI) was a US-led Arctic Council IPY coordinating project that aimed to build and expand on existing International Union for Circumpolar Health (IUCH) and Arctic Council human health interests. The project aimed to link researchers with potential international collaborators and to serve as a focal point for human health research, education, outreach and communication activities during the IPY. The progress of projects conducted as part of this initiative up until the end of the Arctic Council Swedish chairmanship in May 2013 is summarized in this report. The overall goals of the AHHI was to increase awareness and visibility of human health concerns of Arctic peoples, foster human health research, and promote health strategies that will improve health and well-being of all Arctic residents. Proposed activities to be recognized through the initiative included: expanding research networks that will enhance surveillance and monitoring of health issues of concern to Arctic peoples, and increase collaboration and coordination of human health research; fostering research that will examine the health impact of anthropogenic pollution, rapid modernization and economic development, climate variability, infectious and chronic diseases, intentional and unintentional injuries, promoting education, outreach and communication that will focus public and political attention on Arctic health issues, using a variety of publications, printed and electronic reports from scientific conferences, symposia and workshops targeting researchers, students, communities and policy makers; promoting the translation of research into health policy and community action including implementation of prevention strategies and health promotion; and

  12. Facilitating Participant Success: Teachers Experiencing Antarctica and the Arctic Program

    Science.gov (United States)

    Shipp, S. S.; Bruccoli, A.; Porter, M.; Meese, D.

    2003-12-01

    Through the NSF-funded Teachers Experiencing Antarctica and the Arctic (TEA) Program K-12 science teachers participate as members of polar field projects. Objectives of the program include: immersing the science teacher in the experience of research; 2) leveraging the research experience of the teacher to better inform teaching practices; and 3) sharing the experience with the broader educational and general community. The polar field experience is an exciting opportunity accompanied by a daunting number of responsibilities. In addition to preparing for field research, TEA teachers bring their experience to colleagues, classrooms, and communities. Before going into the field, they give presentations, help plan how students can connect to the polar regions, and share the expedition with the public. In the field, the TEA teacher is a team member and educational liaison, responding to questions by e-mail, and posting e-journals describing the research experience. Upon return, the TEA again shares the experience broadly with the community. In addition, they work closely with 3 colleagues for 140 hours to bring the experience of research into classrooms. Formative evaluation of the TEA Program underscores the need to support teachers in accomplishing their responsibilities; this support is necessary to achieve program objectives. TEA teachers are responsible for sharing the science content of their research. While many broadcast the excitement of the experience, they may not have the scientific background to convey the content. This is due, in part, to many teachers having to be generalists in their classrooms. Shifting into the role of specialist can be challenging. In the year of preparation before the field experience, TEA teachers attend orientation, meet with their research teams for several days, and are encouraged to learn more about their science topic. Understanding builds through the field experience. It may take two or more years after the field work for the

  13. Increased Arctic sea ice drift alters adult female polar bear movements and energetics.

    Science.gov (United States)

    Durner, George M; Douglas, David C; Albeke, Shannon E; Whiteman, John P; Amstrup, Steven C; Richardson, Evan; Wilson, Ryan R; Ben-David, Merav

    2017-09-01

    Recent reductions in thickness and extent have increased drift rates of Arctic sea ice. Increased ice drift could significantly affect the movements and the energy balance of polar bears (Ursus maritimus) which forage, nearly exclusively, on this substrate. We used radio-tracking and ice drift data to quantify the influence of increased drift on bear movements, and we modeled the consequences for energy demands of adult females in the Beaufort and Chukchi seas during two periods with different sea ice characteristics. Westward and northward drift of the sea ice used by polar bears in both regions increased between 1987-1998 and 1999-2013. To remain within their home ranges, polar bears responded to the higher westward ice drift with greater eastward movements, while their movements north in the spring and south in fall were frequently aided by ice motion. To compensate for more rapid westward ice drift in recent years, polar bears covered greater daily distances either by increasing their time spent active (7.6%-9.6%) or by increasing their travel speed (8.5%-8.9%). This increased their calculated annual energy expenditure by 1.8%-3.6% (depending on region and reproductive status), a cost that could be met by capturing an additional 1-3 seals/year. Polar bears selected similar habitats in both periods, indicating that faster drift did not alter habitat preferences. Compounding reduced foraging opportunities that result from habitat loss; changes in ice drift, and associated activity increases, likely exacerbate the physiological stress experienced by polar bears in a warming Arctic. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  14. Identifying polar bear resource selection patterns to inform offshore development in a dynamic and changing Arctic

    Science.gov (United States)

    Wilson, Ryan R.; Horne, Jon S.; Rode, Karyn D.; Regehr, Eric V.; Durner, George M.

    2014-01-01

    Although sea ice loss is the primary threat to polar bears (Ursus maritimus), little can be done to mitigate its effects without global efforts to reduce greenhouse gas emissions. Other factors, however, could exacerbate the impacts of sea ice loss on polar bears, such as exposure to increased industrial activity. The Arctic Ocean has enormous oil and gas potential, and its development is expected to increase in the coming decades. Estimates of polar bear resource selection will inform managers how bears use areas slated for oil development and to help guide conservation planning. We estimated temporally-varying resource selection patterns for non-denning adult female polar bears in the Chukchi Sea population (2008–2012) at two scales (i.e., home range and weekly steps) to identify factors predictive of polar bear use throughout the year, before any offshore development. From the best models at each scale, we estimated scale-integrated resource selection functions to predict polar bear space use across the population's range and determined when bears were most likely to use the region where offshore oil and gas development in the United States is slated to occur. Polar bears exhibited significant intra-annual variation in selection patterns at both scales but the strength and annual patterns of selection differed between scales for most variables. Bears were most likely to use the offshore oil and gas planning area during ice retreat and growth with the highest predicted use occurring in the southern portion of the planning area. The average proportion of predicted high-value habitat in the planning area was >15% of the total high-value habitat for the population during sea ice retreat and growth and reached a high of 50% during November 2010. Our results provide a baseline on which to judge future changes to non-denning adult female polar bear resource selection in the Chukchi Sea and help guide offshore development in the region. Lastly, our study provides a

  15. Geographical distribution of organochlorine pesticides (OCPs) in polar bears (Ursus maritimus) in the Norwegian and Russian Arctic

    Science.gov (United States)

    Lie, E.; Bernhoft, A.; Riget, F.; Belikov, Stanislav; Boltunov, Andrei N.; Derocher, A.E.; Garner, G.W.; Wiig, O.; Skaare, J.U.

    2003-01-01

    Geographical variation of organochlorine pesticides (OCPs) was studied in blood samples from 90 adult female polar bear (Ursus maritimus) from Svalbard, Franz Josef Land, Kara Sea, East-Siberian Sea and Chukchi Sea. In all regions, oxychlordane was the dominant OCP. Regional differences in mean levels of HCB, oxychlordane, trans-nonachlor, ??-HCH, ??-HCH and p,p???-DDE were found. The highest levels of oxychlordane, trans-nonachlor and DDE were found in polar bears from Franz Josef Land and Kara Sea. HCB level was lowest in polar bears from Svalbard. Polar bears from Chukchi Sea had the highest level of ??- and ??-HCH. The lowest ??-HCH concentration was found in bears from Kara Sea. In all the bears, ???HCHs was dominated by ??-HCH. The geographical variation in OCP levels and pattern may suggest regional differences in pollution sources and different feeding habits in the different regions. Polar bears from the Western Russian Arctic were exposed to higher levels of chlordanes and p,p???-DDE than polar bears from locations westwards and eastwards from this region. This may imply the presence of a significant pollution source in the Russian Arctic area. The study suggests that the western Russian Arctic is the most contaminated region of the Arctic and warrants further research. ?? 2002 Elsevier Science B.V. All rights reserved.

  16. Mercury speciation in brain tissue of polar bears (Ursus maritimus) from the Canadian Arctic.

    Science.gov (United States)

    Krey, Anke; Kwan, Michael; Chan, Hing Man

    2012-04-01

    Methylmercury (MeHg) is a neurotoxicant that has been found at elevated concentrations in the Arctic ecosystem. Little is known about its internal dose in wildlife such as polar bears. We measured concentrations of mercury (Hg) in three different brain regions (cerebellum, frontal lobe and brain stem) of 24 polar bears collected from the Nunavik, Canada between 2000 and 2003. Speciation of Hg was measured by High Performance Liquid Chromatography coupled to Inductively Coupled Plasma Mass Spectroscopy (HPLC-ICP-MS). Concentrations of mean total Hg in brain tissue were up to 625 times lower (0.28 ± 0.07 mg kg(-1) dry weight (dw) in frontal lobe, 0.23 ± 0.07 mg kg(-1) dw in cerebellum and 0.12 ± 0.0 3mg kg(-1) dw in brain stem) than the mean total Hg concentration previously reported in polar bear liver collected from Eastern Baffin Island. Methylmercury (MeHg) accounted for 100% of the Hg found in all three brain regions analyzed. These results suggest that polar bear might reduce the toxic effects of Hg by limiting the uptake into the brain and/or decrease the rate of demethylation so that Hg can be excreted from the brain more easily. The toxicokinetics and the blood-brain-barrier mechanisms of polar bears are still unknown and further research is required. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Polar bears from space: Assessing satellite imagery as a tool to track Arctic wildlife

    Science.gov (United States)

    Stapleton, Seth P.; LaRue, Michelle A.; Lecomte, Nicolas; Atkinson, Stephen N.; Garshelis, David L.; Porter, Claire; Atwood, Todd C.

    2014-01-01

    Development of efficient techniques for monitoring wildlife is a priority in the Arctic, where the impacts of climate change are acute and remoteness and logistical constraints hinder access. We evaluated high resolution satellite imagery as a tool to track the distribution and abundance of polar bears. We examined satellite images of a small island in Foxe Basin, Canada, occupied by a high density of bears during the summer ice-free season. Bears were distinguished from other light-colored spots by comparing images collected on different dates. A sample of ground-truthed points demonstrated that we accurately classified bears. Independent observers reviewed images and a population estimate was obtained using mark- recapture models. This estimate (N: 94; 95% Confidence Interval: 92-105) was remarkably similar to an abundance estimate derived from a line transect aerial survey conducted a few days earlier (N: 102; 95% CI: 69-152). Our findings suggest that satellite imagery is a promising tool for monitoring polar bears on land, with implications for use with other Arctic wildlife. Large scale applications may require development of automated detection processes to expedite review and analysis. Future research should assess the utility of multi-spectral imagery and examine sites with different environmental characteristics.

  18. Polar bears from space: assessing satellite imagery as a tool to track Arctic wildlife.

    Directory of Open Access Journals (Sweden)

    Seth Stapleton

    Full Text Available Development of efficient techniques for monitoring wildlife is a priority in the Arctic, where the impacts of climate change are acute and remoteness and logistical constraints hinder access. We evaluated high resolution satellite imagery as a tool to track the distribution and abundance of polar bears. We examined satellite images of a small island in Foxe Basin, Canada, occupied by a high density of bears during the summer ice-free season. Bears were distinguished from other light-colored spots by comparing images collected on different dates. A sample of ground-truthed points demonstrated that we accurately classified bears. Independent observers reviewed images and a population estimate was obtained using mark-recapture models. This estimate (N: 94; 95% Confidence Interval: 92-105 was remarkably similar to an abundance estimate derived from a line transect aerial survey conducted a few days earlier (N: 102; 95% CI: 69-152. Our findings suggest that satellite imagery is a promising tool for monitoring polar bears on land, with implications for use with other Arctic wildlife. Large scale applications may require development of automated detection processes to expedite review and analysis. Future research should assess the utility of multi-spectral imagery and examine sites with different environmental characteristics.

  19. Polar bears from space: assessing satellite imagery as a tool to track Arctic wildlife.

    Science.gov (United States)

    Stapleton, Seth; LaRue, Michelle; Lecomte, Nicolas; Atkinson, Stephen; Garshelis, David; Porter, Claire; Atwood, Todd

    2014-01-01

    Development of efficient techniques for monitoring wildlife is a priority in the Arctic, where the impacts of climate change are acute and remoteness and logistical constraints hinder access. We evaluated high resolution satellite imagery as a tool to track the distribution and abundance of polar bears. We examined satellite images of a small island in Foxe Basin, Canada, occupied by a high density of bears during the summer ice-free season. Bears were distinguished from other light-colored spots by comparing images collected on different dates. A sample of ground-truthed points demonstrated that we accurately classified bears. Independent observers reviewed images and a population estimate was obtained using mark-recapture models. This estimate (N: 94; 95% Confidence Interval: 92-105) was remarkably similar to an abundance estimate derived from a line transect aerial survey conducted a few days earlier (N: 102; 95% CI: 69-152). Our findings suggest that satellite imagery is a promising tool for monitoring polar bears on land, with implications for use with other Arctic wildlife. Large scale applications may require development of automated detection processes to expedite review and analysis. Future research should assess the utility of multi-spectral imagery and examine sites with different environmental characteristics.

  20. Hematology of southern Beaufort Sea polar bears (2005-2007): Biomarker for an arctic ecosystem health sentinel

    Science.gov (United States)

    Kirk, Cassandra M.; Amstrup, Steven C.; Swor, Rhonda; Holcomb, Darce; O'Hara, T. M.

    2010-01-01

    Declines in sea-ice habitats have resulted in declining stature, productivity, and survival of polar bears in some regions. With continuing sea-ice declines, negative population effects are projected to expand throughout the polar bear's range. Precise causes of diminished polar bear life history performance are unknown, however, climate and sea-ice condition change are expected to adversely impact polar bear (Ursus maritimus) health and population dynamics. As apex predators in the Arctic, polar bears integrate the status of lower trophic levels and are therefore sentinels of ecosystem health. Arctic residents feed at the apex of the ecosystem, thus polar bears can serve as indicators of human health in the Arctic. Despite their value as indicators of ecosystem welfare, population-level health data for U.S. polar bears are lacking. We present hematological reference ranges for southern Beaufort Sea polar bears. Hematological parameters in southern Beaufort Sea polar bears varied by age, geographic location, and reproductive status. Total leukocytes, lymphocytes, monocytes, eosinophils, and serum immunoglobulin G were significantly greater in males than females. These measures were greater in nonlactating females ages ???5, than lactating adult females ages ???5, suggesting that females encumbered by young may be less resilient to new immune system challenges that may accompany ongoing climate change. Hematological values established here provide a necessary baseline for anticipated changes in health as arctic temperatures warm and sea-ice declines accelerate. Data suggest that females with dependent young may be most vulnerable to these changes and should therefore be a targeted cohort for monitoring in this sentinel. ?? 2010 International Association for Ecology and Health.

  1. Hematology of southern Beaufort Sea polar bears (2005-2007): biomarker for an Arctic ecosystem health sentinel.

    Science.gov (United States)

    Kirk, Cassandra M; Amstrup, Steven; Swor, Rhonda; Holcomb, Darce; O'Hara, Todd M

    2010-09-01

    Declines in sea-ice habitats have resulted in declining stature, productivity, and survival of polar bears in some regions. With continuing sea-ice declines, negative population effects are projected to expand throughout the polar bear's range. Precise causes of diminished polar bear life history performance are unknown, however, climate and sea-ice condition change are expected to adversely impact polar bear (Ursus maritimus) health and population dynamics. As apex predators in the Arctic, polar bears integrate the status of lower trophic levels and are therefore sentinels of ecosystem health. Arctic residents feed at the apex of the ecosystem, thus polar bears can serve as indicators of human health in the Arctic. Despite their value as indicators of ecosystem welfare, population-level health data for U.S. polar bears are lacking. We present hematological reference ranges for southern Beaufort Sea polar bears. Hematological parameters in southern Beaufort Sea polar bears varied by age, geographic location, and reproductive status. Total leukocytes, lymphocytes, monocytes, eosinophils, and serum immunoglobulin G were significantly greater in males than females. These measures were greater in nonlactating females ages ≥5, than lactating adult females ages ≥5, suggesting that females encumbered by young may be less resilient to new immune system challenges that may accompany ongoing climate change. Hematological values established here provide a necessary baseline for anticipated changes in health as arctic temperatures warm and sea-ice declines accelerate. Data suggest that females with dependent young may be most vulnerable to these changes and should therefore be a targeted cohort for monitoring in this sentinel.

  2. Correlations of mesospheric winds with subtle motion of the Arctic polar vortex

    Directory of Open Access Journals (Sweden)

    Y. Bhattacharya

    2010-01-01

    Full Text Available This paper investigates the relationship between high latitude upper mesospheric winds and the state of the stratospheric polar vortex in the absence of major sudden stratospheric warmings. A ground based Michelson Interferometer stationed at Resolute Bay (74°43' N, 94°58' W in the Canadian High Arctic is used to measure mesopause region neutral winds using the hydroxyl (OH Meinel-band airglow emission (central altitude of ~85 km. These observed winds are compared to analysis winds in the upper stratosphere during November and December of 1995 and 1996; years characterized as cold, stable polar vortex periods. Correlation of mesopause wind speeds with those from the upper stratosphere is found to be significant for the 1996 season when the polar vortex is subtly displaced off its initial location by a strong Aleutian High. These mesopause winds are observed to lead stratospheric winds by approximately two days with increasing (decreasing mesospheric winds predictive of decreasing (increasing stratospheric winds. No statistically significant correlations are found for the 1995 season when there is no such displacement of the polar vortex.

  3. A consistent definition of the Arctic polar vortex breakup in both the lower and upper stratosphere

    Science.gov (United States)

    Choi, W.; Seo, J.

    2014-12-01

    Breakup of the polar vortex is a dominant feature of the seasonal transition from winter to summer in the stratosphere, which significantly affects stratospheric O3 concentration and tropospheric weather. Previously several criteria for the vortex breakup have been suggested based on the potential vorticity (PV) and wind speed, however, those mainly have focused on the lower stratospheric vortex of which spatiotemporal evolution and decay are more continuous than those of the upper stratospheric vortex. To find a consistent criterion for the vortex breakup in both the lower and upper stratosphere, the present study defined a polar vortex breakup day as when PV gradient at the polar vortex edge becomes lower than that at the subtropical edge on the area equivalent latitude based on PV. With applying the new definition to the UK Met Office reanalysis data, the breakup days of the Arctic polar vortices on 18 isentropic levels from 450 K to 1300 K were calculated for the period of 1993-2005. In comparison with CH4, N2O and O3 measured by the ILAS and POAM II/III satellite instruments, the breakup days are well consistent with changes in the distribution of such tracers as well as their zonal standard deviations associated with the vortex structure breaking and irreversible mixing. The vortex breakup in the upper stratosphere occurs more or less a month prior to that in the middle and lower stratosphere while the stratospheric final warming events occurs simultaneously in the upper and lower stratosphere.

  4. Protists in the polar regions: comparing occurrence in the Arctic and Southern oceans using pyrosequencing

    Directory of Open Access Journals (Sweden)

    Christian Wolf

    2015-05-01

    Full Text Available In the ongoing discussion of the distribution of protists, whether they are globally distributed or endemic to one or both of the polar regions is the subject of heated debate. In this study, we compared next-generation sequencing data from the Arctic and the Southern oceans to reveal the extent of similarities and dissimilarities between the protist communities in the polar regions. We found a total overlap of operational taxonomic units (OTUs between the two regions of 11.2%. On closer inspection of different taxonomic groups, the overlap ranged between 5.5% (haptophytes and 14.5% (alveolates. Within the different groups, the proportion of OTUs occurring in both regions greatly differed between the polar regions. On the one hand, the overlap between these two regions is remarkable, given the geographical distance between them. On the other hand, one could expect a greater overlap of OTUs between these regions on account of the similar environmental conditions. The overlap suggests a connection between the polar regions for at least certain species or that the evolutionary divergence has been slow, relative to the timescales of isolation. The different proportions of common OTUs among the groups or regions may be a result of different life cycle strategies or environmental adaptations.

  5. AMOP (Arctic Marine Oil Spill Program) studies reviewed

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-05

    A discussion of the Arctic Marine Oil Spill Program organized in 1976 by the Canadian Federal Government includes: an Arctic Atlas compiled by Fenco Consultants Ltd. to give background information necessary for developing marine oil spill countermeasures for the Arctic north of 60/sup 0/ including the west Greenland coast and the Labrador shelf (geology, meteorology and oceanography, ice conditions, biology, and social factors); program in emergency transport of spill-combatting equipment; and the factors which influence the choice of conveyance, i.e., accessibility of the site, urgency for response, and quantity of material required; laboratory studies involving the release of oil under artificial sea ice in simulated ice formation and decay purposes to determine the interaction of crude oil and first-year sea ice; inability of companies and government to control a major spill in the Labrador Sea because of poor and inadequate transport facilities, communications, and navigational aids, severe environmental conditions, and logistics problems; and studies on the effects of oil-well blowouts in deep water, including formation of oil and gas hydrates, design of oil skimmers, the use of hovercraft, and specifications for an airborne multisensor system for oil detection in ice-infested waters.

  6. A closer look at Arctic ozone loss and polar stratospheric clouds

    Directory of Open Access Journals (Sweden)

    N. R. P. Harris

    2010-09-01

    Full Text Available The empirical relationship found between column-integrated Arctic ozone loss and the potential volume of polar stratospheric clouds inferred from meteorological analyses is recalculated in a self-consistent manner using the ERA Interim reanalyses. The relationship is found to hold at different altitudes as well as in the column. The use of a PSC formation threshold based on temperature dependent cold aerosol formation makes little difference to the original, empirical relationship. Analysis of the photochemistry leading to the ozone loss shows that activation is limited by the photolysis of nitric acid. This step produces nitrogen dioxide which is converted to chlorine nitrate which in turn reacts with hydrogen chloride on any polar stratospheric clouds to form active chlorine. The rate-limiting step is the photolysis of nitric acid: this occurs at the same rate every year and so the interannual variation in the ozone loss is caused by the extent and persistence of the polar stratospheric clouds. In early spring the ozone loss rate increases as the solar insolation increases the photolysis of the chlorine monoxide dimer in the near ultraviolet. However the length of the ozone loss period is determined by the photolysis of nitric acid which also occurs in the near ultraviolet. As a result of these compensating effects, the amount of the ozone loss is principally limited by the extent of original activation rather than its timing. In addition a number of factors, including the vertical changes in pressure and total inorganic chlorine as well as denitrification and renitrification, offset each other. As a result the extent of original activation is the most important factor influencing ozone loss. These results indicate that relatively simple parameterisations of Arctic ozone loss could be developed for use in coupled chemistry climate models.

  7. SEARCH: Study of Environmental Arctic Change—A System-scale, Cross-disciplinary Arctic Research Program

    Science.gov (United States)

    Wiggins, H. V.; Eicken, H.; Fox, S. E.

    2012-12-01

    SEARCH is an interdisciplinary and interagency program that works with academic and government agency scientists to plan, conduct, and synthesize studies of arctic change. The vision of SEARCH is to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. Towards this end, SEARCH: 1. Generates and synthesizes research findings and promotes arctic science and scientific discovery across disciplines and among agencies. 2. Identifies emerging issues in arctic environmental change. 3. Provides information resources to arctic stakeholders, policy-makers, and the public to help them respond to arctic environmental change. 4. Coordinates with national arctic science programs integral to SEARCH goals. 5. Facilitates research activities across local-to-global scales with stakeholder concerns incorporated from the start of the planning process. 6. Represents the U.S. arctic environmental change science community in international and global change research initiatives. Specific current activities include: Arctic Observing Network (AON) - coordinating a system of atmospheric, land- and ocean-based environmental monitoring capabilities that will significantly advance our observations of arctic environmental conditions. Arctic Sea Ice Outlook ¬- an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. In April, the SEARCH Science Steering Committee (SSC) released a set of draft 5-year goals and objectives for review by the broader arctic science community. The goals and objectives will direct the SEARCH program in the next five years. The draft SEARCH goals focus on four areas: ice-diminished Arctic Ocean, warming

  8. Leveraging scientific credibility about Arctic sea ice trends in a polarized political environment.

    Science.gov (United States)

    Jamieson, Kathleen Hall; Hardy, Bruce W

    2014-09-16

    This work argues that, in a polarized environment, scientists can minimize the likelihood that the audience's biased processing will lead to rejection of their message if they not only eschew advocacy but also, convey that they are sharers of knowledge faithful to science's way of knowing and respectful of the audience's intelligence; the sources on which they rely are well-regarded by both conservatives and liberals; and the message explains how the scientist arrived at the offered conclusion, is conveyed in a visual form that involves the audience in drawing its own conclusions, and capsulizes key inferences in an illustrative analogy. A pilot experiment raises the possibility that such a leveraging-involving-visualizing-analogizing message structure can increase acceptance of the scientific claims about the downward cross-decade trend in Arctic sea ice extent and elicit inferences consistent with the scientific consensus on climate change among conservatives exposed to misleadingly selective data in a partisan news source.

  9. Changing Arctic Ecosystems: Updated forecast: Reducing carbon dioxide (CO2) emissions required to improve polar bear outlook

    Science.gov (United States)

    Oakley, Karen L.; Atwood, Todd C.; Mugel, Douglas N.; Rode, Karyn D.; Whalen, Mary E.

    2015-01-01

    The Arctic is warming faster than other regions of the world due to the loss of snow and ice, which increases the amount of solar energy absorbed by the region. The most visible consequence has been the rapid decline in sea ice over the last 3 decades-a decline projected to bring long ice-free summers if greenhouse gas (GHG) emissions are not significantly reduced. The polar bear (Ursus maritimus) depends on sea ice over the biologically productive continental shelves of the Arctic Ocean as a platform for hunting seals. In 2008, the U.S. Fish and Wildlife Service listed the polar bear as threatened under the Endangered Species Act (ESA) due to the threat posed by sea ice loss. The polar bear was the first species to be listed due to forecasted population declines from climate change.

  10. Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate

    Science.gov (United States)

    Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten

    2010-01-01

    Recent satellite lidar measurements of cloud properties spanning a period of 5 years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anticorrelation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice!free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7% and 10%, respectively, as year average sea ice extent has decreased by 5% 7%. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Because longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.

  11. The Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate

    Science.gov (United States)

    Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten

    2010-01-01

    Recent satellite lidar measurements of cloud properties spanning a period of five years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anti-correlation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7 and 10 percent, respectively, as year average sea ice extent has decreased by 5 to 7 percent. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Since longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.

  12. Possible Effects of Climate Warming on Selected Populations of Polar Bears (Ursus maritimus) in the Canadian Arctic

    Science.gov (United States)

    Parkinson, Claire L.; Stirling Ian

    2006-01-01

    Polar bears are dependent on sea ice for survival. Climate warming in the Arctic has caused significant declines in coverage and thickness of sea ice in the polar basin and progressively earlier breakup in some areas. In four populations of polar bears in the eastern Canadian Arctic (including Western Hudson Bay), Inuit hunters report more bears near settlements during the open water period in recent years. These observations have been interpreted as evidence of increasing population size, resulting in increases in hunting quotas. However, long-term data on the population size and condition of polar bears in Western Hudson Bay, and population and harvest data from Baffin Bay, make it clear that those two populations at least are declining, not increasing. While the details vary in different arctic regions, analysis of passive-microwave satellite imagery, beginning in the late 1970s, indicates that the sea ice is breaking up at progressively earlier dates, so that bears must fast for longer periods during the open water season. Thus, at least part of the explanation for the appearance of more bears in coastal communities is likely that they are searching for alternative food sources because their stored body fat depots are being exhausted. We hypothesize that, if the climate continues to warm as projected by the IPCC, then polar bears in all five populations discussed in this paper will be stressed and are likely to decline in numbers, probably significantly so. As these populations decline, there will likely also be continuing, possibly increasing, numbers of problem interactions between bears and humans as the bears seek alternate food sources. Taken together, the data reported in this paper suggest that a precautionary approach be taken to the harvesting of polar bears and that the potential effects of climate warming be incorporated into planning for the management and conservation of this species throughout the Arctic.

  13. The polar bear in the room: diseases of poverty in the Arctic

    Directory of Open Access Journals (Sweden)

    Chris Nelson

    2013-08-01

    Full Text Available In the face of global warming, budgetary austerity and impoverished Arctic residents, the nations of the circumpolar region are presented with a number of difficult choices regarding the provision of health care to the far-flung and isolated regions of their northernmost provinces. Complicating that picture is the reality of neglected tropical diseases in areas far from their perceived normal equatorial range as well as endemic food-borne diseases, including protozoan and helminth parasites, respiratory and gastrointestinal diseases and vaccine-preventable illnesses. This paper discusses the problems of caring for the health and well-being of indigenous populations suffering from extreme poverty, isolation and discrimination in the circumpolar region. After presenting difficulties as supported by the extant literature, the paper continues by suggesting solutions that include novel telenursing applications, targeted distance-educational programs and local community-based health care assistant (HCA vocational training. These programs will provide cost-effective care that increases life-spans, improves quality of life and provides opportunities to distressed populations in isolated rural communities of the Far North. The toolkit presented in the paper is intended to spur discussion on community health programs that could be adopted to provide proper and humane care for marginalized Arctic populations in an extreme and rapidly changing environment.

  14. Bacterial diversity in faeces from polar bear (Ursus maritimus in Arctic Svalbard

    Directory of Open Access Journals (Sweden)

    Brusetti Lorenzo

    2010-01-01

    Full Text Available Abstract Background Polar bears (Ursus maritimus are major predators in the Arctic marine ecosystem, feeding mainly on seals, and living closely associated with sea ice. Little is known of their gut microbial ecology and the main purpose of this study was to investigate the microbial diversity in faeces of polar bears in Svalbard, Norway (74-81°N, 10-33°E. In addition the level of blaTEM alleles, encoding ampicillin resistance (ampr were determined. In total, ten samples were collected from ten individual bears, rectum swabs from five individuals in 2004 and faeces samples from five individuals in 2006. Results A 16S rRNA gene clone library was constructed, and all sequences obtained from 161 clones showed affiliation with the phylum Firmicutes, with 160 sequences identified as Clostridiales and one sequence identified as unclassified Firmicutes. The majority of the sequences (70% were affiliated with the genus Clostridium. Aerobic heterotrophic cell counts on chocolate agar ranged between 5.0 × 104 to 1.6 × 106 colony forming units (cfu/ml for the rectum swabs and 4.0 × 103 to 1.0 × 105 cfu/g for the faeces samples. The proportion of ampr bacteria ranged from 0% to 44%. All of 144 randomly selected ampr isolates tested positive for enzymatic β-lactamase activity. Three % of the ampr isolates from the rectal samples yielded positive results when screened for the presence of blaTEM genes by PCR. BlaTEM alleles were also detected by PCR in two out of three total faecal DNA samples from polar bears. Conclusion The bacterial diversity in faeces from polar bears in their natural environment in Svalbard is low compared to other animal species, with all obtained clones affiliating to Firmicutes. Furthermore, only low levels of blaTEM alleles were detected in contrast to their increasing prevalence in some clinical and commensal bacterial populations.

  15. Bacterial diversity in faeces from polar bear (Ursus maritimus) in Arctic Svalbard.

    Science.gov (United States)

    Glad, Trine; Bernhardsen, Pål; Nielsen, Kaare M; Brusetti, Lorenzo; Andersen, Magnus; Aars, Jon; Sundset, Monica A

    2010-01-14

    Polar bears (Ursus maritimus) are major predators in the Arctic marine ecosystem, feeding mainly on seals, and living closely associated with sea ice. Little is known of their gut microbial ecology and the main purpose of this study was to investigate the microbial diversity in faeces of polar bears in Svalbard, Norway (74-81 degrees N, 10-33 degrees E). In addition the level of blaTEM alleles, encoding ampicillin resistance (ampr) were determined. In total, ten samples were collected from ten individual bears, rectum swabs from five individuals in 2004 and faeces samples from five individuals in 2006. A 16S rRNA gene clone library was constructed, and all sequences obtained from 161 clones showed affiliation with the phylum Firmicutes, with 160 sequences identified as Clostridiales and one sequence identified as unclassified Firmicutes. The majority of the sequences (70%) were affiliated with the genus Clostridium. Aerobic heterotrophic cell counts on chocolate agar ranged between 5.0 x 10(4) to 1.6 x 10(6) colony forming units (cfu)/ml for the rectum swabs and 4.0 x 10(3) to 1.0 x 10(5) cfu/g for the faeces samples. The proportion of ampr bacteria ranged from 0% to 44%. All of 144 randomly selected ampr isolates tested positive for enzymatic beta-lactamase activity. Three % of the ampr isolates from the rectal samples yielded positive results when screened for the presence of blaTEM genes by PCR. BlaTEM alleles were also detected by PCR in two out of three total faecal DNA samples from polar bears. The bacterial diversity in faeces from polar bears in their natural environment in Svalbard is low compared to other animal species, with all obtained clones affiliating to Firmicutes. Furthermore, only low levels of blaTEM alleles were detected in contrast to their increasing prevalence in some clinical and commensal bacterial populations.

  16. Bacterial diversity in faeces from polar bear (Ursus maritimus) in Arctic Svalbard

    Science.gov (United States)

    2010-01-01

    Background Polar bears (Ursus maritimus) are major predators in the Arctic marine ecosystem, feeding mainly on seals, and living closely associated with sea ice. Little is known of their gut microbial ecology and the main purpose of this study was to investigate the microbial diversity in faeces of polar bears in Svalbard, Norway (74-81°N, 10-33°E). In addition the level of blaTEM alleles, encoding ampicillin resistance (ampr) were determined. In total, ten samples were collected from ten individual bears, rectum swabs from five individuals in 2004 and faeces samples from five individuals in 2006. Results A 16S rRNA gene clone library was constructed, and all sequences obtained from 161 clones showed affiliation with the phylum Firmicutes, with 160 sequences identified as Clostridiales and one sequence identified as unclassified Firmicutes. The majority of the sequences (70%) were affiliated with the genus Clostridium. Aerobic heterotrophic cell counts on chocolate agar ranged between 5.0 × 104 to 1.6 × 106 colony forming units (cfu)/ml for the rectum swabs and 4.0 × 103 to 1.0 × 105 cfu/g for the faeces samples. The proportion of ampr bacteria ranged from 0% to 44%. All of 144 randomly selected ampr isolates tested positive for enzymatic β-lactamase activity. Three % of the ampr isolates from the rectal samples yielded positive results when screened for the presence of blaTEM genes by PCR. BlaTEM alleles were also detected by PCR in two out of three total faecal DNA samples from polar bears. Conclusion The bacterial diversity in faeces from polar bears in their natural environment in Svalbard is low compared to other animal species, with all obtained clones affiliating to Firmicutes. Furthermore, only low levels of blaTEM alleles were detected in contrast to their increasing prevalence in some clinical and commensal bacterial populations. PMID:20074323

  17. POLAR-PALOOZA Polar Researchers and Arctic Residents Engage, Inform and Inspire Diverse Public Audiences by sharing Polar Science and Global Connections during the International Polar Year, using a New Model of Informal Science Education

    Science.gov (United States)

    Haines-Stiles, G.; Akuginow, E.

    2006-12-01

    (Please note that the POLAR-PALOOZA initiative described in this Abstract is-as of 9/7/2006-"pending" for possible support from NSF and NASA as part of this year's IPY solicitation. Subject to decisions expected by 9/30, this presentation would either be withdrawn, or amplified with specific participants, locations and dates.) Despite the success of well-regarded movies like "March of the Penguins", the polar regions remain a great unknown for most people. Public knowledge about the Arctic and Antarctic, and the critical role of the Poles in the entire Earth system, is nonexistent, incomplete or burdened with misperceptions. The International Polar Years of 2007-2009-and associated "I*Y" science years such as IHY, IYPE and eGY-present a unique opportunity to change this. The people who can best effect this change are those who know the Poles best, through living or working there. Based on innovative but proven models, POLAR-PALOOZA will use three complementary strategies to engage, inform and inspire large public audiences. (1) A national tour, under the working title "Stories from a Changing Planet", will include in-person presentations at science centers, museums, libraries and schools across North America, including Canada and Mexico. The presentations will be augmented by High Definition Video taped on location at the Poles, audio and video podcasts, and special education and outreach activities for targeted audiences. "Stories from a Changing Planet" will provide diverse audiences with an exciting opportunity to meet and interact directly with polar experts, and to appreciate why the Poles and the research done there are directly relevant to their lives. (2) The "HiDef Video Science Story Capture Corps" is a team of professional videographers, using the latest generation of low-cost, high-quality cameras, deployed to both Poles. They will document the work of multiple researchers and projects, rather than focusing on one topic for a single broadcast program

  18. Absolute Geostrophic Velocity Inverted from the Polar Science Center Hydrographic Climatology (PHC3.0) of the Arctic Ocean with the P-Vector Method (NCEI Accession 0156425)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset (called PHC-V) comprises 3D gridded climatological fields of absolute geostrophic velocity of the Arctic Ocean inverted from the Polar science center...

  19. Phytoplankton data collected using net casts in the Arctic Ocean from the USCGC POLAR SEA from 26 July 1994 to 26 August 1994 (NODC Accession 0000770)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Phytoplankton data were collected using net casts from the USCGC POLAR SEA in the Arctic Ocean. Data were collected from 26 July 1994 to 26 August 1994. Data were...

  20. To the Extremes! A Teacher Research Experience Program in the Polar Regions

    Science.gov (United States)

    Warburton, J.; Bartholow, S.

    2014-12-01

    PolarTREC-Teachers and Researchers Exploring and Collaborating, a teacher professional development program, began with the International Polar Year in 2004 and continues today in the United States. In 2007, the National Science Foundation designated PolarTREC as potentially transformative, meaning that the "research results often do not fit within established models or theories and may initially be unexpected or difficult to interpret; their transformative nature and utility might not be recognized until years later." PolarTREC brings U.S. K-12 educators and polar researchers together through an innovative teacher research experience model. Teachers spend three to six weeks in remote arctic and Antarctic field camps. Since 2007, over 100 teachers have been placed in field experiences throughout the Arctic and Antarctic and with half of them participating in field experiences in Antarctica. During their experience, teachers become research team members filling a variety of roles on the team. They also fulfil a unique role of public outreach officer, conducting live presentations about their field site and research as well as journaling, answering questions, and posting photos. Evaluation data collected over the past eight years on program participants shows that PolarTREC has clearly achieved it goals and strongly suggests programs that link teachers and researchers can have the potential to transform the nature of science education. By giving teachers the content knowledge, pedagogical tools, confidence, understanding of science in the broader society, and experiences with scientific inquiry, participating teachers are using authentic scientific research in their classrooms. Not surprisingly this has also led to increases in student interest and knowledge about the Polar Regions. In this presentation, we will highlight the best practices of teacher research experiences as well as discuss why it is vital to have teachers and researchers work together to communicate

  1. Using satellite telemetry to define spatial population structure in polar bears in the Norwegian and western Russian Arctic

    Science.gov (United States)

    Mauritzen, Mette; Derocher, Andrew E.; Wiig, Øystein; Belikov, Stanislav; Boltunov, Andrei N.; Garner, Gerald W.

    2002-01-01

    1. Animal populations, defined by geographical areas within a species’ distribution where population dynamics are largely regulated by births and deaths rather than by migration from surrounding areas, may be the correct unit for wildlife management. However, in heterogeneous landscapes varying habitat quality may yield subpopulations with distinct patterns in resource use and demography significant to the dynamics of populations.2. To define the spatial population structure of polar bears Ursus maritimus in the Norwegian and western Russian Arctic, and to assess the existence of a shared population between the two countries, we analysed satellite telemetry data obtained from 105 female polar bears over 12 years.3. Using both cluster analyses and home-range estimation methods, we identified five population units inhabiting areas with different sea-ice characteristics and prey availability.4. The continuous distribution of polar bear positions indicated that the different subpopulations formed one continuous polar bear population in the Norwegian and western Russian Arctic. Hence, Norway and Russia have a shared management responsibility.5. The spatial population structure identified will provide a guide for evaluating geographical patterns in polar bear ecology, the dynamics of polar bear–seal relationships and the effects of habitat alteration due to climate change. The work illustrates the importance of defining population borders and subpopulation structure in understanding the dynamics and management of larger animals.

  2. The Polar Crust Project- BSC Diversity and Variability in the Arctic and Antarctica

    Science.gov (United States)

    Williams, Laura; Borchhardt, Nadine; Komisc-Buchmann, Karin; Becker, Burkhard; Karsten, Ulf; Büdel, Burkhard

    2015-04-01

    The Polar Crust Project is a newly funded DFG initiative that aims to provide a precise evaluation of the biodiversity of eukaryotic green microalgae and cyanobacteria in Biological Soil Crusts (BSC) isolated from the Antarctic Peninsula and Arctic Svalbard. This project will include a thorough investigation into the composition of BSC in the Polar regions, this especially is important for Svalbard due to the severe lack of any previous research on such communities in this area. During our expedition to Spitsbergen, Svalbard in August 2014 we were particularly surprised to find that the coverage of BSC is extremely high and is certainly the dominant vegetation type around Ny Ålesund. Due to this discovery the project has now been extended to include long term measurements of CO2 gas exchange in order to gain exact seasonal carbon fixation rates and therefore discovering how the BSC contributes to the ecosystems carbon balance. The research areas of Spitsbergen were centred around 2 localities: Ny-Ålesund is a research town, home to the AWIPEV station, on the Brøgger peninsula. Longyearbyen, which is the largest settlement on the island, is found in the valley Longyeardalen on the shore of Adventfjorden. Areas where BSC is the prevalent vegetation type were identified, 6 around Ny-Ålesund and 4 for Longyearbyen, and vegetation surveys were conducted. This entailed 625 single point measurements at each site and identifying the crust/or other cover type. For example, green algal lichen, cyanobacterial crust, higher plant, open soil. Samples were also taken at every location in order to study the green algal and cyanobacterial diversity. The vegetation survey will allow us to get a good overview of the BSC composition at the different sites. In January 2015 an expedition to the Antarctic Peninsular took place, here the sampling method was repeated and therefore both Polar Regions BSC composition can be described and compared. Here, we wish to introduce the Polar

  3. A case study of high Arctic anthropogenic disturbance to polar desert permafrost and ecosystems

    Science.gov (United States)

    Becker, M. S.; Pollard, W. H.

    2013-12-01

    One of the indirect impacts of climate change on Arctic ecosystems is the expected increase of industrial development in high latitudes. The scale of terrestrial impacts cannot be known ahead of time, particularly due to a lack of long-term impact studies in this region. With one of the slowest community recovery rates of any ecosystem, the high Artic biome will be under a considerable threat that is exacerbated by a high susceptibility to change in the permafrost thermal balance. One such area that provides a suitable location for study is an old airstrip near Eureka, Ellesmere Island, Nunavut (80.0175°N, 85.7340°W). While primarily used as an ice-runway for winter transport, the airstrip endured a yearly summer removal of vegetation that continued from 1947 until its abandonment in 1951. Since then, significant vegetative and geomorphic differences between disturbed and undisturbed areas have been noted in the literature throughout the decades (Bruggemann, 1953; Beschel, 1963; Couture and Pollard, 2007), but no system wide assessment of both the ecosystem and near-surface permafrost has been conducted. Key to our study is that the greatest apparent geomorphic and vegetative changes have occurred and persisted in areas where underlying ice-wedges have been disturbed. This suggests that the colonizing communities rapidly filled new available thermokarst niches and have produced an alternative ice-wedge stable state than the surrounding polar desert. We hypothesize that disturbed areas will currently have greater depths of thaw (deeper active layers) and degraded ice-wedges, with decreased vegetation diversity but higher abundance due to a changed hydrological balance. To test this a comprehensive set of near-surface active layer and ecosystem measurements were conducted. Permafrost dynamics were characterized using probing and high-frequency Ground Penetrating Radar (500 MHz) to map the near-surface details of ice-wedges and active layer. Vegetation was measured

  4. Polar front associated variation in prokaryotic community structure in Arctic shelf seafloor.

    Science.gov (United States)

    Nguyen, Tan T; Landfald, Bjarne

    2015-01-01

    Spatial variations in composition of marine microbial communities and its causes have largely been disclosed in studies comprising rather large environmental and spatial differences. In the present study, we explored if a moderate but temporally permanent climatic division within a contiguous arctic shelf seafloor was traceable in the diversity patterns of its bacterial and archaeal communities. Soft bottom sediment samples were collected at 10 geographical locations, spanning spatial distances of up to 640 km, transecting the oceanic polar front in the Barents Sea. The northern sampling sites were generally colder, less saline, shallower, and showed higher concentrations of freshly sedimented phytopigments compared to the southern study locations. Sampling sites depicted low variation in relative abundances of taxa at class level, with persistent numerical dominance by lineages of Gamma- and Deltaproteobacteria (57-66% of bacterial sequence reads). The Archaea, which constituted 0.7-1.8% of 16S rRNA gene copy numbers in the sediment, were overwhelmingly (85.8%) affiliated with the Thaumarchaeota. Beta-diversity analyses showed the environmental variations throughout the sampling range to have a stronger impact on the structuring of both the bacterial and archaeal communities than spatial effects. While bacterial communities were significantly influenced by the combined effect of several weakly selective environmental differences, including temperature, archaeal communities appeared to be more uniquely structured by the level of freshly sedimented phytopigments.

  5. Role of polar anticyclones and mid-latitude cyclones for Arctic summertime sea-ice melting

    Science.gov (United States)

    Wernli, Heini; Papritz, Lukas

    2018-02-01

    Annual minima in Arctic sea-ice extent and volume have been decreasing rapidly since the late 1970s, with substantial interannual variability. Summers with a particularly strong reduction of Arctic sea-ice extent are characterized by anticyclonic circulation anomalies from the surface to the upper troposphere. Here, we investigate the origin of these seasonal circulation anomalies by identifying individual Arctic anticyclones (with a lifetime of typically ten days) and analysing the air mass transport into these systems. We reveal that these episodic upper-level induced Arctic anticyclones are relevant for generating seasonal circulation anomalies. Sea-ice reduction is systematically enhanced during the transient episodes with Arctic anticyclones and the seasonal reduction of sea-ice volume correlates with the area-averaged frequency of Arctic anticyclones poleward of 70° N (correlation coefficient of 0.57). A trajectory analysis shows that these anticyclones result from extratropical cyclones injecting extratropical air masses with low potential vorticity into the Arctic upper troposphere. Our results emphasize the fundamental role of extratropical cyclones and associated diabatic processes in establishing Arctic anticyclones and, in turn, seasonal circulation anomalies, which are of key importance for understanding the variability of summertime Arctic sea-ice melting.

  6. Differences in mercury bioaccumulation between polar bears (Ursus maritimus) from the Canadian high- and sub-Arctic.

    Science.gov (United States)

    St Louis, Vincent L; Derocher, Andrew E; Stirling, Ian; Graydon, Jennifer A; Lee, Caroline; Jocksch, Erin; Richardson, Evan; Ghorpade, Sarah; Kwan, Alvin K; Kirk, Jane L; Lehnherr, Igor; Swanson, Heidi K

    2011-07-15

    Polar bears (Ursus maritimus) are being impacted by climate change and increased exposure to pollutants throughout their northern circumpolar range. In this study, we quantified concentrations of total mercury (THg) in the hair of polar bears from Canadian high- (southern Beaufort Sea, SBS) and sub- (western Hudson Bay, WHB) Arctic populations. Concentrations of THg in polar bears from the SBS population (14.8 ± 6.6 μg g(-1)) were significantly higher than in polar bears from WHB (4.1 ± 1.0 μg g(-1)). On the basis of δ(15)N signatures in hair, in conjunction with published δ(15)N signatures in particulate organic matter and sediments, we estimated that the pelagic and benthic food webs in the SBS are ∼ 4.7 and ∼ 4.0 trophic levels long, whereas in WHB they are only ∼ 3.6 and ∼ 3.3 trophic levels long. Furthermore, the more depleted δ(13)C ratios in hair from SBS polar bears relative to those from WHB suggests that SBS polar bears feed on food webs that are relatively more pelagic (and longer), whereas polar bears from WHB feed on those that are relatively more benthic (and shorter). Food web length and structure accounted for ∼ 67% of the variation we found in THg concentrations among all polar bears across both populations. The regional difference in polar bear hair THg concentrations was also likely due to regional differences in water-column concentrations of methyl Hg (the toxic form of Hg that biomagnifies through food webs) available for bioaccumulation at the base of the food webs. For example, concentrations of methylated Hg at mid-depths in the marine water column of the northern Canadian Arctic Archipelago were 79.8 ± 37.3 pg L(-1), whereas, in HB, they averaged only 38.3 ± 16.6 pg L(-1). We conclude that a longer food web and higher pelagic concentrations of methylated Hg available to initiate bioaccumulation in the BS resulted in higher concentrations of THg in polar bears from the SBS region compared to those inhabiting the western

  7. Chemical ozone losses in Arctic and Antarctic polar winter/spring season derived from SCIAMACHY limb measurements 2002–2009

    Directory of Open Access Journals (Sweden)

    T. Sonkaew

    2013-02-01

    Full Text Available Stratospheric ozone profiles are retrieved for the period 2002–2009 from SCIAMACHY measurements of limb-scattered solar radiation in the Hartley and Chappuis absorption bands of ozone. This data set is used to determine the chemical ozone losses in both the Arctic and Antarctic polar vortices by averaging the ozone in the vortex at a given potential temperature. The chemical ozone losses at isentropic levels between 450 K and 600 K are derived from the difference between observed ozone abundances and the ozone modelled taking diabatic cooling into account, but no chemical ozone loss. Chemical ozone losses of up to 30–40% between mid-January and the end of March inside the Arctic polar vortex are reported. Strong inter-annual variability of the Arctic ozone loss is observed, with the cold winters 2004/2005 and 2006/2007 showing chemical ozone losses inside the polar vortex at 475 K, where 1.7 ppmv and 1.4 ppmv of ozone were removed, respectively, over the period from 22 January to beginning of April and 0.9 ppmv and 1.2 ppmv, respectively, during February. For the winters of 2007/2008 and 2002/2003, ozone losses of about 0.8 ppmv and 0.4 ppmv, respectively are estimated at the 475 K isentropic level for the period from 22 January to beginning of April. Essentially no ozone losses were diagnosed for the relatively warm winters of 2003/2004 and 2005/2006. The maximum ozone loss in the SCIAMACHY data set was found in 2007 at the 600 K level and amounted to about 2.1 ppmv for the period between 22 January and the end of April. Enhanced losses close to this altitude were found in all investigated Arctic springs, in contrast to Antarctic spring. The inter-annual variability of ozone losses and PSC occurrence rates observed during Arctic spring is consistent with the known QBO effects on the Arctic polar vortex, with exception of the unusual Arctic winter 2008/2009.

    The maximum total ozone mass loss of about 25 million tons was found in the

  8. Assessing performance of gravity models in the Arctic and the implications for polar oceanography

    Science.gov (United States)

    Thomas, S. F.; McAdoo, D. C.; Farrell, S. L.; Brozena, J. M.; Childers, V. A.; Ziebart, M. K.; Shepherd, A.

    2014-12-01

    The circulation of the Arctic Ocean is of great interest to both the oceanographic and cryospheric communities. Understanding both the steady state and variations of this circulation is essential to building our knowledge of Arctic climate. With the advent of high inclination altimeter missions such as CryoSat and ICESat, it is now feasible to produce Mean Dynamic Topography (MDT) products for the region, which allow a comprehensive investigation of geostrophic currents. However, the accuracy of these products is largely limited by our knowledge of the marine geoid in the Arctic. There are a number of publicly available gravity models commonly used to derive the geoid. These use different combinations of available data (satellite gravimetry, altimetry, laser ranging, and in-situ) and are calculated using different mathematical techniques. However, the effect of these differences on the real world performance of these models when used for oceanographic studies in the Arctic is not well known. Given the unique problems for gravimetry in the region (especially data gaps) and their potential impact on MDT products, it is especially important that the relative performance of these models be assessed We consider the needs of the "end user" satellite oceanographer in the Arctic with respect to gravimetry, and the relationship between the precision of gravity data and the accuracy of a final MDT/current velocity product. Using high-precision aerogravity data collected over 3 years of campaigns by NASA's Operation IceBridge we inter-compare 10 of the leading gravity models and assess their performance in the Arctic. We also use historical data from campaigns flown by the US Naval Research Laboratory (NRL) to demonstrate the impact of gravity errors on MDT products. We describe how gravity models for the region might be improved in the future, in an effort to maximize the level at which Arctic currents may be resolved.

  9. Polarized proton acceleration program at the AGS

    International Nuclear Information System (INIS)

    Lee, Y.Y.

    1981-01-01

    The unexpected importance of high energy spin effects and the success of the ZGS in correcting many intrinsic and imperfection depolarizing resonances led us to attempt to accelerate polarized protons in the AGS. A multi-university/laboratory collaborative effort involving Argonne, Brookhaven, Michigan, Rice and Yale is underway to improve and modify to accelerate polarized protons. From the experience at the ZGS and careful studies made us confident of the feasibility of achieving a polarization of over 60 percent up to 26 GeV/c with an intensity of 10 11 approx. 10 12 per pulse. The first polarized proton acceleration at the AGS is expected in 1983

  10. Depletion of stratospheric ozone over the Antarctic and Arctic: Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview

    International Nuclear Information System (INIS)

    Rozema, Jelte; Boelen, Peter; Blokker, Peter

    2005-01-01

    Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to experimentally varied UV-B through supplementation or exclusion. In supplementation studies comparing ambient and above ambient UV-B, no effect on growth occurred. UV-B-induced DNA damage, as measured in polar bryophytes, is repaired overnight by photoreactivation. With UV exclusion, growth at near ambient may be less than at below ambient UV-B levels, which relates to the UV response curve of polar plants. UV-B screening foils also alter PAR, humidity, and temperature and interactions of UV with environmental factors may occur. Plant phenolics induced by solar UV-B, as in pollen, spores and lignin, may serve as a climate proxy for past UV. Since the Antarctic and Arctic terrestrial ecosystems differ essentially (e.g. higher species diversity and more trophic interactions in the Arctic), generalization of polar plant responses to UV-B needs caution. - Polar plant responses to UV-B may be different in the Arctic than Antarctic regions

  11. The BNL polarized H- ion source development program

    International Nuclear Information System (INIS)

    Kponou, A.; Alessi, J.; Hershcovitch, A.; DeVito, B.

    1992-01-01

    Polarized protons have been available for acceleration in the AGS for the high energy physics program since 1984. The polarized H - source, PONI-1, has routinely supplied a 0.4 Hz, 400 μsec pulse having a nominal intensity of 40 μA. Polarization is ∼80% out of the ion source. After PONI- 1 became operational, a program was initiated to develop a more intense source based on a cold ground state atomic beam source, followed by ionization of the polarized H degrees beam by D - charge exchange. Various phases of this work have been fully reported elsewhere, and only a summary is given here

  12. One Model for Scientist Involvement in K-12 Education: Teachers Experiencing Antarctica and the Arctic Program

    Science.gov (United States)

    Meese, D.; Shipp, S. S.; Porter, M.; Bruccoli, A.

    2002-12-01

    Scientists involved in the NSF-funded Teachers Experiencing Antarctica and the Arctic (TEA) Program integrate a K-12 science teacher into their polar field project. Objectives of the program include: having the science teacher immersed in the experience of research; 2) through the teacher, leveraging the research experience to better inform teaching practices; and 3) sharing the experience with the broader educational and general community. The scientist - or qualified team member - stays involved with the teacher throughout the program as a mentor. Preparation of the teacher involves a week-long orientation presented by the TEA Program, and a two week pre-expedition visit at the scientist's institution. Orientation acquaints teachers with program expectations, logistical information, and an overview of polar science. While at the scientist's institution, the teacher meets the team, prepares for the field, and strengthens content knowledge. In the field, the teacher is a team member and educational liaison, responding to questions from students and colleagues by e-mail, and posting electronic journals describing the research experience. Upon return, the teachers work closely with colleagues to bring the experience of research into classrooms through creation of activities, design of longer-term student investigations, and presentations at scientific, educational, and community meetings. Interaction with the scientific team continues with a visit by the scientist to the teacher's classrooms, collaboration on presentations at scientific meetings, and consultation on classroom activities. In some cases, the teacher may participate in future expeditions. The involvement by scientists in mentor relationships, such as those of the TEA Program, is critical to improving science education. Many teachers of science have not had the opportunity to participate in field research, which offers valuable first-hand experience about the nature of science, as well as about specific

  13. Live from the Arctic

    Science.gov (United States)

    Warnick, W. K.; Haines-Stiles, G.; Warburton, J.; Sunwood, K.

    2003-12-01

    For reasons of geography and geophysics, the poles of our planet, the Arctic and Antarctica, are places where climate change appears first: they are global canaries in the mine shaft. But while Antarctica (its penguins and ozone hole, for example) has been relatively well-documented in recent books, TV programs and journalism, the far North has received somewhat less attention. This project builds on and advances what has been done to date to share the people, places, and stories of the North with all Americans through multiple media, over several years. In a collaborative project between the Arctic Research Consortium of the United States (ARCUS) and PASSPORT TO KNOWLEDGE, Live from the Arctic will bring the Arctic environment to the public through a series of primetime broadcasts, live and taped programming, interactive virtual field trips, and webcasts. The five-year project will culminate during the 2007-2008 International Polar Year (IPY). Live from the Arctic will: A. Promote global understanding about the value and world -wide significance of the Arctic, B. Bring cutting-edge research to both non-formal and formal education communities, C. Provide opportunities for collaboration between arctic scientists, arctic communities, and the general public. Content will focus on the following four themes. 1. Pan-Arctic Changes and Impacts on Land (i.e. snow cover; permafrost; glaciers; hydrology; species composition, distribution, and abundance; subsistence harvesting) 2. Pan-Arctic Changes and Impacts in the Sea (i.e. salinity, temperature, currents, nutrients, sea ice, marine ecosystems (including people, marine mammals and fisheries) 3. Pan-Arctic Changes and Impacts in the Atmosphere (i.e. precipitation and evaporation; effects on humans and their communities) 4. Global Perspectives (i.e. effects on humans and communities, impacts to rest of the world) In The Earth is Faster Now, a recent collection of comments by members of indigenous arctic peoples, arctic

  14. High bacterial diversity of biological soil crusts in water tracks over permafrost in the high arctic polar desert.

    Science.gov (United States)

    Steven, Blaire; Lionard, Marie; Kuske, Cheryl R; Vincent, Warwick F

    2013-01-01

    In this study we report the bacterial diversity of biological soil crusts (biocrusts) inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N). Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relative abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost.

  15. Arctic Riverine CDOM and its effects on the Polar Marine Light Field

    Energy Technology Data Exchange (ETDEWEB)

    Orandle, Zoe Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weijer, Wilbert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Elliott, Scott M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wang, Shanlin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-28

    It is well-known that CDOM (Chromophoric Dissolved Organic Matter) can have a significant effect on biological activity in the photic zones of aquatic ecosystems. However, the extent of CDOM’s interference with biological activity is not well-known. We examined this issue in great detail in the mixed surface layer of the Arctic Ocean. We studied the impacts of CDOM’s light attenuation on Arctic phytoplankton populations to discover if riverine CDOM’s presence in the Arctic ocean could inhibit and possibly prevent local phytoplankton populations from performing photosynthesis. We incorporated biogeochemistry concepts and data with oceanographic models and calculations to approach the problem. The results showed that riverine CDOM can indeed significantly impact the productivity of phytoplankton populations during the spring and summer months near the major Arctic river mouths we chose to examine. Although our study was detailed and inclusive of many variables, the issue of CDOM’s light attenuation and its effects on phytoplankton populations must be explored on a global scale to help understand if riverine CDOM could prove disastrous for phytoplankton populations.

  16. Fifteenth Arctic and Marine Oilspill Program technical seminar

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    At a seminar focusing on Arctic and marine oil spills, papers were presented on the behavior and fate of spilled oil, assessment of oil spill damage and risk, spill response initiatives, research and experimentation in oil spills, spill contingency planning, remote sensing, oil spill countermeasures, in-situ burning, bioremediation, biological effects of spills, and shoreline cleanup. Separate abstracts have been prepared for 57 papers from this seminar.

  17. Polar politics : sovereignty tussles over Arctic territory threaten to impede oil and gas exploration

    International Nuclear Information System (INIS)

    Lorenz, A.W.

    2007-01-01

    Competition to secure oil and gas leases is concerning scientists who believe that the exploitation of mineral resources in the Arctic will damage the region faster than climate change. Scientists in the region have noted that hydrogen sulphide induced by sulphur-oxidizing bacteria are now thriving within glaciers in the Arctic. Imperial Oil and ExxonMobil Canada recently purchased 205,000 hectares in the Beaufort Sea, and the purchase is seen as a harbinger of further development in the region. Disputes between Canada and the United States are now beginning to cause controversy in the region. Climatic change may mean that the region will be ice-free in 50 years. Climatic change will also result in the destabilization of permafrost and in rises in sea levels. Melting of permafrost could cause subsidence and further difficulties for exploration engineers. If Canada is not able to convince the United Nations that the Northwest Passage constitutes internal waters, the environmental impacts of Russian resource development could be profound. In addition, offshore boundaries between the Yukon and Alaska are interpreted differently by Canadians and Americans. It was suggested that discussions are needed to ensure Canada's role in the Arctic. 2 figs

  18. Application of Terrestrial Ecosystem Monitoring under the CAFF Circumpolar Biodiversity Monitoring Program: Designing and Implementing Terrestrial Monitoring to Establish the Canadian High Arctic Research Station as a Flagship Arctic Environmental Monitoring Site

    Science.gov (United States)

    McLennan, D.; Kehler, D.

    2016-12-01

    The Canadian High Arctic Research Station (CHARS) is scheduled for completion in July 2017 and is the northern science component of Polar Knowledge Canada (POLAR). A mandated goal for POLAR is to establish the adjacent Experimental and Reference Area (ERA) as an Arctic Flagship monitoring site that will track change in Arctic terrestrial, freshwater and marine ecosystems. Situated in the community of Cambridge Bay, CHARS provides the opportunity to draw on the Indigenous Knowledge of local residents to help design and conduct the monitoring, and to operate 12 months a year. Monitoring at CHARS will be linked to networks nationally and internationally, and is being designed so that change in key indicators can be understood in terms of drivers and processes, modeled and scaled up regionally, and used to predict important changes in critical indicators. As a partner in the Circumpolar Biodiversity Monitoring Program (CBMP), the monitoring design for terrestrial ecosystems follows approaches outlined by the CBMP Terrestrial Expert Monitoring Group, who have listed key monitoring questions and identified a list of important Focal Ecosystem Components (FECs). To link drivers to FECs we are proposing a multi-scaled approach: 1) an Intensive Monitoring Area to establish replicated monitoring plots that track change in snow depth and condition, active layer depth, soil temperature, soil moisture, and soil solution chemistry that are spatially and temporally linked to changes in microbiological activity, CO2/CH4 net ecosystem flux, vegetation relative frequency, species composition, growth and foliar nutrient concentration, arthropod abundance, lemming abundance and health, and shorebird/songbird abundance and productivity. 2) These intensive observations are supported by watershed scale measures that will monitor, during the growing season, lemming winter nest abundance, songbird, shorebird and waterfowl staging and nesting, and other observations; in the winter we will

  19. Surviving extreme polar winters by desiccation: clues from Arctic springtail (Onychiurus arcticus EST libraries

    Directory of Open Access Journals (Sweden)

    Kube Michael

    2007-12-01

    Full Text Available Abstract Background Ice, snow and temperatures of -14°C are conditions which most animals would find difficult, if not impossible, to survive in. However this exactly describes the Arctic winter, and the Arctic springtail Onychiurus arcticus regularly survives these extreme conditions and re-emerges in the spring. It is able to do this by reducing the amount of water in its body to almost zero: a process that is called "protective dehydration". The aim of this project was to generate clones and sequence data in the form of ESTs to provide a platform for the future molecular characterisation of the processes involved in protective dehydration. Results Five normalised libraries were produced from both desiccating and rehydrating populations of O. arcticus from stages that had previously been defined as potentially informative for molecular analyses. A total of 16,379 EST clones were generated and analysed using Blast and GO annotation. 40% of the clones produced significant matches against the Swissprot and trembl databases and these were further analysed using GO annotation. Extraction and analysis of GO annotations proved an extremely effective method for identifying generic processes associated with biochemical pathways, proving more efficient than solely analysing Blast data output. A number of genes were identified, which have previously been shown to be involved in water transport and desiccation such as members of the aquaporin family. Identification of these clones in specific libraries associated with desiccation validates the computational analysis by library rather than producing a global overview of all libraries combined. Conclusion This paper describes for the first time EST data from the arctic springtail (O. arcticus. This significantly enhances the number of Collembolan ESTs in the public databases, providing useful comparative data within this phylum. The use of GO annotation for analysis has facilitated the identification of a

  20. Polar bears exhibit genome-wide signatures of bioenergetic adaptation to life in the arctic environment.

    Science.gov (United States)

    Welch, Andreanna J; Bedoya-Reina, Oscar C; Carretero-Paulet, Lorenzo; Miller, Webb; Rode, Karyn D; Lindqvist, Charlotte

    2014-02-01

    Polar bears (Ursus maritimus) face extremely cold temperatures and periods of fasting, which might result in more severe energetic challenges than those experienced by their sister species, the brown bear (U. arctos). We have examined the mitochondrial and nuclear genomes of polar and brown bears to investigate whether polar bears demonstrate lineage-specific signals of molecular adaptation in genes associated with cellular respiration/energy production. We observed increased evolutionary rates in the mitochondrial cytochrome c oxidase I gene in polar but not brown bears. An amino acid substitution occurred near the interaction site with a nuclear-encoded subunit of the cytochrome c oxidase complex and was predicted to lead to a functional change, although the significance of this remains unclear. The nuclear genomes of brown and polar bears demonstrate different adaptations related to cellular respiration. Analyses of the genomes of brown bears exhibited substitutions that may alter the function of proteins that regulate glucose uptake, which could be beneficial when feeding on carbohydrate-dominated diets during hyperphagia, followed by fasting during hibernation. In polar bears, genes demonstrating signatures of functional divergence and those potentially under positive selection were enriched in functions related to production of nitric oxide (NO), which can regulate energy production in several different ways. This suggests that polar bears may be able to fine-tune intracellular levels of NO as an adaptive response to control trade-offs between energy production in the form of adenosine triphosphate versus generation of heat (thermogenesis).

  1. Distributions of Polycyclic Aromatic Hydrocarbons, Aromatic Ketones, Carboxylic Acids, and Trace Metals in Arctic Aerosols: Long-Range Atmospheric Transport, Photochemical Degradation/Production at Polar Sunrise.

    Science.gov (United States)

    Singh, Dharmendra Kumar; Kawamura, Kimitaka; Yanase, Ayako; Barrie, Leonard A

    2017-08-15

    The distributions, correlations, and source apportionment of aromatic acids, aromatic ketones, polycyclic aromatic hydrocarbons (PAHs), and trace metals were studied in Canadian high Arctic aerosols. Nineteen PAHs including minor sulfur-containing heterocyclic PAH (dibenzothiophene) and major 6 carcinogenic PAHs were detected with a high proportion of fluoranthene followed by benzo[k]fluoranthene, pyrene, and chrysene. However, in the sunlit period of spring, their concentrations significantly declined likely due to photochemical decomposition. During the polar sunrise from mid-March to mid-April, benzo[a]pyrene to benzo[e]pyrene ratios significantly dropped, and the ratios diminished further from late April to May onward. These results suggest that PAHs transported over the Arctic are subjected to strong photochemical degradation at polar sunrise. Although aromatic ketones decreased in spring, concentrations of some aromatic acids such as benzoic and phthalic acids increased during the course of polar sunrise, suggesting that aromatic hydrocarbons are oxidized to result in aromatic acids. However, PAHs do not act as the major source for low molecular weight (LMW) diacids such as oxalic acid that are largely formed at polar sunrise in the arctic atmosphere because PAHs are 1 to 2 orders of magnitude less abundant than LMW diacids. Correlations of trace metals with organics, their sources, and the possible role of trace transition metals are explained.

  2. The Sensitivity of Arctic Ozone Loss to Polar Stratospheric Cloud Volume and Chlorine and Bromine Loading in a Chemistry and Transport Model

    Science.gov (United States)

    Douglass, A. R.; Stolarski, R. S.; Strahan, S. E.; Polansky, B. C.

    2006-01-01

    The sensitivity of Arctic ozone loss to polar stratospheric cloud volume (V(sub PSC)) and chlorine and bromine loading is explored using chemistry and transport models (CTMs). A simulation using multi-decadal output from a general circulation model (GCM) in the Goddard Space Flight Center (GSFC) CTM complements one recycling a single year s GCM output in the Global Modeling Initiative (GMI) CTM. Winter polar ozone loss in the GSFC CTM depends on equivalent effective stratospheric chlorine (EESC) and polar vortex characteristics (temperatures, descent, isolation, polar stratospheric cloud amount). Polar ozone loss in the GMI CTM depends only on changes in EESC as the dynamics repeat annually. The GSFC CTM simulation reproduces a linear relationship between ozone loss and Vpsc derived from observations for 1992 - 2003 which holds for EESC within approx.85% of its maximum (approx.1990 - 2020). The GMI simulation shows that ozone loss varies linearly with EESC for constant, high V(sub PSC).

  3. Arctic Research and Writing: A Lasting Legacy of the International Polar Year

    Science.gov (United States)

    Englert, Karl; Coon, Brian; Hinckley, Matt; Pruis, Matt

    2009-01-01

    Recently, senior-level physics students joined thousands of scientists from over 60 nations to examine a wide range of physical, biological, and social research topics as part of the International Polar Year (IPY). Through a National Science Foundation (NSF)-funded research project, these students applied physics concepts to the study of Arctic…

  4. High-energy, high-fat lifestyle challenges an Arctic apex predator, the polar bear.

    Science.gov (United States)

    Pagano, A M; Durner, G M; Rode, K D; Atwood, T C; Atkinson, S N; Peacock, E; Costa, D P; Owen, M A; Williams, T M

    2018-02-02

    Regional declines in polar bear ( Ursus maritimus ) populations have been attributed to changing sea ice conditions, but with limited information on the causative mechanisms. By simultaneously measuring field metabolic rates, daily activity patterns, body condition, and foraging success of polar bears moving on the spring sea ice, we found that high metabolic rates (1.6 times greater than previously assumed) coupled with low intake of fat-rich marine mammal prey resulted in an energy deficit for more than half of the bears examined. Activity and movement on the sea ice strongly influenced metabolic demands. Consequently, increases in mobility resulting from ongoing and forecasted declines in and fragmentation of sea ice are likely to increase energy demands and may be an important factor explaining observed declines in body condition and survival. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. Building Transferable Knowledge and Skills through an Interdisciplinary Polar Science Graduate Program

    Science.gov (United States)

    Culler, L. E.; Virginia, R. A.; Albert, M. R.; Ayres, M.

    2015-12-01

    Modern graduate education must extend beyond disciplinary content to prepare students for diverse careers in science. At Dartmouth, a graduate program in Polar Environmental Change uses interdisciplinary study of the polar regions as a core from which students develop skills and knowledge for tackling complex environmental issues that require cooperation across scientific disciplines and with educators, policy makers, and stakeholders. Two major NSF-funded initiatives have supported professional development for graduate students in this program, including an IGERT (Integrative Graduate Education and Research Traineeship) and leadership of JSEP's (Joint Science Education Project) Arctic Science Education Week in Greenland. We teach courses that emphasize the links between science and the human dimensions of environmental change; host training sessions in science communication; invite guest speakers who work in policy, academia, journalism, government research, etc.; lead an international field-based training that includes policy-focused meetings and a large outreach component; provide multiple opportunities for outreach and collaboration with local schools; and build outreach and education into graduate research programs where students instruct and mentor high school students. Students from diverse scientific disciplines (Ecology, Earth Science, and Engineering) participate in all of the above, which significantly strengthens their interdisciplinary view of polar science and ability to communicate across disciplines. In addition, graduate students have developed awareness, confidence, and the skills to pursue and obtain diverse careers. This is reflected in the fact that recent graduates have acquired permanent and post-doctoral positions in academic and government research, full-time teaching, and also in post-docs focused on outreach and science policy. Dartmouth's interdisciplinary approach to graduate education is producing tomorrow's leaders in science.

  6. Performance and microbial community structure of a polar Arctic Circle aerobic granular sludge system operating at low temperature.

    Science.gov (United States)

    Gonzalez-Martinez, Alejandro; Muñoz-Palazon, Barbara; Maza-Márquez, Paula; Rodriguez-Sanchez, Alejandro; Gonzalez-Lopez, Jesus; Vahala, Riku

    2018-05-01

    The aim of this work was to study the performance and microbial community structure of a polar Arctic Circle aerobic granular sludge (AGS) system operating at low temperature. Thus, an AGS bioreactor was operated at 7, 5 and 3 °C of temperature using a cold-adapted sludge from Lapland. At 5 °C, it yielded acceptable conversion rates, in terms of nitrogen, phosphorous, and organic matter. However, under 3 °C a negligible nitrogen and phosphorous removal performance was observed. Below 5 °C, scanning electron microscopy studies showed a wispy, non-dense and irregular granular structure with a strong outgrowth of filamentous. Moreover, Illumina next-generation sequencing showed a heterogeneous microbial population where SM1K20 (Archaea), Trichosporon domesticum (Fungus), and Zooglea, Arcobacter and Acinetobacter (Bacteria) were the dominant phylotypes. Our study suggests that AGS technologies inoculated with North Pole sludge could be operated, in cold regions for a period longer than 3 months (winter season) under 5 °C of water temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. NSF-supported education/outreach program takes young researchers to the Arctic

    Science.gov (United States)

    Alexeev, V. A.; Walsh, J. E.; Hock, R.; Kaden, U.; Euskirchen, E. S.; Kholodov, A. L.; Bret-Harte, M. S.; Sparrow, E. B.

    2015-12-01

    Today, more than ever, an integrated cross-disciplinary approach is necessary to explain changes in the Arctic and understand their implications for the human environment. Advanced training and active involvement of early-career scientists is an important component of this cross-disciplinary approach. This effort led by the International Arctic Research Center at the University of Alaska Fairbanks (UAF) started in 2003. The newly supported project in 2013 is planning four summer schools (one per year) focused on four themes in four different Arctic locations. It provides the participants with an interdisciplinary perspective on Arctic change and its impacts on diverse sectors of the North. It is linked to other ongoing long-term observational and educational programs (e.g. NABOS, Nansen and Amundsen Basins Observational System; LTER, Long Term Environmental Research) and targets young scientists by using the interdisciplinary and place-based setting to broaden their perspective on Arctic change and to enhance their communication skills. Each course for 15-20 people consists of classroom and hands-on components and work with a multidisciplinary group of mentors on projects devoted to themes exemplified by the location. A specialist from the School of Education at UAF evaluates student's progress during the summer schools. Lessons learned during the 12 years of conducting summer schools, methods of attracting in-kind support and approaches to teaching students are prominently featured in this study. Activities during the most recent school, conducted in Fairbanks and LTER Toolik Lake Field Station in 2015 are the focus of this presentation.

  8. Comparative hepatic in vitro depletion and metabolite formation of major perfluorooctane sulfonate precursors in Arctic polar bear, beluga whale, and ringed seal.

    Science.gov (United States)

    Letcher, Robert J; Chu, Shaogang; McKinney, Melissa A; Tomy, Gregg T; Sonne, Christian; Dietz, Rune

    2014-10-01

    Perfluorooctane sulfonate (PFOS) has been reported to be among the most concentrated persistent organic pollutants in Arctic marine wildlife. The present study examined the in vitro depletion of major PFOS precursors, N-ethyl-perfluorooctane sulfonamide (N-EtFOSA) and perfluorooctane sulfonamide (FOSA), as well as metabolite formation using an assay based on enzymatically viable liver microsomes for three top Arctic marine mammalian predators, polar bear (Ursus maritimus), beluga whale (Delphinapterus leucas), and ringed seal (Pusa hispida), and in laboratory rat (Rattus rattus) serving as a general mammalian model and positive control. Rat assays showed that N-EtFOSA (38 nM or 150 ng mL(-1)) to FOSA metabolism was >90% complete after 10 min, and at a rate of 23 pmol min(-1) mg(-1) protein. Examining all species in a full 90 min incubation assay, there was >95% N-EtFOSA depletion for the rat active control and polar bear microsomes, ∼65% for ringed seals, and negligible depletion of N-EtFOSA for beluga whale. Concomitantly, the corresponding in vitro formation of FOSA from N-EtFOSA was also quantitatively rat≈polar bear>ringed seal>beluga whale. A lack of enzymatic ability and/or a rate too slow to be detected likely explains the lack of N-EtFOSA to FOSA transformation for beluga whale. In the same assays, the depletion of the FOSA metabolite was insignificant (p>0.01) and with no concomitant formation of PFOS metabolite. This suggests that, in part, a source of FOSA is the biotransformation of accumulated N-EtFOSA in free-ranging Arctic ringed seal and polar bear. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  9. The Arctic - A New Region for China's Foreign Policy

    Directory of Open Access Journals (Sweden)

    V S Yagiya

    2015-12-01

    Full Text Available Article is devoted to foreign policy of China in the Arctic. Main attention is paid to strategic view of the China concerning the Arctic, to bilateral and multilateral cooperation on the Arctic issues, also to opinion of Russian experts about discussing of Russian-China economic partnership. It was shown interests of the People's Republic of China in the Arctic: use Arctic transport system from the Pacific Rim to Europe; possibility of access to the Arctic resources; seeks of partners for the realized of Arctic projects and programs. It was pointed six directions of China cooperation in the Arctic: a scientific researches, b natural minerals, oil and gas issues, c tourism, d routes of the Arctic navigation, e use of high technologies in development of regional economy, e cooperation in the cultural and educational spheres. Authors are summarized that at the initial stage of the international cooperation in the Arctic polar scientific researches become as the tool of “he soft power”, and in the long term - the Northern Sea Route of the Russian Federation is included in the Strategy of China Economic belt and the Maritime Silk Route in the XXI century.

  10. Observation of an unusual mid-stratospheric aerosol layer in the Arctic: possible sources and implications for polar vortex dynamics

    Directory of Open Access Journals (Sweden)

    M. Gerding

    Full Text Available By the beginning of winter 2000/2001, a mysterious stratospheric aerosol layer had been detected by four different Arctic lidar stations. The aerosol layer was observed first on 16 November 2000, at an altitude of about 38 km near Søndre Strømfjord, Greenland (67° N, 51° W and on 19 November 2000, near Andenes, Norway (69°  N, 16°  E. Subsequently, in early December 2000, the aerosol layer was observed near Kiruna, Sweden (68°  N, 21°  E and Ny-Ålesund, Spitsbergen (79°  N, 12°  E. No mid-latitude lidar station observed the presence of aerosols in this altitude region. The layer persisted throughout the winter 2000/2001, at least up to 12 February 2001. In November 2000, the backscatter ratio at a wavelength of 532 nm was up to 1.1, with a FWHM of about 2.5 km. By early February 2001, the layer had sedimented from an altitude of 38 km to about 26 km. Measurements at several wavelengths by the ALOMAR and Koldewey lidars indicate the particle size was between 30 and 50 nm. Depolarisation measurements reveal that the particles in the layer are aspherical, hence solid. In the mid-stratosphere, the ambient atmospheric temperature was too high to support in situ formation or existence of cloud particles consisting of ice or an acid-water solution. Furthermore, in the year 2000 there was no volcanic eruption, which could have injected aerosols into the upper stratosphere. Therefore, other origins of the aerosol, such as meteoroid debris, condensed rocket fuel, or aerosols produced under the influence of charged solar particles, will be discussed in the paper. Trajectory calculations illustrate the path of the aerosol cloud within the polar vortex and are used to link the observations at the different lidar sites. From the descent rate of  the layer and particle sedimentation rates, the mean down-ward motion of air within the polar vortex was estimated to be about 124 m/d between 35 and 30 km, with higher values at the edge of the

  11. Observation of an unusual mid-stratospheric aerosol layer in the Arctic: possible sources and implications for polar vortex dynamics

    Directory of Open Access Journals (Sweden)

    M. Gerding

    2003-04-01

    Full Text Available By the beginning of winter 2000/2001, a mysterious stratospheric aerosol layer had been detected by four different Arctic lidar stations. The aerosol layer was observed first on 16 November 2000, at an altitude of about 38 km near Søndre Strømfjord, Greenland (67° N, 51° W and on 19 November 2000, near Andenes, Norway (69°  N, 16°  E. Subsequently, in early December 2000, the aerosol layer was observed near Kiruna, Sweden (68°  N, 21°  E and Ny-Ålesund, Spitsbergen (79°  N, 12°  E. No mid-latitude lidar station observed the presence of aerosols in this altitude region. The layer persisted throughout the winter 2000/2001, at least up to 12 February 2001. In November 2000, the backscatter ratio at a wavelength of 532 nm was up to 1.1, with a FWHM of about 2.5 km. By early February 2001, the layer had sedimented from an altitude of 38 km to about 26 km. Measurements at several wavelengths by the ALOMAR and Koldewey lidars indicate the particle size was between 30 and 50 nm. Depolarisation measurements reveal that the particles in the layer are aspherical, hence solid. In the mid-stratosphere, the ambient atmospheric temperature was too high to support in situ formation or existence of cloud particles consisting of ice or an acid-water solution. Furthermore, in the year 2000 there was no volcanic eruption, which could have injected aerosols into the upper stratosphere. Therefore, other origins of the aerosol, such as meteoroid debris, condensed rocket fuel, or aerosols produced under the influence of charged solar particles, will be discussed in the paper. Trajectory calculations illustrate the path of the aerosol cloud within the polar vortex and are used to link the observations at the different lidar sites. From the descent rate of  the layer and particle sedimentation rates, the mean down-ward motion of air within the polar vortex was estimated to be about 124 m/d between 35 and 30 km, with higher values at the edge of the

  12. Polarized proton acceleration program at the AGS and RHIC

    International Nuclear Information System (INIS)

    Lee, Y.Y.

    1995-01-01

    Presented is an overview of the program for acceleration of polarized protons in the AGS and their injection into the RHIC collider. The problem of depolarizing resonances in strong focusing circulator accelerators is discussed. The intrinsic resonances are jumped over by the fast tune jump, and a partial Siberian Snake is used to compensate for over forty imperfection resonances in the AGS. Two sets of full Siberian Snake and spin rotators will be employed in RHIC

  13. Longer ice-free seasons increase the risk of nest depredation by polar bears for colonial breeding birds in the Canadian Arctic.

    Science.gov (United States)

    Iverson, Samuel A; Gilchrist, H Grant; Smith, Paul A; Gaston, Anthony J; Forbes, Mark R

    2014-03-22

    Northern polar regions have warmed more than other parts of the globe potentially amplifying the effects of climate change on biological communities. Ice-free seasons are becoming longer in many areas, which has reduced the time available to polar bears (Ursus maritimus) to hunt for seals and hampered bears' ability to meet their energetic demands. In this study, we examined polar bears' use of an ancillary prey resource, eggs of colonial nesting birds, in relation to diminishing sea ice coverage in a low latitude region of the Canadian Arctic. Long-term monitoring reveals that bear incursions onto common eider (Somateria mollissima) and thick-billed murre (Uria lomvia) nesting colonies have increased greater than sevenfold since the 1980s and that there is an inverse correlation between ice season length and bear presence. In surveys encompassing more than 1000 km of coastline during years of record low ice coverage (2010-2012), we encountered bears or bear sign on 34% of eider colonies and estimated greater egg loss as a consequence of depredation by bears than by more customary nest predators, such as foxes and gulls. Our findings demonstrate how changes in abiotic conditions caused by climate change have altered predator-prey dynamics and are leading to cascading ecological impacts in Arctic ecosystems.

  14. Collection of Arctic Ocean Data from US Navy Submarines on the New SCICEX Program

    Science.gov (United States)

    Smethie, W. M.; Sambrotto, R.; Boyd, T.; Richter-Menge, J.; Corbett, J.

    2011-12-01

    The SCICEX submarine Arctic science program originated in the 1990s when six dedicated science cruises were conducted in the Arctic Ocean aboard US Navy Sturgeon class submarines. After the cold war era Sturgeon class submarines were retired, several Science Accommodation cruises, for which a few days for scientific measurements were added to planned submarine transits through the Arctic Ocean, were carried out when opportunities arose. Renewed interest in conducting further Science Accommodation cruises on a regular basis to better document and understand how the Arctic Ocean responds to climate change resulted in publication of a scientific plan in 2010 (http://www.arctic.gov/publications/scicex_plan.pdf). In the spring of 2011 testing of data collection and water sampling methods aboard newer Virginia and Seawolf class submarines on transit from a Navy ice camp in the Beaufort Sea, was conducted in order to develop protocols and evaluate techniques. Ice draft measurements were also taken in the vicinity of the ice camp and near the North Pole to evaluate new data collection systems. This evaluation will include a comparison of the ice draft data with a comprehensive set of in situ ice thickness measurements taken near the ice camp. Under-ice submarine-launched eXpendable Condutivity Temperature Depth (XCTD) probes were deployed from the USS Connecticut (SSN-22), a Seawolf class submarine, and the resulting profiles compared to CTD casts from the APLIS ice station and historical profiles. Water samples were collected through the hull for measurements of tritium, helium isotopes, oxygen isotopes, chlorofluorocarbons, sulfur hexafluoride, nutrients, dissolved organic carbon, bacterioplankton, phytoplankton and particulates levels. These samples were returned to Lamont-Doherty Earth Observatory and were in the process of being measured at the time this abstract was written. Measurements completed at this time indicate good samples can be collected for CFC-12

  15. The Arctic Cooperative Data and Information System: Data Management Support for the NSF Arctic Research Program (Invited)

    Science.gov (United States)

    Moore, J.; Serreze, M. C.; Middleton, D.; Ramamurthy, M. K.; Yarmey, L.

    2013-12-01

    The NSF funds the Advanced Cooperative Arctic Data and Information System (ACADIS), url: (http://www.aoncadis.org/). It serves the growing and increasingly diverse data management needs of NSF's arctic research community. The ACADIS investigator team combines experienced data managers, curators and software engineers from the NSIDC, UCAR and NCAR. ACADIS fosters scientific synthesis and discovery by providing a secure long-term data archive to NSF investigators. The system provides discovery and access to arctic related data from this and other archives. This paper updates the technical components of ACADIS, the implementation of best practices, the value of ACADIS to the community and the major challenges facing this archive for the future in handling the diverse data coming from NSF Arctic investigators. ACADIS provides sustainable data management, data stewardship services and leadership for the NSF Arctic research community through open data sharing, adherence to best practices and standards, capitalizing on appropriate evolving technologies, community support and engagement. ACADIS leverages other pertinent projects, capitalizing on appropriate emerging technologies and participating in emerging cyberinfrastructure initiatives. The key elements of ACADIS user services to the NSF Arctic community include: data and metadata upload; support for datasets with special requirements; metadata and documentation generation; interoperability and initiatives with other archives; and science support to investigators and the community. Providing a self-service data publishing platform requiring minimal curation oversight while maintaining rich metadata for discovery, access and preservation is challenging. Implementing metadata standards are a first step towards consistent content. The ACADIS Gateway and ADE offer users choices for data discovery and access with the clear objective of increasing discovery and use of all Arctic data especially for analysis activities

  16. The polar year starts in March. Arctics promises. When the North path will be opened to maritime traffic

    International Nuclear Information System (INIS)

    Lepetit, V.; Remoue, A.

    2007-01-01

    From Greenland to Alaska and from the Barents sea to the Okhotsk sea, oil companies are performing exploratory drillings looking for the North pole black gold. Far away from being an utopia, this new conquest of the great north is organizing yet. The Arctic hydrocarbon reserves may represent 10% of the world reserves. Moreover, with the increasing melting of ice sheets, the Arctic path will be opened to navigation and exploration in less than 25 years. The great north territories are shared between eight countries (USA, Canada, Denmark, Island, Norway, Sweden, Finland and Russia) and leads to disputes about the limits of territorial waters. (J.S.)

  17. Simulating Arctic clouds during Arctic Radiation- IceBridge Sea and Ice Experiment (ARISE)

    Science.gov (United States)

    Bromwich, D. H.; Hines, K. M.; Wang, S. H.

    2015-12-01

    The representation within global and regional models of the extensive low-level cloud cover over polar oceans remains a critical challenge for quantitative studies and forecasts of polar climate. In response, the polar-optimized version of the Weather Research and Forecasting model (Polar WRF) is used to simulate the meteorology, boundary layer, and Arctic clouds during the September-October 2014 Arctic Radiation- IceBridge Sea and Ice Experiment (ARISE) project. Polar WRF was developed with several adjustments to the sea ice thermodynamics in WRF. ARISE was based out of Eielson Air Force Base near Fairbanks, Alaska and included multiple instrumented C-130 aircraft flights over open water and sea ice of the Beaufort Sea. Arctic boundary layer clouds were frequently observed within cold northeasterly flow over the open ocean and ice. Preliminary results indicate these clouds were primarily liquid water, with characteristics differing between open water and sea ice surfaces. Simulated clouds are compared to ARISE observations. Furthermore, Polar WRF simulations are run for the August-September 2008 Arctic Summer Cloud Ocean Study (ASCOS) for comparison to the ARISE. Preliminary analysis shows that simulated low-level water clouds over the sea ice are too extensive during the the second half of the ASCOS field program. Alternatives and improvements to the Polar WRF cloud schemes are considered. The goal is to use the ARISE and ASCOS observations to achieve an improved polar supplement to the WRF code for open water and sea ice that can be provided to the Polar WRF community.

  18. Assessment of neurotoxic effects of mercury in beluga whales (Delphinapterus leucas), ringed seals (Pusa hispida), and polar bears (Ursus maritimus) from the Canadian Arctic.

    Science.gov (United States)

    Krey, Anke; Ostertag, Sonja K; Chan, Hing Man

    2015-03-15

    Marine mammals are indicator species of the Arctic ecosystem and an integral component of the traditional Inuit diet. The potential neurotoxic effects of increased mercury (Hg) in beluga whales (Delphinapterus leucas), ringed seals (Pusa hispida), and polar bears (Ursus maritimus) are not clear. We assessed the risk of Hg-associated neurotoxicity to these species by comparing their brain Hg concentrations with threshold concentrations for toxic endpoints detected in laboratory animals and field observations: clinical symptoms (>6.75 mg/kg wet weight (ww)), neuropathological signs (>4 mg/kg ww), neurochemical changes (>0.4 mg/kg ww), and neurobehavioral changes (>0.1mg/kg ww). The total Hg (THg) concentrations in the cerebellum and frontal lobe of ringed seals and polar bears were 3mg/kg ww. Our results suggest that brain THg levels in polar bears are below levels that induce neurobehavioral effects as reported in the literature, while THg concentrations in ringed seals are within the range that elicit neurobehavioral effects and individual ringed seals exceed the threshold for neurochemical changes. The relatively high THg concentration in beluga whales exceeds all of the neurotoxicity thresholds assessed. High brain selenium (Se):Hg molar ratios were observed in all three species, suggesting that Se could protect the animals from Hg-associated neurotoxicity. This assessment was limited by several factors that influence neurotoxic effects in animals, including: animal species; form of Hg in the brain; and interactions with modifiers of Hg-associated toxicity, such as Se. Comparing brain Hg concentrations in wildlife with concentrations of appropriate laboratory studies can be used as a tool for risk characterization of the neurotoxic effects of Hg in Arctic marine mammals. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The Arctic : the great breakup

    International Nuclear Information System (INIS)

    Lemieux, R.

    2007-01-01

    The impact that climate change has had on the famous Northwest passage in Canada's Arctic was discussed. The water channel through the Arctic Islands is now navigable during the summer and it has been predicted that in 40 years, it may be navigable throughout the entire year. Although the Arctic is still covered with snow, the icebergs which navigators have feared no longer exist. Environment Canada has cautioned that Canada's extreme north would be most at risk from global warming, with temperatures increasing by 6 degrees, or 3 times higher than in moderate zones. The joint Canadian-United States program Surface Heat Budget of the Arctic has also confirmed that the waters of the Beaufort Sea are less salty and relatively warmer. Climatologists also project that the predicted increase in snowfall will act as an insulation blanket, thereby preventing the ice from thickening. Scientists stated that the gigantic polar cap, which has been frozen for the past 3.2 million years, will have fissures everywhere by 2080. The Northwest passage will become easily accessible in less than 10 years. This article raised questions regarding the role of the Northwest passage as an international maritime route. It presented the case of the first successful passage of a U.S. commercial oil tanker in 1969 which created controversy regarding Canada's territorial waters. Fourty years later, this issue is still not resolved. The article questioned whether there should be more cooperation on both the Canadian and American sides in light of the shared common interests such as commerce, science and security. It was noted that although Canada has sovereignty of the Arctic Islands, there are eight other countries who share the Arctic. 4 figs

  20. Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors

    Directory of Open Access Journals (Sweden)

    Seongsuk Lee

    2016-12-01

    Full Text Available The spatial size and variation of Arctic sea ice play an important role in Earth’s climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP F13 Special Sensor Microwave/Imagers (SSMI and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily and monthly sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole even during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA.

  1. The Arctic Climate Modeling Program: K-12 Geoscience Professional Development for Rural Educators

    Science.gov (United States)

    Bertram, K. B.

    2009-12-01

    Helping teachers and students connect with scientists is the heart of the Arctic Climate Modeling Program (ACMP), funded from 2005-09 by the National Science Foundation’s Innovative Technology Experience for Students and Teachers. ACMP offered progressive yearlong science, technology and math (STM) professional development that prepared teachers to train youth in workforce technologies used in Arctic research. ACMP was created for the Bering Strait School District, a geographically isolated area with low standardized test scores, high dropout rates, and poverty. Scientists from around the globe have converged in this region and other areas of the Arctic to observe and measure changes in climate that are significant, accelerating, and unlike any in recorded history. Climate literacy (the ability to understand Earth system science and to make scientifically informed decisions about climate changes) has become essential for this population. Program resources were designed in collaboration with scientists to mimic the processes used to study Arctic climate. Because the Bering Strait School District serves a 98 percent Alaska Native student population, ACMP focused on best practices shown to increase the success of minority students. Significant research indicates that Alaska Native students succeed academically at higher rates when instruction addresses topics of local interest, links education to the students’ physical and cultural environment, uses local knowledge and culture in the curriculum, and incorporates hands-on, inquiry-based lessons in the classroom. A seven-partner consortium of research institutes and Alaska Native corporations created ACMP to help teachers understand their role in nurturing STM talent and motivating students to explore geoscience careers. Research underscores the importance of increasing school emphasis in content areas, such as climate, that facilitate global awareness and civic responsibility, and that foster critical thinking and

  2. The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing.

    Science.gov (United States)

    Marshall, John; Armour, Kyle C; Scott, Jeffery R; Kostov, Yavor; Hausmann, Ute; Ferreira, David; Shepherd, Theodore G; Bitz, Cecilia M

    2014-07-13

    In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around 'climate response functions' (CRFs), i.e. the response of the climate to 'step' changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate.

  3. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples

    Science.gov (United States)

    Lusher, Amy L.; Tirelli, Valentina; O’Connor, Ian; Officer, Rick

    2015-01-01

    Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment. PMID:26446348

  4. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples

    Science.gov (United States)

    Lusher, Amy L.; Tirelli, Valentina; O'Connor, Ian; Officer, Rick

    2015-10-01

    Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment.

  5. The Svalbard REU Program: Undergraduates Pursuing Arctic Climate Change Research on Svalbard, Norway

    Science.gov (United States)

    Roof, S.; Werner, A.

    2007-12-01

    The Svalbard Research Experiences for Undergraduates (REU) program sponsored by the Arctic Natural Sciences Program of the National Science Foundation has been successfully providing international field research experiences since 2004. Each year, 7-9 undergraduate students have participated in 4-5 weeks of glacial geology and climate change fieldwork on Spitsbergen in the Svalbard archipelago in the North Atlantic (76- 80° N lat.). While we continue to learn new and better ways to run our program, we have learned specific management and pedagogical strategies that allow us to streamline our logistics and to provide genuine, meaningful research opportunities to undergraduate students. We select student participants after extensive nationwide advertising and recruiting. Even before applying to the program, students understand that they will be doing meaningful climate change science, will take charge of their own project, and will be expected to continue their research at their home institution. We look for a strong commitment of support from a student's advisor at their home institution before accepting students into our program. We present clear information, including participant responsibilities, potential risks and hazards, application procedures, equipment needed, etc on our program website. The website also provides relevant research papers and data and results from previous years, so potential participants can see how their efforts will contribute to growing body of knowledge. New participants meet with the previous years' participants at a professional meeting (our "REUnion") before they start their field experience. During fieldwork, students are expected to develop research questions and test their own hypotheses while providing and responding to peer feedback. Professional assessment by an independent expert provides us with feedback that helps us improve logistical procedures and shape our educational strategies. The assessment also shows us how

  6. Proceedings of the 26. Arctic and Marine Oilspill Program (AMOP) Technical Seminar

    International Nuclear Information System (INIS)

    2003-01-01

    The papers presented at this Arctic and Marine Oilspill Program (AMOP) technical seminar reviewed the latest technologies that can be applied to the recovery and mitigation of marine oil spills. The very first seminar was held back in 1976 in response to public concerns regarding the potential for oil spills associated with offshore drilling in the Beaufort Sea in the Canadian Arctic. This twenty-sixth issue includes an appendix listing more than 1,200 AMOP papers from the first 25 years of the conference. Today, the AMOP conference has become international in nature and is the only surviving technical conference on oil spill science and technology in the world. While technical presentations about oil spills are the primary focus of the conference, many presentations also deal with other topics of interest, including contingency planning and legislation. In recent years, the conference has attracted about 200 people each year from 20 countries. The different sessions at this conference were entitled: (1) physical and chemical properties and behaviour of spilled oil, (2) activity updates and contingency planning, (3) detection, tracking and remote sensing, (4) biological effects of oil and hydrocarbons and oil biodegradation, (5) technical seminar on chemical spills with a special session on counter-terrorism, (6) technical seminar on chemical spills, (7) containment and recovery, (8) BIOSS, (9) in-situ burning and shoreline protection and cleanup, (10) oil spill treating agents, (11) spill modelling, and, (12) recent spill experiences. Several presentations described the process of oil in water interactions and were aimed at optimizing response functions, strategy development for marine oil spill response, equipment deployment, containment, recovery, and shoreline assessment. Several studies also presented new treatments for oil spills. Relevant papers and/or presentations were indexed separately for inclusion in the database

  7. Research Experience for Undergraduates: Understanding the Arctic as a System

    Science.gov (United States)

    Alexeev, V. A.; Walsh, J. E.; Arp, C. D.; Hock, R.; Euskirchen, E. S.; Kaden, U.; Polyakov, I.; Romanovsky, V. E.; Trainor, S.

    2017-12-01

    Today, more than ever, an integrated cross-disciplinary approach is necessary to understand and explain changes in the Arctic and the implications of those changes. Responding to needs in innovative research and education for understanding high-latitude rapid climate change, scientists at the International Arctic research Center of the University of Alaska Fairbanks (UAF) established a new REU (=Research Experience for Undergraduates) NSF-funded site, aiming to attract more undergraduates to arctic sciences. The science focus of this program, building upon the research strengths of UAF, is on understanding the Arctic as a system with emphasis on its physical component. The goals, which were to disseminate new knowledge at the frontiers of polar science and to ignite the enthusiasm of the undergraduates about the Arctic, are pursued by involving undergraduate students in research and educational projects with their mentors using the available diverse on-campus capabilities. IARC hosted the first group of eight students this past summer, focusing on a variety of different disciplines of the Arctic System Science. Students visited research sites around Fairbanks and in remote parts of Alaska (Toolik Lake Field Station, Gulkana glacier, Bonanza Creek, Poker Flats, the CRREL Permafrost Tunnel and others) to see and experience first-hand how the arctic science is done. Each student worked on a research project guided by an experienced instructor. The summer program culminated with a workshop that consisted of reports from the students about their experiences and the results of their projects.

  8. Polar Voices: Relaying the Science and Story of Polar Climate Change through Podcast

    Science.gov (United States)

    Moloney, M.; Quinney, A.; Murray, M. S.

    2016-12-01

    The resurgence of audio programming with the advent of podcasting in the early 2000's spawned a new medium for communicating advances in science, research, and technology. To capitalize on this informal educational outlet, the Arctic Institute of North America (AINA) partnered with the International Arctic Research Center, the University of Alaska Fairbanks, and the UA Museum of the North to develop a podcast series called PoLAR Voices for the Polar Learning and Responding (PoLAR) Climate Change Education Partnership. Now entering its third season of production, PoLAR Voices has facilitated the communication of scientific knowledge regarding the impact of climate change on the Arctic and Antarctic from the perspectives of both scientific researchers and Arctic indigenous peoples. We present a holistic program detailing both data and research related to climate change in addition to personal stories from those people and communities most affected. An evaluation of the program has been conducted by the Goodman Research Group to assess the effectiveness of the program for relaying the whole story of climate change to the public. The results of this assessment will be used to further develop the program to effectively reach larger and more diverse audiences. The series is currently available on thepolarhub.org and iTunes, and we are exploring opportunities to air the program on radio to reach as many people as possible.

  9. Arctic Observing Experiment (AOX) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Rigor, Ignatius [Applied Physics Lab, University of Washington; Johnson, Jim [Applied Physics Lab, University of Washington; Motz, Emily [National Ice Center; Bisic, Aaron [National Ice Center

    2017-06-30

    Our ability to understand and predict weather and climate requires an accurate observing network. One of the pillars of this network is the observation of the fundamental meteorological parameters: temperature, air pressure, and wind. We plan to assess our ability to measure these parameters for the polar regions during the Arctic Observing Experiment (AOX, Figure 1) to support the International Arctic Buoy Programme (IABP), Arctic Observing Network (AON), International Program for Antarctic Buoys (IPAB), and Southern Ocean Observing System (SOOS). Accurate temperature measurements are also necessary to validate and improve satellite measurements of surface temperature across the Arctic. Support for research associated with the campaign is provided by the National Science Foundation, and by other US agencies contributing to the US Interagency Arctic Buoy Program. In addition to the support provided by the U.S Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s North Slope of Alaska (NSA) site at Barrow and the National Science Foundation (NSF), the U.S. IABP is supported by the U.S. Coast Guard (USCG), the National Aeronautics and Space Administration (NASA), the National Ice Center (NIC), the National Oceanic and Atmospheric Administration (NOAA), and the Office of Naval Research (ONR).

  10. A comparison of photograph-interpreted and IfSAR-derived maps of polar bear denning habitat for the 1002 Area of the Arctic National Wildlife Refuge, Alaska

    Science.gov (United States)

    Durner, George M.; Atwood, Todd C.

    2018-05-11

    Polar bears (Ursus maritimus) in Alaska use the Arctic National Wildlife Refuge (ANWR) for maternal denning. Pregnant bears den in snow banks for more than 3 months in winter during which they give birth to and nurture young. Denning is one of the most vulnerable times in polar bear life history as the family group cannot simply walk away from a disturbance without jeopardizing survival of newly born cubs. The ANWR includes the “1002 Area”, a region recently opened for oil and gas exploration by the U.S. Department of the Interior (DOI). As a part of its mission, the DOI “… protects and manages the Nation's natural resources …” and is therefore responsible for conserving polar bears and encouraging development of energy potential. Because future industrial activities could overlap habitats used by denning polar bears, identifying these habitats can inform the decisions of resource managers tasked to develop resources and protect polar bears. To help inform these efforts, we qualitatively compared the distribution of denning habitat identified by two different methods: previously published habitat from manual interpretation of aerial photographs, and habitat derived by computer interrogation of interferometric synthetic aperture radar (IfSAR) digital terrain models (DTM). Because photograph-interpreted methods depicted denning habitat as a line and IfSAR-derived methods depicted habitat as a polygon, we assessed agreement between the two methods with distance measurements. We found that 77.5 percent of IfSAR-derived denning habitat (79.6 km2 ; 1.2 percent of the 6,837.0 km2 1002 Area) was within 600 m of photograph-interpreted habitat (3,026.9 km), including 53.9 percent within 200 m. This distribution differed from that of randomly distributed points, as only 49.4 percent of these occurred within 600 m of photograph-interpreted habitat, including 18.3 percent within 200 m. Both methods appear to identify the major physiographic features that polar bears

  11. Physiologically-based pharmacokinetic modelling of immune, reproductive and carcinogenic effects from contaminant exposure in polar bears (Ursus maritimus) across the Arctic.

    Science.gov (United States)

    Dietz, Rune; Gustavson, Kim; Sonne, Christian; Desforges, Jean-Pierre; Rigét, Frank F; Pavlova, Viola; McKinney, Melissa A; Letcher, Robert J

    2015-07-01

    Polar bears (Ursus maritimus) consume large quantities of seal blubber and other high trophic marine mammals and consequently have some of the highest tissue concentrations of organohalogen contaminants (OHCs) among Arctic biota. In the present paper we carried out a risk quotient (RQ) evaluation on OHC-exposed polar bears harvested from 1999 to 2008 and from 11 circumpolar subpopulations spanning from Alaska to Svalbard in order to evaluate the risk of OHC-mediated reproductive effects (embryotoxicity, teratogenicity), immunotoxicity and carcinogenicity (genotoxicity). This RQ evaluation was based on the Critical Body Residue (CBR) concept and a Physiologically-Based Pharmacokinetic Modelling (PBPK) approach using OHC concentrations measured in polar bear adipose or liver tissue. The range of OHC concentrations within polar bear populations were as follows for adipose, sum polychlorinated biphenyls ∑PCBs (1797-10,537 ng/g lw), sum methylsulphone-PCB ∑MeSO2-PCBs (110-672 ng/g lw), sum chlordanes ∑CHLs (765-3477 ng/g lw), α-hexachlorocyclohexane α-HCH (8.5-91.3 ng/g lw), β-hexachlorocyclohexane β-HCH (65.5-542 ng/g lw), sum chlorbenzenes ∑ClBzs (145-304 ng/g lw), dichlorodiphenyltrichloroethane ∑DDTs (31.5-206 ng/g lw), dieldrin (69-249 ng/g lw), polybrominated diphenyl ethers ∑PBDEs (4.6-78.4 ng/g lw). For liver, the perfluorooctanesulfonic acid (PFOS) concentrations ranged from 231-2792 ng/g ww. The total additive RQ from all OHCs ranged from 4.3 in Alaska to 28.6 in East Greenland bears for effects on reproduction, immune health and carcinogenicity, highlighting the important result that the toxic effect threshold (i.e. RQ>1) was exceeded for all polar bear populations assessed. PCBs were the main contributors for all three effect categories, contributing from 70.6% to 94.3% of the total risk and a RQ between 3.8-22.5. ∑MeSO2-PCBs were the second highest effect contributor for reproductive and immunological effects (0.17polar bears. We therefore

  12. An Arctic predator-prey system in flux: climate change impacts on coastal space use by polar bears and ringed seals.

    Science.gov (United States)

    Hamilton, Charmain D; Kovacs, Kit M; Ims, Rolf A; Aars, Jon; Lydersen, Christian

    2017-09-01

    Climate change is impacting different species at different rates, leading to alterations in biological interactions with ramifications for wider ecosystem functioning. Understanding these alterations can help improve predictive capacity and inform management efforts designed to mitigate against negative impacts. We investigated how the movement and space use patterns of polar bears (Ursus maritimus) in coastal areas in Svalbard, Norway, have been altered by a sudden decline in sea ice that occurred in 2006. We also investigated whether the spatial overlap between polar bears and their traditionally most important prey, ringed seals (Pusa hispida), has been affected by the sea-ice decline, as polar bears are dependent on a sea-ice platform for hunting seals. We attached biotelemetry devices to ringed seals (n = 60, both sexes) and polar bears (n = 67, all females) before (2002-2004) and after (2010-2013) a sudden decline in sea ice in Svalbard. We used linear mixed-effects models to evaluate the association of these species to environmental features and an approach based on Time Spent in Area to investigate changes in spatial overlap between the two species. Following the sea-ice reduction, polar bears spent the same amount of time close to tidal glacier fronts in the spring but less time in these areas during the summer and autumn. However, ringed seals did not alter their association with glacier fronts during summer, leading to a major decrease in spatial overlap values between these species in Svalbard's coastal areas. Polar bears now move greater distances daily and spend more time close to ground-nesting bird colonies, where bear predation can have substantial local effects. Our results indicate that sea-ice declines have impacted the degree of spatial overlap and hence the strength of the predator-prey relationship between polar bears and ringed seals, with consequences for the wider Arctic marine and terrestrial ecosystems. Shifts in ecological

  13. Health effects from long-range transported contaminants in Arctic top predators: An integrated review based on studies of polar bears and relevant model species.

    Science.gov (United States)

    Sonne, Christian

    2010-07-01

    The aim of this review is to provide a thorough overview of the health effects from the complexed biomagnified mixture of long-range transported industrial organochlorines (OCs), polybrominated diphenyl ethers (PBDEs), perfluorinated compounds (PFCs) and mercury (Hg) on polar bear (Ursus maritimus) health. Multiple scientific studies of polar bears indicate negative relationships between exposure to these contaminants and health parameters; however, these are all of a correlative nature and do not represent true cause-and-effects. Therefore, information from controlled studies of farmed Norwegian Arctic foxes (Vulpes lagopus) and housed East and West Greenland sledge dogs (Canis familiaris) were included as supportive weight of evidence in the clarification of contaminant exposure and health effects in polar bears. The review showed that hormone and vitamin concentrations, liver, kidney and thyroid gland morphology as well as reproductive and immune systems of polar bears are likely to be influenced by contaminant exposure. Furthermore, exclusively based on polar bear contaminant studies, bone density reduction and neurochemical disruption and DNA hypomethylation of the brain stem seemed to occur. The range of tissue concentration, at which these alterations were observed in polar bears, were ca. 1-70,000 ng/g lw for OCs (blood plasma concentrations of some PCB metabolites even higher), ca. 1-1000 ng/g lw for PBDEs and for PFCs and Hg 114-3052 ng/g ww and 0.1-50 microg/g ww, respectively. Similar concentrations were found in farmed foxes and housed sledge dogs while the lack of dose response designs did not allow an estimation of threshold levels for oral exposure and accumulated tissue concentrations. Nor was it possible to pinpoint a specific group of contaminants being more important than others nor analyze their interactions. For East Greenland polar bears the corresponding daily SigmaOC and SigmaPBDE oral exposure was estimated to be 35 and 0.34 microg/kg body

  14. Implications of the circumpolar genetic structure of polar bears for their conservation in a rapidly warming Arctic.

    Directory of Open Access Journals (Sweden)

    Elizabeth Peacock

    Full Text Available We provide an expansive analysis of polar bear (Ursus maritimus circumpolar genetic variation during the last two decades of decline in their sea-ice habitat. We sought to evaluate whether their genetic diversity and structure have changed over this period of habitat decline, how their current genetic patterns compare with past patterns, and how genetic demography changed with ancient fluctuations in climate. Characterizing their circumpolar genetic structure using microsatellite data, we defined four clusters that largely correspond to current ecological and oceanographic factors: Eastern Polar Basin, Western Polar Basin, Canadian Archipelago and Southern Canada. We document evidence for recent (ca. last 1-3 generations directional gene flow from Southern Canada and the Eastern Polar Basin towards the Canadian Archipelago, an area hypothesized to be a future refugium for polar bears as climate-induced habitat decline continues. Our data provide empirical evidence in support of this hypothesis. The direction of current gene flow differs from earlier patterns of gene flow in the Holocene. From analyses of mitochondrial DNA, the Canadian Archipelago cluster and the Barents Sea subpopulation within the Eastern Polar Basin cluster did not show signals of population expansion, suggesting these areas may have served also as past interglacial refugia. Mismatch analyses of mitochondrial DNA data from polar and the paraphyletic brown bear (U. arctos uncovered offset signals in timing of population expansion between the two species, that are attributed to differential demographic responses to past climate cycling. Mitogenomic structure of polar bears was shallow and developed recently, in contrast to the multiple clades of brown bears. We found no genetic signatures of recent hybridization between the species in our large, circumpolar sample, suggesting that recently observed hybrids represent localized events. Documenting changes in subpopulation

  15. Implications of the circumpolar genetic structure of polar bears for their conservation in a rapidly warming Arctic.

    Science.gov (United States)

    Peacock, Elizabeth; Sonsthagen, Sarah A; Obbard, Martyn E; Boltunov, Andrei; Regehr, Eric V; Ovsyanikov, Nikita; Aars, Jon; Atkinson, Stephen N; Sage, George K; Hope, Andrew G; Zeyl, Eve; Bachmann, Lutz; Ehrich, Dorothee; Scribner, Kim T; Amstrup, Steven C; Belikov, Stanislav; Born, Erik W; Derocher, Andrew E; Stirling, Ian; Taylor, Mitchell K; Wiig, Øystein; Paetkau, David; Talbot, Sandra L

    2015-01-01

    We provide an expansive analysis of polar bear (Ursus maritimus) circumpolar genetic variation during the last two decades of decline in their sea-ice habitat. We sought to evaluate whether their genetic diversity and structure have changed over this period of habitat decline, how their current genetic patterns compare with past patterns, and how genetic demography changed with ancient fluctuations in climate. Characterizing their circumpolar genetic structure using microsatellite data, we defined four clusters that largely correspond to current ecological and oceanographic factors: Eastern Polar Basin, Western Polar Basin, Canadian Archipelago and Southern Canada. We document evidence for recent (ca. last 1-3 generations) directional gene flow from Southern Canada and the Eastern Polar Basin towards the Canadian Archipelago, an area hypothesized to be a future refugium for polar bears as climate-induced habitat decline continues. Our data provide empirical evidence in support of this hypothesis. The direction of current gene flow differs from earlier patterns of gene flow in the Holocene. From analyses of mitochondrial DNA, the Canadian Archipelago cluster and the Barents Sea subpopulation within the Eastern Polar Basin cluster did not show signals of population expansion, suggesting these areas may have served also as past interglacial refugia. Mismatch analyses of mitochondrial DNA data from polar and the paraphyletic brown bear (U. arctos) uncovered offset signals in timing of population expansion between the two species, that are attributed to differential demographic responses to past climate cycling. Mitogenomic structure of polar bears was shallow and developed recently, in contrast to the multiple clades of brown bears. We found no genetic signatures of recent hybridization between the species in our large, circumpolar sample, suggesting that recently observed hybrids represent localized events. Documenting changes in subpopulation connectivity will allow

  16. Implications of the circumpolar genetic structure of polar bears for their conservation in a rapidly warming Arctic

    Science.gov (United States)

    Peacock, Elizabeth; Sonsthagen, Sarah A.; Obbard, Martyn E.; Boltunov, Andrei N.; Regehr, Eric V.; Ovsyanikov, Nikita; Aars, Jon; Atkinson, Stephen N.; Sage, George K.; Hope, Andrew G.; Zeyl, Eve; Bachmann, Lutz; Ehrich, Dorothee; Scribner, Kim T.; Amstrup, Steven C.; Belikov, Stanislav; Born, Erik W.; Derocher, Andrew E.; Stirling, Ian; Taylor, Mitchell K.; Wiig, Øystein; Paetkau, David; Talbot, Sandra L.

    2015-01-01

    We provide an expansive analysis of polar bear (Ursus maritimus) circumpolar genetic variation during the last two decades of decline in their sea-ice habitat. We sought to evaluate whether their genetic diversity and structure have changed over this period of habitat decline, how their current genetic patterns compare with past patterns, and how genetic demography changed with ancient fluctuations in climate. Characterizing their circumpolar genetic structure using microsatellite data, we defined four clusters that largely correspond to current ecological and oceanographic factors: Eastern Polar Basin, Western Polar Basin, Canadian Archipelago and Southern Canada. We document evidence for recent (ca. last 1–3 generations) directional gene flow from Southern Canada and the Eastern Polar Basin towards the Canadian Archipelago, an area hypothesized to be a future refugium for polar bears as climate-induced habitat decline continues. Our data provide empirical evidence in support of this hypothesis. The direction of current gene flow differs from earlier patterns of gene flow in the Holocene. From analyses of mitochondrial DNA, the Canadian Archipelago cluster and the Barents Sea subpopulation within the Eastern Polar Basin cluster did not show signals of population expansion, suggesting these areas may have served also as past interglacial refugia. Mismatch analyses of mitochondrial DNA data from polar and the paraphyletic brown bear (U. arctos) uncovered offset signals in timing of population expansion between the two species, that are attributed to differential demographic responses to past climate cycling. Mitogenomic structure of polar bears was shallow and developed recently, in contrast to the multiple clades of brown bears. We found no genetic signatures of recent hybridization between the species in our large, circumpolar sample, suggesting that recently observed hybrids represent localized events. Documenting changes in subpopulation connectivity will

  17. Building AN International Polar Data Coordination Network

    Science.gov (United States)

    Pulsifer, P. L.; Yarmey, L.; Manley, W. F.; Gaylord, A. G.; Tweedie, C. E.

    2013-12-01

    In the spirit of the World Data Center system developed to manage data resulting from the International Geophysical Year of 1957-58, the International Polar Year 2007-2009 (IPY) resulted in significant progress towards establishing an international polar data management network. However, a sustained international network is still evolving. In this paper we argue that the fundamental building blocks for such a network exist and that the time is right to move forward. We focus on the Arctic component of such a network with linkages to Antarctic network building activities. A review of an important set of Network building blocks is presented: i) the legacy of the IPY data and information service; ii) global data management services with a polar component (e.g. World Data System); iii) regional systems (e.g. Arctic Observing Viewer; iv) nationally focused programs (e.g. Arctic Observing Viewer, Advanced Cooperative Arctic Data and Information Service, Polar Data Catalogue, Inuit Knowledge Centre); v) programs focused on the local (e.g. Exchange for Local Observations and Knowledge of the Arctic, Geomatics and Cartographic Research Centre). We discuss current activities and results with respect to three priority areas needed to establish a strong and effective Network. First, a summary of network building activities reports on a series of productive meetings, including the Arctic Observing Summit and the Polar Data Forum, that have resulted in a core set of Network nodes and participants and a refined vision for the Network. Second, we recognize that interoperability for information sharing fundamentally relies on the creation and adoption of community-based data description standards and data delivery mechanisms. There is a broad range of interoperability frameworks and specifications available; however, these need to be adapted for polar community needs. Progress towards Network interoperability is reviewed, and a prototype distributed data systems is demonstrated. We

  18. Synthesizing International Understanding of Changes in the Arctic Hydrological System

    Science.gov (United States)

    Pundsack, J. W.; Vorosmarty, C. J.; Hinzman, L. D.

    2009-12-01

    There are several notable gaps in our current level of understanding of Arctic hydrological systems. At the same time, rapidly emerging data sets, technologies, and modeling resources provide us with an unprecedented opportunity to move substantially forward. The Arctic Community-Wide Hydrological Analysis and Monitoring Program (Arctic-CHAMP), funded by NSF/ARCSS, was established to initiate a major effort to improve our current monitoring of water cycle variables, and to foster collaboration with the many relevant U.S. and international arctic research initiatives. These projects, funded under ARCSS through the ‘Freshwater Integration (FWI) study’, links CHAMP, the Arctic/Subarctic Ocean Fluxes (ASOF) Programme, and SEARCH. As part of the overall synthesis and integration efforts of the NSF-ARCSS Freshwater Integration (FWI) study, the program carried-out a major International Synthesis Capstone Workshop in Fall 2009 as an International Polar Year (IPY) affiliated meeting. The workshop, "Synthesizing International Understanding of Changes in the Arctic Hydrological System,” was held 30 September to 4 October 2009 in Stockholm at the Beijer Auditorium of the Royal Swedish Academy. The workshop was sponsored by the NSF-ARCSS Arctic-CHAMP Science Management Office (City College of New York / Univ. of New Hampshire), the International Study of Arctic Change (ISAC), and the International Arctic Research Center (IARC; Univ. of Alaska Fairbanks). The overarching goals of the meeting were to stage a post-IPY lessons-learned workshop with co-equal numbers of FWI, IPY, and ICARP-II researchers, using insights from recent scientific findings, data, and strategies to afford synthesis. The workshop aimed to: (1) take stock of recent advances in our understanding of changes in the Arctic hydrological system; (2) identify key remaining research gaps / unanswered questions; and (3) gather insight on where to focus future research efforts/initiatives (nationally and

  19. Ship emissions measurement in the Arctic by plume intercepts of the Canadian Coast Guard icebreaker Amundsen from the Polar 6 aircraft platform

    Science.gov (United States)

    Aliabadi, Amir A.; Thomas, Jennie L.; Herber, Andreas B.; Staebler, Ralf M.; Leaitch, W. Richard; Schulz, Hannes; Law, Kathy S.; Marelle, Louis; Burkart, Julia; Willis, Megan D.; Bozem, Heiko; Hoor, Peter M.; Köllner, Franziska; Schneider, Johannes; Levasseur, Maurice; Abbatt, Jonathan P. D.

    2016-06-01

    Decreasing sea ice and increasing marine navigability in northern latitudes have changed Arctic ship traffic patterns in recent years and are predicted to increase annual ship traffic in the Arctic in the future. Development of effective regulations to manage environmental impacts of shipping requires an understanding of ship emissions and atmospheric processing in the Arctic environment. As part of the summer 2014 NETCARE (Network on Climate and Aerosols) campaign, the plume dispersion and gas and particle emission factors of effluents originating from the Canadian Coast Guard icebreaker Amundsen operating near Resolute Bay, NU, Canada, were investigated. The Amundsen burned distillate fuel with 1.5 wt % sulfur. Emissions were studied via plume intercepts using the Polar 6 aircraft measurements, an analytical plume dispersion model, and using the FLEXPART-WRF Lagrangian particle dispersion model. The first plume intercept by the research aircraft was carried out on 19 July 2014 during the operation of the Amundsen in the open water. The second and third plume intercepts were carried out on 20 and 21 July 2014 when the Amundsen had reached the ice edge and operated under ice-breaking conditions. Typical of Arctic marine navigation, the engine load was low compared to cruising conditions for all of the plume intercepts. The measured species included mixing ratios of CO2, NOx, CO, SO2, particle number concentration (CN), refractory black carbon (rBC), and cloud condensation nuclei (CCN). The results were compared to similar experimental studies in mid-latitudes. Plume expansion rates (γ) were calculated using the analytical model and found to be γ = 0.75 ± 0.81, 0.93 ± 0.37, and 1.19 ± 0.39 for plumes 1, 2, and 3, respectively. These rates were smaller than prior studies conducted at mid-latitudes, likely due to polar boundary layer dynamics, including reduced turbulent mixing compared to mid-latitudes. All emission factors were in agreement with prior

  20. Arctic research vessel design would expand science prospects

    Science.gov (United States)

    Elsner, Robert; Kristensen, Dirk

    The U.S. polar marine science community has long declared the need for an arctic research vessel dedicated to advancing the study of northern ice-dominated seas. Planning for such a vessel began 2 decades ago, but competition for funding has prevented construction. A new design program is underway, and it shows promise of opening up exciting possibilities for new research initiatives in arctic marine science.With its latest design, the Arctic Research Vessel (ARV) has grown to a size and capability that will make it the first U.S. academic research vessel able to provide access to the Arctic Ocean. This ship would open a vast arena for new studies in the least known of the world's seas. These studies promise to rank high in national priority because of the importance of the Arctic Ocean as a source of data relating to global climate change. Other issues that demand attention in the Arctic include its contributions to the world's heat budget, the climate history buried in its sediments, pollution monitoring, and the influence of arctic conditions on marine renewable resources.

  1. Evaluation and Improvement of Polar WRF simulations using the observed atmospheric profiles in the Arctic seasonal ice zone

    Science.gov (United States)

    Liu, Z.; Schweiger, A. J. B.

    2016-12-01

    We use the Polar Weather Research and Forecasting (WRF) model to simulate atmospheric conditions during the Seasonal Ice Zone Reconnaissance Survey (SIZRS) over the Beaufort Sea in the summer since 2013. With the 119 SIZRS dropsondes in the18 cross sections along the 150W and 140W longitude lines, we evaluate the performance of WRF simulations and two forcing data sets, the ERA-Interim reanalysis and the Global Forecast System (GFS) analysis, and explore the improvement of the Polar WRF performance when the dropsonde data are assimilated using observation nudging. Polar WRF, ERA-Interim, and GFS can reproduce the general features of the observed mean atmospheric profiles, such as low-level temperature inversion, low-level jet (LLJ) and specific humidity inversion. The Polar WRF significantly improves the mean LLJ, with a lower and stronger jet and a larger turning angle than the forcing, which is likely related to the lower values of the boundary layer diffusion in WRF than in the global models such as ECMWF and GFS. The Polar WRF simulated relative humidity closely resembles the forcing datasets while having large biases compared to observations. This suggests that the performance of Polar WRF and its forecasts in this region are limited by the quality of the forcing dataset and that the assimilation of more and better-calibrated observations, such as humidity data, is critical for their improvement. We investigate the potential of assimilating the SIZRS dropsonde dataset in improving the weather forecast over the Beaufort Sea. A simple local nudging approach is adopted. Along SIZRS flight cross sections, a set of Polar WRF simulations are performed with varying number of variables and dropsonde profiles assimilated. Different model physics are tested to examine the sensitivity of different aspects of model physics, such as boundary layer schemes, cloud microphysics, and radiation parameterization, to data assimilation. The comparison of the Polar WRF runs with

  2. Pan-Arctic observations in GRENE Arctic Climate Change Research Project and its successor

    Science.gov (United States)

    Yamanouchi, Takashi

    2016-04-01

    We started a Japanese initiative - "Arctic Climate Change Research Project" - within the framework of the Green Network of Excellence (GRENE) Program, funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT), in 2011. This Project targeted understanding and forecasting "Rapid Change of the Arctic Climate System and its Global Influences." Four strategic research targets are set by the Ministry: 1. Understanding the mechanism of warming amplification in the Arctic; 2. Understanding the Arctic climate system for global climate and future change; 3. Evaluation of the impacts of Arctic change on the weather and climate in Japan, marine ecosystems and fisheries; 4. Projection of sea ice distribution and Arctic sea routes. Through a network of universities and institutions in Japan, this 5-year Project involves more than 300 scientists from 39 institutions and universities. The National Institute of Polar Research (NIPR) works as the core institute and The Japan Agency for Marine- Earth Science and Technology (JAMSTEC) joins as the supporting institute. There are 7 bottom up research themes approved: the atmosphere, terrestrial ecosystems, cryosphere, greenhouse gases, marine ecology and fisheries, sea ice and Arctic sea routes and climate modeling, among 22 applications. The Project will realize multi-disciplinal study of the Arctic region and connect to the projection of future Arctic and global climatic change by modeling. The project has been running since the beginning of 2011 and in those 5 years pan-Arctic observations have been carried out in many locations, such as Svalbard, Russian Siberia, Alaska, Canada, Greenland and the Arctic Ocean. In particular, 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard, and intensive atmospheric observations were carried out in 2014 and 2015. In addition, the Arctic Ocean cruises by R/V "Mirai" (belonging to JAMSTEC) and other icebreakers belonging to other

  3. From the field to classrooms: Scientists and educators collaborating to develop K-12 lessons on arctic carbon cycling and climate change that align with Next Generation Science Standards, and informal outreach programs that bring authentic data to informal audiences.

    Science.gov (United States)

    Brinker, R.; Cory, R. M.

    2014-12-01

    Next Generation Science Standards (NGSS) calls for students across grade levels to understand climate change and its impacts. To achieve this goal, the NSF-sponsored PolarTREC program paired an educator with scientists studying carbon cycling in the Arctic. The data collection and fieldwork performed by the team will form the basis of hands-on science learning in the classroom and will be incorporated into informal outreach sessions in the community. Over a 16-day period, the educator was stationed at Toolik Field Station in the High Arctic. (Toolik is run by the University of Alaska, Fairbanks, Institute of Arctic Biology.) She participated in a project that analyzed the effects of sunlight and microbial content on carbon production in Artic watersheds. Data collected will be used to introduce the following NGSS standards into the middle-school science curriculum: 1) Construct a scientific explanation based on evidence. 2) Develop a model to explain cycling of water. 3) Develop and use a model to describe phenomena. 4) Analyze and interpret data. 5) A change in one system causes and effect in other systems. Lessons can be telescoped to meet the needs of classrooms in higher or lower grades. Through these activities, students will learn strategies to model an aspect of carbon cycling, interpret authentic scientific data collected in the field, and conduct geoscience research on carbon cycling. Community outreach sessions are also an effective method to introduce and discuss the importance of geoscience education. Informal discussions of firsthand experience gained during fieldwork can help communicate to a lay audience the biological, physical, and chemical aspects of the arctic carbon cycle and the impacts of climate change on these features. Outreach methods will also include novel use of online tools to directly connect audiences with scientists in an effective and time-efficient manner.

  4. Across the Arctic Teachers Experience Field Research

    Science.gov (United States)

    Warnick, W. K.; Warburton, J.; Wiggins, H. V.; Marshall, S. A.; Darby, D. A.

    2005-12-01

    From studying snow geese on the North Slope of Alaska to sediment coring aboard the U.S. Coast Guard Cutter Healy in the Arctic Ocean, K-12 teachers embark on scientific expeditions as part of a program that strives to make science in the Arctic a "virtual" reality. In the past two years, seventeen K-12 teachers have participated in Teachers and Researchers Exploring and Collaborating (TREC), a program that pairs teachers with researchers to improve science education through arctic field experiences. TREC builds on the scientific and cultural opportunities of the Arctic, linking research and education through topics that naturally engage students and the wider public. TREC includes expeditions as diverse as studying plants at Toolik Field Station, a research facility located 150 miles above the Arctic Circle; climate change studies in Norway's Svalbard archipelago; studying rivers in Siberia; or a trans-arctic expedition aboard the USCGC Healy collecting an integrated geophysical data set. Funded by the National Science Foundation Office of Polar Programs, TREC offers educators experiences in scientific inquiry while encouraging the public and students to become active participants in the scientific inquiry by engaging them virtually in arctic research. TREC uses online outreach elements to convey the research experience to a broad audience. While in remote field locations, teachers and researchers interact with students and the public through online seminars and live calls from the field, online journals with accompanying photos, and online bulletin boards. Since the program's inception in 2004, numerous visitors have posted questions or interacted with teachers, researchers, and students through the TREC website (http://www.arcus.org/trec). TREC teachers are required to transfer their experience of research and current science into their classroom through the development of relevant activities and resources. Teachers and researchers are encouraged to participate

  5. Potential for an Arctic-breeding migratory bird to adjust spring migration phenology to Arctic amplification

    NARCIS (Netherlands)

    Lameris, T.K.; Scholten, Ilse; Bauer, S.; Cobben, M.M.P.; Ens, B.J.; Nolet, B.A.

    2017-01-01

    Arctic amplification, the accelerated climate warming in the polar regions, is causing a more rapid advancement of the onset of spring in the Arctic than in temperate regions. Consequently, the arrival of many migratory birds in the Arctic is thought to become increasingly mismatched with the onset

  6. Seasonal variability in physicochemical characteristics of small water bodies across a High Arctic wetland, Polar Bear Pass, Bathurst Island, Nunavut, Canada

    Science.gov (United States)

    Abnizova, A.; Miller, E.; Shakil, S.; Young, K. L.

    2012-12-01

    Small water bodies (lakes, ponds) in permafrost environments make up roughly half of the total area of surface water, but their relevance to nutrient and carbon fluxes on a landscape scale still remains largely unknown. Small variations in pond water balance as a result of seasonal changes in precipitation, evaporation, or drainage processes have the potential to produce considerable changes in the carbon and nutrient budgets as small changes in the water level can have a major effect on volumes and surface areas of ponds. The aims of this study were (1) to identify the main characteristics in pond hydrology both seasonally and between years; (2) to identify factors controlling variation in measured physicochemical variables; and (3) to detect seasonal trends in the hydrological and chemical characteristics of ponds located in an extensive low-gradient High Arctic wetland. We conducted detailed limnological surveys of 50 wetland ponds located at Polar Bear Pass (PBP), Bathurst Island, Nunavut, Canada during 2007-2010. The results indicate large seasonal variability in physicochemical parameters that is associated with pond water budget changes, especially for ponds with steady water levels vs. dynamic ponds (fluctuating water levels). Principal component analysis (PCA) of the datasets indicated that major ion content, specifically calcium (Ca2+), was responsible for much of the variability among the ponds in both 2008 and 2009. Additionally in 2009 most of the variability was also due to specific conductivity in the summer and magnesium (Mg2+) in the fall. These trends are typically identified as a result of dilution or evapo-concentration processes in small water bodies. In 2007, a warm and dry year, pH and potassium (K+) were responsible for much of variation between ponds. This is attributed to high vegetation growth in ponds and a longer growing season. While no trend was identified in 2010 (PCA analysis), calculations of greenhouse gas (GHG) emissions from 50

  7. Disparities in Arctic Health

    Centers for Disease Control (CDC) Podcasts

    Life at the top of the globe is drastically different. Harsh climate devoid of sunlight part of the year, pockets of extreme poverty, and lack of physical infrastructure interfere with healthcare and public health services. Learn about the challenges of people in the Arctic and how research and the International Polar Year address them.

  8. Air-water exchange of anthropogenic and natural organohalogens on International Polar Year (IPY) expeditions in the Canadian Arctic.

    Science.gov (United States)

    Wong, Fiona; Jantunen, Liisa M; Pućko, Monika; Papakyriakou, Tim; Staebler, Ralf M; Stern, Gary A; Bidleman, Terry F

    2011-02-01

    Shipboard measurements of organohalogen compounds in air and surface seawater were conducted in the Canadian Arctic in 2007-2008. Study areas included the Labrador Sea, Hudson Bay, and the southern Beaufort Sea. High volume air samples were collected at deck level (6 m), while low volume samples were taken at 1 and 15 m above the water or ice surface. Water samples were taken within 7 m. Water concentration ranges (pg L(-1)) were as follows: α-hexachlorocyclohexane (α-HCH) 465-1013, γ-HCH 150-254, hexachlorobenzene (HCB) 4.0-6.4, 2,4-dibromoanisole (DBA) 8.5-38, and 2,4,6-tribromoanisole (TBA) 4.7-163. Air concentration ranges (pg m(-3)) were as follows: α-HCH 7.5-48, γ-HCH 2.1-7.7, HCB 48-71, DBA 4.8-25, and TBA 6.4 - 39. Fugacity gradients predicted net deposition of HCB in all areas, while exchange directions varied for the other chemicals by season and locations. Net evasion of α-HCH from Hudson Bay and the Beaufort Sea during open water conditions was shown by air concentrations that averaged 14% higher at 1 m than 15 m. No significant difference between the two heights was found over ice cover. The α-HCH in air over the Beaufort Sea was racemic in winter (mean enantiomer fraction, EF = 0.504 ± 0.008) and nonracemic in late spring-early summer (mean EF = 0.476 ± 0.010). This decrease in EF was accompanied by a rise in air concentrations due to volatilization of nonracemic α-HCH from surface water (EF = 0.457 ± 0.019). Fluxes of chemicals during the southern Beaufort Sea open water season (i.e., Leg 9) were estimated using the Whitman two-film model, where volatilization fluxes are positive and deposition fluxes are negative. The means ± SD (and ranges) of net fluxes (ng m(-2) d(-1)) were as follows: α-HCH 6.8 ± 3.2 (2.7-13), γ-HCH 0.76 ± 0.40 (0.26-1.4), HCB -9.6 ± 2.7 (-6.1 to -15), DBA 1.2 ± 0.69 (0.04-2.0), and TBA 0.46 ± 1.1 ng m(-2) d(-1) (-1.6 to 2.0).

  9. The Polar WRF Downscaled Historical and Projected Twenty-First Century Climate for the Coast and Foothills of Arctic Alaska

    Directory of Open Access Journals (Sweden)

    Lei Cai

    2018-01-01

    Full Text Available Climate change is most pronounced in the northern high latitude region. Yet, climate observations are unable to fully capture regional-scale dynamics due to the sparse weather station coverage, which limits our ability to make reliable climate-based assessments. A set of simulated data products was therefore developed for the North Slope of Alaska through a dynamical downscaling approach. The polar-optimized Weather Research and Forecast (Polar WRF model was forced by three sources: The ERA-interim reanalysis data (for 1979–2014, the Community Earth System Model 1.0 (CESM1.0 historical simulation (for 1950–2005, and the CESM1.0 projected (for 2006–2100 simulations in two Representative Concentration Pathways (RCP4.5 and RCP8.5 scenarios. Climatic variables were produced in a 10-km grid spacing and a 3-h interval. The ERA-interim forced WRF (ERA-WRF proves the value of dynamical downscaling, which yields more realistic topographical-induced precipitation and air temperature, as well as corrects underestimations in observed precipitation. In summary, dry and cold biases to the north of the Brooks Range are presented in ERA-WRF, while CESM forced WRF (CESM-WRF holds wet and warm biases in its historical period. A linear scaling method allowed for an adjustment of the biases, while keeping the majority of the variability and extreme values of modeled precipitation and air temperature. CESM-WRF under RCP 4.5 scenario projects smaller increase in precipitation and air temperature than observed in the historical CESM-WRF product, while the CESM-WRF under RCP 8.5 scenario shows larger changes. The fine spatial and temporal resolution, long temporal coverage, and multi-scenario projections jointly make the dataset appropriate to address a myriad of physical and biological changes occurring on the North Slope of Alaska.

  10. The polar WRF downscaled historical and projected 21st century climate for the coast and foothills of Arctic Alaska

    Science.gov (United States)

    Cai, Lei; Alexeev, Vladimir A.; Arp, Christopher D.; Jones, Benjamin M.; Liljedahl, Anna K.; Gädeke, Anne

    2018-01-01

    Climate change is most pronounced in the northern high latitude region. Yet, climate observations are unable to fully capture regional-scale dynamics due to the sparse weather station coverage, which limits our ability to make reliable climate-based assessments. A set of simulated data products was therefore developed for the North Slope of Alaska through a dynamical downscaling approach. The polar-optimized Weather Research & Forecast (Polar WRF) model was forced by three sources: The ERA-interim reanalysis data (for 1979-2014), the Community Earth System Model 1.0 (CESM1.0) historical simulation (for 1950-2005), and the CESM1.0 projected (for 2006-2100) simulations in two Representative Concentration Pathways (RCP4.5 and RCP8.5) scenarios. Climatic variables were produced in a 10-km grid spacing and a 3-hour interval. The ERA-interim forced WRF (ERA-WRF) proves the value of dynamical downscaling, which yields more realistic topographical-induced precipitation and air temperature, as well as corrects underestimations in observed precipitation. In summary, dry and cold biases to the north of the Brooks Range are presented in ERA-WRF, while CESM forced WRF (CESM-WRF) holds wet and warm biases in its historical period. A linear scaling method allowed for an adjustment of the biases, while keeping the majority of the variability and extreme values of modeled precipitation and air temperature. CESM-WRF under RCP 4.5 scenario projects smaller increase in precipitation and air temperature than observed in the historical CESM-WRF product, while the CESM-WRF under RCP8.5 scenario shows larger changes. The fine spatial and temporal resolution, long temporal coverage, and multi-scenario projections jointly make the dataset appropriate to address a myriad of physical and biological changes occurring on the North Slope of Alaska.

  11. Collaborative Research: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J. [Iowa State Univ., Ames, IA (United States)

    2017-12-28

    This project developed and applied a regional Arctic System model for enhanced decadal predictions. It built on successful research by four of the current PIs with support from the DOE Climate Change Prediction Program, which has resulted in the development of a fully coupled Regional Arctic Climate Model (RACM) consisting of atmosphere, land-hydrology, ocean and sea ice components. An expanded RACM, a Regional Arctic System Model (RASM), has been set up to include ice sheets, ice caps, mountain glaciers, and dynamic vegetation to allow investigation of coupled physical processes responsible for decadal-scale climate change and variability in the Arctic. RASM can have high spatial resolution (~4-20 times higher than currently practical in global models) to advance modeling of critical processes and determine the need for their explicit representation in Global Earth System Models (GESMs). The pan-Arctic region is a key indicator of the state of global climate through polar amplification. However, a system-level understanding of critical arctic processes and feedbacks needs further development. Rapid climate change has occurred in a number of Arctic System components during the past few decades, including retreat of the perennial sea ice cover, increased surface melting of the Greenland ice sheet, acceleration and thinning of outlet glaciers, reduced snow cover, thawing permafrost, and shifts in vegetation. Such changes could have significant ramifications for global sea level, the ocean thermohaline circulation and heat budget, ecosystems, native communities, natural resource exploration, and commercial transportation. The overarching goal of the RASM project has been to advance understanding of past and present states of arctic climate and to improve seasonal to decadal predictions. To do this the project has focused on variability and long-term change of energy and freshwater flows through the arctic climate system. The three foci of this research are: - Changes

  12. Ship emissions measurement in the Arctic by plume intercepts of the Canadian Coast Guard icebreaker Amundsen from the Polar 6 aircraft platform

    Directory of Open Access Journals (Sweden)

    A. A. Aliabadi

    2016-06-01

    Full Text Available Decreasing sea ice and increasing marine navigability in northern latitudes have changed Arctic ship traffic patterns in recent years and are predicted to increase annual ship traffic in the Arctic in the future. Development of effective regulations to manage environmental impacts of shipping requires an understanding of ship emissions and atmospheric processing in the Arctic environment. As part of the summer 2014 NETCARE (Network on Climate and Aerosols campaign, the plume dispersion and gas and particle emission factors of effluents originating from the Canadian Coast Guard icebreaker Amundsen operating near Resolute Bay, NU, Canada, were investigated. The Amundsen burned distillate fuel with 1.5 wt % sulfur. Emissions were studied via plume intercepts using the Polar 6 aircraft measurements, an analytical plume dispersion model, and using the FLEXPART-WRF Lagrangian particle dispersion model. The first plume intercept by the research aircraft was carried out on 19 July 2014 during the operation of the Amundsen in the open water. The second and third plume intercepts were carried out on 20 and 21 July 2014 when the Amundsen had reached the ice edge and operated under ice-breaking conditions. Typical of Arctic marine navigation, the engine load was low compared to cruising conditions for all of the plume intercepts. The measured species included mixing ratios of CO2, NOx, CO, SO2, particle number concentration (CN, refractory black carbon (rBC, and cloud condensation nuclei (CCN. The results were compared to similar experimental studies in mid-latitudes. Plume expansion rates (γ were calculated using the analytical model and found to be γ  =  0.75 ± 0.81, 0.93 ± 0.37, and 1.19 ± 0.39 for plumes 1, 2, and 3, respectively. These rates were smaller than prior studies conducted at mid-latitudes, likely due to polar boundary layer dynamics, including reduced turbulent mixing compared to mid-latitudes. All emission

  13. Current-use pesticides in seawater and their bioaccumulation in polar bear-ringed seal food chains of the Canadian Arctic.

    Science.gov (United States)

    Morris, Adam D; Muir, Derek C G; Solomon, Keith R; Letcher, Robert J; McKinney, Melissa A; Fisk, Aaron T; McMeans, Bailey C; Tomy, Gregg T; Teixeira, Camilla; Wang, Xiaowa; Duric, Mark

    2016-07-01

    The distribution of current-use pesticides (CUPs) in seawater and their trophodynamics were investigated in 3 Canadian Arctic marine food chains. The greatest ranges of dissolved-phase concentrations in seawater for each CUP were endosulfan sulfate (less than method detection limit (MDL) to 19 pg L(-1) ) > dacthal (0.76-15 pg L(-1) ) > chlorpyrifos (less than MDL to 8.1 pg L(-1) ) > pentachloronitrobenzene (less than MDL to 2.6 pg L(-1) ) > α-endosulfan (0.20-2.3 pg L(-1) ). Bioaccumulation factors (BAFs, water-respiring organisms) were greatest in plankton, including chlorothalonil (log BAF = 7.4 ± 7.1 L kg(-1) , mean ± standard error), chlorpyrifos (log BAF = 6.9 ± 6.7 L kg(-1) ), and α-endosulfan (log BAF = 6.5 ± 6.0 L kg(-1) ). The largest biomagnification factors (BMFs) were found for dacthal in the capelin:plankton trophic relationship (BMF = 13 ± 5.0) at Cumberland Sound (Nunvavut), and for β-endosulfan (BMF = 16 ± 4.9) and α-endosulfan (BMF = 9.3 ± 2.8) in the polar bear-ringed seal relationship at Barrow and Rae Strait (NU), respectively. Concentrations of endosulfan sulfate exhibited trophic magnification (increasing concentrations with increasing trophic level) in the poikilothermic portion of the food web (trophic magnification factor = 1.4), but all of the CUPs underwent trophic dilution in the marine mammal food web, despite some trophic level-specific biomagnification. Together, these observations are most likely indicative of metabolism of these CUPs in mammals. Environ Toxicol Chem 2016;35:1695-1707. © 2016 SETAC. © 2016 SETAC.

  14. Arctic Terrestrial Biodiversity Monitoring Plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    The Conservation of Arctic Flora and Fauna (CAFF), the biodiversity working group of the Arctic Council, established the Circumpolar Biodiversity Monitoring Program (CBMP) to address the need for coordinated and standardized monitoring of Arctic environments. The CBMP includes an international...... on developing and implementing long-term plans for monitoring the integrity of Arctic biomes: terrestrial, marine, freshwater, and coastal (under development) environments. The CBMP Terrestrial Expert Monitoring Group (CBMP-TEMG) has developed the Arctic Terrestrial Biodiversity Monitoring Plan (CBMP......-Terrestrial Plan/the Plan) as the framework for coordinated, long-term Arctic terrestrial biodiversity monitoring. The goal of the CBMP-Terrestrial Plan is to improve the collective ability of Arctic traditional knowledge (TK) holders, northern communities, and scientists to detect, understand and report on long...

  15. Arctic Climate Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ivey, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robinson, David G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boslough, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peterson, Kara J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van Bloemen Waanders, Bart G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Desilets, Darin Maurice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reinert, Rhonda Karen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This study began with a challenge from program area managers at Sandia National Laboratories to technical staff in the energy, climate, and infrastructure security areas: apply a systems-level perspective to existing science and technology program areas in order to determine technology gaps, identify new technical capabilities at Sandia that could be applied to these areas, and identify opportunities for innovation. The Arctic was selected as one of these areas for systems level analyses, and this report documents the results. In this study, an emphasis was placed on the arctic atmosphere since Sandia has been active in atmospheric research in the Arctic since 1997. This study begins with a discussion of the challenges and benefits of analyzing the Arctic as a system. It goes on to discuss current and future needs of the defense, scientific, energy, and intelligence communities for more comprehensive data products related to the Arctic; assess the current state of atmospheric measurement resources available for the Arctic; and explain how the capabilities at Sandia National Laboratories can be used to address the identified technological, data, and modeling needs of the defense, scientific, energy, and intelligence communities for Arctic support.

  16. Variability of the Arctic Basin Oceanographic Fields

    National Research Council Canada - National Science Library

    Sabinin, K

    1996-01-01

    ...." Special attention was paid to Atlantic Water in the Arctic Ocean which seems to be the main source of information in acoustic monitoring of the ocean, in the framework of the Arctic-ATOC program...

  17. Arctic Newcomers

    DEFF Research Database (Denmark)

    Tonami, Aki

    2013-01-01

    Interest in the Arctic region and its economic potential in Japan, South Korea and Singapore was slow to develop but is now rapidly growing. All three countries have in recent years accelerated their engagement with Arctic states, laying the institutional frameworks needed to better understand...... and influence policies relating to the Arctic. But each country’s approach is quite different, writes Aki Tonami....

  18. Enabling Arctic Research Through Science and Engineering Partnerships

    Science.gov (United States)

    Kendall, E. A.; Valentic, T. A.; Stehle, R. H.

    2014-12-01

    Under an Arctic Research Support and Logistics contract from NSF (GEO/PLR), SRI International, as part of the CH2M HILL Polar Services (CPS) program, forms partnerships with Arctic research teams to provide data transfer, remote operations, and safety/operations communications. This teamwork is integral to the success of real-time science results and often allows for unmanned operations which are both cost-effective and safer. The CPS program utilizes a variety of communications networks, services and technologies to support researchers and instruments throughout the Arctic, including Iridium, VSAT, Inmarsat BGAN, HughesNet, TeleGreenland, radios, and personal locator beacons. Program-wide IT and communications limitations are due to the broad categories of bandwidth, availability, and power. At these sites it is essential to conserve bandwidth and power through using efficient software, coding and scheduling techniques. There are interesting new products and services on the horizon that the program may be able to take advantage of in the future such as Iridium NEXT, Inmarsat Xpress, and Omnispace mobile satellite services. Additionally, there are engineering and computer software opportunities to develop more efficient products. We will present an overview of science/engineering partnerships formed by the CPS program, discuss current limitations and identify future technological possibilities that could further advance Arctic science goals.

  19. Promoting Diversity Through Polar Interdisciplinary Coordinated Education (Polar ICE)

    Science.gov (United States)

    McDonnell, J. D.; Hotaling, L. A.; Garza, C.; Van Dyk, P. B.; Hunter-thomson, K. I.; Middendorf, J.; Daniel, A.; Matsumoto, G. I.; Schofield, O.

    2017-12-01

    Polar Interdisciplinary Coordinated Education (ICE) is an education and outreach program designed to provide public access to the Antarctic and Arctic regions through polar data and interactions with the scientists. The program provides multi-faceted science communication training for early career scientists that consist of a face-to face workshop and opportunities to apply these skills. The key components of the scientist training workshop include cultural competency training, deconstructing/decoding science for non-expert audiences, the art of telling science stories, and networking with members of the education and outreach community and reflecting on communication skills. Scientists partner with educators to provide professional development for K-12 educators and support for student research symposia. Polar ICE has initiated a Polar Literacy initiative that provides both a grounding in big ideas in polar science and science communication training designed to underscore the importance of the Polar Regions to the public while promoting interdisciplinary collaborations between scientists and educators. Our ultimate objective is to promote STEM identity through professional development of scientists and educators while developing career awareness of STEM pathways in Polar science.

  20. Review of Arctic fox. Life at the top of the world, by Gary Hamilton

    OpenAIRE

    Ims, Rolf A.

    2009-01-01

    The Arctic fox is the only truly Arctic species among the terrestrial carnivorous mammals of the world. It is distributed across the circumpolar Arctic region. Like polar bears, Arctic foxes regularly traverse the pack ice of the polar basin, a fact that astonished Fridtjof Nansen during his attempt to reach the North Pole more than 100 years ago. However, despite its unique lifestyle, which in some respects is more fascinating than that of the polar bear, there has been no popular book (exce...

  1. Proceedings of the nineteenth arctic and marine oil spill program (AMOP) technical seminar

    International Nuclear Information System (INIS)

    1996-01-01

    The technical seminar on arctic and marine oil spills introduced issues concerning oil spills at sea, in particular the critical first few hours of an oil spill. State-of-the-art technologies which assist the response team in tracking and predicting the behavior of oil spills, were described. The physical and chemical properties of spilled oil were studied, as well as those of oil spill treating agents, including testing their biological effects. New methods to contain and recover spilled oil were reviewed. Volume 2 presented results from field experiments in which in-situ burning was performed, and demonstrated modelling techniques for the detection, prediction and tracking of oil spills. refs., tabs., figs

  2. Disparities in Arctic Health

    Centers for Disease Control (CDC) Podcasts

    2008-02-04

    Life at the top of the globe is drastically different. Harsh climate devoid of sunlight part of the year, pockets of extreme poverty, and lack of physical infrastructure interfere with healthcare and public health services. Learn about the challenges of people in the Arctic and how research and the International Polar Year address them.  Created: 2/4/2008 by Emerging Infectious Diseases.   Date Released: 2/20/2008.

  3. [A data collection program focused on hydrologic and meteorologic parameters in an Arctic ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Kane, D.

    1992-12-31

    The hydrologic cycle of an arctic watershed is dominated by such physical elements as snow, ice, permafrost, seasonally frozen soils, wide fluctuations in surface energy balance and phase change of snow and ice to water. At Imnavait basin, snow accumulation begins in September or early October and maximum snowpack water equivalent is reached just prior to the onset of ablation in mid May. No significant mid winter melt occurs in this basin. Considerable snowfall redistribution by wind to depressions and valley bottom is evident. Spring snowmelt on the North Slope of Alaska is the dominant hydrologic event of the year.This event provides most of the moisture for use by vegetation in the spring and early summer period. The mechanisms and timing of snowmelt are important factors in predicting runoff, the migrations of birds and large mammals and the diversity of plant communities. It is important globally due to the radical and abrupt change in the surface energy balance over vast areas. We were able to explore the trends and differences in the snowmelt process along a transect from the Brooks Range to the Arctic Coastal plain. Snowpack ablation was monitored at three sites. These data were analyzed along with meteorologic data at each site. The initiation of ablation was site specific being largely controlled by the complementary addition of energy from radiation and sensible heat flux. Although the research sites were only 115 km apart, the rates and mechanisms of snowmelt varied greatly. Usually, snowmelt begins at the mid-elevations in the foothills and progresses northerly toward the coast and southerly to the mountains. In the more southerly areas snowmelt progressed much faster and was more influenced by sensible heat advected from areas south of the Brooks Range. In contrast snowmelt in the more northerly areas was slower and the controlled by net radiation.

  4. Connecting Arctic Research Across Boundaries through the Arctic Research Consortium of the United States (ARCUS)

    Science.gov (United States)

    Rich, R. H.; Myers, B.; Wiggins, H. V.; Zolkos, J.

    2017-12-01

    The complexities inherent in Arctic research demand a unique focus on making connections across the boundaries of discipline, institution, sector, geography, knowledge system, and culture. Since 1988, ARCUS has been working to bridge these gaps through communication, coordination, and collaboration. Recently, we have worked with partners to create a synthesis of the Arctic system, to explore the connectivity across the Arctic research community and how to strengthen it, to enable the community to have an effective voice in research funding policy, to implement a system for Arctic research community knowledge management, to bridge between global Sea Ice Prediction Network researchers and the science needs of coastal Alaska communities through the Sea Ice for Walrus Outlook, to strengthen ties between Polar researchers and educators, and to provide essential intangible infrastructure that enables cost-effective and productive research across boundaries. Employing expertise in managing for collaboration and interdisciplinarity, ARCUS complements and enables the work of its members, who constitute the Arctic research community and its key stakeholders. As a member-driven organization, everything that ARCUS does is achieved through partnership, with strong volunteer leadership of each activity. Key organizational partners in the United States include the U.S. Arctic Research Commission, Interagency Arctic Research Policy Committee, National Academy of Sciences Polar Research Board, and the North Slope Science Initiative. Internationally, ARCUS maintains strong bilateral connections with similarly focused groups in each Arctic country (and those interested in the Arctic), as well as with multinational organizations including the International Arctic Science Committee, the Association of Polar Early Career Educators, the University of the Arctic, and the Arctic Institute of North America. Currently, ARCUS is applying the best practices of the science of team science

  5. Arctic Visiting Speakers Series (AVS)

    Science.gov (United States)

    Fox, S. E.; Griswold, J.

    2011-12-01

    The Arctic Visiting Speakers (AVS) Series funds researchers and other arctic experts to travel and share their knowledge in communities where they might not otherwise connect. Speakers cover a wide range of arctic research topics and can address a variety of audiences including K-12 students, graduate and undergraduate students, and the general public. Host applications are accepted on an on-going basis, depending on funding availability. Applications need to be submitted at least 1 month prior to the expected tour dates. Interested hosts can choose speakers from an online Speakers Bureau or invite a speaker of their choice. Preference is given to individuals and organizations to host speakers that reach a broad audience and the general public. AVS tours are encouraged to span several days, allowing ample time for interactions with faculty, students, local media, and community members. Applications for both domestic and international visits will be considered. Applications for international visits should involve participation of more than one host organization and must include either a US-based speaker or a US-based organization. This is a small but important program that educates the public about Arctic issues. There have been 27 tours since 2007 that have impacted communities across the globe including: Gatineau, Quebec Canada; St. Petersburg, Russia; Piscataway, New Jersey; Cordova, Alaska; Nuuk, Greenland; Elizabethtown, Pennsylvania; Oslo, Norway; Inari, Finland; Borgarnes, Iceland; San Francisco, California and Wolcott, Vermont to name a few. Tours have included lectures to K-12 schools, college and university students, tribal organizations, Boy Scout troops, science center and museum patrons, and the general public. There are approximately 300 attendees enjoying each AVS tour, roughly 4100 people have been reached since 2007. The expectations for each tour are extremely manageable. Hosts must submit a schedule of events and a tour summary to be posted online

  6. Arctic species resilience

    DEFF Research Database (Denmark)

    Mortensen, Lars O.; Forchhammer, Mads C.; Jeppesen, Erik

    The peak of biological activities in Arctic ecosystems is characterized by a relative short and intense period between the start of snowmelt until the onset of frost. Recent climate changes have induced larger seasonal variation in both timing of snowmelt as well as changes mean temperatures......, an extensive monitoring program has been conducted in the North Eastern Greenland National Park, the Zackenberg Basic. The objective of the program is to provide long time series of data on the natural innate oscillations and plasticity of a High Arctic ecosystem. With offset in the data provided through...

  7. ALGORITHMS AND PROGRAMS FOR STRONG GRAVITATIONAL LENSING IN KERR SPACE-TIME INCLUDING POLARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin; Maddumage, Prasad [Research Computing Center, Department of Scientific Computing, Florida State University, Tallahassee, FL 32306 (United States); Kantowski, Ronald; Dai, Xinyu; Baron, Eddie, E-mail: bchen3@fsu.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States)

    2015-05-15

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.

  8. ALGORITHMS AND PROGRAMS FOR STRONG GRAVITATIONAL LENSING IN KERR SPACE-TIME INCLUDING POLARIZATION

    International Nuclear Information System (INIS)

    Chen, Bin; Maddumage, Prasad; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie

    2015-01-01

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python

  9. Proceedings of the 29. Arctic and Marine Oilspill Program (AMOP) Technical Seminar

    International Nuclear Information System (INIS)

    2006-01-01

    This conference was a venue to exchange information on leading-edge technologies used in marine oil spill response operations. The different sessions at this conference were entitled: (1) physical and chemical properties and behaviour of spilled oil, (2) containment and recovery, (3) activity updates and contingency planning, (4) phytoremediation of inorganic and radionuclides, (5) biosolutions to site remediation, restoration and rehabilitation, (6) phytoremediation of petroleum hydrocarbons, (7) oil spill treating agents, (8) spill modelling, (9) detection, tracking and remote sensing, (10) special session on hurricanes, and (11) recent spill experiences. In addition to a poster session with papers, the conference also featured a technical seminar on chemical spills with a special session on counter-terrorism. Many presentations addressed the issue of optimizing response functions in harsh Arctic marine waters as well as strategy development for marine oil spill response and shoreline assessment. Several studies focused on oil-in-water interactions to find new mechanical, chemical and biological treatments for oil spills. All 65 presentations were indexed separately for inclusion in this database. refs., tabs., figs

  10. Proceedings of the 28. Arctic and Marine Oilspill Program (AMOP) Technical Seminar

    International Nuclear Information System (INIS)

    2005-01-01

    Leading-edge technologies used in marine oil spill response operations were described at this international conference, along with other topics of interest such as contingency planning and legislation. The different sessions at this conference were entitled: (1) physical and chemical properties and behaviour of spilled oil, (2) oil spill fingerprinting, (3) activity updates and contingency planning, (4) oil spill risk assessment, (5) in-situ burning and oil spill treating agents, (6) containment and recovery, (7) shoreline protection and cleanup, (8) detection, tracking and remote sensing, (9) spill modelling, (10) biological effects of oil and oil biodegradation, and (11) recent spill experiences. The conference also featured a technical seminar on chemical spills with a special session on counter-terrorism. Several presentations described the process of oil in water interactions and were aimed at optimizing response functions in harsh Arctic marine waters and strategy development for marine oil spill response and shoreline assessment. Several studies also presented new mechanical, chemical and biological treatments for oil spills. All 68 presentations were indexed separately for inclusion in this database. (author)

  11. Proceedings of the 30. Arctic and Marine Oilspill Program (AMOP) Technical Seminar

    International Nuclear Information System (INIS)

    2007-01-01

    This conference was a forum for technology transfer among professionals working in the field of Arctic and marine oil spills, spill assessment, cleanup and control. It was attended by researchers developing oil spill countermeasures technology as well as regulators interested in controlling and managing oil spills. The conference included a technical seminar on chemical spills (TSOCS) for those involved in preventing, managing and controlling spills of hazardous materials. Biological solutions for remediating and rehabilitating contaminated sites were also presented. The presentations on leading-edge technologies used in marine oil spill response operations were presented during different sessions of the conference entitled: (1) physical and chemical properties and behaviour of spilled oil, (2) oil spill treating agents, (3) activity updates and contingency planning, (4) biological effects of oil and hydrocarbons and oil biodegradation, (5) containment and recovery, (6) shoreline protection and cleanup/in-situ burning, (7) detection, tracking and remote sensing, and (8) spill modelling. In addition to a poster session with papers, the conference also featured a technical seminar on chemical spills with a special session on DRDC field trials. The conference featured 55 presentations, of which 36 have been catalogued separately for inclusion in this database. refs., tabs., figs

  12. Arctic Security

    DEFF Research Database (Denmark)

    Wang, Nils

    2013-01-01

    The inclusion of China, India, Japan, Singapore and Italy as permanent observers in the Arctic Council has increased the international status of this forum significantly. This chapter aims to explain the background for the increased international interest in the Arctic region through an analysis...

  13. Biological Environmental Arctic Project (BEAP) Preliminary Data (Arctic West Summer 1986 Cruise).

    Science.gov (United States)

    1986-11-01

    predictive model of bioluminescence in near-surface arctic waters . Data were collected during Arctic West Summer 1986 from USCG POLAR STAR (WAGB 10). . %. J...2 20ODISTRIBUTION AVAILABILIT "Y OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION C]UNCLASSIFIED UNLIMITED SAME AS RPT C] DTIC USERS UNCLASSIFIED David...correlates for a predictive model of bioluminescence in near-surface arctic waters . - In previous years, these measurements were conducted from the USCG

  14. Atmospheric transport of pollution to the Arctic

    International Nuclear Information System (INIS)

    Iversen, T.

    1984-01-01

    If the atmospheric processes are assumed to be nearly adiabatic, the conclusion is that the possible source areas of Arctic air pollution detected at ground level have to be situated in areas with almost the same temperature as observed in the Arctic itself. Sources south of the polar front system can only contribute to high-altitude (or upper level) Arctic pollution. The amplitude and phase of long, planetary waves are important since they determine the position of the polar front, and provide conditions for meridional transport of air at certain longitudes

  15. The Arctic Vegetation Type Change retrieved from Spaceborne Observations and its Influence on the Simulation of Permafrost Thawing

    Science.gov (United States)

    Kim, Y.; Wang, Z.

    2017-12-01

    The vegetation types change in Arctic has been studied using 10 years of MODIS land cover product (MCD12Q1). The shrub expansion is observed in Alaska and Northeast Asia, while shrub fraction decreases in North Canada and Southwest Arctic Eurasia. The total Arctic shrub fraction increases 3% in 10 years. The tundra decreases where the shrub expands, and thrives where the shrub retreats. In order to isolate the influence of the vegetation dynamic on the permafrost thawing, the Arctic terrestrial ecosystem in recent decades will be simulated using the Community Land Model (CLM) with and without the vegetation type changes. The energy and carbon exchange on the land surface will also be simulated and compared. Acknowledgement: This work was supported by the Korea Polar Research Institute (KOPRI, PN17081) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015R1C1A2A01054800).

  16. The Arctic Circle

    Science.gov (United States)

    McDonald, Siobhan

    2016-04-01

    My name is Siobhan McDonald. I am a visual artist living and working in Dublin. My studio is based in The School of Science at University College Dublin where I was Artist in Residence 2013-2015. A fascination with time and the changeable nature of landmass has led to ongoing conversations with scientists and research institutions across the interweaving disciplines of botany, biology and geology. I am developing a body of work following a recent research trip to the North Pole where I studied the disappearing landscape of the Arctic. Prompted by my experience of the Arctic shelf receding, this new work addresses issues of the instability of the earth's materiality. The work is grounded in an investigation of material processes, exploring the dynamic forces that transform matter and energy. This project combines art and science in a fascinating exploration of one of the Earth's last relatively untouched wilderness areas - the High Arctic to bring audiences on journeys to both real and artistically re-imagined Arctic spaces. CRYSTALLINE'S pivotal process is collaboration: with The European Space Agency; curator Helen Carey; palaeontologist Prof. Jenny McElwain, UCD; and with composer Irene Buckley. CRYSTALLINE explores our desire to make corporeal contact with geological phenomena in Polar Regions. From January 2016, in my collaboration with Jenny McElwain, I will focus on the study of plants and atmospheres from the Arctic regions as far back as 400 million years ago, to explore the essential 'nature' that, invisible to the eye, acts as imaginary portholes into other times. This work will be informed by my arctic tracings of sounds and images recorded in the glaciers of this disappearing frozen landscape. In doing so, the urgencies around the tipping of natural balances in this fragile region will be revealed. The final work will emerge from my forthcoming residency at the ESA in spring 2016. Here I will conduct a series of workshops in ESA Madrid to work with

  17. Public Perceptions of Arctic Change

    Science.gov (United States)

    Hamilton, L.

    2014-12-01

    What does the general US public know, or think they know, about Arctic change? Two broad nationwide surveys in 2006 and 2010 addressed this topic in general terms, before and after the International Polar Year (IPY). Since then a series of representative national or statewide surveys have carried this research farther. The new surveys employ specific questions that assess public knowledge of basic Arctic facts, along with perceptions about the possible consequences of future Arctic change. Majorities know that late-summer Arctic sea ice area has declined compared with 30 years ago, although substantial minorities -- lately increasing -- believe instead that it has now recovered to historical levels. Majorities also believe that, if the Arctic warms in the future, this will have major effects on the weather where they live. Their expectation of local impacts from far-away changes suggests a degree of global thinking. On the other hand, most respondents do poorly when asked whether melting Arctic sea ice, melting Greenland/Antarctic land ice, or melting Himalayan glaciers could have more effect on sea level. Only 30% knew or guessed the right answer to this question. Similarly, only 33% answered correctly on a simple geography quiz: whether the North Pole could best be described as ice a few feet or yards thick floating over a deep ocean, ice more than a mile thick over land, or a rocky, mountainous landscape. Close analysis of response patterns suggests that people often construct Arctic "knowledge" on items such as sea ice increase/decrease from their more general ideology or worldview, such as their belief (or doubt) that anthropogenic climate change is real. When ideology or worldviews provide no guidance, as on the North Pole or sealevel questions, the proportion of accurate answers is no better than chance. These results show at least casual public awareness and interest in Arctic change, unfortunately not well grounded in knowledge. Knowledge problems seen on

  18. Redevelopment of the Arctic Area of Russia as an Objective of Systems Research and Special-Purpose Program Management Methodological Issues

    Directory of Open Access Journals (Sweden)

    Vladimir Nikolayevich Leksin

    2015-12-01

    Full Text Available The paper substantiates the methodological foundations of implementation of the rules and regulations of the development of the Arctic region of Russia, which relies on the hypothesis interpreting such development as the biggest integrated megaproject in the history of Russia. The substantiation involves both the project-oriented approach to identify the subject-matter of the research and the systems approach to assess the key opportunities of providing the integrative structure of the megaproject in the conditions of drastic differences between the areal components of the Arctic region, and to study the internal and external factors’ impact on the character, drivers and pace of the region redevelopment. The set of consistent methodological positions concerning their policy implementation by responsible governmental agencies in the foreseeable future of the Arctic is developed. The most important position involves the identification of the objective of the public administration of the Arctic region development as a systemically organized entity of multiple coordinated actions of the federal, regional and municipal authorities, corporations and civil society institutions integrated by the unique policy target and economic, social and infrastructure links. Implementation of the public administration requires the principles of systems approach, the reasonable trade-off between centralization, decentralization and continuity of governance focused exclusively on the Arctic issues. At the same time, the integration of the projects of the region’s areal components development to insure the common targets of the Arctic’s megaproject accompanied by the reconsideration of the earlier developed programs turns into a genuinely new methodological issue. In the article, recommendations to provide such integration are introduced.

  19. PolarTREC-Teachers and Researchers Exploring and Collaborating: Innovative Science Education from the Poles to the World

    Science.gov (United States)

    Warnick, W. K.; Warburton, J.; Breen, K.; Wiggins, H. V.; Larson, A.; Behr, S.

    2006-12-01

    PolarTREC-Teachers and Researchers Exploring and Collaborating is a three-year (2007-2009) teacher professional development program celebrating the International Polar Year (IPY) that will advance polar science education by bringing K-12 educators and polar researchers together in hands-on field experiences in the Arctic and Antarctic. PolarTREC builds on the strengths of the existing TREC program in the Arctic, an NSF supported program managed by the Arctic Research Consortium of the US (ARCUS), to embrace a wide range of activities occurring at both poles during and after IPY. PolarTREC will foster the integration of research and education to produce a legacy of long-term teacher-researcher collaborations, improved teacher content knowledge through experiences in scientific inquiry, and broad public interest and engagement in polar science and IPY. PolarTREC will enable thirty-six teachers to spend two to six weeks in the Arctic or Antarctic, working closely with researchers investigating a wide range of IPY science themed topics such as sea-ice dynamics, terrestrial ecology, marine biology, atmospheric chemistry, and long-term climate change. While in the field, teachers and researchers will communicate extensively with their colleagues, communities, and hundreds of students of all ages across the globe, using a variety of tools including satellite phones, online journals, podcasts and interactive "Live from IPY" calls and web-based seminars. The online outreach elements of the project convey these experiences to a broad audience far beyond the classrooms of the PolarTREC teachers. In addition to field research experiences, PolarTREC will support teacher professional development and a sustained community of teachers, scientists, and the public through workshops, Internet seminars, an e-mail listserve, and teacher peer groups. For further information on PolarTREC, contact Wendy Warnick, ARCUS Executive Director at warnick@arcus.org or 907-474-1600 or visit www.arcus.org/trec/

  20. Arctic security in an age of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Kraska, James (ed.)

    2013-03-01

    Publisher review: This book examines Arctic defense policy and military security from the perspective of all eight Arctic states. In light of climate change and melting ice in the Arctic Ocean, Canada, Russia, Denmark (Greenland), Norway and the United States, as well as Iceland, Sweden and Finland, are grappling with an emerging Arctic security paradigm. This volume brings together the world's most seasoned Arctic political-military experts from Europe and North America to analyze how Arctic nations are adapting their security postures to accommodate increased shipping, expanding naval presence, and energy and mineral development in the polar region. The book analyzes the ascent of Russia as the first 'Arctic superpower', the growing importance of polar security for NATO and the Nordic states, and the increasing role of Canada and the United States in the region.(Author)

  1. The Arctic : the great breakup; Arctique : la grande debacle

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, R.

    2007-05-15

    The impact that climate change has had on the famous Northwest passage in Canada's Arctic was discussed. The water channel through the Arctic Islands is now navigable during the summer and it has been predicted that in 40 years, it may be navigable throughout the entire year. Although the Arctic is still covered with snow, the icebergs which navigators have feared no longer exist. Environment Canada has cautioned that Canada's extreme north would be most at risk from global warming, with temperatures increasing by 6 degrees, or 3 times higher than in moderate zones. The joint Canadian-United States program Surface Heat Budget of the Arctic has also confirmed that the waters of the Beaufort Sea are less salty and relatively warmer. Climatologists also project that the predicted increase in snowfall will act as an insulation blanket, thereby preventing the ice from thickening. Scientists stated that the gigantic polar cap, which has been frozen for the past 3.2 million years, will have fissures everywhere by 2080. The Northwest passage will become easily accessible in less than 10 years. This article raised questions regarding the role of the Northwest passage as an international maritime route. It presented the case of the first successful passage of a U.S. commercial oil tanker in 1969 which created controversy regarding Canada's territorial waters. Fourty years later, this issue is still not resolved. The article questioned whether there should be more cooperation on both the Canadian and American sides in light of the shared common interests such as commerce, science and security. It was noted that although Canada has sovereignty of the Arctic Islands, there are eight other countries who share the Arctic. 4 figs.

  2. The characteristics and experience of community food program users in arctic Canada: a case study from Iqaluit, Nunavut.

    Science.gov (United States)

    Ford, James; Lardeau, Marie-Pierre; Vanderbilt, Will

    2012-06-21

    Community food programs (CFPs), including soup kitchens and food banks, are a recent development in larger settlements in the Canadian Arctic. Our understanding of utilization of these programs is limited as food systems research has not studied the marginalised and transient populations using CFPs, constraining service planning for some of the most vulnerable community members. This paper reports on a baseline study conducted with users of CFPs in Iqaluit, Nunavut, to identify and characterize utilization and document their food security experience. Open ended interviews and a fixed-choice survey on a census (n = 94) were conducted with of users of the food bank, soup kitchen, and friendship centre over a 1 month period, along with key informant interviews. Users of CFPs are more likely to be Inuit, be unemployed, and have not completed high school compared to the general Iqaluit population, while also reporting high dependence on social assistance, low household income, and an absence of hunters in the household. The majority report using CFPs for over a year and on a regular basis. The inability of users to obtain sufficient food must be understood in the context of socio-economic transformations that have affected Inuit society over the last half century as former semi-nomadic hunting groups were resettled into permanent settlements. The resulting livelihood changes profoundly affected how food is produced, processed, distributed, and consumed, and the socio-cultural relationships surrounding such activities. Consequences have included the rising importance of material resources for food access, the weakening of social safety mechanisms through which more vulnerable community members would have traditionally been supported, and acculturative stress. Addressing these broader challenges is essential for food policy, yet CFPs also have an essential role in providing for those who would otherwise have limited food access.

  3. Climate Change and Arctic Issues in the Marine and Environmental Science Curriculum at the U.S. Coast Guard Academy

    Science.gov (United States)

    Vlietstra, L.; McConnell, M. C.; Bergondo, D. L.; Mrakovcich, K. L.; Futch, V.; Stutzman, B. S.; Fleischmann, C. M.

    2016-02-01

    As global climate change becomes more evident, demand will likely increase for experts with a detailed understanding of the scientific basis of climate change, the ocean's role in the earth-atmosphere system, and forecasted impacts, especially in Arctic regions where effects may be most pronounced. As a result, programs in marine and environmental sciences are uniquely poised to prepare graduates for the formidable challenges posed by changing climates. Here we present research evaluating the prevalence and themes of courses focusing on anthropogenic climate change in 125 Marine Science and Environmental Science undergraduate programs at 86 institutions in the United States. These results, in addition to the increasing role of the Coast Guard in the Arctic, led to the development of two new courses in the curriculum. Climate Change Science, a one-credit seminar, includes several student-centered activities supporting key learning objectives. Polar Oceanography, a three-credit course, incorporates a major outreach component to Coast Guard units and members of the scientific community. Given the importance of climate change in Arctic regions in particular, we also propose six essential "Arctic Literacy Principles" around which courses or individual lesson plans may be organized. We show how these principles are incorporated into an additional new three-credit course, Model Arctic Council, which prepares students to participate in a week-long simulation exercise of Arctic Council meetings, held in Fairbanks, Alaska. Students examine the history and mission of the Arctic Council and explore some of the issues on which the council has deliberated. Special attention is paid to priorities of the current U.S. chairmanship of the Arctic Council which include climate change impacts on, and stewardship of, the Arctic Ocean.

  4. Contamination of the Arctic by exotic air toxics

    International Nuclear Information System (INIS)

    Ford, J.; Landers, D.

    1991-01-01

    Various kinds of atmospheric pollutants are commonly known to occur in arctic environments. These include organic contaminants, pollutants associated with fossil fuel combustion, smelting, industrial development, and radionuclides. Recently, additional concern has arisen from studies suggesting that at least some atmospheric contaminants may be susceptible to poleward redistribution as a result of their physical and chemical properties. Thus, contamination of the arctic may be exacerbated by the tendency of selected contaminants produced at lower latitudes to be transported to polar regions and incorporated into high latitude food chains. Although awareness of exotic contaminants in high latitude food chains is not new, regional baseline data are needed to document the spatial extent and magnitude of this potentially serious problem. The US Arctic is little studied in this regard relative to several other circumpolar nations (e.g., Canada, Sweden); over the next year the authors will be designing a regional survey to begin remedying this information gap. A major focus of this activity will be to ensure compatibility with both ongoing international studies of arctic contamination, and the USEPA Environmental Monitoring and Assessment Program. Issues related to sampling design will be outlined and discussed

  5. Genomics of Arctic cod

    Science.gov (United States)

    Wilson, Robert E.; Sage, George K.; Sonsthagen, Sarah A.; Gravley, Megan C.; Menning, Damian; Talbot, Sandra L.

    2017-01-01

    The Arctic cod (Boreogadus saida) is an abundant marine fish that plays a vital role in the marine food web. To better understand the population genetic structure and the role of natural selection acting on the maternally-inherited mitochondrial genome (mitogenome), a molecule often associated with adaptations to temperature, we analyzed genetic data collected from 11 biparentally-inherited nuclear microsatellite DNA loci and nucleotide sequence data from from the mitochondrial DNA (mtDNA) cytochrome b (cytb) gene and, for a subset of individuals, the entire mitogenome. In addition, due to potential of species misidentification with morphologically similar Polar cod (Arctogadus glacialis), we used ddRAD-Seq data to determine the level of divergence between species and identify species-specific markers. Based on the findings presented here, Arctic cod across the Pacific Arctic (Bering, Chukchi, and Beaufort Seas) comprise a single panmictic population with high genetic diversity compared to other gadids. High genetic diversity was indicated across all 13 protein-coding genes in the mitogenome. In addition, we found moderate levels of genetic diversity in the nuclear microsatellite loci, with highest diversity found in the Chukchi Sea. Our analyses of markers from both marker classes (nuclear microsatellite fragment data and mtDNA cytb sequence data) failed to uncover a signal of microgeographic genetic structure within Arctic cod across the three regions, within the Alaskan Beaufort Sea, or between near-shore or offshore habitats. Further, data from a subset of mitogenomes revealed no genetic differentiation between Bering, Chukchi, and Beaufort seas populations for Arctic cod, Saffron cod (Eleginus gracilis), or Walleye pollock (Gadus chalcogrammus). However, we uncovered significant differences in the distribution of microsatellite alleles between the southern Chukchi and central and eastern Beaufort Sea samples of Arctic cod. Finally, using ddRAD-Seq data, we

  6. PoLAR Voices: Informing Adult Learners about the Science and Story of Climate Change in the Polar Regions Through Audio Podcast

    Science.gov (United States)

    Quinney, A.; Murray, M. S.; Gobroski, K. A.; Topp, R. M.; Pfirman, S. L.

    2015-12-01

    The resurgence of audio programming with the advent of podcasting in the early 2000s spawned a new medium for communicating advances in science, research, and technology. To capitalize on this informal educational outlet, the Arctic Institute of North America partnered with the International Arctic Research Center, the University of Alaska Fairbanks, and the UA Museum of the North to develop a podcast series called PoLAR Voices for the Polar Learning and Responding (PoLAR) Climate Change Education Partnership. PoLAR Voices is a public education initiative that uses creative storytelling and novel narrative structures to immerse the listener in an auditory depiction of climate change. The programs will feature the science and story of climate change, approaching topics from both the points of view of researchers and Arctic indigenous peoples. This approach will engage the listener in the holistic story of climate change, addressing both scientific and personal perspectives, resulting in a program that is at once educational, entertaining and accessible. Feedback is being collected at each stage of development to ensure the content and format of the program satisfies listener interests and preferences. Once complete, the series will be released on thepolarhub.org and on iTunes. Additionally, blanket distribution of the programs will be accomplished via radio broadcast in urban, rural and remote areas, and in multiple languages to increase distribution and enhance accessibility.

  7. A program for performing exact quantum dynamics calculations using cylindrical polar coordinates: A nanotube application

    Science.gov (United States)

    Skouteris, Dimitris; Gervasi, Osvaldo; Laganà, Antonio

    2009-03-01

    A program that uses the time-dependent wavepacket method to study the motion of structureless particles in a force field of quasi-cylindrical symmetry is presented here. The program utilises cylindrical polar coordinates to express the wavepacket, which is subsequently propagated using a Chebyshev expansion of the Schrödinger propagator. Time-dependent exit flux as well as energy-dependent S matrix elements can be obtained for all states of the particle (describing its angular momentum component along the nanotube axis and the excitation of the radial degree of freedom in the cylinder). The program has been used to study the motion of an H atom across a carbon nanotube. Program summaryProgram title: CYLWAVE Catalogue identifier: AECL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3673 No. of bytes in distributed program, including test data, etc.: 35 237 Distribution format: tar.gz Programming language: Fortran 77 Computer: RISC workstations Operating system: UNIX RAM: 120 MBytes Classification: 16.7, 16.10 External routines: SUNSOFT performance library (not essential) TFFT2D.F (Temperton Fast Fourier Transform), BESSJ.F (from Numerical Recipes, for the calculation of Bessel functions) (included in the distribution file). Nature of problem: Time evolution of the state of a structureless particle in a quasicylindrical potential. Solution method: Time dependent wavepacket propagation. Running time: 50000 secs. The test run supplied with the distribution takes about 10 minutes to complete.

  8. Tsunami in the Arctic

    Science.gov (United States)

    Kulikov, Evgueni; Medvedev, Igor; Ivaschenko, Alexey

    2017-04-01

    The severity of the climate and sparsely populated coastal regions are the reason why the Russian part of the Arctic Ocean belongs to the least studied areas of the World Ocean. In the same time intensive economic development of the Arctic region, specifically oil and gas industry, require studies of potential thread natural disasters that can cause environmental and technical damage of the coastal and maritime infrastructure of energy industry complex (FEC). Despite the fact that the seismic activity in the Arctic can be attributed to a moderate level, we cannot exclude the occurrence of destructive tsunami waves, directly threatening the FEC. According to the IAEA requirements, in the construction of nuclear power plants it is necessary to take into account the impact of all natural disasters with frequency more than 10-5 per year. Planned accommodation in the polar regions of the Russian floating nuclear power plants certainly requires an adequate risk assessment of the tsunami hazard in the areas of their location. Develop the concept of tsunami hazard assessment would be based on the numerical simulation of different scenarios in which reproduced the hypothetical seismic sources and generated tsunamis. The analysis of available geological, geophysical and seismological data for the period of instrumental observations (1918-2015) shows that the highest earthquake potential within the Arctic region is associated with the underwater Mid-Arctic zone of ocean bottom spreading (interplate boundary between Eurasia and North American plates) as well as with some areas of continental slope within the marginal seas. For the Arctic coast of Russia and the adjacent shelf area, the greatest tsunami danger of seismotectonic origin comes from the earthquakes occurring in the underwater Gakkel Ridge zone, the north-eastern part of the Mid-Arctic zone. In this area, one may expect earthquakes of magnitude Mw ˜ 6.5-7.0 at a rate of 10-2 per year and of magnitude Mw ˜ 7.5 at a

  9. The Arctic

    International Nuclear Information System (INIS)

    Petersen, H.; Meltofte, H.; Rysgaard, S.; Rasch, M.; Jonasson, S.; Christensen, T.R.; Friborg, T.; Soegaard, H.; Pedersen, S.A.

    2001-01-01

    Global climate change in the Arctic is a growing concern. Research has already documented pronounced changes, and models predict that increases in temperature from anthropogenic influences could be considerably higher than the global average. The impacts of climate change on Arctic ecosystems are complex and difficult to predict because of the many interactions within ecosystem, and between many concurrently changing environmental variables. Despite the global consequences of change in the Arctic climate the monitoring of basic abiotic as well as biotic parameters are not adequate to assess the impact of global climate change. The uneven geographical location of present monitoring stations in the Arctic limits the ability to understand the climate system. The impact of previous variations and potential future changes to ecosystems is not well understood and need to be addressed. At this point, there is no consensus of scientific opinion on how much of the current changes that are due to anthropogenic influences or to natural variation. Regardless of the cause, there is a need to investigate and assess current observations and their effects to the Arctic. In this chapter examples from both terrestrial and marine ecosystems from ongoing monitoring and research projects are given. (LN)

  10. Episodes of cross-polar transport in the Arctic troposphere during July 2008 as seen from models, satellite, and aircraft observations

    Directory of Open Access Journals (Sweden)

    H. Sodemann

    2011-04-01

    Full Text Available During the POLARCAT summer campaign in 2008, two episodes (2–5 July and 7–10 July 2008 occurred where low-pressure systems traveled from Siberia across the Arctic Ocean towards the North Pole. The two cyclones had extensive smoke plumes from Siberian forest fires and anthropogenic sources in East Asia embedded in their associated air masses, creating an excellent opportunity to use satellite and aircraft observations to validate the performance of atmospheric transport models in the Arctic, which is a challenging model domain due to numerical and other complications.

    Here we compare transport simulations of carbon monoxide (CO from the Lagrangian transport model FLEXPART and the Eulerian chemical transport model TOMCAT with retrievals of total column CO from the IASI passive infrared sensor onboard the MetOp-A satellite. The main aspect of the comparison is how realistic horizontal and vertical structures are represented in the model simulations. Analysis of CALIPSO lidar curtains and in situ aircraft measurements provide further independent reference points to assess how reliable the model simulations are and what the main limitations are.

    The horizontal structure of mid-latitude pollution plumes agrees well between the IASI total column CO and the model simulations. However, finer-scale structures are too quickly diffused in the Eulerian model. Applying the IASI averaging kernels to the model data is essential for a meaningful comparison. Using aircraft data as a reference suggests that the satellite data are biased high, while TOMCAT is biased low. FLEXPART fits the aircraft data rather well, but due to added background concentrations the simulation is not independent from observations. The multi-data, multi-model approach allows separating the influences of meteorological fields, model realisation, and grid type on the plume structure. In addition to the very good agreement between simulated and observed total column CO

  11. Dynamic Positioning Capability Analysis for Marine Vessels Based on A DPCap Polar Plot Program

    Science.gov (United States)

    Wang, Lei; Yang, Jian-min; Xu, Sheng-wen

    2018-03-01

    Dynamic positioning capability (DPCap) analysis is essential in the selection of thrusters, in their configuration, and during preliminary investigation of the positioning ability of a newly designed vessel dynamic positioning system. DPCap analysis can help determine the maximum environmental forces, in which the DP system can counteract in given headings. The accuracy of the DPCap analysis is determined by the precise estimation of the environmental forces as well as the effectiveness of the thrust allocation logic. This paper is dedicated to developing an effective and efficient software program for the DPCap analysis for marine vessels. Estimation of the environmental forces can be obtained by model tests, hydrodynamic computation and empirical formulas. A quadratic programming method is adopted to allocate the total thrust on every thruster of the vessel. A detailed description of the thrust allocation logic of the software program is given. The effectiveness of the new program DPCap Polar Plot (DPCPP) was validated by a DPCap analysis for a supply vessel. The present study indicates that the developed program can be used in the DPCap analysis for marine vessels. Moreover, DPCap analysis considering the thruster failure mode might give guidance to the designers of vessels whose thrusters need to be safer.

  12. Arctic bioremediation

    International Nuclear Information System (INIS)

    Lidell, B.V.; Smallbeck, D.R.; Ramert, P.C.

    1991-01-01

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. Enhancing the biological degradation of hydrocarbon (bioremediation) by adding nutrients to the spill area has been demonstrated to be an effective cleanup tool in more temperate locations. However, this technique has never been considered for restoration in the Arctic because the process of microbial degradation of hydrocarbon in this area is very slow. The short growing season and apparent lack of nutrients in the gravel pads were thought to be detrimental to using bioremediation to cleanup Arctic oil spills. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes

  13. Polar bears at risk

    Energy Technology Data Exchange (ETDEWEB)

    Norris, S.; Rosentrater, L.; Eid, P.M. [WWF International Arctic Programme, Oslo (Norway)

    2002-05-01

    Polar bears, the world's largest terrestrial carnivore, spend much of their lives on the arctic sea ice. This is where they hunt and move between feeding, denning, and resting areas. The world population, estimated at 22,000 bears, is made up of 20 relatively distinct populations varying in size from a few hundred to a few thousand animals. About 60 per cent of all polar bears are found in Canada. In general, the status of this species is stable, although there are pronounced differences between populations. Reductions in the extent and thickness of sea ice has lead the IUCN Polar Bear Specialist Group to describe climate change as one of the major threats facing polar bears today. Though the long-term effects of climate change will vary in different areas of the Arctic, impacts on the condition and reproductive success of polar bears and their prey are likely to be negative. Longer ice-free periods resulting from earlier break-up of sea ice in the spring and later formation in the fall is already impacting polar bears in the southern portions of their range. In Canada's Hudson Bay, for example, bears hunt on the ice through the winter and into early summer, after which the ice melts completely, forcing bears ashore to fast on stored fat until freeze-up in the fall. The time bears have on the ice to hunt and build up their body condition is cut short when the ice melts early. Studies from Hudson Bay show that for every week earlier that ice break-up occurs, bears will come ashore 10 kg lighter and in poorer condition. It is likely that populations of polar bears dividing their time between land and sea will be severely reduced and local extinctions may occur as greenhouse gas emissions continue to rise and sea ice melts. Expected changes in regional weather patterns will also impact polar bears. Rain in the late winter can cause maternity dens to collapse before females and cubs have departed, thus exposing occupants to the elements and to predators. Such

  14. Environmental marine geology of the Arctic Ocean

    International Nuclear Information System (INIS)

    Mudie, P.J.

    1991-01-01

    The Arctic Ocean and its ice cover are major regulators of Northern Hemisphere climate, ocean circulation and marine productivity. The Arctic is also very sensitive to changes in the global environment because sea ice magnifies small changes in temperature, and because polar regions are sinks for air pollutants. Marine geology studies are being carried out to determine the nature and rate of these environmental changes by study of modem ice and sea-bed environments, and by interpretation of geological records imprinted in the sea-floor sediments. Sea ice camps, an ice island, and polar icebreakers have been used to study both western and eastern Arctic Ocean basins. Possible early warning signals of environmental changes in the Canadian Arctic are die-back in Arctic sponge reefs, outbreaks of toxic dinoflagellates, and pesticides in the marine food chain. Eastern Arctic ice and surface waters are contaminated by freon and radioactive fallout from Chernobyl. At present, different sedimentary processes operate in the pack ice-covered Canadian polar margin than in summer open waters off Alaska and Eurasia. The geological records, however, suggest that a temperature increase of 1-4 degree C would result in summer open water throughout the Arctic, with major changes in ocean circulation and productivity of waters off Eastern North America, and more widespread transport of pollutants from eastern to western Arctic basins. More studies of longer sediment cores are needed to confirm these interpretations, but is is now clear that the Arctic Ocean has been the pacemaker of climate change during the past 1 million years

  15. Arctic bioremediation

    International Nuclear Information System (INIS)

    Liddell, B.V.; Smallbeck, D.R.; Ramert, P.C.

    1991-01-01

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes. Discussed are the results of a laboratory bioremediation study which simulated microbial degradation of hydrocarbon under arctic conditions

  16. Arctic tides from GPS on sea ice

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea ice dampens the ocean tide amplitude with the result that global tidal models which use only astronomical data perform less accurately in the polar regions. This study presents a kinematic processing o......-gauges and altimetry data. Furthermore, we prove that the geodetic reference ellipsoid WGS84, can be interpolated to the tidal defined zero level by applying geophysical corrections to the GPS data....

  17. Arctic tides from GPS on sea ice

    OpenAIRE

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    2012-01-01

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea ice dampens the ocean tide amplitude with the result that global tidal models which use only astronomical data perform less accurately in the polar regions. This study presents a kinematic processing of Global Positioning System (GPS) buoys placed on sea-ice at five different sites north of Greenland for the study of sea level height and tidal analysis to improve tidal models in the Central Arctic....

  18. The 2008 Circum-Arctic Resource Appraisal

    Science.gov (United States)

    Moore, Thomas E.; Gautier, Donald L.

    2017-11-15

    Professional Paper 1824 comprises 30 chapters by various U.S. Geological Survey authors, including introduction and methodology chapters, which together provide documentation of the geological basis and methodology of the 2008 Circum-Arctic Resource Appraisal, results of which were first released in August 2008.  Twenty-eight chapters summarize the petroleum geology and resource potential of individual, geologically defined provinces north of the Arctic Circle, including those of northern Alaska, northern Canada, east and west Greenland, and most of Arctic Russia, as well as certain offshore areas of the north Atlantic Basin and the Polar Sea. Appendixes tabulate the input and output information used during the assessment.

  19. Polar gravity fields from GOCE and airborne gravity

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Yidiz, Hasan

    2011-01-01

    Airborne gravity, together with high-quality surface data and ocean satellite altimetric gravity, may supplement GOCE to make consistent, accurate high resolution global gravity field models. In the polar regions, the special challenge of the GOCE polar gap make the error characteristics...... of combination models especially sensitive to the correct merging of satellite and surface data. We outline comparisons of GOCE to recent airborne gravity surveys in both the Arctic and the Antarctic. The comparison is done to new 8-month GOCE solutions, as well as to a collocation prediction from GOCE gradients...... in Antarctica. It is shown how the enhanced gravity field solutions improve the determination of ocean dynamic topography in both the Arctic and in across the Drake Passage. For the interior of Antarctica, major airborne gravity programs are currently being carried out, and there is an urgent need...

  20. Final Technical Report for Project 'Improving the Simulation of Arctic Clouds in CCSM3 (SGER Award)'

    International Nuclear Information System (INIS)

    Vavrus, Stephen J.

    2008-01-01

    climate model. J. Climate, 21, 5673-5687.). The article also provides a novel synthesis of surface- and satellite-based Arctic cloud observations that show how much the new freezedry parameterization improves the simulated cloud amount in high latitudes (Fig. 3). Freezedry has been incorporated into the CCSM3.5 version, in which it successfully limits the excessive polar clouds, and may be used in CCSM4. Material from this work is also appearing in a synthesis article on future Arctic cloud changes (Vavrus, D. Waliser, J. Francis, and A. Schweiger, 'Simulations of 20th and 21st century Arctic cloud amount in the global climate models assessed in the IPCC AR4', accepted in Climate Dynamics) and was used in a collaborative paper on Arctic cloud-sea ice coupling (Schweiger, A., R. Lindsay, S. Vavrus, and J. Francis, 2008: Relationships between Arctic sea ice and clouds during autumn. J. Climate, 21, 4799-4810.). This research was presented at the 2007 CCSM Annual Workshop, as well as the CCSM's 2007 Atmospheric Model Working Group and Polar Working Group Meetings. The findings were also shown at the 2007 Climate Change Prediction Program's Science Team Meeting. In addition, I served as an instructor at the International Arctic Research Center's (IARC) Summer School on Arctic Climate Modeling in Fairbanks this summer, where I presented on the challenges and techniques used in simulating polar clouds. I also contributed to the development of a new Arctic System Model by attending a workshop in Colorado this summer on this fledgling project. Finally, an outreach activity for the general public has been the development of an interactive web site ( ) that displays Arctic cloud amount in the CMIP3 climate model archive under present and future scenarios. This site allows users to make polar and global maps of a variety of climate variables to investigate the individual and ensemble-mean GCM response to greenhouse warming and the extent to which models adequately represent Arctic

  1. The Arctic Coastal Erosion Problem

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Matthew Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Craig A. [Integral Consulting Inc., San Francisco, CA (United States); Roberts, Jesse D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    Permafrost-dominated coastlines in the Arctic are rapidly disappearing. Arctic coastal erosion rates in the United States have doubled since the middle of the twentieth century and appear to be accelerating. Positive erosion trends have been observed for highly-variable geomorphic conditions across the entire Arctic, suggesting a major (human-timescale) shift in coastal landscape evolution. Unfortunately, irreversible coastal land loss in this region poses a threat to native, industrial, scientific, and military communities. The Arctic coastline is vast, spanning more than 100,000 km across eight nations, ten percent of which is overseen by the United States. Much of area is inaccessible by all-season roads. People and infrastructure, therefore, are commonly located near the coast. The impact of the Arctic coastal erosion problem is widespread. Homes are being lost. Residents are being dispersed and their villages relocated. Shoreline fuel storage and delivery systems are at greater risk. The U.S. Department of Energy (DOE) and Sandia National Laboratories (SNL) operate research facilities along some of the most rapidly eroding sections of coast in the world. The U.S. Department of Defense (DOD) is struggling to fortify coastal radar sites, operated to ensure national sovereignty in the air, against the erosion problem. Rapid alterations to the Arctic coastline are facilitated by oceanographic and geomorphic perturbations associated with climate change. Sea ice extent is declining, sea level is rising, sea water temperature is increasing, and permafrost state is changing. The polar orientation of the Arctic exacerbates the magnitude and rate of the environmental forcings that facilitate coastal land area loss. The fundamental mechanics of these processes are understood; their non-linear combination poses an extreme hazard. Tools to accurately predict Arctic coastal erosion do not exist. To obtain an accurate predictive model, a coupling of the influences of

  2. Variation in the response of an Arctic top predator experiencing habitat loss: feeding and reproductive ecology of two polar bear populations.

    Science.gov (United States)

    Rode, Karyn D; Regehr, Eric V; Douglas, David C; Durner, George; Derocher, Andrew E; Thiemann, Gregory W; Budge, Suzanne M

    2014-01-01

    Polar bears (Ursus maritimus) have experienced substantial changes in the seasonal availability of sea ice habitat in parts of their range, including the Beaufort, Chukchi, and Bering Seas. In this study, we compared the body size, condition, and recruitment of polar bears captured in the Chukchi and Bering Seas (CS) between two periods (1986-1994 and 2008-2011) when declines in sea ice habitat occurred. In addition, we compared metrics for the CS population 2008-2011 with those of the adjacent southern Beaufort Sea (SB) population where loss in sea ice habitat has been associated with declines in body condition, size, recruitment, and survival. We evaluated how variation in body condition and recruitment were related to feeding ecology. Comparing habitat conditions between populations, there were twice as many reduced ice days over continental shelf waters per year during 2008-2011 in the SB than in the CS. CS polar bears were larger and in better condition, and appeared to have higher reproduction than SB bears. Although SB and CS bears had similar diets, twice as many bears were fasting in spring in the SB than in the CS. Between 1986-1994 and 2008-2011, body size, condition, and recruitment indices in the CS were not reduced despite a 44-day increase in the number of reduced ice days. Bears in the CS exhibited large body size, good body condition, and high indices of recruitment compared to most other populations measured to date. Higher biological productivity and prey availability in the CS relative to the SB, and a shorter recent history of reduced sea ice habitat, may explain the maintenance of condition and recruitment of CS bears. Geographic differences in the response of polar bears to climate change are relevant to range-wide forecasts for this and other ice-dependent species. © 2013 John Wiley & Sons Ltd.

  3. Variation in the response of an Arctic top predator experiencing habitat loss: Feeding and reproductive ecology of two polar bear populations

    Science.gov (United States)

    Rode, Karyn D.; Regehr, Eric V.; Douglas, David C.; Durner, George M.; Derocher, Andrew E.; Thiemann, Gregory W.; Budge, Suzanne M.

    2014-01-01

    Polar bears (Ursus maritimus) have experienced substantial changes in the seasonal availability of sea ice habitat in parts of their range, including the Beaufort, Chukchi, and Bering Seas. In this study, we compared the body size, condition, and recruitment of polar bears captured in the Chukchi and Bering Seas (CS) between two periods (1986–1994 and 2008–2011) when declines in sea ice habitat occurred. In addition, we compared metrics for the CS population 2008–2011 with those of the adjacent southern Beaufort Sea (SB) population where loss in sea ice habitat has been associated with declines in body condition, size, recruitment, and survival. We evaluated how variation in body condition and recruitment were related to feeding ecology. Comparing habitat conditions between populations, there were twice as many reduced ice days over continental shelf waters per year during 2008–2011 in the SB than in the CS. CS polar bears were larger and in better condition, and appeared to have higher reproduction than SB bears. Although SB and CS bears had similar diets, twice as many bears were fasting in spring in the SB than in the CS. Between 1986–1994 and 2008–2011, body size, condition, and recruitment indices in the CS were not reduced despite a 44-day increase in the number of reduced ice days. Bears in the CS exhibited large body size, good body condition, and high indices of recruitment compared to most other populations measured to date. Higher biological productivity and prey availability in the CS relative to the SB, and a shorter recent history of reduced sea ice habitat, may explain the maintenance of condition and recruitment of CS bears. Geographic differences in the response of polar bears to climate change are relevant to range-wide forecasts for this and other ice-dependent species.

  4. Stratospheric warmings - The quasi-biennial oscillation Ozone Hole in the Antarctic but not the Arctic - Correlations between the Solar Cycle, Polar Temperatures, and an Equatorial Oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, Ulf-Peter

    2010-05-15

    This report is a tutorial and overview over some of the complex dynamic phenomena in the polar and equatorial stratosphere, and the unexpected correlation that exists between these and the solar cycle. Sudden stratospheric warmings (stratwarms) occur in the polar stratosphere in winter, but not equally distributed between the two hemispheres. As a result, the ozone hole in the springtime polar stratosphere is much more severe in the Southern Hemisphere than in the Northern Hemisphere. The Quasi-Biennial Oscillation (QBO) is a dynamic phenomenon of the equatorial stratosphere. Through processes not fully understood, the phase of the QBO (easterly or westerly) influences the onset of stratwarms. In addition, a correlation between the stratospheric winter temperature over the poles and the solar cycle has been found, but only if the datapoints are ordered by the phase of the QBO. - The best explanations and figures from four recent textbooks are selected, and abstracts of most relevant publications from the six last years are collected, with the most relevant portions for these subjects highlighted. - In addition to being basic science, the understanding of these phenomena is important in the context of the ozone hole, the greenhouse effect, as well as anthropogenic and natural climate change. (author)

  5. Airborne contaminants in the Arctic: What we need to know

    International Nuclear Information System (INIS)

    Landers, D.H.; Bangay, G.; Sisula, H.; Colborn, T.; Liljelund, L.E.

    1994-01-01

    Arctic contaminant research is expensive and current international resources are restricted. It is incumbent upon current and future arctic research programs to focus efforts where the greatest and most relevant information can be gained. This paper is an attempt to help guide future work to focus on the most pressing information needs. Several summary points are related to environmental research in the Arctic; some may also relate to environmental research outside the Arctic

  6. Bringing Experience from the Field into the Classroom with the NOAA Teacher at Sea and PolarTREC Teacher Research Experience Programs

    Science.gov (United States)

    Eubanks, E. D.; Kohin, S.; Oberbauer, S.

    2008-12-01

    As a participant of the National Oceanic and Atmospheric Administration (NOAA), Teacher at Sea (2007) and the Arctic Research Consortium of the U.S., PolarTREC (2008) programs, I have had the opportunity to participate in hands-on research with leading scientific researchers from the tropics to the Arctic. These Teacher Researcher Experiences (TRE's) and the resulting relationships that have developed with the scientific community have been an asset to my professional development and have greatly enhanced my students' learning. The opportunity to participate in data collection and hands-on research with a NOAA researcher, Dr. Kohin, helped me bring shark, ocean, and ship science from my expedition onboard the NOAA Ship David Starr Jordan in the Channel Island region into my classroom. The new knowledge, experiences, and resources that I brought back allowed me to create lesson plans and host Shark Month--an activity that involved all 300 students in my school. My students were able to link real data regarding the location of sharks to practical application and still meet state standards. Likewise, the scientist from my PolarTREC expedition, Dr. Oberbauer, is assisting me in a long-term plan to incorporate his data into my classroom curricula. Already, my experiences from Barrow, Alaska, have been shared through webinars with my community and as a keynote speaker to over 600 Palm Beach County science teachers. We are also working together to develop a yearlong curriculum, in which my entire school of 300 students will discover interdisciplinary polar science. Participation in TRE's has been beneficial for my students and my community, but what is the return on the investment for the scientists who invited me to participate in their research? Both scientists have transferred their knowledge out of the laboratory and made a link between their research and a different generation--our future scientists. They become instrumental science leaders in a community of young

  7. What are the toxicological effects of mercury in Arctic biota?

    DEFF Research Database (Denmark)

    Dietz, Rune; Sonne, Christian; Basu, Niladri

    2013-01-01

    effects. Species whose concentrations exceed threshold values include the polar bears (Ursus maritimus), beluga whale (Delphinapterus leucas), pilot whale (Globicephala melas), hooded seal (Cystophora cristata), a few seabird species, and landlocked Arctic char (Salvelinus alpinus). Toothed whales appear...

  8. 75 FR 17763 - Arctic National Wildlife Refuge, Fairbanks, AK

    Science.gov (United States)

    2010-04-07

    ... diversity, including, but not limited to, the Porcupine caribou herd (including participation in coordinated ecological studies and management of this herd and the Western Arctic caribou herd), polar bears, grizzly...

  9. PolarTREC: Successful Methods and Tools for Attaining Broad Educational Impacts with Interdisciplinary Polar Science

    Science.gov (United States)

    Timm, K. M.; Warburton, J.; Owens, R.; Warnick, W. K.

    2008-12-01

    PolarTREC--Teachers and Researchers Exploring and Collaborating, a program of the Arctic Research Consortium of the U.S. (ARCUS), is a National Science Foundation (NSF)-funded International Polar Year (IPY) project in which K-12 educators participate in hands-on field experiences in the polar regions, working closely with IPY scientists as a pathway to improving science education. Developing long-term teacher- researcher collaborations through PolarTREC ensures up-to-date climate change science content will permeate the K-12 education system long after the IPY. By infusing education with the cutting edge science from the polar regions, PolarTREC has already shown an increase in student and public knowledge of and interest in the polar regions and global climate change. Preliminary evaluations have shown that PolarTREC's program activities have many positive impacts on educators and their ability to teach science concepts and improve their teaching methods. Additionally, K-12 students polled in interest surveys showed significant changes regarding the importance of understanding the polar regions as a person in today's world. Researchers have been overwhelmingly satisfied with PolarTREC and cited several specific strengths, including the program's crucial link between the teachers' field research experiences and their classroom and the extensive training provided to teachers prior to their expedition. This presentation will focus on other successful components of the PolarTREC program and how researchers and organizations might use these tools to reach out to the public for long-term impacts. Best practices include strategies for working with educators and the development of an internet-based platform for teachers and researchers to interact with the public, combining several communication tools such as online journals and forums, real-time Internet seminars, lesson plans, activities, audio, and other educational resources that address a broad range of scientific

  10. The MaCWAVE program to study gravity wave influences on the polar mesosphere

    Directory of Open Access Journals (Sweden)

    R. A. Goldberg

    2006-07-01

    Full Text Available MaCWAVE (Mountain and Convective Waves Ascending VErtically was a highly coordinated rocket, ground-based, and satellite program designed to address gravity wave forcing of the mesosphere and lower thermosphere (MLT. The MaCWAVE program was conducted at the Norwegian Andøya Rocket Range (ARR, 69.3° N in July 2002, and continued at the Swedish Rocket Range (Esrange, 67.9° N during January 2003. Correlative instrumentation included the ALOMAR MF and MST radars and RMR and Na lidars, Esrange MST and meteor radars and RMR lidar, radiosondes, and TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite measurements of thermal structures. The data have been used to define both the mean fields and the wave field structures and turbulence generation leading to forcing of the large-scale flow. In summer, launch sequences coupled with ground-based measurements at ARR addressed the forcing of the summer mesopause environment by anticipated convective and shear generated gravity waves. These motions were measured with two 12-h rocket sequences, each involving one Terrier-Orion payload accompanied by a mix of MET rockets, all at ARR in Norway. The MET rockets were used to define the temperature and wind structure of the stratosphere and mesosphere. The Terrier-Orions were designed to measure small-scale plasma fluctuations and turbulence that might be induced by wave breaking in the mesosphere. For the summer series, three European MIDAS (Middle Atmosphere Dynamics and Structure rockets were also launched from ARR in coordination with the MaCWAVE payloads. These were designed to measure plasma and neutral turbulence within the MLT. The summer program exhibited a number of indications of significant departures of the mean wind and temperature structures from ``normal" polar summer conditions, including an unusually warm mesopause and a slowing of the formation of polar mesospheric summer echoes (PMSE and noctilucent clouds (NLC. This

  11. Fostering science communication and outreach through video production in Dartmouth's IGERT Polar Environmental Change graduate program

    Science.gov (United States)

    Hammond Wagner, C. R.; McDavid, L. A.; Virginia, R. A.

    2013-12-01

    Dartmouth's NSF-supported IGERT Polar Environmental Change graduate program has focused on using video media to foster interdisciplinary thinking and to improve student skills in science communication and public outreach. Researchers, educators, and funding organizations alike recognize the value of video media for making research results more accessible and relevant to diverse audiences and across cultures. We present an affordable equipment set and the basic video training needed as well as available Dartmouth institutional support systems for students to produce outreach videos on climate change and its associated impacts on people. We highlight and discuss the successes and challenges of producing three types of video products created by graduate and undergraduate students affiliated with the Dartmouth IGERT. The video projects created include 1) graduate student profile videos, 2) a series of short student-created educational videos for Greenlandic high school students, and 3) an outreach video about women in science based on the experiences of women students conducting research during the IGERT field seminar at Summit Station and Kangerlussuaq, Greenland. The 'Science in Greenland--It's a Girl Thing' video was featured on The New York Times Dot Earth blog and the Huffington Post Green blog among others and received international recognition. While producing these videos, students 1) identified an audience and created story lines, 2) worked in front of and behind the camera, 3) utilized low-cost digital editing applications, and 4) shared the videos on multiple platforms from social media to live presentations. The three video projects were designed to reach different audiences, and presented unique challenges for content presentation and dissemination. Based on student and faculty assessment, we conclude that the video projects improved student science communication skills and increased public knowledge of polar science and the effects of climate change.

  12. U.S. Arctic research in a technological age

    International Nuclear Information System (INIS)

    Johnson, P.L.

    1993-01-01

    The United States Arctic Research Commission was established in 1984 primarily as an advisory agency. An Interagency Arctic Research Policy Committee is one of the main recipients of the Commission's recommendations. The Committee formulated an Arctic research policy calling for research focused on national security concerns, regional development with minimal environmental or adverse social impact, and scientific research on Arctic phenomena and processes. In basic science, emphasis is placed on the need to understand Arctic processes as part of the global earth system. These processes include those that affect and are affected by climatic change. A new research program in Arctic systems science has three components: paleoenvironmental studies on ice core from Greenland; ocean-atmosphere interactions; and land-atmosphere interactions. The Commission also recognizes a need to focus on issues relevant to the Arctic as an integral component of the world economic system, since the Arctic is a significant source of petroleum and minerals. The Commission recommended that the Committee develop an Arctic engineering research plan with emphasis on such topics as oil spill prevention, waste disposal, small-scale power generation, and Arctic construction techniques. The USA is also cooperating in international Arctic research through the International Arctic Science Committee, the Arctic Environmental Protection Strategy, and the North Pacific Marine Science Organization

  13. Coordinating for Arctic Conservation: Implementing Integrated Arctic Biodiversity Monitoring, Data Management and Reporting

    Science.gov (United States)

    Gill, M.; Svoboda, M.

    2012-12-01

    Arctic ecosystems and the biodiversity they support are experiencing growing pressure from various stressors (e.g. development, climate change, contaminants, etc.) while established research and monitoring programs remain largely uncoordinated, lacking the ability to effectively monitor, understand and report on biodiversity trends at the circumpolar scale. The maintenance of healthy arctic ecosystems is a global imperative as the Arctic plays a critical role in the Earth's physical, chemical and biological balance. A coordinated and comprehensive effort for monitoring arctic ecosystems is needed to facilitate effective and timely conservation and adaptation actions. The Arctic's size and complexity represents a significant challenge towards detecting and attributing important biodiversity trends. This demands a scaled, pan-arctic, ecosystem-based approach that not only identifies trends in biodiversity, but also identifies underlying causes. It is critical that this information be made available to generate effective strategies for adapting to changes now taking place in the Arctic—a process that ultimately depends on rigorous, integrated, and efficient monitoring programs that have the power to detect change within a "management" time frame. To meet these challenges and in response to the Arctic Climate Impact Assessment's recommendation to expand and enhance arctic biodiversity monitoring, the Conservation of Arctic Flora and Fauna (CAFF) Working Group of the Arctic Council launched the Circumpolar Biodiversity Monitoring Program (CBMP). The CBMP is led by Environment Canada on behalf of Canada and the Arctic Council. The CBMP is working with over 60 global partners to expand, integrate and enhance existing arctic biodiversity research and monitoring efforts to facilitate more rapid detection, communication and response to significant trends and pressures. Towards this end, the CBMP has established three Expert Monitoring Groups representing major Arctic

  14. Arctic Risk Management (ARMNet) Network: Linking Risk Management Practitioners and Researchers Across the Arctic Regions of Canada and Alaska To Improve Risk, Emergency and Disaster Preparedness and Mitigation Through Comparative Analysis and Applied Research

    Science.gov (United States)

    Garland, A.

    2015-12-01

    The Arctic Risk Management Network (ARMNet) was conceived as a trans-disciplinary hub to encourage and facilitate greater cooperation, communication and exchange among American and Canadian academics and practitioners actively engaged in the research, management and mitigation of risks, emergencies and disasters in the Arctic regions. Its aim is to assist regional decision-makers through the sharing of applied research and best practices and to support greater inter-operability and bilateral collaboration through improved networking, joint exercises, workshops, teleconferences, radio programs, and virtual communications (eg. webinars). Most importantly, ARMNet is a clearinghouse for all information related to the management of the frequent hazards of Arctic climate and geography in North America, including new and emerging challenges arising from climate change, increased maritime polar traffic and expanding economic development in the region. ARMNet is an outcome of the Arctic Observing Network (AON) for Long Term Observations, Governance, and Management Discussions, www.arcus.org/search-program. The AON goals continue with CRIOS (www.ariesnonprofit.com/ARIESprojects.php) and coastal erosion research (www.ariesnonprofit.com/webinarCoastalErosion.php) led by the North Slope Borough Risk Management Office with assistance from ARIES (Applied Research in Environmental Sciences Nonprofit, Inc.). The constituency for ARMNet will include all northern academics and researchers, Arctic-based corporations, First Responders (FRs), Emergency Management Offices (EMOs) and Risk Management Offices (RMOs), military, Coast Guard, northern police forces, Search and Rescue (SAR) associations, boroughs, territories and communities throughout the Arctic. This presentation will be of interest to all those engaged in Arctic affairs, describe the genesis of ARMNet and present the results of stakeholder meetings and webinars designed to guide the next stages of the Project.

  15. Arctic Energy Resources: Security and Environmental Implications

    Directory of Open Access Journals (Sweden)

    Peter Johnston

    2012-08-01

    Full Text Available n recent years, there has been considerable interest in the Arctic as a source for resources, as a potential zone for commercial shipping, and as a region that might experience conflict due to its strategic importance. With regards to energy resources, some studies suggest that the region contains upwards of 13 percent of global undiscovered oil, 30 percent of undiscovered gas, and multiples more of gas hydrates. The decreasing amount and duration of Arctic ice cover suggests that extraction of these resources will be increasingly commercially viable. Arctic and non-arctic states wish to benefit from the region's resources and the potential circum-polar navigation possibilities. This has led to concerns about the environmental risks of these operations as well as the fear that competition between states for resources might result in conflict. Unresolved offshore boundaries between the Arctic states exacerbate these fears. Yet, the risk of conflict seems overstated considering the bilateral and multilateral steps undertaken by the Arctic states to resolve contentious issues. This article will examine the potential impact of Arctic energy resources on global security as well as the regional environment and examine the actions of concerned states to promote their interests in the region.

  16. Optimizing Communications Between Arctic Residents and IPY Scientific Researchers

    Science.gov (United States)

    Stapleton, M.; Carpenter, L.

    2007-12-01

    BACKGROUND International Polar Year, which was launched in March 2007, is an international program of coordinated, interdisciplinary scientific research on Earth's polar regions. The northern regions of the eight Arctic States (Canada, Alaska (USA), Russia, Sweden, Norway, Finland. Iceland and Greenland (Denmark) have significant indigenous populations. The circumpolar Arctic is one of the least technologically connected regions in the world, although Canada and others have been pioneers in developing and suing Information and Communication Technology (ICT) in remote areas. The people living in this vast geographic area have been moving toward taking their rightful place in the global information society, but are dependent on the outreach and cooperation of larger mainstream societies. The dominant medium of communication is radio, which is flexible in accommodating multiple cultures, languages, and factors of time and distance. The addition of newer technologies such as streaming on the Internet can increase access and content for all communities of interest, north and south. The Arctic Circle of Indigenous Communicators (ACIC) is an independent association of professional Northern indigenous media workers in the print, radio, television, film and Internet industries. ACIC advocates the development of all forms of communication in circumpolar North areas. It is international in scope. Members are literate in English, French, Russian and many indigenous languages. ACIC has proposed the establishment of a headquarters for monitoring IPY projects are in each area, and the use of community radio broadcasters to collect and disseminate information about IPY. The cooperation of Team IPY at the University of Colorado, Arctic Net at Laval University, and others, is being developed. ACIC is committed to making scientific knowledge gained in IPY accessible to those most affected - residents of the Arctic. ABSTRACT The meeting of the American Geophysical Union will be held

  17. PolarTREC-Teachers and Researchers Exploring and Collaborating: Science Education from the Poles to the World

    Science.gov (United States)

    Warnick, W. K.; Breen, K.; Warburton, J.; Fischer, K.; Wiggins, H.; Owens, R.; Polly, B.; Wade, B.; Buxbaum, T.

    2007-12-01

    PolarTREC-Teachers and Researchers Exploring and Collaborating is a three-year (2007-2009) teacher professional development program celebrating the International Polar Year (IPY) that advances polar science education by bringing K-12 educators and polar researchers together in hands-on field experiences in the Arctic and Antarctic. Currently in its second year, the program fosters the integration of research and education to produce a legacy of long-term teacher-researcher collaborations, improved teacher content knowledge through experiences in scientific inquiry, and broad public interest and engagement in polar science. Through PolarTREC, over 40 U.S. teachers will spend two to six weeks in the Arctic or Antarctic, working closely with researchers in the field as an integral part of the science team. Research projects focus on a wide range of IPY science themed topics such as sea-ice dynamics, terrestrial ecology, marine biology, atmospheric chemistry, and long-term climate change. While in the field, teachers and researchers will communicate extensively with their colleagues, communities, and hundreds of students of all ages across the globe, using a variety of tools including satellite phones, online journals, podcasts and interactive "Live from IPY" calls and web-based seminars. The online outreach elements of the project convey these experiences to a broad audience far beyond the classrooms of the PolarTREC teachers. In addition to field research experiences, PolarTREC will support teacher professional development and a sustained community of teachers, scientists, and the public through workshops, Internet seminars, an e-mail listserve, and teacher peer groups. To learn more about PolarTREC visit the website at: http://www.polartrec.com or contact info@polartrec.com or 907-474-1600. PolarTREC is funded by NSF and managed by the Arctic Research Consortium of the US (ARCUS).

  18. Coarse mode aerosols in the High Arctic

    Science.gov (United States)

    Baibakov, K.; O'Neill, N. T.; Chaubey, J. P.; Saha, A.; Duck, T. J.; Eloranta, E. W.

    2014-12-01

    Fine mode (submicron) aerosols in the Arctic have received a fair amount of scientific attention in terms of smoke intrusions during the polar summer and Arctic haze pollution during the polar winter. Relatively little is known about coarse mode (supermicron) aerosols, notably dust, volcanic ash and sea salt. Asian dust is a regular springtime event whose optical and radiative forcing effects have been fairly well documented at the lower latitudes over North America but rarely reported for the Arctic. Volcanic ash, whose socio-economic importance has grown dramatically since the fear of its effects on aircraft engines resulted in the virtual shutdown of European civil aviation in the spring of 2010 has rarely been reported in the Arctic in spite of the likely probability that ash from Iceland and the Aleutian Islands makes its way into the Arctic and possibly the high Arctic. Little is known about Arctic sea salt aerosols and we are not aware of any literature on the optical measurement of these aerosols. In this work we present preliminary results of the combined sunphotometry-lidar analysis at two High Arctic stations in North America: PEARL (80°N, 86°W) for 2007-2011 and Barrow (71°N,156°W) for 2011-2014. The multi-years datasets were analyzed to single out potential coarse mode incursions and study their optical characteristics. In particular, CIMEL sunphotometers provided coarse mode optical depths as well as information on particle size and refractive index. Lidar measurements from High Spectral Resolution lidars (AHSRL at PEARL and NSHSRL at Barrow) yielded vertically resolved aerosol profiles and gave an indication of particle shape and size from the depolarization ratio and color ratio profiles. Additionally, we employed supplementary analyses of HYSPLIT backtrajectories, OMI aerosol index, and NAAPS (Navy Aerosol Analysis and Prediction System) outputs to study the spatial context of given events.

  19. Arctic Shipping

    DEFF Research Database (Denmark)

    Hansen, Carsten Ørts; Grønsedt, Peter; Lindstrøm Graversen, Christian

    This report forms part of the ambitious CBS Maritime research initiative entitled “Competitive Challenges and Strategic Development Potential in Global Maritime Industries” which was launched with the generous support of the Danish Maritime Fund. The competitiveness initiative targets specific ma......, the latter aiming at developing key concepts and building up a basic industry knowledge base for further development of CBS Maritime research and teaching. This report attempts to map the opportunities and challenges for the maritime industry in an increasingly accessible Arctic Ocean...

  20. Settlements in an Arctic Resource Frontier Region

    NARCIS (Netherlands)

    Hacquebord, L.; Avango, D.

    2009-01-01

    In this article we use a core-periphery model in order to understand the general trends in the history of natural resource exploitation in the polar regions. The study focuses on whaling, hunting, and coal mining activities on the European High Arctic archipelago of Spitsbergen, from the seventeenth

  1. Recent dynamics of arctic and sub-arctic vegetation

    International Nuclear Information System (INIS)

    Epstein, Howard E; Myers-Smith, Isla; Walker, Donald A

    2013-01-01

    We present a focus issue of Environmental Research Letters on the ‘Recent dynamics of arctic and sub-arctic vegetation’. The focus issue includes three perspective articles (Verbyla 2011 Environ. Res. Lett. 6 041003, Williams et al 2011 Environ. Res. Lett. 6 041004, Loranty and Goetz 2012 Environ. Res. Lett. 7 011005) and 22 research articles. The focus issue arose as a result of heightened interest in the response of high-latitude vegetation to natural and anthropogenic changes in climate and disturbance regimes, and the consequences that these vegetation changes might have for northern ecosystems. A special session at the December 2010 American Geophysical Union Meeting on the ‘Greening of the Arctic’ spurred the call for papers. Many of the resulting articles stem from intensive research efforts stimulated by International Polar Year projects and the growing acknowledgment of ongoing climate change impacts in northern terrestrial ecosystems. (synthesis and review)

  2. Recent results of the STAR high-energy polarized proton-proton program at RHIC at BNL

    International Nuclear Information System (INIS)

    Surrow, Bernd

    2007-01-01

    The STAR experiment at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) is carrying out a spin physics program colliding transverse or longitudinal polarized proton beams at √(s) 200 - 500GeV to gain a deeper insight into the spin structure and dynamics of the proton. These studies provide fundamental tests of Quantum Chromodynamics (QCD).One of the main objectives of the STAR spin physics program is the determination of the polarized gluon distribution function through a measurement of the longitudinal double-spin asymmetry, ALL, for various processes. Recent results will be shown on the measurement of ALL for inclusive jet production, neutral pion production and charged pion production at √(s) = 200GeV. In addition to these measurements involving longitudinal polarized proton beams, the STAR collaboration has performed several important measurements employing transverse polarized proton beams. New results on the measurement of the transverse single-spin asymmetry, AN, for forward neutral pion production and the first measurement of AN for mid-rapidity di-jet production will be discussed

  3. A Recommended Set of Key Arctic Indicators

    Science.gov (United States)

    Stanitski, D.; Druckenmiller, M.; Fetterer, F. M.; Gerst, M.; Intrieri, J. M.; Kenney, M. A.; Meier, W.; Overland, J. E.; Stroeve, J.; Trainor, S.

    2017-12-01

    The Arctic is an interconnected and environmentally sensitive system of ice, ocean, land, atmosphere, ecosystems, and people. From local to pan-Arctic scales, the area has already undergone major changes in physical and societal systems and will continue at a pace that is greater than twice the global average. Key Arctic indicators can quantify these changes. Indicators serve as the bridge between complex information and policy makers, stakeholders, and the general public, revealing trends and information people need to make important socioeconomic decisions. This presentation evaluates and compiles more than 70 physical, biological, societal and economic indicators into an approachable summary that defines the changing Arctic. We divided indicators into "existing," "in development," "possible," and "aspirational". In preparing a paper on Arctic Indicators for a special issue of the journal Climatic Change, our group established a set of selection criteria to identify indicators to specifically guide decision-makers in their responses to climate change. A goal of the analysis is to select a manageable composite list of recommended indicators based on sustained, reliable data sources with known user communities. The selected list is also based on the development of a conceptual model that identifies components and processes critical to our understanding of the Arctic region. This list of key indicators is designed to inform the plans and priorities of multiple groups such as the U.S. Global Change Research Program (USGCRP), Interagency Arctic Research Policy Committee (IARPC), and the Arctic Council.

  4. Immune function in arctic mammals

    DEFF Research Database (Denmark)

    Desforges, Jean-Pierre; Jasperse, Lindsay; Jensen, Trine Hammer

    2018-01-01

    Natural killer (NK) cells are a vital part of the rapid and non-specific immune defense against invading pathogens and tumor cells. This study evaluated NK cell-like activity by flow cytometry for the first time in three ecologically and culturally important Arctic mammal species: polar bear (Ursus...... the effector:target cell ratio increased. Comparing NK activity between fresh and cryopreserved mouse lymphocytes revealed little to no difference in function, highlighting the applicability of cryopreserving cells in field studies. The evaluation of this important innate immune function in Arctic mammals can...... contribute to future population health assessments, especially as pollution-induced suppression of immune function may increase infectious disease susceptibility....

  5. Tolerance of polar phytoplankton communities to metals

    International Nuclear Information System (INIS)

    Echeveste, P.; Tovar-Sánchez, A.; Agustí, S.

    2014-01-01

    Large amounts of pollutants reach polar regions, particularly the Arctic, impacting their communities. In this study we analyzed the toxic levels of Hg, Cd and Pb to natural phytoplankton communities of the Arctic and Southern Oceans, and compared their sensitivities with those observed on phytoplankton natural communities from temperate areas. Mercury was the most toxic metal for both Arctic and Antarctic communities, while both Cd and Pb were toxic only for the Antarctic phytoplankton. Total cell abundance of the populations forming the Arctic community increased under high Cd and Pb concentrations, probably due to a decrease of the grazing pressure or the increase of the most resistant species, although analysis of individual cells indicated that cell death was already induced at the highest levels. These results suggest that phytoplankton may have acquired adapting mechanisms to face high levels of Pb and Cd in the Arctic Ocean. Highlights: • First study analyzing the toxicity of Hg, Cd or Pb to natural polar phytoplankton. • Arctic Ocean communities highly resistant to Cd and Pb, but not to Hg. • Southern Ocean communities sensitive to Cd, Pb and Hg. • Both communities incorporated Pb at a similar level. • Arctic phytoplankton may have acquired adapting mechanisms against Cd and Pb. -- Polar phytoplankton communities are tolerant to Cd and Pb, specially the Arctic ones, suggesting the acquisition of adapting mechanisms to face metals' toxicity

  6. Temperature profile data collected aboard the USCGC Polar Star in support of investigations of the influence of the Mendeleev Ridge and Chukchi Borderland on the large-scale circulation of the Arctic Ocean, August - September 2002 (NODC Accession 0002697)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is an archive of data of 47 distinct XBT casts taken at 41 locations in the Mendeleev Ridge and Chukchi Borderland region of the Arctic between 22nd August and...

  7. Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish.

    Science.gov (United States)

    Letcher, Robert J; Bustnes, Jan Ove; Dietz, Rune; Jenssen, Bjørn M; Jørgensen, Even H; Sonne, Christian; Verreault, Jonathan; Vijayan, Mathilakath M; Gabrielsen, Geir W

    2010-07-01

    Persistent organic pollutants (POPs) encompass an array of anthropogenic organic and elemental substances and their degradation and metabolic byproducts that have been found in the tissues of exposed animals, especially POPs categorized as organohalogen contaminants (OHCs). OHCs have been of concern in the circumpolar arctic for decades. For example, as a consequence of bioaccumulation and in some cases biomagnification of legacy (e.g., chlorinated PCBs, DDTs and CHLs) and emerging (e.g., brominated flame retardants (BFRs) and in particular polybrominated diphenyl ethers (PBDEs) and perfluorinated compounds (PFCs) including perfluorooctane sulfonate (PFOS) and perfluorooctanic acid (PFOA) found in Arctic biota and humans. Of high concern are the potential biological effects of these contaminants in exposed Arctic wildlife and fish. As concluded in the last review in 2004 for the Arctic Monitoring and Assessment Program (AMAP) on the effects of POPs in Arctic wildlife, prior to 1997, biological effects data were minimal and insufficient at any level of biological organization. The present review summarizes recent studies on biological effects in relation to OHC exposure, and attempts to assess known tissue/body compartment concentration data in the context of possible threshold levels of effects to evaluate the risks. This review concentrates mainly on post-2002, new OHC effects data in Arctic wildlife and fish, and is largely based on recently available effects data for populations of several top trophic level species, including seabirds (e.g., glaucous gull (Larus hyperboreus)), polar bears (Ursus maritimus), polar (Arctic) fox (Vulpes lagopus), and Arctic charr (Salvelinus alpinus), as well as semi-captive studies on sled dogs (Canis familiaris). Regardless, there remains a dearth of data on true contaminant exposure, cause-effect relationships with respect to these contaminant exposures in Arctic wildlife and fish. Indications of exposure effects are largely

  8. Polar On-Line Acquisition Relay and Transmission System (POLARATS)

    Energy Technology Data Exchange (ETDEWEB)

    Yuracko, K.

    2004-07-15

    POLARATS (Polar On-Line Acquisition Relay And Transmission System) is being developed by YAHSGS LLC (YAHSGS) and Oak Ridge National Laboratory (ORNL) to provide remote, unattended monitoring of environmental parameters under harsh environmental conditions. In particular, instrumental design and engineering is oriented towards protection of human health in the Arctic, and with the additional goal of advancing Arctic education and research. POLARATS will obtain and transmit environmental data from hardened monitoring devices deployed in locations important to understanding atmospheric and aquatic pollutant migration as it is biomagnified in Arctic food chains. An Internet- and personal computer (PC)-based educational module will provide real time sensor data, on-line educational content, and will be integrated with workbooks and textbooks for use in middle and high school science programs. The educational elements of POLARATS include an Internet-based educational module that will instruct students in the use of the data and how those data fit into changing Arctic environments and food chains. POLARATS will: (1) Enable students, members of the community, and scientific researchers to monitor local environmental conditions in real time over the Internet; and (2) Provide additional educational benefits through integration with middle- and high-school science curricula. Information will be relayed from POLARATS devices to classrooms and libraries along with custom-designed POLARATS teaching materials that will be integrated into existing curricula to enhance the educational benefits realized from the information obtained.

  9. What Controls the Arctic Lower Stratosphere Temperature?

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The temperature of the Arctic lower stratosphere is critical for understanding polar ozone levels. As temperatures drop below about 195 K, polar stratospheric clouds form, which then convert HCl and ClONO2 into reactive forms that are catalysts for ozone loss reactions. Hence, the lower stratospheric temperature during the March period is a key parameter for understanding polar ozone losses. The temperature is basically understood to be a result of planetary waves which drive the polar temperature away from a cold "radiative equilibrium" state. This is demonstrated using NCEP/NCAR reanalysis calculations of the heat flux and the mean polar temperature. The temperature during the March period is fundamentally driven by the integrated impact of large scale waves moving from the troposphere to the stratosphere during the January through February period. We will further show that the recent cold years in the northern polar vortex are a result of this weakened wave driving of the stratosphere.

  10. Scientific Discoveries in the Central Arctic Ocean Based on Seafloor Mapping Carried out to Support Article 76 Extended Continental Shelf Claims (Invited)

    Science.gov (United States)

    Jakobsson, M.; Mayer, L. A.; Marcussen, C.

    2013-12-01

    Despite the last decades of diminishing sea-ice cover in the Arctic Ocean, ship operations are only possible in vast sectors of the central Arctic using the most capable polar-class icebreakers. There are less than a handful of these icebreakers outfitted with modern seafloor mapping equipment. This implies either fierce competition between those having an interest in using these icebreakers for investigations of the shape and properties of Arctic Ocean seafloor or, preferably, collaboration. In this presentation examples will be shown of scientific discoveries based on mapping data collected during Arctic Ocean icebreaker expeditions carried out for the purpose of substantiating claims for an extended continental shelf under United Nations Convention of the Law of the Sea (UNCLOS) Article 76. Scientific results will be presented from the suite of Lomonosov Ridge off Greenland (LOMROG) expeditions (2007, 2009, and 2012), shedding new light on Arctic Ocean oceanography and glacial history. The Swedish icebreaker Oden was used in collaboration between Sweden and Denmark during LOMROG to map and sample portions of the central Arctic Ocean; specifically focused on the Lomonosov Ridge north of Greenland. While the main objective of the Danish participation was seafloor and sub-seabed mapping to substantiate their Article 76 claim, LOMROG also included several scientific components, with scientists from both countries involved. Other examples to be presented are based on data collected using US Coast Guard Cutter Healy, which for several years has carried out mapping in the western Arctic Ocean for the US continental shelf program. All bathymetric data collected with Oden and Healy have been contributed to the International Bathymetric Chart of the Arctic Ocean (IBCAO). This is also the case for bathymetric data collected by Canadian Coast Guard Ship Louis S. St-Laurent for Canada's extended continental shelf claim. Together, the bathymetric data collected during these

  11. AROME-Arctic: New operational NWP model for the Arctic region

    Science.gov (United States)

    Süld, Jakob; Dale, Knut S.; Myrland, Espen; Batrak, Yurii; Homleid, Mariken; Valkonen, Teresa; Seierstad, Ivar A.; Randriamampianina, Roger

    2016-04-01

    In the frame of the EU-funded project ACCESS (Arctic Climate Change, Economy and Society), MET Norway aimed 1) to describe the present monitoring and forecasting capabilities in the Arctic; and 2) to identify the key factors limiting the forecasting capabilities and to give recommendations on key areas to improve the forecasting capabilities in the Arctic. We have observed that the NWP forecast quality is lower in the Arctic than in the regions further south. Earlier research indicated that one of the factors behind this is the composition of the observing system in the Arctic, in particular the scarceness of conventional observations. To further assess possible strategies for alleviating the situation and propose scenarios for a future Arctic observing system, we have performed a set of experiments to gain a more detailed insight in the contribution of the components of the present observing system in a regional state-of-the-art non-hydrostatic NWP model using the AROME physics (Seity et al, 2011) at 2.5 km horizontal resolution - AROME-Arctic. Our observing system experiment studies showed that conventional observations (Synop, Buoys) can play an important role in correcting the surface state of the model, but prove that the present upper-air conventional (Radiosondes, Aircraft) observations in the area are too scarce to have a significant effect on forecasts. We demonstrate that satellite sounding data play an important role in improving forecast quality. This is the case with satellite temperature sounding data (AMSU-A, IASI), as well as with the satellite moisture sounding data (AMSU-B/MHS, IASI). With these sets of observations, the AROME-Arctic clearly performs better in forecasting extreme events, like for example polar lows. For more details see presentation by Randriamampianina et al. in this session. The encouraging performance of AROME-Arctic lead us to implement it with more observations and improved settings into daily runs with the objective to

  12. Impact of the Healthy Foods North nutrition intervention program on Inuit and Inuvialuit food consumption and preparation methods in Canadian Arctic communities.

    Science.gov (United States)

    Kolahdooz, Fariba; Pakseresht, Mohammadreza; Mead, Erin; Beck, Lindsay; Corriveau, André; Sharma, Sangita

    2014-07-04

    The 12-month Healthy Foods North intervention program was developed to improve diet among Inuit and Inuvialuit living in Arctic Canada and assess the impact of the intervention established for the communities. A quasi-experimental study randomly selected men and women (≥19 years of age) in six remote communities in Nunavut and the Northwest Territories. Validated quantitative food frequency and adult impact questionnaires were used. Four communities received the intervention and two communities served as delayed intervention controls. Pre- and post-intervention changes in frequency of/total intake of de-promoted food groups and healthiness of cooking methods were determined. The impact of the intervention was assessed using analysis of covariance (ANCOVA). Post-intervention data were analysed in the intervention (n = 221) and control (n = 111) communities, with participant retention rates of 91% for Nunavut and 83% for the Northwest Territories. There was a significant decrease in de-promoted foods, such as high fat meats (-27.9 g) and high fat dairy products (-19.8 g) among intervention communities (all p ≤ 0.05). The use of healthier preparation methods significantly increased (14.7%) in intervention communities relative to control communities. This study highlights the importance of using a community-based, multi-institutional nutrition intervention program to decrease the consumption of unhealthy foods and the use of unhealthy food preparation methods.

  13. Polar bears, Ursus maritimus

    Science.gov (United States)

    Rode, Karyn D.; Stirling, Ian

    2017-01-01

    Polar bears are the largest of the eight species of bears found worldwide and are covered in a pigment-free fur giving them the appearance of being white. They are the most carnivorous of bear species consuming a high-fat diet, primarily of ice-associated seals and other marine mammals. They range throughout the circumpolar Arctic to the southernmost extent of seasonal pack ice.

  14. Polish polar research (outline

    Directory of Open Access Journals (Sweden)

    Krzysztof Ludwik Birkenmajer

    2017-12-01

    Full Text Available The article describes Polish research and discoveries in the Arctic and the Antarctic since the 19th century. The author is a geologist and since 1956 has been engaged in scientific field research on Spitsbergen, Greenland and Antarctica (23 expeditions. For many years chairman of the Committee on Polar Research of the Polish Academy of Sciences, he is now its Honorary Chairman.

  15. The University of Delaware Carlson International Polar Year Events: Collaborative and Educational Outreach

    Science.gov (United States)

    Nelson, F. E.; Bryant, T.; Wellington, P.; Dooley, J.; Bird, M.

    2008-12-01

    Delaware is a small state with, by virtue of its coastal location, a large stake in climatic change in the polar regions. The University of Delaware has maintained a strong presence in cold-regions research since the mid-1940s, when William Samuel Carlson, a highly accomplished Arctic explorer, military strategist, and earth scientist, was named 20th President (1946-50) of the University. Carlson played a leading role in two of the University of Michigan's Greenland expeditions in the late 1920s and early 1930s. As Director of the Arctic, Desert, and Tropic Branch of the US Army Air Forces Tactical Center during World War II, Colonel Carlson played a role in developing several air transportation routes through the Arctic that helped to facilitate the Allied victory in Europe. Carlson authored many scientific and popular publications concerned with the Arctic, including the books Greenland Lies North (1940) and Lifelines Through the Arctic (1962). Although the University of Delaware has maintained a vigorous and continuous program of polar research since Carlson's tenure, the faculty, staff, and students involved are diffused throughout the University's colleges and departments, without an institutional focal point. Consequently, although many of these individuals are well known in their respective fields, the institution has not until recently been perceived widely as a center of polar-oriented research. The goals of the Carlson International Polar Year Events are to: (a) develop a sense of community among UD's diffuse polar-oriented researchers and educators; (b) create a distinctive and highly visible role for UD in the milieu of IPY activities; (c) promote interest in and knowledge about the polar regions in the State of Delaware, at all educational levels; (d) forge a close relationship between UD and the American Geographical Society, a national organization involved closely with previous International Polar Years; and (e) create a new basis for development

  16. The polar mesosphere

    International Nuclear Information System (INIS)

    Morris, Ray; Murphy, Damian

    2008-01-01

    The mesosphere region, which lies at the edge of space, contains the coldest layer of the Earth's atmosphere, with summer temperatures as low as minus 130 °C. In this extreme environment ice aerosol layers have appeared since the dawn of industrialization—whose existence may arguably be linked to human influence—on yet another layer of the Earth's fragile atmosphere. Ground-based and space-based experiments conducted in the Arctic and Antarctic during the International Polar Year (IPY) aim to address limitations in our knowledge and to advance our understanding of thermal and dynamical processes at play in the polar mesosphere

  17. Arctic Submarine Slope Stability

    Science.gov (United States)

    Winkelmann, D.; Geissler, W.

    2010-12-01

    the consequence. Its geometrical configuration and timing is different from submarine slides on other glaciated continental margins. Thus, it raises the question whether slope stability within the Arctic Ocean is governed by processes specific to this environment. The extraordinary thick slabs (up to 1600 m) that were moved translationally during sliding rise the question on the nature of the weak layers associated with this process. Especially theories involving higher pore pressure are being challenged by this observation, because either extreme pore pressures or alternative explanations (e.g. mineralogical and/or textural) can be considered. To assess the actual submarine slope stability and failure potential in the Arctic Ocean, we propose to drill and recover weak layer material of the HYM from the adjacent intact strata by deep drilling under the framework of Integrated Ocean Drilling Program. This is the only method to recover weak layer material from the HYM, because the strata are too thick. We further propose to drill into the adjacent deforming slope to identify material properties of the layers acting as detachment and monitor the deformation.

  18. Chlorinated hydrocarbon contaminants in arctic marine mammals.

    Science.gov (United States)

    Norstrom, R J; Muir, D C

    1994-09-16

    By 1976, the presence of chlorinated hydrocarbon contaminants (CHCs) had been demonstrated in fur seal (Callorhinus ursinus), ringed seal (Phoca hispida), hooded seal (Cystophora cristata), bearded seal (Erignathus barbatus), walrus (Obdobenus rosmarus divergens), beluga (Delphinapterus leucas), porpoise (Phocoena phocoena) and polar bear (Ursus maritimus) in various parts of the Arctic. In spite of this early interest, very little subsequent research on contaminants in Arctic marine mammals was undertaken until the mid-1980s. Since that time, there has been an explosion of interest, resulting in a much expanded data base on contaminants in Arctic marine mammals. Except in the Russian Arctic, data have now been obtained on the temporospatial distribution of PCBs and other contaminants in ringed seal, beluga and polar bear. Contaminants in narwhal (Monodon monoceros) have also now been measured. On a fat weight basis, the sum of DDT-related compounds (S-DDT) and PCB levels are lowest in walrus (Polar bears have similar levels of PCBs as cetaceans (1-10 micrograms/g), but with a much simpler congener pattern. DDE levels are lowest in polar bear, indicating rapid metabolism. Effects of age and sex on residue levels are found for all species where this was measured. Among cetaceans and ringed seal, sexually mature females have lower levels than males due to lactation. Although PCB levels in adult male polar bears are about twice as high as females, there is only a trivial age effect in either sex apart from an initial decrease from birth to sexual maturity (age 0-5). Comparison of levels of S-DDT and PCBs in Arctic beluga and ringed seal with those in beluga in the Gulf of St. Lawrence and ringed seal in the Baltic Sea, indicate that overall contamination of the Arctic marine ecosystem is 10-50 times less than the most highly contaminated areas in the northern hemisphere temperate latitude marine environment. Geographic distribution of residue levels in polar bears

  19. Polar bears and sea ice habitat change

    Science.gov (United States)

    Durner, George M.; Atwood, Todd C.; Butterworth, Andy

    2017-01-01

    The polar bear (Ursus maritimus) is an obligate apex predator of Arctic sea ice and as such can be affected by climate warming-induced changes in the extent and composition of pack ice and its impacts on their seal prey. Sea ice declines have negatively impacted some polar bear subpopulations through reduced energy input because of loss of hunting habitats, higher energy costs due to greater ice drift, ice fracturing and open water, and ultimately greater challenges to recruit young. Projections made from the output of global climate models suggest that polar bears in peripheral Arctic and sub-Arctic seas will be reduced in numbers or become extirpated by the end of the twenty-first century if the rate of climate warming continues on its present trajectory. The same projections also suggest that polar bears may persist in the high-latitude Arctic where heavy multiyear sea ice that has been typical in that region is being replaced by thinner annual ice. Underlying physical and biological oceanography provides clues as to why polar bear in some regions are negatively impacted, while bears in other regions have shown no apparent changes. However, continued declines in sea ice will eventually challenge the survival of polar bears and efforts to conserve them in all regions of the Arctic.

  20. Can polar bear hairs absorb environmental energy?

    Directory of Open Access Journals (Sweden)

    He Ji-Huan

    2011-01-01

    Full Text Available A polar bear (Ursus maritimus has superior ability to survive in harsh Arctic regions, why does the animal have such an excellent thermal protection? The present paper finds that the unique labyrinth cavity structure of the polar bear hair plays an important role. The hair can not only prevent body temperature loss but can also absorb energy from the environment.

  1. Approaching a Postcolonial Arctic

    DEFF Research Database (Denmark)

    Jensen, Lars

    2016-01-01

    This article explores different postcolonially configured approaches to the Arctic. It begins by considering the Arctic as a region, an entity, and how the customary political science informed approaches are delimited by their focus on understanding the Arctic as a region at the service...... of the contemporary neoliberal order. It moves on to explore how different parts of the Arctic are inscribed in a number of sub-Arctic nation-state binds, focusing mainly on Canada and Denmark. The article argues that the postcolonial can be understood as a prism or a methodology that asks pivotal questions to all...... approaches to the Arctic. Yet the postcolonial itself is characterised by limitations, not least in this context its lack of interest in the Arctic, and its bias towards conventional forms of representation in art. The article points to the need to develop a more integrated critique of colonial and neo...

  2. Arctic Warming as News - Perils and Possibilities

    Science.gov (United States)

    Revkin, A. C.

    2015-12-01

    A science journalist in his 30th year covering human-driven climate change, including on three Arctic reporting trips, reflects on successes and setbacks as news media, environmentalists and Arctic communities have tried to convey the significance of polar change to a public for which the ends of the Earth will always largely be a place of the imagination.Novel challenges are arising in the 24/7 online media environment, as when a paper by a veteran climate scientist proposing a mechanism for abrupt sea-level rise became a big news story before it was accepted by the open-review journal to which it had been submitted. New science is digging in on possible connections between changing Arctic sea ice and snow conditions and disruptive winter weather in more temperate northern latitudes, offering a potential link between this distant region and the lives of ordinary citizens. As cutting-edge research, such work gets substantial media attention. But, as with all new areas of inquiry, uncertainty dominates - creating the potential for distracting the public and policymakers from the many aspects of anthropogenic climate change that are firmly established - but, in a way, boring because of that.With the challenges, there are unprecedented opportunities for conveying Arctic science. In some cases, researchers on expeditions are partnering with media, offering both scientists and news outlets fresh ways to convey the story of Arctic change in an era of resource constraints.Innovative uses of crittercams, webcams, and satellite observations offer educators and interested citizens a way to track and appreciate Arctic change. But more can be done to engage the public directly without the news media as an intermediary, particularly if polar scientists or their institutions test some of the established practices honed by more experienced communicators at NASA.

  3. Black Carbon in Arctic Snow: Preliminary Results from Recent Field Measurements

    Science.gov (United States)

    Warren, S. G.; Grenfell, T. C.; Radionov, V. F.; Clarke, A. D.

    2007-12-01

    Annual snowpacks act to amplify variations in regional solar heating of the surface due to positive feedback processes associated with areal melting and precipitation. Small amounts of black carbon (BC) in the snow can reduce the albedo and modulate shortwave absorption and transmission affecting the onset of melt and heating of the snow pack. The effect of black carbon on the albedo of snow in the Arctic is estimated to be up to a few percent. The only prior survey of arctic snow was that of Clarke and Noone in 1983-84. We have begun a wide- area survey of the BC content of arctic snow in order to update and expand the 1983/84 survey. Samples of snow have been collected in mid to late spring when the entire winter snowpack was accessible. The samples have been melted and filtered, and the filters analyzed for absorptive impurities. To date, sites in Alaska, Canada, Greenland, and in the Arctic Basin have been sampled. In March and April 2007 we also carried out a field program at four sites in northwestern Russia as part of the International Polar Year. Preliminary results based on visual comparison with the standard filters indicate that the snow cover in arctic North America and the Beaufort Sea have lower BC concentrations now than 20 years ago while levels in Greenland are about the same. Background levels of BC in Russia are approximately twice those in North America consistent with modeling predictions of Flanner et al., 2007. More accurate values of absorption will be obtained by measurement of spectral transmission of the filters, which will also allow the relative contributions of BC and soil dust to be determined.

  4. Arctic bioremediation -- A case study

    International Nuclear Information System (INIS)

    Smallbeck, D.R.; Ramert, P.C.; Liddell, B.V.

    1994-01-01

    This paper discusses the use of bioremediation as an effective method to clean up diesel-range hydrocarbon spills in northern latitudes. The results of a laboratory study of microbial degradation of hydrocarbons under simulated arctic conditions showed that bioremediation can be effective in cold climates and led to the implementation of a large-scale field program. The results of 3 years of field testing have led to a significant reduction in diesel-range hydrocarbon concentrations in the contaminated area

  5. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Polar Winds from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains the Level 3 Polar Winds Northern and Southern Hemisphere datasets. The Level 3 Polar Winds data from VIIRS for the Arctic and Antarctic from 65...

  6. Carbon dioxide in Arctic and subarctic regions

    Energy Technology Data Exchange (ETDEWEB)

    Gosink, T. A.; Kelley, J. J.

    1981-03-01

    A three year research project was presented that would define the role of the Arctic ocean, sea ice, tundra, taiga, high latitude ponds and lakes and polar anthropogenic activity on the carbon dioxide content of the atmosphere. Due to the large physical and geographical differences between the two polar regions, a comparison of CO/sub 2/ source and sink strengths of the two areas was proposed. Research opportunities during the first year, particularly those aboard the Swedish icebreaker, YMER, provided additional confirmatory data about the natural source and sink strengths for carbon dioxide in the Arctic regions. As a result, the hypothesis that these natural sources and sinks are strong enough to significantly affect global atmospheric carbon dioxide levels is considerably strengthened. Based on the available data we calculate that the whole Arctic region is a net annual sink for about 1.1 x 10/sup 15/ g of CO/sub 2/, or the equivalent of about 5% of the annual anthropogenic input into the atmosphere. For the second year of this research effort, research on the seasonal sources and sinks of CO/sub 2/ in the Arctic will be continued. Particular attention will be paid to the seasonal sea ice zones during the freeze and thaw periods, and the tundra-taiga regions, also during the freeze and thaw periods.

  7. The Temperature of the Arctic and Antarctic Lower Stratosphere

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The temperature of the polar lower stratosphere during spring is the key factor in changing the magnitude of ozone loss in the polar vortices. In this talk, we will review the results of Newman et al. [2000] that quantitatively demonstrate that the polar lower stratospheric temperature is primarily controlled by planetary-scale waves. In particular, the tropospheric eddy heat flux in middle to late winter (January--February) is highly correlated with the mean polar stratospheric temperature during March. Strong midwinter planetary wave forcing leads to a warmer spring Arctic lower stratosphere in early spring, while weak midwinter forcing leads to cooler spring Arctic temperatures. In addition, this planetary wave driving also has a strong impact on the strength of the polar vortex. These results from the Northern Hemisphere will be contrasted with the Southern Hemisphere.

  8. Overview of human health in the Arctic: conclusions and recommendations.

    Science.gov (United States)

    Donaldson, Shawn; Adlard, Bryan; Odland, Jon Øyvind

    2016-01-01

    This article is intended to provide an overview of the key conclusions, knowledge gaps and key recommendations based on the recent 2015 Arctic human health assessment under the Arctic Monitoring and Assessment Program. This assessment was based primarily on data from human health monitoring and research studies and peer-reviewed literature published since the last assessment in 2009.

  9. Trichinella in arctic, subarctic and temperate regions

    DEFF Research Database (Denmark)

    Kapel, C. M O

    1997-01-01

    The transmission and occurrence of Trichinella spp according to the zoogeography of different climatic conditions, socioeconomy and human activity are discussed. Comparing arctic, subarctic and temperate regions, it appears that the species of Trichinella present, the composition of the fauna...... and the human activity are all very important interacting factors affecting epidemiology. In Greenland, where only sylvatic trichinellosis is present, the high prevalence in wildlife appears closely connected with polar bear hunting. In the Scandinavian countries, the prevalence of both sylvatic and domestic...

  10. (Arbo)viruses in high European Arctic

    OpenAIRE

    ELSTEROVÁ, Jana

    2016-01-01

    Since an ongoing climate change covers strongly the polar areas. Higher temperatures and related climate parameters bring the emergence of new parasites and their pathogens to higher latitudes. This may influence zoonotic diseases including arthropod-transmitted diseases. The tick species Ixodes uriae, parasitizing seabirds in the Arctic, may transmit many pathogens including various arboviruses, Borrelia spirochetes and Babesia apicomplexans. In the study we diagnosed 89 individuals of seabi...

  11. The Arctic Turn

    DEFF Research Database (Denmark)

    Rahbek-Clemmensen, Jon

    2018-01-01

    In October 2006, representatives of the Arctic governments met in Salekhard in northern Siberia for the biennial Arctic Council ministerial meeting to discuss how the council could combat regional climate change, among other issues. While most capitals were represented by their foreign minister......, a few states – Canada, Denmark, and the United States – sent other representatives. There was nothing unusual about the absence of Per Stig Møller, the Danish foreign minister – a Danish foreign minister had only once attended an Arctic Council ministerial meeting (Arctic Council 2016). Møller......’s nonappearance did, however, betray the low status that Arctic affairs had in the halls of government in Copenhagen. Since the end of the Cold War, where Greenland had helped tie Denmark and the US closer together due to its geostrategically important position between North America and the Soviet Union, Arctic...

  12. Collaboration across the Arctic

    DEFF Research Database (Denmark)

    Huppert, Verena Gisela; Chuffart, Romain François R.

    2017-01-01

    The Arctic is witnessing the rise of a new paradigm caused by an increase in pan-Arctic collaborations which co-exist with the region’s traditional linkages with the South. Using an analysis of concrete examples of regional collaborations in the Arctic today in the fields of education, health...... and infrastructure, this paper questions whether pan-Arctic collaborations in the Arctic are more viable than North-South collaborations, and explores the reasons behind and the foreseeable consequences of such collaborations. It shows that the newly emerging East-West paradigm operates at the same time...... as the traditional North-South paradigm, with no signs of the East-West paradigm being more viable in the foreseeable future. However, pan-Arctic collaboration, both due to pragmatic reasons and an increased awareness of similarities, is likely to increase in the future. The increased regionalization process...

  13. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears

    DEFF Research Database (Denmark)

    Liu, Shiping; Lorenzen, Eline; Fumagalli, Matteo

    2014-01-01

    Polar bears are uniquely adapted to life in the High Arctic and have undergone drastic physiological changes in response to Arctic climates and a hyperlipid diet of primarily marine mammal prey. We analyzed 89 complete genomes of polar bear and brown bear using population genomic modeling and sho...

  14. Sea Ice Charts of the Russian Arctic in Gridded Format, 1933-2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Arctic and Antarctic Research Institute (AARI) in St. Petersburg, Russia, produces sea ice charts for safety of navigation in the polar regions and for other...

  15. Protecting polar wilderness : Just a western philosophical idea or a useful concept for regulating human activities in the polar regions?

    NARCIS (Netherlands)

    Bastmeijer, Kees; Leary, D.; Koivurova, T.; Alfredsson, G.

    2009-01-01

    Governments involved in Arctic and Antarctic governance have been well aware of the increasing human pressure on the Polar Regions and particularly the last two decades many initiatives have been taken to protect the Arctic and Antarctic environment. But what values are to be protected? This paper

  16. Arctic polynya and glacier interactions

    Science.gov (United States)

    Edwards, Laura

    2013-04-01

    Major uncertainties surround future estimates of sea level rise attributable to mass loss from the polar ice sheets and ice caps. Understanding changes across the Arctic is vital as major potential contributors to sea level, the Greenland Ice Sheet and the ice caps and glaciers of the Canadian Arctic archipelago, have experienced dramatic changes in recent times. Most ice mass loss is currently focused at a relatively small number of glacier catchments where ice acceleration, thinning and calving occurs at ocean margins. Research suggests that these tidewater glaciers accelerate and iceberg calving rates increase when warming ocean currents increase melt on the underside of floating glacier ice and when adjacent sea ice is removed causing a reduction in 'buttressing' back stress. Thus localised changes in ocean temperatures and in sea ice (extent and thickness) adjacent to major glacial catchments can impact hugely on the dynamics of, and hence mass lost from, terrestrial ice sheets and ice caps. Polynyas are areas of open water within sea ice which remain unfrozen for much of the year. They vary significantly in size (~3 km2 to > ~50,000 km2 in the Arctic), recurrence rates and duration. Despite their relatively small size, polynyas play a vital role in the heat balance of the polar oceans and strongly impact regional oceanography. Where polynyas develop adjacent to tidewater glaciers their influence on ocean circulation and water temperatures may play a major part in controlling subsurface ice melt rates by impacting on the water masses reaching the calving front. Areas of open water also play a significant role in controlling the potential of the atmosphere to carry moisture, as well as allowing heat exchange between the atmosphere and ocean, and so can influence accumulation on (and hence thickness of) glaciers and ice caps. Polynya presence and size also has implications for sea ice extent and therefore potentially the buttressing effect on neighbouring

  17. Arctic wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, E. [Kemijoki Oy (Finland); Holttinen, H.; Marjaniemi, M. [VTT Energy, Espoo (Finland); Tammelin, B. [Finnish Meteorological Institute, Helsinki (Finland)

    1998-12-31

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  18. Arctic wind energy

    International Nuclear Information System (INIS)

    Peltola, E.; Holttinen, H.; Marjaniemi, M.; Tammelin, B.

    1998-01-01

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  19. A lunar polar expedition

    Science.gov (United States)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-09-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  20. Polarized targets and beams

    International Nuclear Information System (INIS)

    Meyer, W.

    1985-01-01

    First the experimental situation of the single-pion photoproduction and the photodisintegration of the deuteron is briefly discussed. Then a description of the Bonn polarization facilities is given. The point of main effort is put on the polarized target which plays a vital role in the program. A facility for photon induced double polarization experiments at ELSA will be presented in section 4. Properties of a tensor polarized deuteron target are discussed in section 5. The development in the field of polarized targets, especially on new target materials, enables a new generation of polarized target experiments with (polarized) electrons. Some comments on the use of a polarized target in combination with electron beams will be discussed in section 6. Electron deuteron scattering from a tensor polarized deuteron target is considered and compared with other experimental possibilities. (orig./HSI)

  1. Pan-Arctic distributions of continental runoff in the Arctic Ocean.

    Science.gov (United States)

    Fichot, Cédric G; Kaiser, Karl; Hooker, Stanford B; Amon, Rainer M W; Babin, Marcel; Bélanger, Simon; Walker, Sally A; Benner, Ronald

    2013-01-01

    Continental runoff is a major source of freshwater, nutrients and terrigenous material to the Arctic Ocean. As such, it influences water column stratification, light attenuation, surface heating, gas exchange, biological productivity and carbon sequestration. Increasing river discharge and thawing permafrost suggest that the impacts of continental runoff on these processes are changing. Here, a new optical proxy was developed and implemented with remote sensing to determine the first pan-Arctic distribution of terrigenous dissolved organic matter (tDOM) and continental runoff in the surface Arctic Ocean. Retrospective analyses revealed connections between the routing of North American runoff and the recent freshening of the Canada Basin, and indicated a correspondence between climate-driven changes in river discharge and tDOM inventories in the Kara Sea. By facilitating the real-time, synoptic monitoring of tDOM and freshwater runoff in surface polar waters, this novel approach will help understand the manifestations of climate change in this remote region.

  2. White Arctic vs. Blue Arctic: Making Choices

    Science.gov (United States)

    Pfirman, S. L.; Newton, R.; Schlosser, P.; Pomerance, R.; Tremblay, B.; Murray, M. S.; Gerrard, M.

    2015-12-01

    As the Arctic warms and shifts from icy white to watery blue and resource-rich, tension is arising between the desire to restore and sustain an ice-covered Arctic and stakeholder communities that hope to benefit from an open Arctic Ocean. If emissions of greenhouse gases to the atmosphere continue on their present trend, most of the summer sea ice cover is projected to be gone by mid-century, i.e., by the time that few if any interventions could be in place to restore it. There are many local as well as global reasons for ice restoration, including for example, preserving the Arctic's reflectivity, sustaining critical habitat, and maintaining cultural traditions. However, due to challenges in implementing interventions, it may take decades before summer sea ice would begin to return. This means that future generations would be faced with bringing sea ice back into regions where they have not experienced it before. While there is likely to be interest in taking action to restore ice for the local, regional, and global services it provides, there is also interest in the economic advancement that open access brings. Dealing with these emerging issues and new combinations of stakeholders needs new approaches - yet environmental change in the Arctic is proceeding quickly and will force the issues sooner rather than later. In this contribution we examine challenges, opportunities, and responsibilities related to exploring options for restoring Arctic sea ice and potential pathways for their implementation. Negotiating responses involves international strategic considerations including security and governance, meaning that along with local communities, state decision-makers, and commercial interests, national governments will have to play central roles. While these issues are currently playing out in the Arctic, similar tensions are also emerging in other regions.

  3. Tourism and Arctic Observation Systems: exploring the relationships

    Directory of Open Access Journals (Sweden)

    Suzanne de la Barre

    2016-03-01

    Full Text Available The Arctic is affected by global environmental change and also by diverse interests from many economic sectors and industries. Over the last decade, various actors have attempted to explore the options for setting up integrated and comprehensive trans-boundary systems for monitoring and observing these impacts. These Arctic Observation Systems (AOS contribute to the planning, implementation, monitoring and evaluation of environmental change and responsible social and economic development in the Arctic. The aim of this article is to identify the two-way relationship between AOS and tourism. On the one hand, tourism activities account for diverse changes across a broad spectrum of impact fields. On the other hand, due to its multiple and diverse agents and far-reaching activities, tourism is also well-positioned to collect observational data and participate as an actor in monitoring activities. To accomplish our goals, we provide an inventory of tourism-embedded issues and concerns of interest to AOS from a range of destinations in the circumpolar Arctic region, including Alaska, Arctic Canada, Iceland, Svalbard, the mainland European Arctic and Russia. The article also draws comparisons with the situation in Antarctica. On the basis of a collective analysis provided by members of the International Polar Tourism Research Network from across the polar regions, we conclude that the potential role for tourism in the development and implementation of AOS is significant and has been overlooked.

  4. Delayed polarization of mononuclear phagocyte transcriptional program by type I interferon isoforms

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2005-06-01

    Full Text Available Abstract Background Interferon (IFN-α is considered a key modulator of immunopathological processes through a signature-specific activation of mononuclear phagocytes (MPs. This study utilized global transcript analysis to characterize the effects of the entire type I IFN family in comparison to a broad panel of other cytokines on MP previously exposed to Lipopolysaccharide (LPS stimulation in vitro. Results Immature peripheral blood CD14+ MPs were stimulated with LPS and 1 hour later with 42 separate soluble factors including cytokines, chemokines, interleukins, growth factors and IFNs. Gene expression profiling of MPs was analyzed 4 and 9 hours after cytokine stimulation. Four hours after stimulation, the transcriptional analysis of MPs revealed two main classes of cytokines: one associated with the alternative and the other with the classical pathway of MP activation without a clear polarization of type I IFNs effects. In contrast, after 9 hours of stimulation most type I IFN isoforms induced a characteristic and unique transcriptional pattern separate from other cytokines. These "signature" IFNs included; IFN-β, IFN-α2b/α2, IFN-αI, IFN-α2, IFN-αC, IFN-αJ1, IFN-αH2, and INF-α4B and induced the over-expression of 44 genes, all of which had known functional relationships with IFN such as myxovirus resistance (Mx-1, Mx-2, and interferon-induced hepatitis C-associated microtubular aggregation protein. A second group of type I IFNs segregated separately and in closer association with the type II IFN-γ. The phylogenetic relationship of amino acid sequences among type I IFNs did not explain their sub-classification, although differences at positions 94 through 109 and 175 through 189 were present between the signature and other IFNs. Conclusion Seven IFN-α isoforms and IFN-β participate in the late phase polarization of MPs conditioned by LPS. This information broadens the previous view of the central role played by IFN-α in

  5. Organochlorine contaminant and stable isotope profiles in Arctic fox (Alopex lagopus) from the Alaskan and Canadian Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Hoekstra, P.F.; Braune, B.M.; O' Hara, T.M.; Elkin, B.; Solomon, K.R.; Muir, D.C.G

    2003-04-01

    PCBs in Arctic fox are lower than reported in other Arctic populations and unlikely to cause significant impairment of reproductive success. - Arctic fox (Alopex lagopus) is a circumpolar species distributed across northern Canada and Alaska. Arctic fox muscle and liver were collected at Barrow, AK, USA (n=18), Holman, NT, Canada (n=20), and Arviat, NU, Canada (n=20) to elucidate the feeding ecology of this species and relate these findings to body residue patterns of organochlorine contaminants (OCs). Stable carbon ({delta}{sup 13}C) and nitrogen ({delta}{sup 15}N) isotope analyses of Arctic fox muscle indicated that trophic position (estimated by {delta}{sup 15}N) is positively correlated with increasing {delta}{sup 13}C values, suggesting that Arctic fox with a predominately marine-based foraging strategy occupy a higher trophic level than individuals mostly feeding from a terrestrial-based carbon source. At all sites, the rank order for OC groups in muscle was polychlorinated biphenyls ({sigma}PCB) > chlordane-related compounds ({sigma}CHLOR) > hexachlorocyclohexane ({sigma}HCH) > total toxaphene (TOX) {>=}chlorobenzenes ({sigma}ClBz) > DDT-related isomers ({sigma}DDT). In liver, {sigma}CHLOR was the most abundant OC group, followed by {sigma}PCB > TOX > {sigma}HCH > {sigma}ClBz > {sigma}DDT. The most abundant OC analytes detected from Arctic fox muscle and liver were oxychlordane, PCB-153, and PCB-180. The comparison of {delta}{sup 15}N with OC concentrations indicated that relative trophic position might not accurately predict OC bioaccumulation in Arctic fox. The bioaccumulation pattern of OCs in the Arctic fox is similar to the polar bear. While {sigma}PCB concentrations were highly variable, concentrations in the Arctic fox were generally below those associated with the toxicological endpoints for adverse effects on mammalian reproduction. Further research is required to properly elucidate the potential health impacts to this species from exposure to OCs.

  6. Organochlorine contaminant and stable isotope profiles in Arctic fox (Alopex lagopus) from the Alaskan and Canadian Arctic

    International Nuclear Information System (INIS)

    Hoekstra, P.F.; Braune, B.M.; O'Hara, T.M.; Elkin, B.; Solomon, K.R.; Muir, D.C.G.

    2003-01-01

    PCBs in Arctic fox are lower than reported in other Arctic populations and unlikely to cause significant impairment of reproductive success. - Arctic fox (Alopex lagopus) is a circumpolar species distributed across northern Canada and Alaska. Arctic fox muscle and liver were collected at Barrow, AK, USA (n=18), Holman, NT, Canada (n=20), and Arviat, NU, Canada (n=20) to elucidate the feeding ecology of this species and relate these findings to body residue patterns of organochlorine contaminants (OCs). Stable carbon (δ 13 C) and nitrogen (δ 15 N) isotope analyses of Arctic fox muscle indicated that trophic position (estimated by δ 15 N) is positively correlated with increasing δ 13 C values, suggesting that Arctic fox with a predominately marine-based foraging strategy occupy a higher trophic level than individuals mostly feeding from a terrestrial-based carbon source. At all sites, the rank order for OC groups in muscle was polychlorinated biphenyls (ΣPCB) > chlordane-related compounds (ΣCHLOR) > hexachlorocyclohexane (ΣHCH) > total toxaphene (TOX) ≥chlorobenzenes (ΣClBz) > DDT-related isomers (ΣDDT). In liver, ΣCHLOR was the most abundant OC group, followed by ΣPCB > TOX > ΣHCH > ΣClBz > ΣDDT. The most abundant OC analytes detected from Arctic fox muscle and liver were oxychlordane, PCB-153, and PCB-180. The comparison of δ 15 N with OC concentrations indicated that relative trophic position might not accurately predict OC bioaccumulation in Arctic fox. The bioaccumulation pattern of OCs in the Arctic fox is similar to the polar bear. While ΣPCB concentrations were highly variable, concentrations in the Arctic fox were generally below those associated with the toxicological endpoints for adverse effects on mammalian reproduction. Further research is required to properly elucidate the potential health impacts to this species from exposure to OCs

  7. Arctic circulation regimes.

    Science.gov (United States)

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. © 2015 The Authors.

  8. Arctic carbon cycling

    NARCIS (Netherlands)

    Christensen, Torben R; Rysgaard, SØREN; Bendtsen, JØRGEN; Else, Brent; Glud, Ronnie N; van Huissteden, J.; Parmentier, F.J.W.; Sachs, Torsten; Vonk, J.E.

    2017-01-01

    The marine Arctic is considered a net carbon sink, with large regional differences in uptake rates. More regional modelling and observational studies are required to reduce the uncertainty among current estimates. Robust projections for how the Arctic Ocean carbon sink may evolve in the future are

  9. Pan-Arctic TV Series on Inuit wellness: a northern model of communication for social change?

    Science.gov (United States)

    Johnson, Rhonda; Morales, Robin; Leavitt, Doreen; Carry, Catherine; Kinnon, Dianne; Rideout, Denise; Clarida, Kath

    2011-06-01

    This paper provides highlights of a utilization-focused evaluation of a collaborative Pan-Arctic Inuit Wellness TV Series that was broadcast live in Alaska and Canada in May 2009. This International Polar Year (IPY) communication and outreach project intended to (1) share information on International Polar Year research progress, disseminate findings and explore questions with Inuit in Alaska, Canada and Greenland; (2) provide a forum for Inuit in Alaska, Canada and Greenland to showcase innovative health and wellness projects; (3) ensure Inuit youth and adult engagement throughout; and (4) document and reflect on the overall experience for the purposes of developing and "testing" a participatory communication model. Utilization-focused formative evaluation of the project, with a focus on overall objectives, key messages and lessons learned to facilitate program improvement. Participant observation, surveys, key informant interviews, document review and website tracking. Promising community programs related to 3 themes - men's wellness, maternity care and youth resilience - in diverse circumpolar regions were highlighted, as were current and stillevolving findings from ongoing Arctic research. Multiple media methods were used to effectively deliver and receive key messages determined by both community and academic experts. Local capacity and new regional networks were strengthened. Evidence-based resources for health education and community action were archived in digital formats (websites and DVDs), increasing accessibility to otherwise isolated individuals and remote communities. The Pan-Arctic Inuit Wellness TV Series was an innovative, multi-dimensional communication project that raised both interest and awareness about complex health conditions in the North and stimulated community dialogue and potential for increased collaborative action. Consistent with a communication for social change approach, the project created new networks, increased motivation to act

  10. AURORA BOREALIS: a polar-dedicated European Research Platform

    Science.gov (United States)

    Wolff-Boenisch, Bonnie; Egerton, Paul; Thiede, Joern; Roberto, Azzolini; Lembke-Jene, Lester

    2010-05-01

    Polar research and in particular the properties of northern and southern high latitude oceans are currently a subject of intense scientific debate and investigations, because they are subject to rapid and dramatic climatic variations. Polar regions react more rapidly and intensively to global change than other regions of the earth. A shrinking of the Arctic sea-ice cover, potentially leading to an opening of sea passages to the north of North America and Eurasia, on the long to a "blue" Arctic Ocean would additionally have a strong impact on transport, commerce and tourism bearing potential risk for humans and complex ecosystems in the future. In spite of their critical role processes and feedbacks, especially in winter but not exclusively, are virtually unknown: The Arctic Ocean for example, it is the only basin of the world's oceans that has essentially not been sampled by the drill ships of the Deep-Sea Drilling Project (DSDP) or the Ocean Drilling Program (ODP) and its long-term environmental history and tectonic structure is therefore poorly known. Exceptions are the ODP Leg 151 and the more recent very successful ACEX-expedition of the Integrated Ocean Drilling Program (IODP) in 2004. To help to address the most pressing questions regarding climate change and related processes, a Pan-European initiative in the field of Earth system science has been put in place: AURORA BOREALIS is the largest environmental research infrastructure on the ESFRI roadmap of the European Community. AURORA BOREALIS is a very powerful research icebreaker, which will enable year-round operations in the Arctic and the Antarctic as well as in the adjacent ocean basins. Equipped with its drilling rig, the vessel is also capable to explore the presently completely unknown Arctic deep-sea floor. Last but not least, the ship is a floating observatory and mobile monitoring platform that permits to measure on a long-term basis comprehensive time series in all research fields relevant to

  11. Arctic Haze Analysis

    Science.gov (United States)

    Mei, Linlu; Xue, Yong

    2013-04-01

    The Arctic atmosphere is perturbed by nature/anthropogenic aerosol sources known as the Arctic haze, was firstly observed in 1956 by J. Murray Mitchell in Alaska (Mitchell, 1956). Pacyna and Shaw (1992) summarized that Arctic haze is a mixture of anthropogenic and natural pollutants from a variety of sources in different geographical areas at altitudes from 2 to 4 or 5 km while the source for layers of polluted air at altitudes below 2.5 km mainly comes from episodic transportation of anthropogenic sources situated closer to the Arctic. Arctic haze of low troposphere was found to be of a very strong seasonal variation characterized by a summer minimum and a winter maximum in Alaskan (Barrie, 1986; Shaw, 1995) and other Arctic region (Xie and Hopke, 1999). An anthropogenic factor dominated by together with metallic species like Pb, Zn, V, As, Sb, In, etc. and nature source such as sea salt factor consisting mainly of Cl, Na, and K (Xie and Hopke, 1999), dust containing Fe, Al and so on (Rahn et al.,1977). Black carbon and soot can also be included during summer time because of the mix of smoke from wildfires. The Arctic air mass is a unique meteorological feature of the troposphere characterized by sub-zero temperatures, little precipitation, stable stratification that prevents strong vertical mixing and low levels of solar radiations (Barrie, 1986), causing less pollutants was scavenged, the major revival pathway for particulates from the atmosphere in Arctic (Shaw, 1981, 1995; Heintzenberg and Larssen, 1983). Due to the special meteorological condition mentioned above, we can conclude that Eurasian is the main contributor of the Arctic pollutants and the strong transport into the Arctic from Eurasia during winter caused by the high pressure of the climatologically persistent Siberian high pressure region (Barrie, 1986). The paper intends to address the atmospheric characteristics of Arctic haze by comparing the clear day and haze day using different dataset

  12. Sources and sinks of carbon dioxide in the Arctic regions

    Energy Technology Data Exchange (ETDEWEB)

    Gosink, T. A.; Kelley, J. J.

    1982-01-01

    The data base required to adequately ascertain seasonal source and sink strengths in the arctic regions is difficult to obtain. However, there are now a reasonable quantity of data for this polar region to estimate sources and sinks within the Arctic which may contribute significantly to the annual tropospheric CO/sub 2/ concentration fluctuation. The sea-ice-air and the sea-air interfaces account for most of the contribution to the sources and sinks for carbon dioxide. Although the arctic and subarctic region is small in extent, it certainly is not impervious and ice sealed. Our estimate, based on historical data and current research, indicates that the Arctic, which is about 4% of the earth's surface, is an annual net sink for approx. 10/sup 15/ g CO/sub 2/ accounting for an equivalent of approx. 3% of the annual anthropogenic contribution of CO/sub 2/ to the troposphere.

  13. Arctic Sea Level Reconstruction

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde

    Reconstruction of historical Arctic sea level is very difficult due to the limited coverage and quality of tide gauge and altimetry data in the area. This thesis addresses many of these issues, and discusses strategies to help achieve a stable and plausible reconstruction of Arctic sea level from...... 1950 to today.The primary record of historical sea level, on the order of several decades to a few centuries, is tide gauges. Tide gauge records from around the world are collected in the Permanent Service for Mean Sea Level (PSMSL) database, and includes data along the Arctic coasts. A reasonable...... amount of data is available along the Norwegian and Russian coasts since 1950, and most published research on Arctic sea level extends cautiously from these areas. Very little tide gauge data is available elsewhere in the Arctic, and records of a length of several decades,as generally recommended for sea...

  14. Research with Arctic peoples

    DEFF Research Database (Denmark)

    Smith, H Sally; Bjerregaard, Peter; Chan, Hing Man

    2006-01-01

    Arctic peoples are spread over eight countries and comprise 3.74 million residents, of whom 9% are indigenous. The Arctic countries include Canada, Finland, Greenland (Denmark), Iceland, Norway, Russia, Sweden and the United States. Although Arctic peoples are very diverse, there are a variety...... of environmental and health issues that are unique to the Arctic regions, and research exploring these issues offers significant opportunities, as well as challenges. On July 28-29, 2004, the National Heart, Lung, and Blood Institute and the Canadian Institutes of Health Research co-sponsored a working group...... entitled "Research with Arctic Peoples: Unique Research Opportunities in Heart, Lung, Blood and Sleep Disorders". The meeting was international in scope with investigators from Greenland, Iceland and Russia, as well as Canada and the United States. Multiple health agencies from Canada and the United States...

  15. Towards an International Polar Data Coordination Network

    Directory of Open Access Journals (Sweden)

    P L Pulsifer

    2014-10-01

    Full Text Available Data management is integral to sound polar science. Through analysis of documents reporting on meetings of the Arctic data management community, a set of priorities and strategies are identified. These include the need to improve data sharing, make use of existing resources, and better engage stakeholders. Network theory is applied to a preliminary inventory of polar and global data management actors to improve understanding of the emerging community of practice. Under the name the Arctic Data Coordination Network, we propose a model network that can support the community in achieving their goals through improving connectivity between existing actors.

  16. Arctic air pollution: New insights from POLARCAT-IPY

    International Nuclear Information System (INIS)

    Law, Katharine S.; Ancellet, Gerard; Pelon, Jacques; Thomas, Jennie L.; Stohl, Andreas; Quinn, Patricia K.; Brock, Charles A.; Burkhart, John F.

    2014-01-01

    Given the rapid nature of climate change occurring in the Arctic and the difficulty climate models have in quantitatively reproducing observed changes such as sea ice loss, it is important to improve understanding of the processes leading to climate change in this region, including the role of short-lived climate pollutants such as aerosols and ozone. It has long been known that pollution produced from emissions at mid latitudes can be transported to the Arctic, resulting in a winter/spring aerosol maximum known as Arctic haze. However, many uncertainties remain about the composition and origin of Arctic pollution throughout the troposphere; for example, many climate-chemistry models fail to reproduce the strong seasonality of aerosol abundance observed at Arctic surface sites, the origin and deposition mechanisms of black carbon (soot) particles that darken the snow and ice surface in the Arctic is poorly understood, and chemical processes controlling the abundance of tropospheric ozone are not well quantified. The International Polar Year (IPY) Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, Climate, Chemistry, Aerosols and Transport (POLARCAT) core project had the goal to improve understanding about the origins of pollutants transported to the Arctic; to detail the chemical composition, optical properties, and climate forcing potential of Arctic aerosols; to evaluate the processes governing tropospheric ozone; and to quantify the role of boreal forest fires. This article provides a review of the many results now available based on analysis of data collected during the POLARCAT aircraft-, ship-, and ground-based field campaigns in spring and summer 2008. Major findings are highlighted and areas requiring further investigation are discussed. (authors)

  17. Analysis of ozone and nitric acid in spring and summer Arctic pollution using aircraft, ground-based, satellite observations and MOZART-4 model: source attribution and partitioning

    Directory of Open Access Journals (Sweden)

    C. Wespes

    2012-01-01

    Full Text Available In this paper, we analyze tropospheric O3 together with HNO3 during the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport program, combining observations and model results. Aircraft observations from the NASA ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites and NOAA ARCPAC (Aerosol, Radiation and Cloud Processes affecting Arctic Climate campaigns during spring and summer of 2008 are used together with the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4 to assist in the interpretation of the observations in terms of the source attribution and transport of O3 and HNO3 into the Arctic (north of 60° N. The MOZART-4 simulations reproduce the aircraft observations generally well (within 15%, but some discrepancies in the model are identified and discussed. The observed correlation of O3 with HNO3 is exploited to evaluate the MOZART-4 model performance for different air mass types (fresh plumes, free troposphere and stratospheric-contaminated air masses.

    Based on model simulations of O3 and HNO3 tagged by source type and region, we find that the anthropogenic pollution from the Northern Hemisphere is the dominant source of O3 and HNO3 in the Arctic at pressures greater than 400 hPa, and that the stratospheric influence is the principal contribution at pressures less 400 hPa. During the summer, intense Russian fire emissions contribute some amount to the tropospheric columns of both gases over the American sector of the Arctic. North American fire emissions (California and Canada also show an important impact on tropospheric ozone in the Arctic boundary layer.

    Additional analysis of tropospheric O3 measurements from ground-based FTIR and from the IASI satellite sounder made

  18. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  19. The greenhouse effect and the Arctic ice

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern

    2002-01-01

    The impact on the Arctic ice of global warming is important for many people and for the environment. Less ice means changed conditions for the Inuits, hard times for the polar bears and changed conditions for the fishing sector. There is at present some uncertainty about the thickness of the ice and what might be the cause of its oscillation. It was reported a few years ago that the thickness of the ice had almost been reduced by 50 per cent since the 1950s and some researchers suggested that within a few decades the ice would disappear during the summer. These measurements have turned out not to be representative for the whole Arctic region, and it now appears that a great deal of the measured thickness variation can be attributed to changes in the atmospheric circulation. The article discusses the Arctic Oscillation and the North Atlantic Oscillation in relation to the ice thickness, and climate models. Feedback mechanisms such as reduced albedo may have a big impact in the Arctic in a global greenhouse warming. Model simulations are at variance, and the scenarios for the future are uncertain

  20. The Arctic Observing Network (AON)Cooperative Arctic Data and Information Service (CADIS)

    Science.gov (United States)

    Moore, J.; Fetterer, F.; Middleton, D.; Ramamurthy, M.; Barry, R.

    2007-12-01

    The Arctic Observing Network (AON) is intended to be a federation of 34 land, atmosphere and ocean observation sites, some already operating and some newly funded by the U.S. National Science Foundation. This International Polar Year (IPY) initiative will acquire a major portion of the data coming from the interagency Study of Environmental Arctic Change (SEARCH). AON will succeed in supporting the science envisioned by its planners only if it functions as a system and not as a collection of independent observation programs. Development and implementation of a comprehensive data management strategy will key a key to the success of this effort. AON planners envision an ideal data management system that includes a portal through which scientists can submit metadata and datasets at a single location; search the complete archive and find all data relevant to a location or process; all data have browse imagery and complete documentation; time series or fields can be plotted on line, and all data are in a relational database so that multiple data sets and sources can be queried and retrieved. The Cooperative Arctic Data and Information Service (CADIS) will provide near-real-time data delivery, a long-term repository for data, a portal for data discovery, and tools to manipulate data by building on existing tools like the Unidata Integrated Data Viewer (IDV). Our approach to the data integration challenge is to start by asking investigators to provide metadata via a general purpose user interface. An entry tool assists PIs in writing metadata and submitting data. Data can be submitted to the archive in NetCDF with Climate and Forecast conventions or in one of several other standard formats where possible. CADIS is a joint effort of the University Corporation for Atmospheric Research (UCAR), the National Snow and Ice Data Center (NSIDC), and the National Center for Atmospheric Research (NCAR). In the first year, we are concentrating on establishing metadata protocols that

  1. Hydrocarbons in the Arctic: Economic prospects and environmental issues

    International Nuclear Information System (INIS)

    Eschard, Remi; Vially, Roland; Benard, Francine

    2011-01-01

    Petroleum installations in the Arctic differ widely owing to the region's complex geological history. They are classical, but prospecting and producing from 'polar' fields represent a technological challenge given the extreme climatic conditions. The distance of oil and gas fields from zones of consumption and the transportation difficulties entail gigantic investments for working these fields and bringing their production to the marketplace

  2. High resolution modelling of the decreasing Arctic sea ice

    DEFF Research Database (Denmark)

    Madsen, K. S.; Rasmussen, T. A. S.; Blüthgen, Jonas

    2012-01-01

    The Arctic sea ice cover has been rapidly decreasing and thinning over the last decade, with minimum ice extent in 2007 and almost as low extent in 2011. This study investigates two aspects of the decreasing ice cover; first the large scale thinning and changing dynamics of the polar sea ice, and...

  3. Enabling Use of Unmanned Aircraft Systems for Arctic Environmental Monitoring

    DEFF Research Database (Denmark)

    Storvold, Rune; la Cour-Harbo, Anders; Mulac, Brenda

    , technical and logistical challenges facing scientists intending to use UAS in their arctic work. Future planned campaigns and science goals under the Coordinated Investigation of Climate-Cryosphere Interactions (CICCI) umbrella will be outlined. A new AMAP report on conducting safe UAS operations......, poor resolution, and the complicated surface of snow and ice. Measurements made from manned aircraft are also limited because of range and endurance, as well as the danger and costs presented by operating manned aircraft in harsh and remote environments like the Arctic. Unmanned aircraft systems (UAS...... on the environment. Operating UAS present unique challenges and it is necessary to understand and overcome those challenges. Based on the recommendations put forth by the Arctic scientists, the Arctic Council created a UAS Expert Group under the Arctic Monitoring and Assessment Program (AMAP) to help address...

  4. Arctic Collaboration: Developing a Successful Researcher/Teacher Expedition

    Science.gov (United States)

    Skotnicki, S.; Loranty, M. M.

    2016-12-01

    Are you a researcher working in the polar regions of the world or a K-12 science teacher who would like to be part of a field research expedition in the polar regions? Researchers and K-12 science teachers can apply for funding from PolarTREC, a program that pairs researchers and teachers to conduct field science in Antarctica and the Arctic. Our poster presentation will offer details of one such successful researcher/teacher partnership. During the summer of 2016, Science Teacher Stan Skotnicki (Cheektowaga Central Middle School in Buffalo, NY) was teamed up with Assistant Professor Mike Loranty (Colgate University) to study vegetation and ecosystem impacts on permafrost vulnerability. Stan joined Mike and his research team in Northeastern Siberia preparing field sites, collecting data, processing samples, discussing methods, and planning daily activities. In order to raise awareness and broaden the impact of the research being conducted, Stan communicated the science through a series of journals on the PolarTREC website with his students, staff, and members of the community. Additionally, Mike and Stan held a live webinar from Siberia discussing the content of the research, the nature of the fieldwork, and why it was important to travel so far for this information. This expedition allowed Stan to experience working with a field research team for an extended period of time. Mike benefited from having a team member dedicated to learning about and communicating project details that also provided valuable field assistance. Stan gets to bring his hands-on experience back to his classroom in Buffalo and Mike has the opportunity to share his research with a new and different audience, including presenting to students at Cheektowaga Central with the help of his undergraduate students. This model of collaboration provides a number of valuable benefits for both teachers and researchers. While the PolarTREC program provides necessary logistics and funding to conduct these

  5. Warm Arctic—cold continents: climate impacts of the newly open Arctic Sea

    Directory of Open Access Journals (Sweden)

    James E. Overland

    2011-12-01

    Full Text Available Recent Arctic changes are likely due to coupled Arctic amplification mechanisms with increased linkage between Arctic climate and sub-Arctic weather. Historically, sea ice grew rapidly in autumn, a strong negative radiative feedback. But increased sea-ice mobility, loss of multi-year sea ice, enhanced heat storage in newly sea ice-free ocean areas, and modified wind fields form connected positive feedback processes. One-way shifts in the Arctic system are sensitive to the combination of episodic intrinsic atmospheric and ocean variability and persistent increasing greenhouse gases. Winter 2009/10 and December 2010 showed a unique connectivity between the Arctic and more southern weather patterns when the typical polar vortex was replaced by high geopotential heights over the central Arctic and low heights over mid-latitudes that resulted in record snow and low temperatures, a warm Arctic—cold continents pattern. The negative value of the winter (DJF 2009/10 North Atlantic Oscillation (NAO index associated with enhanced meridional winds was the lowest observed value since the beginning of the record in 1865. Wind patterns in December 2007 and 2008 also show an impact of warmer Arctic temperatures. A tendency for higher geopotential heights over the Arctic and enhanced meridional winds are physically consistent with continued loss of sea ice over the next 40 years. A major challenge is to understand the interaction of Arctic changes with climate patterns such as the NAO, Pacific North American and El Niño–Southern Oscillation.

  6. Science Partnerships for a Sustainable Arctic: the Marine Mammal Nexus (Invited)

    Science.gov (United States)

    Moore, S. E.

    2010-12-01

    Marine mammals are both icons of Arctic marine ecosystems and fundamental to Native subsistence nutrition and culture. Eight species are endemic to the Pacific Arctic, including the polar bear, walrus, ice seals (4 species), beluga and bowhead whales. Studies of walrus and bowheads have been conducted over the past 30 years, to estimate population size and elucidate patterns of movement and abundance. With regard to the three pillars of the SEARCH program, these long-term OBSERVATIONS provide a foundation for research seeking to UNDERSTAND and RESPOND to the effects of rapid climate change on the marine ecosystem. Specifically, research on the coastal ecosystem near Barrow, Alaska focuses on late-summer feeding habitat for bowheads in an area where whales are hunted in autumn. This work is a partnership among agency, academic and local scientists and the residents of Barrow, all of whom seek to better UNDERSTAND how recent dramatic changes in sea ice, winds and offshore industrial activities influence whale movements and behavior. In regard to RESPONDING to climate change, the nascent Sea Ice for Walrus Outlook (SIWO) is a science partnership that projects sea ice and wind conditions for five villages in the Bering Strait region. The objective of the SIWO is to provide information on physical conditions in the marine environment at spatial and temporal scales relevant to walrus hunters. Marine mammals are a strong and dynamic nexus for partnerships among scientists, Arctic residents, resource managers and the general public - as such, they are essential elements to any science plan for a sustainable Arctic.

  7. Globalising the Arctic Climate:

    DEFF Research Database (Denmark)

    Corry, Olaf

    2017-01-01

    This chapter uses an object-oriented approach to explore how the Arctic is being constituted as an object of global governance within an emerging ‘global polity’, partly through geoengineering plans and political visions ('imaginaries'). It suggests that governance objects—the socially constructed...... on world politics. The emergence of the Arctic climate as a potential target of governance provides a case in point. The Arctic climate is becoming globalised, pushing it up the political agenda but drawing it away from its local and regional context....

  8. "Live from IPY"--Connecting Students, Teachers and the Public to Polar Research

    Science.gov (United States)

    Breen, K.; Warnick, W. K.; Warburton, J.; Fischer, K.; Wiggins, H.

    2007-12-01

    PolarTREC-Teachers and Researchers Exploring and Collaborating is a three-year (2007-2009) teacher professional development program of the Arctic Research Consortium of the U.S. (ARCUS) that pairs K-12 teachers with researchers to improve science education through authentic polar research experiences. Each year of PolarTREC, approximately 15 teachers spend two to six weeks in the Arctic or Antarctic, working closely with researchers investigating a wide range of topics such as sea-ice dynamics, terrestrial ecology, marine biology, atmospheric chemistry, and long-term climate change. PolarTREC is funded by the National Science Foundation. While in the field, teachers and researchers communicate extensively with their colleagues, communities, and hundreds of students of all ages across the globe, using a variety of communication technologies and tools to appeal to broad student and public engagement in polar science. Through the PolarTREC website (www.polartrec.com) teachers connect from the field through the use of online journals and forums, photo galleries, podcasts, and learning resources. "Live from IPY," a key activity of PolarTREC, is a free, interactive, distance-learning experience that virtually transports students and the public to unique and remote polar locations through a live Internet interface. Rather than relying solely on the asynchronous elements of online journals, forums, photo albums, and podcasts, "Live from IPY" allows real-time interaction by adding elements including live voice, video, chat, application sharing, polling, and whiteboards, but requires only telephone and/or Internet access for participants and presenters to connect. "Live from IPY" and the online outreach elements of PolarTREC convey the excitement of polar research experiences to a broad audience far beyond the classrooms of the PolarTREC teachers, allowing anyone to join a global network of scientists, teachers, students, and communities and actively participate in the

  9. Cloud-Scale Numerical Modeling of the Arctic Boundary Layer

    Science.gov (United States)

    Krueger, Steven K.

    1998-01-01

    The interactions between sea ice, open ocean, atmospheric radiation, and clouds over the Arctic Ocean exert a strong influence on global climate. Uncertainties in the formulation of interactive air-sea-ice processes in global climate models (GCMs) result in large differences between the Arctic, and global, climates simulated by different models. Arctic stratus clouds are not well-simulated by GCMs, yet exert a strong influence on the surface energy budget of the Arctic. Leads (channels of open water in sea ice) have significant impacts on the large-scale budgets during the Arctic winter, when they contribute about 50 percent of the surface fluxes over the Arctic Ocean, but cover only 1 to 2 percent of its area. Convective plumes generated by wide leads may penetrate the surface inversion and produce condensate that spreads up to 250 km downwind of the lead, and may significantly affect the longwave radiative fluxes at the surface and thereby the sea ice thickness. The effects of leads and boundary layer clouds must be accurately represented in climate models to allow possible feedbacks between them and the sea ice thickness. The FIRE III Arctic boundary layer clouds field program, in conjunction with the SHEBA ice camp and the ARM North Slope of Alaska and Adjacent Arctic Ocean site, will offer an unprecedented opportunity to greatly improve our ability to parameterize the important effects of leads and boundary layer clouds in GCMs.

  10. Simulation of Extreme Arctic Cyclones in IPCC AR5 Experiments

    Science.gov (United States)

    Vavrus, S. J.

    2012-12-01

    Although impending Arctic climate change is widely recognized, a wild card in its expression is how extreme weather events in this region will respond to greenhouse warming. Intense polar cyclones represent one type of high-latitude phenomena falling into this category, including very deep synoptic-scale cyclones and mesoscale polar lows. These systems inflict damage through high winds, heavy precipitation, and wave action along coastlines, and their impact is expected to expand in the future, when reduced sea ice cover allows enhanced wave energy. The loss of a buffering ice pack could greatly increase the rate of coastal erosion, which has already been increasing in the Arctic. These and related threats may amplify if extreme Arctic cyclones become more frequent and/or intense in a warming climate with much more open water to fuel them. This possibility has merit on the basis of GCM experiments, which project that greenhouse forcing causes lower mean sea level pressure (SLP) in the Arctic and a strengthening of the deepest storms over boreal high latitudes. In this study, the latest Coupled Model Intercomparison Project (CMIP5) climate model output is used to investigate the following questions: (1) What are the spatial and seasonal characteristics of extreme Arctic cyclones? (2) How well do GCMs simulate these phenomena? (3) Are Arctic cyclones already showing the expected response to greenhouse warming in climate models? To address these questions, a retrospective analysis is conducted of the transient 20th century simulations among the CMIP5 GCMs (spanning years 1850-2005). The results demonstrate that GCMs are able to reasonably represent extreme Arctic cyclones and that the simulated characteristics do not depend significantly on model resolution. Consistent with observational evidence, climate models generate these storms primarily during winter and within the climatological Aleutian and Icelandic Low regions. Occasionally the cyclones remain very intense

  11. Arctic Synthesis Collaboratory: A Virtual Organization for Transformative Research and Education on a Changing Arctic

    Science.gov (United States)

    Warnick, W. K.; Wiggins, H. V.; Hinzman, L.; Holland, M.; Murray, M. S.; Vörösmarty, C.; Loring, A. J.

    2008-12-01

    -enabled model library, user forums, a data search and discovery system, and an online library. Support Scientist Professional Development: Experts at all career levels must keep pace with the newest developments in data integration and modeling, interdisciplinary science, and cyber-enabled collaboration. Specific project activities could include: web seminars, short courses, and a mentor program. Education, Outreach, and Policy Resources: An Arctic Virtual Outreach Center (AVOC) will provide critical education, outreach, and policy elements of the Collaboratory. Specific activities could include: public eSeminars, a virtual pressroom, K-12 classroom resources, and an eNewsletter. A Collaboratory Implementation Workshop is being planned for winter 2009; further details will be available soon. For more information, contact Helen V. Wiggins, Arctic Research Consortium of the U.S. (ARCUS) at: helen@arcus.org, or go to the website of the community workshop, "New Perspectives through Data Discovery and Modeling," at: http://www.arcus.org/ARCSS/2007_data/index.html.

  12. INTERNATIONAL EXPERIENCE AND TRENDS OF INNOVATIVE DEVELOPMENT OF ARCTIC TERRITORIES

    Directory of Open Access Journals (Sweden)

    M. Dudin

    2015-01-01

    Full Text Available In this article and summarized the regularities of formation of foreign experience and trends of development of Arctic territories. Set out the important points predetermine orientation and specificity of manifestations of national interests – potential participants of the subsoil in the Arctic zone. On the basis of the illuminated materials were obtained the following conclusions: Signifi cant interest in the Arctic show today, not only the fi ve countries (Russia, USA, Canada, Norway, Denmark, who own Arctic territories, but also polar state (Iceland, Sweden, Finland, the European Union and Asia. As a consequence of that, it is expected that in the XXI century the Arctic region will be the focus of attention as an official Arctic 45, and a number of states whose territory is quite removed from it; For Russia, given the current, acute political conditions (sanctions, confrontation with the West, Ukrainian crisis and war in the Middle East development of Arctic territories, some moved away, moved on tomorrow and the day after tomorrow on the agenda. This approach is fundamentally fl awed and fraught with a number of threats, because other countries do not decrease, but only increase their interest in this issue; Territorial opposition to all those involved in the topic of causing instability in the Arctic region, but does not represent a real threat for the emergence of large-scale conflict. Therefore, making the choice between the hard pressure of national interests and the interests of harmonization of the Arctic states, Russia must be based on international cooperationand mutual consideration of interests in the development of its Arctic strategy; Considering the cooperation of the countries of the Arctic Council and their cooperation in the framework of a global economic forum G8, there are prerequisites for the decision of the Arctic confl ict through negotiation and compromise. In this context it is very important to develop

  13. AMBON - the Arctic Marine Biodiversity Observing Network

    Science.gov (United States)

    Iken, K.; Danielson, S. L.; Grebmeier, J. M.; Cooper, L. W.; Hopcroft, R. R.; Kuletz, K.; Stafford, K.; Mueter, F. J.; Collins, E.; Bluhm, B.; Moore, S. E.; Bochenek, R. J.

    2016-02-01

    The goal of the Arctic Marine Biodiversity Observing Network (AMBON) is to build an operational and sustainable marine biodiversity observing network for the US Arctic Chukchi Sea continental shelf. The AMBON has four main goals: 1. To close current gaps in taxonomic biodiversity observations from microbes to whales, 2. To integrate results of past and ongoing research programs on the US Arctic shelf into a biodiversity observation network, 3. To demonstrate at a regional level how an observing network could be developed, and 4. To link with programs on the pan-Arctic to global scale. The AMBON fills taxonomic (from microbes to mammals), functional (food web structure), spatial and temporal (continuing time series) gaps, and includes new technologies such as state-of-the-art genomic tools, with biodiversity and environmental observations linked through central data management through the Alaska Ocean Observing System. AMBON is a 5-year partnership between university and federal researchers, funded through the National Ocean Partnership Program (NOPP), with partners in the National Oceanographic and Atmospheric Administration (NOAA), the Bureau of Ocean and Energy Management (BOEM), and Shell industry. AMBON will allow us to better coordinate, sustain, and synthesize biodiversity research efforts, and make data available to a broad audience of users, stakeholders, and resource managers.

  14. Anthropogenic Radionuglides in Marine Polar Regions

    Science.gov (United States)

    Holm, Elis

    The polar regions are important for the understanding of long range water and atmospheric transport of anthropogenic substances. Investigations show that atmospheric transport of anthropogenic radionuclides is the most important route of transport to the Antarctic while water transport plays a greater role for the Arctic. Fallout from nuclear detonation tests is the major source in the Antarctic while in the Arctic other sources, especially European reprocessing facilities, dominate for conservatively behaving rdionuclides such as 137Cs . The flux of 137Cs and 239+240Pu in the Antarctic is about 1/10 of that for the Arctic and the resulting concentrations in surface sea-water show the same ratio for the two areas. In the Antarctic concentration factors for 137Cs are higher than in the Arctic for similar species

  15. Arctic Mixed Layer Dynamics

    National Research Council Canada - National Science Library

    Morison, James

    2003-01-01

    .... Over the years we have sought to understand the heat and mass balance of the mixed layer, marginal ice zone processes, the Arctic internal wave and mixing environment, summer and winter leads, and convection...

  16. Arctic Aerosols and Sources

    DEFF Research Database (Denmark)

    Nielsen, Ingeborg Elbæk

    2017-01-01

    Since the Industrial Revolution, the anthropogenic emission of greenhouse gases has been increasing, leading to a rise in the global temperature. Particularly in the Arctic, climate change is having serious impact where the average temperature has increased almost twice as much as the global during......, ammonium, black carbon, and trace metals. This PhD dissertation studies Arctic aerosols and their sources, with special focus on black carbon, attempting to increase the knowledge about aerosols’ effect on the climate in an Arctic content. The first part of the dissertation examines the diversity...... of aerosol emissions from an important anthropogenic aerosol source: residential wood combustion. The second part, characterizes the chemical and physical composition of aerosols while investigating sources of aerosols in the Arctic. The main instrument used in this research has been the state...

  17. Modeling the summertime Arctic cloudy boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J.A.; Pinto, J.O. [Univ. of Colorado, Boulder, CO (United States); McInnes, K.L. [CSIRO Division of Atmospheric Research, Mordialloc (Australia)

    1996-04-01

    Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.

  18. Videographic Education: Owning the Polar Crisis

    Science.gov (United States)

    Vachon, R. W.; Buhr, S. M.

    2007-12-01

    Television and internet-served video is an increasingly important media tool for reaching into society. This talk will present clips from a film designed to educate the public about warming in the polar regions, the socioeconomic and environmental implications of this warming; and the actions we can take to slow down human contributions to climate change. This talk will present a short film Owning the Polar Crisis, which is drawn from footage for Polar Visions, a four segment film available for educational audiences and the public.. The films are unique in that they draw from the perspectives of well-known climate scientists, citizens from all over the planet and natives of the Arctic. The compelling images were taken from numerous locations around the Arctic, including Alaska and Greenland. Owning the Polar Crisis was filmed, directed and produced by Dr. Ryan Vachon, a climate scientist and videographer with an intimate knowledge of the subject matter.

  19. NOAA's Joint Polar Satellite System's (JPSS) Proving Ground and Risk Reduction (PGRR) Program - Bringing JPSS Science into Support of Key NOAA Missions!

    Science.gov (United States)

    Sjoberg, W.; McWilliams, G.

    2017-12-01

    This presentation will focus on the continuity of the NOAA Joint Polar Satellite System (JPSS) Program's Proving Ground and Risk Reduction (PGRR) and key activities of the PGRR Initiatives. The PGRR Program was established in 2012, following the launch of the Suomi National Polar Partnership (SNPP) satellite. The JPSS Program Office has used two PGRR Project Proposals to establish an effective approach to managing its science and algorithm teams in order to focus on key NOAA missions. The presenter will provide details of the Initiatives and the processes used by the initiatives that have proven so successful. Details of the new 2017 PGRR Call-for-Proposals and the status of project selections will be discussed.

  20. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Northwest Arctic, Alaska: M_MAMMAL (Marine Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for seals, whales, walruses, polar bears, and Steller sea lions in Northwest Arctic, Alaska. Vector...

  1. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Northwest Arctic, Alaska: M_MAMPT (Marine Mammal Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for Steller sea lions and polar bears in Northwest Arctic, Alaska. Vector points in this data set represent...

  2. Changing Arctic: A Strategic Analysis of United States Arctic Policy and the United Nations Convention on the Law of the Sea

    Science.gov (United States)

    2013-05-01

    is below the constellation Ursa Minor, or the Great Bear . Hence, the word Arctic comes from the Greek word arktos or “ bear .” 7 The generally...13 David Curtis Wright , Canadian Defence and Foreign Affairs Institute., and Canadian Electronic Library (Firm), "The Panda ... Bear Readies to Meet the Polar Bear China and Canada’s Arctic Sovereignty Challenge," Canadian Defence & Foreign Affairs Institute, p. 4 67

  3. Climate-induced behavioral changes influence exposure of an Arctic apex predator to pathogens and contaminants

    Science.gov (United States)

    Polar bears (Ursus maritimus) may serve as sentinels for pathogens and contaminants, providing insight into changing Arctic ecosystems and health risks to wildlife and humans. Recent changes in the availability of sea ice habitat have coincided with increased use of land by polar bears from the sout...

  4. A cluster of three cases of trichinellosis linked to bear meat consumption in the Arctic

    DEFF Research Database (Denmark)

    Dupouy-Camet, Jean; Yera, Hélène; Dahane, Naïma

    2016-01-01

    We report here three cases of trichinellosis due to polar bear meat consumption in East Greenland. In the past 20 years, 31 cases of trichinellosis have been reported in French travellers to the Arctic (North Quebec, Nunavut and Greenland) who consumed undercooked meat from black, brown, or polar...

  5. A History of Coastal Research in the Arctic (Invited)

    Science.gov (United States)

    Walker, H. J.; McGraw, M.

    2009-12-01

    The arctic shoreline is, according to the CIA World Factbook, 45,389 km long. However, a more realistic length from the standpoint of detailed research is the 200,000 km proposed at the 1999 Arctic Coastal Dynamics Workshop. Highly varied in form and material it is dominated by a variety of processes, is relatively remote, is ice-bound much of the year, and has generally been neglected by the scientific community. Before the 20th century, most of the information about its geology, hydrology, geomorphology, and biology was recorded in ship's logs or in explorer's books and was for the most part incidental to the narrative being related. The paucity of specific research is indicated by the relatively few relevant papers included in the more than 100,000 annotated entries published in the 15 volumes of the Arctic Bibliography (1953-1971) and in the nearly as extensive 27 volume bibliography prepared by the Cold Regions Research and Engineering Laboratory (CRREL) between 1952 and 1973. Nonetheless, there were some distinctive research endeavors during the early part of the 20th century; e.g., Leffingwell's 1919 Alaskan Arctic Coast observations, Nansen's 1921 strandflat studies, and Zenkovich's 1937 Murmansk research. During that period some organizations devoted to polar research, especially the USSR's Arctic and Antarctic Research Institute and the Scott Polar Research Institute (both in 1920) were established, although the amount of their research that could be considered coastal and arctic was limited. Specific research of the arctic's shoreline was mainly academic until after World War II when military, economic, industrial, and archaeological interests began demanding reliable, contemporary data. At the time numerous organizations with a primary focus on the Arctic were formed. Included are the Arctic Institute of North America (1945), the Snow, Ice, and Permafrost Research Establishment (latter to become CRREL) and the Office of Naval Research's Arctic Research

  6. Contemporary Arctic Sea Level

    Science.gov (United States)

    Cazenave, A. A.

    2017-12-01

    During recent decades, the Arctic region has warmed at a rate about twice the rest of the globe. Sea ice melting is increasing and the Greenland ice sheet is losing mass at an accelerated rate. Arctic warming, decrease in the sea ice cover and fresh water input to the Arctic ocean may eventually impact the Arctic sea level. In this presentation, we review our current knowledge of contemporary Arctic sea level changes. Until the beginning of the 1990s, Arctic sea level variations were essentially deduced from tide gauges located along the Russian and Norwegian coastlines. Since then, high inclination satellite altimetry missions have allowed measuring sea level over a large portion of the Arctic Ocean (up to 80 degree north). Measuring sea level in the Arctic by satellite altimetry is challenging because the presence of sea ice cover limits the full capacity of this technique. However adapted processing of raw altimetric measurements significantly increases the number of valid data, hence the data coverage, from which regional sea level variations can be extracted. Over the altimetry era, positive trend patterns are observed over the Beaufort Gyre and along the east coast of Greenland, while negative trends are reported along the Siberian shelf. On average over the Arctic region covered by satellite altimetry, the rate of sea level rise since 1992 is slightly less than the global mea sea level rate (of about 3 mm per year). On the other hand, the interannual variability is quite significant. Space gravimetry data from the GRACE mission and ocean reanalyses provide information on the mass and steric contributions to sea level, hence on the sea level budget. Budget studies show that regional sea level trends over the Beaufort Gyre and along the eastern coast of Greenland, are essentially due to salinity changes. However, in terms of regional average, the net steric component contributes little to the observed sea level trend. The sea level budget in the Arctic

  7. Comparing the effects of exercise program and low-level laser therapy with exercise program and polarized polychromatic non-coherent light (bioptron light) on the treatment of lateral elbow tendinopathy.

    Science.gov (United States)

    Stasinopoulos, Dimitrios; Stasinopoulos, Ioannis; Pantelis, Manias; Stasinopoulou, Kalliopi

    2009-06-01

    The use of low-level laser therapy (LLLT) and polarized polychromatic non-coherent light as supplements to an exercise program has been recommended for the management of lateral elbow tendinopathy (LET). To investigate whether an exercise program supplemented with LLLT is more successful than an exercise program supplemented with polarized polychromatic non-coherent light in treating LET. Patients with unilateral LET for at least 4 wk were sequentially allocated to receive either an exercise program with LLLT or an exercise program with polarized polychromatic non-coherent light. The exercise program consisted of eccentric and static stretching exercises of wrist extensors. In the LLLT group a 904-nm Ga-As laser was used in continuous mode, and the power density was 130 mW/cm(2), and the dose was 0.585 J/point. In the group receiving polarized polychromatic non-coherent light the Bioptron 2 was used to administer the dose perpendicularly to the lateral epicondyle at three points at an operating distance of 5-10 cm for 6 min at each position. The outcome measures were pain and function and were evaluated at baseline, at the end of the treatment (week 4), and 3 mo after the end of treatment (week 16). Fifty patients met the inclusion criteria. At the end of treatment there was a decline in pain and a rise in function in both groups compared with baseline (p 0.0005 on the independent t-test). The results suggest that the combination of an exercise program with LLLT or polarized polychromatic non-coherent light is an adequate treatment for patients with LET. Further research to establish the relative and absolute effectiveness of such a treatment approach is needed.

  8. Comparative responses of phenology and reproductive development to simulated environmental change in sub-arctic and high arctic plants

    Energy Technology Data Exchange (ETDEWEB)

    Wookey, P A; Welker, J M; Callaghan, T V [Inst. of Terrestrial Ecology, Merlewood Research Station, Grange-over-Sands, Cumbria (United Kingdom); Parsons, A N; Potter, J A; Lee, J A; Press, M C [Dept. of Environmental Biology, Univ. of Manchester, Manchester (United Kingdom)

    1993-01-01

    The effects of temperature, precipitation and nutrient perturbations, and their interactions, are being assessed on two contrasting arctic ecosystems to simulate impacts of climate change. One, a high arctic polar semi-desert community, is characterized by a sparse, low and aggregated vegetation cover where plant proliferation is by seedlings, whereas the other, a sub-arctic dwarf shrub health, is characterized by a complete, vegetation cover of erect, clonal dwarf shrubs which spread vegetatively. The developmental processes of seed production were shown to be highly sensitive, even within one growing season to specific environmental perturbations which differed between sites. At the polar semi-desert site, there was a striking effect of the temperature enhancement treatments on phenology and seed-setting of Dryas octopetala ssp. octopetala, with almost no seed-setting occurring in plots experiencing ambient temperatures. By contrast, there were no significant effects of temperature enhancement alone on fruit production of Empetrum hermaphroditum at the sub-Arctic dwarf shrub heath site, although fruit production was significantly influenced by the application of nutrients and/or water. The response of dominant high arctic dwarf shrub to increased temperature suggests that any climate warming may stimulate seed-set. This could be particularly important in the high Arctic where colonization can proceed in areas dominated by bare ground and where genetic recombination may be needed to generate tolerance to predicted changes of great magnitude. In the sub-Arctic, however the closed vegetation is dominated by clonally-proliferating species. Plant fitness will increase here in response to any increased vegetative growth resulting from higher nutrient availability in warmer organic soils. (ua) (59 refs.)

  9. Arctic Tides from GPS on sea-ice

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    2013-01-01

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea-ice dampens the ocean tide amplitude with the result that global tidal models perform less accurately in the polar regions. This paper presents, a kinematic processing of global positioning system (GPS....... The results show coherence between the GPS buoy measurements, and the tide model. Furthermore, we have proved that the reference ellipsoid of WGS84, can be interpolated to the tidal defined zero level by applying geophysical corrections to the GPS data....

  10. Arctic Rabies – A Review

    Directory of Open Access Journals (Sweden)

    Prestrud Pål

    2004-03-01

    Full Text Available Rabies seems to persist throughout most arctic regions, and the northern parts of Norway, Sweden and Finland, is the only part of the Arctic where rabies has not been diagnosed in recent time. The arctic fox is the main host, and the same arctic virus variant seems to infect the arctic fox throughout the range of this species. The epidemiology of rabies seems to have certain common characteristics in arctic regions, but main questions such as the maintenance and spread of the disease remains largely unknown. The virus has spread and initiated new epidemics also in other species such as the red fox and the racoon dog. Large land areas and cold climate complicate the control of the disease, but experimental oral vaccination of arctic foxes has been successful. This article summarises the current knowledge and the typical characteristics of arctic rabies including its distribution and epidemiology.

  11. Arctic-COLORS (Coastal Land Ocean Interactions in the Arctic) - a NASA field campaign scoping study to examine land-ocean interactions in the Arctic

    Science.gov (United States)

    Hernes, P.; Tzortziou, M.; Salisbury, J.; Mannino, A.; Matrai, P.; Friedrichs, M. A.; Del Castillo, C. E.

    2014-12-01

    The Arctic region is warming faster than anywhere else on the planet, triggering rapid social and economic changes and impacting both terrestrial and marine ecosystems. Yet our understanding of critical processes and interactions along the Arctic land-ocean interface is limited. Arctic-COLORS is a Field Campaign Scoping Study funded by NASA's Ocean Biology and Biogeochemistry Program that aims to improve understanding and prediction of land-ocean interactions in a rapidly changing Arctic coastal zone, and assess vulnerability, response, feedbacks and resilience of coastal ecosystems, communities and natural resources to current and future pressures. Specific science objectives include: - Quantify lateral fluxes to the arctic inner shelf from (i) rivers and (ii) the outer shelf/basin that affect biology, biodiversity, biogeochemistry (i.e. organic matter, nutrients, suspended sediment), and the processing rates of these constituents in coastal waters. - Evaluate the impact of the thawing of Arctic permafrost within the river basins on coastal biology, biodiversity and biogeochemistry, including various rates of community production and the role these may play in the health of regional economies. - Assess the impact of changing Arctic landfast ice and coastal sea ice dynamics. - Establish a baseline for comparison to future change, and use state-of-the-art models to assess impacts of environmental change on coastal biology, biodiversity and biogeochemistry. A key component of Arctic-COLORS will be the integration of satellite and field observations with coupled physical-biogeochemical models for predicting impacts of future pressures on Arctic, coastal ocean, biological processes and biogeochemical cycles. Through interagency and international collaborations, and through the organization of dedicated workshops, town hall meetings and presentations at international conferences, the scoping study engages the broader scientific community and invites participation of

  12. Are we approaching an Arctic ozone hole

    International Nuclear Information System (INIS)

    Braathen, Geir

    1999-01-01

    Observations during the last decade in the Arctic areas mainly made by satellite, on the ground and by probes and sensors in the stratosphere are presented. Future perspectives are deducted from the results. Factors that may influence the ozone layer negatively are: Emission rate of ozone destroying compounds, the rapidly increasing use of some substitutes, increased concentrations of steam from aeroplanes and increased amount of methane, decreasing temperature in the stratosphere due to increasing amounts of climatic gases, large volcanic eruptions and altered timing for the polar whirl dissolution. It is concluded that the ozone reduction will be larger than observed at present in the next 10 to 20 years

  13. PolarTREC-Teachers and Researchers Exploring and Collaborating: Science Education from the Poles to the World

    Science.gov (United States)

    Timm, K. M.; Warburton, J.; Owens, R.; Warnick, W. K.

    2008-12-01

    PolarTREC--Teachers and Researchers Exploring and Collaborating, a program of the Arctic Research Consortium of the U.S. (ARCUS), is a National Science Foundation (NSF)--funded International Polar Year (IPY) project in which K-12 educators participate in hands-on field experiences, working closely with IPY scientists as a pathway to improving science education. PolarTREC has developed a successful internet-based platform for teachers and researchers to interact and share their diverse experiences and expertise by creating interdisciplinary educational tools including online journals and forums, real-time Internet seminars, lesson plans, activities, audio, and other educational resources that address a broad range of scientific topics. These highly relevant, adaptable, and accessible resources are available to educators across the globe and have connected thousands of students and citizens to the excitement of polar science. By fostering the integration of research and education and infusing education with the thrill of discovery, PolarTREC will produce a legacy of long-term teacher-researcher collaborations and increased student knowledge of and interest in the polar regions well beyond the IPY time period. Educator and student feedback from preliminary evaluations has shown that PolarTREC's comprehensive program activities have many positive impacts on educators and their ability to teach science concepts and improve their teaching methods. Additionally, K-12 students polled in interest surveys showed significant changes in key areas including amount of time spent in school exploring research activities, importance of understanding science for future work, importance of understanding the polar regions as a person in today's world, as well as increased self-reported knowledge and interest in Science, Technology, Engineering, and Mathematics content areas. PolarTREC provides a tested approach and a clear route for researcher participation in the education community

  14. The Arctic Marine Pulses Model: Linking Contiguous Domains in the Pacific Arctic Region

    Science.gov (United States)

    Moore, S. E.; Stabeno, P. J.

    2016-02-01

    The Pacific Arctic marine ecosystem extends from the northern Bering Sea, across the Chukchi and into the East Siberian and Beaufort seas. Food webs in this domain are short, a simplicity that belies the biophysical complexity underlying trophic linkages from primary production to humans. Existing biophysical models, such as pelagic-benthic coupling and advective processes, provide frameworks for connecting certain aspects of the marine food web, but do not offer a full accounting of events that occur seasonally across the Pacific Arctic. In the course of the Synthesis of Arctic Research (SOAR) project, a holistic Arctic Marine Pulses (AMP) model was developed that depicts seasonal biophysical `pulses' across a latitudinal gradient, and linking four previously-described contiguous domains, including the: (i) Pacific-Arctic domain = the focal region; (ii) seasonal ice zone domain; (iii) Pacific marginal domain; and (iv) riverine coastal domain. The AMP model provides a spatial-temporal framework to guide research on dynamic ecosystem processes during this period of rapid biophysical changes in the Pacific Arctic. Some of the processes included in the model, such as pelagic-benthic coupling in the Northern Bering and Chukchi seas, and advection and upwelling along the Beaufort shelf, are already the focus of sampling via the Distributed Biological Observatory (DBO) and other research programs. Other aspects such as biological processes associated with the seasonal ice zone and trophic responses to riverine outflow have received less attention. The AMP model could be enhanced by the application of visualization tools to provide a means to watch a season unfold in space and time. The capability to track sea ice dynamics and water masses and to move nutrients, prey and upper-trophic predators in space and time would provide a strong foundation for the development of predictive human-inclusive ecosystem models for the Pacific Arctic.

  15. Arctic security and Norway

    Energy Technology Data Exchange (ETDEWEB)

    Tamnes, Rolf

    2013-03-01

    Global warming is one of the most serious threats facing mankind. Many regions and countries will be affected, and there will be many losers. The earliest and most intense climatic changes are being experienced in the Arctic region. Arctic average temperature has risen at twice the rate of the global average in the past half century. These changes provide an early indication for the world of the environmental and societal significance of global warming. For that reason, the Arctic presents itself as an important scientific laboratory for improving our understanding of the causes and patterns of climate changes. The rapidly rising temperature threatens the Arctic ecosystem, but the human consequences seem to be far less dramatic there than in many other places in the world. According to the U.S. National Intelligence Council, Russia has the potential to gain the most from increasingly temperate weather, because its petroleum reserves become more accessible and because the opening of an Arctic waterway could provide economic and commercial advantages. Norway might also be fortunate. Some years ago, the Financial Times asked: #Left Double Quotation Mark#What should Norway do about the fact that global warming will make their climate more hospitable and enhance their financial situation, even as it inflicts damage on other parts of the world?#Right Double Quotation Mark#(Author)

  16. Polarized electrons at Jefferson laboratory

    International Nuclear Information System (INIS)

    Sinclair, C.K.

    1998-01-01

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously. Initial operational experience with the polarized source will be presented. copyright 1998 American Institute of Physics

  17. Polarized Electrons at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, C.K.

    1997-12-31

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously.initial operational experience with the polarized source will be presented.

  18. Myosin helical pitch angle as a quantitative imaging biomarker for characterization of cardiac programming in fetal growth restriction measured by polarization second harmonic microscopy

    Science.gov (United States)

    Amat-Roldan, I.; Psilodimitrakopoulos, S.,; Eixarch, E.,; Torre, I.; Wotjas, B.; Crispi, F.; Figueras, F.; Artigas, D.,; Loza-Alvarez, P.; Gratacos, E.,

    2009-07-01

    Fetal growth restriction (FGR) has recently shown a strong association with cardiac programming which predisposes to cardiovascular mortality in adulthood. Polarization Second Harmonic Microscopy can quantify molecular architecture changes with high sensitivity in cardiac myofibrils. In this work, we use myosin helical pitch angle as an example to quantify such alterations related to this high risk population. Importantly, this shows a potential use of the technique as an early diagnostic tool and an alternative method to understand pathophysiological processes.

  19. The Power of the Capability Constraint: On Russia’s Strength in the Arctic Territorial Dispute

    Directory of Open Access Journals (Sweden)

    Valko Irina

    2016-04-01

    Full Text Available Based on a geographical-administrative definition of the region, the theoretical assumptions of contemporary French structuralist geopolitics, cross-sectional data for 1990, 1995, 2000, 2005 and 2010 from the Updated Arctic Regional Attributes Dataset, and the technical capabilities of MS Office Excel 2010, this research (a reveals and contrasts the Arctic states’ capability constraints deriving from their longitudinal material and virtual power potential (physical potential, socio-economic potential, military potential, and symbolic potential; and (b analyses the role of this constraint in the process of preference formation in case of one specific Arctic actor, Russia, in the Arctic territorial dispute. This study confirms that Russia’s capability constraint is the lowest in the region and that the latter does not form a stable trend throughout the period studied. It also suggests the preference formation framework for Russia in the Arctic dispute based on the evolution of its polar capability constraint.

  20. Scientific Participation at the Poles: K-12 Teachers in Polar Science for Careers and Classrooms

    Science.gov (United States)

    Crowley, S.; Warburton, J.

    2012-12-01

    PolarTREC (Teachers and Researchers Exploring and Collaborating) is a National Science Foundation (NSF) funded program in which K-12 teachers participate in hands-on field research experiences in the polar regions. PolarTREC highlights the importance of involving teachers in scientific research in regards to their careers as educators and their ability to engage students in the direct experience of science. To date, PolarTREC has placed over 90 teachers with research teams in the Arctic and Antarctic. Published results of our program evaluation quantify the effect of the field experience on the teachers' use of the real scientific process in the classroom, the improvement in science content taught in classrooms, and the use of non-fiction texts (real data and science papers) as primary learning tools for students. Teachers and students both report an increase of STEM literacy in the classroom content, confidence in science education, as well as a markedly broadened outlook of science as essential to their future. Research conducted with science teams affirms that they are achieving broader impacts when PolarTREC teachers are involved in their expeditions. Additionally, they reported that these teachers making vital contributions to the success of the scientific project.

  1. Radio-positioning for arctic seismic refraction surveys

    Energy Technology Data Exchange (ETDEWEB)

    Dearnley-Davison, J. (Dept. of Fisheries and Oceans, Dartmouth, NS (Canada)); Forsyth, D.A. (Continental Geoscience Div., Geological Survey of Canada, Ottawa, ON (Canada))

    1989-12-01

    The full extent of hydrocarbon reserves within Canada's Arctic margin is not appreciated at present. With the exception of the southern Beaufort Sea, the crustal structure of most of Canada's offshore polar margin remains a mystery, even at reconnaissance level. Navigation to support offshore Arctic surveys have required a special application and adaptation of the conventional SYLEDIS (SYsteme LEgere de DIStance) range-range navigational system to perform under the northeast Actic margin's environment. Once adapted, the system has proven very effective with a few Arctic environment servicing problems. The total number of locations involved in the earlier surveys ranged from 20 to aproximately 50 per project in a season. The SYLEDIS operation has enabled real-time positioning with a precision of better than 10 metres for approximately 350 separate sites in the 1985 and 1986 surveys inclusive. 2 refs., 3 figs.

  2. The Arctic Vortex in March 2011: A Dynamical Perspective

    Science.gov (United States)

    Hurwitz, Margaret M.; Newman, Paul A.; Garfinkel,Chaim I.

    2011-01-01

    Despite the record ozone loss observed in March 2011, dynamical conditions in the Arctic stratosphere were unusual but not unprecedented. Weak planetary wave driving in February preceded cold anomalies in t he polar lower stratosphere in March and a relatively late breakup of the Arctic vortex in April. La Nina conditions and the westerly phas e of the quasi-biennial oscillation (QBO) were observed in March 201 1. Though these conditions are generally associated with a stronger vortex in mid-winter, the respective cold anomalies do not persist t hrough March. Therefore, the La Nina and QBO-westerly conditions cannot explain the observed cold anomalies in March 2011. In contrast, po sitive sea surface temperature anomalies in the North Pacific may ha ve contributed to the unusually weak tropospheric wave driving and s trong Arctic vortex in late winter 2011.

  3. New Technology Demonstration Program - Results of an Attempted Field Test of Multi-Layer Light Polarizing Panels in an Office Space

    Energy Technology Data Exchange (ETDEWEB)

    Richman, Eric E.

    2001-06-14

    An assessment of the potential energy savings associated with the use of multi-layer light polarizing panels in an office space was initiated as part of the Department of Energy's (DOE) Federal Energy Management Program (FEMP) New Technology Demonstration Program (NTDP) in 1997. This project was intended to provide information on the effectiveness and application of this technology that could help federal energy managers and other interested individuals determine whether this technology had benefits for their occupied spaces. The use of an actual working office area provided the capability of evaluating the technology's effectiveness in the real world.

  4. One-dimensional heat conduction equation of the polar bear hair

    Directory of Open Access Journals (Sweden)

    Zhu Wei-Hong

    2015-01-01

    Full Text Available Hairs of a polar bear (Ursus maritimus possess special membrane-pore structure. The structure enables the polar bear to survive in the harsh Arctic regions. In this paper, the membrane-pore structure be approximately considered as fractal space, 1-D heat conduction equation of the polar bear hair is established and the solution of the equation is obtained.

  5. Diversifying the Geosciences: Examples from the Arctic

    Science.gov (United States)

    Holmes, R. M.

    2017-12-01

    Like other realms of the geosciences, the scientists who comprise the Arctic research community tends to be white and male. For example, a survey of grants awarded over a 5-year period beginning in 2010 by NSF's Arctic System Science and Arctic Natural Sciences programs showed that over 90% of PIs were white whereas African Americans, Hispanics, and Native Americans together accounted for only about 1% of PIs. Over 70% of the PIs were male. I will suggest that involving diverse upper-level undergraduate students in authentic field research experiences may be one of the shortest and surest routes to diversifying the Arctic research community, and by extension, the geoscientific research community overall. Upper-level undergraduate students are still open to multiple possibilities, but an immersive field research experience often helps solidify graduate school and career trajectories. Though an all-of-the-above strategy is needed, focusing on engaging a diverse cohort of upper-level undergraduate students may provide one of the most efficient means of diversifying the geosciences over the coming years and decades.

  6. Genetic signatures of adaptation revealed from transcriptome sequencing of Arctic and red foxes.

    Science.gov (United States)

    Kumar, Vikas; Kutschera, Verena E; Nilsson, Maria A; Janke, Axel

    2015-08-07

    adaptation in foxes. Similar to polar bears, fat metabolism seems to play a central role in adaptation of Arctic foxes to the cold climate, as has been identified in the polar bear, another arctic specialist.

  7. Test and Evaluation of CGC POLAR STAR WAGB 10. Volume III. Background.

    Science.gov (United States)

    1978-09-01

    through Solid Ice," Problems of the Arctic and Antartic No. 5. Smith, N., (1969), "Determining the Dynamic Properties of Snow and Ice by Forced Valuation...Experiments," Thesis, Arctic and Antartic Institute, Leningrad. Voelker, R.P., and Koch, E., (1968), "The Design of a Ship’s Control Space in Polar Icebreakers

  8. Human-induced Arctic moistening.

    Science.gov (United States)

    Min, Seung-Ki; Zhang, Xuebin; Zwiers, Francis

    2008-04-25

    The Arctic and northern subpolar regions are critical for climate change. Ice-albedo feedback amplifies warming in the Arctic, and fluctuations of regional fresh water inflow to the Arctic Ocean modulate the deep ocean circulation and thus exert a strong global influence. By comparing observations to simulations from 22 coupled climate models, we find influence from anthropogenic greenhouse gases and sulfate aerosols in the space-time pattern of precipitation change over high-latitude land areas north of 55 degrees N during the second half of the 20th century. The human-induced Arctic moistening is consistent with observed increases in Arctic river discharge and freshening of Arctic water masses. This result provides new evidence that human activity has contributed to Arctic hydrological change.

  9. SYMPOSIUM ON REMOTE SENSING IN THE POLAR REGIONS

    Science.gov (United States)

    The Arctic Institute of North America long has been interested in encouraging full and specific attention to applications of remote sensing to polar...research problems. The major purpose of the symposium was to acquaint scientists and technicians concerned with remote sensing with some of the...special problems of the polar areas and, in turn, to acquaint polar scientists with the potential of the use of remote sensing . The Symposium therefore was

  10. Process contributions to the intermodel spread in amplified Arctic warming

    Science.gov (United States)

    Boeke, R.; Taylor, P. C.

    2016-12-01

    The Arctic is warming at a rate more than twice the global average. This robust climate system response to an external forcing is referred to as Arctic Amplification (AA). While Coupled Model Intercomparison Project 5 (CMIP5) climate models simulate AA, the largest intermodel spread in projected warming is also found in the Arctic. Quantifying the amount of polar warming relative to global warming influences how society adapts to climate change; a 2°C increase in global mean temperature would result in a polar warming between 4-8°C according to the intermodel spread in CMIP5 simulations. A trove of previous work has considered AA diagnostically using variations in the surface energy budget to attribute the intermodel spread in AA to an assortment of feedbacks—surface albedo, cloud, surface turbulent flux, and atmospheric and oceanic energy transport. We consider a systems-thinking approach treating AA as a process that evolves over time. We hypothesize that two specific components of the AA process are most important and influence the intermodel spread. (1) The inability of the Arctic system to effectively remove excess heat sourced from natural variability. The change in the efficiency of the `Arctic air conditioner' is thought to be due to thinner and less extensive sea ice and the resulting ice albedo feedback. (2) The process through which energy is stored in the ocean and exchanged with the atmosphere within the context of the sea ice annual cycle is also important. This study uses CMIP5 simulations from the historical and RCP8.5 (Representative Concentration Pathway; an emission scenario with forcing increasing to 8.5 W m-2 by 2100) to analyze how the AA process operates in present and future climate. The intermodel spread in these processes and the influence on the spread in AA are discussed. This approach identifies models that more realistically simulate the AA process and will aid in narrowing intermodel spread in Arctic surface temperature

  11. Lessons learned in managing crowdsourced data in the Alaskan Arctic.

    Science.gov (United States)

    Mastracci, Diana

    2017-04-01

    There is perhaps no place in which the consequences of global climate change can be felt more acutely than the Arctic. However, due to lack of measurements at the high latitudes, validation processes are often problematic. Citizen science projects, co-designed together with Native communities at the interface of traditional knowledge and scientific research, could play a major role in climate change adaptation strategies by advancing knowledge of the Arctic system, strengthening inter-generational bonds and facilitating improved knowledge transfer. This presentation will present lessons learned from a pilot project in the Alaskan Arctic, in which innovative approaches were used to design climate change adaptation strategies to support young subsistence hunters in taking in-situ measurements whilst out on the sea-ice. Both the socio-cultural and hardware/software challenges presented in this presentation, could provide useful guidance for future programs that aim to integrate citizens' with scientific data in Arctic communities.

  12. Methane emissions from a high arctic valley: findings and challenges

    DEFF Research Database (Denmark)

    Mastepanov, Mikhail; Sigsgaard, Charlotte; Ström, Lena

    2008-01-01

    Wet tundra ecosystems are well-known to be a significant source of atmospheric methane. With the predicted stronger effect of global climate change on arctic terrestrial ecosystems compared to lower-latitudes, there is a special obligation to study the natural diversity and the range of possible...... feedback effects on global climate that could arise from Arctic tundra ecosystems. One of the prime candidates for such a feedback mechanism is a potential change in the emissions of methane. Long-term datasets on methane emissions from high arctic sites are almost non-existing but badly needed...... for analyses of controls on interannual and seasonal variations in emissions. To help fill this gap we initiated a measurement program in a productive high arctic fen in the Zackenberg valley, NE Greenland. Methane flux measurements have been carried out at the same location since 1997. Compared...

  13. NOAA Climate Data Record (CDR) of AVHRR Polar Pathfinder Extended (APP-X) Cryosphere

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Climate Data Record (CDR) of the extended AVHRR Polar Pathfinder (APP-x) cryosphere contains 19 geophysical variables over the Arctic and Antarctic for the...

  14. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  15. Arctic Islands LNG

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, W.

    1977-01-01

    Trans-Canada Pipe Lines Ltd. made a feasibility study of transporting LNG from the High Arctic Islands to a St. Lawrence River Terminal by means of a specially designed and built 125,000 cu m or 165,000 cu m icebreaking LNG tanker. Studies were made of the climatology and of ice conditions, using available statistical data as well as direct surveys in 1974, 1975, and 1976. For on-schedule and unimpeded (unescorted) passage of the LNG carriers at all times of the year, special navigation and communications systems can be made available. Available icebreaking experience, charting for the proposed tanker routes, and tide tables for the Canadian Arctic were surveyed. Preliminary design of a proposed Arctic LNG icebreaker tanker, including containment system, reliquefaction of boiloff, speed, power, number of trips for 345 day/yr operation, and liquefaction and regasification facilities are discussed. The use of a minimum of three Arctic Class 10 ships would enable delivery of volumes of natural gas averaging 11.3 million cu m/day over a period of a year to Canadian markets. The concept appears to be technically feasible with existing basic technology.

  16. Mercury bioaccumulation and biomagnification in a small Arctic polynya ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Clayden, Meredith G., E-mail: meredith.clayden@gmail.com [Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, NB E2L 4L5 (Canada); Arsenault, Lilianne M. [Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, NB E2L 4L5 (Canada); Department of Earth and Environmental Science, Acadia University, Wolfville, NS B4P 2R6 (Canada); Department of Biology, Acadia University, Wolfville, NS B4P 2R6 (Canada); Kidd, Karen A. [Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, NB E2L 4L5 (Canada); O' Driscoll, Nelson J. [Department of Earth and Environmental Science, Acadia University, Wolfville, NS B4P 2R6 (Canada); Mallory, Mark L. [Department of Biology, Acadia University, Wolfville, NS B4P 2R6 (Canada)

    2015-03-15

    Recurring polynyas are important areas of biological productivity and feeding grounds for seabirds and mammals in the Arctic marine environment. In this study, we examined food web structure (using carbon and nitrogen isotopes, δ{sup 13}C and δ{sup 15}N) and mercury (Hg) bioaccumulation and biomagnification in a small recurring polynya ecosystem near Nasaruvaalik Island (Nunavut, Canada). Methyl Hg (MeHg) concentrations increased by more than 50-fold from copepods (Calanus hyperboreus) to Arctic terns (Sterna paradisaea), the abundant predators at this site. The biomagnification of MeHg through members of the food web – using the slope of log MeHg versus δ{sup 15}N – was 0.157 from copepods (C. hyperboreus) to fish. This slope was higher (0.267) when seabird chicks were included in the analyses. Collectively, our results indicate that MeHg biomagnification is occurring in this small polynya and that its trophic transfer is at the lower end of the range of estimates from other Arctic marine ecosystems. In addition, we measured Hg concentrations in some poorly studied members of Arctic marine food webs [e.g. Arctic alligatorfish (Ulcina olrikii) and jellyfish, Medusozoa], and found that MeHg concentrations in jellyfish were lower than expected given their trophic position. Overall, these findings provide fundamental information about food web structure and mercury contamination in a small Arctic polynya, which will inform future research in such ecosystems and provide a baseline against which to assess changes over time resulting from environmental disturbance. - Highlights: • Polynyas are recurring sites of open water in polar marine areas • Mercury (Hg) biomagnification was studied in a small polynya near Nasaruvaalik Island, NU, Canada • Hg biomagnification estimates for invertebrates to fish were low compared to other Arctic systems • Factors underlying this result are unknown but may relate to primary productivity in small polynyas.

  17. Mercury bioaccumulation and biomagnification in a small Arctic polynya ecosystem

    International Nuclear Information System (INIS)

    Clayden, Meredith G.; Arsenault, Lilianne M.; Kidd, Karen A.; O'Driscoll, Nelson J.; Mallory, Mark L.

    2015-01-01

    Recurring polynyas are important areas of biological productivity and feeding grounds for seabirds and mammals in the Arctic marine environment. In this study, we examined food web structure (using carbon and nitrogen isotopes, δ 13 C and δ 15 N) and mercury (Hg) bioaccumulation and biomagnification in a small recurring polynya ecosystem near Nasaruvaalik Island (Nunavut, Canada). Methyl Hg (MeHg) concentrations increased by more than 50-fold from copepods (Calanus hyperboreus) to Arctic terns (Sterna paradisaea), the abundant predators at this site. The biomagnification of MeHg through members of the food web – using the slope of log MeHg versus δ 15 N – was 0.157 from copepods (C. hyperboreus) to fish. This slope was higher (0.267) when seabird chicks were included in the analyses. Collectively, our results indicate that MeHg biomagnification is occurring in this small polynya and that its trophic transfer is at the lower end of the range of estimates from other Arctic marine ecosystems. In addition, we measured Hg concentrations in some poorly studied members of Arctic marine food webs [e.g. Arctic alligatorfish (Ulcina olrikii) and jellyfish, Medusozoa], and found that MeHg concentrations in jellyfish were lower than expected given their trophic position. Overall, these findings provide fundamental information about food web structure and mercury contamination in a small Arctic polynya, which will inform future research in such ecosystems and provide a baseline against which to assess changes over time resulting from environmental disturbance. - Highlights: • Polynyas are recurring sites of open water in polar marine areas • Mercury (Hg) biomagnification was studied in a small polynya near Nasaruvaalik Island, NU, Canada • Hg biomagnification estimates for invertebrates to fish were low compared to other Arctic systems • Factors underlying this result are unknown but may relate to primary productivity in small polynyas

  18. Dynamical response of the Arctic winter stratosphere to global warming

    Science.gov (United States)

    Karpechko, A.; Manzini, E.

    2017-12-01

    Climate models often simulate dynamical warming of the Arctic stratosphere as a response to global warming in association with a strengthening of the deep branch of the Brewer-Dobson circulation; however until now, no satisfactory mechanism for such a response has been suggested. Here we investigate the role of stationary planetary waves in the dynamical response of the Arctic winter stratosphere circulation to global warming by analysing simulations performed with atmosphere-only Coupled Model Intercomparison Project Phase 5 (CMIP5) models driven by prescribed sea surface temperatures (SSTs). We focus on December-February (DJF) because this is the period when the troposphere and stratosphere are strongly coupled. When forced by increased SSTs, all the models analysed here simulate Arctic stratosphere dynamical warming, mostly due to increased upward propagation of quasi-stationary wave number 1, as diagnosed by the meridional eddy heat flux. By analysing intermodel spread in the response we show that the stratospheric warming and increased wave flux to the stratosphere correlate with the strengthening of the zonal winds in subtropics and mid-latitudes near the tropopause- a robust response to global warming. These results support previous studies of future Arctic stratosphere changes and suggest a dynamical warming of the Arctic wintertime polar vortex as the most likely response to global warming.

  19. Moisture transport and Atmospheric circulation in the Arctic

    Science.gov (United States)

    Woods, Cian; Caballero, Rodrigo

    2013-04-01

    Arctic. We investigate an Arctic trajectory dataset and provide a phenomenological/descriptive analysis of these trajectories, including key meteorological variables carried along trajectories. The trajectory climatology is linked to a previously established cyclone climatology dataset from Hanley and Caballero (2011). We associate trajectories and the meteorological variables they are carrying to cyclones in this dataset. A climatology of 'Arctic-influencing' cyclones is constructed from the cyclone dataset. The resilience of the polar vortex and its effect on circulation, via blocking and breaking, is examined in relation to our trajectory climatology.

  20. Circumpolar Genetic Structure and Recent Gene Flow of Polar Bears: A Reanalysis.

    Science.gov (United States)

    Malenfant, René M; Davis, Corey S; Cullingham, Catherine I; Coltman, David W

    2016-01-01

    Recently, an extensive study of 2,748 polar bears (Ursus maritimus) from across their circumpolar range was published in PLOS ONE, which used microsatellites and mitochondrial haplotypes to apparently show altered population structure and a dramatic change in directional gene flow towards the Canadian Archipelago-an area believed to be a future refugium for polar bears as their southernmost habitats decline under climate change. Although this study represents a major international collaborative effort and promised to be a baseline for future genetics work, methodological shortcomings and errors of interpretation undermine some of the study's main conclusions. Here, we present a reanalysis of this data in which we address some of these issues, including: (1) highly unbalanced sample sizes and large amounts of systematically missing data; (2) incorrect calculation of FST and of significance levels; (3) misleading estimates of recent gene flow resulting from non-convergence of the program BayesAss. In contrast to the original findings, in our reanalysis we find six genetic clusters of polar bears worldwide: the Hudson Bay Complex, the Western and Eastern Canadian Arctic Archipelago, the Western and Eastern Polar Basin, and-importantly-we reconfirm the presence of a unique and possibly endangered cluster of bears in Norwegian Bay near Canada's expected last sea-ice refugium. Although polar bears' abundance, distribution, and population structure will certainly be negatively affected by ongoing-and increasingly rapid-loss of Arctic sea ice, these genetic data provide no evidence of strong directional gene flow in response to recent climate change.

  1. Circumpolar Genetic Structure and Recent Gene Flow of Polar Bears: A Reanalysis.

    Directory of Open Access Journals (Sweden)

    René M Malenfant

    Full Text Available Recently, an extensive study of 2,748 polar bears (Ursus maritimus from across their circumpolar range was published in PLOS ONE, which used microsatellites and mitochondrial haplotypes to apparently show altered population structure and a dramatic change in directional gene flow towards the Canadian Archipelago-an area believed to be a future refugium for polar bears as their southernmost habitats decline under climate change. Although this study represents a major international collaborative effort and promised to be a baseline for future genetics work, methodological shortcomings and errors of interpretation undermine some of the study's main conclusions. Here, we present a reanalysis of this data in which we address some of these issues, including: (1 highly unbalanced sample sizes and large amounts of systematically missing data; (2 incorrect calculation of FST and of significance levels; (3 misleading estimates of recent gene flow resulting from non-convergence of the program BayesAss. In contrast to the original findings, in our reanalysis we find six genetic clusters of polar bears worldwide: the Hudson Bay Complex, the Western and Eastern Canadian Arctic Archipelago, the Western and Eastern Polar Basin, and-importantly-we reconfirm the presence of a unique and possibly endangered cluster of bears in Norwegian Bay near Canada's expected last sea-ice refugium. Although polar bears' abundance, distribution, and population structure will certainly be negatively affected by ongoing-and increasingly rapid-loss of Arctic sea ice, these genetic data provide no evidence of strong directional gene flow in response to recent climate change.

  2. PolarTREC-Celebrating the Legacy of the IPY Through Researcher-Educator Partnerships

    Science.gov (United States)

    Timm, K.; Warburton, J.; Larson, A. M.

    2009-12-01

    Polar TREC-Teachers and Researchers Exploring and Collaborating, a three-year (2007-2009) NSF-funded program, has matched over 40 teachers with polar researchers working in multiple scientific disciplines for 2-8 week Teacher Research Experiences (TRE) in the Arctic and Antarctica during the IPY. PolarTREC contributes to the legacy of the IPY through the creation and dissemination of polar education resources, prolonged teacher-researcher relationships, and contributions to scholarly knowledge on the impacts of TRE's. Products developed during PolarTREC are helping to sustain the widespread interest and enthusiasm in the polar regions generated during the IPY. During their expeditions, participating teachers brought science and information about profound changes at the poles to school, community, and professional audiences through web-based communications, journals, discussion forums, multimedia, and live events. PolarTREC teachers constructed nearly 100 classroom lesson plans and activities as products of their experiences. Live events from the field attracted over 11,000 participants, primarily K-12 students. Although the field experience is central to the PolarTREC TRE Model, many participants cite the relationship they built with their teacher/researcher as one of the best outcomes. Through personal communications, presentations at professional conferences, and continued support of each other’s work through classroom visits or joint proposal development, teachers and researchers have maintained the mutually beneficial relationships established during the IPY. Participating scientists gained access to professional educators with expertise in translating research approaches and results into programs. The need for researchers to explain their research and “boil it down to the raw essence” helped many see how their work fits into a bigger picture, often helping them communicate outside their scientific discipline and to diverse public audiences. Teachers, on

  3. Experimental study of gluon and sea quark polarizations (The first stage of the POLEX program at UNK)

    International Nuclear Information System (INIS)

    Akimenko, S.A.

    1992-01-01

    The experiments with various polarized beams and targets for searching spin effects in such processes as χ-, direct photon- and massive lepton-pairs productions are proposed. The goal is to clear up a wide range of problems on the spin-dependent quark and gluon structure functions. 35 refs.; 18 figs.; 5 tabs

  4. Improvements to TOVS retrievals over sea ice and applications to estimating Arctic energy fluxes

    Science.gov (United States)

    Francis, Jennifer A.

    1994-01-01

    Modeling studies suggest that polar regions play a major role in modulating the Earth's climate and that they may be more sensitive than lower latitudes to climate change. Until recently, however, data from meteorological stations poleward of 70 degs have been sparse, and consequently, our understanding of air-sea-ice interaction processes is relatively poor. Satellite-borne sensors now offer a promising opportunity to observe polar regions and ultimately to improve parameterizations of energy transfer processes in climate models. This study focuses on the application of the TIROS-N operational vertical sounder (TOVS) to sea-ice-covered regions in the nonmelt season. TOVS radiances are processed with the improved initialization inversion ('3I') algorithm, providng estimates of layer-average temperature and moisture, cloud conditions, and surface characteristics at a horizontal resolution of approximately 100 km x 100 km. Although TOVS has flown continuously on polar-orbiting satellites since 1978, its potential has not been realized in high latitudes because the quality of retrievals is often significantly lower over sea ice and snow than over the surfaces. The recent availability of three Arctic data sets has provided an opportunity to validate TOVS retrievals: the first from the Coordinated Eastern Arctic Experiment (CEAREX) in winter 1988/1989, the second from the LeadEx field program in spring 1992, and the third from Russian drifting ice stations. Comparisons with these data reveal deficiencies in TOVS retrievals over sea ice during the cold season; e.g., ice surface temperature is often 5 to 15 K too warm, microwave emissivity is approximately 15% too low at large view angles, clear/cloudy scenes are sometimes misidentified, and low-level inversions are often not captured. In this study, methods to reduce these errors are investigated. Improvements to the ice surface temperature retrieval have reduced rms errors from approximately 7 K to 3 K; correction of

  5. Changes in the Arctic: Background and Issues for Congress

    Science.gov (United States)

    2016-12-07

    Arctic accidents and incidents in the past. The U.S. Army Corps of Engineers , along with the state of Alaska, is studying the feasibility of a... aeronautical and maritime search and rescue for each party. For the United States , those agencies are the Coast Guard and the Department of Defense...purchased from Ukraine a research icebreaker it named the Xuelong, and has constructed a state -of-the- art polar capable research vessel, the Snow Dragon

  6. Improving Geoscience Education through the PolarTREC Teacher Research Experience Model (Invited)

    Science.gov (United States)

    Warburton, J.; Timm, K.; Larson, A. M.

    2010-12-01

    Teacher Research Experiences (TRE’s) are not new. For more than a decade, the National Science Foundation (NSF) as well as other federal agencies have been funding programs that place teachers with researchers in efforts to invigorate science education by bringing educators and researchers together through hands-on experiences. Many of the TRE’s are successful in providing a hands-on field experience for the teachers and researchers however many of the programs lack the resources to continue the collaborations and support the growing network of teachers that have had these field experiences. In 2007, NSF provided funding for PolarTREC—Teachers and Researchers Exploring and Collaborating, a program of the Arctic Research Consortium of the U.S. (ARCUS). PolarTREC is a TRE where K-12 teachers participate in polar field research, working closely with scientists as a pathway to improving science education. In just three years, it has become a successful TRE. What makes PolarTREC different than other the teacher research experience programs and how can others benefit from what we have learned? During this presentation, we will share data collected through the program evaluation and on how PolarTREC contributes to the discipline of Science, Technology, Engineering, and Mathematics (STEM) education and pedagogy through a model program conceived and organized according to current best practices, such as pre-research training, mentoring, support for classroom transfer, and long-term access to resources and support. Data shows that PolarTREC’s comprehensive program activities have many positive impacts on educators and their ability to teach science concepts and improve their teaching methods. Additionally, K-12 students polled in interest surveys showed significant changes in key areas including amount of time spent in school exploring research activities, importance of understanding science for future work, importance of understanding the polar regions as a person

  7. Climate Change: Science and Policy in the Arctic Climate Change: Science and Policy in the Arctic

    Science.gov (United States)

    Bigras, S. C.

    2009-12-01

    participation of indigenous peoples in the development and management process. The effective application of accumulated climate change knowledge requires development of a policy framework that can address cumulative effects and take into account various stakeholders, multi-jurisdictional regulations and interests, environmental impacts and other concerns specific to the Arctic. Fundamental to such a framework are responsible economic development, sustainable communities, the commitment to achieving consensus between parties, and the use of traditional knowledge. One way to facilitate collaborative policy making is to increase international co-operation between Northerners, indigenous peoples, scientists, politicians and policy makers. The International Polar Year (IPY) 2007-2008 proved a solid stepping-stone for multinational collaborations. Clear communication with politicians and policy-makers is challenging but essential, despite the lingering uncertainties in climate-change science. Public awareness helps considerably in getting messages to politicians, and it is therefore important that scientists and researchers share their results not only with colleagues but also with the general public.

  8. PRIMARY PRODUCTIVITY - PHYTOPLANKTON, CHLOROPHYLL A CONCENTRATION, and others in Arctic Ocean from 1959-08-03 to 2011-10-21 (NCEI Accession 0161176)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Arctic Ocean net primary productivity (NPP) was assembled for 1959-2011 from existing databases and recent polar research cruises. At each NPP station, if available,...

  9. Humidity estimate for the middle Eocene Arctic rain forest

    Science.gov (United States)

    Jahren, A. Hope; Silveira Lobo Sternberg, Leonel

    2003-05-01

    The exquisite preservation of fossilized Metasequoia trees that grew near 80°N latitude during the middle Eocene (ca. 45 Ma) in Nunavut, Canada, allowed for δD and δ18O analyses of cellulose, techniques previously restricted to wood <30,000 yr old. From the isotopic results, we determined that the middle Eocene Arctic atmosphere contained ˜2× the water found in the region's atmosphere today. This water vapor contributed to a middle Eocene greenhouse effect that insulated the polar region during dark polar winters.

  10. Bias from two analytical laboratories involved in a long-term air monitoring program measuring organic pollutants in the Arctic: a quality assurance/quality control assessment.

    Science.gov (United States)

    Su, Yushan; Hung, Hayley; Stern, Gary; Sverko, Ed; Lao, Randy; Barresi, Enzo; Rosenberg, Bruno; Fellin, Phil; Li, Henrik; Xiao, Hang

    2011-11-01

    Initiated in 1992, air monitoring of organic pollutants in the Canadian Arctic provided spatial and temporal trends in support of Canada's participation in the Stockholm Convention of Persistent Organic Pollutants. The specific analytical laboratory charged with this task was changed in 2002 while field sampling protocols remained unchanged. Three rounds of intensive comparison studies were conducted in 2004, 2005, and 2008 to assess data comparability between the two laboratories. Analysis was compared for organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in standards, blind samples of mixed standards and extracts of real air samples. Good measurement accuracy was achieved for both laboratories when standards were analyzed. Variation of measurement accuracy over time was found for some OCPs and PCBs in standards on a random and non-systematic manner. Relatively low accuracy in analyzing blind samples was likely related to the process of sample purification. Inter-laboratory measurement differences for standards (<30%) and samples (<70%) were generally less than or comparable to those reported in a previous inter-laboratory study with 21 participating laboratories. Regression analysis showed inconsistent data comparability between the two laboratories during the initial stages of the study. These inter-laboratory differences can complicate abilities to discern long-term trends of pollutants in a given sampling site. It is advisable to maintain long-term measurements with minimal changes in sample analysis.

  11. Arctic industrial activities compilation

    International Nuclear Information System (INIS)

    1991-01-01

    Most industrial activities in the Beaufort Sea region are directly or indirectly associated with the search for oil and gas. Activities in marine areas include dredging, drilling, seismic and sounding surveys, island/camp maintenance, vessel movements, helicoptor and fixed-wind flights, and ice-breaking. This inventory contains a summary of chemical usage at 119 offshore drilling locations in the Beaufort Sea, Arctic Islands and Davis Straight of the Canadian Arctic between 1973 and 1987. Data are graphically displayed for evaluating patterns of drill waste discharge in the three offshore drilling areas. These displays include a comparison of data obtained from tour sheets and well history records, summaries of drilling mud chemicals used by year, well and oil company, frequency of wells drilled as a function of water depth, and offshore drilling activity by year, company, and platform. 21 refs., 104 figs., 2 tabs

  12. Clouds across the Arctic: A spatial perspective uniting surface observations of downwelling infrared radiation, reanalyses and education

    Science.gov (United States)

    Cox, Christopher J.

    The polar regions serve an important role in the Earth's energy balance by acting as a heat sink for the global climate system. In the Arctic, a complex distribution of continental and oceanic features support large spatial variability in environmental parameters important for climate. Additionally, feedbacks that are unique to the cryosphere cause the region to be very sensitive to climate perturbations. Environmental changes are being observed, including increasing temperatures, reductions in sea ice extent and thickness, melting permafrost, changing atmospheric circulation patterns and changing cloud properties, which may be signaling a shift in climate. Despite these changes, the Arctic remains an understudied region, including with respect to the atmosphere and clouds. A better understanding of cloud properties and their geographical variability is needed to better understand observed changes and to forecast the future state of the system, to support adaptation and mitigation strategies, and understand how Arctic change impacts other regions of the globe. Surface-based observations of the atmosphere are critical measurements in this effort because they are high quality and have high temporal resolution, but there are few atmospheric observatories in the Arctic and the period of record is short. Reanalyses combine assimilated observations with models to fill in spatial and temporal data gaps, and also provide additional model-derived parameters. Reanalyses are spatially comprehensive, but are limited by large uncertainties and biases, in particular with respect to derived parameters. Infrared radiation is a large component of the surface energy budget. Infrared emission from clouds is closely tied to cloud properties, so measurements of the infrared spectrum can be used to retrieve information about clouds and can also be used to investigate the influence clouds have on the surface radiation balance. In this dissertation, spectral infrared radiances and other

  13. New York City International Polar Weekend at the American Museum of Natural History

    Science.gov (United States)

    Pfirman, S.; Turrin, M.; Macphee, R.

    2008-12-01

    The American Museum of Natural History, in partnership with Lamont-Doherty Earth Observatory and the Earth Institute of Columbia University and Barnard College, is featuring the International Polar Year through a New York City International Polar Weekend (NYC-IPW) in 2007, 2008 and 2009. The event showcases current polar research, polar environmental changes, history and culture during two days of family programs and activities, performances, and lectures. The goal of the NYC-IPW is to engage diverse audiences and enhance the public understanding of polar science, in particular IPY research, through close interactions with polar experts. Activities for the public include many disciplines, ranging from the physical sciences and cultural anthropology to music and art, and are presented in many forms, from lectures, panels and films to posters and play. Highlights of the NYC-IPW include: 1) A polar fair for youth and adults, showcasing scientists, artists, and educators who have worked at one or both poles and including many interactive exhibits featuring such topics as life in New York at the end of the last Ice Age, how Arctic sea ice is changing, and life on and under the ice. 2) Performances and presentations oriented towards children and families, including Inuit Throat Singers, Central Park Zoo Theater Group, and a northern lights show. 3) Lectures showcasing current IPY research and addressing such issues as the possible effects of climate change on the poles and the rest of the world, as well as polar poetry, art and film. 4) A partnership with New York City Urban Advantage program for Middle School students in the city to meet with scientists, teachers and students who had participated in polar research and travel. 5) Norwegian Consulate sponsorship of science presenters and Sami performers. The March 2007 event involved 85 presenters and volunteers from 22 institutions, and attracted ca. 3,500 visitors. Approximately 5,000 visitors attended the February 2008

  14. Environmental impact on the polar regions

    International Nuclear Information System (INIS)

    Jaffe, D.A.; Leighton, E.; Tumeo, M.A.

    1994-01-01

    The remote and frigid polar regions are no longer isolated from the activities, pollutants, and controversies that bedevil their more temperate neighbors, say three researchers at the University of Alaska in Fairbanks. For example, Daniel A. Jaffe, Elizabeth Leighton, and Mark A. Tumeo point to traces of DDT, PCBs, and heavy metals that routinely turn up in arctic marine mammals and to the ozone hole over the Antarctic. While similar in environmental makeup, the arctic and Antarctic are poles apart in their political structure and, thus, in their environmental exposure, the researchers note. The Antarctic is managed under a long-standing international treaty, while the arctic is sovereign territory to eight separate nations. The international treaty sets aside the Antarctic for peaceful scientific research within strict environmental boundaries. It bans both military activity and minerals extraction-the two activities that have caused the most damage in the arctic. The main threats to Antarctica's environment come from the intrusion of major scientific research operations and the growing tourism industry. On the other hand, the arctic suffered from the massive Cold War military buildup by both the United States and the former Soviet Union. The environmental residue from that buildup is only now being revealed, the authors say. Major oil and gas drilling and coal and metal-ore mining also have taken a huge environmental toll, they add

  15. Drivers of 2016 record Arctic warmth assessed using climate simulations subjected to Factual and Counterfactual forcing

    Directory of Open Access Journals (Sweden)

    Lantao Sun

    2018-03-01

    Full Text Available A suite of historical atmospheric model simulations is described that uses a hierarchy of global boundary forcings designed to inform research on the detection and attribution of weather and climate-related extremes. In addition to experiments forced by actual variations in sea surface temperature, sea ice concentration, and atmospheric chemical composition (so-called Factual experiments; additional (Counterfactual experiments are conducted in which the boundary forcings are adjusted by removing estimates of long-term climate change. A third suite of experiments are identical to the Factual runs except that sea ice concentrations are set to climatological conditions (Clim-Polar experiments. These were used to investigate the cause for extremely warm Arctic surface temperature during 2016.Much of the magnitude of surface temperature anomalies averaged poleward of 65°N in 2016 (3.2 ± 0.6 °C above a 1980–89 reference is shown to have been forced by observed global boundary conditions. The Factual experiments reveal that at least three quarters of the magnitude of 2016 annual mean Arctic warmth was forced, with considerable sensitivity to assumptions of sea ice thickness change. Results also indicate that 30–40% of the overall forced Arctic warming signal in 2016 originated from drivers outside of the Arctic. Despite such remote effects, the experiments reveal that the extreme magnitude of the 2016 Arctic warmth could not have occurred without consideration of the Arctic sea ice loss. We find a near-zero probability for Arctic surface temperature to be as warm as occurred in 2016 under late-19th century boundary conditions, and also under 2016 boundary conditions that do not include the depleted Arctic sea ice. Results from the atmospheric model experiments are reconciled with coupled climate model simulations which lead to a conclusion that about 60% of the 2016 Arctic warmth was likely attributable to human-induced climate change

  16. Foreword to the thematic cluster: the Arctic in Rapid Transition—marine ecosystems

    Directory of Open Access Journals (Sweden)

    Monika Kędra

    2015-12-01

    Full Text Available The Arctic is warming and losing sea ice. Happening at a much faster rate than previously expected, these changes are causing multiple ecosystem feedbacks in the Arctic Ocean. The Arctic in Rapid Transition (ART initiative was developed by early-career scientists as an integrative, international, multidisciplinary, long-term pan-Arctic network to study changes and feedbacks among the physical and biogeochemical components of the Arctic Ocean and their ultimate impacts on biological productivity on different timescales. In 2012, ART jointly organized with the Association of Polar Early Career Scientists their second science workshop—Overcoming Challenges of Observation to Model Integration in Marine Ecosystem Response to Sea Ice Transitions—at the Institute of Oceanology, Polish Academy of Sciences, in Sopot. This workshop aimed to identify linkages and feedbacks between atmosphere–ice–ocean forcing and biogeochemical processes, which are critical for ecosystem function, land–ocean interactions and productive capacity of the Arctic Ocean. This special thematic cluster of Polar Research brings together seven papers that grew out of workgroup discussions. Papers examine the climate change impacts on various ecosystem elements, providing important insights on the marine ecological and biogeochemical processes on various timescales. They also highlight priority areas for future research.

  17. Seasonal patterns in Arctic prasinophytes and inferred ecology of Bathycoccus unveiled in an Arctic winter metagenome.

    Science.gov (United States)

    Joli, Nathalie; Monier, Adam; Logares, Ramiro; Lovejoy, Connie

    2017-06-01

    Prasinophytes occur in all oceans but rarely dominate phytoplankton populations. In contrast, a single ecotype of the prasinophyte Micromonas is frequently the most abundant photosynthetic taxon reported in the Arctic from summer through autumn. However, seasonal dynamics of prasinophytes outside of this period are little known. To address this, we analyzed high-throughput V4 18S rRNA amplicon data collected from November to July in the Amundsen Gulf Region, Beaufort Sea, Arctic. Surprisingly during polar sunset in November and December, we found a high proportion of reads from both DNA and RNA belonging to another prasinophyte, Bathycoccus. We then analyzed a metagenome from a December sample and the resulting Bathycoccus metagenome assembled genome (MAG) covered ~90% of the Bathycoccus Ban7 reference genome. In contrast, only ~20% of a reference Micromonas genome was found in the metagenome. Our phylogenetic analysis of marker genes placed the Arctic Bathycoccus in the B1 coastal clade. In addition, substitution rates of 129 coding DNA sequences were ~1.6% divergent between the Arctic MAG and coastal Chilean upwelling MAGs and 17.3% between it and a South East Atlantic open ocean MAG in the B2 Clade. The metagenomic analysis also revealed a winter viral community highly skewed toward viruses targeting Micromonas, with a much lower diversity of viruses targeting Bathycoccus. Overall a combination of Micromonas being relatively less able to maintain activity under dark winter conditions and viral suppression of Micromonas may have contributed to the success of Bathycoccus in the Amundsen Gulf during winter.

  18. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  19. What Controls the Temperature of the Arctic Stratosphere during the Spring?

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Rosenfield, Joan E.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding the mechanisms that control the temperature of the polar lower stratosphere during spring is key to understanding ozone loss in the Arctic polar vortex. Spring ozone loss rates are directly tied to polar stratospheric temperatures by the formation of polar stratospheric clouds, and the conversion of chlorine species to reactive forms on these cloud particle surfaces. In this paper, we study those factors that control temperatures in the polar lower stratosphere. We use the National Centers for Environmental Prediction (NCEP)/NCAR reanalysis data covering the last two decades to investigate how planetary wave driving of the stratosphere is connected to polar temperatures. In particular, we show that planetary waves forced in the troposphere in mid- to late winter (January-February) are principally responsible for the mean polar temperature during the March period. These planetary waves are forced by both thermal and orographic processes in the troposphere, and propagate into the stratosphere in the mid and high latitudes. Strong mid-winter planetary wave forcing leads to a warmer Arctic lower stratosphere in early spring, while weak mid-winter forcing leads to cooler Arctic temperatures.

  20. Biodiversity of arctic marine fishes

    DEFF Research Database (Denmark)

    Mecklenburg, Catherine W.; Møller, Peter Rask; Steinke, Dirk

    2011-01-01

    Taxonomic and distributional information on each fish species found in arctic marine waters is reviewed, and a list of families and species with commentary on distributional records is presented. The list incorporates results from examination of museum collections of arctic marine fishes dating b...

  1. Mining in the European Arctic

    NARCIS (Netherlands)

    van Dam, Kim; Scheepstra, Annette; Gille, Johan; Stępień, Adam; Koivurova, Timo

    The European Arctic is currently experiencing an upsurge in mining activities, but future developments will be highly sensitive to mineral price fluctuations. The EU is a major consumer and importer of Arctic raw materials. As the EU is concerned about the security of supply, it encourages domestic

  2. Summer in the Arctic National Wildlife Refuge

    Science.gov (United States)

    2001-01-01

    This colorful image of the Arctic National Wildlife Refuge and the Beaufort Sea was acquired by the Multi-angle Imaging SpectroRadiometer's nadir (vertical-viewing) camera on August 16, 2000, during Terra orbit 3532. The swirling patterns apparent on the Beaufort Sea are small ice floes driven by turbulent water patterns, or eddies, caused by the interactions of water masses of differing salinity and temperature. By this time of year, all of the seasonal ice which surrounds the north coast of Alaska in winter has broken up, although the perennial pack ice remains further north. The morphology of the perennial ice pack's edge varies in response to the prevailing wind. If the wind is blowing strongly toward the perennial pack (that is, to the north), the ice edge will be more compact. In this image the ice edge is diffuse, and the patterns reflected by the ice floes indicate fairly calm weather.The Arctic National Wildlife Refuge (often abbreviated to ANWR) was established by President Eisenhower in 1960, and is the largest wildlife refuge in the United States. Animals of the Refuge include the 130,000-member Porcupine caribou herd, 180 species of birds from four continents, wolves, wolverine, polar and grizzly bears, muskoxen, foxes, and over 40 species of coastal and freshwater fish. Although most of ANWR was designated as wilderness in 1980, the area along the coastal plain was set aside so that the oil and gas reserves beneath the tundra could be studied. Drilling remains a topic of contention, and an energy bill allowing North Slope oil development to extend onto the coastal plain of the Refuge was approved by the US House of Representatives on August 2, 2001.The Refuge encompasses an impressive variety of arctic and subarctic ecosystems, including coastal lagoons, barrier islands, arctic tundra, and mountainous terrain. Of all these, the arctic tundra is the landscape judged most important for wildlife. From the coast inland to an average of 30-60 kilometers

  3. Impacts of projected sea ice changes on trans-Arctic navigation

    Science.gov (United States)

    Stephenson, S. R.; Smith, L. C.

    2012-12-01

    Reduced Arctic sea ice continues to be a palpable signal of global change. Record lows in September sea ice extent from 2007 - 2011 have fueled speculation that trans-Arctic navigation routes may become physically viable in the 21st century. General Circulation Models project a nearly ice-free Arctic Ocean in summer by mid-century; however, how reduced sea ice will realistically impact navigation is not well understood. Using the ATAM (Arctic Transportation Accessibility Model) we present simulations of 21st-century trans-Arctic voyages as a function of climatic (ice) conditions and vessel class. Simulations are based on sea ice projections for three climatic forcing scenarios (RCP 4.5, 6.0, and 8.5 W/m^2) representing present-day and mid-century conditions, assuming Polar Class 6 (PC6) and open-water vessels (OW) with medium and no ice-breaking capability, respectively. Optimal least-cost routes (minimizing travel time while avoiding ice impassible to a given vessel class) between the North Atlantic and the Bering Strait were calculated for summer months of each time window. While Arctic navigation depends on other factors besides sea ice including economics, infrastructure, bathymetry, current, and weather, these projections should be useful for strategic planning by governments, regulatory and environmental agencies, and the global maritime industry to assess potential changes in the spatial and temporal ranges of Arctic marine operations.

  4. A Hero in the Friendly Arctic: Deconstructing Vilhjalmur Stefansson's Rhetorical Maneuver

    Directory of Open Access Journals (Sweden)

    Silje Gaupseth

    2012-05-01

    Full Text Available The article deals with Arctic explorer and anthropologist Vilhjalmur Stefansson's self-presentation in the expedition account The Friendly Arctic: The Story of Five Years in Polar Regions (1921, which tells the story of his travels and trials in the Canadian High Arctic in the years between 1913-1918. The account has been considered a key text to Stefansson's Arctic career, and provides a textbook example of his characteristic theory of living off the country in the so-called Eskimo way. Against the background of Stefansson's debated position as Arctic expert and visionary, I ask if it is possible to read the kind of criticism with which Stefansson frequently was met as rooted in some of the narrative aspects of his account. The narrative persona or implied author is a central element in the literature of exploration, as several literary scholars have pointed out. My reading is centred around the implied author of The Friendly Arctic, which I argue must be read in light of the sometimes conflicting roles given to Stefansson as protagonist and narrator in his own story. Close-readings of passages from the account raise the dilemma of how it is possible to present oneself as a hero in an essentially friendly Arctic.

  5. Attribution of polar warming to human influence

    OpenAIRE

    Gillett, NP; Stone, DA; Stott, PA; Nozawa, T; Karpechko, AY; Hegerl, GC; Wehner, MF; Jones, PD

    2008-01-01

    The polar regions have long been expected to warm strongly as a result of anthropogenic climate change, because of the positive feedbacks associated with melting ice and snow. Several studies have noted a rise in Arctic temperatures over recent decades, but have not formally attributed the changes to human influence, owing to sparse observations and large natural variability. Both warming and cooling trends have been observed in Antarctica, which the Intergovernmental Panel on Climate Change ...

  6. Evaluation of Arctic broadband surface radiation measurements

    Science.gov (United States)

    Matsui, N.; Long, C. N.; Augustine, J.; Halliwell, D.; Uttal, T.; Longenecker, D.; Niebergall, O.; Wendell, J.; Albee, R.

    2012-02-01

    The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW) and thermal infrared, or longwave (LW), radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that keep sensors and shading devices trained on the sun along its diurnal path. High quality measurements require striking a balance between locating stations in a pristine undisturbed setting free of artificial blockage (such as from buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data in the Arctic include solar tracker malfunctions, rime/frost/snow deposition on the protective glass domes of the radiometers and operational problems due to limited operator access in extreme weather conditions. In this study, comparisons are made between the global and component sum (direct [vertical component] + diffuse) SW measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of arctic radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both SW and LW measurements. Solutions to these operational problems that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols are proposed.

  7. AGS polarized H- source

    International Nuclear Information System (INIS)

    Kponou, A.; Alessi, J.G.; Sluyters, T.

    1985-01-01

    The AGS polarized H - source is now operational. During a month-long experimental physics run in July 1984, pulses equivalent to 15 μA x 300 μs (approx. 3 x 10 10 protons) were injected into the RFQ preaccelerator. Beam polarization, measured at 200 MeV, was approx. 75%. After the run, a program to increase the H - yield of the source was begun and significant progress has been made. The H - current is now frequently 20 to 30 μA. A description of the source and some details of our operating experience are given. We also briefly describe the improvement program

  8. EVA: Evryscopes for the Arctic and Antarctic

    Science.gov (United States)

    Richichi, A.; Law, N.; Tasuya, O.; Fors, O.; Dennihy, E.; Carlberg, R.; Tuthill, P.; Ashley, M.; Soonthornthum, B.

    2017-06-01

    We are planning to build Evryscopes for the Arctic and Antarctic (EVA), which will enable the first ultra-wide-field, high-cadence sky survey to be conducted from both Poles. The system is based on the successful Evryscope concept, already installed and operating since 2015 at Cerro Tololo in Chile with the following characteristics: robotic operation, 8,000 square degrees simultaneous sky coverage, 2-minute cadence, milli-mag level photometric accuracy, pipelined data processing for real-time analysis and full data storage for off-line analysis. The initial location proposed for EVA is the PEARL station on Ellesmere island; later also an antarctic location shall be selected. The science goals enabled by this unique combination of almost full-sky coverage and high temporal cadence are numerous, and include among others ground-breaking forays in the fields of exoplanets, stellar variability, asteroseismology, supernovae and other transient events. The EVA polar locations will enable uninterrupted observations lasting in principle over weeks and months. EVA will be fully robotic. We discuss the EVA science drivers and expected results, and present the logistics and the outline of the project which is expected to have first light in the winter of 2018. The cost envelope can be kept very competitive thanks to R&D already employed for the CTIO Evryscope, to our experience with both Arctic and Antarctic locations, and to the use of off-the-shelf components.

  9. AMAP Assessment 2013: Arctic Ocean acidification

    Science.gov (United States)

    2013-01-01

    This assessment report presents the results of the 2013 AMAP Assessment of Arctic Ocean Acidification (AOA). This is the first such assessment dealing with AOA from an Arctic-wide perspective, and complements several assessments that AMAP has delivered over the past ten years concerning the effects of climate change on Arctic ecosystems and people. The Arctic Monitoring and Assessment Programme (AMAP) is a group working under the Arctic Council. The Arctic Council Ministers have requested AMAP to: - produce integrated assessment reports on the status and trends of the conditions of the Arctic ecosystems;

  10. Annual and latitudinal variations of surface fluxes and meteorological variables at Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey; Uttal, Taneil; Persson, Ola; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2016-04-01

    This study analyzes and discusses seasonal and latitudinal variations of surface fluxes (turbulent, radiative, and soil ground heat) and other ancillary surface/snow/permafrost data based on in-situ measurements made at two long-term research observatories near the coast of the Arctic Ocean located in Canada and Russia. The hourly averaged data collected at Eureka (Canadian territory of Nunavut) and Tiksi (East Siberia) located at two quite different latitudes (80.0 N and 71.6 N respectively) are analyzed in details to describe the seasons in the Arctic. Although Eureka and Tiksi are located at the different continents and at the different latitudes, the annual course of the surface meteorology and the surface fluxes are qualitatively very similar. The air and soil temperatures display the familiar strong seasonal trend with maximum of measured temperatures in mid-summer and minimum during winter. According to our data, variation in incoming short-wave solar radiation led the seasonal pattern of the air and soil temperatures, and the turbulent fluxes. During the dark Polar nights, air and ground temperatures are strongly controlled by long-wave radiation associated generally with cloud cover. Due to the fact that in average the higher latitudes receive less solar radiation than lower latitudes, a length of the convective atmospheric boundary layer (warm season) is shorter and middle-summer amplitude of the turbulent fluxes is generally less in Eureka than in Tiksi. However, since solar elevation angle at local midnight in the middle of Arctic summer is higher for Eureka as compared to Tiksi, stable stratification and upward turbulent flux for carbon dioxide is generally did not observed at Eureka site during summer seasons. It was found a high correlation between the turbulent fluxes of sensible and latent heat, carbon dioxide and the net solar radiation. A comprehensive evaluation of energy balance closure problem is performed based on the multi-year data sets

  11. Neutron polarization

    International Nuclear Information System (INIS)

    Firk, F.W.K.

    1976-01-01

    Some recent experiments involving polarized neutrons are discussed; they demonstrate how polarization studies provide information on fundamental aspects of nuclear structure that cannot be obtained from more traditional neutron studies. Until recently, neutron polarization studies tended to be limited either to very low energies or to restricted regions at higher energies, determined by the kinematics of favorable (p, vector n) and (d, vector n) reactions. With the advent of high intensity pulsed electron and proton accelerators and of beams of vector polarized deuterons, this is no longer the case. One has entered an era in which neutron polarization experiments are now being carried out, in a routine way, throughout the entire range from thermal energies to tens-of-MeV. The significance of neutron polarization studies is illustrated in discussions of a wide variety of experiments that include the measurement of T-invariance in the β-decay of polarized neutrons, a search for the effects of meson exchange currents in the photo-disintegration of the deuteron, the determination of quantum numbers of states in the fission of aligned 235 U and 237 Np induced by polarized neutrons, and the double- and triple-scattering of fast neutrons by light nuclei

  12. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  13. The Rapid Arctic Warming and Its Impact on East Asian Winter Weather in Recent Decade

    Science.gov (United States)

    Kim, S. J.; Kim, B. M.; Kim, J. H.

    2015-12-01

    The Arctic is warming much more rapidly than the lower latitudes. In contrast to the rapid Arctic warming, in winters of the recent decade, the cold-air outbreaks over East Asia occur more frequently and stronger than in 1990s. By accompanying the snow over East Asia, the strong cold surges have led to a severe socio-economic impact. Such severe cold surges in recent decade over east Asia is consistent with the more dominant negative phase of the Arctic Oscillation (AO), that may be attributed by the Arctic amplification. In both observation-based reanalysis and numerical model experiments, the Arctic sea ice melting leads to the weakening of the AO polarity by reducing the meridional temperature gradient through a heat flux feedback. The Arctic warming and associated sea ice melting over the Kara-Barents area in late fall and early winter first release a lot of heat to the atmosphere from the ocean by a strong contrast in temperature and moisture and higher height anomaly is developed over the Kara/Barents and the Ural mountains The anomalous anticyclonic anomaly over the Arctic strengthen the Siberian High and at the same time the east Asian trough is developed over the western coast of the North Pacific. Through the passage between the margin of the Siberian High and east Asian tough, an extremely cold air is transported from east Siberia to east Asia for sometimes more than a week. Such a severe sold air brings about the moisture from nearby ocean, largely influencing the daily lives and economy in north East China, Korea, and Japan. The recent Arctic and associated sea ice melting is not only contributed to the local climate and weather, but also a severe weather in mid-latitudes through a modulation in polar vortex.

  14. Arctic Intermediate Water in the Nordic Seas, 1991-2009

    Science.gov (United States)

    Jeansson, Emil; Olsen, Are; Jutterström, Sara

    2017-10-01

    The evolution of the different types of Arctic Intermediate Water (AIW) in the Nordic Seas is evaluated and compared utilising hydro-chemical data from 1991 to 2009. It has been suggested that these waters are important components of the Norwegian Sea Arctic Intermediate Water (NSAIW), and of the dense overflows to the North Atlantic. Thus, it is important to understand how their properties and distribution vary with time. The AIWs from the Greenland and Iceland Seas, show different degrees of variability during the studied period; however, only the Greenland Sea Arctic Intermediate Water (GSAIW) shows an increasing temperature and salinity throughout the 2000s, which considerably changed the properties of this water mass. Optimum multiparameter (OMP) analysis was conducted to assess the sources of the NSAIW. The analysis shows that the Iceland Sea Arctic Intermediate Water (ISAIW) and the GSAIW both contribute to NSAIW, at different densities corresponding to their respective density range. This illustrates that they flow largely isopycnally from their source regions to the Norwegian Sea. The main source of the NSAIW, however, is the upper Polar Deep Water, which explains the lower concentrations of oxygen and chlorofluorocarbons, and higher salinity and nutrient concentrations of the NSAIW layer compared with the ISAIW and GSAIW. This shows how vital it is to include chemical tracers in any water mass analysis to correctly assess the sources of the water mass being studied.

  15. Constraining estimates of methane emissions from Arctic permafrost regions with CARVE

    Science.gov (United States)

    Chang, R. Y.; Karion, A.; Sweeney, C.; Henderson, J.; Mountain, M.; Eluszkiewicz, J.; Luus, K. A.; Lin, J. C.; Dinardo, S.; Miller, C. E.; Wofsy, S. C.

    2013-12-01

    Permafrost in the Arctic contains large carbon pools that are currently non-labile, but can be released to the atmosphere as polar regions warm. In order to predict future climate scenarios, we need to understand the emissions of these greenhouse gases under varying environmental conditions. This study presents in-situ measurements of methane made on board an aircraft during the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), which sampled over the permafrost regions of Alaska. Using measurements from May to September 2012, seasonal emission rate estimates of methane from tundra are constrained using the Stochastic Time-Inverted Lagrangian Transport model, a Lagrangian particle dispersion model driven by custom polar-WRF fields. Preliminary results suggest that methane emission rates have not greatly increased since the Arctic Boundary Layer Experiment conducted in southwest Alaska in 1988.

  16. Cases of Lightweight Structures for Polar Areas

    DEFF Research Database (Denmark)

    Pedreros, Jessica Fernandoy; Christ, Julian; Shepherd, Paul

    2017-01-01

    The paper focuses on what the authors call ‘Polar Lightweight Structures’. The first part presents a collection of lightweight structures (LWS) designed and built for Antarctic conditions, with the aim of demonstrating the diversity of approaches attempted by designers. The second part of the paper...... presents two studies where different computational methods were applied for the design of generic LWS based on the local conditions of two particular Polar locations; namely, the Arctic region and Glacier Union in the Antarctic plateau. Both studies were conducted independently with the aim...

  17. The alien terrestrial invertebrate fauna of the High Arctic archipelago of Svalbard: potential implications for the native flora and fauna

    OpenAIRE

    Stephen J. Coulson

    2015-01-01

    Experience from the Antarctic indicates that the establishment of alien species may have significant negative effects on native flora and fauna in polar regions and is considered to be amongst the greatest threats to biodiversity. But, there have been few similar studies from the Arctic. Although the terrestrial invertebrate inventory of the Svalbard Archipelago is amongst the most complete for any region of the Arctic, no consideration has yet been made of alien terrestrial invertebrate spec...

  18. Changes in Ocean Circulation with an Ice-Free Arctic: Reconstructing Early Holocene Arctic Ocean Circulation Using Geochemical Signals from Individual Neogloboquadrina pachyderma (sinistral) Shells

    Science.gov (United States)

    Livsey, C.; Spero, H. J.; Kozdon, R.

    2016-12-01

    The impacts of sea ice decrease and consequent hydrologic changes in the Arctic Ocean will be experienced globally as ocean and atmospheric temperatures continue to rise, though it is not evident to what extent. Understanding the structure of the Arctic water column during the early/mid Holocene sea ice minimum ( 6-10 kya), a post-glacial analogue of a seasonally ice-free Arctic, will help us to predict what the changes we can expect as the Earth warms over the next century. Neogloboquadrina pachyderma (sinistral; Nps) is a species of planktonic foraminifera that dominates assemblages in the polar oceans. This species grows its chambers (ontogenetic calcite) in the surface waters and subsequently descends through the water column to below the mixed layer where it quickly adds a thick crust of calcite (Kohfeld et al., 1996). Therefore, geochemical signals from both the surface waters and sub-mixed layer depths are captured within single Nps shells. We were able to target ion mass spectrometry (SIMS), therefore capturing signals from both the ontogenetic and crust calcite in single Nps shells. This data was combined with laser ablation- inductively coupled mass spectrometry (LA-ICPMS) Mg/Ca profiles of trace metals through the two layers of calcite of the same shells, to determine the thermal structure of the water column. Combining δ18O, temperature, and salinity gradients from locations across the Arctic basin allow us to reconstruct the hydrography of the early Holocene Arctic sea ice minimum. These results will be compared with modern Arctic water column characteristics in order to develop a conceptual model of Arctic Ocean oceanographic change due to global warming. Kohfeld, K.E., Fairbanks, R.G., Smith, S.L., Walsh, I.D., 1996. Neogloboquadrina pachyderma(sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence from northeast water polynya plankton tows, sediment traps, and surface sediments. Paleoceanography 11, 679-699.

  19. Collaborative Proposal: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic System Model (RASM)

    Energy Technology Data Exchange (ETDEWEB)

    Maslowski, Wieslaw [Naval Postgraduate School, Monterey, CA (United States)

    2016-10-17

    This project aims to develop, apply and evaluate a regional Arctic System model (RASM) for enhanced decadal predictions. Its overarching goal is to advance understanding of the past and present states of arctic climate and to facilitate improvements in seasonal to decadal predictions. In particular, it will focus on variability and long-term change of energy and freshwater flows through the arctic climate system. The project will also address modes of natural climate variability as well as extreme and rapid climate change in a region of the Earth that is: (i) a key indicator of the state of global climate through polar amplification and (ii) which is undergoing environmental transitions not seen in instrumental records. RASM will readily allow the addition of other earth system components, such as ecosystem or biochemistry models, thus allowing it to facilitate studies of climate impacts (e.g., droughts and fires) and of ecosystem adaptations to these impacts. As such, RASM is expected to become a foundation for more complete Arctic System models and part of a model hierarchy important for improving climate modeling and predictions.

  20. Observing Arctic Ecology using Networked Infomechanical Systems

    Science.gov (United States)

    Healey, N. C.; Oberbauer, S. F.; Hollister, R. D.; Tweedie, C. E.; Welker, J. M.; Gould, W. A.

    2012-12-01

    Understanding ecological dynamics is important for investigation into the potential impacts of climate change in the Arctic. Established in the early 1990's, the International Tundra Experiment (ITEX) began observational inquiry of plant phenology, plant growth, community composition, and ecosystem properties as part of a greater effort to study changes across the Arctic. Unfortunately, these observations are labor intensive and time consuming, greatly limiting their frequency and spatial coverage. We have expanded the capability of ITEX to analyze ecological phenomenon with improved spatial and temporal resolution through the use of Networked Infomechanical Systems (NIMS) as part of the Arctic Observing Network (AON) program. The systems exhibit customizable infrastructure that supports a high level of versatility in sensor arrays in combination with information technology that allows for adaptable configurations to numerous environmental observation applications. We observe stereo and static time-lapse photography, air and surface temperature, incoming and outgoing long and short wave radiation, net radiation, and hyperspectral reflectance that provides critical information to understanding how vegetation in the Arctic is responding to ambient climate conditions. These measurements are conducted concurrent with ongoing manual measurements using ITEX protocols. Our NIMS travels at a rate of three centimeters per second while suspended on steel cables that are ~1 m from the surface spanning transects ~50 m in length. The transects are located to span soil moisture gradients across a variety of land cover types including dry heath, moist acidic tussock tundra, shrub tundra, wet meadows, dry meadows, and water tracks. We have deployed NIMS at four locations on the North Slope of Alaska, USA associated with 1 km2 ARCSS vegetation study grids including Barrow, Atqasuk, Toolik Lake, and Imnavait Creek. A fifth system has been deployed in Thule, Greenland beginning in

  1. Using fluorescent dissolved organic matter to trace and distinguish the origin of Arctic surface waters

    Science.gov (United States)

    Gonçalves-Araujo, Rafael; Granskog, Mats A.; Bracher, Astrid; Azetsu-Scott, Kumiko; Dodd, Paul A.; Stedmon, Colin A.

    2016-01-01

    Climate change affects the Arctic with regards to permafrost thaw, sea-ice melt, alterations to the freshwater budget and increased export of terrestrial material to the Arctic Ocean. The Fram and Davis Straits represent the major gateways connecting the Arctic and Atlantic. Oceanographic surveys were performed in the Fram and Davis Straits, and on the east Greenland Shelf (EGS), in late summer 2012/2013. Meteoric (fmw), sea-ice melt, Atlantic and Pacific water fractions were determined and the fluorescence properties of dissolved organic matter (FDOM) were characterized. In Fram Strait and EGS, a robust correlation between visible wavelength fluorescence and fmw was apparent, suggesting it as a reliable tracer of polar waters. However, a pattern was observed which linked the organic matter characteristics to the origin of polar waters. At depth in Davis Strait, visible wavelength FDOM was correlated to apparent oxygen utilization (AOU) and traced deep-water DOM turnover. In surface waters FDOM characteristics could distinguish between surface waters from eastern (Atlantic + modified polar waters) and western (Canada-basin polar waters) Arctic sectors. The findings highlight the potential of designing in situ multi-channel DOM fluorometers to trace the freshwater origins and decipher water mass mixing dynamics in the region without laborious samples analyses. PMID:27667721

  2. Engaging Students in Science Courses: Lessons of Change from the Arctic

    Science.gov (United States)

    Duffy, Lawrence K.; Godduhn, Anna; Fabbri, Cindy E.; van Muelken, Mary; Nicholas-Figueroa, Linda; Middlecamp, Catherine Hurt

    2011-01-01

    Where you live should have something to do with what you teach. In the Arctic, the idea of place-based education--teaching and sharing knowledge that is needed to live well--is central to the UARCTIC consortium and the 4th International Polar Year educational reform effort. A place-based issue oriented context can engage students in chemistry…

  3. Arctic sea ice albedo from AVHRR

    Science.gov (United States)

    Lindsay, R. W.; Rothrock, D. A.

    1994-01-01

    The seasonal cycle of surface albedo of sea ice in the Arctic is estimated from measurements made with the Advanced Very High Resolution Radiometer (AVHRR) on the polar-orbiting satellites NOAA-10 and NOAA-11. The albedos of 145 200-km-square cells are analyzed. The cells are from March through September 1989 and include only those for which the sun is more than 10 deg above the horizon. Cloud masking is performed manually. Corrections are applied for instrument calibration, nonisotropic reflection, atmospheric interference, narrowband to broadband conversion, and normalization to a common solar zenith angle. The estimated albedos are relative, with the instrument gain set to give an albedo of 0.80 for ice floes in March and April. The mean values for the cloud-free portions of individual cells range from 0.18 to 0.91. Monthly averages of cells in the central Arctic range from 0.76 in April to 0.47 in August. The monthly averages of the within-cell standard deviations in the central Arctic are 0.04 in April and 0.06 in September. The surface albedo and surface temperature are correlated most strongly in March (R = -0.77) with little correlation in the summer. The monthly average lead fraction is determined from the mean potential open water, a scaled representation of the temperature or albedo between 0.0 (for ice) and 1.0 (for water); in the central Arctic it rises from an average 0.025 in the spring to 0.06 in September. Sparse data on aerosols, ozone, and water vapor in the atmospheric column contribute uncertainties to instantaneous, area-average albedos of 0.13, 0.04, and 0.08. Uncertainties in monthly average albedos are not this large. Contemporaneous estimation of these variables could reduce the uncertainty in the estimated albedo considerably. The poor calibration of AVHRR channels 1 and 2 is another large impediment to making accurate albedo estimates.

  4. State of the Arctic Environment

    International Nuclear Information System (INIS)

    1990-01-01

    The Arctic environment, covering about 21 million km 2 , is in this connection regarded as the area north of the Arctic Circle. General biological and physical features of the terrestrial and freshwater environments of the Arctic are briefly described, but most effort is put into a description of the marine part which constitutes about two-thirds of the total Arctic environment. General oceanography and morphological characteristics are included; e.g. that the continental shelf surrounding the Arctic deep water basins covers approximately 36% of the surface areas of Arctic waters, but contains only 2% of the total water masses. Blowout accident may release thousands of tons of oil per day and last for months. They occur statistically very seldom, but the magnitude underlines the necessity of an efficient oil spill contingency as well as sound safety and quality assurance procedures. Contingency plans should be coordinated and regularly evaluated through simulated and practical tests of performance. Arctic conditions demand alternative measures compared to those otherwise used for oil spill prevention and clean-up. New concepts or optimization of existing mechanical equipment is necessary. Chemical and thermal methods should be evaluated for efficiency and possible environmental effects. Both due to regular discharges of oil contaminated drilled cuttings and the possibility of a blowout or other spills, drilling operations in biological sensitive areas may be regulated to take place only during the less sensitive parts of the year. 122 refs., 8 figs., 8 tabs

  5. Thermal Thresholds of Phytoplankton Growth in Polar Waters and Their Consequences for a Warming Polar Ocean

    KAUST Repository

    Coello-Camba, Alexandra

    2017-06-02

    Polar areas are experiencing the steepest warming rates on Earth, a trend expected to continue in the future. In these habitats, phytoplankton communities constitute the basis of the food web and their thermal tolerance may dictate how warming affects these delicate environments. Here, we compiled available data on thermal responses of phytoplankton growth in polar waters. We assembled 53 growth-vs.-temperature curves (25 from the Arctic, 28 from the Southern oceans), indicating the limited information available for these ecosystems. Half of the data from Arctic phytoplankton came from natural communities where low ambient concentrations could limit growth rates. Phytoplankton from polar waters grew faster under small temperature increases until reaching an optimum (TOPT), and slowed when temperatures increased beyond this value. This left-skewed curves were characterized by higher activation energies (Ea) for phytoplankton growth above than below the TOPT. Combining these thermal responses we obtained a community TOPT of 6.5°C (±0.2) and 5.2°C (±0.1) for Arctic and Southern Ocean phytoplankton communities, respectively. These threshold temperatures were already exceeded at 70°N during the first half of August 2013, evidenced by sea surface temperatures (SSTs, satellite data, http://www.ncdc.noaa.gov). We forecasted SSTs for the end of the twenty-first century by assuming an overall 3°C increase, equivalent to a low emission scenario. Our forecasts show that SSTs at 70°N are expected to exceed TOPT during summer by 2100, and during the first half of August at 75°N. While recent Arctic spring temperatures average 0.5°C and −0.7°C at 70°N and 75°N, respectively, they could increase to 2.8°C at 70°N and 2.2°C at 75°N as we approach 2100. Such temperature increases could lead to intense phytoplankton blooms, shortened by fast nutrient consumption. As SSTs increase, thermal thresholds for phytoplankton growth would be eventually exceeded during bloom

  6. Thermal Thresholds of Phytoplankton Growth in Polar Waters and Their Consequences for a Warming Polar Ocean

    Directory of Open Access Journals (Sweden)

    Alexandra Coello-Camba

    2017-06-01

    Full Text Available Polar areas are experiencing the steepest warming rates on Earth, a trend expected to continue in the future. In these habitats, phytoplankton communities constitute the basis of the food web and their thermal tolerance may dictate how warming affects these delicate environments. Here, we compiled available data on thermal responses of phytoplankton growth in polar waters. We assembled 53 growth-vs.-temperature curves (25 from the Arctic, 28 from the Southern oceans, indicating the limited information available for these ecosystems. Half of the data from Arctic phytoplankton came from natural communities where low ambient concentrations could limit growth rates. Phytoplankton from polar waters grew faster under small temperature increases until reaching an optimum (TOPT, and slowed when temperatures increased beyond this value. This left-skewed curves were characterized by higher activation energies (Ea for phytoplankton growth above than below the TOPT. Combining these thermal responses we obtained a community TOPT of 6.5°C (±0.2 and 5.2°C (±0.1 for Arctic and Southern Ocean phytoplankton communities, respectively. These threshold temperatures were already exceeded at 70°N during the first half of August 2013, evidenced by sea surface temperatures (SSTs, satellite data, http://www.ncdc.noaa.gov. We forecasted SSTs for the end of the twenty-first century by assuming an overall 3°C increase, equivalent to a low emission scenario. Our forecasts show that SSTs at 70°N are expected to exceed TOPT during summer by 2100, and during the first half of August at 75°N. While recent Arctic spring temperatures average 0.5°C and −0.7°C at 70°N and 75°N, respectively, they could increase to 2.8°C at 70°N and 2.2°C at 75°N as we approach 2100. Such temperature increases could lead to intense phytoplankton blooms, shortened by fast nutrient consumption. As SSTs increase, thermal thresholds for phytoplankton growth would be eventually exceeded

  7. Thermal Thresholds of Phytoplankton Growth in Polar Waters and Their Consequences for a Warming Polar Ocean

    KAUST Repository

    Coello-Camba, Alexandra; Agusti, Susana

    2017-01-01

    Polar areas are experiencing the steepest warming rates on Earth, a trend expected to continue in the future. In these habitats, phytoplankton communities constitute the basis of the food web and their thermal tolerance may dictate how warming affects these delicate environments. Here, we compiled available data on thermal responses of phytoplankton growth in polar waters. We assembled 53 growth-vs.-temperature curves (25 from the Arctic, 28 from the Southern oceans), indicating the limited information available for these ecosystems. Half of the data from Arctic phytoplankton came from natural communities where low ambient concentrations could limit growth rates. Phytoplankton from polar waters grew faster under small temperature increases until reaching an optimum (TOPT), and slowed when temperatures increased beyond this value. This left-skewed curves were characterized by higher activation energies (Ea) for phytoplankton growth above than below the TOPT. Combining these thermal responses we obtained a community TOPT of 6.5°C (±0.2) and 5.2°C (±0.1) for Arctic and Southern Ocean phytoplankton communities, respectively. These threshold temperatures were already exceeded at 70°N during the first half of August 2013, evidenced by sea surface temperatures (SSTs, satellite data, http://www.ncdc.noaa.gov). We forecasted SSTs for the end of the twenty-first century by assuming an overall 3°C increase, equivalent to a low emission scenario. Our forecasts show that SSTs at 70°N are expected to exceed TOPT during summer by 2100, and during the first half of August at 75°N. While recent Arctic spring temperatures average 0.5°C and −0.7°C at 70°N and 75°N, respectively, they could increase to 2.8°C at 70°N and 2.2°C at 75°N as we approach 2100. Such temperature increases could lead to intense phytoplankton blooms, shortened by fast nutrient consumption. As SSTs increase, thermal thresholds for phytoplankton growth would be eventually exceeded during bloom

  8. A new fractional derivative and its application to explanation of polar bear hairs

    Directory of Open Access Journals (Sweden)

    Ji-Huan He

    2016-04-01

    Full Text Available A new fractional derivative is defined through the variational iteration method, and its application in explaining the excellent thermal protection of polar bear hairs is elucidated. The fractal porosity of its inner structure makes a polar bear mathematically adapted for living in a harsh Arctic region.

  9. A new fractional derivative and its application to explanation of polar bear hairs

    OpenAIRE

    Ji-Huan He; Zheng-Biao Li; Qing-li Wang

    2016-01-01

    A new fractional derivative is defined through the variational iteration method, and its application in explaining the excellent thermal protection of polar bear hairs is elucidated. The fractal porosity of its inner structure makes a polar bear mathematically adapted for living in a harsh Arctic region.

  10. Rebuttal of "Polar bear population forecasts: a public-policy forecasting audit"

    Science.gov (United States)

    Steven C. Amstrup; Hal Caswell; Eric DeWeaver; Ian Stirling; David C. Douglas; Bruce G. Marcot; Christine M. Hunter

    2009-01-01

    Observed declines in the Arctic sea ice have resulted in a variety of negative effects on polar bears (Ursus maritimus). Projections for additional future declines in sea ice resulted in a proposal to list polar bears as a threatened species under the United States Endangered Species Act. To provide information for the Department of the Interior...

  11. Advancing Environmental Prediction Capabilities for the Polar Regions and Beyond during The Year of Polar Prediction

    Science.gov (United States)

    Werner, Kirstin; Goessling, Helge; Hoke, Winfried; Kirchhoff, Katharina; Jung, Thomas

    2017-04-01

    Environmental changes in polar regions open up new opportunities for economic and societal operations such as vessel traffic related to scientific, fishery and tourism activities, and in the case of the Arctic also enhanced resource development. The availability of current and accurate weather and environmental information and forecasts will therefore play an increasingly important role in aiding risk reduction and safety management around the poles. The Year of Polar Prediction (YOPP) has been established by the World Meteorological Organization's World Weather Research Programme as the key activity of the ten-year Polar Prediction Project (PPP; see more on www.polarprediction.net). YOPP is an internationally coordinated initiative to significantly advance our environmental prediction capabilities for the polar regions and beyond, supporting improved weather and climate services. Scheduled to take place from mid-2017 to mid-2019, the YOPP core phase covers an extended period of intensive observing, modelling, prediction, verification, user-engagement and education activities in the Arctic and Antarctic, on a wide range of time scales from hours to seasons. The Year of Polar Prediction will entail periods of enhanced observational and modelling campaigns in both polar regions. With the purpose to close the gaps in the conventional polar observing systems in regions where the observation network is sparse, routine observations will be enhanced during Special Observing Periods for an extended period of time (several weeks) during YOPP. This will allow carrying out subsequent forecasting system experiments aimed at optimizing observing systems in the polar regions and providing insight into the impact of better polar observations on forecast skills in lower latitudes. With various activities and the involvement of a wide range of stakeholders, YOPP will contribute to the knowledge base needed to managing the opportunities and risks that come with polar climate change.

  12. Arctic action against climatic changes

    International Nuclear Information System (INIS)

    Njaastad, Birgit

    2000-01-01

    The articles describes efforts to map the climatic changes in the Arctic regions through the Arctic Climate Impact Assessment Project which is a joint venture between eight Arctic countries: Denmark, Canada, the USA, Russia, Finland, Sweden and Norway. The project deals with the consequences of the changes such as the UV radiation due to diminishing ozone layers. The aims are: Evaluate and integrate existing knowledge in the field and evaluate and predict the consequences particularly on the environment both in the present and the future and produce reliable and useful information in order to aid the decision-making processes

  13. Participatory Methods in Arctic Research

    DEFF Research Database (Denmark)

    Faber, Louise

    2018-01-01

    collection, analysis and conclusions and / or knowledge dissemination. The book aims to collect and share experiences from researchers active in engaging research in the Arctic. The articles reflect on the inclusive methods used in the Arctic research, on the cause and purpose thereof, while the methods......This book is a collection of articles written by researchers at Aalborg University, affiliated with AAU Arctic. The articles are about how the researchers in their respective projects work with stakeholders and citizens in different ways, for example in connection with problem formulation, data...... are exemplified to serve as inspiration for other researchers....

  14. The Norwegian Radiation Protection Authority's Environmental Unit - 10 years in the Polar Environmental Centre, Tromsoe

    International Nuclear Information System (INIS)

    2009-01-01

    The Norwegian Radiation Protection Authority (NRPA) established an Environmental Unit at the Polar Environmental Centre in Tromsoe in the summer of 1999. The aim of establishing the unit in Tromsoe was to further the monitoring programmes of the NRPA in the Arctic and to the promote collaboration within the Polar Environmental Centre. Over the last 10 years, the NRPA's Environmental Unit has undertaken a range of research and monitoring activities in close cooperation with other institutes in the Polar Environmental Centre that have helped to further understand the current radiological status of the Norwegian Arctic. (Author)

  15. Mercury in the Canadian Arctic terrestrial environment: an update.

    Science.gov (United States)

    Gamberg, Mary; Chételat, John; Poulain, Alexandre J; Zdanowicz, Christian; Zheng, Jiancheng

    2015-03-15

    Contaminants in the Canadian Arctic have been studied over the last twenty years under the guidance of the Northern Contaminants Program. This paper provides the current state of knowledge on mercury (Hg) in the Canadian Arctic terrestrial environment. Snow, ice, and soils on land are key reservoirs for atmospheric deposition and can become sources of Hg through the melting of terrestrial ice and snow and via soil erosion. In the Canadian Arctic, new data have been collected for snow and ice that provide more information on the net accumulation and storage of Hg in the cryosphere. Concentrations of total Hg (THg) in terrestrial snow are highly variable but on average, relatively low (Porcupine caribou herd vary among years but there has been no significant increase or decrease over the last two decades. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Ionic polarization

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1992-01-01

    Ferroelectricity occurs in many different kinds of materials. Many of the technologically important solids, which are ferroelectric, can be classified as ionic. Any microscopic theory of ferroelectricity must contain a description of local polarization forces. We have collaborated in the development of a theory of ionic polarization which is quite successful. Its basic assumption is that the polarization is derived from the properties of the individual ions. We have applied this theory successfully to diverse subjects as linear and nonlinear optical response, phonon dispersion, and piezoelectricity. We have developed numerical methods using the local Density approximation to calculate the multipole polarizabilities of ions when subject to various fields. We have also developed methods of calculating the nonlinear hyperpolarizability, and showed that it can be used to explain light scattering experiments. This paper elaborates on this polarization theory

  17. Squaring the Arctic Circle: connecting Arctic knowledge with societal needs

    Science.gov (United States)

    Wilkinson, J.

    2017-12-01

    Over the coming years the landscape of the Arctic will change substantially- environmentally, politically, and economically. Furthermore, Arctic change has the potential to significantly impact Arctic and non-Arctic countries alike. Thus, our science is in-demand by local communities, politicians, industry leaders and the public. During these times of transition it is essential that the links between science and society be strengthened further. Strong links between science and society is exactly what is needed for the development of better decision-making tools to support sustainable development, enable adaptation to climate change, provide the information necessary for improved management of assets and operations in the Arctic region, and and to inform scientific, economic, environmental and societal policies. By doing so tangible benefits will flow to Arctic societies, as well as for non-Arctic countries that will be significantly affected by climate change. Past experience has shown that the engagement with a broad range of stakeholders is not always an easy process. Consequently, we need to improve collaborative opportunities between scientists, indigenous/local communities, private sector, policy makers, NGOs, and other relevant stakeholders. The development of best practices in this area must build on the collective experiences of successful cross-sectorial programmes. Within this session we present some of the outreach work we have performed within the EU programme ICE-ARC, from community meetings in NW Greenland through to sessions at the United Nations Framework Convention on Climate Change COP Conferences, industry round tables, and an Arctic side event at the World Economic Forum in Davos.

  18. Internet Blogs, Polar Bears, and Climate-Change Denial by Proxy.

    Science.gov (United States)

    Harvey, Jeffrey A; van den Berg, Daphne; Ellers, Jacintha; Kampen, Remko; Crowther, Thomas W; Roessingh, Peter; Verheggen, Bart; Nuijten, Rascha J M; Post, Eric; Lewandowsky, Stephan; Stirling, Ian; Balgopal, Meena; Amstrup, Steven C; Mann, Michael E

    2018-04-01

    Increasing surface temperatures, Arctic sea-ice loss, and other evidence of anthropogenic global warming (AGW) are acknowledged by every major scientific organization in the world. However, there is a wide gap between this broad scientific consensus and public opinion. Internet blogs have strongly contributed to this consensus gap by fomenting misunderstandings of AGW causes and consequences. Polar bears (Ursus maritimus) have become a "poster species" for AGW, making them a target of those denying AGW evidence. Here, focusing on Arctic sea ice and polar bears, we show that blogs that deny or downplay AGW disregard the overwhelming scientific evidence of Arctic sea-ice loss and polar bear vulnerability. By denying the impacts of AGW on polar bears, bloggers aim to cast doubt on other established ecological consequences of AGW, aggravating the consensus gap. To counter misinformation and reduce this gap, scientists should directly engage the public in the media and blogosphere.

  19. Polarization experiments

    International Nuclear Information System (INIS)

    Halzen, F.

    1977-02-01

    In a theoretical review of polarization experiments two important points are emphasized: (a) their versatility and their relevance to a large variety of aspects of hadron physics (tests of basic symmetries; a probe of strong interaction dynamics; a tool for hadron spectroscopy); (b) the wealth of experimental data on polarization parameters in pp and np scattering in the Regge language and in the diffraction language. (author)

  20. Future scientific drilling in the Arctic Ocean: Key objectives, areas, and strategies

    Science.gov (United States)

    Stein, R.; Coakley, B.; Mikkelsen, N.; O'Regan, M.; Ruppel, C.

    2012-04-01

    Past, Present and Future Changes in Arctic Terrestrial and Marine Systems" (Kananaskis, Alberta/Canada, February 2012). During these workshops, key areas and key scientific themes as well as drilling and site-survey strategies were discussed. Major scientific themes for future Arctic drilling will include: - The Arctic Ocean during the transition from greenhouse to icehouse conditions and millennial scale climate changes; - Physical and chemical changes of the evolving Polar Ocean and Arctic gateways; - Impact of Pleistocene/Holocene warming and sea-level rise on upper continental slope and shelf gas hydrates and on shelf permafrost; - Land-ocean interactions; - Tectonic evolution and birth of the Arctic Ocean basin: Arctic ridges, sea floor spreading and global lithosphere processes. When thinking about future Arctic drilling, it should be clearly emphasized that for the precise planning of future Arctic Ocean drilling campaigns, including site selection, evaluation of proposed drill sites for safety and environmental protection, etc., comprehensive site survey data are needed first. This means that the development of a detailed site survey strategy is a major challenge for the coming years. Here, an overview of perspectives and plans for future Arctic Ocean drilling will be presented.

  1. Collaborations for Arctic Sea Ice Information and Tools

    Science.gov (United States)

    Sheffield Guy, L.; Wiggins, H. V.; Turner-Bogren, E. J.; Rich, R. H.

    2017-12-01

    The dramatic and rapid changes in Arctic sea ice require collaboration across boundaries, including between disciplines, sectors, institutions, and between scientists and decision-makers. This poster will highlight several projects that provide knowledge to advance the development and use of sea ice knowledge. Sea Ice for Walrus Outlook (SIWO: https://www.arcus.org/search-program/siwo) - SIWO is a resource for Alaskan Native subsistence hunters and other interested stakeholders. SIWO provides weekly reports, during April-June, of sea ice conditions relevant to walrus in the northern Bering and southern Chukchi seas. Collaboration among scientists, Alaskan Native sea-ice experts, and the Eskimo Walrus Commission is fundamental to this project's success. Sea Ice Prediction Network (SIPN: https://www.arcus.org/sipn) - A collaborative, multi-agency-funded project focused on seasonal Arctic sea ice predictions. The goals of SIPN include: coordinate and evaluate Arctic sea ice predictions; integrate, assess, and guide observations; synthesize predictions and observations; and disseminate predictions and engage key stakeholders. The Sea Ice Outlook—a key activity of SIPN—is an open process to share and synthesize predictions of the September minimum Arctic sea ice extent and other variables. Other SIPN activities include workshops, webinars, and communications across the network. Directory of Sea Ice Experts (https://www.arcus.org/researchers) - ARCUS has undertaken a pilot project to develop a web-based directory of sea ice experts across institutions, countries, and sectors. The goal of the project is to catalyze networking between individual investigators, institutions, funding agencies, and other stakeholders interested in Arctic sea ice. Study of Environmental Arctic Change (SEARCH: https://www.arcus.org/search-program) - SEARCH is a collaborative program that advances research, synthesizes research findings, and broadly communicates the results to support

  2. Polarization measurement for internal polarized gaseous targets

    International Nuclear Information System (INIS)

    Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun

    2004-01-01

    The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)

  3. Arctic oil and gas 2007

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, Henry P.

    2007-07-01

    The Arctic Council's assessment of oil and gas activities in the Antic is prepared in response to a request from Ministers of the eight Arctic countries. The Ministers called for engagement of all Arctic Council Working Groups in this process, and requested that the Arctic Monitoring and Assessment programme (AMAP) take responsibility for coordinating the work. This Executive Summary is in three parts. Part A presents the main findings of the assessment and related recommendations. Part B is structured in the same manner as Part A and provides additional information for those interested in examining the basis for the conclusions and recommendations that are presented in Part A. Part C presents information on 'gaps in knowledge' and recommendations aimed at filling these gaps. (AG)

  4. Russia's strategy in the Arctic

    DEFF Research Database (Denmark)

    Staun, Jørgen Meedom

    2017-01-01

    Russia's strategy in the Arctic is dominated by two overriding international relations (IR) discourses – or foreign policy directions. On the one hand, there is an IR-realism/geopolitical discourse that puts security first and often has a clear patriotic character, dealing with ‘exploring......’, ‘winning’ or ‘conquering’ the Arctic and putting power, including military power, behind Russia's national interests in the area. Opposed to this is an IR-liberalism, international law-inspired and modernisation-focused discourse, which puts cooperation first and emphasises ‘respect for international law......’, ‘negotiation’ and ‘cooperation’, and labels the Arctic as a ‘territory of dialogue’, arguing that the Arctic states all benefit the most if they cooperate peacefully. After a short but very visible media stunt in 2007 and subsequent public debate by proponents of the IR realism/geopolitical side, the IR...

  5. Acquatorialities of the Arctic Region

    DEFF Research Database (Denmark)

    Harste, Gorm

    2013-01-01

    In order to describe the Arctic system I propose using a concept functionally equivalent to territoriality, namely aquatoriality. Whether communicating about territoriality or aquatoriality, concepts and delimitations are both contingent to forms of communication systems. I will distinguish between...

  6. Development of arctic wind technology

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, H.; Marjaniemi, M.; Antikainen, P. [VTT Energy, Espoo (Finland)

    1998-10-01

    The climatic conditions of Lapland set special technical requirements for wind power production. The most difficult problem regarding wind power production in arctic regions is the build-up of hard and rime ice on structures of the machine

  7. Arctic oil and gas 2007

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, Henry P

    2007-07-01

    The Arctic Council's assessment of oil and gas activities in the Antic is prepared in response to a request from Ministers of the eight Arctic countries. The Ministers called for engagement of all Arctic Council Working Groups in this process, and requested that the Arctic Monitoring and Assessment programme (AMAP) take responsibility for coordinating the work. This Executive Summary is in three parts. Part A presents the main findings of the assessment and related recommendations. Part B is structured in the same manner as Part A and provides additional information for those interested in examining the basis for the conclusions and recommendations that are presented in Part A. Part C presents information on 'gaps in knowledge' and recommendations aimed at filling these gaps. (AG)

  8. The PLOT (Paleolimnological Transect) Project in the Russian Arctic

    Science.gov (United States)

    Gromig, R.; Andreev, A.; Baumer, M.; Bolshiyanov, D.; Fedorov, G.; Frolova, L.; Krastel, S.; Lebas, E.; Ludikova, A.; Melles, M.; Meyer, H.; Nazarova, L.; Pestryakova, L.; Savelieva, L.; Shumilovskikh, L.; Subetto, D.; Wagner, B.; Wennrich, V.

    2017-12-01

    The joint Russian- German project 'PLOT - Paleolimnological Transec' aims to recover lake sediment sequences along a >6000 km long longitudinal transect across the Eurasian Arctic in order to investigate the Late Quaternary climatic and environmental history. The climate history of the Arctic is of particular interest since it is the region, which is experiencing major impact of the current climate change. The project is funded for three years (2015-2018) by the Russian and German Ministries of Research. Since 2013 extensive fieldwork, including seismic surveys, coring, and hydrological investigations, was carried out at lakes Ladoga (NW Russia, pilot study), Bolshoye Shuchye (Polar Urals), Emanda (Verkhoyansk Range, field campaign planned for August 2017), Levinson-Lessing and Taymyr (Taymyr Peninsula). Fieldwork at lakes Bolshoye Shuchye, Levinson-Lessing and Taymyr was conducted in collaboration with the Russian-Norwegian CHASE (Climate History along the Arctic Seaboard of Eurasia) project. A major objective of the PLOT project was to recover preglacial sediments. A multiproxy approach was applied to the analytical work of all cores, including (bio-)geochemical, sedimentological, geophysical, and biological analyses. First data implies the presence of preglacial sediments in the cores from all lakes so far visited. Age-depth models, based on radiocarbon dating, OSL dating, paleomagnetic measurements, identification of cryptotephra, and varve counting (where applicable), are in progress. Climate variability in the records shall be compared to that recorded at Lake Eĺgygytgyn (NE Russia), which represents the master record for the Siberian Arctic. The outcome of the PLOT project will be a better understanding of the temporal and spatial variability and development of the Arctic climate. Here, we present the major results and first key interpretations of the PLOT project, along with an outlook on the future strategy and foci. First results from lakes Ladoga

  9. Ongoing Research on Herding Agents for In Situ Burning in Arctic Waters: Studies on Fate and Effects

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Gustavson, Kim; Wegeberg, Susse

    Research on the fate and effects of herding agents used to contain and thicken oil slicks for in situ burning in Arctic waters continues under the auspices of the International Association of Oil and Gas Producers Arctic Oil Spill Response Technology – Joint Industry Program (JIP). In 2014/2015 l...

  10. Can Canada Avoid Arctic Militarization?

    Science.gov (United States)

    2014-05-20

    global market and the evolution of new fracking technology for the extraction of shale hydrocarbons, the development of the Canadian Arctic might not...resources extraction . In hydrocarbons alone, the United States Geological Survey estimates that there are approximately 90 billion barrels of oil...1,669 trillion cubic feet of natural gas , and 44 billion barrels of natural gas liquids currently undiscovered in the Arctic, with 84 percent lying in

  11. Interaction webs in arctic ecosystems

    DEFF Research Database (Denmark)

    Schmidt, Niels Martin; Hardwick, Bess; Gilg, Olivier

    2017-01-01

    How species interact modulate their dynamics, their response to environmental change, and ultimately the functioning and stability of entire communities. Work conducted at Zackenberg, Northeast Greenland, has changed our view on how networks of arctic biotic interactions are structured, how they ...... that the combination of long-term, ecosystem-based monitoring, and targeted research projects offers the most fruitful basis for understanding and predicting the future of arctic ecosystems....

  12. Arctic and Antarctic Sea Ice Changes and Impacts (Invited)

    Science.gov (United States)

    Nghiem, S. V.

    2013-12-01

    The extent of springtime Arctic perennial sea ice, important to preconditioning summer melt and to polar sunrise photochemistry, continues its precipitous reduction in the last decade marked by a record low in 2012, as the Bromine, Ozone, and Mercury Experiment (BROMEX) was conducted around Barrow, Alaska, to investigate impacts of sea ice reduction on photochemical processes, transport, and distribution in the polar environment. In spring 2013, there was further loss of perennial sea ice, as it was not observed in the ocean region adjacent to the Alaskan north coast, where there was a stretch of perennial sea ice in 2012 in the Beaufort Sea and Chukchi Sea. In contrast to the rapid and extensive loss of sea ice in the Arctic, Antarctic sea ice has a trend of a slight increase in the past three decades. Given the significant variability in time and in space together with uncertainties in satellite observations, the increasing trend of Antarctic sea ice may arguably be considered as having a low confidence level; however, there was no overall reduction of Antarctic sea ice extent anywhere close to the decreasing rate of Arctic sea ice. There exist publications presenting various factors driving changes in Arctic and Antarctic sea ice. After a short review of these published factors, new observations and atmospheric, oceanic, hydrological, and geological mechanisms contributed to different behaviors of sea ice changes in the Arctic and Antarctic are presented. The contribution from of hydrologic factors may provide a linkage to and enhance thermal impacts from lower latitudes. While geological factors may affect the sensitivity of sea ice response to climate change, these factors can serve as the long-term memory in the system that should be exploited to improve future projections or predictions of sea ice changes. Furthermore, similarities and differences in chemical impacts of Arctic and Antarctic sea ice changes are discussed. Understanding sea ice changes and

  13. Wind power in Arctic regions

    International Nuclear Information System (INIS)

    Lundsager, P.; Ahm, P.; Madsen, B.; Krogsgaard, P.

    1993-07-01

    Arctic or semi-arctic regions are often endowed with wind resources adequate for a viable production of electricity from the wind. Only limited efforts have so far been spent to introduce and to demonstrate the obvious synergy of combining wind power technology with the problems and needs of electricity generation in Arctic regions. Several factors have created a gap preventing the wind power technology carrying its full role in this context, including a certain lack of familiarity with the technology on the part of the end-users, the local utilities and communities, and a lack of commonly agreed techniques to adapt the same technology for Arctic applications on the part of the manufacturers. This report is part of a project that intends to contribute to bridging this gap. The preliminary results of a survey conducted by the project are included in this report, which is a working document for an international seminar held on June 3-4, 1993, at Risoe National Laboratory, Denmark. Following the seminar a final report will be published. It is intended that the final report will serve as a basis for a sustained, international effort to develop the wind power potential of the Arctic and semi-arctic regions. The project is carried out by a project group formed by Risoe, PA Energy and BTM Consult. The project is sponsored by the Danish Energy Agency of the Danish Ministry of Energy through grant no. ENS-51171/93-0008. (au)

  14. The Arctic Observing Viewer: A Web-mapping Application for U.S. Arctic Observing Activities

    Science.gov (United States)

    Cody, R. P.; Manley, W. F.; Gaylord, A. G.; Kassin, A.; Villarreal, S.; Barba, M.; Dover, M.; Escarzaga, S. M.; Habermann, T.; Kozimor, J.; Score, R.; Tweedie, C. E.

    2015-12-01

    Although a great deal of progress has been made with various arctic observing efforts, it can be difficult to assess such progress when so many agencies, organizations, research groups and others are making such rapid progress over such a large expanse of the Arctic. To help meet the strategic needs of the U.S. SEARCH-AON program and facilitate the development of SAON and other related initiatives, the Arctic Observing Viewer (AOV; http://ArcticObservingViewer.org) has been developed. This web mapping application compiles detailed information pertaining to U.S. Arctic Observing efforts. Contributing partners include the U.S. NSF, USGS, ACADIS, ADIwg, AOOS, a2dc, AON, ARMAP, BAID, IASOA, INTERACT, and others. Over 7700 observation sites are currently in the AOV database and the application allows users to visualize, navigate, select, advance search, draw, print, and more. During 2015, the web mapping application has been enhanced by the addition of a query builder that allows users to create rich and complex queries. AOV is founded on principles of software and data interoperability and includes an emerging "Project" metadata standard, which uses ISO 19115-1 and compatible web services. Substantial efforts have focused on maintaining and centralizing all database information. In order to keep up with emerging technologies, the AOV data set has been structured and centralized within a relational database and the application front-end has been ported to HTML5 to enable mobile access. Other application enhancements include an embedded Apache Solr search platform which provides users with the capability to perform advance searches and an administration web based data management system that allows administrators to add, update, and delete information in real time. We encourage all collaborators to use AOV tools and services for their own purposes and to help us extend the impact of our efforts and ensure AOV complements other cyber-resources. Reinforcing dispersed but

  15. Recent results on polarizations and the present status of the Fermilab polarized beams

    International Nuclear Information System (INIS)

    Yokosawa, Akihiko.

    1986-01-01

    Experimental results are reviewed on polarization phenomena in nucleon-nucleon scattering at intermediate energies. The present status of S = 0 dibaryon resonances is presented. The status of the Fermilab polarized beam program is presented, including the construction of polarized beam, two polarimeters being installed in the experimental hall, and the experimental program

  16. Toward Process-resolving Synthesis and Prediction of Arctic Climate Change Using the Regional Arctic System Model

    Science.gov (United States)

    Maslowski, W.

    2017-12-01

    The Regional Arctic System Model (RASM) has been developed to better understand the operation of Arctic System at process scale and to improve prediction of its change at a spectrum of time scales. RASM is a pan-Arctic, fully coupled ice-ocean-atmosphere-land model with marine biogeochemistry extension to the ocean and sea ice models. The main goal of our research is to advance a system-level understanding of critical processes and feedbacks in the Arctic and their links with the Earth System. The secondary, an equally important objective, is to identify model needs for new or additional observations to better understand such processes and to help constrain models. Finally, RASM has been used to produce sea ice forecasts for September 2016 and 2017, in contribution to the Sea Ice Outlook of the Sea Ice Prediction Network. Future RASM forecasts, are likely to include increased resolution for model components and ecosystem predictions. Such research is in direct support of the US environmental assessment and prediction needs, including those of the U.S. Navy, Department of Defense, and the recent IARPC Arctic Research Plan 2017-2021. In addition to an overview of RASM technical details, selected model results are presented from a hierarchy of climate models together with available observations in the region to better understand potential oceanic contributions to polar amplification. RASM simulations are analyzed to evaluate model skill in representing seasonal climatology as well as interannual and multi-decadal climate variability and predictions. Selected physical processes and resulting feedbacks are discussed to emphasize the need for fully coupled climate model simulations, high model resolution and sensitivity of simulated sea ice states to scale dependent model parameterizations controlling ice dynamics, thermodynamics and coupling with the atmosphere and ocean.

  17. Polarized proton collider at RHIC

    International Nuclear Information System (INIS)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S.Y.; Luccio, A.; MacKay, W.W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.N.

    2003-01-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998, reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to √s=500 GeV

  18. Sources of polarized neutrons

    International Nuclear Information System (INIS)

    Walter, L.

    1983-01-01

    Various sources of polarized neutrons are reviewed. Monoenergetic source produced with unpolarized or polarized beams, white sources of polarized neutrons, production by transmissions through polarized hydrogen targets and polarized thermal neutronsare discussed, with appropriate applications included. (U.K.)

  19. Environment, vegetation and greenness (NDVI) along the North America and Eurasia Arctic transects

    International Nuclear Information System (INIS)

    Walker, D A; Raynolds, M K; Kuss, P; Kade, A N; Epstein, H E; Frost, G V; Kopecky, M A; Daniëls, F J A; Leibman, M O; Moskalenko, N G; Khomutov, A V; Matyshak, G V; Khitun, O V; Forbes, B C; Bhatt, U S; Vonlanthen, C M; Tichý, L

    2012-01-01

    Satellite-based measurements of the normalized difference vegetation index (NDVI; an index of vegetation greenness and photosynthetic capacity) indicate that tundra environments are generally greening and becoming more productive as climates warm in the Arctic. The greening, however, varies and is even negative in some parts of the Arctic. To help interpret the space-based observations, the International Polar Year (IPY) Greening of the Arctic project conducted ground-based surveys along two >1500 km transects that span all five Arctic bioclimate subzones. Here we summarize the climate, soil, vegetation, biomass, and spectral information collected from the North America Arctic transect (NAAT), which has a more continental climate, and the Eurasia Arctic transect (EAT), which has a more oceanic climate. The transects have broadly similar summer temperature regimes and overall vegetation physiognomy, but strong differences in precipitation, especially winter precipitation, soil texture and pH, disturbance regimes, and plant species composition and structure. The results indicate that summer warmth and NDVI increased more strongly along the more continental transect. (letter)

  20. Human adaptation responses to a rapidly changing Arctic: A research context for building system resilience

    Science.gov (United States)

    Chapin, T.; Brinkman, T. J.

    2016-12-01

    Although human behavior accounts for more uncertainty in future trajectories in climate change than do biophysical processes, most climate-change research fails to include human actions in research design and implementation. This is well-illustrated in the Arctic. At the global scale, arctic processes strongly influence the strength of biophysical feedbacks between global human emissions and the rate of climate warming. However, most human actions in the arctic have little effect on these feedbacks, so research can contribute most effectively to reduction in arctic warming through improved understanding of the strength of arctic-global biophysical feedbacks, as in NASA's ABoVE program, and its effective communication to policy makers and the public. In contrast, at the local to regional scale within the arctic, human actions may influence the ecological and societal consequences of arctic warming, so research benefits from active stakeholder engagement in research design and implementation. Human communities and other stakeholders (government and NGOs) respond heterogeneously to socioeconomic and environmental change, so research that documents the range of historical and current adaptive responses to change provides insights on the resilience (flexibility of future options) of social-ecological processes in the arctic. Alaskan communities have attempted a range of adaptive responses to coastal erosion (e.g., seasonal migration, protection in place, relocation), wildfire (fire suppression to use of fire to manage wildlife habitat or landscape heterogeneity), declining sea ice (e.g., new hunting technology, sea ice observations and predictions), and changes in wildlife and fish availability (e.g., switch to harvest of alternative species, harvest times, or harvest locations). Research that draws on both traditional and western knowledge facilitates adaptation and predictions of the likely societal consequences of climate change in the Arctic. Effective inclusion of

  1. Polarized electron sources

    International Nuclear Information System (INIS)

    Clendenin, J.E.

    1995-05-01

    Polarized electron sources for high energy accelerators took a significant step forward with the introduction of a new laser-driven photocathode source for the SLC in 1992. With an electron beam polarization of >80% and with ∼99% uptime during continuous operation, this source is a key factor in the success of the current SLC high-energy physics program. The SLC source performance is used to illustrate both the capabilities and the limitations of solid-state sources. The beam requirements for future colliders are similar to that of the SLC with the addition in most cases of multiple-bunch operation. A design for the next generation accelerator source that can improve the operational characteristics and at least minimize some of the inherent limitations of present sources is presented. Finally, the possibilities for producing highly polarized electron beams for high-duty-factor accelerators are discussed

  2. Three recent ice entrapments of Arctic cetaceans in West Greenland and the eastern Canadian High Arctic

    Directory of Open Access Journals (Sweden)

    MP Heide-Jørgensen

    2002-07-01

    Full Text Available Three ice entrapments of Monodontids have been reported in the western North Atlantic since 1993. Hunters in Disko Bay, West Greenland, discovered one in March 1994 that included about 150 narwhals (Monodon monoceros. The entrapment occurred during a sudden cold period which caused ice to form rapidly. The trapped whales were subject to hunting, but about 50 of the killed whales could not be retrieved in the ice. The whales were trapped in a small opening in the ice and because of that they would probably have succumbed even if not discovered by hunters. Two entrapments involving white whales or belugas (Delphinapterus leucas occurred in the eastern Canadian Arctic in May 1999; one in Lancaster Sound discovered by polar bear (Ursus maritimus researchers and one in Jones Sound discovered by hunters. The first included one bowhead whale (Balaena mysticetus and about 40 belugas that were being preyed upon by polar bears. The second involved at least 170 belugas, of which about 100 were killed by polar bears and 17 were taken by hunters. The entrapments in Disko Bay and Jones Sound both occurred in areas where entrapments have previously been reported, whereas the one in Lancaster Sound was in a new area.

  3. Pristine Arctic: Background mapping of PAHs, PAH metabolites and inorganic trace elements in the North-Atlantic Arctic and sub-Arctic coastal environment

    Energy Technology Data Exchange (ETDEWEB)

    Jörundsdóttir, Hrönn Ólína, E-mail: hronn.o.jorundsdottir@matis.is [Matis Ltd., Icelandic Food and Biotech R and D, Vinlandsleid 12, 113 Reykjavik (Iceland); Jensen, Sophie [Matis Ltd., Icelandic Food and Biotech R and D, Vinlandsleid 12, 113 Reykjavik (Iceland); Hylland, Ketil; Holth, Tor Fredrik [Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo (Norway); Gunnlaugsdóttir, Helga [Matis Ltd., Icelandic Food and Biotech R and D, Vinlandsleid 12, 113 Reykjavik (Iceland); Svavarsson, Jörundur [University of Iceland, Department of Life and Environmental Sciences, Askja - Natural Science Building, Sturlugata 7, 101 Reykjavík (Iceland); Ólafsdóttir, Ásdís [The University of Iceland´s Research Centre in Sudurnes, Gardvegi 1, 245 Sandgerdi (Iceland); El-Taliawy, Haitham [Matis Ltd., Icelandic Food and Biotech R and D, Vinlandsleid 12, 113 Reykjavik (Iceland); Rigét, Frank; Strand, Jakob [Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde (Denmark); Nyberg, Elisabeth; Bignert, Anders [Swedish Museum of Natural History, P.O. Box 50007, 104 05 Stockholm (Sweden); Hoydal, Katrin S. [The Faroese Environment Agency, Traðagøta 38, P.O. Box 2048, FO-165 Argir, the Faroe Islands (Faroe Islands); Halldórsson, Halldór Pálmar [The University of Iceland´s Research Centre in Sudurnes, Gardvegi 1, 245 Sandgerdi (Iceland)

    2014-09-15

    As the ice cap of the Arctic diminishes due to global warming, the polar sailing route will be open larger parts of the year. These changes are likely to increase the pollution load on the pristine Arctic due to large vessel traffic from specific contaminant groups, such as polycyclic aromatic hydrocarbons (PAHs). A well-documented baseline for PAH concentrations in the biota in the remote regions of the Nordic Seas and the sub-Arctic is currently limited, but will be vital in order to assess future changes in PAH contamination in the region. Blue mussels (Mytilus edulis) were collected from remote sites in Greenland, Iceland, the Faroe Islands, Norway and Sweden as well as from urban sites in the same countries for comparison. Cod (Gadus morhua) was caught north of Iceland and along the Norwegian coast. Sixteen priority PAH congeners and the inorganic trace elements arsenic, cadmium, mercury and lead were analysed in the blue mussel samples as well as PAH metabolites in cod bile. Σ{sub 16}PAHs ranged from 28 ng/g dry weight (d.w.) (Álftafjörður, NW Iceland) to 480 ng/g d.w. (Ísafjörður, NW Iceland). Mussel samples from Mjóifjörður, East Iceland and Maarmorilik, West Greenland, contained elevated levels of Σ{sub 16}PAHs, 370 and 280 ng/g d.w., respectively. Levels of inorganic trace elements varied with highest levels of arsenic in mussels from Ísafjörður, Iceland (79 ng/g d.w.), cadmium in mussels from Mjóifjörður, Iceland (4.3 ng/g d.w.), mercury in mussels from Sørenfjorden, Norway (0.23 ng/g d.w.) and lead in mussels from Maarmorilik, Greenland (21 ng/g d.w.). 1-OH-pyrene was only found above limits of quantification (0.5 ng/mL) in samples from the Norwegian coast, ranging between 44 and 140 ng/ml bile. Generally, PAH levels were low in mussels from the remote sites investigated in the study, which indicates limited current effect on the environment. - Highlights: • Low levels of PAHs in blue mussels from remote areas of the Arctic. • Low

  4. Arctic deep-water ferromanganese-oxide deposits reflect the unique characteristics of the Arctic Ocean

    Science.gov (United States)

    Hein, James; Konstantinova, Natalia; Mikesell, Mariah; Mizell, Kira; Fitzsimmons, Jessica N.; Lam, Phoebe; Jensen, Laramie T.; Xiang, Yang; Gartman, Amy; Cherkashov, Georgy; Hutchinson, Deborah; Till, Claire P.

    2017-01-01

    Little is known about marine mineral deposits in the Arctic Ocean, an ocean dominated by continental shelf and basins semi-closed to deep-water circulation. Here, we present data for ferromanganese crusts and nodules collected from the Amerasia Arctic Ocean in 2008, 2009, and 2012 (HLY0805, HLY0905, HLY1202). We determined mineral and chemical compositions of the crusts and nodules and the onset of their formation. Water column samples from the GEOTRACES program were analyzed for dissolved and particulate scandium concentrations, an element uniquely enriched in these deposits.The Arctic crusts and nodules are characterized by unique mineral and chemical compositions with atypically high growth rates, detrital contents, Fe/Mn ratios, and low Si/Al ratios, compared to deposits found elsewhere. High detritus reflects erosion of submarine outcrops and North America and Siberia cratons, transport by rivers and glaciers to the sea, and distribution by sea ice, brines, and currents. Uniquely high Fe/Mn ratios are attributed to expansive continental shelves, where diagenetic cycling releases Fe to bottom waters, and density flows transport shelf bottom water to the open Arctic Ocean. Low Mn contents reflect the lack of a mid-water oxygen minimum zone that would act as a reservoir for dissolved Mn. The potential host phases and sources for elements with uniquely high contents are discussed with an emphasis on scandium. Scandium sorption onto Fe oxyhydroxides and Sc-rich detritus account for atypically high scandium contents. The opening of Fram Strait in the Miocene and ventilation of the deep basins initiated Fe-Mn crust growth ∼15 Myr ago.

  5. Aerosol size and chemical composition measurements at the Polar Environment Atmospheric Research Lab (PEARL) in Eureka, Nunavut

    Science.gov (United States)

    Hayes, P. L.; Tremblay, S.; Chang, R. Y. W.; Leaitch, R.; Kolonjari, F.; O'Neill, N. T.; Chaubey, J. P.; AboEl Fetouh, Y.; Fogal, P.; Drummond, J. R.

    2016-12-01

    This study presents observations of aerosol chemical composition and particle number size distribution at the Polar Environment Atmospheric Research Laboratory (PEARL) in the Canadian High Arctic (80N, 86W). The current aerosol measurement program at PEARL has been ongoing for more than a year providing long-term observations of Arctic aerosol size distributions for both coarse and fine modes. Particle nucleation events were frequently observed during the summers of 2015 and 2016. The size distribution data are also compared against similar measurements taken at the Alert Global Atmospheric Watch Observatory (82N, 62W) for July and August 2015. The nucleation events are correlated at the two sites, despite a distance of approximately 500 km, suggesting regional conditions favorable for particle nucleation and growth during this period. Size resolved chemical composition measurements were also carried out using an aerosol mass spectrometer. The smallest measured particles between 40 and 60 nm are almost entirely organic aerosol (OA) indicating that the condensation of organic vapors is responsible for particle growth events and possibly particle nucleation. This conclusion is further supported by the relatively high oxygen content of the OA, which is consistent with secondary formation of OA via atmospheric oxidation.Lastly, surface measurements of the aerosol scattering coefficient are compared against the coefficient values calculated using Mie theory and the measured aerosol size distribution. Both the actual and the calculated scattering coefficients are then compared to sun photometer measurements to understand the relationship between surface and columnar aerosol optical properties. The measurements at PEARL provide a unique combination of surface and columnar data sets on aerosols in the High Arctic, a region where such measurements are scarce despite the important impact of aerosols on Arctic climate.PEARL research is supported by the Natural Sciences and

  6. Biogeography of photoautotrophs in the high polar biome

    Directory of Open Access Journals (Sweden)

    Stephen Brian Pointing

    2015-09-01

    Full Text Available The global latitudinal gradient in biodiversity weakens in the high polar biome and so an alternative explanation for distribution of Arctic and Antarctic photoautotrophs is required. Here we identify how temporal, microclimate and evolutionary drivers of biogeography are important, rather than the macroclimate features that drive plant diversity patterns elsewhere. High polar ecosystems are biologically unique, with a more central role for bryophytes, lichens and microbial photoautotrophs over that of vascular plants. Constraints on vascular plants arise mainly due to stature and ontogenetic barriers. Conversely non-vascular plant and microbial photoautotroph distribution is correlated with favourable microclimates and the capacity for poikilohydric dormancy. Contemporary distribution also depends on evolutionary history, with adaptive and dispersal traits as well as legacy influencing biogeography. We highlight the relevance of these findings to predicting future impacts on polar plant diversity and to the current status of plants in Arctic and Antarctic conservation policy frameworks.

  7. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears

    OpenAIRE

    Cahill, James A; Stirling, Ian; Kistler, Logan; Salamzade, Rauf; Ersmark, Erik; Fulton, Tara L; Stiller, Mathias; Green, Richard E; Shapiro, Beth

    2015-01-01

    © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd. Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we...

  8. Engaging new generation of Arctic researchers: 14 years and counting

    Science.gov (United States)

    Alexeev, V. A.; Walsh, J. E.; Hock, R.; Loucks, D. J.; Kaden, U.

    2016-12-01

    Today, more than ever, an integrated cross-disciplinary approach is necessary to explain changes in the Arctic and understand their implications for the human environment. Advanced training and active involvement of early-career scientists is an important component of this cross-disciplinary approach. This effort led by the International Arctic Research Center at the University of Alaska Fairbanks (UAF) started in 2003. The NSF supported project that started in 2013 conducted four summer schools (one per year) focused on four themes in four different Arctic locations. It provided the participants with an interdisciplinary perspective on Arctic change and its impacts on diverse sectors of the North. It is linked to other ongoing long-term observational and educational programs (e.g. NABOS, Nansen and Amundsen Basins Observational System; LTER, Long Term Environmental Research) and targets young scientists by using the interdisciplinary and place-based setting to broaden their perspective on Arctic change and to enhance their communication skills. Each course for 15-25 people consisted of classroom and hands-on components and work with a multidisciplinary group of mentors on projects devoted to themes exemplified by the location. A specialist from the School of Education at UAF evaluated student's progress during the summer schools. Additionally, an anthropologist attended the 2016 summer school to study how students learn to build and assess models, as well as examine students' and instructors' attitudes toward science communication, which provided additional feedback about learning and teaching in these settings. Lessons learned during the 14 years of conducting summer schools, methods of attracting in-kind support and approaches to teaching students are prominently featured in this study. Activities during the two most recent schools, one conducted at the Toolik Lake Field Station on the Alaskan North Slope and another at the International Arctic Research Center

  9. The polar year starts in March. Arctics promises. When the North path will be opened to maritime traffic; L'annee polaire commence en mars. Les promesses de l'Arctique. Quand la voie nord s'ouvrira au trafic maritime

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit, V.; Remoue, A

    2007-02-15

    From Greenland to Alaska and from the Barents sea to the Okhotsk sea, oil companies are performing exploratory drillings looking for the North pole black gold. Far away from being an utopia, this new conquest of the great north is organizing yet. The Arctic hydrocarbon reserves may represent 10% of the world reserves. Moreover, with the increasing melting of ice sheets, the Arctic path will be opened to navigation and exploration in less than 25 years. The great north territories are shared between eight countries (USA, Canada, Denmark, Island, Norway, Sweden, Finland and Russia) and leads to disputes about the limits of territorial waters. (J.S.)

  10. Molecular identification of Trichinella isolates from wildlife animals of the Russian Arctic territories

    Directory of Open Access Journals (Sweden)

    Goździk K.

    2017-03-01

    Full Text Available The parasitic nematodes of genus Trichinella are infective to a wide range of hosts, including humans, and have global distribution from tropic to arctic areas. Muscle samples from animals, collected in two areas of the Russian Federation, Chukotka Peninsula and Arkhangelsk Oblast, were tested for the presence of Trichinella spp. larvae. Trichinella spp. larvae were recovered from tissues of eleven wild and domestic animals: 1 polar bear, 1 wolverine, 3 arctic foxes, 1 ringed seal, 1 brown bear, 1 cat, 1 sled dog, 1 domestic pig and 1 northern sea lion.

  11. Into the 21st Century with the Istituto Geografico Polare "Silvio Zavatti" and its journal "Il Polo"

    Science.gov (United States)

    Casarini, M.

    2013-12-01

    By Maria Pia Casarini We are now nearing the 70th anniversary of the foundation of this unique institution, established in the city of Fermo in the Marche region of Italy by the late Prof. Silvio Zavatti (d. 1985), a true polar enthusiast working before the time when Italy had any official interest in the polar regions. The Institute has the largest and most comprehensive polar library in Italy; a polar museum with Inuit artifacts and relics of expeditions by the Duke of Abruzzi and Umberto Nobile; and it has published a quarterly journal, "Il Polo", since 1945. Given the increasing official role of Italy in both Arctic and Antarctic research, and the increasing interest of Italian institutions and individuals in the rapidly developing problems of Arctic development, governance and environmental protection, the Institute aims to play an increased role in assisting Italian polar efforts through its resources and scholarship. For instance, the Institute is a member of the Arctic Table at the Italian Foreign Ministry by which Italy's role as an observer in the Arctic Council is mapped. The journal "Il Polo" has become bilingual and is becoming a global polar journal with survey papers by distinguished polar leaders. We are linked with PEI (Polar Educators International), which spreads knowledge of the polar regions in schools.

  12. CryoSat-2 altimetry derived Arctic bathymetry map: first results and validation

    Science.gov (United States)

    Andersen, O. B.; Abulaitijiang, A.; Cancet, M.; Knudsen, P.

    2017-12-01

    The Technical University of Denmark (DTU), DTU Space has been developing high quality high resolution gravity fields including the new highly accurate CryoSat-2 radar altimetry satellite data which extends the global coverage of altimetry data up to latitude 88°. With its exceptional Synthetic Aperture Radar (SAR) mode being operating throughout the Arctic Ocean, leads, i.e., the ocean surface heights, is used to retrieve the sea surface height with centimeter-level range precision. Combined with the long repeat cycle ( 369 days), i.e., dense cross-track coverage, the high-resolution Arctic marine gravity can be modelled using the CryoSat-2 altimetry. Further, the polar gap can be filled by the available ArcGP product, thus yielding the complete map of the Arctic bathymetry map. In this presentation, we will make use of the most recent DTU17 marine gravity, to derive the arctic bathymetry map using inversion based on best available hydrographic maps. Through the support of ESA a recent evaluation of existing hydrographic models of the Arctic Ocean Bathymetry models (RTOPO, GEBCO, IBCAO etc) and various inconsistencies have been identified and means to rectify these inconsistencies have been taken prior to perform the inversion using altimetry. Simultaneously DTU Space has been placing great effort on the Arctic data screening, filtering, and de-noising using various altimetry retracking solutions and classifications. All the pre-processing contributed to the fine modelling of Actic gravity map. Thereafter, the arctic marine gravity grids will eventually be translated (downward continuation operation) to a new altimetry enhanced Arctic bathymetry map using appropriate band-pass filtering.

  13. Palynology in a polar desert, eastern North Greenland

    DEFF Research Database (Denmark)

    Funder, Svend Visby; Abrahamsen, Niels

    1988-01-01

    history back to c. 7,000 years calBP (6,000 years convBP) in this·extreme environment, which presents the coldest thermal regime where vascular plants can grow. The diagram shows that polar desert developed from sparse high arctic tundra at c. 4,300 years calBP (3,900 years convBP), owing...... to reduced summer heat. Also adjacent parts of high arctic Greenland, Canada and Svalbard suffered environmental decline, and polar deserts- presently restricted to a narrow fringe of land at the shores of the Arctic Ocean-were even more restricted before this time. Like other arctic vegetation types, polar...... desert is highly sensitive to summer temperatures, and its southern limit coincides with the isotherm for mean July temperatures of 3.5'C, A comparison with the Northwest European ice-age pollen record shows no evidence of summers as cold as those now prevailing in the extreme north, and the results...

  14. Application of Network Analysis to Identify and Map Relationships between Information Systems in the context of Arctic Sustainability

    Science.gov (United States)

    Kontar, Y. Y.

    2017-12-01

    The Arctic Council is an intergovernmental forum promoting cooperation, coordination and interaction among the Arctic States and indigenous communities on issues of sustainable development and environmental protection in the North. The work of the Council is primarily carried out by six Working Groups: Arctic Contaminants Action Program, Arctic Monitoring and Assessment Programme, Conservation of Arctic Flora and Fauna, Emergency Prevention, Preparedness and Response, Protection of the Arctic Marine Environment, and Sustainable Development Working Group. The Working Groups are composed of researchers and representatives from government agencies. Each Working Group issues numerous scientific assessments and reports on a broad field of subjects, from climate change to emergency response in the Arctic. A key goal of these publications is to contribute to policy-making in the Arctic. Complex networks of information systems and the connections between the diverse elements within the systems have been identified via network analysis. This allowed to distinguish data sources that were used in the composition of the primary publications of the Working Groups. Next step is to implement network analysis to identify and map the relationships between the Working Groups and policy makers in the Arctic.

  15. Late Cenozoic Arctic Ocean sea ice and terrestrial paleoclimate.

    Science.gov (United States)

    Carter, L.D.; Brigham-Grette, J.; Marincovich, L.; Pease, V.L.; Hillhouse, J.W.

    1986-01-01

    Sea otter remains found in deposits of two marine transgressions (Bigbendian and Fishcreekian) of the Alaskan Arctic Coastal Plain which occurred between 2.4 and 3 Ma suggest that during these two events the southern limit of seasonal sea ice was at least 1600 km farther north than at present in Alaskan waters. Perennial sea ice must have been severely restricted or absent, and winters were warmer than at present during these two sea-level highstands. Paleomagnetic, faunal, and palynological data indicate that the later transgression (Fishcreekian) occurred during the early part of the Matuyama Reversed-Polarity Chron. -from Authors

  16. Navigation GPS/GLONASS in the Arctic and aurora

    Directory of Open Access Journals (Sweden)

    Chernouss S. A.

    2016-12-01

    Full Text Available The correspondence of the time-spatial distribution of the radiances of the aurora oval and time-spatial changes in the parameters of the navigation satellites' signal has been shown. For this aim the experimental data on the regional and local heterogeneities of the Total Electron Content (or TEC and the data on the signal delays in the polar ionosphere have been analyzed. Using the data concerning aurora as the indicator of disturbances in the work of the GPS/GLONASS systems can give the opportunity to increase considerably the accuracy of positioning in the Arctic with the help of satellite navigation systems (SNS.

  17. Temperature-induced recruitment pulses of Arctic dwarf shrub communities

    Czech Academy of Sciences Publication Activity Database

    Büntgen, Ulf; Hellmann, L.; Tegel, W.; Normand, S.; Myers-Smith, I.; Kirdyanov, A. V.; Nievergelt, D.; Schweingruber, F. H.

    2015-01-01

    Roč. 103, č. 2 (2015), s. 489-501 ISSN 0022-0477 R&D Projects: GA MŠk(CZ) EE2.3.20.0248 Institutional support: RVO:67179843 Keywords : recent climate-change * tree-line * environmental-change * forest limit * northern siberia * pinus-sylvestris * kola-peninsula * carbon-cycle * picea-abies * polar urals * Arctic tundra * cambial activity * climate change * dendroecology * dwarf shrubs * East Greenland * plant longevity * plant population and community dynamics * vegetation dynamics * wood anatomy Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 6.180, year: 2015

  18. Evaluation of Arctic broadband surface radiation measurements

    Directory of Open Access Journals (Sweden)

    N. Matsui

    2012-02-01

    Full Text Available The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW and thermal infrared, or longwave (LW, radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers that keep sensors and shading devices trained on the sun along its diurnal path. High quality measurements require striking a balance between locating stations in a pristine undisturbed setting free of artificial blockage (such as from buildings and towers and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data in the Arctic include solar tracker malfunctions, rime/frost/snow deposition on the protective glass domes of the radiometers and operational problems due to limited operator access in extreme weather conditions. In this study, comparisons are made between the global and component sum (direct [vertical component] + diffuse SW measurements. The difference between these two quantities (that theoretically should be zero is used to illustrate the magnitude and seasonality of arctic radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both SW and LW measurements. Solutions to these operational problems that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols are proposed.

  19. Redefining U.S. Arctic Strategy

    Science.gov (United States)

    2015-05-15

    responsibility shifts 21 Barno, David and Nora Bensahel. The Anti-Access Challenge you’re not thinking...International Affairs 85, no. 6 (2009). 38 Barno, David and Nora Bensahel. THE ANTI-ACCESS CHALLENGE YOU’RE NOT THINKING ABOUT, 05 May 2015...and Rescue in the Arctic, 22 June 2011. Arctic Council Secretariat. About the Arctic Council, Arctic Council, 2011. Barno, David and Nora

  20. Trophic relationships in an Arctic food web and implications for trace metal transfer

    Energy Technology Data Exchange (ETDEWEB)

    Dehn, Larissa-A. [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7000 (United States)]. E-mail: ftld@uaf.edu; Follmann, Erich H. [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7000 (United States); Thomas, Dana L. [Department of Mathematical Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-6660 (United States); Sheffield, Gay G. [Alaska Department of Fish and Game, Fairbanks, Division of Wildlife Conservation, Fairbanks, Alaska, 99701-1599 (United States); Rosa, Cheryl [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7000 (United States); Duffy, Lawrence K. [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7000 (United States); O' Hara, Todd M. [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7000 (United States)

    2006-06-01

    Tissues of subsistence-harvested Arctic mammals were analyzed for silver (Ag), cadmium (Cd), and total mercury (THg). Muscle (or total body homogenates of potential fish and invertebrate prey) was analyzed for stable carbon ({delta} {sup 13}C) and nitrogen ({delta} {sup 15}N) isotopes to establish trophic interactions within the Arctic food chain. Food web magnification factors (FWMFs) and biomagnification factors for selected predator-prey scenarios (BMFs) were calculated to describe pathways of heavy metals in the Alaskan Arctic. FWMFs in this study indicate that magnification of selected heavy metals in the Arctic food web is not significant. Biomagnification of Cd occurs mainly in kidneys; calculated BMFs are higher for hepatic THg than renal THg for all predator-prey scenarios with the exception of polar bears (Ursus maritimus). In bears, the accumulation of renal THg is approximately 6 times higher than in liver. Magnification of hepatic Ag is minimal for all selected predator-prey scenarios. Though polar bears occupy a higher trophic level than belugas (Delphinapterus leucas), based on {delta} {sup 15}N, the metal concentrations are either not statistically different between the two species or lower for bears. Similarly, concentrations of renal and hepatic Cd are significantly lower or not statistically different in polar bears compared to ringed (Phoca hispida) and bearded seals (Erignathus barbatus), their primary prey. THg, on the other hand, increased significantly from seal to polar bear tissues. Mean {delta} {sup 15}N was lowest in muscle of Arctic fox (Alopex lagopus) and foxes also show the lowest levels of Hg, Cd and Ag in liver and kidney compared to the other species analyzed. These values are in good agreement with a diet dominated by terrestrial prey. Metal deposition in animal tissues is strongly dependent on biological factors such as diet, age, sex, body condition and health, and caution should be taken when interpreting magnification of

  1. Trophic relationships in an Arctic food web and implications for trace metal transfer

    International Nuclear Information System (INIS)

    Dehn, Larissa-A.; Follmann, Erich H.; Thomas, Dana L.; Sheffield, Gay G.; Rosa, Cheryl; Duffy, Lawrence K.; O'Hara, Todd M.

    2006-01-01

    Tissues of subsistence-harvested Arctic mammals were analyzed for silver (Ag), cadmium (Cd), and total mercury (THg). Muscle (or total body homogenates of potential fish and invertebrate prey) was analyzed for stable carbon (δ 13 C) and nitrogen (δ 15 N) isotopes to establish trophic interactions within the Arctic food chain. Food web magnification factors (FWMFs) and biomagnification factors for selected predator-prey scenarios (BMFs) were calculated to describe pathways of heavy metals in the Alaskan Arctic. FWMFs in this study indicate that magnification of selected heavy metals in the Arctic food web is not significant. Biomagnification of Cd occurs mainly in kidneys; calculated BMFs are higher for hepatic THg than renal THg for all predator-prey scenarios with the exception of polar bears (Ursus maritimus). In bears, the accumulation of renal THg is approximately 6 times higher than in liver. Magnification of hepatic Ag is minimal for all selected predator-prey scenarios. Though polar bears occupy a higher trophic level than belugas (Delphinapterus leucas), based on δ 15 N, the metal concentrations are either not statistically different between the two species or lower for bears. Similarly, concentrations of renal and hepatic Cd are significantly lower or not statistically different in polar bears compared to ringed (Phoca hispida) and bearded seals (Erignathus barbatus), their primary prey. THg, on the other hand, increased significantly from seal to polar bear tissues. Mean δ 15 N was lowest in muscle of Arctic fox (Alopex lagopus) and foxes also show the lowest levels of Hg, Cd and Ag in liver and kidney compared to the other species analyzed. These values are in good agreement with a diet dominated by terrestrial prey. Metal deposition in animal tissues is strongly dependent on biological factors such as diet, age, sex, body condition and health, and caution should be taken when interpreting magnification of dynamic and actively regulated trace metals

  2. Polarization study

    International Nuclear Information System (INIS)

    Nurushev, S.B.

    1989-01-01

    Brief review is presented of the high energy polarization study including experimental data and the theoretical descriptions. The mostimportant proposals at the biggest accelerators and the crucial technical developments are also listed which may become a main-line of spin physics. 35 refs.; 10 figs.; 4 tabs

  3. Polar Stratigraphy

    Science.gov (United States)

    1999-01-01

    These three images were taken on three different orbits over the north polar cap in April 1999. Each shows a different part of the same ice-free trough. The left and right images are separated by a distance of more than 100 kilometers (62 miles). Note the similar layers in each image.

  4. What is happening in the International Polar Year? Latest news about the climate changes

    International Nuclear Information System (INIS)

    Orheim, Olav

    2008-01-01

    The International Polar (IPY) Year 2007-2008 is a large scientific programme focused on the Arctic and the Antarctic. Scientists from over 60 nations participates. The IPY have two primary objectives: to improve weather forecasts especially regarding extreme weather and to improve climatic models for better understanding of possible instabilities, especially regarding ocean currents. The presentation includes data on natural climate change, temperature anomaly, the ice in the Arctic Ocean and Northern and Southern Hemisphere sea ice area, current in Southern and Northern hemisphere sea ice area and variations of the surface temperature ice arctic regions antarctic regions. The presentation was held at the MNT-Forum, 29. January 2008

  5. On particles in the Arctic stratosphere

    Directory of Open Access Journals (Sweden)

    T. S. Jørgensen

    2003-06-01

    Full Text Available Soon after the discovery of the Antarctic ozone hole it became clear that particles in the polar stratosphere had an infl uence on the destruction of the ozone layer. Two major types of particles, sulphate aerosols and Polar Stratospheric Clouds (PSCs, provide the surfaces where fast heterogeneous chemical reactions convert inactive halogen reservoir species into potentially ozone-destroying radicals. Lidar measurements have been used to classify the PSCs. Following the Mt. Pinatubo eruption in June 1991 it was found that the Arctic stratosphere was loaded with aerosols, and that aerosols observed with lidar and ozone observed with ozone sondes displayed a layered structure, and that the aerosol and ozone contents in the layers frequently appeared to be negatively correlated. The layered structure was probably due to modulation induced by the dynamics at the edge of the polar vortex. Lidar observations of the Mt. Pinatubo aerosols were in several cases accompanied by balloon-borne backscatter soundings, whereby backscatter measurements in three different wavelengths made it possible to obtain information about the particle sizes. An investigation of the infl uence of synoptic temperature histories on the physical properties of PSC particles has shown that most of the liquid type 1b particles were observed in the process of an ongoing, relatively fast, and continuous cooling from temperatures clearly above the nitric acid trihydrate condensation temperature (TNAT. On the other hand, it appeared that a relatively long period, with a duration of at least 1-2 days, at temperatures below TNAT provide the conditions which may lead to the production of solid type 1a PSCs.

  6. In vitro assay shows that PCB metabolites completely saturate thyroid hormone transport capacity in blood of wild polar bears (Ursus maritimus)

    NARCIS (Netherlands)

    Gutleb, A.C.; Cenijn, P.H.; van Velzen, P.; Lie, E.; Ropstad, E.; Skaare, J.U.; Malmberg, T.; Bergman, A.; Gabrielsen, G. W.; Legler, J.

    2010-01-01

    Persistent chemicals accumulate in the arctic environment due to their chemical reactivity and physicochemical properties and polychlorinated biphenyls (PCBs) are the most concentrated pollutant class in polar bears (Ursus maritimus). Metabolism of PCB and polybrominated biphenyl ether (PBDE)

  7. Graphics of polar figure

    International Nuclear Information System (INIS)

    Macias B, L.R.

    1991-11-01

    The objective of this work, is that starting from a data file coming from a spectra that has been softened, and of the one that have been generated its coordinates to project it in stereographic form, to create the corresponding polar figure making use of the Cyber computer of the ININ by means of the GRAPHOS package. This work only requires a Beta, Fi and Intensity (I) enter data file. It starts of the existence of a softened spectra of which have been generated already with these data, making use of some language that in this case was FORTRAN for the Cyber computer, a program is generated supported in the Graphos package that allows starting of a reading of the Beta, Fi, I file, to generate the points in a stereographic projection and that it culminates with the graph of the corresponding polar figure. The program will request the pertinent information that is wanted to capture in the polar figure just as: date, name of the enter file, indexes of the polar figure, number of levels, radio of the stereographic projection (cms.), crystalline system to which belongs the sample, name the neuter graph file by create and to add the own general data. (Author)

  8. Upper-Ocean Variability in the Arctic’s Amundsen and Nansen Basins

    Science.gov (United States)

    2017-05-01

    public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER Toole, John M. WHOI132547SP Krishfield, Richard A. Se. TASK NUMBER Cole, Sylvia T. Sf. WORK UNIT NUMBER...findings of the MIZ program to the European sector of the Arctic with its markedly different thermohaline stratification. 1S. SUBJECT TERMS Arctic

  9. Polarized proton beams since the ZGS

    International Nuclear Information System (INIS)

    Krisch, A.D.

    1994-01-01

    The author discusses research involving polarized proton beams since the ZGS's demise. He begins by reminding the attendee that in 1973 the ZGS accelerated the world's first high energy polarized proton beam; all in attendance at this meeting can be proud of this accomplishment. A few ZGS polarized proton beam experiments were done in the early 1970's; then from about 1976 until 1 October 1979, the majority of the ZGS running time was polarized running. A great deal of fundamental physics was done with the polarized beam when the ZGS ran as a dedicated polarized proton beam from about Fall 1977 until it shut down on 1 October 1979. The newly created polarization enthusiats then dispersed; some spread polarized seeds al over the world by polarizing beams elsewhere; some wound up running the High Energy and SSC programs at DOE

  10. Sexual Polarities: Shelley’s Frankenstein and Polar Exploration as a Search for Origins Beyond ‘woman’

    Directory of Open Access Journals (Sweden)

    Polly Gould

    2008-02-01

    Full Text Available This paper is about our parents and our predecessors in life and in literature. It specifically interrogates the choice of Polar landscapes for the playing out of narratives of gender difference in stories of Arctic and Antarctic exploration. I have chosen to pay attention to three narratives: Shackleton's South, Mary Shelley's Frankenstein and Ursula Le Guin's short story Sur. They all take place in the icy expanse of the Arctic and Antarctic. I will read them in the light of the question of origins: ‘where do I come from?'

  11. ARCTIC «UPGRADE» OF V. V. PUTIN, PRESIDENT OF THE RUSSIAN FEDERATION

    Directory of Open Access Journals (Sweden)

    I. S. Zonn

    2017-01-01

    Full Text Available After establishment of the Soviet power the Arctic for seven decades had been in the focus of attention accomplishing the heroic, repressive, “educational”, economic, political and ideological functions. In 1930-1950 General Secretary of the Central Committee of the Bolshevik Communist Party I.V. Stalin created the first Soviet Arctic shield that included the economic and military strategic power, transport targeted to protection of entirety and security of the Soviet country. The Stalin’s large-scale project of Arctic development was made public in 1931 and was targeted to the enhanced protection of the polar waters by establishing the naval base on the Barents Sea. For implementation of this project the White Sea-Baltic canal was constructed. The Trust “Arktikugol” was established on the Spitsbergen Archipelago to supply coal to the Northern Navy Fleet. The sea expedition over the Northern Sea Route was also organized to prove the possibility of shipping along this route for one navigation season. Upon its successful completion the Chief Department “Sevmorput” was set up here. The epoch of airship construction was opened to explore the Arctic air expanses. Later on there were expeditions to the North Pole, deployment of army on the Chukotka Peninsula, new expeditions to high latitude terrains, construction of high-capacity icebreakers, aerodromes and military bases on the coast of the Arctic Ocean. Unfortunately, in the 1990s in the time of the Soviet Union breakup and perestroika many facilities of the Stalin’s Arctic Shield had been lost and ceased to exist.The early 21st century witnessed the second energetic and goal-oriented breakthrough into the Arctic region and establishment of the second Arctic Shield or bastion based on the key principles of the Soviet Arctic Shield or, in other words, its upgrade in the new conditions of the polycentric world, which is justly connected with the name of Russian President Putin

  12. Bacterial communities in ancient permafrost profiles of Svalbard, Arctic.

    Science.gov (United States)

    Singh, Purnima; Singh, Shiv M; Singh, Ram N; Naik, Simantini; Roy, Utpal; Srivastava, Alok; Bölter, Manfred

    2017-12-01

    Permafrost soils are unique habitats in polar environment and are of great ecological relevance. The present study focuses on the characterization of bacterial communities from permafrost profiles of Svalbard, Arctic. Counts of culturable bacteria range from 1.50 × 10 3 to 2.22 × 10 5 CFU g -1 , total bacterial numbers range from 1.14 × 10 5 to 5.52 × 10 5 cells g -1 soil. Bacterial isolates are identified through 16S rRNA gene sequencing. Arthrobacter and Pseudomonas are the most dominant genera, and A. sulfonivorans, A. bergeri, P. mandelii, and P. jessenii as the dominant species. Other species belong to genera Acinetobacter, Bacillus, Enterobacter, Nesterenkonia, Psychrobacter, Rhizobium, Rhodococcus, Sphingobacterium, Sphingopyxis, Stenotrophomonas, and Virgibacillus. To the best of our knowledge, genera Acinetobacter, Enterobacter, Nesterenkonia, Psychrobacter, Rhizobium, Sphingobacterium, Sphingopyxis, Stenotrophomonas, and Virgibacillus are the first northernmost records from Arctic permafrost. The present study fills the knowledge gap of culturable bacterial communities and their chronological characterization from permafrost soils of Ny-Ålesund (79°N), Arctic. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A new high resolution tidal model in the arctic ocean

    DEFF Research Database (Denmark)

    Cancet, M.; Andersen, Ole Baltazar; Lyard, F.

    The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence, the accu......The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence......, the accuracy of the global tidal models decreases by several centimeters in the Polar Regions. In particular, it has a large impact on the quality of the satellite altimeter sea surface heights in these regions (ERS1/2, Envisat, CryoSat-2, SARAL/AltiKa and the future Sentinel-3 mission). Better knowledge......-growing maritime and industrial activities in this region. NOVELTIS and DTU Space have developed a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of the CryoSat Plus for Ocean (CP4O) ESA project. In particular, this atlas benefits from the assimilation of the most complete satellite...

  14. Perturbation of an arctic soil microbial community by metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Niraj [Department of Biology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); Shah, Vishal [Department of Biology, Dowling College, Oakdale, NY 11769 (United States); Walker, Virginia K., E-mail: walkervk@queensu.ca [Department of Biology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); Department of Biology, School of Environmental Studies and Department of Microbiology and Immunology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada)

    2011-06-15

    Highlights: {yields} Silver, copper and silica nanoparticles had an impact on arctic soil {yields} A microbial community toxicity indicator was developed {yields} Community surveys using pyrosequencing confirmed a shift in bacterial biodiversity {yields} Troublingly, silver nanoparticles were highly toxic to a plant beneficial bacterium - Abstract: Technological advances allowing routine nanoparticle (NP) manufacture have enabled their use in electronic equipment, foods, clothing and medical devices. Although some NPs have antibacterial activity, little is known about their environmental impact and there is no information on the influence of NPs on soil in the possibly vulnerable ecosystems of polar regions. The potential toxicity of 0.066% silver, copper or silica NPs on a high latitude (>78{sup o}N) soil was determined using community level physiological profiles (CLPP), fatty acid methyl ester (FAME) assays and DNA analysis, including sequencing and denaturing gradient gel electrophoresis (DGGE). The results of these different investigations were amalgamated in order to develop a community toxicity indicator, which revealed that of the three NPs examined, silver NPs could be classified as highly toxic to these arctic consortia. Subsequent culture-based studies confirmed that one of the community-identified plant-associating bacteria, Bradyrhizobium canariense, appeared to have a marked sensitivity to silver NPs. Thus, NP contamination of arctic soils particularly by silver NPs is a concern and procedures for mitigation and remediation of such pollution should be a priority for investigation.

  15. Arctic sea ice melt leads to atmospheric new particle formation.

    Science.gov (United States)

    Dall Osto, M; Beddows, D C S; Tunved, P; Krejci, R; Ström, J; Hansson, H-C; Yoon, Y J; Park, Ki-Tae; Becagli, S; Udisti, R; Onasch, T; O Dowd, C D; Simó, R; Harrison, Roy M

    2017-06-12

    Atmospheric new particle formation (NPF) and growth significantly influences climate by supplying new seeds for cloud condensation and brightness. Currently, there is a lack of understanding of whether and how marine biota emissions affect aerosol-cloud-climate interactions in the Arctic. Here, the aerosol population was categorised via cluster analysis of aerosol size distributions taken at Mt Zeppelin (Svalbard) during a 11 year record. The daily temporal occurrence of NPF events likely caused by nucleation in the polar marine boundary layer was quantified annually as 18%, with a peak of 51% during summer months. Air mass trajectory analysis and atmospheric nitrogen and sulphur tracers link these frequent nucleation events to biogenic precursors released by open water and melting sea ice regions. The occurrence of such events across a full decade was anti-correlated with sea ice extent. New particles originating from open water and open pack ice increased the cloud condensation nuclei concentration background by at least ca. 20%, supporting a marine biosphere-climate link through sea ice melt and low altitude clouds that may have contributed to accelerate Arctic warming. Our results prompt a better representation of biogenic aerosol sources in Arctic climate models.

  16. Perturbation of an arctic soil microbial community by metal nanoparticles

    International Nuclear Information System (INIS)

    Kumar, Niraj; Shah, Vishal; Walker, Virginia K.

    2011-01-01

    Highlights: → Silver, copper and silica nanoparticles had an impact on arctic soil → A microbial community toxicity indicator was developed → Community surveys using pyrosequencing confirmed a shift in bacterial biodiversity → Troublingly, silver nanoparticles were highly toxic to a plant beneficial bacterium - Abstract: Technological advances allowing routine nanoparticle (NP) manufacture have enabled their use in electronic equipment, foods, clothing and medical devices. Although some NPs have antibacterial activity, little is known about their environmental impact and there is no information on the influence of NPs on soil in the possibly vulnerable ecosystems of polar regions. The potential toxicity of 0.066% silver, copper or silica NPs on a high latitude (>78 o N) soil was determined using community level physiological profiles (CLPP), fatty acid methyl ester (FAME) assays and DNA analysis, including sequencing and denaturing gradient gel electrophoresis (DGGE). The results of these different investigations were amalgamated in order to develop a community toxicity indicator, which revealed that of the three NPs examined, silver NPs could be classified as highly toxic to these arctic consortia. Subsequent culture-based studies confirmed that one of the community-identified plant-associating bacteria, Bradyrhizobium canariense, appeared to have a marked sensitivity to silver NPs. Thus, NP contamination of arctic soils particularly by silver NPs is a concern and procedures for mitigation and remediation of such pollution should be a priority for investigation.

  17. Arctic System Science: Meeting Earth System and Social Impact Challenges through Integrative Approaches and Synthesis

    Science.gov (United States)

    Vorosmarty, C. J.; Hinzman, L. D.; Rawlins, M. A.; Serreze, M. C.; Francis, J. A.; Liljedahl, A. K.; McDonald, K. C.; Piasecki, M.; Rich, R. H.; Holland, M. M.

    2017-12-01

    The Arctic is an integral part of the Earth system where multiple interactions unite its natural and human elements. Recent observations show the Arctic to be experiencing rapid and amplified signatures of global climate change. At the same time, the Arctic system's response to this broader forcing has itself become a central research topic, given its potential role as a critical throttle on future planetary dynamics. Changes are already impacting life systems and economic prosperity and continued change is expected to bear major implications far outside the region. We also have entered an era when environmental management, traditionally local in scope, must confront regional, whole biome, and pan-Arctic biogeophysical challenges. While challenges may appear to operate in isolation, they emerge within the context of an evolving, integrated Arctic system defined by interactions among natural and social sub-systems. Clearly, new efforts aimed at community planning, industrial development, and infrastructure construction must consider this multiplicity of interacting processes. We recently organized an "Arctic System Synthesis Workshop Series" supported by the Arctic Systems Science Program of NSF and devoted to exploring approaches capable of uncovering the systems-level behavior in both the natural and social sciences domains. The series featured two topical meetings. The first identified the sources responsible for extreme climate events in the Arctic. The second focused on multiple "currencies" within the system (i.e., water, energy, carbon, nutrients) and how they interact to produce systems-level behaviors. More than 40 experts participated, drawn from the ranks of Arctic natural and social sciences. We report here on the workshop series consensus report, which identifies a broad array of topics. Principal among these are a consideration of why study the Arctic as a system, as well as an articulation of the major systems-level approaches to support basic as well

  18. NATIONAL ATLAS OF THE ARCTIC

    Directory of Open Access Journals (Sweden)

    Nikolay S. Kasimov

    2018-01-01

    Full Text Available The National Atlas of the Arctic is a set of spatio-temporal information about the geographic, ecological, economic, historical-ethnographic, cultural, and social features of theArcticcompiled as a cartographic model of the territory. The Atlas is intended for use in a wide range of scientific, management, economic, defense, educational, and public activities. The state policy of theRussian Federationin the Arctic for the period until 2020 and beyond, states that the Arctic is of strategic importance forRussiain the 21st century. A detailed description of all sections of the Atlas is given. The Atlas can be used as an information-reference and educational resource or as a gift edition.

  19. Arctic Basemaps In Google Maps

    DEFF Research Database (Denmark)

    Muggah, J.; Mioc, Darka

    2010-01-01

    The Ocean Mapping Group has been collecting data in the Arctic since 2003 and there are approximately 2,000 basemaps. In the current online storage format used by the OMG, it is difficult to view the data and users cannot easily pan and zoom. The purpose of this research is to investigate...... the advantages of the use of Google Maps, to display the OMG's Arctic data. The map should should load the large Artic dataset in a reasonable time. The bathymetric images were created using software in Linux written by the OMG, and a step-by-step process was used to create images from the multibeam data...... collected by the OMG in the Arctic. The website was also created using Linux operating system. The projection needed to be changed from Lambert Conformal Conic (useful at higher Latitudes) to Mercator (used by Google Maps) and the data needed to have a common colour scheme. After creating and testing...

  20. Interaction webs in arctic ecosystems

    DEFF Research Database (Denmark)

    Schmidt, Niels M.; Hardwick, Bess; Gilg, Olivier

    2017-01-01

    How species interact modulate their dynamics, their response to environmental change, and ultimately the functioning and stability of entire communities. Work conducted at Zackenberg, Northeast Greenland, has changed our view on how networks of arctic biotic interactions are structured, how...... they vary in time, and how they are changing with current environmental change: firstly, the high arctic interaction webs are much more complex than previously envisaged, and with a structure mainly dictated by its arthropod component. Secondly, the dynamics of species within these webs reflect changes...... that the combination of long-term, ecosystem-based monitoring, and targeted research projects offers the most fruitful basis for understanding and predicting the future of arctic ecosystems....

  1. Environmental radioactivity in the Arctic

    International Nuclear Information System (INIS)

    Strand, P.; Cooke, A.

    1995-01-01

    The conference considered several broad themes: (1) assessment of releases from landbased sources and river transport, (2) assessment of dumping of nuclear waste, (3) arctic radioecology, (4) assessment of impacts of nuclear explosions and accidents, (5) nuclear safety and consequences of nuclear accidents in the arctic, and (6) waste management. The presentations demonstrated that current levels of radioactivity in the Arctic are generally low. The two most important sources are global fallout from the nuclear weapons tests of the 1950's and 1960's, and discharges to the sea from reprocessing plants in Western Europe which are transported northward by prevailing currents. The conference was attended by scientists from 17 countries and served as a forum for collection and dissemination of information on the range of themes and described above. It is hoped that this will serve to increase awareness of areas of uncertainty and act as a stimulus to further research

  2. The Arctic tourism in Russia

    Directory of Open Access Journals (Sweden)

    Yury F. Lukin

    2016-12-01

    Full Text Available In the new book "Arctic tourism in Russia" the basic concepts, resource potential, attractiveness (from Lat. Attrahere: to attract, opportunities and threats of environmental, cruise, international, and other types of tourism in the Arctic are system-based analyzed, for the first time in the literature. The sphere of tourism has becoming an integral sector of the economy, having a multiplicative effect for the development of infrastructure, social services, employment. Reference materials about the tourism products in the Russian Arctic and Far North regions are published, including the Arkhangelsk and Murmansk regions; Republic of Karelia, Komi, Sakha (Yakutia; Nenets, the Yamalo-Nenets, Khanty-Mansiysk, the Chukotka Autonomous Districts; Taimyr Dolgan-Nenets Municipal District, Turukhansk district, the city of Norilsk of the Krasnoyarsk region; Magadan region, Kamchatka region.

  3. The Arctic policy of China and Japan

    DEFF Research Database (Denmark)

    Tonami, Aki

    2014-01-01

    At the May 2013 Arctic Council Ministerial Meeting, five Asian states, namely China, Japan, India, Singapore and South Korea, were accepted to become new Permanent Observers at the Arctic Council. Nonetheless, little attention has been paid to the Asian states and their interest in the Arctic. Most...... discussions have focused on China and the assessment of China’s interest in the Arctic is divided. This paper attempts to fill this gap by presenting and comparing the various components of the Arctic policies of China and Japan. Referring to Putnam’s model of the “two-level game” and Young’s categorization...

  4. Rich Support for Heterogeneous Polar Data in RAMADDA

    Science.gov (United States)

    McWhirter, J.; Crosby, C. J.; Griffith, P. C.; Khalsa, S.; Lazzara, M. A.; Weber, W. J.

    2013-12-01

    Difficult to navigate environments, tenuous logistics, strange forms, deeply rooted cultures - these are all experiences shared by Polar scientist in the field as well as the developers of the underlying data management systems back in the office. Among the key data management challenges that Polar investigations present are the heterogeneity and complexity of data that are generated. Polar regions are intensely studied across many science domains through a variety of techniques - satellite and aircraft remote sensing, in-situ observation networks, modeling, sociological investigations, and extensive PI-driven field project data collection. While many data management efforts focus on large homogeneous collections of data targeting specific science domains (e.g., satellite, GPS, modeling), multi-disciplinary efforts that focus on Polar data need to be able to address a wide range of data formats, science domains and user communities. There is growing use of the RAMADDA (Repository for Archiving, Managing and Accessing Diverse Data) system to manage and provide services for Polar data. RAMADDA is a freely available extensible data repository framework that supports a wide range of data types and services to allow the creation, management, discovery and use of data and metadata. The broad range of capabilities provided by RAMADDA and its extensibility makes it well-suited as an archive solution for Polar data. RAMADDA can run in a number of diverse contexts - as a centralized archive, at local institutions, and can even run on an investigator's laptop in the field, providing in-situ metadata and data management services. We are actively developing archives and support for a number of Polar initiatives: - NASA-Arctic Boreal Vulnerability Experiment (ABoVE): ABoVE is a long-term multi-instrument field campaign that will make use of a wide range of data. We have developed an extensive ontology of program, project and site metadata in RAMADDA, in support of the ABo

  5. The Arctic Observing Viewer: A Web-mapping Application for U.S. Arctic Observing Activities

    Science.gov (United States)

    Kassin, A.; Gaylord, A. G.; Manley, W. F.; Villarreal, S.; Tweedie, C. E.; Cody, R. P.; Copenhaver, W.; Dover, M.; Score, R.; Habermann, T.

    2014-12-01

    Although a great deal of progress has been made with various arctic observing efforts, it can be difficult to assess such progress when so many agencies, organizations, research groups and others are making such rapid progress. To help meet the strategic needs of the U.S. SEARCH-AON program and facilitate the development of SAON and related initiatives, the Arctic Observing Viewer (AOV; http://ArcticObservingViewer.org) has been developed. This web mapping application compiles detailed information pertaining to U.S. Arctic Observing efforts. Contributing partners include the U.S. NSF, USGS, ACADIS, ADIwg, AOOS, a2dc, AON, ARMAP, BAID, IASOA, INTERACT, and others. Over 6100 sites are currently in the AOV database and the application allows users to visualize, navigate, select, advance search, draw, print, and more. AOV is founded on principles of software and data interoperability and includes an emerging "Project" metadata standard, which uses ISO 19115-1 and compatible web services. In the last year, substantial efforts have focused on maintaining and centralizing all database information. In order to keep up with emerging technologies and demand for the application, the AOV data set has been structured and centralized within a relational database; furthermore, the application front-end has been ported to HTML5. Porting the application to HTML5 will now provide access to mobile users utilizing tablets and cell phone devices. Other application enhancements include an embedded Apache Solr search platform which provides users with the capability to perform advance searches throughout the AOV dataset, and an administration web based data management system which allows the administrators to add, update, and delete data in real time. We encourage all collaborators to use AOV tools and services for their own purposes and to help us extend the impact of our efforts and ensure AOV complements other cyber-resources. Reinforcing dispersed but interoperable resources in this

  6. Global Hawk dropsonde observations of the Arctic atmosphere obtained during the Winter Storms and Pacific Atmospheric Rivers (WISPAR field campaign

    Directory of Open Access Journals (Sweden)

    J. M. Intrieri

    2014-11-01

    Full Text Available In February and March of 2011, the Global Hawk unmanned aircraft system (UAS was deployed over the Pacific Ocean and the Arctic during the Winter Storms and Pacific Atmospheric Rivers (WISPAR field campaign. The WISPAR science missions were designed to (1 mprove our understanding of Pacific weather systems and the polar atmosphere; (2 evaluate operational use of unmanned aircraft for investigating these atmospheric events; and (3 demonstrate operational and research applications of a UAS dropsonde system at high latitudes. Dropsondes deployed from the Global Hawk successfully obtained high-resolution profiles of temperature, pressure, humidity, and wind information between the stratosphere and surface. The 35 m wingspan Global Hawk, which can soar for ~ 31 h at altitudes up to ~ 20 km, was remotely operated from NASA's Dryden Flight Research Center at Edwards Air Force Base (AFB in California. During the 25 h polar flight on 9–10 March 2011, the Global Hawk released 35 sondes between the North Slope of Alaska and 85° N latitude, marking the first UAS Arctic dropsonde mission of its kind. The polar flight transected an unusually cold polar vortex, notable for an associated record-level Arctic ozone loss, and documented polar boundary layer variations over a sizable ocean–ice lead feature. Comparison of dropsonde observations with atmospheric reanalyses reveal that, for this day, large-scale structures such as the polar vortex and air masses are captured by the reanalyses, while smaller-scale features, including low-level jets and inversion depths, are mischaracterized. The successful Arctic dropsonde deployment demonstrates the capability of the Global Hawk to conduct operations in harsh, remote regions. The limited comparison with other measurements and reanalyses highlights the potential value of Arctic atmospheric dropsonde observations where routine in situ measurements are practically nonexistent.

  7. A dynamical link between the Arctic and the global climate system

    DEFF Research Database (Denmark)

    Dethloff, K.; Rinke, A.; Benkel, A.

    2006-01-01

    and snow albedo treatment changes the ice-albedo feedback and the radiative exchange between the atmosphere and the ocean-sea-ice system. The planetary wave energy fluxes in the middle troposphere of mid-latitudes between 30 and 50°N are redistributed, which induces perturbations in the zonal...... and meridional planetary wave trains from the tropics over the mid-latitudes into the Arctic. It is shown, that the improved parameterization of Arctic sea-ice and snow albedo can trigger changes in the Arctic and North Atlantic Oscillation pattern with strong implications for the European climate.......By means of simulations with a global coupled AOGCM it is shown that changes in the polar energy sink region can exert a strong influence on the mid- and high-latitude climate by modulating the strength of the mid-latitude westerlies and storm tracks. It is found, that a more realistic sea-ice...

  8. Arctide2017, a high-resolution regional tidal model in the Arctic Ocean

    DEFF Research Database (Denmark)

    Cancet, M.; Andersen, O. B.; Lyard, F.

    2018-01-01

    The Arctic Ocean is a challenging region for tidal modelling. The accuracy of the global tidal models decreases by several centimeters in the Polar Regions, which has a large impact on the quality of the satellite altimeter sea surface heights and the altimetry-derived products. NOVELTIS, DTU Space...... and LEGOS have developed Arctide2017, a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of an extension of the CryoSat Plus for Ocean (CP4O) ESA STSE (Support to Science Element) project. In particular, this atlas benefits from the assimilation of the most complete satellite...... assimilation and validation. This paper presents the implementation methodology and the performance of this new regional tidal model in the Arctic Ocean, compared to the existing global and regional tidal models....

  9. Lidar measurements of ozone and aerosol distributions during the 1992 airborne Arctic stratospheric expedition

    Science.gov (United States)

    Browell, Edward V.; Butler, Carolyn F.; Fenn, Marta A.; Grant, William B.; Ismail, Syed; Carter, Arlen F.

    1994-01-01

    The NASA Langley airborne differential absorption lidar system was operated from the NASA Ames DC-8 aircraft during the 1992 Airborne Arctic Stratospheric Expedition to investigate the distribution of stratospheric aerosols and ozone (O3) across the Arctic vortex from January to March 1992. Aerosols from the Mt. Pinatubo eruption were found outside and inside the Arctic vortex with distinctly different scattering characteristics and spatial distributions in the two regions. The aerosol and O3 distributions clearly identified the edge of the vortex and provided additional information on vortex dynamics and transport processes. Few polar stratospheric clouds were observed during the AASE-2; however, those that were found had enhanced scattering and depolarization over the background Pinatubo aerosols. The distribution of aerosols inside the vortex exhibited relatively minor changes during the AASE-2. Ozone depletion inside the vortex as limited to less than or equal to 20 percent in the altitude region from 15-20 km.

  10. Heroism and Imperialism in the Arctic: Edwin Landseer’s Man Proposes – God Disposes

    Directory of Open Access Journals (Sweden)

    Ingeborg Høvik

    2008-02-01

    Full Text Available Edwin Landseer contributed the painting Man Proposes - God Disposes (Royal Holloway College, Egham, showing two polar bears amongst the remnants of a failed Arctic expedition, to the Royal Academy's annual exhibition of 1864. As contemporary nineteenth-century reviews of this exhibition show, the British public commonly associated Landseer's painting with the lost Arctic expedition of sir John Franklin, who had set out to find the Northwest Passage in 1845. Despite Landseer's gloomy representation of a present-day human disaster and, in effect, of British exploration in the Arctic, the painting became a public success upon its first showing. I will argue that a major reason why the painting became a success, was because Landseer's version of the Franklin expedition's fate offered a closure to the whole Franklin tragedy that corresponded to British nineteenth-century views on heroism and British-ness.

  11. Scientific Drilling in the Arctic Ocean: A challenge for the next decades

    Science.gov (United States)

    Stein, R.; Coakley, B.

    2009-04-01

    Although major progress in Arctic Ocean research has been made during the last decades, the knowledge of its short- and long-term paleoceanographic and paleoclimatic history as well as its plate-tectonic evolution is much behind that from the other world's oceans. That means - despite the importance of the Arctic in the climate system - the data base we have from this area is still very weak, and large parts of the climate history have not been recovered at all in sedimentary sections. This lack of knowledge is mainly caused by the major technological/ logistic problems in reaching this permanently ice-covered region with normal research vessels and in retrieving long and undisturbed sediment cores. With the successful completion of IODP Expedition 302 ("Arctic Coring Expedition" - ACEX), the first Mission Specific Platform (MSP) expedition within the Integrated Ocean Drilling Program - IODP, a new era in Arctic research has begun. For the first time, a scientific drilling in the permanently ice-covered Arctic Ocean was carried out, penetrating about 430 meters of Quaternary, Neogene, Paleogene and Campanian sediment on the crest of Lomonosov Ridge close to the North Pole. The success of ACEX has certainly opened the door for further scientific drilling in the Arctic Ocean, and will frame the next round of questions to be answered from new drill holes to be taken during the next decades. In order to discuss and plan the future of scientific drilling in the Arctic Ocean, an international workshop was held at the Alfred Wegener Institute (AWI) in Bremerhaven/Germany, (Nov 03-05, 2008; convenors: Bernard Coakley/University of Alaska Fairbanks and Ruediger Stein/AWI Bremerhaven). About 95 scientists from Europe, US, Canada, Russia, Japan, and Korea, and observers from oil companies participated in the workshop. Funding of the workshop was provided by the Consortium for Ocean Leadership (US), the European Science Foundation, the Arctic Ocean Sciences Board, and the

  12. Implications of rapid environmental change for polar bear behavior and sociality

    Science.gov (United States)

    Atwood, Todd C.

    2017-01-01

    Historically, the Arctic sea ice has functioned as a structural barrier that has limited the nature and extent of interactions between humans and polar bears (Ursus maritimus). However, declining sea ice extent, brought about by global climate change, is increasing the potential for human-polar bear interactions. Loss of sea ice habitat is driving changes to both human and polar bear behavior—it is facilitating increases in human activities (e.g., offshore oil and gas exploration and extraction, trans-Arctic shipping, recreation), while also causing the displacement of bears from preferred foraging habitat (i.e., sea ice over biologically productive shallow) to land in some portions of their range. The end result of these changes is that polar bears are spending greater amounts of time in close proximity to people. Coexistence between humans and polar bears will require imposing mechanisms to manage further development, as well as mitigation strategies that reduce the burden to local communities.

  13. Australian and Canadian perspectives and regulations for protecting the polar marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Rothwell, Donald R.

    1997-12-31

    The report compares Australian and Canadian responses for protecting polar marine environments. Vast areas of the polar seas fall within their potential combined EEZ/continental shelf jurisdiction. The Antarctic Treaty provisions, doubts on the status of the Northwest Passage waters and the capacity to enforce legislative initiatives against foreign vessels have been constraints. Australia`s enactment of legislation prohibiting mining within the AAT continental shelf and whaling within the AAT EEZ has tested the Antarctic Treaty. Canada`s reaction to the Manhattan and the enactment of the Arctic Waters Pollution Prevention Act is an example of unilateral action. While the countries have made noteworthy initiatives to enhance the protection of their polar marine environments, doubts remain in some instances on their capacity to give effect to the initiatives. However, sovereignty remains at the heart of their response. Failure to address Antarctic marine environmental issues will rebound on the environment and reflect poorly upon Australia`s sovereignty claim to the AAT. For Canada it is a sovereignty issue and has directly impact upon its citizens inhabiting the islands and coastal areas of the Canadian Arctic. The Madrid Protocol provides the strongest legal basis for the Antarctic Treaty parties to enact laws and regulations in Antarctica. Conservation measures adopted under the Convention for the Conservation of Antarctic Marine Living Resources focuses increasingly on environmental concerns. The most significant regional initiative adopted by Arctic states is the AEPS which does not have a legal foundation. It`s co-operative programs provide basis for co-operation in dealing with environmental problems. It clearly recognises that only co-operative responses will achieve significant outcomes. The 1990s have posed new challenges for marine environmental protection such as ship-based tourism in Antarctica and the growing pressure to use the Northwest Passage on a

  14. Challenges of climate change: an Arctic perspective.

    Science.gov (United States)

    Corell, Robert W

    2006-06-01

    Climate change is being experienced particularly intensely in the Arctic. Arctic average temperature has risen at almost twice the rate as that of the rest of the world in the past few decades. Widespread melting of glaciers and sea ice and rising permafrost temperatures present additional evidence of strong Arctic warming. These changes in the Arctic provide an early indication of the environmental and societal significance of global consequences. The Arctic also provides important natural resources to the rest of the world (such as oil, gas, and fish) that will be affected by climate change, and the melting of Arctic glaciers is one of the factors contributing to sea level rise around the globe. An acceleration of these climatic trends is projected to occur during this century, due to ongoing increases in concentrations of greenhouse gases in the Earth's atmosphere. These Arctic changes will, in turn, impact the planet as a whole.

  15. History of sea ice in the Arctic

    DEFF Research Database (Denmark)

    Polyak, Leonid; Alley, Richard B.; Andrews, John T.

    2010-01-01

    Arctic sea-ice extent and volume are declining rapidly. Several studies project that the Arctic Ocean may become seasonally ice-free by the year 2040 or even earlier. Putting this into perspective requires information on the history of Arctic sea-ice conditions through the geologic past. This inf......Arctic sea-ice extent and volume are declining rapidly. Several studies project that the Arctic Ocean may become seasonally ice-free by the year 2040 or even earlier. Putting this into perspective requires information on the history of Arctic sea-ice conditions through the geologic past...... Optimum, and consistently covered at least part of the Arctic Ocean for no less than the last 13–14 million years. Ice was apparently most widespread during the last 2–3 million years, in accordance with Earth’s overall cooler climate. Nevertheless, episodes of considerably reduced sea ice or even...

  16. Arctic Glass: Innovative Consumer Technology in Support of Arctic Research

    Science.gov (United States)

    Ruthkoski, T.

    2015-12-01

    The advancement of cyberinfrastructure on the North Slope of Alaska is drastically limited by location-specific conditions, including: unique geophysical features, remoteness of location, and harsh climate. The associated cost of maintaining this unique cyberinfrastructure also becomes a limiting factor. As a result, field experiments conducted in this region have historically been at a technological disadvantage. The Arctic Glass project explored a variety of scenarios where innovative consumer-grade technology was leveraged as a lightweight, rapidly deployable, sustainable, alternatives to traditional large-scale Arctic cyberinfrastructure installations. Google Glass, cloud computing services, Internet of Things (IoT) microcontrollers, miniature LIDAR, co2 sensors designed for HVAC systems, and portable network kits are several of the components field-tested at the Toolik Field Station as part of this project. Region-specific software was also developed, including a multi featured, voice controlled Google Glass application named "Arctic Glass". Additionally, real-time sensor monitoring and remote control capability was evaluated through the deployment of a small cluster of microcontroller devices. Network robustness was analyzed as the devices delivered streams of abiotic data to a web-based dashboard monitoring service in near real time. The same data was also uploaded synchronously by the devices to Amazon Web Services. A detailed overview of solutions deployed during the 2015 field season, results from experiments utilizing consumer sensors, and potential roles consumer technology could play in support of Arctic science will be discussed.

  17. Polar marine ecosystems: major threats and future change

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, A. [British Antarctic Survey, Cambridge (United Kingdom); Harris, C.M. [Environmental Research and Assessment, Grantchester (United Kingdom)

    2003-07-01

    This review of polar marine ecosystems covers both the Arctic and Antarctic, identifying the major threats and, where possible, predicting their possible state(s) in 2025. Although the two polar regions are similar in their extreme photoperiod, low temperatures, and in being heavily influenced by snow and ice, in almost all other respects they are very different. The Arctic Ocean is a basin surrounded by continental landmasses close to, and influenced by, large populations and industrial activities. In contrast, the Southern Ocean is contiguous with all the other great oceans and surrounds a single land mass; Antarctica is remote from major centres of population and sources of pollution. Marine environments in both Polar Regions have been highly disturbed by fishing activity, but, in terms of pollution, some areas remain among the most pristine in the world. There are, however, both local and global pressures. Over the 2025 time horizon, the greatest concern for the Arctic is probably the ecological implications of climate change, particularly insofar as sea ice extent and duration are likely to be affected. Such changes are not expected to be as pronounced in the Southern Ocean over this time period, and concerns are related more to direct threats from harvesting of marine living resources, and the ability to manage these fisheries sustainably. In both Polar Regions, the capacity of marine ecosystems to withstand the cumulative impact of a number of pressures, including climate change, pollution and overexploitation, acting synergistically is of greatest concern. (author)

  18. Graduate training in Earth science across borders and disciplines: ArcTrain -"Processes and impacts of climate change in the North Atlantic Ocean and the Canadian Arctic"

    Science.gov (United States)

    Stein, Rüdiger; Kucera, Michal; Walter, Maren; de Vernal, Anne

    2015-04-01

    Due to a complex set of feedback processes collectively known as "polar amplification", the Arctic realm is expected to experience a greater-than-average response to global climate forcing. The cascades of feedback processes that connect the Arctic cryosphere, ocean and atmosphere remain incompletely constrained by observations and theory and are difficult to simulate in climate models. Our capacity to predict the future of the region and assess the impacts of Arctic change processes on global and regional environments hinges on the availability of interdisciplinary experts with strong international experience and understanding of the science/society interface. This is the basis of the International Research Training Group "Processes and impacts of climate change in the North Atlantic Ocean and the Canadian Arctic - ArcTrain", which was initiated in 2013. ArcTrain aims to educate PhD students in an interdisciplinary environment that combines paleoclimatology, physical oceanography, remote sensing and glaciology with comprehensive Earth system modelling, including sea-ice and ice-sheet components. The qualification program for the PhD students includes joint supervision, mandatory research residences at partner institutions, field courses on land and on sea (Floating University), annual meetings and training workshops and a challenging structured training in expert skills and transferrable skills. Its aim is to enhance the career prospects and employability of the graduates in a challenging international job market across academic and applied sectors. ArcTrain is a collaborative project at the University of Bremen and the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven. The German part of the project is designed to continue for nine years and educate three cohorts of twelve PhD students each. The Canadian partners comprise a consortium of eight universities led by the GEOTOP cluster at the Université du Québec à Montréal and including

  19. Energy Management for Automatic Monitoring Stations in Arctic Regions

    Science.gov (United States)

    Pimentel, Demian

    Automatic weather monitoring stations deployed in arctic regions are usually installed in hard to reach locations. Most of the time they run unsupervised and they face severe environmental conditions: very low temperatures, ice riming, etc. It is usual practice to use a local energy source to power the equipment. There are three main ways to achieve this: (1) a generator whose fuel has to be transported to the location at regular intervals (2) a battery and (3) an energy harvesting generator that exploits a local energy source. Hybrid systems are very common. Polar nights and long winters are typical of arctic regions. Solar radiation reaching the ground during this season is very low or non-existent, depending on the geographical location. Therefore, solar power generation is not very effective. One straightforward, but expensive and inefficient solution is the use of a large bank of batteries that is recharged during sunny months and discharged during the winter. The main purpose of the monitoring stations is to collect meteorological data at regular intervals; interruptions due to a lack of electrical energy can be prevented with the use of an energy management subsystem. Keeping a balance between incoming and outgoing energy flows, while assuring the continuous operation of the station, is the delicate task of energy management strategies. This doctoral thesis explores alternate power generation solutions and intelligent energy management techniques for equipment deployed in the arctic. For instance, harvesting energy from the wind to complement solar generation is studied. Nevertheless, harvested energy is a scarce resource and needs to be used efficiently. Genetic algorithms, fuzzy logic, and common sense are used to efficiently manage energy flows within a simulated arctic weather station.

  20. Hygroscopicity and composition of Alaskan Arctic CCN during April 2008

    Directory of Open Access Journals (Sweden)

    R. H. Moore

    2011-11-01

    Full Text Available We present a comprehensive characterization of cloud condensation nuclei (CCN sampled in the Alaskan Arctic during the 2008 Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC project, a component of the POLARCAT and International Polar Year (IPY initiatives. Four distinct air mass types were sampled including a cleaner Arctic background and a relatively pristine sea ice boundary layer as well as biomass burning and anthropogenic pollution plumes. Despite differences in chemical composition, inferred aerosol hygroscopicities were fairly invariant and ranged from κ = 0.1–0.3 over the atmospherically-relevant range of water vapor supersaturations studied. Organic aerosols sampled were found to be well-oxygenated, consistent with long-range transport and aerosol aging processes. However, inferred hygroscopicities are less than would be predicted based on previous parameterizations of biogenic oxygenated organic aerosol, suggesting an upper limit on organic aerosol hygroscopicity above which κ is less sensitive to the O:C ratio. Most Arctic aerosols act as CCN above 0.1 % supersaturation, although the data suggest the presence of an externally-mixed, non-CCN-active mode comprising approximately 0–20% of the aerosol number. CCN closure was assessed using measured size distributions, bulk chemical composition, and assumed aerosol mixing states; CCN predictions tended toward overprediction, with the best agreement (±0–20 % obtained by assuming the aerosol to be externally-mixed with soluble organics. Closure also varied with CCN concentration, and the best agreement was found for CCN concentrations above 100 cm−3 with a 1.5- to 3-fold overprediction at lower concentrations.

  1. Modern Process Studies in Kongsfjord, Svalbard: Arctic Geoscience Research Experience for U.S. Undergraduates (Svalbard REU)

    Science.gov (United States)

    Powell, R. D.; Brigham-Grette, J.

    2011-12-01

    The Svalbard REU (Research Experience for Undergraduates) program focuses on understanding how high latitude glaciers, meltwater streams, and sedimentation in lakes and fjords respond to changing climate. Since summer of 2004, six under-graduate students have been selected to participate in the summer field program. Students work on individual projects and in close conjunction with faculty advisors and other student researchers. They formulate their own research questions, develop their project, and complete their field research during a five-week program on Svalbard, Norway. Following the summer program, students complete their projects at their home institution during the following academic year as a senior thesis. A spring symposium brings all participants back together again with their final results. The most recent field season was completed in Kongsfjord (79N) showing that the contemporary studies of tidewater glacier margins provide an unparalleled opportunity for introducing motivated third year undergraduate students to the challenges and rewards of polar geoscientific field research. Rates of rapid change in this high-latitude Arctic environment emphasize the complexity of the Earth System at the interface of the ocean, atmosphere and cryosphere. Given background information in glacial and marine geology, glaciology, hydrology, climatology and fjord oceanography not routinely offered in undergraduate curricula, students develop the science questions to be addressed and establish a field plan for instrumentation and sampling. Working together in small boats in one of the most challenging natural environments, the students expand their leadership skills, learn the value of teamwork and collaborative data sharing while maintaining a strong sense of ownership over their individual science projects. The rigors of studying an actively calving tidewater glacier also builds on their outdoor skills, especially when it is necessary to improvise and become

  2. Arctic Ocean circulation during the anoxic Eocene Azolla event

    Science.gov (United States)

    Speelman, Eveline; Sinninghe Damsté, Jaap; März, Christian; Brumsack, Hans; Reichart, Gert-Jan

    2010-05-01

    The Azolla interval, as encountered in Eocene sediments from the Arctic Ocean, is characterized by organic rich sediments ( 4wt% Corg). In general, high levels of organic matter may be caused by increased productivity, i.e. extensive growth of Azolla, and/or enhanced preservation of organic matter, or a combination of both. Anoxic (bottom) water conditions, expanded oxygen minimum zones, or increased sedimentation rates all potentially increase organic matter preservation. According to plate tectonic, bathymetric, and paleogeographic reconstructions, the Arctic Ocean was a virtually isolated shallow basin, with one possible deeper connection to the Nordic Seas represented by a still shallow Fram Strait (Jakobsson et al., 2007), hampering ventilation of the Arctic Basin. During the Azolla interval surface waters freshened, while at the same time bottom waters appear to have remained saline, indicating that the Arctic was highly stratified. The restricted ventilation and stratification in concert with ongoing export of organic matter most likely resulted in the development of anoxic conditions in the lower part of the water column. Whereas the excess precipitation over evaporation maintained the freshwater lid, sustained input of Nordic Sea water is needed to keep the deeper waters saline. To which degree the Arctic Ocean exchanged with the Nordic Seas is, however, still largely unknown. Here we present a high-resolution trace metal record (ICP-MS and ICP-OES) for the expanded Early/Middle Eocene section capturing the Azolla interval from Integrated Ocean Drilling Program (IODP) Expedition 302 (ACEX) drilled on the Lomonosov Ridge, central Arctic Ocean. Euxinic conditions throughout the interval resulted in the efficient removal of redox sensitive trace metals from the water column. Using the sedimentary trace metal record we also constrained circulation in the Arctic Ocean by assessing the relative importance of trace metal input sources (i.e. fluvial, eolian, and

  3. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation

    NARCIS (Netherlands)

    Cózar, Andrés; Martí, Elisa; Duarte, Carlos M; García-de-Lomas, Juan; van Sebille, Erik|info:eu-repo/dai/nl/304831921; Ballatore, Thomas J; Eguíluz, Victor M; González-Gordillo, J Ignacio; Pedrotti, Maria L; Echevarría, Fidel; Troublè, Romain; Irigoien, Xabier

    The subtropical ocean gyres are recognized as great marine accummulation zones of floating plastic debris; however, the possibility of plastic accumulation at polar latitudes has been overlooked because of the lack of nearby pollution sources. In the present study, the Arctic Ocean was extensively

  4. ARCUS Project Managers and the Intangible Infrastructure of Large Interdisciplinary Arctic Research Networks

    Science.gov (United States)

    Myers, B.; Wiggins, H. V.; Turner-Bogren, E. J.; Warburton, J.

    2017-12-01

    Project Managers at the Arctic Research Consortium of the U.S. (ARCUS) lead initiatives to convene, communicate with, and connect the Arctic research community across challenging disciplinary, geographic, temporal, and cultural boundaries. They regularly serve as the organizing hubs, archivists and memory-keepers for collaborative projects comprised of many loosely affiliated partners. As leading organizers of large open science meetings and other outreach events, they also monitor the interdisciplinary landscape of community needs, concerns, opportunities, and emerging research directions. However, leveraging the ARCUS Project Manager role to strategically build out the intangible infrastructure necessary to advance Arctic research requires a unique set of knowledge, skills, and experience. Drawing on a range of lessons learned from past and ongoing experiences with collaborative science, education and outreach programming, this presentation will highlight a model of ARCUS project management that we believe works best to support and sustain our community in its long-term effort to conquer the complexities of Arctic research.

  5. Measurements to understand the role of the sub Arctic environment on boundary layer ozone, gaseous mercury and bromine oxide concentrations

    Science.gov (United States)

    Netcheva, S.; Bottenheim, J.; Staebler, R.; Steffen, A.; Bobrowski, N.; Moores, J.

    2009-04-01

    over the ice of the south east part of Hudson Bay near the town of Kuujjurapik/Whapmagoostui, Quebec, Canada between February 17 and March 13, 2008. The study was part of the "Impact of combined iodine and bromine release on the Arctic atmosphere" (COBRA) campaign. Air-surface interactions were studied over ice, fresh snow, open and freezing water and freshly grown frost flowers. The results of O3, GEM and BrO measurements and their relation to the character of the underlying surface and ambient air conditions will be discussed. This work is part of the OASIS-CANADA program, funded by the Canadian Federal Program Office of the International Polar Year

  6. Steroid hormone profile in female polar bears (Ursus maritimus)

    DEFF Research Database (Denmark)

    Gustavson, Lisa; Jenssen, Bjørn Munro; Bytingsvik, Jenny

    2015-01-01

    The polar bear is an iconic Arctic species, threatened by anthropogenic impacts such as pollution and climate change. Successful reproduction of polar bears depends on a functioning steroid hormone system, which is susceptible to effects of persistent organic pollutants. The present study...... is the first study to report circulating concentrations of nine steroid hormones (i.e., estrogens, androgens and progestagens) in female polar bears (Ursus maritimus). The aim of the study was to investigate the effects of age, condition, location and reproductive status on steroid profile in female polar...... bears. Levels of pregnenolone (PRE), progesterone, androstenedione (AN), dehydroepiandrosterone (DHEA), testosterone, dihydrotestosterone, estrone (E1), 17α-estradiol (αE2) and 17β-estradiol (βE2) were quantified in blood (serum) of free-living female polar bears (n = 15) from Svalbard, Norway, by gas...

  7. Phase Zero Contracting for U.S. Arctic National Security

    Science.gov (United States)

    2017-06-01

    considerations, and then provide recommendations for contract types based on appropriate levels of risk and maturity of technology. B. RESEARCH QUESTIONS The...Le Mière & Mazo, 2013, p. 4). These groups have an emotional and spiritual connection with the Arctic. Their importance in the region and their...time, providing capability to the customer in an average of nine years depending on the complexity of the program and the maturity of the technology

  8. Building Materials in Arctic Climate

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2005-01-01

    Building in the artic requires special attention on the appropriateness of building materials. The harsh climate makes execution difficult and sets unusual requirements for the pure material properties. In addition, there is a lack of choice of good, natural building materials in the arctic...

  9. Mining in the European Arctic

    NARCIS (Netherlands)

    van Dam, Karin; Scheepstra, Adriana; Gille, Johan; Stepien, Adam; Koivurova, Timo; Stepien, Adam; Koivurova, Timo; Kankaanpää, Paula

    The European Arctic has been recently experiencing an upsurge in mining activities. This is reflected in an on-going interest from the industry, regulators and the public. However, current and future prospects are highly sensitive to mineral price fluctuations. The EU is a major consumer and

  10. Computational problems in Arctic Research

    International Nuclear Information System (INIS)

    Petrov, I

    2016-01-01

    This article is to inform about main problems in the area of Arctic shelf seismic prospecting and exploitation of the Northern Sea Route: simulation of the interaction of different ice formations (icebergs, hummocks, and drifting ice floes) with fixed ice-resistant platforms; simulation of the interaction of icebreakers and ice- class vessels with ice formations; modeling of the impact of the ice formations on the underground pipelines; neutralization of damage for fixed and mobile offshore industrial structures from ice formations; calculation of the strength of the ground pipelines; transportation of hydrocarbons by pipeline; the problem of migration of large ice formations; modeling of the formation of ice hummocks on ice-resistant stationary platform; calculation the stability of fixed platforms; calculation dynamic processes in the water and air of the Arctic with the processing of data and its use to predict the dynamics of ice conditions; simulation of the formation of large icebergs, hummocks, large ice platforms; calculation of ridging in the dynamics of sea ice; direct and inverse problems of seismic prospecting in the Arctic; direct and inverse problems of electromagnetic prospecting of the Arctic. All these problems could be solved by up-to-date numerical methods, for example, using grid-characteristic method. (paper)

  11. Arctic resources : a mechatronics opportunity

    Energy Technology Data Exchange (ETDEWEB)

    McKean, M.; Baiden, G. [Penguin Automated Systems Inc., Naughton, ON (Canada)

    2008-07-01

    This paper discussed the telerobotic mechatronics opportunities that exist to access mineral resources in the Arctic. The Mining Automation