WorldWideScience

Sample records for polar plate theory

  1. Forced Response of Polar Orthotropic Tapered Circular Plates Resting on Elastic Foundation

    Directory of Open Access Journals (Sweden)

    A. H. Ansari

    2016-01-01

    Full Text Available Forced axisymmetric response of polar orthotropic circular plates of linearly varying thickness resting on Winkler type of elastic foundation has been studied on the basis of classical plate theory. An approximate solution of problem has been obtained by Rayleigh Ritz method, which employs functions based upon the static deflection of polar orthotropic circular plates. The effect of transverse loadings has been studied for orthotropic circular plate resting on elastic foundation. The transverse deflections and bending moments are presented for various values of taper parameter, rigidity ratio, foundation parameter, and flexibility parameter under different types of loadings. A comparison of results with those available in literature shows an excellent agreement.

  2. Smad4 regulates growth plate matrix production and chondrocyte polarity.

    Science.gov (United States)

    Whitaker, Amanda T; Berthet, Ellora; Cantu, Andrea; Laird, Diana J; Alliston, Tamara

    2017-03-15

    Smad4 is an intracellular effector of the TGFβ family that has been implicated in Myhre syndrome, a skeletal dysplasia characterized by short stature, brachydactyly and stiff joints. The TGFβ pathway also plays a critical role in the development, organization and proliferation of the growth plate, although the exact mechanisms remain unclear. Skeletal phenotypes in Myhre syndrome overlap with processes regulated by the TGFβ pathway, including organization and proliferation of the growth plate and polarity of the chondrocyte. We used in vitro and in vivo models of Smad4 deficiency in chondrocytes to test the hypothesis that deregulated TGFβ signaling leads to aberrant extracellular matrix production and loss of chondrocyte polarity. Specifically, we evaluated growth plate chondrocyte polarity in tibiae of Col2-Cre +/- ;Smad4 fl/fl mice and in chondrocyte pellet cultures. In vitro and in vivo , Smad4 deficiency decreased aggrecan expression and increased MMP13 expression. Smad4 deficiency disrupted the balance of cartilage matrix synthesis and degradation, even though the sequential expression of growth plate chondrocyte markers was intact. Chondrocytes in Smad4-deficient growth plates also showed evidence of polarity defects, with impaired proliferation and ability to undergo the characteristic changes in shape, size and orientation as they differentiated from resting to hypertrophic chondrocytes. Therefore, we show that Smad4 controls chondrocyte proliferation, orientation, and hypertrophy and is important in regulating the extracellular matrix composition of the growth plate. © 2017. Published by The Company of Biologists Ltd.

  3. Smad4 regulates growth plate matrix production and chondrocyte polarity

    Directory of Open Access Journals (Sweden)

    Amanda T. Whitaker

    2017-03-01

    Full Text Available Smad4 is an intracellular effector of the TGFβ family that has been implicated in Myhre syndrome, a skeletal dysplasia characterized by short stature, brachydactyly and stiff joints. The TGFβ pathway also plays a critical role in the development, organization and proliferation of the growth plate, although the exact mechanisms remain unclear. Skeletal phenotypes in Myhre syndrome overlap with processes regulated by the TGFβ pathway, including organization and proliferation of the growth plate and polarity of the chondrocyte. We used in vitro and in vivo models of Smad4 deficiency in chondrocytes to test the hypothesis that deregulated TGFβ signaling leads to aberrant extracellular matrix production and loss of chondrocyte polarity. Specifically, we evaluated growth plate chondrocyte polarity in tibiae of Col2-Cre+/−;Smad4fl/fl mice and in chondrocyte pellet cultures. In vitro and in vivo, Smad4 deficiency decreased aggrecan expression and increased MMP13 expression. Smad4 deficiency disrupted the balance of cartilage matrix synthesis and degradation, even though the sequential expression of growth plate chondrocyte markers was intact. Chondrocytes in Smad4-deficient growth plates also showed evidence of polarity defects, with impaired proliferation and ability to undergo the characteristic changes in shape, size and orientation as they differentiated from resting to hypertrophic chondrocytes. Therefore, we show that Smad4 controls chondrocyte proliferation, orientation, and hypertrophy and is important in regulating the extracellular matrix composition of the growth plate.

  4. Coherence and polarization speckle generated by a rough-surfaced retardation plate depolarizer

    DEFF Research Database (Denmark)

    Ma, Ning; Hanson, Steen Grüner; Takeda, Mitsuo

    2015-01-01

    of position introducing random phase differences between the two orthogonal components of the electric vector. Under the assumption of Gaussian statistics with zero mean, the surface model for the depolarizer of the rough-surfaced retardation plate is obtained. The propagation of the modulated fields through...... any quadratic optical system is examined within the framework of the complex ABCD matrix theory to show how the degree of coherence and polarization of the beam changes on propagation, including propagation in free space...

  5. Hyperon polarization: theory and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Magnin, J.; Simao, F.R.A.

    1996-01-01

    We give a brief review of the experimental situation concerning hyperon polarization. We mention also the current models developed to understand the experimental results and make some comments on some theoretical aspects contained in the Thomas precession model. (author). 8 ref.

  6. Theories for Elastic Plates via Orthogonal Polynomials

    DEFF Research Database (Denmark)

    Krenk, Steen

    1981-01-01

    , and this introduces a weight function in the variations of the transverse normal and shear stresses. As a result the coupling between the two-dimensional differential equations is described in terms of a single difference operator. Special attention is given to a truncated system of equations for bending...... of transversely isotropic plates. This theory has three boundary conditions, like Reissner's, but includes the effect of transverse normal strain, essentially through a reinterpretation of the transverse displacement function. Full agreement with general integrals to the homogeneous three-dimensional equations...

  7. Field theory of polar continua

    International Nuclear Information System (INIS)

    Heinz, C.

    1988-01-01

    A Lagrangian density in the polar space X 1+3+3 depending of the potentials and their derivativs and of the fluxes is introduced. The potentials are then the mechanical and electromagnetic potentials, the potentials of gravity and in the polar space X 1+3+3 the components of affine connection. The fluxes are essentially the tangential motors of the mechanical and electromagnetic world-lines multiplied with the density of mass and electric charge. The Hamilton principle gives, with the in variational calculus usual integrations by part, here done via the theorem of Gauss, the equations of motion and the field equations. The conditions of integrability for these equations are discussed. (author)

  8. Reliability assessment of different plate theories for elastic wave propagation analysis in functionally graded plates.

    Science.gov (United States)

    Mehrkash, Milad; Azhari, Mojtaba; Mirdamadi, Hamid Reza

    2014-01-01

    The importance of elastic wave propagation problem in plates arises from the application of ultrasonic elastic waves in non-destructive evaluation of plate-like structures. However, precise study and analysis of acoustic guided waves especially in non-homogeneous waveguides such as functionally graded plates are so complicated that exact elastodynamic methods are rarely employed in practical applications. Thus, the simple approximate plate theories have attracted much interest for the calculation of wave fields in FGM plates. Therefore, in the current research, the classical plate theory (CPT), first-order shear deformation theory (FSDT) and third-order shear deformation theory (TSDT) are used to obtain the transient responses of flexural waves in FGM plates subjected to transverse impulsive loadings. Moreover, comparing the results with those based on a well recognized hybrid numerical method (HNM), we examine the accuracy of the plate theories for several plates of various thicknesses under excitations of different frequencies. The material properties of the plate are assumed to vary across the plate thickness according to a simple power-law distribution in terms of volume fractions of constituents. In all analyses, spatial Fourier transform together with modal analysis are applied to compute displacement responses of the plates. A comparison of the results demonstrates the reliability ranges of the approximate plate theories for elastic wave propagation analysis in FGM plates. Furthermore, based on various examples, it is shown that whenever the plate theories are used within the appropriate ranges of plate thickness and frequency content, solution process in wave number-time domain based on modal analysis approach is not only sufficient but also efficient for finding the transient waveforms in FGM plates. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. On a consistent finite-strain plate theory of growth

    Science.gov (United States)

    Wang, Jiong; Steigmann, David; Wang, Fan-Fan; Dai, Hui-Hui

    2018-02-01

    In this paper, a consistent finite-strain plate theory for growth-induced large deformations is developed. The three-dimensional (3D) governing system of the plate model is formulated through the variational approach, which is composed of the mechanical equilibrium equation and the constraint equation of incompressibility. Then, series expansions of the unknown functions in terms of the thickness variable are adopted. By using the 3D equilibrium equations and the surface boundary conditions, recursion relations for the expansion coefficients are successfully established. As a result, a 2D vector plate equation with three unknowns is obtained and the associated edge boundary conditions are proposed. It can be verified that the plate equation ensures the required asymptotic order for all the terms in the variations of the total energy functional. The weak formulation of the plate equation has also been derived for future numerical calculations. As applications of the plate theory, two examples regarding the growth-induced deformations and instabilities in thin hyperelastic plates are studied. Some analytical results are obtained in these examples, which can be used to describe the large deformations and reveal the bifurcation properties of the thin plates. Furthermore, the results obtained from the current plate theory are compared with those obtained from the classical Föppl-von Kármán plate theory, from which the efficiencies and advantages of the current plate theory can be demonstrated.

  10. Thermo-mechanical buckling analysis of FGM plate using generalized plate theory

    Science.gov (United States)

    Sharma, Kanishk; Kumar, Dinesh; Gite, Anil

    2016-05-01

    This paper investigates the thermo-mechanical buckling behavior of simply-supported FGM plate under the framework of generalized plate theory (GPT), which includes classical plate theory (CPT), first order shear deformation theory (FSDT) and higher order shear deformation theory (HSDT) as special cases. The governing equations for FGM plate under thermal and mechanical loading conditions are derived from the principle of virtual displacements and Navier-type solution is assumed for simply supported boundary condition. The efficiency and applicability of presented methodology is illustrated by considering various examples of thermal and mechanical buckling of FGM plates. The closed form solutions in the form of critical thermal and mechanical buckling loads, predicted by CPT, FSDT and HSDT are compared for different side-to-thickness of FGM plate. Subsequently, the effect of material gradation profile on critical buckling parameters is examined by evaluating the buckling response for a range of power law indexes. The effect of geometrical parameters on mechanical buckling of FGM plate under uni-axial and bi-axial loading conditions are also illustrated by calculating the critical load for various values of slenderness ratios. Furthermore a comparative analysis of critical thermal buckling loads of FGM plate for different temperature profiles is also presented. It is identified that all plate theories predicted approximately same critical buckling loads and critical buckling temperatures for thin FGM plate, however for thick FGM plates, CPT overestimates the critical buckling parameters. Moreover the critical buckling loads and critical buckling temperatures of FGM plate are found to be significantly lower than the corresponding homogenous isotropic ceramic plate (n=0).

  11. Femoral fracture repair using a locking plate technique in an adult captive polar bear (Ursus maritimus).

    Science.gov (United States)

    Zimmerman, Dawn M; Dew, Terry; Douglass, Michael; Perez, Edward

    2010-02-01

    To report successful femoral fracture repair in a polar bear. Case report. Female polar bear (Ursus maritimus) 5 years and approximately 250 kg. A closed, complete, comminuted fracture of the distal midshaft femur was successfully reduced and stabilized using a compression plating technique with 2 specialized human femur plates offering axial, rotational, and bending support, and allowing the bone to share loads with the implant. Postoperative radiographs were obtained at 11.5 weeks, 11 months, and 24 months. Bone healing characterized by marked periosteal reaction was evident at 11 months with extensive remodeling evident at 24 months. No complications were noted. Distal mid shaft femoral fracture was reduced, stabilized, and healed in an adult polar bear with a locking plate technique using 2 plates. Previously, femoral fractures in polar bears were considered irreparable. Use of 2 plates applied with a locking plate technique can result in successful fracture repair despite large body weight and inability to restrict postoperative activity.

  12. Flexure of thick orthotropic plates by exponential shear deformation theory

    Directory of Open Access Journals (Sweden)

    A. S. Sayyad

    Full Text Available In the present paper, a variationally consistent exponential shear deformation theory taking into account transverse shear deformation effect is presented for the flexural analysis of thick orthotropic plates. The inplane displacement field uses exponential function in terms of thickness coordinate to include the shear deformation effect. The transverse shear stress can be obtained directly from the constitutive relations satisfying the shear stress free surface conditions on the top and bottom surfaces of the plate, hence the theory does not require shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. Results obtained for static flexure of simply supported orthotropic plates are compared with those of other refined theories and elasticity solution wherever applicable. The results obtained by present theory are in excellent agreement with those of exact results and other higher order theories. Thus the efficacy of the present refined theory is established.

  13. Investigation of the Plate Theories Accuracy for the Elastic Wave Propagation Analysis of FGM Plates

    OpenAIRE

    Mehrkash, Milad; Azhari, Mojtaba; Mirdamadi, Hamid Reza

    2012-01-01

    International audience; The importance of the elastic wave propagation problem in plates arises from application of the elastic waves in non-destructive evaluation of structures. However, precise understanding and analyzing of acoustic guided waves especially in non-homogeneous plates such as functionally graded material ones is so complicated that the exact elastodynamics methods are rarely used in practical applications. Hence, the simple approximate plate theories have attracted much inter...

  14. Assumed strain distributions for a finite strip plate bending element using Mindlin-Reissner plate theory

    Science.gov (United States)

    Chulya, Abhisak; Mullen, Robert L.

    1989-01-01

    A linear finite strip plate element based on Mindlin-Reissner plate theory is developed. The analysis is suitable for both thin and thick plates. In the formulation, new transverse shear strains are introduced and assumed constant in each two-node linear strip. The element stiffness matrix is explicitly formulated for efficient computation and computer implementation. Numerical results showing the efficiency and predictive capability of the element for the analysis of plates are presented for different support and loading conditions and a wide range of thicknesses. No sign of shear locking is observed with the newly developed element.

  15. A theory of latticed plates and shells

    CERN Document Server

    Pshenichnon, Gi

    1993-01-01

    The book presents the theory of latticed shells as continual systems and describes its applications. It analyses the problems of statics, stability and dynamics. Generally, a classical rod deformation theory is applied. However, in some instances, more precise theories which particularly consider geometrical and physical nonlinearity are employed. A new effective method for solving general boundary value problems and its application for numerical and analytical solutions of mathematical physics and reticulated shell theory problems is described. A new method of solving the shell theory's nonli

  16. Bending, Vibration and Buckling of Laminated Composite Plates Using a Simple Four Variable Plate Theory

    Directory of Open Access Journals (Sweden)

    Atteshamuddin S. Sayyad

    Full Text Available Abstract In the present study, a simple trigonometric shear deformation theory is applied for the bending, buckling and free vibration of cross-ply laminated composite plates. The theory involves four unknown variables which are five in first order shear deformation theory or any other higher order theories. The in-plane displacement field uses sinusoidal function in terms of thickness co-ordinate to include the shear deformation effect. The transverse displacement includes bending and shear components. The present theory satisfies the zero shear stress conditions at top and bottom surfaces of plates without using shear correction factor. Equations of motion associated with the present theory are obtained using the dynamic version of virtual work principle. A closed form solution is obtained using double trigonometric series suggested by Navier. The displacements, stresses, critical buckling loads and natural frequencies obtained using present theory are compared with previously published results and found to agree well with those.

  17. Refined Zigzag Theory for Laminated Composite and Sandwich Plates

    Science.gov (United States)

    Tessler, Alexander; DiSciuva, Marco; Gherlone, Marco

    2009-01-01

    A refined zigzag theory is presented for laminated-composite and sandwich plates that includes the kinematics of first-order shear deformation theory as its baseline. The theory is variationally consistent and is derived from the virtual work principle. Novel piecewise-linear zigzag functions that provide a more realistic representation of the deformation states of transverse-shear-flexible plates than other similar theories are used. The formulation does not enforce full continuity of the transverse shear stresses across the plate s thickness, yet is robust. Transverse-shear correction factors are not required to yield accurate results. The theory is devoid of the shortcomings inherent in the previous zigzag theories including shear-force inconsistency and difficulties in simulating clamped boundary conditions, which have greatly limited the accuracy of these theories. This new theory requires only C(sup 0)-continuous kinematic approximations and is perfectly suited for developing computationally efficient finite elements. The theory should be useful for obtaining relatively efficient, accurate estimates of structural response needed to design high-performance load-bearing aerospace structures.

  18. Rotational inertia of continents: A proposed link between polar wandering and plate tectonics

    Science.gov (United States)

    Kane, M.F.

    1972-01-01

    A mechanism is proposed whereby displacement between continents and the earth's pole of rotation (polar wandering) gives rise to latitudinal transport of continental plates (continental drift) because of their relatively greater rotational inertia. When extended to short-term polar wobble, the hypothesis predicts an energy change nearly equivalent to the seismic energy rate.

  19. Thermal analysis of isotropic plates using hyperbolic shear deformation theory

    Directory of Open Access Journals (Sweden)

    Shinde B.M.

    2013-12-01

    Full Text Available In this paper, thermal analysis of a thick isotropic rectangular plate is carried out using the hyperbolic shear deformation theory (HYSDT. The displacement field of the theory contains three variables. The hyperbolic sine and cosine functions are used in the displacement field in-terms of thickness coordinate to represent the effect of shear deformation. The most important feature of the theory is that, the transverse shear stresses can be obtained directly from the use of constitutive relations, hence the theory does not need shear correction factor. The theory accounts for parabolic distribution of transverse shear stresses across the thickness satisfying the stress free boundary conditions at top and bottom surfaces of the plate. Governing differential equations and boundary conditions of the theory are obtained using the principle of virtual work. The results obtained for bending analysis of isotropic plates subjected to uniformly distributed thermal load are compared with those obtained by other theories, to validate the accuracy of the presented theory.

  20. Statistics of polarization speckle: theory versus experiment

    DEFF Research Database (Denmark)

    Wang, Wei; Hanson, Steen Grüner; Takeda, Mitsuo

    2010-01-01

    In this paper, we reviewed our recent work on the statistical properties of polarization speckle, described by stochastic Stokes parameters fluctuating in space. Based on the Gaussian assumption for the random electric field components and polar-interferometer, we investigated theoretically...... and experimentally the statistics of Stokes parameters of polarization speckle, including probability density function of Stokes parameters with the spatial degree of polarization, autocorrelation of Stokes vector and statistics of spatial derivatives for Stokes parameters....

  1. Nonlinear Gyrokinetic Theory With Polarization Drift

    International Nuclear Information System (INIS)

    Wang, L.; Hahm, T.S.

    2010-01-01

    A set of the electrostatic toroidal gyrokinetic Vlasov equation and the Poisson equation, which explicitly includes the polarization drift, is derived systematically by using Lie-transform method. The polarization drift is introduced in the gyrocenter equations of motion, and the corresponding polarization density is derived. Contrary to the wide-spread expectation, the inclusion of the polarization drift in the gyrocenter equations of motion does not affect the expression for the polarization density significantly. This is due to modification of the gyrocenter phase-space volume caused by the electrostatic potential [T. S. Hahm, Phys. Plasmas 3, 4658 (1996)].

  2. A numerical assessment of rough surface scattering theories. I - Horizontal polarization. II - Vertical polarization

    Science.gov (United States)

    Rodriguez, Ernesto; Kim, Yunjin; Durden, Stephen L.

    1992-01-01

    A numerical evaluation is presented of the regime of validity for various rough surface scattering theories against numerical results obtained by employing the method of moments. The contribution of each theory is considered up to second order in the perturbation expansion for the surface current. Considering both vertical and horizontal polarizations, the unified perturbation method provides best results among all theories weighed.

  3. Current density functional theory for optical spectra : A polarization functional

    NARCIS (Netherlands)

    Boeij, P.L. de; Kootstra, F.; Berger, J.A.; Leeuwen, R. van; Snijders, J.G.

    2001-01-01

    In this paper we present a new approach to calculate optical spectra, which for the first time uses a polarization dependent functional within current density functional theory (CDFT), which was proposed by Vignale and Kohn. This polarization dependent functional includes exchange-correlation (xc)

  4. Stress-based elastodynamic discrete laminated plate theory

    Science.gov (United States)

    Schoeppner, G. A.; Wolfe, W. E.; Sandhu, R. S.

    1994-03-01

    A static laminated plate theory based on an assumed piecewise linear through-the-thickness in-plane stress distirbution has been extended to include inertia effects. Based on this in-plane stress distribution assumption, out-of-plane shear and normal stress component distributions were derived from the three-dimensional equations of motion, resulting in six nonzero stress components. Hamilton's variational principle was used to derive the plate equations of motion, the plate constitutive relationships, and the interface continuity equations. The governing equations were written in a form that is self-adjoint with respect to the convolution bilinear mapping. The resulting system of equations for a single lamina consists of 25 field equations in terms of 9 weighted displacement field variables, 10 stress and moment resultant field variables, and 6 out-of-plane shear and normal stress boundary field variables. For the laminated system, the mixed formulation enforces both traction and displacement continuity at lamina interfaces a it satisfies layer equilibrium. A finite element formulation based on a specialized form of the governing functional was developed. The method is illustrated with results of a free vibration analysis of sandwich and homogeneous plates for which exact solutions are available.

  5. Geometric invariant theory for polarized curves

    CERN Document Server

    Bini, Gilberto; Melo, Margarida; Viviani, Filippo

    2014-01-01

    We investigate GIT quotients of polarized curves. More specifically, we study the GIT problem for the Hilbert and Chow schemes of curves of degree d and genus g in a projective space of dimension d-g, as d decreases with respect to g. We prove that the first three values of d at which the GIT quotients change are given by d=a(2g-2) where a=2, 3.5, 4. We show that, for a>4, L. Caporaso's results hold true for both Hilbert and Chow semistability. If 3.5

  6. Quasi-Linear Polarized Modes in Y-Rotated Piezoelectric GaPO4 Plates

    Directory of Open Access Journals (Sweden)

    Cinzia Caliendo

    2014-07-01

    Full Text Available The propagation of both surface and flexural acoustic plate modes along y-rotated x-propagation GaPO4 piezoelectric substrates was studied for several y-cut angles: the phase velocity and coupling coefficient dispersion curves were theoretically calculated for two different electroacoustic coupling configurations. The investigation of the acoustic field profile across the plate thickness revealed the presence of thin plate modes having polarization predominantly oriented along the propagation direction, and hence suitable for operation in liquid environment. These modes include the linearly polarized Anisimkin Jr. and the quasi longitudinal plate modes, AMs and QLs, showing a phase velocity close to that of the longitudinal bulk acoustic wave propagating in the same direction. The temperature coefficient of delay (TCD of these longitudinal modes was investigated in the −20 to 420 °C temperature range, in order to identify thermally stable or low TCD cuts. The power flow angle, i.e., the angle between the phase and group velocity vectors, was also estimated to evaluate the substrate anisotropy effect on the acoustic wave propagation. The GaPO4 intrinsic properties, such as its resistance to high temperature and its chemical inertness, make it especially attractive for the development of acoustic waves-based sensors for applications in harsh liquid environment.

  7. Apparent Polar Wander of the Pacific Plate and Pacific Hotspots: Implications for True Polar Wander and Hotspot Fixity

    Science.gov (United States)

    Gordon, R. G.; Horner-Johnson, B. C.; Petronotis, K. E.; Acton, G. D.

    2004-05-01

    Whether the apparent polar wander (APW) path of the Indo-Atlantic hotspots is a record of true polar wander could be tested from a detailed APW path of the Pacific plate, the motion of which can be estimated relative to the hotpots independently of reconstructions in the Atlantic and Indian Ocean basins. Such an APW path has previously been lacking because of the difficulty in obtaining fully oriented paleomagnetic samples from oceanic plates. We present an APW path for the Pacific plate and for the hotspots of the Pacific basin. Our Pacific plate APW path from 125 Ma to the present is based mainly on the analysis of the skewness of marine magnetic anomalies due to seafloor spreading and is determined with better accuracy and resolution from 32 Ma to 81 Ma than is the APW path of any continent. Our path is defined by eleven paleomagnetic poles from non-overlapping age windows. Nine of these poles, those with ages from 32 Ma to 81 Ma, are determined from skewness analysis of 1563 crossings of marine magnetic anomalies due to seafloor spreading. They reveal the APW of the Pacific plate over this time interval with an accuracy and age-resolution far superior to other data sets. The skewness-only portion of the path indicates northward motion of the Pacific plate with 3 main swings in declination, clockwise from 81 Ma to 68 Ma, counterclockwise from 68 Ma to 40 Ma, and clockwise from 40 Ma to the present. The older two poles are from combinations of data types. There is no significant motion of the pole from 125 Ma to 88 Ma, but there is a sudden large counterclockwise shift of the pole in the brief interval from 88 to 81 Ma. This large and rapid shift of the pole is strongly supported by paleocolatitude data from azimuthally unoriented vertical cores of igneous rock obtained by deep sea drilling. In a reference frame attached to the Pacific hotspots, the spin axis lay near 80°N, 160°E during mid-Cenozoic time (32-40 Ma), near 80°N, 210°E during early Cenozoic time

  8. Asymmetric Vibration of Polar Orthotropic Annular Circular Plates of Quadratically Varying Thickness with Same Boundary Conditions

    Directory of Open Access Journals (Sweden)

    N. Bhardwaj

    2008-01-01

    Full Text Available In the present paper, asymmetric vibration of polar orthotropic annular circular plates of quadratically varying thickness resting on Winkler elastic foundation is studied by using boundary characteristic orthonormal polynomials in Rayleigh-Ritz method. Convergence of the results is tested and comparison is made with results already available in the existing literature. Numerical results for the first ten frequencies for various values of parameters describing width of annular plate, thickness profile, material orthotropy and foundation constant for all three possible combinations of clamped, simply supported and free edge conditions are shown and discussed. It is found that (a higher elastic property in circumferential direction leads to higher stiffness against lateral vibration; (b Lateral vibration characteristics of F-Fplates is more sensitive towards parametric changes in material orthotropy and foundation stiffness than C-C and S-Splates; (c Effect of quadratical thickness variation on fundamental frequency is more significant in cases of C-C and S-S plates than that of F-Fplates. Thickness profile which is convex relative to plate center-line tends to result in higher stiffness of annular plates against lateral vibration than the one which is concave and (d Fundamental mode of vibration of C-C and S-Splates is axisymmetrical while that of F-Fplates is asymmetrical.

  9. Linearly Polarized IR Spectroscopy Theory and Applications for Structural Analysis

    CERN Document Server

    Kolev, Tsonko

    2011-01-01

    A technique that is useful in the study of pharmaceutical products and biological molecules, polarization IR spectroscopy has undergone continuous development since it first emerged almost 100 years ago. Capturing the state of the science as it exists today, "Linearly Polarized IR Spectroscopy: Theory and Applications for Structural Analysis" demonstrates how the technique can be properly utilized to obtain important information about the structure and spectral properties of oriented compounds. The book starts with the theoretical basis of linear-dichroic infrared (IR-LD) spectroscop

  10. The potential influence of subduction zone polarity on overriding plate deformation, trench migration and slab dip angle

    NARCIS (Netherlands)

    Schellart, W. P.

    2007-01-01

    A geodynamic model exists, the westward lithospheric drift model, in which the variety of overriding plate deformation, trench migration and slab dip angles is explained by the polarity of subduction zones. The model predicts overriding plate extension, a fixed trench and a steep slab dip for

  11. The problem of the black plate with zero thickness and finite width in neutron transport theory

    International Nuclear Information System (INIS)

    Benoist, Pierre.

    1979-08-01

    A black plate with zero thickness, finite width and infinite height, imbedded in an infinite and homogeneous medium which scatters and absorbs neutrons, is considered. The problem is time-independent and the neutrons, which are supposed to have a unique speed, are issued, either from a current at infinity (problem A), or from a uniform source (problem B). It is shown that the Csub(N) method seems to be particularly well suited to the resolution of this 'two-dimensional Milne problem'. A particular interest is attached to the determination of the radius R of the black cylinder leading to the same polar behaviour of the flux at infinity as the plate (criterion 1), or absorbing the same number of neutrons as the plate (criterion 2). In this preliminary report, values of R are calculated in various limit cases: the width of the plate being taken equal to one, l being the mean free path and c the number of secondaries par collision in the outer medium, R is calculated at first in the limit l → 0 (for c = 1) by the theory of Musklelishvili, and then in the limit l → infinity (whatever c is) and c → 0 (whatever l is). In the limit c → 1 (whatever l is), R is shown to be the same in problems A and B and criteria 1 and 2. On the other hand, whatever l and c are; the values of R obtained in the problem A with the criterion 2 and in the problem B with the criterion 1 are shown to be equal. All these results allow henceforth a reasonable interpolation which can be useful in the practice [fr

  12. Thermal flexural analysis of cross-ply laminated plates using trigonometric shear deformation theory

    Directory of Open Access Journals (Sweden)

    Yuwaraj Marotrao Ghugal

    Full Text Available Thermal stresses and displacements for orthotropic, two-layer antisymmetric, and three-layer symmetric square cross-ply laminated plates subjected to nonlinear thermal load through the thickness of laminated plates are presented by using trigonometric shear deformation theory. The in-plane displacement field uses sinusoidal function in terms of thickness co-ordinate to include the shear deformation effect. The theory satisfies the shear stress free boundary conditions on the top and bottom surfaces of the plate. The present theory obviates the need of shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. The validity of present theory is verified by comparing the results with those of classical plate theory and first order shear deformation theory and higher order shear deformation theory.

  13. Gravitational polarization tensor of thermal λφ4 theory

    Science.gov (United States)

    Nachbagauer, Herbert; Rebhan, Anton K.; Schwarz, Dominik J.

    1996-01-01

    The low-momentum structure of the gravitational polarization tensor of an ultrarelativistic plasma of scalar particles with λφ4 interactions is evaluated in a two-loop calculation up to and including order λ3/2. This turns out to require an improved perturbation theory which resums a local thermal mass term as well as nonlocal hard-thermal-loop vertices of scalar and gravitational fields.

  14. Nonlinear analysis of 0-3 polarized PLZT microplate based on the new modified couple stress theory

    Science.gov (United States)

    Wang, Liming; Zheng, Shijie

    2018-02-01

    In this study, based on the new modified couple stress theory, the size- dependent model for nonlinear bending analysis of a pure 0-3 polarized PLZT plate is developed for the first time. The equilibrium equations are derived from a variational formulation based on the potential energy principle and the new modified couple stress theory. The Galerkin method is adopted to derive the nonlinear algebraic equations from governing differential equations. And then the nonlinear algebraic equations are solved by using Newton-Raphson method. After simplification, the new model includes only a material length scale parameter. In addition, numerical examples are carried out to study the effect of material length scale parameter on the nonlinear bending of a simply supported pure 0-3 polarized PLZT plate subjected to light illumination and uniform distributed load. The results indicate the new model is able to capture the size effect and geometric nonlinearity.

  15. Study of polarization properties of fiber-optics probes with use of a binary phase plate.

    Science.gov (United States)

    Alferov, S V; Khonina, S N; Karpeev, S V

    2014-04-01

    We conduct a theoretical and experimental study of the distribution of the electric field components in the sharp focal domain when rotating a zone plate with a π-phase jump placed in the focused beam. Comparing the theoretical and experimental results for several kinds of near-field probes, an analysis of the polarization sensitivity of different types of metal-coated aperture probes is conducted. It is demonstrated that with increasing diameter of the non-metal-coated tip part there occurs an essential redistribution of sensitivity in favor of the transverse electric field components and an increase of the probe's energy throughput.

  16. Anomalous Late Jurassic motion of the Pacific Plate with implications for true polar wander

    Science.gov (United States)

    Fu, R. R.; Kent, D.

    2017-12-01

    True polar wander, or TPW, is the rotation of the entire mantle-crust system that results in simultaneous change in latitude and orientation for all lithospheric plates. One of the most recent candidate TPW events consists of a 30˚ rotation during Late Jurassic time (160 - 145 Ma). However, existing paleomagnetic documentation of this event derives exclusively from continental studies. Because all major landmasses except China were connected directly or via spreading centers in the Late Jurassic, the velocities of these continents were mutually constrained and their motion as a group over the underlying mantle would be indistinguishable from TPW using only continental data. On the other hand, plates of the Pacific Basin constituted a kinematically independent domain, interfacing with continents at subduction zones and slip-strike boundaries. Coherent motion of both Pacific Basin and continental plates would therefore indicate uniform motion of virtually the entire lithosphere, providing a means to distinguish TPW from continental drift. We performed thermal demagnetization on remaining samples from Ocean Drilling Program (ODP) Site 801B, which were cored from the oldest sampled oceanic crust in the Western Pacific, to determine its change in paleolatitude during the Late Jurassic and Early Cretaceous (167 - 134 Ma). We find that the Pacific Plate likely underwent a steady southward drift during this time period, consistent with previous results from magnetic anomalies, except for an episode of northward motion between Oxfordian and Tithonian time (161 - 147 Ma). Although the amplitude of this northward shift is subject to significant uncertainty due to the sparse recovery of core samples, the trajectory of the Pacific Plate is most simply explained by TPW in the 160 - 145 Ma interval as inferred from continental data. Furthermore, such an interpretation is consistent with the sense of shear inferred at the Farallon-North American Plate boundary, whereas uniform

  17. Analysis of Sigmoid Functionally Graded Material (S-FGM) Nanoscale Plates Using the Nonlocal Elasticity Theory

    OpenAIRE

    Jung, Woo-Young; Han, Sung-Cheon

    2013-01-01

    Based on a nonlocal elasticity theory, a model for sigmoid functionally graded material (S-FGM) nanoscale plate with first-order shear deformation is studied. The material properties of S-FGM nanoscale plate are assumed to vary according to sigmoid function (two power law distribution) of the volume fraction of the constituents. Elastic theory of the sigmoid FGM (S-FGM) nanoscale plate is reformulated using the nonlocal differential constitutive relations of Eringen and first-order shear defo...

  18. Buckling analysis of thick plates using refined trigonometric shear deformation theory

    Directory of Open Access Journals (Sweden)

    Sachin Madhavrao Gunjal

    2015-12-01

    Full Text Available In this paper, a refined trigonometric shear deformation plate theory is applied for the buckling analysis of thick isotropic square and rectangular plates. The theory involves only two unknowns, as against three in first order shear deformation theory and other higher order theories. The theory involves sinusoidal function in the in-plane displacement. The transverse displacement involves bending and shear components. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. A simply supported isotropic rectangular plate subjected to uniaxial and biaxial compression is considered for the detailed numerical study. Results of critical buckling load for simply supported isotropic rectangular plates are compared with those of other refined theories.

  19. Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates

    International Nuclear Information System (INIS)

    Chen, Peng; Ji, Wei; Wei, Bing-Yan; Hu, Wei; Lu, Yan-Qing; Chigrinov, Vladimir

    2015-01-01

    Arbitrary vector beams (VBs) are realized by the designed polarization converters and corresponding vector-photoaligned q-plates. The polarization converter is a specific twisted nematic cell with one substrate homogeneously aligned and the other space-variantly aligned. By combining a polarization-sensitive alignment agent with a dynamic micro-lithography system, various categories of liquid crystal polarization converters are demonstrated. Besides, traditional radially/azimuthally polarized light, high-order and multi-ringed VBs, and a VB array with different orders are generated. The obtained converters are further utilized as polarization masks to implement vector-photoaligning. The technique facilitates both the volume duplication of these converters and the generation of another promising optical element, the q-plate, which is suitable for the generation of VBs for coherent lasers. The combination of proposed polarization converters and correspondingly fabricated q-plates would drastically enhance the capability of polarization control and may bring more possibilities for the design of photonic devices

  20. Bending and free vibration analysis of thick isotropic plates by using exponential shear deformation theory

    Directory of Open Access Journals (Sweden)

    Sayyad A. S.

    2012-06-01

    Full Text Available This paper presents a variationally consistent an exponential shear deformation theory for the bi-directional bending and free vibration analysis of thick plates. The theory presented herein is built upon the classical plate theory. In this displacement-based, refined shear deformation theory, an exponential functions are used in terms of thickness co-ordinate to include the effect of transverse shear deformation and rotary inertia. The number of unknown displacement variables in the proposed theory are same as that in first order shear deformation theory. The transverse shear stress can be obtained directly from the constitutive relations satisfying the shear stress free surface conditions on the top and bottom surfaces of the plate, hence the theory does not require shear correction factor. Governing equations and boundary conditions of the theory are obtained using the dynamic version of principle of virtual work. The simply supported thick isotropic square and rectangular plates are considered for the detailed numerical studies. Results of displacements, stresses and frequencies are compared with those of other refined theories and exact theory to show the efficiency of proposed theory. Results obtained by using proposed theory are found to be agree well with the exact elasticity results. The objective of the paper is to investigate the bending and dynamic response of thick isotropic square and rectangular plates using an exponential shear deformation theory.

  1. Nonlinear Vibration of the Cantilever FGM Plate Based on the Third-order Shear Deformation Plate Theory

    Science.gov (United States)

    Hao, Y. X.; Zhang, W.

    2010-05-01

    The present investigation focuses on the research of the nonlinear vibration of a cantilevered FGMs rectangular plate subjected to the transversal excitation. Materials properties of the constituents are graded in the thickness direction according to a power law distribution and are assumed to be temperature-dependent and vary along the thickness direction. In the framework of the Reddy's Third-order shear deformation plate theory, the governing equations of motion for the cantilever FGMs rectangular plate are derived by using the Hamilton's principle. The thermal effect due to one-dimensional temperature gradient is included in the analysis. The equations of motion can be reduced two-degree-of-freedom nonlinear system under the external excitations using the Galerkin's method. Using numerical method, the control equations are analyzed to obtain the response curves. A detailed parametric study is conducted to show the influences of the material properties on dynamic responses of the nonlinear vibration of the cantilever FGM plate.

  2. A 3-D elasticity theory based model for acoustic radiation from multilayered anisotropic plates.

    Science.gov (United States)

    Shen, C; Xin, F X; Lu, T J

    2014-05-01

    A theoretical model built upon three-dimensional elasticity theory is developed to investigate the acoustic radiation from multilayered anisotropic plates subjected to a harmonic point force excitation. Fourier transform technique and stationary phase method are combined to predict the far-field radiated sound pressure of one-side water immersed plate. Compared to equivalent single-layer plate models, the present model based on elasticity theory can differentiate radiated sound pressure between dry-side and wet-side excited cases, as well as discrepancies induced by different layer sequences for multilayered anisotropic plates. These results highlight the superiority of the present theoretical model especially for handling multilayered anisotropic structures.

  3. Gravitational Wave Polarizations in f (R Gravity and Scalar-Tensor Theory

    Directory of Open Access Journals (Sweden)

    Gong Yungui

    2018-01-01

    Full Text Available The detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory opens a new era to use gravitational waves to test alternative theories of gravity. We investigate the polarizations of gravitational waves in f (R gravity and Horndeski theory, both containing scalar modes. These theories predict that in addition to the familiar + and × polarizations, there are transverse breathing and longitudinal polarizations excited by the massive scalar mode and the new polarization is a single mixed state. It would be very difficult to detect the longitudinal polarization by interferometers, while pulsar timing array may be the better tool to detect the longitudinal polarization.

  4. Gravitational Wave Polarizations in f (R) Gravity and Scalar-Tensor Theory

    Science.gov (United States)

    Gong, Yungui; Hou, Shaoqi

    2018-01-01

    The detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory opens a new era to use gravitational waves to test alternative theories of gravity. We investigate the polarizations of gravitational waves in f (R) gravity and Horndeski theory, both containing scalar modes. These theories predict that in addition to the familiar + and × polarizations, there are transverse breathing and longitudinal polarizations excited by the massive scalar mode and the new polarization is a single mixed state. It would be very difficult to detect the longitudinal polarization by interferometers, while pulsar timing array may be the better tool to detect the longitudinal polarization.

  5. Electrical polarization and orbital magnetization: the modern theories

    International Nuclear Information System (INIS)

    Resta, Raffaele

    2010-01-01

    Macroscopic polarization P and magnetization M are the most fundamental concepts in any phenomenological description of condensed media. They are intensive vector quantities that intuitively carry the meaning of dipole per unit volume. But for many years both P and the orbital term in M evaded even a precise microscopic definition, and severely challenged quantum-mechanical calculations. If one reasons in terms of a finite sample, the electric (magnetic) dipole is affected in an extensive way by charges (currents) at the sample boundary, due to the presence of the unbounded position operator in the dipole definitions. Therefore P and the orbital term in M-phenomenologically known as bulk properties-apparently behave as surface properties; only spin magnetization is problemless. The field has undergone a genuine revolution since the early 1990s. Contrary to a widespread incorrect belief, P has nothing to do with the periodic charge distribution of the polarized crystal: the former is essentially a property of the phase of the electronic wavefunction, while the latter is a property of its modulus. Analogously, the orbital term in M has nothing to do with the periodic current distribution in the magnetized crystal. The modern theory of polarization, based on a Berry phase, started in the early 1990s and is now implemented in most first-principle electronic structure codes. The analogous theory for orbital magnetization started in 2005 and is partly work in progress. In the electrical case, calculations have concerned various phenomena (ferroelectricity, piezoelectricity, and lattice dynamics) in several materials, and are in spectacular agreement with experiments; they have provided thorough understanding of the behaviour of ferroelectric and piezoelectric materials. In the magnetic case the very first calculations are appearing at the time of writing (2010). Here I review both theories on a uniform ground in a density functional theory (DFT) framework, pointing out

  6. Magneto-Elastic Analysis of an Annular FGM Plate Based on Classical Plate Theory Using GDQ Method

    Directory of Open Access Journals (Sweden)

    M. Shishesaz

    Full Text Available Abstract Using GDQ method, the radial and circumferential stresses in an annular FGM plate with a uniform thickness under a transverse axisymmetric load is investigated. It is assumed that a uniform radial magnetic field acts on the top surface of the plate. The modulus of elasticity E and the magnetic permeability coefficient μ of the plate along its thickness are assumed to vary according to the volume distribution function. The Poisson's ratio ν is considered to be constant. Based on the classical plate theory (CPT, equilibrium equations are deduced and the displacement fields are determined. The radial and circumferential stresses as well as transverse and radial displacements are obtained accordingly. The effect of volume fraction function power m on the maximum deflection in the absence and presence of the magnetic field is also investigated. Moreover, the effect of t/a and b/a ratios on displacements, stresses, induction magnetic field intensity and the resulting Lorentz force are also investigated. According to the results, for different points along the radial direction, the application of radial magnetic field to the top surface of the plate completely changes the state of stress in both tangential and radial directions, resulting in tensile and compressive stresses in these two directions. The results also indicate that in presence of magnetic field, the plate displacement and stress components are lowered considerably.

  7. A Study of the use of a Crystal as a `Quarter-Wave Plate' to Produce High Energy Circularly Polarized Photons

    CERN Multimedia

    Kononets, I

    2002-01-01

    %NA59 %title\\\\ \\\\We present a proposal to study the use of a crystal as a `quarter-wave plate' to produce high energy circularly polarized photons, starting from unpolarized electrons. The intention is to generate linearly polarized photons by letting electrons pass a crystalline target, where they interact coherently with the lattice nuclei. The photon polarization is subsequently turned into circular polarization after passing another crystal, which acts as a `quarter-wave plate'.

  8. Buckling analysis of thick isotropic plates by using exponential shear deformation theory

    Directory of Open Access Journals (Sweden)

    Sayyad A. S.

    2012-12-01

    Full Text Available In this paper, an exponential shear deformation theory is presented for the buckling analysis of thick isotropic plates subjected to uniaxial and biaxial in-plane forces. The theory accounts for a parabolic distribution of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Governing equations and associated boundary conditions of the theory are obtained using the principle of virtual work. The simply supported thick isotropic square plates are considered for the detailed numerical studies. A closed form solutions for buckling analysis of square plates are obtained. Comparison studies are performed to verify the validity of the present results. The effects of aspect ratio on the critical buckling load of isotropic plates is investigated and discussed.

  9. Anomalous Late Jurassic motion of the Pacific Plate with implications for true polar wander

    Science.gov (United States)

    Fu, Roger R.; Kent, Dennis V.

    2018-05-01

    True polar wander, or TPW, is the rotation of the entire mantle-crust system about an equatorial axis that results in a coherent velocity contribution for all lithospheric plates. One of the most recent candidate TPW events consists of a ∼30° rotation during Late Jurassic time (160-145 Ma). However, existing paleomagnetic documentation of this event derives exclusively from continents, which compose less than 50% of the Earth's surface area and may not reflect motion of the entire mantle-crust system. Additional paleopositional information from the Pacific Basin would significantly enhance coverage of the Earth's surface and allow more rigorous testing for the occurrence of TPW. We perform paleomagnetic analyses on core samples from Ocean Drilling Program (ODP) Site 801B, which were taken from the oldest available Pacific crust, to determine its paleolatitude during the Late Jurassic and Early Cretaceous (167-133 Ma). We find that the Pacific Plate underwent a steady southward drift of 0.49°-0.74° My-1 except for an interval between Kimmeridgian and Tithonian time (157-147 Ma), during which it underwent northward motion at 1.45° ± 0.76° My-1 (1σ). This trajectory indicates that the plates of the Pacific Basin participated in the same large-amplitude (∼30°) rotation as continental lithosphere in the 160-145 Ma interval. Such coherent motion of a large majority of the Earth's surface strongly supports the occurrence of TPW, suggesting that a combination of subducting slabs and rising mantle plumes was sufficient to significantly perturb the Earth's inertia tensor in the Late Jurassic.

  10. Buckling and free vibration analysis of orthotropic plates by using exponential shear deformation theory

    Directory of Open Access Journals (Sweden)

    A. S. Sayyad

    Full Text Available In the present paper, an exponential shear deformation theory is used to determine the natural frequencies and critical buckling loads of orthotropic plates. The theory accounts for a parabolic distribution of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The in-plane displacement field uses an exponential function in terms of thickness coordinate to include the effect of shear deformation and rotary inertia. Governing equations and boundary conditions are derived from the dynamic version of principle of virtual work. The Navier type solution is employed for solving the governing equations of simply supported square orthotropic plates. The results obtained using present higher order shear deformation theory are found to be agree well with those obtained by other several existing higher order theories for analyzing the buckling and free vibration behaviour of orthotropic plates.

  11. Vibration analysis of orthotropic circular and elliptical nano-plates embedded in elastic medium based on nonlocal Mindlin plate theory and using Galerkin method

    International Nuclear Information System (INIS)

    Anjomshoa, Amin; Tahani, Masoud

    2016-01-01

    In the present study a continuum model based on the nonlocal elasticity theory is developed for free vibration analysis of embedded ortho tropic thick circular and elliptical nano-plates rested on an elastic foundation. The elastic foundation is considered to behave like a Pasternak type of foundations. Governing equations for vibrating nano-plate are derived according to the Mindlin plate theory in which the effects of shear deformations of nano-plate are also included. The Galerkin method is then employed to obtain the size dependent natural frequencies of nano-plate. The solution procedure considers the entire nano-plate as a single super-continuum element. Effect of nonlocal parameter, lengths of nano-plate, aspect ratio, mode number, material properties, thickness and foundation on circular frequencies are investigated. It is seen that the nonlocal frequencies of the nano-plate are smaller in comparison to those from the classical theory and this is more pronounced for small lengths and higher vibration modes. It is also found that as the aspect ratio increases or the nanoplate becomes more elliptical, the small scale effect on natural frequencies increases. Further, it is observed that the elastic foundation decreases the influence of nonlocal parameter on the results. Since the effect of shear deformations plays an important role in vibration analysis and design of nano-plates, by predicting smaller values for fundamental frequencies, the study of these nano-structures using thick plate theories such as Mindlin plate theory is essential.

  12. Free Vibration Analyses of FGM Thin Plates by Isogeometric Analysis Based on Classical Plate Theory and Physical Neutral Surface

    Directory of Open Access Journals (Sweden)

    Shuohui Yin

    2013-01-01

    Full Text Available The isogeometric analysis with nonuniform rational B-spline (NURBS based on the classical plate theory (CPT is developed for free vibration analyses of functionally graded material (FGM thin plates. The objective of this work is to provide an efficient and accurate numerical simulation approach for the nonhomogeneous thin plates and shells. Higher order basis functions can be easily obtained in IGA, thus the formulation of CPT based on the IGA can be simplified. For the FGM thin plates, material property gradient in the thickness direction is unsymmetrical about the midplane, so effects of midplane displacements cannot be ignored, whereas the CPT neglects midplane displacements. To eliminate the effects of midplane displacements without introducing new unknown variables, the physical neutral surface is introduced into the CPT. The approximation of the deflection field and the geometric description are performed by using the NURBS basis functions. Compared with the first-order shear deformation theory, the present method has lower memory consumption and higher efficiency. Several numerical results show that the present method yields highly accurate solutions.

  13. Analysis of Sigmoid Functionally Graded Material (S-FGM Nanoscale Plates Using the Nonlocal Elasticity Theory

    Directory of Open Access Journals (Sweden)

    Woo-Young Jung

    2013-01-01

    Full Text Available Based on a nonlocal elasticity theory, a model for sigmoid functionally graded material (S-FGM nanoscale plate with first-order shear deformation is studied. The material properties of S-FGM nanoscale plate are assumed to vary according to sigmoid function (two power law distribution of the volume fraction of the constituents. Elastic theory of the sigmoid FGM (S-FGM nanoscale plate is reformulated using the nonlocal differential constitutive relations of Eringen and first-order shear deformation theory. The equations of motion of the nonlocal theories are derived using Hamilton’s principle. The nonlocal elasticity of Eringen has the ability to capture the small scale effect. The solutions of S-FGM nanoscale plate are presented to illustrate the effect of nonlocal theory on bending and vibration response of the S-FGM nanoscale plates. The effects of nonlocal parameters, power law index, aspect ratio, elastic modulus ratio, side-to-thickness ratio, and loading type on bending and vibration response are investigated. Results of the present theory show a good agreement with the reference solutions. These results can be used for evaluating the reliability of size-dependent S-FGM nanoscale plate models developed in the future.

  14. Natural Frequency of F.G. Rectangular Plate by Shear Deformation Theory

    International Nuclear Information System (INIS)

    Shahrjerdi, Ali; Sapuan, S M; Shahzamanian, M M; Mustapha, F; Zahari, R; Bayat, M

    2011-01-01

    Natural frequency of functionally graded (F.G.) rectangular plate is carried out by using second-order shear deformation theory (SSDT). The material properties of functionally graded rectangular plates, except the Poisson's ratio, are assumed to vary continuously through the thickness of the plate in accordance with the exponential law distribution. The equations of motion are obtained by energy method. Numerical results for functionally graded plates are given in dimensionless graphical forms and the effects of material properties on natural frequency are determined.

  15. ON HAMILTONIAN FORMULATIONS AND CONSERVATION LAWS FOR PLATE THEORIES OF VEKUA-AMOSOV TYPE

    Directory of Open Access Journals (Sweden)

    Sergey I. Zhavoronok

    2017-12-01

    Full Text Available Some variants of the generalized Hamiltonian formulation of the plate theory of I. N. Vekua – A. A. Amosov type are presented. The infinite dimensional formulation with one evolution variable, or an “instantaneous” formalism, as well as the de Donder – Weyl one are considered, and their application to the numerical simulation of shell and plate dynamics is briefly discussed. The main conservation laws are formulated for the general plate theory of Nth order, and the possible motion integrals are introduced

  16. Nonlinear vibration of thick FGM plates on elastic foundation subjected to thermal and mechanical loads using the first-order shear deformation plate theory

    OpenAIRE

    Nguyen Dinh Duc; Pham Hong Cong

    2015-01-01

    This paper presents an analytical approach to investigate the nonlinear dynamic response and vibration of thick functionally graded material (FGM) plates using both of the first-order shear deformation plate theory and stress function with full motion equations (not using Volmir’s assumptions). The FGM plate is assumed to rest on elastic foundation and subjected to mechanical, thermal, and damping loads. Numerical results for dynamic response of the FGM plate are obtained by Runge–Kutta metho...

  17. Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory.

    Science.gov (United States)

    Voit, Florian; Hohmann, Ansgar; Schäfer, Jan; Kienle, Alwin

    2012-04-01

    For many research areas in biomedical optics, information about scattering of polarized light in turbid media is of increasing importance. Scattering simulations within this field are mainly performed on the basis of radiative transfer theory. In this study a polarization sensitive Monte Carlo solution of radiative transfer theory is compared to exact Maxwell solutions for all elements of the scattering Müller matrix. Different scatterer volume concentrations are modeled as a multitude of monodisperse nonabsorbing spheres randomly positioned in a cubic simulation volume which is irradiated with monochromatic incident light. For all Müller matrix elements effects due to dependent scattering and multiple scattering are analysed. The results are in overall good agreement between the two methods with deviations related to dependent scattering being prominent for high volume concentrations and high scattering angles.

  18. Thermoelastic bending analysis of laminated composite plates according to various shear deformation theories

    Science.gov (United States)

    Sayyad, Atteshamuddin Shamshuddin; Shinde, Bharati Machhindra; Ghugal, Yuwaraj Marotrao

    2014-11-01

    This study presents the thermoelastic analysis of laminated composite plates subjected to sinusoidal thermal load linearly varying across the thickness. Analytical solutions for thermal displacements and stresses are investigated by using a unified plate theory which includes different functions in terms of thickness coordinate to represent the effect of shear deformation. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Governing equations of equilibrium and associated boundary conditions of the theory are obtained using the principle of virtual work. The Navier solution for simply supported laminated composite plates has been developed. Numerical results are presented to demonstrate the thermal response of the laminated composite plates.

  19. Bending Analysis of Thick Isotropic Plates by Using 5th Order Shear Deformation Theory

    Directory of Open Access Journals (Sweden)

    Yuwaraj M. Ghugal

    2016-12-01

    Full Text Available A 5th order shear deformation theory considering transverse shear deformation effect as well as transverse normal strain deformation effect is presented for static flexure   analysis of simply supported isotropic plate. The assumed displacement field accounts for non-linear variation of in-plane displacements as well as transverse displacement through the plate thickness. The condition of zero transverse shear stresses on the upper and lower surface of plate is satisfied. Hence the present formulation does not require the shear correction factor generally associated with the first order shear deformable theory. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. Closed-form analytical solutions for simply supported square isotropic thick plates subjected to single sinusoidal distributed loads are obtained. Numerical results for static flexure analysis include the effects of side to thickness ratio and plate aspect ratio for simply supported isotropic plates. Numerical results are obtained using MATLAB programming. The results of present theory are in close agreement with those of higher order shear deformation theories and exact 3D elasticity solutions.

  20. A Novel Higher-Order Shear and Normal Deformable Plate Theory for the Static, Free Vibration and Buckling Analysis of Functionally Graded Plates

    Directory of Open Access Journals (Sweden)

    Shi-Chao Yi

    2017-01-01

    Full Text Available Closed-form solution of a special higher-order shear and normal deformable plate theory is presented for the static situations, natural frequencies, and buckling responses of simple supported functionally graded materials plates (FGMs. Distinguished from the usual theories, the uniqueness is the differentia of the new plate theory. Each individual FGM plate has special characteristics, such as material properties and length-thickness ratio. These distinctive attributes determine a set of orthogonal polynomials, and then the polynomials can form an exclusive plate theory. Thus, the novel plate theory has two merits: one is the orthogonality, where the majority of the coefficients of the equations derived from Hamilton’s principle are zero; the other is the flexibility, where the order of the plate theory can be arbitrarily set. Numerical examples with different shapes of plates are presented and the achieved results are compared with the reference solutions available in the literature. Several aspects of the model involving relevant parameters, length-to-thickness, stiffness ratios, and so forth affected by static and dynamic situations are elaborate analyzed in detail. As a consequence, the applicability and the effectiveness of the present method for accurately computing deflection, stresses, natural frequencies, and buckling response of various FGM plates are demonstrated.

  1. A nonlinear theory for elastic plates with application to characterizing paper properties

    Science.gov (United States)

    M. W. Johnson; Thomas J. Urbanik

    1984-03-01

    A theory of thin plates which is physically as well as kinematically nonlinear is, developed and used to characterize elastic material behavior for arbitrary stretching and bending deformations. It is developed from a few clearly defined assumptions and uses a unique treatment of strain energy. An effective strain concept is introduced to simplify the theory to a...

  2. Nonlinear vibration of thick FGM plates on elastic foundation subjected to thermal and mechanical loads using the first-order shear deformation plate theory

    Directory of Open Access Journals (Sweden)

    Nguyen Dinh Duc

    2015-12-01

    Full Text Available This paper presents an analytical approach to investigate the nonlinear dynamic response and vibration of thick functionally graded material (FGM plates using both of the first-order shear deformation plate theory and stress function with full motion equations (not using Volmir’s assumptions. The FGM plate is assumed to rest on elastic foundation and subjected to mechanical, thermal, and damping loads. Numerical results for dynamic response of the FGM plate are obtained by Runge–Kutta method. The results show the material properties, the elastic foundations, mechanical and thermal loads on the nonlinear dynamic response of functionally graded plates.

  3. Quasi-one-dimensional modes in strip plates: Theory and experiment

    Science.gov (United States)

    Arreola, A.; Báez, G.; Méndez-Sánchez, R. A.

    2014-01-01

    Using acoustic resonance spectroscopy we measure the elastic resonances of a strip rectangular plate with all its ends free. The experimental setup consist of a vector network analyzer, a high-fidelity audio amplifier, and electromagnetic-acoustic transducers. The one-dimensional modes are identified from the measured spectra by comparing them with theoretical predictions of compressional and bending modes of the plate modeled as a beam. The agreement between theory and experiment is excellent.

  4. Kirchhoff and thomson-tait transformations in the classical theory of plates

    Science.gov (United States)

    Vasil'ev, V. V.

    2012-09-01

    The transformation of the torque into the transverse force is considered; this transformation is traditional in the educational literature [1] and was proposed by Kirchhoff [2] and Thomson and Tait [3] to match the order of the differential equation of the classical theory of plates with the number of boundary conditions. It is shown that this transformation is not universal and its mathematical and physical justification depends on the conditions of the plate fixation and loading. It is shown that this justification is absent for the most widely used problems of bending of a rectangular plate freely supported and fixed on the contour.

  5. Contribution to the theory of ultracold highly polarized Fermi gases

    International Nuclear Information System (INIS)

    Giraud, Sebastien

    2010-01-01

    This thesis deals with the N+1 body problem in highly polarized Fermi gases. This is the situation where a single atom of one spin species is immersed in a Fermi sea of atoms of the other species. The first part uses a Hamiltonian approach based on a general expansion for the wave function of the system with any number of particle-hole pairs. We show that the constructed series of successive approximations converges very rapidly and thus we get an essentially exact solution for the energy and the effective mass of the polaron. In one dimension, for two particular cases, this problem can be solved analytically. The excellent agreement with our series of approximations provides a further check of the reliability of this expansion. Finally, we consider more specifically various limiting cases, as well as the effect of the mass ratio between the two spin species. In the second part, we use the Feynman diagrams formalism to describe both the polaron and the bound state. For the polaron, we develop a theory which is equivalent to the Hamiltonian approach. For the bound state, we get again a series of successive approximations whose fast convergence is perfectly understood. Therefore, this approach provides an essentially exact solution to the problem along the whole BEC-BCS crossover. Finally, by comparing the energies of the two quasi-particles, we study the position of the polaron to bound state transition. (author)

  6. Planar polarization of Vangl2 in the vertebrate neural plate is controlled by Wnt and Myosin II signaling

    Directory of Open Access Journals (Sweden)

    Olga Ossipova

    2015-07-01

    Full Text Available The vertebrate neural tube forms as a result of complex morphogenetic movements, which require the functions of several core planar cell polarity (PCP proteins, including Vangl2 and Prickle. Despite the importance of these proteins for neurulation, their subcellular localization and the mode of action have remained largely unknown. Here we describe the anteroposterior planar cell polarity (AP-PCP of the cells in the Xenopus neural plate. At the neural midline, the Vangl2 protein is enriched at anterior cell edges and that this localization is directed by Prickle, a Vangl2-interacting protein. Our further analysis is consistent with the model, in which Vangl2 AP-PCP is established in the neural plate as a consequence of Wnt-dependent phosphorylation. Additionally, we uncover feedback regulation of Vangl2 polarity by Myosin II, reiterating a role for mechanical forces in PCP. These observations indicate that both Wnt signaling and Myosin II activity regulate cell polarity and cell behaviors during vertebrate neurulation.

  7. Free vibration of thick orthotropic plates using trigonometric shear deformation theory

    Directory of Open Access Journals (Sweden)

    Y. M Ghugal

    Full Text Available In this paper a trigonometric shear deformation theory is presented for the free vibration of thick orthotropic square and rectangular plates. In this displacement based theory the in-plane displacement field uses sinusoidal function in terms of thickness coordinate to include the shear deformation effect. The cosine function in terms of thickness coordinate is used in transverse displacement to include the effect of transverse normal strain. The most important feature of the theory is that the transverse shear stress can be obtained directly from the constitutive relations satisfying the shear stress free surface conditions on the top and bottom surfaces of the plate. Hence the theory obviates the need of shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. Results obtained for frequency of bending mode, shear mode and thickness stretch mode of free vibration of simply supported orthotropic square and rectangular plates are compared with those of other refined theories and exact solution from theory of elasticity wherever applicable.

  8. Isogeometric bending analysis of composite plates based on a higher-order shear deformation theory

    Energy Technology Data Exchange (ETDEWEB)

    Pekovic, Ognjen; Stupar, Slobodan; Simonovic, Aleksandar; Svorcan, Jelena; Komarov, Dragan [University of Belgrade, Belgrade (Serbia)

    2014-08-15

    This research paper presents an isogeometric plate finite element formulation for analysis of thick composite plates. Isogeometric finite element method which is based on non-uniform rational B-splines (NURBS) basis functions, is a novel numerical procedure developed to bridge the gap between CAD and FEM modeling of structures. In order to investigate the behavior of isogeometric plate elements under static loading, plate kinematics is based on third order shear deformation theory (TSDT) of Reddy, which is free from transverse shear locking. This paper discusses accurate transverse stress recovery procedures for TSDT isogeometric finite elements. Numerical experiments with quadratic, cubic and quartic elements are presented and obtained results are compared to other available ones.

  9. Free Vibration Analysis of Laminated Plates Using First-Order Shear Deformation Theory

    Science.gov (United States)

    Topal, Umut; Uzman, Ümit

    This paper deals with free vibration analysis of simply supported laminated composite plates using first-order shear deformation theory (FSDT). The displacement field of a laminated composite plate is given for FSDT. The numerical studies are conducted to determine the effect of width-to-thickness ratio, degree of orthotropy, fiber orientation, aspect ratio on the nondimensionalized fundamental frequency for laminated composite plates. Also, the effect of shear deformation, rotatory inertia and shear correction coefficient on the nondimensionalized fundamental frequency is examined. A MATLAB code is written for free vibration of laminated plates. However, the problem is modeled using finite element package program ANSYS for different meshes. Finally, the results are given in graphical and tabular form and compared.

  10. Vibration Analysis of a Magnetoelectroelastic Rectangular Plate Based on a Higher-Order Shear Deformation Theory

    Directory of Open Access Journals (Sweden)

    Alireza Shooshtari

    Full Text Available Abstract Free vibration of a magnetoelectroelastic rectangular plate is investigated based on the Reddy's third-order shear deformation theory. The plate rests on an elastic foundation and it is considered to have different boundary conditions. Gauss's laws for electrostatics and magnetostatics are used to model the electric and magnetic behavior. The partial differential equations of motion are reduced to a single partial differential equation and then by using the Galerkin method, the ordinary differential equation of motion as well as an analytical relation for the natural frequency of the plate is obtained. Some numerical examples are presented to validate the proposed model and to investigate the effects of several parameters on the vibration frequency of the considered smart plate.

  11. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    ’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...... of academic teaching and lecturing into account....

  12. Theory and analysis of a large field polarization imaging system with obliquely incident light.

    Science.gov (United States)

    Lu, Xiaotian; Jin, Weiqi; Li, Li; Wang, Xia; Qiu, Su; Liu, Jing

    2018-02-05

    Polarization imaging technology provides information about not only the irradiance of a target but also the polarization degree and angle of polarization, which indicates extensive application potential. However, polarization imaging theory is based on paraxial optics. When a beam of obliquely incident light passes an analyser, the direction of light propagation is not perpendicular to the surface of the analyser and the applicability of the traditional paraxial optical polarization imaging theory is challenged. This paper investigates a theoretical model of a polarization imaging system with obliquely incident light and establishes a polarization imaging transmission model with a large field of obliquely incident light. In an imaging experiment with an integrating sphere light source and rotatable polarizer, the polarization imaging transmission model is verified and analysed for two cases of natural light and linearly polarized light incidence. Although the results indicate that the theoretical model is consistent with the experimental results, the theoretical model distinctly differs from the traditional paraxial approximation model. The results prove the accuracy and necessity of the theoretical model and the theoretical guiding significance for theoretical and systematic research of large field polarization imaging.

  13. Analytic and Computational Perspectives of Multi-Scale Theory for Homogeneous, Laminated Composite, and Sandwich Beams and Plates

    Science.gov (United States)

    Tessler, Alexander; Gherlone, Marco; Versino, Daniele; DiSciuva, Marco

    2012-01-01

    This paper reviews the theoretical foundation and computational mechanics aspects of the recently developed shear-deformation theory, called the Refined Zigzag Theory (RZT). The theory is based on a multi-scale formalism in which an equivalent single-layer plate theory is refined with a robust set of zigzag local layer displacements that are free of the usual deficiencies found in common plate theories with zigzag kinematics. In the RZT, first-order shear-deformation plate theory is used as the equivalent single-layer plate theory, which represents the overall response characteristics. Local piecewise-linear zigzag displacements are used to provide corrections to these overall response characteristics that are associated with the plate heterogeneity and the relative stiffnesses of the layers. The theory does not rely on shear correction factors and is equally accurate for homogeneous, laminated composite, and sandwich beams and plates. Regardless of the number of material layers, the theory maintains only seven kinematic unknowns that describe the membrane, bending, and transverse shear plate-deformation modes. Derived from the virtual work principle, RZT is well-suited for developing computationally efficient, C(sup 0)-continuous finite elements; formulations of several RZT-based elements are highlighted. The theory and its finite element approximations thus provide a unified and reliable computational platform for the analysis and design of high-performance load-bearing aerospace structures.

  14. Molecular density functional theory of water including density–polarization coupling

    OpenAIRE

    Jeanmairet, Guillaume; Lévy, Nicolas; Levesque, Maximilien; Borgis, Daniel

    2016-01-01

    International audience; We present a three-dimensional molecular density functional theory of water derived fromfirst-principles that relies on the particle’s density and multipolar polarization density andincludes the density–polarization coupling. This brings two main benefits: (i) scalar densityand vectorial multipolar polarization density fields are much more tractable and give morephysical insight than the full position and orientation densities, and (ii) it includes the fulldensity–pola...

  15. On the theory of pyro- and ferroelectrics: Dipole moment density and polarization

    Science.gov (United States)

    Belyavskii, V. I.; Gorbatsevich, A. A.

    2017-04-01

    The physical origin of the ambiguity related to the dependence of the polarization on the choice of the unit cell in a crystal is established in the framework of classical electrodynamics. It is shown that the electric polarization of a crystal is determined not only by the charge distribution in the unit cell (dipole moment density) but also by the microscopic mechanism of symmetry breaking in the polar phase. An approach to the calculation of the polarization invariant with respect to the choice of the unit cell is suggested. It is demonstrated that the dependence of the polarization on the mechanism of formation of the polar phase exists in the "modern topological theory" of polarization too.

  16. Statistical polarization in greenhouse gas emissions: Theory and evidence.

    Science.gov (United States)

    Remuzgo, Lorena; Trueba, Carmen

    2017-11-01

    The current debate on climate change is over whether global warming can be limited in order to lessen its impacts. In this sense, evidence of a decrease in the statistical polarization in greenhouse gas (GHG) emissions could encourage countries to establish a stronger multilateral climate change agreement. Based on the interregional and intraregional components of the multivariate generalised entropy measures (Maasoumi, 1986), Gigliarano and Mosler (2009) proposed to study the statistical polarization concept from a multivariate view. In this paper, we apply this approach to study the evolution of such phenomenon in the global distribution of the main GHGs. The empirical analysis has been carried out for the time period 1990-2011, considering an endogenous grouping of countries (Aghevli and Mehran, 1981; Davies and Shorrocks, 1989). Most of the statistical polarization indices showed a slightly increasing pattern that was similar regardless of the number of groups considered. Finally, some policy implications are commented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Dynamic Buckling of Embedded Laminated Nanocomposite Plates Based on Sinusoidal Shear Deformation Theory

    Directory of Open Access Journals (Sweden)

    Mohammd Sharif Zarei

    2016-12-01

    Full Text Available In this study, the dynamic buckling of the embedded laminated nanocomposite plates is investigated. The plates are reinforced with the single-walled carbon nanotubes (SWCNTs, and the Mori-Tanaka model is applied to obtain the equivalent material properties of them. Based on the sinusoidal shear deformation theory (SSDT, the motion equations are derived using the energy method and Hamilton's principle. The Navier’s method is used in conjunction with the Bolotin's method for obtaining the dynamic instability region (DIR of the structure. The effects of different parameters such as the volume percentage of SWCNTs, the number and orientation angle of the layers, the elastic medium, and the geometrical parameters of the plates are shown on DIR of the structure. Results indicate that by increasing the volume percentage of SWCNTs the resonance frequency increases, and DIR shifts to right. Moreover, it is found that the present results are in good agreement with the previous researches.

  18. A phenomenological theory for polarization flop in spiral multiferroic ...

    Indian Academy of Sciences (India)

    driven polarization flop in TbMnO3. The Néel wall-like magnetic structure in spiral multiferroics induces a space-dependent internal magnetic field which exerts a torque on spins to rotate bc-spiral to abspiral. The external magnetic field is argued ...

  19. Theory of coherent dynamic nuclear polarization in quantum dots

    DEFF Research Database (Denmark)

    Neder, Izhar; Rudner, Mark Spencer; Halperin, Bertrand

    2014-01-01

    We consider the production of dynamic nuclear spin polarization (DNP) in a two-electron double quantum dot, in which the electronic levels are repeatedly swept through a singlet-triplet avoided crossing. Our analysis helps to elucidate the intriguing interplay between electron-nuclear hyperfine...

  20. A phenomenological theory for polarization flop in spiral multiferroic ...

    Indian Academy of Sciences (India)

    a space-dependent internal magnetic field which exerts a torque on spins to rotate bc-spiral to ab- spiral. The external ... Fv; 75.85.+t. Electric control of magnetization and magnetic control of polarization have been long ... divergence of magnetization, an internal field is induced which has important physical. Figure 1. ab ...

  1. A phenomenological theory for polarization flop in spiral multiferroic ...

    Indian Academy of Sciences (India)

    netoelectric coupling and a general ansatz for magnetization, the phenomenon of polarization flop has been ... sought phenomena for researchers because of their potential applications in spintronics and multiple state ..... A trial solution to the above nonlinear differential equation which satisfies boundary conditions (10) is.

  2. Buckling Analysis of Functionally Graded Material Plates Using Higher Order Shear Deformation Theory

    Directory of Open Access Journals (Sweden)

    B. Sidda Reddy

    2013-01-01

    Full Text Available The prime aim of the present study is to present analytical formulations and solutions for the buckling analysis of simply supported functionally graded plates (FGPs using higher order shear deformation theory (HSDT without enforcing zero transverse shear stresses on the top and bottom surfaces of the plate. It does not require shear correction factors and transverse shear stresses vary parabolically across the thickness. Material properties of the plate are assumed to vary in the thickness direction according to a power law distribution in terms of the volume fractions of the constituents. The equations of motion and boundary conditions are derived using the principle of virtual work. Solutions are obtained for FGPs in closed-form using Navier’s technique. Comparison studies are performed to verify the validity of the present results from which it can be concluded that the proposed theory is accurate and efficient in predicting the buckling behavior of functionally graded plates. The effect of side-to-thickness ratio, aspect ratio, modulus ratio, the volume fraction exponent, and the loading conditions on the critical buckling load of FGPs is also investigated and discussed.

  3. Discrete quintic spline for boundary value problem in plate deflation theory

    Science.gov (United States)

    Wong, Patricia J. Y.

    2017-07-01

    We propose a numerical scheme for a fourth-order boundary value problem arising from plate deflation theory. The scheme involves a discrete quintic spline, and it is of order 4 if a parameter takes a specific value, else it is of order 2. We also present a well known numerical example to illustrate the efficiency of our method as well as to compare with other numerical methods proposed in the literature.

  4. Molecular density functional theory of water including density-polarization coupling.

    Science.gov (United States)

    Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel

    2016-06-22

    We present a three-dimensional molecular density functional theory of water derived from first-principles that relies on the particle's density and multipolar polarization density and includes the density-polarization coupling. This brings two main benefits: (i) scalar density and vectorial multipolar polarization density fields are much more tractable and give more physical insight than the full position and orientation densities, and (ii) it includes the full density-polarization coupling of water, that is known to be non-vanishing but has never been taken into account. Furthermore, the theory requires only the partial charge distribution of a water molecule and three measurable bulk properties, namely the structure factor and the Fourier components of the longitudinal and transverse dielectric susceptibilities.

  5. Nuclear reactivity indices in the context of spin polarized density functional theory

    International Nuclear Information System (INIS)

    Cardenas, Carlos; Lamsabhi, Al Mokhtar; Fuentealba, Patricio

    2006-01-01

    In this work, the nuclear reactivity indices of density functional theory have been generalized to the spin polarized case and their relationship to electron spin polarized indices has been established. In particular, the spin polarized version of the nuclear Fukui function has been proposed and a finite difference approximation has been used to evaluate it. Applications to a series of triatomic molecules demonstrate the ability of the new functions to predict the geometrical changes due to a change in the spin multiplicity. The main equations in the different ensembles have also been presented

  6. Microscopic theory of fully spin-polarized /sup 3/He

    Energy Technology Data Exchange (ETDEWEB)

    Glyde, H.R.; Hernadi, S.I.

    1983-01-01

    The ground state energy (E), Landau parameters (F) and single particle energy spectrum (epsilon(kappa) and m/sup */) in fully spin polarized liquid /sup 3/He (/sup 3/He) are calculated directly from the bare interatomic potential within the Galitskii-Feynmann T-matrix and Hartree-Fock (GFHF) approximations. The E agrees well with variational calculations, the F with model calculations and the epsilon(kappa) and m/sup */ with results expected from nuclear matter. This suggests the effective interaction in /sup 3/He is dominated by hard core repulsion and Fermi statistics and that these components of the full interaction can be well described from first principles by a GF T-matrix. 36 references, 3 figures, 1 table.

  7. Polarization asymmetries and gauge theory interactions at short distances

    International Nuclear Information System (INIS)

    Craigie, N.S.

    1983-01-01

    In this talk, we give the arguments as to why spin asymmetries test fundamental properties of the underlying gauge theories of elementary particles, concentrating mainly on electro-weak and QCD interactions, but also looking at the future and possible signatures for supersymmetric strong interactions. We also mention briefly the role helicity asymmetry measurements can play as regards higher order corrections, including higher twist, in QCD. (orig./HSI)

  8. Transmission line theory for long plasma production by radio frequency discharges between parallel-plate electrodes

    International Nuclear Information System (INIS)

    Nonaka, S.

    1991-01-01

    In order to seek for a radio frequency (RF) eigen-mode of waves in producing a plasma between a pair of long dielectric-covered parallel-plate RF electrodes, this paper analyzed all normal modes propagating along the electrodes by solving Maxwell's equations. The result showed that only an odd surface wave mode will produce the plasma in usual experimental conditions, which will become a basic transmission line theory when use of such long electrodes for on-line mass-production of amorphous silicon solar cells

  9. Nonlinear polarization of ionic liquids: theory, simulations, experiments

    Science.gov (United States)

    Kornyshev, Alexei

    2010-03-01

    Room temperature ionic liquids (RTILs) composed of large, often asymmetric, organic cations and simple or complex inorganic or organic anions do not freeze at ambient temperatures. Their rediscovery some 15 years ago is widely accepted as a ``green revolution'' in chemistry, offering an unlimited number of ``designer'' solvents for chemical and photochemical reactions, homogeneous catalysis, lubrication, and solvent-free electrolytes for energy generation and storage. As electrolytes they are non-volatile, some can sustain without decomposition up to 6 times higher voltages than aqueous electrolytes, and many are environmentally friendly. The studies of RTILs and their applications have reached a critical stage. So many of them can be synthesized - about a thousand are known already - their mixtures can further provide ``unlimited'' number of combinations! Thus, establishing some general laws that could direct the best choice of a RTIL for a given application became crucial; guidance is expected from theory and modelling. But for a physical theory, RTILs comprise a peculiar and complex class of media, the description of which lies at the frontier line of condensed matter theoretical physics: dense room temperature ionic plasmas with ``super-strong'' Coulomb correlations, which behave like glasses at short time-scale, but like viscous liquids at long-time scale. This talk will introduce RTILs to physicists and overview the current understanding of the nonlinear response of RTILs to electric field. It will focus on the theory, simulations, and experimental characterisation of the structure and nonlinear capacitance of the electrical double layer at a charged electrode. It will also discuss pros and contras of supercapacitor applications of RTILs.

  10. Dynamic stability of laminated FGM plates based on higher-order shear deformation theory

    Science.gov (United States)

    Yang, J.; Liew, K. M.; Kitipornchai, S.

    This paper conducts a dynamic stability analysis of symmetrically laminated FGM rectangular plates with general out-of-plane supporting conditions, subjected to a uniaxial periodic in-plane load and undergoing uniform temperature change. Theoretical formulations are based on Reddy's third-order shear deformation plate theory, and account for the temperature dependence of material properties. A semi-analytical Galerkin-differential quadrature approach is employed to convert the governing equations into a linear system of Mathieu-Hill equations from which the boundary points on the unstable regions are determined by Bolotin's method. Free vibration and bifurcation buckling are also discussed as subset problems. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with FGM layers made of silicon nitride and stainless steel. The influences of various parameters such as material composition, layer thickness ratio, temperature change, static load level, boundary constraints on the dynamic stability, buckling and vibration frequencies are examined in detail through parametric studies.

  11. Relativistic theory of inverse beta-decay of polarized neutron in ...

    Indian Academy of Sciences (India)

    The relativistic theory of the inverse beta-decay of polarized neutron, + → + -, in strong magnetic field is developed. For the proton wave function we use the exact solution of the Dirac equation in the magnetic filed that enables us to account exactly for effects of the proton momentum quantization in the magnetic ...

  12. Recent progress on the unified theory of polarization and coherence for stochastic electromagnetic fields

    DEFF Research Database (Denmark)

    Wang, Wei; Zhao, Juan; Hu, Xiaoying

    2017-01-01

    All optical fields undergo random fluctuation and the underlying theory referred to as coherence and polarization of optical fields has played a fundamental role as an important manifestation of the random fluctuations of the electric fields. In this paper, we reviewed our recent theoretical...

  13. A refined shear deformation theory for bending analysis of isotropic and orthotropic plates under various loading conditions

    Directory of Open Access Journals (Sweden)

    Bharti Machhindra Shinde

    2015-03-01

    Full Text Available In this paper, a refined trigonometric shear deformation theory is applied for the bending analysis of isotropic and orthotropic plates under the various loading conditions. The two unknown variables are involved in the present theory. The present theory satisfies the shear stress free condition at top and bottom surface of the plates without using shear correction factors. The governing equations and boundary conditions are obtained by using the principle of virtual work. A closed form solution is obtained using Navier Solution Scheme. A simply supported isotropic and orthotropic plate subjected to sinusoidally distributed, uniformly distributed and linearly varying loads are considered for the detailed numerical study. The results obtained using present theory are compared with previously published results.

  14. Evaluation of the truncated perturbed chain-polar statistical associating fluid theory for complex mixture fluid phase equilibria

    DEFF Research Database (Denmark)

    Karakatsani, Eirini; Kontogeorgis, Georgios; Economou, Ioannis

    2006-01-01

    Perturbed chain-statistical associating fluid theory (PC-SAFT) was extended rigorously to polar fluids based on the theory of Stell and co-workers [Mol. Phys. 1977, 33, 987]. The new PC-PSAFT was simplified to truncated PC-PSAFT (tPC-PSAFT) so that it can be practical for real polar fluid...

  15. Classical and quantum theories of the polarization bremsstrahlung in the local electron density model

    International Nuclear Information System (INIS)

    Astapenko, V.A.; Bureeva, L.A.; Lisitsa, V.S.

    2000-01-01

    Classical and quantum theories of polarization bremsstrahlung in a statistical (Thomas-Fermi) potential of complex atoms and ions are developed. The basic assumptions of the theories correspond to the approximations employed earlier in classical and quantum calculations of ordinary bremsstrahlung in a static potential. This makes it possible to study on a unified basis the contribution of both channels in the radiation taking account of their interference. The classical model makes it possible to obtain simple universal formulas for the spectral characteristics of the radiation. The theory is applied to electrons with moderate energies, which are characteristic for plasma applications, specifically, radiation from electrons on the argon-like ion KII at frequencies close to its ionization potential. The computational results show the importance of taking account of the polarization channel of the radiation for plasma with heavy ions

  16. A {1,2}-Order Plate Theory Accounting for Three-Dimensional Thermoelastic Deformations in Thick Composite and Sandwich Laminates

    Science.gov (United States)

    Tessler, A.; Annett, M. S.; Gendron, G.

    2001-01-01

    A {1,2}-order theory for laminated composite and sandwich plates is extended to include thermoelastic effects. The theory incorporates all three-dimensional strains and stresses. Mixed-field assumptions are introduced which include linear in-plane displacements, parabolic transverse displacement and shear strains, and a cubic distribution of the transverse normal stress. Least squares strain compatibility conditions and exact traction boundary conditions are enforced to yield higher polynomial degree distributions for the transverse shear strains and transverse normal stress through the plate thickness. The principle of virtual work is used to derive a 10th-order system of equilibrium equations and associated Poisson boundary conditions. The predictive capability of the theory is demonstrated using a closed-form analytic solution for a simply-supported rectangular plate subjected to a linearly varying temperature field across the thickness. Several thin and moderately thick laminated composite and sandwich plates are analyzed. Numerical comparisons are made with corresponding solutions of the first-order shear deformation theory and three-dimensional elasticity theory. These results, which closely approximate the three-dimensional elasticity solutions, demonstrate that through - the - thickness deformations even in relatively thin and, especially in thick. composite and sandwich laminates can be significant under severe thermal gradients. The {1,2}-order kinematic assumptions insure an overall accurate theory that is in general superior and, in some cases, equivalent to the first-order theory.

  17. Hardness and softness reactivity kernels within the spin-polarized density-functional theory

    International Nuclear Information System (INIS)

    Chamorro, Eduardo; De Proft, Frank; Geerlings, Paul

    2005-01-01

    Generalized hardness and softness reactivity kernels are defined within a spin-polarized density-functional theory (SP-DFT) conceptual framework. These quantities constitute the basis for the global, local (i.e., r-position dependent), and nonlocal (i.e., r and r ' -position dependents) indices devoted to the treatment of both charge-transfer and spin-polarization processes in such a reactivity framework. The exact relationships between these descriptors within a SP-DFT framework are derived and the implications for chemical reactivity in such context are outlined

  18. Finite element model based on refined plate theories for laminated glass units

    Directory of Open Access Journals (Sweden)

    Alena Zemanová

    Full Text Available AbstractLaminated glass units exhibit complex response as a result of different mechanical behavior and properties of glass and polymer foil. We aim to develop a finite element model for elastic laminated glass plates based on the refined plate theory by Mau. For a geometrically nonlinear description of the behavior of units, each layer behaves according to the Reissner-Mindlin kinematics, complemented with membrane effects and the von Kármán assumptions. Nodal Lagrange multipliers enforce the compatibility of independent layers in this approach. We have derived the discretized model by the energy-minimization arguments, assuming that the unknown fields are approximated by bi-linear functions at the element level, and solved the resulting system by the Newton method with consistent linearization. We have demonstrated through verification and validation examples that the proposed formulation is reliable and accurately reproduces the behavior of laminated glass units. This study represents a first step to the development of a comprehensive, mechanics-based model for laminated glass systems that is suitable for implementation in common engineering finite element solvers.

  19. A review of the pathomechanism of forward slippage in pediatric spondylolysis: the Tokushima theory of growth plate slippage.

    Science.gov (United States)

    Sairyo, Koichi; Nagamachi, Akihiro; Matsuura, Tetsuya; Higashino, Kosaku; Sakai, Toshinori; Suzue, Naoto; Hamada, Daisuke; Takata, Yoichiro; Goto, Tomohiro; Nishisho, Toshihiko; Goda, Yuichiro; Tsutsui, Takahiko; Tonogai, Ichiro; Miyagi, Ryo; Abe, Mitsunobu; Morimoto, Masatoshi; Mineta, Kazuaki; Kimura, Tetsuya; Nitta, Akihiro; Higuchi, Tadahiro; Hama, Shingo; Jha, Subash C; Takahashi, Rui; Fukuta, Shoji

    2015-01-01

    Spondylolysis is a stress fracture of the pars interarticularis, which in some cases progresses to spondylolisthesis (forward slippage of the vertebral body). This slip progression is prevalent in children and occurs very rarely after spinal maturation. The pathomechanism and predilection for children remains controversial despite considerable clinical and basic research into the disorder over the last three decades. Here we review the pathomechanism of spondylolytic spondylolisthesis in children and adolescents, and specifically the Tokushima theory of growth plate slippage developed from our extensive research findings. Clinically, we have observed the slippage site near the growth plate on MRI; then, using fresh cadaveric spines, we found the weakest link against forward shear loading was the growth plate. We subsequently developed an immature rat model showing forward slippage after growth plate injury. Moreover, finite element analysis of the pediatric spine clearly showed increased mechanical stress at the growth plate in the spondylolytic pediatric spine model compared with the intact pediatric spine. Thus, spondylolysis progresses to spondylolisthesis (forward slippage) in children and adolescents with the growth plate as the site of the slippage. Repetitive mechanical loading on to the growth plate may serve to separate the growth plate and subsequently progress to spondylolisthesis.

  20. Determining the fibrillar orientation of bast fibres with polarized light microscopy: the modified Herzog test (red plate test) explained.

    Science.gov (United States)

    Haugan, E; Holst, B

    2013-11-01

    The identification of bast fibre samples, in particular, bast fibres used in textiles, is an important issue in archaeology, criminology and other scientific fields. One of the characteristic features of bast fibres is their fibrillar orientation, referred to as Z- or S twist (or alternatively right- and left-handed fibres). An empirical test for determining the fibrillar orientation using polarized light microscopy has been known in the community for many years. It is referred to as the modified Herzog test or red plate test. The test has the reputation for never producing false results, but also for occasionally not working. However, so far, no proper justification has been provided in the literature that the 'no false results' assumption is really correct and it has also not been clear up till now, why the method sometimes does not work. In this paper, we present an analytical model for the modified Herzog test, which explains why the test never gives a false result. We also provide an explanation for why the Herzog test sometimes does not work: According to our model, the Herzog test will not work if none of the three distinct layers in the secondary cell wall is significantly thicker than the others. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  1. New, simple theory-based, accurate polarization microscope for birefringence imaging of biological cells

    Science.gov (United States)

    Shin, In Hee; Shin, Sang-Mo; Kim, Dug Young

    2010-01-01

    We propose a new, simple theory-based, accurate polarization microscope for birefringence imaging of cytoskeletal structures of biological cells. The new theory lets us calculate very easily the phase retardation and the orientation of the principal axis of a particular area of a biological living cell in media by simply measuring the intensity variation of a pixel of a CCD camera while rotating a single polarizer. Just from the measured intensity maxima and minima, the amount of phase retardation δ between the fast and the slow axis of the sample area is obtained with an accuracy of 5.010+/-0.798×10-3 rad. The orientation of the principal axis is calculated from the angle of the polarizer for the intensity maximum. We have compared our microscopes with two previously reported polarization microscopes for birefringence imaging of cytoskeletal structures and demonstrated the utility of our microscope with the phase retardation and orientation images of weakly invasive MCF7 and highly invasive MDA MB 231 human breast cancer cells as an example.

  2. Kinematic approximation in the theory of stimulated nuclear polarization in radical recombination

    International Nuclear Information System (INIS)

    Mikhailov, S.A.; Purtov, P.A.

    1989-01-01

    Within the kinematic approximation, we have developed the theory of stimulated nuclear polarization (SNP) in reactions of geminal recombination of radicals in a strong d.c. magnetic field. We have obtained analytical formulas which are applicable for analysis of SNP effects occurring when the reactions are carried out in nonviscous solutions. The result is represented in the form of integrals with respect to the Green's function determining the kinematics of reagent approach. As an illustration of the proposed theory, we have calculated the polarization of nuclei formed in the reaction products of p-benzoquinone in CD 3 OD and in C 6 D 6 with addition of phenol, and we compare with experiment

  3. A higher order shear deformation theory for laminated anisotropic plates and its application in defence industry

    International Nuclear Information System (INIS)

    Pervez, T.

    1992-01-01

    Composite materials have been used for centuries, brick reinforced with straw, laminated iron-steel swords, gun-barrels and concrete, to name but a few. Today industrial innovations improved energy planning, uncertain availability have created a greater interest in search of new materials. Now that increasingly performance requirements are forcing many conventional materials to the limit, the engineer's approach of fitting the design to the properties is changing into one of finding materials with the right properties to meet the demand of design, service of economics. The use of composite materials have progressed through several stages in past two and half decade. First, demonstration pieces were built with the idea of let's see if we can build one. For second stage, replacement pieces, part of the objective was to test a part designed to replace a metal part in an existing application. The last stage is actual production pieces designed from the beginning to be fabricated wholly from composite. This last goal is being approached in deliberate, conservation and multistage fashion. A substantial composite technology has been developed and awaits further challenge. In this paper new higher order shear deformable theory for anisotropic laminated composite is presented. The finite element method is used to get static and dynamic solution for the plate with and without damping effects. Finally, example and discussion are presented to demonstrate the accuracy of the theory presented herein. (author)

  4. Factors Contributing to Plate Waste among Elementary School Children in Tokyo, Japan: Application of the Theory of Planned Behavior

    Science.gov (United States)

    Abe, Keina; Akamatsu, Rie

    2013-01-01

    Purpose/Objectives: The purpose of this study was to identify the aspects of the Theory of Planned Behavior with the greatest relevance to plate waste (PW) among elementary school children in Tokyo, Japan. Methods: A total of 111 fifth- and sixth-grade students at an elementary school in Tokyo, Japan responded to a self-report questionnaire. The…

  5. Polar-solvation classical density-functional theory for electrolyte aqueous solutions near a wall

    Science.gov (United States)

    Warshavsky, Vadim; Marucho, Marcelo

    2016-01-01

    A precise description of the structural and dielectric properties of liquid water is critical to understanding the physicochemical properties of solutes in electrolyte solutions. In this article, a mixture of ionic and dipolar hard spheres is considered to account for water crowding and polarization effects on ionic electrical double layers near a uniformly charged hard wall. As a unique feature, solvent hard spheres carrying a dipole at their centers were used to model water molecules at experimentally known concentration, molecule size, and dipolar moment. The equilibrium ionic and dipole density profiles of this electrolyte aqueous model were calculated using a polar-solvation classical density-functional theory (PSCDFT). These profiles were used to calculate the charge density distribution, water polarization, dielectric permittivity function, and mean electric potential profiles as well as differential capacitance, excess adsorptions, and wall-fluid surface tension. These results were compared with those corresponding to the pure dipolar model and unpolar primitive solvent model of electrolyte aqueous solutions to understand the role that water crowding and polarization effects play on the structural and thermodynamic properties of these systems. Overall, PSCDFT predictions are in agreement with available experimental data. PMID:27176352

  6. Social judgment theory based model on opinion formation, polarization and evolution

    Science.gov (United States)

    Chau, H. F.; Wong, C. Y.; Chow, F. K.; Fung, Chi-Hang Fred

    2014-12-01

    The dynamical origin of opinion polarization in the real world is an interesting topic that physical scientists may help to understand. To properly model the dynamics, the theory must be fully compatible with findings by social psychologists on microscopic opinion change. Here we introduce a generic model of opinion formation with homogeneous agents based on the well-known social judgment theory in social psychology by extending a similar model proposed by Jager and Amblard. The agents’ opinions will eventually cluster around extreme and/or moderate opinions forming three phases in a two-dimensional parameter space that describes the microscopic opinion response of the agents. The dynamics of this model can be qualitatively understood by mean-field analysis. More importantly, first-order phase transition in opinion distribution is observed by evolving the system under a slow change in the system parameters, showing that punctuated equilibria in public opinion can occur even in a fully connected social network.

  7. Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach

    International Nuclear Information System (INIS)

    Ibral, Asmaa; Zouitine, Asmaa; Assaid, El Mahdi

    2015-01-01

    Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap

  8. A hyperbolic shear and normal deformation theory for deflection and stresses of FGM sandwich plate

    Directory of Open Access Journals (Sweden)

    Saidi H.

    2016-01-01

    Full Text Available In the present paper, the static analysis of functionally graded sandwich plates subjected to thermo mechanical loads is studied. In this model, the displacements vary as a hyperbolic function through the thickness of the plate and satisfy stress boundary conditions on the top and the bottom of the plate. The material properties of the sandwich plate faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of volume fraction of material constituents. The core layer is still homogeneous and made of an isotropic material. The governing equations of equilibrium for FG sandwich plates can be obtained using the virtual work principle, and the closed form solutions are obtained by using Navier technique. The accuracy of the present analysis is ascertained by comparing it with various results available in the literature. The influences played by side-to-thickness ratio, aspect ratio and volume fraction distributions are investigated.

  9. Bending and stretching of plates

    CERN Document Server

    Mansfield, E H; Hemp, W S

    1964-01-01

    The Bending and Stretching of Plates deals with elastic plate theory, particularly on small- and large-deflexion theory. Small-deflexion theory concerns derivation of basic equations, rectangular plates, plates of various shapes, plates whose boundaries are amenable to conformal transformation, plates with variable rigidity, and approximate methods. Large-deflexion theory includes general equations and some exact solutions, approximate methods in large-deflexion theory, asymptotic large-deflexion theories for very thin plates. Asymptotic theories covers membrane theory, tension field theory, a

  10. Crustal Structure of the Caribbean-South American Diffuse Plate Boundary: Subduction Zone Migration and Polarity Reversal Along BOLIVAR Profile 64W

    Science.gov (United States)

    Clark, S. A.; Levander, A.; Magnani, M.; Zelt, C. A.; Sawyer, D. S.; Ave Lallemant, H. G.

    2005-12-01

    The BOLIVAR (Broadband Ocean-Land Investigation of Venezuela and the Antilles arc Region) project is an NSF funded, collaborative seismic experiment in the southeast Caribbean region. The purpose of the project is to understand the diffuse plate boundary created by the oblique collision between the Caribbean and South American plates. Profile 64W of the BOLIVAR experiment, a 450 km-long, N-S transect onshore and offshore Venezuela located at ~64°W longitude, images the deep crustal structures formed by this collision. The active source components of profile 64W include 300 km of MCS reflection data, 33 coincident OBSs, and 344 land seismic stations which recorded 7500 offshore airgun shots and 2 explosive land shots. Results from the reflection and refraction seismic data along 64W show complex crustal structure across the entire span of the diffuse plate boundary. The onshore portion of 64W crosses the fold and thrust belt of the Serrania del Interior, which formed at ~16 Ma by collision of the Caribbean forearc with the northern South American passive margin. Underlying the Serrania del Interior is a south-vergent, remnant Lesser Antillean subduction zone. As this Lesser Antilles subduction impinged on continental crust, it caused a polarity reversal and jump offshore to the north. Convergence was initially localized in the closure and inversion of the Grenada Basin. However, subduction could not develop because of the ~20-km-thick crust of the Aves Ridge; instead, north-vergent subduction initiated further to the north, where ~12-km-thick Caribbean oceanic crust of the Venezuela Basin began to subduct beneath the Aves Ridge in the Pliocene (~4 Ma) and appears to continue subducting today. Between the remnant subduction zone and the modern one, the El Pilar and Coche dextral strike-slip faults accommodate most of the transform motion of the plate boundary. From the Serrania del Interior to the Aves Ridge, ~260 km of accreted orogenic float comprises the diffuse

  11. Generalized nuclear Fukui functions in the framework of spin-polarized density-functional theory

    International Nuclear Information System (INIS)

    Chamorro, E.; Proft, F. de; Geerlings, P.

    2005-01-01

    An extension of Cohen's nuclear Fukui function is presented in the spin-polarized framework of density-functional theory (SP-DFT). The resulting new nuclear Fukui function indices Φ Nα and Φ Sα are intended to be the natural descriptors for the responses of the nuclei to changes involving charge transfer at constant multiplicity and also the spin polarization at constant number of electrons. These generalized quantities allow us to gain new insights within a perturbative scheme based on DFT. Calculations of the electronic and nuclear SP-DFT quantities are presented within a Kohn-Sham framework of chemical reactivity for a sample of molecules, including H 2 O, H 2 CO, and some simple nitrenes (NX) and phosphinidenes (PX), with X=H, Li, F, Cl, OH, SH, NH 2 , and PH 2 . Results have been interpreted in terms of chemical bonding in the context of Berlin's theorem, which provides a separation of the molecular space into binding and antibinding regions

  12. Dynamical changes of the polar cap potential structure: an information theory approach

    Directory of Open Access Journals (Sweden)

    I. Coco

    2011-10-01

    Full Text Available Some features, such as vortex structures often observed through a wide spread of spatial scales, suggest that ionospheric convection is turbulent and complex in nature. Here, applying concepts from information theory and complex system physics, we firstly evaluate a pseudo Shannon entropy, H, associated with the polar cap potential obtained from the Super Dual Auroral Radar Network (SuperDARN and, then, estimate the degree of disorder and the degree of complexity of ionospheric convection under different Interplanetary Magnetic Field (IMF conditions. The aforementioned quantities are computed starting from time series of the coefficients of the 4th order spherical harmonics expansion of the polar cap potential for three periods, characterised by: (i steady IMF Bz > 0, (ii steady IMF Bz < 0 and (iii a double rotation from negative to positive and then positive to negative Bz. A neat dynamical topological transition is observed when the IMF Bz turns from negative to positive and vice versa, pointing toward the possible occurrence of an order/disorder phase transition, which is the counterpart of the large scale convection rearrangement and of the increase of the global coherence. This result has been confirmed by applying the same analysis to a larger data base of about twenty days of SuperDARN data, allowing to investigate the role of IMF By too.

  13. A Multi-scale Refined Zigzag Theory for Multilayered Composite and Sandwich Plates with Improved Transverse Shear Stresses

    Science.gov (United States)

    Iurlaro, Luigi; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander

    2013-01-01

    The Refined Zigzag Theory (RZT) enables accurate predictions of the in-plane displacements, strains, and stresses. The transverse shear stresses obtained from constitutive equations are layer-wise constant. Although these transverse shear stresses are generally accurate in the average, layer-wise sense, they are nevertheless discontinuous at layer interfaces, and thus they violate the requisite interlaminar continuity of transverse stresses. Recently, Tessler applied Reissner's mixed variational theorem and RZT kinematic assumptions to derive an accurate and efficient shear-deformation theory for homogeneous, laminated composite, and sandwich beams, called RZT(m), where "m" stands for "mixed". Herein, the RZT(m) for beams is extended to plate analysis, where two alternative assumptions for the transverse shear stresses field are examined: the first follows Tessler's formulation, whereas the second is based on Murakami's polynomial approach. Results for elasto-static simply supported and cantilever plates demonstrate that Tessler's formulation results in a powerful and efficient structural theory that is well-suited for the analysis of multilayered composite and sandwich panels.

  14. Symmetry relationships for multiple scattering of polarized light in turbid spherical samples: theory and a Monte Carlo simulation.

    Science.gov (United States)

    Otsuki, Soichi

    2016-02-01

    This paper presents a theory describing totally incoherent multiple scattering of turbid spherical samples. It is proved that if reciprocity and mirror symmetry hold for single scattering by a particle, they also hold for multiple scattering in spherical samples. Monte Carlo simulations generate a reduced effective scattering Mueller matrix, which virtually satisfies reciprocity and mirror symmetry. The scattering matrix was factorized by using the symmetric decomposition in a predefined form, as well as the Lu-Chipman polar decomposition, approximately into a product of a pure depolarizer and vertically oriented linear retarding diattenuators. The parameters of these components were calculated as a function of the polar angle. While the turbid spherical sample is a pure depolarizer at low polar angles, it obtains more functions of the retarding diattenuator with increasing polar angle.

  15. New directions in the theory of spin-polarized atomic hydrogen and deuterium

    International Nuclear Information System (INIS)

    Koelman, J.M.V.A.

    1988-01-01

    The three chapters of this thesis dealing with collisions between hydrogen (or deuterium) atoms in their ground state, each treat a different development in the theory of atomic hydrogen or deuterium gas. The decay due to interatomic collisions hindered till now all attempts to reach the low temperature, high-density regime where effects due to degeneracy are expected to show up. In ch. 2 a simple way out is presented for the case of Fermi gases: In spin-polarized Fermi systems at very low temperatures collisions are much effective than in Bose systems. For the Fermi gas, consisting of magnetically confined deuterium atoms, it appears that fast spin-exchange collisions automatically lead to a completely spin-polarized gas for which the spin-relaxation limited lifetime increases dramatically with decreasing temperature. As also the ratio of internal thermalization rate over decay rate increases with decreasing temperature, this gas can be cooled by forced evaporation down to very low temperatures. In ch. 3 it iis shown that the nuclear spin dynamics due to the hyperfine interaction during collisions, strongly limits the improvement in frequency stability attainable by H masers operating at low temperatures. In ch. 4 the phenomenon of spin waves is studied. It is shown that, despite the fact that interactions between two atoms are nuclear-spin independent, the outcome of a scattering event does not depend on the nuclear spins involved due to the particle indistinguishability effects at low collision energies. This effect gives rise to quantum phenomena on a macroscopic scale via the occurrence of spin waves. (author). 185 refs.; 34 figs

  16. Motivated scientific reasoning biases, epistemological beliefs, and theory polarization: a two-process approach to adolescent cognition.

    Science.gov (United States)

    Klaczynski, P A

    2000-01-01

    Theory-motivated reasoning biases arise when different reasoning skills are invoked to evaluate evidence that is congruent or incongruent with individuals' belief systems. To explore this phenomenon, 66 early and 73 middle adolescents evaluated evidence relevant to their theories of social class or religion. In both conditions, reasoning biases were found, but in-group biases were evident only in the religion condition. In both conditions, higher order scientific reasoning was used to reject theory-incongruent evidence and judgmental heuristics (i.e., cognitive rules of thumb) were used to evaluate theory-congruent evidence. In both conditions, subsequent to the evidence presentation, adolescents' theories became more extreme (i.e., polarized) than at the outset of the experiment. Beliefs regarding the origin, acquisition, and certainty of knowledge, however, appeared to moderate reasoning biases and theory polarization. Age differences emerged on only one index of bias: In the religion condition, middle adolescents were more likely to treat theory-incongruent evidence as implausible. These findings are pertinent to theories of cognitive development, decision making, rationality, and in-group favoritism.

  17. Comparison of the application of plate and beam theories to the elastic dilation and interaction of PFR sub-assembly wrappers

    International Nuclear Information System (INIS)

    Moss, R.L.

    1977-10-01

    A wrapper face is assumed to be a long, narrow, rectangular plate. The mechanical interaction between adjacent dilating wrappers in contact along an axial line is discussed in terms of the theory of the bending of plates. A variational method is used to obtain neat and concise equations that determine both the interaction load and the length of the line of contact. The prime objective of the work is to compare the results obtained from plate theory with corresponding expressions from much simpler calculations based on beam theory. Numerical results indicate that the elastic dilation of a wrapper and its interaction with a neighbouring wrapper can be calculated to adequate accuracy by simple beam theory. (author)

  18. Simulating water distribution patterns for fixed spray plate sprinkler using the ballistic theory

    Directory of Open Access Journals (Sweden)

    Sofiane Ouazaa

    2014-07-01

    Full Text Available Ballistic simulation of the spray sprinkler for self-propelled irrigation machines requires the incorporation of the effect of the jet impact with the deflecting plate. The kinetic energy losses produced by the jet impact with the spray plate were experimentally characterized for different nozzle sizes and two working pressures for fixed spray plate sprinklers (FSPS. A technique of low speed photography was used to determine drop velocity at the point where the jet is broken into droplets. The water distribution pattern of FSPS for different nozzle sizes, working at two pressures and under different wind conditions were characterized in field experiments. The ballistic model was calibrated to simulate water distribution in different technical and meteorological conditions. Field experiments and the ballistic model were used to obtain the model parameters (D50, n, K1and K2. The results show that kinetic energy losses decrease with nozzle diameter increments; from 80% for the smallest nozzle diameter (2 mm to 45% for nozzle diameters larger than 5.1 mm, and from 80% for the smallest nozzle diameter (2 mm to 34.7% for nozzle diameters larger than 6.8 mm, at 138 kPa and 69 kPa working pressures, respectively. The results from the model compared well with field observations. The calibrated model has reproduced accurately the water distribution pattern in calm (r=0.98 and high windy conditions (r=0.76. A new relationship was found between the corrector parameters (K1’ and K2’ and the wind speed. As a consequence, model simulation will be possible for untested meteorological conditions.

  19. Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by conducting parallel plates

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, Gennady; Zhou, Demin

    2016-04-21

    We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.

  20. True Polar Wander and Hotspot Fixity: A Paleomagnetic Investigation of the Skewness of Magnetic Anomaly 12r (32 Ma B.P.) on the Pacific Plate

    Science.gov (United States)

    Gordon, R. G.; Horner-Johnson, B. C.

    2010-12-01

    Prior studies have shown that Pacific hotspots and Indo-Atlantic hotspots have moved in approximate unison relative to the spin axis since 65 Ma B.P. [Morgan, 1981; Gordon and Cape, 1981; Gordon, 1982] and since 56 Ma B.P. [Petronotis et al., 1994], which is most simply interpreted as true polar wander. In contrast, Pacific hotspots and Indo-Atlantic hotspots give conflicting results for 72 Ma B.P. and for 81 Ma B.P., which may indicate motion between Pacific hotspots and Indo-Atlantic hotspots [Tarduno and Cottrell, 1997; Petronotis et al., 1999; Tarduno et al., 2003]. Thus it is important to estimate Pacific plate apparent polar wander (APW) for more time intervals. From such estimates the APW of Pacific hotspots can be inferred and compared with that of Indo-Atlantic hotspots [e.g., Besse and Courtillot 2002]. Here we present a study of the skewness of anomaly 12r between the Galapagos and Clipperton and between the Clipperton and Clarion fracture zones. We chose this region for several reasons: First, numerical experiments, like those conducted by Acton and Gordon [1991], indicate that magnetic profiles between the Galapagos and Clarion fracture zones should contain the most information about the Pacific plate paleomagnetic pole for chron C12r (32 Ma B.P.). Second, in these two spreading rate corridors, spreading half rates range from 72 to 86 mm/a and therefore have negligible anomalous skewness, given that they exceed ≈50 mm/a [Roest et al., 1992; Dyment et al. 1994]. Third, vector aeromagnetic profiles are available for analysis. One of the challenges to interpreting magnetic anomalies in low latitudes where the anomalies strike nearly north-south is the very low amplitude of the signal relative to the noise, the latter of which can be especially intense near the present magnetic equator due to the amplification of diurnal variation by the equatorial electrojet. Previously we showed that vector aeromagnetic profiles record low-latitude Pacific plate

  1. The wet solidus of silica: Predictions from the scaled particle theory and polarized continuum model

    Energy Technology Data Exchange (ETDEWEB)

    Ottonello, G., E-mail: giotto@dipteris.unige.it; Vetuschi Zuccolini, M. [DIPTERIS, Università di Genova, Corso Europa 26, 16132 Genoa (Italy); Richet, P. [Institut de Physique du Globe, Rue Jussieu 2, 75005 Paris (France)

    2015-02-07

    We present an application of the Scaling Particle Theory (SPT) coupled with an ab initio assessment of the electronic, dispersive, and repulsive energy terms based on the Polarized Continuum Model (PCM) aimed at reproducing the observed solubility behavior of OH{sub 2} over the entire compositional range from pure molten silica to pure water and wide pressure and temperature regimes. It is shown that the solution energy is dominated by cavitation terms, mainly entropic in nature, which cause a large negative solution entropy and a consequent marked increase of gas phase fugacity with increasing temperatures. Besides, the solution enthalpy is negative and dominated by electrostatic terms which depict a pseudopotential well whose minimum occurs at a low water fraction (X{sub H{sub 2O}}) of about 6 mol. %. The fine tuning of the solute-solvent interaction is achieved through very limited adjustments of the electrostatic scaling factor γ{sub el} which, in pure water, is slightly higher than the nominal value (i.e., γ{sub el}  =  1.224 against 1.2), it attains its minimum at low H{sub 2}O content (γ{sub el} = 0.9958) and then rises again at infinite dilution (γ{sub el}   =  1.0945). The complex solution behavior is interpreted as due to the formation of energetically efficient hydrogen bonding when OH functionals are in appropriate amount and relative positioning with respect to the discrete OH{sub 2} molecules, reinforcing in this way the nominal solute-solvent inductive interaction. The interaction energy derived from the SPT-PCM calculations is then recast in terms of a sub-regular Redlich-Kister expansion of appropriate order whereas the thermodynamic properties of the H{sub 2}O component at its standard state (1-molal solution referred to infinite dilution) are calculated from partial differentiation of the solution energy over the intensive variables.

  2. Is plate tectonis withstanding the test of time?

    Directory of Open Access Journals (Sweden)

    O. Shields

    1997-06-01

    Full Text Available Since the theory of plate tectonics was first proposed thirty years ago, some problems have arisen in its practical application. These call into question its fundamental assumptions of horizontal plate motion, hotspot fixity, true polar wander, Panthalassa, and the Earth’s constant size while leaving seafloor spreading and subduction intact. A rapidity expanding earth solves these problems and privides an alternative viewpoint worth reconsidering.

  3. Two-dimensional linear elasticity theory of magneto-electro-elastic plates considering surface and nonlocal effects for nanoscale device applications

    Science.gov (United States)

    Wang, Wenjun; Li, Peng; Jin, Feng

    2016-09-01

    A novel two-dimensional linear elastic theory of magneto-electro-elastic (MEE) plates, considering both surface and nonlocal effects, is established for the first time based on Hamilton’s principle and the Lee plate theory. The equations derived are more general, suitable for static and dynamic analyses, and can also be reduced to the piezoelectric, piezomagnetic, and elastic cases. As a specific application example, the influences of the surface and nonlocal effects, poling directions, piezoelectric phase materials, volume fraction, damping, and applied magnetic field (i.e., constant applied magnetic field and time-harmonic applied magnetic field) on the magnetoelectric (ME) coupling effects are first investigated based on the established two-dimensional plate theory. The results show that the ME coupling coefficient has an obvious size-dependent characteristic owing to the surface effects, and the surface effects increase the ME coupling effects significantly when the plate thickness decreases to its critical thickness. Below this critical thickness, the size-dependent effect is obvious and must be considered. In addition, the output power density of a magnetic energy nanoharvester is also evaluated using the two-dimensional plate theory obtained, with the results showing that a relatively larger output power density can be achieved at the nanoscale. This study provides a mathematical tool which can be used to analyze the mechanical properties of nanostructures theoretically and numerically, as well as evaluating the size effect qualitatively and quantitatively.

  4. Behaviour of plate elements based on the first-order shear deformation theory

    Science.gov (United States)

    Averill, R. C.; Reddy, J. N.

    1990-01-01

    A new analytical technique to assess the performance of shear deformable elements is presented, which makes it possible to determine a priori whether a given element will lock when used to model thin structures. The role that shear constraints play in determining the behavior of thin elements was established by comparing the results of key numerical tests with the predictions of element behavior made by studying the form of the shear constraints. Conclusions regarding locking behavior and the effects of reduced integration in thin shear deformable elements are presented, including the findings (1) that singularity of the shear stiffness matrix is not sufficient to avoid locking; (2) that the effect of mesh refinement on an element that contains spurious constraints is two-fold; and (3) that reduced integration does not remove spurious constraints but rather relaxes them. The results of the study are in agreement with previous studies of Mindlin plate elements in regarding Lagrangian elements as superior to serendipity elements when either full or reduced integration is employed.

  5. Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution.

    Directory of Open Access Journals (Sweden)

    James A Cahill

    Full Text Available Despite extensive genetic analysis, the evolutionary relationship between polar bears (Ursus maritimus and brown bears (U. arctos remains unclear. The two most recent comprehensive reports indicate a recent divergence with little subsequent admixture or a much more ancient divergence followed by extensive admixture. At the center of this controversy are the Alaskan ABC Islands brown bears that show evidence of shared ancestry with polar bears. We present an analysis of genome-wide sequence data for seven polar bears, one ABC Islands brown bear, one mainland Alaskan brown bear, and a black bear (U. americanus, plus recently published datasets from other bears. Surprisingly, we find clear evidence for gene flow from polar bears into ABC Islands brown bears but no evidence of gene flow from brown bears into polar bears. Importantly, while polar bears contributed <1% of the autosomal genome of the ABC Islands brown bear, they contributed 6.5% of the X chromosome. The magnitude of sex-biased polar bear ancestry and the clear direction of gene flow suggest a model wherein the enigmatic ABC Island brown bears are the descendants of a polar bear population that was gradually converted into brown bears via male-dominated brown bear admixture. We present a model that reconciles heretofore conflicting genetic observations. We posit that the enigmatic ABC Islands brown bears derive from a population of polar bears likely stranded by the receding ice at the end of the last glacial period. Since then, male brown bear migration onto the island has gradually converted these bears into an admixed population whose phenotype and genotype are principally brown bear, except at mtDNA and X-linked loci. This process of genome erosion and conversion may be a common outcome when climate change or other forces cause a population to become isolated and then overrun by species with which it can hybridize.

  6. Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution.

    Science.gov (United States)

    Cahill, James A; Green, Richard E; Fulton, Tara L; Stiller, Mathias; Jay, Flora; Ovsyanikov, Nikita; Salamzade, Rauf; St John, John; Stirling, Ian; Slatkin, Montgomery; Shapiro, Beth

    2013-01-01

    Despite extensive genetic analysis, the evolutionary relationship between polar bears (Ursus maritimus) and brown bears (U. arctos) remains unclear. The two most recent comprehensive reports indicate a recent divergence with little subsequent admixture or a much more ancient divergence followed by extensive admixture. At the center of this controversy are the Alaskan ABC Islands brown bears that show evidence of shared ancestry with polar bears. We present an analysis of genome-wide sequence data for seven polar bears, one ABC Islands brown bear, one mainland Alaskan brown bear, and a black bear (U. americanus), plus recently published datasets from other bears. Surprisingly, we find clear evidence for gene flow from polar bears into ABC Islands brown bears but no evidence of gene flow from brown bears into polar bears. Importantly, while polar bears contributed bear, they contributed 6.5% of the X chromosome. The magnitude of sex-biased polar bear ancestry and the clear direction of gene flow suggest a model wherein the enigmatic ABC Island brown bears are the descendants of a polar bear population that was gradually converted into brown bears via male-dominated brown bear admixture. We present a model that reconciles heretofore conflicting genetic observations. We posit that the enigmatic ABC Islands brown bears derive from a population of polar bears likely stranded by the receding ice at the end of the last glacial period. Since then, male brown bear migration onto the island has gradually converted these bears into an admixed population whose phenotype and genotype are principally brown bear, except at mtDNA and X-linked loci. This process of genome erosion and conversion may be a common outcome when climate change or other forces cause a population to become isolated and then overrun by species with which it can hybridize.

  7. A Computationally Viable Higher-Order Theory for Laminated Composite Plates

    Science.gov (United States)

    1990-11-01

    extensions of the Mindlin theory, enforce zero transverse normal deformation by virtue of n = 0. When formulated from the principle of virtual work , the...expressions for the transverse shear and transverse normal strains are obtained. Employing the three-dimensional virtual work princi- ple yields a set of...y,h) dxdy + ff q" 6u,(x,y,-h) dxdy S. S" - ff (Tx6U+ T6u + T6u) dsdz = 0 (13) t e IiIic MI alll 1x- rc :irdcd is I ’weak" lornm of lhe virtual work principit

  8. Modeling and analysis of proximal tibial growth plate fractures in adolescents: Theory and potential applications

    Directory of Open Access Journals (Sweden)

    Susan Basile

    2016-01-01

    Full Text Available Background: Overuse injuries in children and adolescents are becoming increasingly common, particularly in those who regularly participate in a single sport. As a result, prevention, early detection and treatment of these injuries is vital. However, existing research in adult populations cannot always be directly applied to analogous cases in younger populations. This study attempts to provide an example of how both mathematical and computer modeling can be utilized to predict alterations in load locations, directions, and magnitudes resulting from maturational changes in a way not possible in vivo. Methods: A 2D leg extension model was created and used to calculate relevant forces at the proximal knee joint. Individual aspects of the model, such as quadriceps force and leg length, were changed to quantify how increases in a growing adolescent’s force generation and limb length may affect the forces at the joint. The derived forces were input into a 3D finite element model incorporating a growing young adult’s relatively weaker epiphyseal plate material to calculate the stresses and strains on the tibia of an adolescent. Results: Findings indicated that a shortened patellar tendon and increased quadriceps muscle strength were potentially greater contributors to increased stress on the proximal tibia, as opposed to aspects such as height and weight changes. Conclusions: The theoretical and computational methods employed show promise in their ability to predict potential injury risks in populations for whom evidence-based research is lacking. Models incorporating the elbow and shoulder have high impact potential for young baseball pitchers.

  9. Casimir amplitudes and capillary condensation of near-critical fluids between parallel plates: renormalized local functional theory.

    Science.gov (United States)

    Okamoto, Ryuichi; Onuki, Akira

    2012-03-21

    We investigate the critical behavior of a near-critical fluid confined between two parallel plates in contact with a reservoir by calculating the order parameter profile and the Casimir amplitudes (for the force density and for the grand potential). Our results are applicable to one-component fluids and binary mixtures. We assume that the walls absorb one of the fluid components selectively for binary mixtures. We propose a renormalized local functional theory accounting for the fluctuation effects. Analysis is performed in the plane of the temperature T and the order parameter in the reservoir ψ(∞). Our theory is universal if the physical quantities are scaled appropriately. If the component favored by the walls is slightly poor in the reservoir, there appears a line of first-order phase transition of capillary condensation outside the bulk coexistence curve. The excess adsorption changes discontinuously between condensed and noncondensed states at the transition. With increasing T, the transition line ends at a capillary critical point T=T(c) (ca) slightly lower than the bulk critical temperature T(c) for the upper critical solution temperature. The Casimir amplitudes are larger than their critical point values by 10-100 times at off-critical compositions near the capillary condensation line. © 2012 American Institute of Physics

  10. Quantization vial real polarization of the moduli space of flat connections and Chern-Simons gauge theory in genus one

    International Nuclear Information System (INIS)

    Weitsman, J.; Harvard Univ., Cambridge, MA

    1991-01-01

    We study the quantization of the moduli space of flat connections on a surface of genus one, using the real polarization of this space. The quantum wave functions in this formalism are exponential functions supported along the integral fibres of the polarization. The space of wave functions obtained in this way is isomorphic to a space of theta functions. We use our construction to cunstruct part of what may be a topological field theory in genus one, and to compute the associated invariants of some three manifolds. These computations agree with those of Witten, but the invariants are expressed as sums of quantities computed at a discrete set of connections with curvature concentrated on a link in the three manifold. A similar prescription is used to produce knot invariants. (orig.)

  11. Theory of the photoelectric effect assisted by an elliptically polarized laser field

    International Nuclear Information System (INIS)

    Li Shumin; Jentschura, Ulrich D

    2009-01-01

    The laser-assisted photoelectric effect in atomic hydrogen is investigated for linear, circular and general elliptic polarizations. The perturbative dressed state of the atom in an elliptically polarized nonresonant laser field is derived in the velocity gauge. The continuum state of the ejected electron is described by a Coulomb-Volkov wavefunction. Numerical results show that the ionization cross section by a vacuum ultraviolet photon is enhanced at high laser field intensities and low frequencies. At small and extremely large scattering angles (measured with respect to the wave vector of the incoming vacuum ultraviolet photon), the process for emitting a laser photon is predominant, while at medium angles, the result favours the process without a laser photon exchange. The dependence of the results on the laser polarization and on various geometries is studied, and an interesting pattern is found for the dependence on the frequency of the dressing laser; an intuitive explanation is offered.

  12. Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors

    Directory of Open Access Journals (Sweden)

    Billy W. Day

    2010-11-01

    Full Text Available Biosensors have been used extensively in the scientific community for several purposes, most notably to determine association and dissociation kinetics, protein-ligand, protein-protein, or nucleic acid hybridization interactions. A number of different types of biosensors are available in the field, each with real or perceived benefits over the others. This review discusses the basic theory and operational arrangements of four commercially available types of optical biosensors: surface plasmon resonance, resonant mirror, resonance waveguide grating, and dual polarization interferometry. The different applications these techniques offer are discussed from experiments and results reported in recently published literature. Additionally, recent advancements or modifications to the current techniques are also discussed.

  13. Polarized Cu K edge XANES spectra of CuO - theory and experiment

    Czech Academy of Sciences Publication Activity Database

    Šipr, Ondřej; Šimůnek, Antonín; Bocharov, S.; Kirchner, T.; Dräger, G.

    2001-01-01

    Roč. 8, - (2001), s. 235-237 ISSN 0909-0495 R&D Projects: GA ČR GA202/99/0404 Institutional research plan: CEZ:A02/98:Z1-010-914 Keywords : polarized Cu K XANES * CuO Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.519, year: 2001

  14. Aero-servo-viscoelasticity theory: Lifting surfaces, plates, velocity transients, flutter, and instability

    Science.gov (United States)

    Merrett, Craig G.

    -partial differential equations. The spatial component of the governing equations is eliminated using a series expansion of basis functions and by applying Galerkin's method. The number of terms in the series expansion affects the convergence of the spatial component, and convergence is best determined by the von Koch rules that previously appeared for column buckling problems. After elimination of the spatial component, an ordinary integral-differential equation in time remains. The dynamic stability of elastic and viscoelastic problems is assessed using the determinant of the governing system of equations and the time component of the solution in the form exp (lambda t). The determinant is in terms of lambda where the values of lambda are the latent roots of the aero-servo-viscoelastic system. The real component of lambda dictates the stability of the system. If all the real components are negative, the system is stable. If at least one real component is zero and all others are negative, the system is neutrally stable. If one or more real components are positive, the system is unstable. In aero-servo-viscoelasticity, the neutrally stable condition is termed flutter. For an aero-servo-viscoelastic lifting surface, the unstable condition is historically termed torsional divergence. The more general aero-servo-viscoelastic theory has produced a number of important results, enumerated in the following list: 1. Subsonic panel flutter can occur before panel instability. This result overturned a long held assumption in aeroelasticity, and was produced by the novel application of the von Koch rules for convergence. Further, experimental results from the 1950s by the Air Force were retrieved to provide additional proof. 2. An expanded definition for flutter of a lifting surface. The legacy definition is that flutter is the first occurrence of simple harmonic motion of a structure, and the flight velocity at which this motion occurs is taken as the flutter speed. The expanded definition

  15. Vibration of plates

    CERN Document Server

    Chakraverty, Snehashish

    2008-01-01

    Plates are integral parts of most engineering structures and their vibration analysis is required for safe design. This work provides a comprehensive introduction to vibration theory and analysis of two-dimensional plates. It offers information on vibration problems along with a discussion of various plate geometries and boundary conditions.

  16. Vacuum polarization effects in the (μ-4He)+ atom and the Born-Infeld electromagnetic theory

    International Nuclear Information System (INIS)

    Iacopini, E.; Zavattini, E.

    1983-01-01

    It is shown that the Born-Infeld nonlinear electromagnetic theory predicts the n = 2 fine-structure differences in the (μ -4 He) + system in fair agreement with the experimental results. A discussion on the birifrangence induced in vacuum by a static magnetic field within the frame of classical Born-Infeld-type theories is also presented

  17. Electron traps in polar liquids. An application of the formalism of the random field theory

    International Nuclear Information System (INIS)

    Hilczer, M.; Bartczak, W.M.

    1992-01-01

    The potential energy surface in a disordered medium is described, using the concepts of the mathematical theory of random fields. The statistics of trapping sites (the regions of an excursion of the random field) is obtained for liquid methanol as a numerical example of the theory. (author). 15 refs, 4 figs

  18. Transport Properties of Spin-Polarized Atomic Hydrogen Using Generalized Scattering Theory

    Science.gov (United States)

    Joudeh, B. R.; Sandouqa, A. S.

    2018-02-01

    Our results for the scattering and thermophysical properties of spin-polarized atomic hydrogen (H{\\downarrow }) have been presented in the temperature range 0.01-10 K using the Galitskii-Migdal-Feynman formalism. These results include the quantum second virial coefficient, the average total and viscosity cross sections, the viscosity, the diffusion coefficient, and the thermal conductivity. The calculations have been undertaken using three triplet-state potentials: Morse-type, Silvera and Born-Oppenheimer potentials. The Morse potential is less attractive and very simple, but less accurate to describe spin-polarized atomic hydrogen. That explains the differences between it and the other two potentials, which are clearly better. From the results of the average total cross sections, it is concluded the H{\\downarrow } remains a gas even at low temperature. The viscosity, the thermal conductivity, and the diffusion coefficients of H{\\downarrow } increase in all cases with increasing temperature.

  19. Forward scattering of polarized light from a turbid slab: theory and Monte Carlo simulations.

    Science.gov (United States)

    Otsuki, Soichi

    2016-12-20

    It is proved that if reciprocity and mirror symmetry hold for single scattering by a particle, they also hold for multiple scattering in turbid slab media. Monte Carlo simulations generate a reduced effective Mueller matrix for forward scattering, which satisfies reciprocity and mirror symmetry, but satisfies only reciprocity if the medium contains chiral components. The scattering matrix was factorized by using the Lu-Chipman polar decomposition, which affords the polarization parameters as a function of the radial distance from the center. The depolarization coefficients decrease with increasing distance, whereas the scattering-induced linear diattenuation and retardance become larger in the middle-distance range. The optical rotation for a chiral medium increases with increasing distance.

  20. Eigenanalysis and Graph Theory Combined to Determine the Seasonal and Solar-Cycle Variations of Polar Magnetic Fields

    Science.gov (United States)

    Shore, R. M.; Freeman, M. P.; Gjerloev, J. W.

    2017-12-01

    We apply the meteorological analysis method of Empirical Orthogonal Functions (EOF) to ground magnetometer measurements, and subsequently use graph theory to classify the results. The EOF method is used to characterise and separate contributions to the variability of the Earth's external magnetic field (EMF) in the northern polar region. EOFs decompose the noisy EMF data into a small number of independent spatio-temporal basis functions, which collectively describe the majority of the magnetic field variance. We use these basis functions (computed monthly) to infill where data are missing, providing a self-consistent description of the EMF at 5-minute resolution spanning 1997-2009 (solar cycle 23). The EOF basis functions are calculated independently for each of the 144 months (i.e. 1997-2009) analysed. Since (by definition) the basis vectors are ranked by their contribution to the total variance, their rank will change from month to month. We use graph theory to find clusters of quantifiably-similar spatial basis functions, and thereby track similar patterns throughout the span of 144 months. We find that the discovered clusters can be associated with well-known individual Disturbance Polar (DP)-type equivalent current systems (e.g. DP2, DP1, DPY, NBZ), or with the motion of these systems. Via this method, we thus describe the varying behaviour of these current systems over solar cycle 23. We present their seasonal and solar cycle variations and examine the response of each current system to solar wind driving.

  1. Application of the Ursell-Mayer method in the theory of spin-polarized atomic hydrogen

    International Nuclear Information System (INIS)

    Kilic, S.; Radelja, T.

    1981-01-01

    Employing the Ursell-Mayer method and Ljolje semi-free gas model analytic relations describing ground state properties (energy, pressure, compressibility, sound velocity, radial distribution function and one-particle density matrix) of spin-polarized atomic hydrogen were derived. The expressions are valid up to density 2 10 26 atoms/m 3 . It was found out that at density of 2 10 26 atoms/m 3 the condensation of particle in momentum space is 88% (at absolute zero). (orig.)

  2. Ratiometric fluorescence polarization as a cytometric functional parameter: theory and practice

    Energy Technology Data Exchange (ETDEWEB)

    Yishai, Yitzhak; Fixler, Dror; Cohen-Kashi, Meir; Zurgil, Naomi; Deutsch, Mordechai [The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and the Technology of the Cellome, Department of Physics, Bar-Ilan University, Ramat-Gan 52900 (Israel)

    2003-08-07

    The use of ratiometric fluorescence polarization (RFP) as a functional parameter in monitoring cellular activation is suggested, based on the physical phenomenon of fluorescence polarization dependency on emission wavelengths in multiple (at least binary) solutions. The theoretical basis of this dependency is thoroughly discussed and examined via simulation. For simulation, aimed to imitate a fluorophore-stained cell, real values of the fluorescence spectrum and polarization of different single fluorophore solutions were used. The simulation as well as the experimentally obtained values of RFP indicated the high sensitivity of this measure. Finally, the RFP parameter was utilized as a cytometric measure in three exemplary cellular bioassays. In the first, the apoptotic effect of oxLDL in a human Jurkat FDA-stained T cell line was monitored by RFP. In the second, the interaction between cell surface membrane receptors of human T lymphocyte cells was monitored by RFP measurements as a complementary means to the fluorescence resonance energy transfer (FRET) technique. In the third bioassay, cellular thiol level of FDA- and CMFDA-labelled Jurkat T cells was monitored via RFP.

  3. Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2016-10-01

    In this article, a nonlocal four-variable refined plate theory is developed to examine the buckling behavior of nanoplates made of magneto-electro-elastic functionally graded (MEE-FG) materials resting on Winkler-Pasternak foundation. Material properties of nanoplate change in spatial coordinate based on power-law distribution. The nonlocal governing equations are deduced by employing the Hamilton principle. For various boundary conditions, the analytical solutions of nonlocal MEE-FG plates for buckling problem will be obtained based on an exact solution approach. Finally, dependency of buckling response of MEE-FG nanoplate on elastic foundation parameters, magnetic potential, external electric voltage, various boundary conditions, small scale parameter, power-law index, plate side-to-thickness ratio and aspect ratio will be figure out. These results can be advantageous for the mechanical analysis and design of intelligent nanoscale structures constructed from magneto-electro-thermo-elastic functionally graded materials.

  4. Plate and shell theory

    DEFF Research Database (Denmark)

    Sørensen, Herman

    1997-01-01

    Fundamental analytical methods for the calculation of the bending strength and stability of isotrop and stiffened panels typically used in ship structures.Practical working examples with references to the rules of ship classification societies....

  5. Loop quantization of the polarized Gowdy model on T{sup 3}: classical theory

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Kinjal; Date, Ghanashyam [Institute of Mathematical Sciences, CIT Campus, Chennai-600 113 (India)], E-mail: kinjal@imsc.res.in, E-mail: shyam@imsc.res.in

    2008-05-21

    The vacuum Gowdy models provide much studied, non-trivial midi-superspace examples. Various technical issues within loop quantum gravity can be studied in these models and one can hope to understand singularities and their resolution in the loop quantization. The first step in this program is to reformulate the model in real connection variables in a manner that is amenable to loop quantization. We begin with the unpolarized model and carry out a consistent reduction to the polarized case. Carrying out complete gauge fixing, the known solutions are recovered.

  6. Polarization properties of Gendrin mode waves observed in the Earth's magnetosphere: observations and theory

    Directory of Open Access Journals (Sweden)

    O. P. Verkhoglyadova

    2009-12-01

    Full Text Available We show a case of an outer zone magnetospheric electromagnetic wave propagating at the Gendrin angle, within uncertainty of the measurements. The chorus event occurred in a "minimum B pocket". For the illustrated example, the measured angle of wave propagation relative to the ambient magnetic field θkB was 58°±4°. For this event the theoretical Gendrin angle was 62°. Cold plasma model is used to demonstrate that Gendrin mode waves are right-hand circularly polarized, in excellent agreement with the observations.

  7. GEM Plate Boundary Simulations for the Plate Boundary Observatory: A Program for Understanding the Physics of Earthquakes on Complex Fault Networks via Observations, Theory and Numerical Simulation

    Science.gov (United States)

    Rundle, J. B.; Rundle, P. B.; Klein, W.; de sa Martins, J.; Tiampo, K. F.; Donnellan, A.; Kellogg, L. H.

    The last five years have seen unprecedented growth in the amount and quality of geodetic data collected to characterize crustal deformation in earthquake-prone areas such as California and Japan. The installation of the Southern California Integrated Geodetic Network (SCIGN) and the Bay Area Regional Deformation (BARD) network are two examples. As part of the recently proposed Earthscope NSF/GEO/EAR/MRE initiative, the Plate Boundary Observatory (PBO) plans to place more than a thousand GPS, strainmeters, and deformation sensors along the active plate boundary of the western coast of the United States, Mexico and Canada (http://www.earthscope.org/pbo.com.html). The scientific goals of PBO include understanding how tectonic plates interact, together with an emphasis on understanding the physics of earthquakes. However, the problem of understanding the physics of earthquakes on complex fault networks through observations alone is complicated by our inability to study the problem in a manner familiar to laboratory scientists, by means of controlled, fully reproducible experiments. We have therefore been motivated to construct a numerical simulation technology that will allow us to study earthquake physics via numerical experiments. To be considered successful, the simulations must not only produce observables that are maximally similar to those seen by the PBO and other observing programs, but in addition the simulations must provide dynamical predictions that can be falsified by means of observations on the real fault networks. In general, the dynamical behavior of earthquakes on complex fault networks is a result of the interplay between the geometric structure of the fault network and the physics of the frictional sliding process. In constructing numerical simulations of a complex fault network, we will need to solve a variety of problems, including the development of analysis techniques (also called data mining), data assimilation, space-time pattern definition

  8. String theory in polar coordinates and the vanishing of the one-loop Rindler entropy

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, Thomas G. [Joseph Henry Laboratories, Princeton University,Princeton, NJ 08544 (United States); Verschelde, Henri [Ghent University, Department of Physics and Astronomy,Krijgslaan, 281-S9, 9000 Gent (Belgium); Zakharov, Valentin I. [ITEP, B. Cheremushkinskaya 25, Moscow, 117218 (Russian Federation); Moscow Inst Phys & Technol,Dolgoprudny, Moscow Region, 141700 (Russian Federation); School of Biomedicine, Far Eastern Federal University,Sukhanova str 8, Vladivostok 690950 (Russian Federation)

    2016-08-19

    We analyze the string spectrum of flat space in polar coordinates, following the small curvature limit of the SL(2,ℝ)/U(1) cigar CFT. We first analyze the partition function of the cigar itself, making some clarifications of the structure of the spectrum that have escaped attention up to this point. The superstring spectrum (type 0 and type II) is shown to exhibit an involution symmetry, that survives the small curvature limit. We classify all marginal states in polar coordinates for type II superstrings, with emphasis on their links and their superconformal structure. This classification is confirmed by an explicit large τ{sub 2} analysis of the partition function. Next we compare three approaches towards the type II genus one entropy in Rindler space: using a sum-over-fields strategy, using a Melvin model approach as in http://dx.doi.org/10.1007/JHEP05(2015)106 and finally using a saddle point method on the cigar partition function. In each case we highlight possible obstructions and motivate that the correct procedures yield a vanishing result: S=0. We finally discuss how the QFT UV divergences of the fields in the spectrum disappear when computing the free energy and entropy using Euclidean techniques.

  9. Smoothed solutions in the kinetic theory of e+e- vacuum pair creation in strong laser fields. Linear polarization

    Science.gov (United States)

    Smolyansky, S. A.; Prozorkevich, A. V.; Dmitriev, V. V.; Tarakanov, A. V.

    2014-11-01

    In this paper, the dynamical Schwinger effect of vacuum creation of electron-positron pairs driven by an intense laser pulse is studied on the basis of correct quantum kinetic theory. In the general case, the numerical solutions of corresponding system of kinetic equations exhibit complex time dependence which makes the analysis of the physical processes complicated. In particular, the question of secondary effects, such as creation of annihilation photons from the focus spot of the colliding laser beams, remains an important open problem. In our previous work [S. A. Smolyansky, M. Bonitz and A. V. Prozorkevich, Contrib. Plasma Phys.53 (2013) 788], we presented a perturbation theory which is able to capture the dominant time dependence of the produced electron-positron pair distribution during the pulse (quasiparticle excitations). In the present work, we develop appreciably this approximation scheme. We demonstrate effectiveness of the proposed method for solution of such kind nonstationary problems in the simplest models of the laser field. However, this approach opens perspective for search of the relevant approximate solutions in kinetic theory of the e+e- quasiparticle plasma for the more realistic field models (arbitrary polarization, space inhomogeneous, etc).

  10. Calculation of Surface Tensions of Polar Mixtures with a Simplified Gradient Theory Model

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan

    1996-01-01

    Key Words: Thermodynamics, Simplified Gradient Theory, Surface Tension, Equation of state, Influence Parameter.In this work, assuming that the number densities of each component in a mixture across the interface between the coexisting vapor and liquid phases are linearly distributed, we developed...

  11. Some remarks on the theory of the dielectric constant of non-polar dense gases

    NARCIS (Netherlands)

    Nijboer, B.R.A.

    1975-01-01

    It is pointed out that the usual simple theory of the dielectric constant in isotropic nonpolar media, based on a model with constant polarizability and with dipolar interaction between atoms, is consistent only if the atoms are assumed to have a hard core, so that they cannot approach each other

  12. Induced Polarization with Electromagnetic Coupling: 3D Spectral Imaging Theory, EMSP Project No. 73836

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, F. Dale; Sogade, John

    2004-12-14

    This project was designed as a broad foundational study of spectral induced polarization (SIP) for characterization of contaminated sites. It encompassed laboratory studies of the effects of chemistry on induced polarization, development of 3D forward modeling and inversion codes, and investigations of inductive and capacitive coupling problems. In the laboratory part of the project a physico-chemical model developed in this project was used to invert laboratory IP spectra for the grain size and the effective grain size distribution of the sedimentary rocks as well as the formation factor, porosity, specific surface area, and the apparent fractal dimension. Furthermore, it was established that the IP response changed with the solution chemistry, the concentration of a given solution chemistry, valence of the constituent ions, and ionic radius. In the field part of the project, a 3D complex forward and inverse model was developed. It was used to process data acquired at two frequencies (1/16 Hz and 1/ 4Hz) in a cross-borehole configuration at the A-14 outfall area of the Savannah River Site (SRS) during March 2003 and June 2004. The chosen SRS site was contaminated with Tetrachloroethylene (TCE) and Trichloroethylene (PCE) that were disposed in this area for several decades till the 1980s. The imaginary conductivity produced from the inverted 2003 data correlated very well with the log10 (PCE) concentration derived from point sampling at 1 ft spacing in five ground-truth boreholes drilled after the data acquisition. The equivalent result for the 2004 data revealed that there were significant contaminant movements during the period March 2003 and June 2004, probably related to ground-truth activities and nearby remediation activities. Therefore SIP was successfully used to develop conceptual models of volume distributions of PCE/TCE contamination. In addition, the project developed non-polarizing electrodes that can be deployed in boreholes for years. A total of 28

  13. Methanesulfonic acid (MSA) migration in polar ice: data synthesis and theory

    Science.gov (United States)

    Osman, Matthew; Das, Sarah B.; Marchal, Olivier; Evans, Matthew J.

    2017-11-01

    Methanesulfonic acid (MSA; CH3SO3H) in polar ice is a unique proxy of marine primary productivity, synoptic atmospheric transport, and regional sea-ice behavior. However, MSA can be mobile within the firn and ice matrix, a post-depositional process that is well known but poorly understood and documented, leading to uncertainties in the integrity of the MSA paleoclimatic signal. Here, we use a compilation of 22 ice core MSA records from Greenland and Antarctica and a model of soluble impurity transport in order to comprehensively investigate the vertical migration of MSA from summer layers, where MSA is originally deposited, to adjacent winter layers in polar ice. We find that the shallowest depth of MSA migration in our compilation varies over a wide range (˜ 2 to 400 m) and is positively correlated with snow accumulation rate and negatively correlated with ice concentration of Na+ (typically the most abundant marine cation). Although the considered soluble impurity transport model provides a useful mechanistic framework for studying MSA migration, it remains limited by inadequate constraints on key physico-chemical parameters - most notably, the diffusion coefficient of MSA in cold ice (DMS). We derive a simplified version of the model, which includes DMS as the sole parameter, in order to illuminate aspects of the migration process. Using this model, we show that the progressive phase alignment of MSA and Na+ concentration peaks observed along a high-resolution West Antarctic core is most consistent with 10-12 m2 s-1 DMS DMS values previously estimated from laboratory studies. More generally, our data synthesis and model results suggest that (i) MSA migration may be fairly ubiquitous, particularly at coastal and (or) high-accumulation regions across Greenland and Antarctica; and (ii) can significantly change annual and multiyear MSA concentration averages. Thus, in most cases, caution should be exercised when interpreting polar ice core MSA records, although

  14. Theory of magnetic-field-induced polarization flop in spin-spiral multiferroics

    Science.gov (United States)

    Mochizuki, Masahito

    2015-12-01

    The magnetic-field-induced 90∘ flop of ferroelectric polarization P in a spin-spiral multiferroic material TbMnO3 is theoretically studied based on a microscopic spin model. I find that the direction of the P flop or the choice of +Pa or -Pa after the flop is governed by magnetic torques produced by the applied magnetic field H acting on the Mn spins and thus is selected in a deterministic way, in contradistinction to the naively anticipated probabilistic flop. This mechanism resolves a puzzle of the previously reported memory effect in the P direction depending on the history of the magnetic-field sweep, and enables controlled switching of multiferroic domains by externally applied magnetic fields. My Monte-Carlo analysis also uncovers that the magnetic structure in the P ∥a phase under H ∥b is not a previously anticipated simple a b -plane spin cycloid but a conical spin structure.

  15. Theory of current-induced spin polarization in an electron gas

    Science.gov (United States)

    Gorini, Cosimo; Maleki Sheikhabadi, Amin; Shen, Ka; Tokatly, Ilya V.; Vignale, Giovanni; Raimondi, Roberto

    2017-05-01

    We derive the Bloch equations for the spin dynamics of a two-dimensional electron gas in the presence of spin-orbit coupling. For the latter we consider both the intrinsic mechanisms of structure inversion asymmetry (Rashba) and bulk inversion asymmetry (Dresselhaus), and the extrinsic ones arising from the scattering from impurities. The derivation is based on the SU(2) gauge-field formulation of the Rashba-Dresselhaus spin-orbit coupling. Our main result is the identification of a spin-generation torque arising from Elliot-Yafet scattering, which opposes a similar term arising from Dyakonov-Perel relaxation. Such a torque, which to the best of our knowledge has gone unnoticed so far, is of basic nature, i.e., should be effective whenever Elliott-Yafet processes are present in a system with intrinsic spin-orbit coupling, irrespective of further specific details. The spin-generation torque contributes to the current-induced spin polarization (CISP), also known as inverse spin-galvanic or Edelstein effect. As a result, the behavior of the CISP turns out to be more complex than one would surmise from consideration of the internal Rashba-Dresselhaus fields alone. In particular, the symmetry of the current-induced spin polarization does not necessarily coincide with that of the internal Rashba-Dresselhaus field, and an out-of-plane component of the CISP is generally predicted, as observed in recent experiments. We also discuss the extension to the three-dimensional electron gas, which may be relevant for the interpretation of experiments in thin films.

  16. Size-Dependent Bending, Buckling and Free Vibration Analyses of Microscale Functionally Graded Mindlin Plates Based on the Strain Gradient Elasticity Theory

    Directory of Open Access Journals (Sweden)

    R. Ansari

    Full Text Available Abstract In this paper, a size-dependent microscale plate model is developed to describe the bending, buckling and free vibration behaviors of microplates made of functionally graded materials (FGMs. The size effects are captured based on the modified strain gradient theory (MSGT, and the formulation of the paper is on the basis of Mindlin plate theory. The presented model accommodates the models based upon the classical theory (CT and the modified couple stress theory (MCST if all or two scale parameters are set to zero, respectively. By using Hamilton's principle, the governing equations and related boundary conditions are derived. The bending, buckling and free vibration problems are considered and are solved through the generalized differential quadrature (GDQ method. A detailed parametric and comparative study is conducted to evaluate the effects of length scale parameter, material gradient index and aspect ratio predicted by the CT, MCST and MSGT on the deflection, critical buckling load and first natural frequency of the microplate. The numerical results indicate that the model developed herein is significantly size-dependent when the thickness of the microplate is on the order of the material scale parameters.

  17. Vibration and buckling of orthotropic functionally graded micro-plates on the basis of a re-modified couple stress theory

    Directory of Open Access Journals (Sweden)

    Zihao Yang

    Full Text Available A microstructure-dependent model for the free vibration and buckling analysis of an orthotropic functionally graded micro-plate was proposed on the basis of a re-modified couple stress theory. The macro- and microscopic anisotropy were simultaneously taken into account by introducing two material length scale parameters. The material attributes were assumed to vary continuously through the thickness direction by a power law. The governing equations and corresponding boundary conditions were derived through Hamilton’s principle. The Navier method was used to calculate the natural frequencies and buckling loads of a simply supported micro-plate. The numerical results indicated that the present model predicts higher natural frequencies and critical buckling loads than the classical model, particular when the geometric size of the micro-plates is comparable to the material length scale parameters, i.e., the scale effect is well represented. The scale effect becomes more noticeable as the material length scale parameters increase, the anisotropy weaken or the power law index increases, and vice versa. Keywords: Free vibration, Buckling, Functionally graded materials, Modified couple stress theory, Scale effect

  18. Rapid calculation of protein chemical shifts using bond polarization theory and its application to protein structure refinement.

    Science.gov (United States)

    Jakovkin, Igor; Klipfel, Marco; Muhle-Goll, Claudia; Ulrich, Anne S; Luy, Burkhard; Sternberg, Ulrich

    2012-09-21

    Although difficult to analyze, NMR chemical shifts provide detailed information on protein structure. We have adapted the semi-empirical bond polarization theory (BPT) to protein chemical shift calculation and chemical shift driven protein structure refinement. A new parameterization for BPT amide nitrogen chemical shift calculation has been derived from MP2 ab initio calculations and successfully evaluated using crystalline tripeptides. We computed the chemical shifts of the small globular protein ubiquitin, demonstrating that BPT calculations can match the results obtained at the DFT level of theory at very low computational cost. In addition to the calculation of chemical shift tensors, BPT allows the calculation of chemical shift gradients and consequently chemical shift driven geometry optimizations. We applied chemical shift driven protein structure refinement to the conformational analysis of a set of Trypanosoma brucei (the causative agent of African sleeping sickness) tryparedoxin peroxidase Px III structures. We found that the interaction of Px III with its reaction partner Tpx seems to be governed by conformational selection rather than by induced fit.

  19. Liquid crystal chiroptical polarization rotators for the near-UV region: theory, materials, and device applications

    Science.gov (United States)

    Saulnier, D.; Taylor, B.; Marshall, K. L.; Kessler, T. J.; Jacobs, S. D.

    2013-09-01

    The helical structure of a chiral-nematic liquid crystal (CLC) material produces a number of interesting optical properties, including selective reflection and optical rotatory power. To take advantage of the high optical rotation near the selective reflection peak for applications in the UV, either large concentrations of chiral components or those possessing very large helical twisting powers (HTP's) are necessary. It is difficult to find chiral twisting agents with high HTP that do not degrade the UV transmission. We report what we believe to be the first experimental observation of extraordinarily high optical rotation (<30°/μm) in the near UV for a long-pitch (13.8-μm) CLC mixture composed of the low-birefringence nematic host ZLI-1646 doped with a low concentration (e.g., 1 wt%) of the chiral dopant CB 15. This experimental finding is verified theoretically using a mathematical model developed by Belyakov, which improves on de Vries' original model for optical rotation far from the selective reflection peak by taking into account the nonlinearity of optical rotatory power as a function of liquid crystal (LC) layer thickness. Using this model, the optical rotation at λ = 355 nm for the 1% CB 15/ZLI-1646 mixture is determined computationally, with the results in agreement with experimental data obtained by evaluating a series of wedged cells using an areal mapping, Hinds Exicor 450XT Mueller Matrix Polarimeter. This finding now opens a path to novel LC optics for numerous near-UV applications. One such envisioned application for this class of materials would be UV distributed polarization rotators (UV-DPR's) for largeaperture, high-peak-power lasers.

  20. A two-dimensional fully analytical model with polarization effect for off-state channel potential and electric field distributions of GaN-based field-plated high electron mobility transistor

    International Nuclear Information System (INIS)

    Mao Wei; She Wei-Bo; Zhang Chao; Zhang Jin-Cheng; Zhang Jin-Feng; Liu Hong-Xia; Yang Lin-An; Zhang Kai; Zhao Sheng-Lei; Chen Yong-He; Zheng Xue-Feng; Hao Yue; Yang Cui; Ma Xiao-Hua

    2014-01-01

    In this paper, we present a two-dimensional (2D) fully analytical model with consideration of polarization effect for the channel potential and electric field distributions of the gate field-plated high electron mobility transistor (FP-HEMT) on the basis of 2D Poisson's solution. The dependences of the channel potential and electric field distributions on drain bias, polarization charge density, FP structure parameters, AlGaN/GaN material parameters, etc. are investigated. A simple and convenient approach to designing high breakdown voltage FP-HEMTs is also proposed. The validity of this model is demonstrated by comparison with the numerical simulations with Silvaco—Atlas. The method in this paper can be extended to the development of other analytical models for different device structures, such as MIS-HEMTs, multiple-FP HETMs, slant-FP HEMTs, etc. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. Charts Adapted from Van Driest's Turbulent Flat-plate Theory for Determining Values of Turbulent Aerodynamic Friction and Heat-transfer Coefficients

    Science.gov (United States)

    Lee, Dorothy B; Faget, Maxime A

    1956-01-01

    A modified method of Van Driest's flat-plate theory for turbulent boundary layer has been found to simplify the calculation of local skin-friction coefficients which, in turn, have made it possible to obtain through Reynolds analogy theoretical turbulent heat-transfer coefficients in the form of Stanton number. A general formula is given and charts are presented from which the modified method can be solved for Mach numbers 1.0 to 12.0, temperature ratios 0.2 to 6.0, and Reynolds numbers 0.2 times 10 to the 6th power to 200 times 10 to the 6th power.

  2. Ku-Band Dual-Polarized Array of Connected Dipoles for Satcom Terminals : Theory and Hardware Validation

    NARCIS (Netherlands)

    Gerini, G.; Bolt, R.J.; Deurloo, D.; Grooters, R.; Neto, A.; Toso, G.; Midthassel, R.

    2013-01-01

    We present a Ku-band dual-polarized phased array demonstrator for satellite communications. The prototype array is composed by 512 connected-dipole elements, 16x16 for each polarization, arranged in an egg-crate configuration. A loop-shaped feed structure is used to maintain good polarization purity

  3. Polarization Dependent Bulk-sensitive Valence Band Photoemission Spectroscopy and Density Functional Theory Calculations: Part I. 3d Transition Metals

    Science.gov (United States)

    Ueda, Shigenori; Hamada, Ikutaro

    2017-12-01

    The X-ray polarization dependent valence band HAXPES spectra of 3d transition metals (TMs) of Ti-Zn were measured to investigate the orbital resolved electronic structures by utilizing that the fact the photoionization cross-section of the atomic orbitals strongly depends on the experimental geometry. We have calculated the HAXPES spectra, which correspond to the cross-section weighted densities of states (CSW-DOSs), where the DOSs were obtained by the density functional theory calculations, and we have determined the relative photoionization cross-sections of the 4s and 4p orbitals to the 3d orbital in the 3d TMs. The experimentally obtained bulk-sensitive 3d and 4s DOSs were good agreement with the calculated DOSs in Ti, V, Cr, and Cu. In contrast, the deviations between the experimental and calculated 3d DOSs for Mn, Fe, Co, Ni were found, suggesting that the electron correlation plays an important role in the electronic structures for these materials.

  4. Nonlocal, refined plate, and surface effects theories used to analyze free vibration of magnetoelectroelastic nanoplates under thermo-mechanical and shear loadings

    Science.gov (United States)

    Karimi, Morteza; Shahidi, Ali Reza

    2017-05-01

    The theories of nonlocal, refined plate, and surface effects are used in this study to investigate the free vibration of magnetoelectroelastic (MEE) nanoplates resting on elastic foundations. For this purpose, the MEE nanoplate is subjected not only to external magnetic and electric potentials but also to thermal and shear in-plane loads. The refined plate theory is used and the Maxwell equations and magnetoelectric boundary conditions employed to determine the variations in the electric and magnetic potentials along the direction of the nanoplate thickness. This is followed by deriving the governing equations based on the Hamilton's principle, which are then solved via the generalized differential quadrature method. In a later stage of the study, the effects of electric and magnetic potentials, nonlocal parameter, thermal and shear in-plane loading, Winkler and shear moduli, different boundary conditions, and aspect ratio are explored in a parametric study on the surface effects of vibration characteristics of MEE nanoplates. It is found that the effect of surface parameters enhanced with increases in nonlocal parameter, electric potential, in-plane shear load, and temperature change. However, this effect is observed to decrease when the magnetic potential, dimensionless Winkler and shear moduli, and nanoplate thickness are augmented.

  5. Phenomenological theory of current-producing processes at the solid oxide electrolyte/gas electrode interface: steady-state polarization of fuel-cell electrodes

    International Nuclear Information System (INIS)

    Murygin, I.V.; Chebotin, V.N.

    1979-01-01

    The polarization of fuel-cell electrodes (mixtures CO + CO 2 and H 2 + H 2 O) in systems with solid oxide electrolytes is discussed. The theory is based upon a process model where the electrode reaction zone can spread along the line of three-phase contact by diffusion of reaction partners and products across the electrolyte/electrode and electrolyte/gas interface

  6. Nonlinear polarization rotation in semiconductor optical amplifiers: Theory and application to all-optical flip-flop memories

    NARCIS (Netherlands)

    Dorren, H.J.S.; Lenstra, D.; Liu, Y.S.; Hill, M. T.; Khoe, G.D.

    2003-01-01

    We present a model for polarization-dependent gain saturation in strained bulk semiconductor optical amplifiers. We assume that the polarized optical field can be decomposed into transverse electric and transverse magnetic components that have indirect interaction with each other via the gain

  7. Kirchhoff plate theory-based electromechanically-coupled analytical model considering inertia and stiffness effects of a surface-bonded piezoelectric patch

    International Nuclear Information System (INIS)

    Yoon, Heonjun; Youn, Byeng D; Kim, Heung Soo

    2016-01-01

    As a compact and durable design concept, piezoelectric energy harvesting skin (PEH skin) has been recently proposed for self-powered electronic device applications. This study aims to develop an electromechanically-coupled analytical model of PEH skin considering the inertia and stiffness effects of a piezoelectric patch. Based on Kirchhoff plate theory, Hamilton’s principle is used to derive the electromechanically-coupled differential equation of motion. Due to the geometric discontinuity of the piezoelectric patch, the Rayleigh–Ritz method is applied to calculate the natural frequency and corresponding mode shapes. The electrical circuit equation is derived from Gauss’s law. Output voltage is estimated by solving the equation of motion and electrical circuit equation, simultaneously. For the purpose of evaluating the predictive capability, the results of the electromechanically-coupled analytical model are compared with those of the finite element method in a hierarchical manner. The outstanding merits of the electromechanically-coupled analytical model of PEH skin are three-fold: (1) consideration of the inertia and stiffness effects of the piezoelectric patches; (2) physical parameterization between the two-dimensional mechanical configuration and piezoelectric transduction; (3) manipulability of the twisting modes of a cantilever plate with a small aspect ratio. (paper)

  8. Ab initio density functional theory study of non-polar (101¯0), (112¯0) and semipolar (202¯1) GaN surfaces

    International Nuclear Information System (INIS)

    Mutombo, P.; Romanyuk, O.

    2014-01-01

    The atomic structures of non-polar GaN(101 ¯ 0), (112 ¯ 0) and semipolar GaN(202 ¯ 1), (202 ¯ 1 ¯ ) surfaces were studied using ab initio calculations within density functional theory. The bulk-like truncated (1 × 1) structure with buckled Ga-N or Ga-Ga dimers was found stable on the non-polar GaN(101 ¯ 0) surface in agreement with previous works. Ga-N heterodimers were found energetically stable on the GaN(112 ¯ 0)-(1 × 1) surface. The formation of vacancies and substitution site defects was found unfavorable for non-polar GaN surfaces. Semipolar GaN(202 ¯ 1)-(1 × 1) surface unit cells consist of non-polar (101 ¯ 0) and semipolar (101 ¯ 1) nano-facets. The (101 ¯ 1) nano-facets consist of two-fold coordinated atoms, which form N-N dimers within a (2 × 1) surface unit cell on a GaN(202 ¯ 1) surface. Dimers are not formed on the GaN(202 ¯ 1 ¯ ) surface. The stability of the surfaces with single (101 ¯ 0) or (101 ¯ 1) nano-facets was analyzed. A single non-polar (101 ¯ 0)-(1 × 1) nano-facet was found stable on the GaN(202 ¯ 1) surface, but unstable on the GaN(202 ¯ 1 ¯ ) surface. A single (101 ¯ 1) nano-facet was found unstable. Semipolar GaN surfaces with (202 ¯ 1) and (202 ¯ 1 ¯ ) polarity can be stabilized with a Ga overlayer at Ga-rich experimental conditions.

  9. Theory for Spin Selective Andreev Re ection in Vortex Core of Topological Superconductor: Majorana Zero Modes on Spherical Surface and Application to Spin Polarized Scanning Tunneling Microscope Probe

    Science.gov (United States)

    Zhang, Fu-Chun; Hu, Lun-Hui; Li, Chuang; Xu, Dong-Hui; Zhou, Yi

    Majorana zero modes (MZMs) have been predicted to exist in the topological insulator (TI)/superconductor (SC) heterostructure. Recent spin polarized scanning tunneling microscope(STM) experiment has observed spin-polarization dependence of the zero bias differential tunneling conductance at the center of vortex core. Here we consider a helical electron system described by a Rashba spin orbit coupling Hamiltonian on a spherical surface with a s-wave superconducting pairing due to proximity effect. We examine in-gap excitations of a pair of vortices with one at the north pole and the other at the south pole. While the MZM is not a spin eigenstate, the spin wavefunction of the MZM at the center of the vortex core, r = 0, is parallel to the magnetic field, and the local Andreev reflection of the MZM is spin selective, namely occurs only when the STM tip has the spin polarization parallel to the magnetic field, similar to the case in 1-dimensional nanowire. The total local differential tunneling conductance consists of the normal term proportional to the local density of states and an additional term arising from the Andreev reflection. We apply our theory to examine the recently reported spin-polarized STM experiments and show good agreement with the experiments

  10. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  11. Plating laboratory

    International Nuclear Information System (INIS)

    Seamster, A.G.; Weitkamp, W.G.

    1984-01-01

    The lead plating of the prototype resonator has been conducted entirely in the plating laboratory at SUNY Stony Brook. Because of the considerable cost and inconvenience in transporting personnel and materials to and from Stony Brook, it is clearly impractical to plate all the resonators there. Furthermore, the high-beta resonator cannot be accommodated at Stony Brook without modifying the set up there. Consequently the authors are constructing a plating lab in-house

  12. Surface Tension of Binary Mixtures Including Polar Components Modeled by the Density Gradient Theory Combined with the PC-SAFT Equation of State

    Czech Academy of Sciences Publication Activity Database

    Vinš, Václav; Planková, Barbora; Hrubý, Jan

    2013-01-01

    Roč. 34, č. 5 (2013), s. 792-812 ISSN 0195-928X R&D Projects: GA AV ČR IAA200760905; GA ČR(CZ) GPP101/11/P046; GA ČR GA101/09/1633 Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : chemical polarity * gradient theory * surface tension Subject RIV: BJ - Thermodynamics Impact factor: 0.623, year: 2013 http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10765-012-1207-z

  13. Electrically induced mechanical precompression of ferroelectric plates

    Science.gov (United States)

    Chen, P.J.

    1987-03-02

    A method of electrically inducing mechanical precompression of ferroelectric plate covered with electrodes utilizes the change in strains of the plate as functions of applied electric field. A first field polarizes and laterally shrinks the entire plate. An outer portion of the electrodes are removed, and an opposite field partially depolarizes and expands the central portion of the plate against the shrunk outer portion. 2 figs.

  14. Relativistic spin-polarized KKR theory for superconducting heterostructures: Oscillating order parameter in the Au layer of Nb/Au/Fe trilayers

    Science.gov (United States)

    Csire, Gábor; Deák, András; Nyári, Bendegúz; Ebert, Hubert; Annett, James F.; Újfalussy, Balázs

    2018-01-01

    The fully relativistic spin-polarized multiple-scattering theory is developed for inhomogeneous superconductors, including superconducting/normal-metal/ferromagnet heterostructures. The method allows the solution of the first-principles Dirac-Bogoliubov-de Gennes equations combined with a semiphenomenological parametrization of the exchange-correlation functional. Simple conditions are derived for the case when the right-hand-side and left-hand-side solutions must be treated separately when setting up the corresponding Green's function. As an application of the theory, we calculate the order parameters of Nb/Fe and Nb/Au/Fe systems. We find Fulde-Ferrell-Larkin-Ovchinnikov-like oscillations in the iron layers, but more interestingly an oscillatory behavior is observed in the gold layers as well. The band-structure calculations suggest that this is the consequence of an interplay between the quantum-well states and ferromagnetism.

  15. Plate tectonics

    Digital Repository Service at National Institute of Oceanography (India)

    Chaubey, A.K.

    ), for the first time, have proposed time scale for geomagnetic reversals making use of the Potassium- Argon (K-Ar) dates. Further, discovery of short polarity event of duration as small as 10 5 years within the major polarity intervals have led to modify... of geomagnetism e.g. Brunhes, Matuyama, Gauss, Gilbert, while the short duration polarity events (short intra-epoch fluctuations) were named after the sites of their discovery (Cox et al., 1964). A polarity epoch may contain several polarity events and can...

  16. Analytical polarization calculations beyond SLIM

    International Nuclear Information System (INIS)

    Barber, D.P.

    1989-01-01

    A comparison is made between the theories of Bell and Leinaas and of Derbenev and Kondratenko for the spin polarization in electron storage rings. A calculation of polarization in HERA using the program SMILE of Mane is presented

  17. Atomic charge transfer-counter polarization effects determine infrared CH intensities of hydrocarbons: a quantum theory of atoms in molecules model.

    Science.gov (United States)

    Silva, Arnaldo F; Richter, Wagner E; Meneses, Helen G C; Bruns, Roy E

    2014-11-14

    Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.

  18. 6-C polarization analysis using point measurements of translational and rotational ground-motion: theory and applications

    Science.gov (United States)

    Sollberger, David; Greenhalgh, Stewart A.; Schmelzbach, Cedric; Van Renterghem, Cédéric; Robertsson, Johan O. A.

    2018-04-01

    We provide a six-component (6-C) polarization model for P-, SV-, SH-, Rayleigh-, and Love-waves both inside an elastic medium as well as at the free surface. It is shown that single-station 6-C data comprised of three components of rotational motion and three components of translational motion provide the opportunity to unambiguously identify the wave type, propagation direction, and local P- and S-wave velocities at the receiver location by use of polarization analysis. To extract such information by conventional processing of three-component (3-C) translational data would require large and dense receiver arrays. The additional rotational components allow the extension of the rank of the coherency matrix used for polarization analysis. This enables us to accurately determine the wave type and wave parameters (propagation direction and velocity) of seismic phases, even if more than one wave is present in the analysis time window. This is not possible with standard, pure-translational 3-C recordings. In order to identify modes of vibration and to extract the accompanying wave parameters, we adapt the multiple signal classification algorithm (MUSIC). Due to the strong nonlinearity of the MUSIC estimator function, it can be used to detect the presence of specific wave types within the analysis time window at very high resolution. We show how the extracted wavefield properties can be used, in a fully automated way, to separate the wavefield into its different wave modes using only a single 6-C recording station. As an example, we apply the method to remove surface wave energy while preserving the underlying reflection signal and to suppress energy originating from undesired directions, such as side-scattered waves.

  19. Polarization Optics

    OpenAIRE

    Fressengeas, Nicolas

    2010-01-01

    The physics of polarization optics *Polarized light propagation *Partially polarized light; DEA; After a brief introduction to polarization optics, this lecture reviews the basic formalisms for dealing with it: Jones Calculus for totally polarized light and Stokes parameters associated to Mueller Calculus for partially polarized light.

  20. Polarization effects in coherent and incoherent photon scattering: survey of measurements and theory relevant to radiation transport calculations

    International Nuclear Information System (INIS)

    Hubbell, J.H.

    1993-01-01

    This report reviews available information on polarization effects arising when photons in the X-ray and gamma-ray energy regime undergo coherent (Rayleigh) scattering and incoherent (Compton) scattering by atomic electrons. In addition to descriptions and discussions of these effects, including estimates of their magnitudes as they apply to radiation transport calculations, an annotated bibliography of 102 selected works covering the period 1905-1991 is provided, with particularly relevant works for the purpose of this report flagged with asterisks (*). A major resource for this report is a 1948 unpublished informal report by L.V. Spencer which has been quoted here almost in its entirety, since, of all the works cited in the annotated bibliography, it appears to be the only one which explicitly and directly addresses the purpose of this report. Hence this valuable material should be re-introduced into the available and current literature. (author). 119 refs., 7 figs

  1. Comprehension of direct extraction of hydrophilic antioxidants using vegetable oils by polar paradox theory and small angle X-ray scattering analysis.

    Science.gov (United States)

    Li, Ying; Fabiano-Tixier, Anne Sylvie; Ruiz, Karine; Rossignol Castera, Anne; Bauduin, Pierre; Diat, Olivier; Chemat, Farid

    2015-04-15

    Since the polar paradox theory rationalised the fact that polar antioxidants are more effective in nonpolar media, extractions of phenolic compounds in vegetable oils were inspired and achieved in this study for obtaining oils enriched in phenolic compounds. Moreover, the influence of surfactants on the extractability of phenolic compounds was experimentally studied first, followed by the small angle X-ray scattering analysis for the oil structural observation before and after extraction so as to better understand the dissolving mechanism underpinning the extraction. The results showed a significant difference on the extraction yield of phenolic compounds among oils, which was mainly dependent on their composition instead of the unsaturation of fatty acids. Appropriate surfactant additions could significantly improve extraction yield for refined sunflower oils, which 1% w/w addition of glyceryl oleate was determined as the optimal. Besides, 5% w/w addition of lecithin performed the best in oil enrichments compared with mono- and di-glycerides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Application of the Maxwell-Wagner-Hanai effective medium theory to the analysis of the interfacial polarization relaxations in conducting composite films

    International Nuclear Information System (INIS)

    Adohi, B J-P; Bouanga, C Vanga; Fatyeyeva, K; Tabellout, M

    2009-01-01

    A new approach to explain the interfacial polarization phenomenon in conducting composite films is proposed. HCl-doped poly(ethylene terephthalate) (PET) and polyamide-6 (PA-6) matrices with embedded polyaniline (PANI) particles as filler were investigated and analysed, combining dielectric spectroscopy and AFM electrical images with the effective medium theory analysis. Up to three relaxation peaks attributed to the interfacial polarization phenomena were detected in the studied frequency range (0.1 Hz-1 MHz). The AFM electrical images revealed that the doped PA-6/PANI composite can be modelled as a single-type particle medium and the PET/PANI one as a two-type particle medium. A simple dielectric loss expression was derived from the Maxwell-Wagner-Hanai mixture equation and was applied to the experimental data to identify the interfaces involved in each of the relaxation peaks. The parameter values (permittivity, conductivity, volume fraction of the PANI particles) were found to agree well with the measured one, hence validating the models.

  3. From the Orbital Implementation of the Kinetic Theory to the Polarization Propagator Method in the Study of Energy Deposition Problems

    Science.gov (United States)

    Cabrera-Trujillo, R.; Cruz, S. A.; Soullard, J.

    The energy deposited by swift atomic-ion projectiles when colliding with a given target material has been a topic of special scientific interest for the last century due to the variety of applications of ion beams in modern materials technology as well as in medical physics. In this work, we summarize our contributions in this field as a consequence of fruitful discussions and enlightening ideas put forward by one of the main protagonists in stopping power theory during the last three decades: Jens Oddershede. Our review, mainly motivated by Jens' work, evolves from the extension of the orbital implementation of the kinetic theory of stopping through the orbital local plasma approximation, its use in studies of orbital and total mean excitation energies for the study of atomic and molecular stopping until the advances on generalized oscillator strength and sum rules in the study of stopping cross sections. Finally, as a tribute to Jens' work on the orbital implementation of the kinetic theory of stopping, in this work we present new results on the use of the Thomas-Fermi-Dirac-Weizsäcker density functional for the calculation of orbital and total atomic mean excitation energies. The results are applied to free-atoms and and extension is done to confined atoms - taking Si as an example - whereby target pressure effects on stopping are derived. Hence, evidence of the far-yield of Jens' ideas is given.

  4. Combining linear polarization spectroscopy and the Representative Layer Theory to measure the Beer-Lambert law absorbance of highly scattering materials.

    Science.gov (United States)

    Gobrecht, Alexia; Bendoula, Ryad; Roger, Jean-Michel; Bellon-Maurel, Véronique

    2015-01-01

    Visible and Near Infrared (Vis-NIR) Spectroscopy is a powerful non destructive analytical method used to analyze major compounds in bulk materials and products and requiring no sample preparation. It is widely used in routine analysis and also in-line in industries, in-vivo with biomedical applications or in-field for agricultural and environmental applications. However, highly scattering samples subvert Beer-Lambert law's linear relationship between spectral absorbance and the concentrations. Instead of spectral pre-processing, which is commonly used by Vis-NIR spectroscopists to mitigate the scattering effect, we put forward an optical method, based on Polarized Light Spectroscopy to improve the absorbance signal measurement on highly scattering samples. This method selects part of the signal which is less impacted by scattering. The resulted signal is combined in the Absorption/Remission function defined in Dahm's Representative Layer Theory to compute an absorbance signal fulfilling Beer-Lambert's law, i.e. being linearly related to concentration of the chemicals composing the sample. The underpinning theories have been experimentally evaluated on scattering samples in liquid form and in powdered form. The method produced more accurate spectra and the Pearson's coefficient assessing the linearity between the absorbance spectra and the concentration of the added dye improved from 0.94 to 0.99 for liquid samples and 0.84-0.97 for powdered samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Research on generating various polarization-modes in polarized illumination system

    Science.gov (United States)

    Huang, Jinping; Lin, Wumei; Fan, Zhenjie

    2013-08-01

    With the increase of the numerical aperture (NA), the polarization of light affects the imaging quality of projection lens more significantly. On the contrary, according to the mask pattern, the resolution of projection lens can be improved by using the polarized illumination. That is to say, using the corresponding polarized beam (or polarization-mode) along with the off-axis illumination will improve the resolution and the imaging quality of the of projection lens. Therefore, the research on the generation of various polarization modes and its conversion methods become more and more important. In order to realize various polarization modes in polarized illumination system, after read a lot of references, we provide a way that fitting for the illumination system with the wavelength of 193nm.Six polarization-modes and a depolarized mode are probably considered. Wave-plate stack is used to generate linearly polarization-mode, which have a higher degree polarization. In order to generate X-Y and Y-X polarization mode, the equipment consisting of four sectors of λ/2 wave plate was used. We combined 16 sectors of λ/2 wave plate which have different orientations of the "slow" axis to generate radial and azimuthal polarization. Finally, a multi-polarization control device was designed. Using the kind of multi-polarization control device which applying this method could help to choose the polarization modes conveniently and flexibility for the illumination system.

  6. New Vistas on the Anionic Polymerization of Styrene in Non-Polar Solvents by Means of Density Functional Theory

    Directory of Open Access Journals (Sweden)

    Hideo Morita

    2016-10-01

    Full Text Available The elementary processes of anionic styrene polymerization in the gas phase and in cyclohexane were studied using M062X (a recently developed density functional theory (DFT method combined with the 6-31+G(d basis sets, in order to clarify the complicated phenomena caused by the association of the active chain-ends and elucidate the details of the polymerization mechanism. Three types of HSt2Li (a model structure of polystyryllithium chain-ends were obtained; the well-known first structure in which Li is coordinated to the side chain, the second structure in which Li is coordinated to the phenyl ring, (both without the penultimate unit coordination, and the third structure in which Li is coordinated to both the chain-end unit and the penultimate styrene unit. Although the third HSt2Li is the most stable as expected, the free energy for the transition state of its reaction with styrene is higher than those for the other two transition states due to its steric hindrance. The free energy for the transition state of the reaction of the second HSt2Li with styrene is the lowest, suggesting that the route through it is the predominant reaction path. The penultimate unit effect, slower addition of styrene to HSt2Li than to HStLi, is attributed to coordination of the penultimate styrene units of the polystyryllithium dimer (one of the starting materials to its Li atoms. The calculated enthalpy for the reaction barrier of the second HSt2Li with styrene in cyclohexane was found to agree with the observed apparent activation energy in benzene.

  7. Parallel Polarization State Generation.

    Science.gov (United States)

    She, Alan; Capasso, Federico

    2016-05-17

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  8. Pulse plating

    CERN Document Server

    Hansal, Wolfgang E G; Green, Todd; Leisner, Peter; Reichenbach, Andreas

    2012-01-01

    The electrodeposition of metals using pulsed current has achieved practical importance in recent years. Although it has long been known that changes in potential, with or without polarity reversal, can significantly affect the deposition process, the practical application of this has been slow to be adopted. This can largely be explained in terms of the complex relationship between the current regime and its effect on the electrodeposition process. In order to harness these effects, an understanding of the anodic and cathodic electrochemical processes is necessary, together with the effects of polarity reversal and the rate of such reversals. In this new monograph, the basics of metal electrodeposition from solution are laid out in great detail in seven distinct chapters. With this knowledge, the reader is able to predict how a given pulse train profile can be adopted to achieve a desired outcome. Equally important is the choice of a suitable rectifier and the ancillary control circuits to enable pulse platin...

  9. Introduction to Analysis and Design of Plate Panels

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Lützen, Marie

    The present notes cover plate theory dealing with bending, vibrations, elastic buckling and ultimate strength. The plate structures considered are isotropic, orthotropic and stiffened plates made of metallic materials. The main objective of the notes is to give an introduction to plates and plate......, composite materials as glass-fibre-reinforced plates, sandwich plates and reinforced concrete plates are not included as they are topics for other courses. The present notes are mainly based on Pedersen and Jensen (1983), written in Danish. The first version of the notes was prepared by Marie L...

  10. Polarimetry with azimuthally polarized light

    Science.gov (United States)

    de Sande, Juan Carlos González; Piquero, Gemma; Santarsiero, Massimo

    2018-03-01

    Nonuniformly polarized light can be used for Mueller polarimetry of homogeneous linear samples. In this work, a set up based on using azimuthally polarized input light and a modified commercial light polarimeter is proposed and developed. With this set up, a Mueller submatrix of a sample can be obtained by measuring the Stokes parameters at only three different positions across the output beam section. Symmetry constraints for linear deterministic samples allow the complete Mueller matrix to be deduced for this kind of specimens. The experimental results obtained for phase plates and for a linear polarizer confirm the validity of the proposed method.

  11. Array elements for a DBS flat-plate antenna

    Science.gov (United States)

    Maddocks, M. C. D.

    1988-07-01

    The introduction of a direct broadcast by satellite (DBS) television service requires suitable receiving antennas to be available. An alternative to the parabolic dish antenna is a flat-plate antenna. The overall design of a circularly-polarized flat-plate antenna which can be mounted flat on the wall of a building has been considered in a companion Report. In this Report various types of elements are investigated and their advantages and disadvantages discussed. The most suitable element for use in a flat-plate array is identified as a linearly-polarized folded-dipole element; its performance is reported here. Linearly-polarized elements are found to perform better than circularly-polarized elements and could be used with a polarization converter to receive the circularly-polarized radiation that would be transmitted by DBS.

  12. Analytical predictions for the buckling of a nanoplate subjected to non-uniform compression based on the four-variable plate theory

    Directory of Open Access Journals (Sweden)

    Mohammad Malikan

    2017-08-01

    Full Text Available In the present study, the buckling analysis of the rectangular nanoplate under biaxial non-uniform compression using the modified couple stress continuum theory with various boundary conditions has been considered. The simplified first order shear deformation theory (S-FSDT has been employed and the governing differential equations have been obtained using the Hamilton’s principle. An analytical approach has been applied to obtain exact results from various boundary conditions. Due to the fact that there is not any research about the buckling of nanoplates based on the S-FSDT including the couple stress effect, the obtained results have been compared with the molecular dynamic simulation and FSDT papers which use the Eringen nonlocal elasticity theory. At the end, the results have been presented by making changes in some parameters such as the aspect ratio, the effect of various non-uniform loads and the length scale parameter.

  13. Dynamic elections and ideological polarization

    Czech Academy of Sciences Publication Activity Database

    Nunnari, S.; Zápal, Jan

    2017-01-01

    Roč. 25, č. 4 (2017), s. 505-534 ISSN 1047-1987 Institutional support: Progres-Q24 Keywords : elections * political polarization Subject RIV: AH - Economics OBOR OECD: Economic Theory Impact factor: 3.361, year: 2016

  14. Dynamic elections and ideological polarization

    Czech Academy of Sciences Publication Activity Database

    Nunnari, S.; Zápal, Jan

    2017-01-01

    Roč. 25, č. 4 (2017), s. 505-534 ISSN 1047-1987 Institutional support: RVO:67985998 Keywords : elections * political polarization Subject RIV: AH - Economics OBOR OECD: Economic Theory Impact factor: 3.361, year: 2016

  15. Use of the Polarized Radiance Distribution Camera System in the RADYO Program

    Science.gov (United States)

    2011-01-28

    polarizer’s (Melles Griot , 03 FPG 019). Polarizer’s are orientated at 0 deg, 60 deg, and 120 deg (angles relative to the first polarizer). The combination...combination of a broadband mica quarter wave plate (Melles Griot , 02 WRM001) and a polarizer to form a circular polarization analyzer. The combination of the

  16. Free asymmetric transverse vibration of polar orthotropic annular ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Houmat A 2001 A sector Fourier p-element applied to free vibration analysis of sectorial plates. J. Sound Vibr. 243: 269–282. Irie T, Yamada G, Ito F 1979 Free vibration of polar orthotropic sector plates. J. Sound Vibr 67: 89–100. Irie T, Tanaka K, Yamada G 1988 Free vibration of a cantilever annular sector plate with curved ...

  17. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  18. Introduction to Analysis and Design of Plate Panels

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Lützen, Marie

    The present notes cover plate theory dealing with bending, vibrations, elastic buckling and ultimate strength. The plate structures considered are isotropic, orthotropic and stiffened plates made of metallic materials. The main objective of the notes is to give an introduction to plates and plate...... to the theory of shells is included. There are many relevant textbooks on linear analysis of plates. The most recent is Szilard (2004), which contains a large number of examples (1024 pages in total plus a CD with numerous results). Plate failure is covered very well in Hughes (1988) (with the focus on plate...... panels used in ship structures) and Jones (1997) (dealing mostly with impact responses). Finally, a recent book also including shell structures is Ventsel and Krauthammer (2001). Compared to the textbooks cited above the present treatment puts more emphasis on stiffened plates than usually seen. However...

  19. Create Your Plate

    Medline Plus

    Full Text Available ... Pacific Islanders American Indian/Alaska Native Programs Older Adults Family Link Diabetes EXPO Upcoming Diabetes EXPOs EXPO ... Plate! Click on the plate sections below to add your food choices. Reset Plate Share Create Your ...

  20. Validation of three-dimensional incompressible spatial direct numerical simulation code: A comparison with linear stability and parabolic stability equation theories for boundary-layer transition on a flat plate

    Science.gov (United States)

    Joslin, Ronald D.; Streett, Craig L.; Chang, Chau-Lyan

    1992-01-01

    Spatially evolving instabilities in a boundary layer on a flat plate are computed by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations. In a truncated physical domain, a nonstaggered mesh is used for the grid. A Chebyshev-collocation method is used normal to the wall; finite difference and compact difference methods are used in the streamwise direction; and a Fourier series is used in the spanwise direction. For time stepping, implicit Crank-Nicolson and explicit Runge-Kutta schemes are used to the time-splitting method. The influence-matrix technique is used to solve the pressure equation. At the outflow boundary, the buffer-domain technique is used to prevent convective wave reflection or upstream propagation of information from the boundary. Results of the DNS are compared with those from both linear stability theory (LST) and parabolized stability equation (PSE) theory. Computed disturbance amplitudes and phases are in very good agreement with those of LST (for small inflow disturbance amplitudes). A measure of the sensitivity of the inflow condition is demonstrated with both LST and PSE theory used to approximate inflows. Although the DNS numerics are very different than those of PSE theory, the results are in good agreement. A small discrepancy in the results that does occur is likely a result of the variation in PSE boundary condition treatment in the far field. Finally, a small-amplitude wave triad is forced at the inflow, and simulation results are compared with those of LST. Again, very good agreement is found between DNS and LST results for the 3-D simulations, the implication being that the disturbance amplitudes are sufficiently small that nonlinear interactions are negligible.

  1. Polarization, political

    NARCIS (Netherlands)

    Wojcieszak, M.; Mazzoleni, G.; Barnhurst, K.G.; Ikeda, K.; Maia, R.C.M.; Wessler, H.

    2015-01-01

    Polarization has been studied in three different forms: on a social, group, and individual level. This entry first focuses on the undisputed phenomenon of elite polarization (i.e., increasing adherence of policy positions among the elites) and also outlines different approaches to assessing mass

  2. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  3. Polarized Moessbauer transitions in mixed hyperfine interactions

    International Nuclear Information System (INIS)

    Barb, D.; Tarina, D.

    1975-01-01

    A contribution to the theory of elliptical polarization in the Moessbauer effect for transitions between mixed nuclear states is reported. A relation between the two-dimensional complex vector parameterization and the photon polarization density matrix was used in describing changes in the polarization of the gamma-ray involved. (A.K.)

  4. Buckling Response of Thick Functionally Graded Plates

    Directory of Open Access Journals (Sweden)

    BOUAZZA MOKHTAR

    2014-11-01

    Full Text Available In this paper, the buckling of a functionally graded plate is studied by using first order shear deformation theory (FSDT. The material properties of the plate are assumed to be graded continuously in the direction of thickness. The variation of the material properties follows a simple power-law distribution in terms of the volume fractions of constituents. The von Karman strains are used to construct the equilibrium equations of the plates subjected to two types of thermal loading, linear temperature rise and gradient through the thickness are considered. The governing equations are reduced to linear differential equation with boundary conditions yielding a simple solution procedure. In addition, the effects of temperature field, volume fraction distributions, and system geometric parameters are investigated. The results are compared with the results of the no shear deformation theory (classic plate theory, CPT.

  5. On The Dynamic Analysis of A Simply Supported Rectangular Plate ...

    African Journals Online (AJOL)

    The dynamic behaviour of a simply supported rectangular plate is studied. This research work is based on the theory of the orthotropic plate simply supported on two sides and free on two other sides. The plate is excited by a moving load while the dynamic response of the structure was obtained using the classical double ...

  6. Polar Bears

    Science.gov (United States)

    Amstrup, Steven C.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Polar bears (Ursus maritimus) are hunted throughout most of their range. In addition to hunting polar bears of the Beaufort Sea region are exposed to mineral and petroleum extraction and related human activities such as shipping road-building, and seismic testing (Stirling 1990).Little was known at the start of this project about how polar bears move about in their environment, and although it was understood that many bears travel across political borders, the boundaries of populations had not been delineated (Amstrup 1986, Amstrup et al. 1986, Amstrup and DeMaster 1988, Garner et al. 1994, Amstrup 1995, Amstrup et al. 1995, Amstrup 2000).As human populations increase and demands for polar bears and other arctic resources escalate, managers must know the sizes and distributions of the polar bear populations. Resource managers also need reliable estimates of breeding rates, reproductive intervals, litter sizes, and survival of young and adults.Our objectives for this research were 1) to determine the seasonal and annual movements of polar bears in the Beaufort Sea, 2) to define the boundaries of the population(s) using this region, 3) to determine the size and status of the Beaufort Sea polar bear population, and 4) to establish reproduction and survival rates (Amstrup 2000).

  7. Advancements on Radar Polarization Information Acquisition and Processing

    Directory of Open Access Journals (Sweden)

    Dai Dahai

    2016-04-01

    Full Text Available The study on radar polarization information acquisition and processing has currently been one important part of radar techniques. The development of the polarization theory is simply reviewed firstly. Subsequently, some key techniques which include polarization measurement, polarization anti-jamming, polarization recognition, imaging and parameters inversion using radar polarimetry are emphatically analyzed in this paper. The basic theories, the present states and the development trends of these key techniques are presented and some meaningful conclusions are derived.

  8. Ab initio density functional theory study of non-polar (10-10), (11-20) and semipolar {20-21} GaN surfaces

    Czech Academy of Sciences Publication Activity Database

    Mutombo, Pingo; Romanyuk, Olexandr

    2014-01-01

    Roč. 115, č. 20 (2014), "203508-1"-"203508-5" ISSN 0021-8979 Grant - others:AVČR(CZ) M100101201 Institutional support: RVO:68378271 Keywords : non-polar GaN * semipolar GaN * surface reconstructions * DFT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2014

  9. Levy Solution for Buckling Analysis of Functionally Graded Rectangular Plates

    Science.gov (United States)

    Mohammadi, Meisam; Saidi, Ali Reza; Jomehzadeh, Emad

    2010-04-01

    In this article, an analytical method for buckling analysis of thin functionally graded (FG) rectangular plates is presented. It is assumed that the material properties of the plate vary through the thickness of the plate as a power function. Based on the classical plate theory (Kirchhoff theory), the governing equations are obtained for functionally graded rectangular plates using the principle of minimum total potential energy. The resulting equations are decoupled and solved for rectangular plate with different loading conditions. It is assumed that the plate is simply supported along two opposite edges and has arbitrary boundary conditions along the other edges. The critical buckling loads are presented for a rectangular plate with different boundary conditions, various powers of FGM and some aspect ratios.

  10. On the lamb wave propagation in anisotropic laminated composite plates

    International Nuclear Information System (INIS)

    Park, Soo Keun; Jeong, Hyun Jo; Kim, Moon Saeng

    1998-01-01

    This paper examines the propagation of Lamb (or plate) waves in anisotropic laminated composite plates. The dispersion relations are explicitly derived using the classical plate theory (CLT), the first-order shear deformation theory (FSDT) and the exact solution (ES), Attention is paid to the lowest antisymmetric (flexural) and lowest symmetric(extensional) modes in the low frequency, long wavelength limit. Different values of shear correction factor were tested in FSDT and comparisons between flexural wave dispersion curves were made with exact results to asses the range of validity of approximate plate theories in the frequency domain.

  11. Developments of Mindlin-Reissner Plate Elements

    Directory of Open Access Journals (Sweden)

    Song Cen

    2015-01-01

    Full Text Available Since 1960s, how to develop high-performance plate bending finite elements based on different plate theories has attracted a great deal of attention from finite element researchers, and numerous models have been successfully constructed. Among these elements, the most popular models are usually formulated by two theoretical bases: the Kirchhoff plate theory and the Mindlin-Reissener plate theory. Due to the advantages that only C0 continuity is required and the effect of transverse shear strain can be included, the latter one seems more rational and has obtained more attention. Through abundant works, different types of Mindlin-Reissener plate models emerged in many literatures and have been applied to solve various engineering problems. However, it also brings FEM users a puzzle of how to choose a “right” one. The main purpose of this paper is to present an overview of the development history of the Mindlin-Reissner plate elements, exhibiting the state-of-art in this research field. At the end of the paper, a promising method for developing “shape-free” plate elements is recommended.

  12. Artificial anisotropy and polarizing filters.

    Science.gov (United States)

    Flory, François; Escoubas, Ludovic; Lazaridès, Basile

    2002-06-01

    The calculated spectral transmittance of a multilayer laser mirror is used to determine the effective index of the single layer equivalent to the multilayer stack. We measure the artificial anisotropy of photoresist thin films whose structure is a one-dimensional, subwavelength grating obtained from interference fringes. The limitation of the theory of the first-order effective index homogenization is discussed. We designed normal-incidence, polarizing coating and a polarization rotator by embedding anisotropic films in simple multilayer structures.

  13. Programming of composite plates damage calculation

    OpenAIRE

    Dudinsky, Martin; Riecky, Daniel; Zmindak, Milan

    2011-01-01

    The goal of this paper is to present the numerical results of elastic damage of thin unidirectional fiber-reinforced composite plates. The numerical implementation uses a layered shell finite element based on the Kirchhoff plate theory. Newton-Raphson method is used to solve the system of nonlinear equations and evolution of damage has been solved using return-mapping algorithm. The analysis is performed by finite elemen...

  14. Create Your Plate

    Medline Plus

    Full Text Available ... Student Resources History of Diabetes Resources for School Projects How to Reference Our Site Diabetes Basics Myths ... Your Plate It's simple and effective for both managing diabetes and losing weight. Creating your plate lets ...

  15. Create Your Plate

    Medline Plus

    Full Text Available ... Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook ... Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart- ...

  16. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal ... Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook ...

  17. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate It's simple and effective for both managing diabetes and losing weight. Creating your plate lets you still choose the foods you want, but changes the portion sizes so you are getting larger ...

  18. Williamson Polishing & Plating Site

    Science.gov (United States)

    Williamson Polishing & Plating Co. Inc. was a plating shop located in the Martindale-Brightwood neighborhood of Indianapolis. The facility conducted job shop polishing and electroplating services. The vacant site contains a 14,651-square-foot building.

  19. Polarization optics of the Brewster's dark patch visible on water surfaces versus solar height and sky conditions: theory, computer modeling, photography, and painting.

    Science.gov (United States)

    Takács, Péter; Barta, András; Pye, David; Horváth, Gábor

    2017-10-20

    When the sun is near the horizon, a circular band with approximately vertically polarized skylight is formed at 90° from the sun, and this skylight is only weakly reflected from the region of the water surface around the Brewster's angle (53° from the nadir). Thus, at low solar heights under a clear sky, an extended dark patch is visible on the water surface when one looks toward the north or south quarter perpendicular to the solar vertical. In this work, we study the radiance distribution of this so-called Brewster's dark patch (BDP) in still water as functions of the solar height and sky conditions. We calculate the pattern of reflectivity R of a water surface for a clear sky and obtain from this idealized situation the shape of the BDP. From three full-sky polarimetric pictures taken about a clear, a partly cloudy, and an overcast sky, we determine the R pattern and compose from that synthetic color pictures showing how the radiance distribution of skylight reflected at the water surface and the BDPs would look under these sky conditions. We also present photographs taken without a linearly polarizing filter about the BDP. Finally, we show a 19th century painting on which a river is seen with a dark region of the water surface, which can be interpreted as an artistic illustration of the BDP.

  20. Political polarization

    OpenAIRE

    Dixit, Avinash K.; Weibull, Jörgen W.

    2007-01-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  1. Political polarization.

    Science.gov (United States)

    Dixit, Avinash K; Weibull, Jörgen W

    2007-05-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  2. The physics of polarization

    Science.gov (United States)

    Landi Degl'Innocenti, Egidio

    ). Finally, the third part (Sects. 15-19) is devoted to give a sketch of the theory of the generation and transfer of polarized radiation in spectral lines. After a general introduction to the argument (Sect. 15), the concepts of density-matrix and of atomic polarization are illustrated in Sect. 16. In Sect. 17, a parallelism is established, within the framework of the theory of stellar atmospheres, between the usual formalism, which neglects polarization phenomena, and the more involved formalism needed for the interpretation of spectro-polarimetric observations. Some consequences of the radiative transfer equations for polarized radiation, pointing to the importance of dichroism phenomena in establishing the amplification condition via stimulated emission, are discussed in Sect. 18. The last section (Sect. 19) is devoted to introduce the problem of finding a self-consistent solution of the radiative transfer equations for polarized radiation and of the statistical equilibrium equations for the density matrix (non-LTE of the 2nd kind).

  3. Carbon nanotube fiber terahertz polarizer

    Energy Technology Data Exchange (ETDEWEB)

    Zubair, Ahmed [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Tsentalovich, Dmitri E.; Young, Colin C. [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005 (United States); Heimbeck, Martin S. [Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Everitt, Henry O. [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Pasquali, Matteo [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005 (United States); Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Kono, Junichiro, E-mail: kono@rice.edu [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (United States)

    2016-04-04

    Conventional, commercially available terahertz (THz) polarizers are made of uniformly and precisely spaced metallic wires. They are fragile and expensive, with performance characteristics highly reliant on wire diameters and spacings. Here, we report a simple and highly error-tolerant method for fabricating a freestanding THz polarizer with nearly ideal performance, reliant on the intrinsically one-dimensional character of conduction electrons in well-aligned carbon nanotubes (CNTs). The polarizer was constructed on a mechanical frame over which we manually wound acid-doped CNT fibers with ultrahigh electrical conductivity. We demonstrated that the polarizer has an extinction ratio of ∼−30 dB with a low insertion loss (<0.5 dB) throughout a frequency range of 0.2–1.1 THz. In addition, we used a THz ellipsometer to measure the Müller matrix of the CNT-fiber polarizer and found comparable attenuation to a commercial metallic wire-grid polarizer. Furthermore, based on the classical theory of light transmission through an array of metallic wires, we demonstrated the most striking difference between the CNT-fiber and metallic wire-grid polarizers: the latter fails to work in the zero-spacing limit, where it acts as a simple mirror, while the former continues to work as an excellent polarizer even in that limit due to the one-dimensional conductivity of individual CNTs.

  4. Coherent scattering of electromagnetic radiation by a polarized particle system

    International Nuclear Information System (INIS)

    Agre, M.Ya.; Rapoport, L.P.

    1996-01-01

    The paper deals with the development of the theory of coherent scattering of electromagnetic waves by a polarized atom or molecular system. Peculiarities of the angular distribution and polarization peculiarities of scattered radiation are discussed

  5. Nonlinear morphoelastic plates II: Exodus to buckled states

    KAUST Repository

    McMahon, J.

    2011-05-11

    Morphoelasticity is the theory of growing elastic materials. The theory is based on the multiplicative decomposition of the deformation gradient and provides a formulation of the deformation and stresses induced by growth. Following a companion paper, a general theory of growing non-linear elastic Kirchhoff plate is described. First, a complete geometric description of incompatibility with simple examples is given. Second, the stability of growing Kirchhoff plates is analyzed. © SAGE Publications 2011.

  6. Theory and compensation method of axial magnetic error induced by axial magnetic field in a polarization-maintaining fiber optic gyro

    Science.gov (United States)

    Zhou, Yanru; Zhao, Yuxiang; Tian, Hui; Zhang, Dengwei; Huang, Tengchao; Miao, Lijun; Shu, Xiaowu; Che, Shuangliang; Liu, Cheng

    2016-12-01

    In an axial magnetic field (AMF), which is vertical to the plane of the fiber coil, a polarization-maintaining fiber optic gyro (PM-FOG) appears as an axial magnetic error. This error is linearly related to the intensity of an AMF, the radius of the fiber coil, and the light wavelength, and also influenced by the distribution of fiber twist. When a PM-FOG is manufactured completely, this error only appears a linear correlation with the AMF. A real-time compensation model is established to eliminate the error, and the experimental results show that the axial magnetic error of the PM-FOG is decreased from 5.83 to 0.09 deg/h in 12G AMF with 18-dB suppression.

  7. Thomas-Fermi-von Weizsäcker theory for a harmonically trapped, two-dimensional, spin-polarized dipolar Fermi gas

    Science.gov (United States)

    van Zyl, B. P.; Zaremba, E.; Pisarski, P.

    2013-04-01

    We systematically develop a density functional description for the equilibrium properties of a two-dimensional, harmonically trapped, spin-polarized dipolar Fermi gas based on the Thomas-Fermi-von Weizsäcker approximation. We pay particular attention to the construction of the two-dimensional kinetic energy functional, where corrections beyond the local density approximation must be motivated with care. We also present an intuitive derivation of the interaction energy functional associated with the dipolar interactions and provide physical insight into why it can be represented as a local functional. Finally, a simple and highly efficient self-consistent numerical procedure is developed to determine the equilibrium density of the system for a range of dipole interaction strengths.

  8. Non-diffuseness of vibration fields in ribbed plates

    DEFF Research Database (Denmark)

    Brunskog, Jonas; Chung, Hyuck

    2011-01-01

    . However, the diffuseness assumption is not always valid. One such example is a rib-reinforced plate typically found in a lightweight floor with wooden joists. Other examples can be found in aircraft and ship structures. The structural intensity of a ribbed plate is computed at low to mid frequencies using...... the Fourier sine expansion of the transverse displacement of the plate. Hamilton's principle is used in combination with thin plate theory and Euler beam theory. The model takes into account interactions between components. The Fourier sine modes are re-formulated as plane waves in a radial coordinate system...

  9. Nonlinear analysis of flexible plates lying on elastic foundation

    Directory of Open Access Journals (Sweden)

    Trushin Sergey

    2017-01-01

    Full Text Available This article describes numerical procedures for analysis of flexible rectangular plates lying on elastic foundation. Computing models are based on the theory of plates with account of transverse shear deformations. The finite difference energy method of discretization is used for reducing the initial continuum problem to finite dimensional problem. Solution procedures for nonlinear problem are based on Newton-Raphson method. This theory of plates and numerical methods have been used for investigation of nonlinear behavior of flexible plates on elastic foundation with different properties.

  10. Mathematical methods for elastic plates

    CERN Document Server

    Constanda, Christian

    2014-01-01

    Mathematical models of deformation of elastic plates are used by applied mathematicians and engineers in connection with a wide range of practical applications, from microchip production to the construction of skyscrapers and aircraft. This book employs two important analytic techniques to solve the fundamental boundary value problems for the theory of plates with transverse shear deformation, which offers a more complete picture of the physical process of bending than Kirchhoff’s classical one.   The first method transfers the ellipticity of the governing system to the boundary, leading to singular integral equations on the contour of the domain. These equations, established on the basis of the properties of suitable layer potentials, are then solved in spaces of smooth (Hölder continuous and Hölder continuously differentiable) functions.   The second technique rewrites the differential system in terms of complex variables and fully integrates it, expressing the solution as a combination of complex ana...

  11. Organization of the tectonic plates in the last 200 Myr

    Science.gov (United States)

    Morra, Gabriele; Seton, Maria; Quevedo, Leonardo; Müller, R. Dietmar

    2013-07-01

    The present tessellation of the Earth's surface into tectonic plates displays a remarkably regular plate size distribution, described by either one (Sornette and Pisarenko, 2003) or two (Bird, 2003) statistically distinct groups, characterised by large and small plate size. A unique distribution implies a hierarchical structure from the largest to the smallest plate. Alternatively, two distributions indicate distinct evolutionary laws for large and small plates, the first tied to mantle flow, the second determined by a hierarchical fragmentation process. We analyse detailed reconstructions of plate boundaries during the last 200 Myr and find that (i) large and small plates display distinct statistical distributions, (ii) the small plates display little organisational change since 60 Ma and (iii) the large plates oscillate between heterogeneous (200-170 Myr and 65-50 Ma) and homogeneous (120-100 Ma) plate tessellations on a timescale of about 100 Myr. Heterogeneous states are reached more rapidly, while the plate configuration decays into homogeneous states following a slower asymptotic curve, suggesting that heterogeneous configurations are excited states while homogeneous tessellations are equilibrium states. We explain this evolution by proposing a model that alternates between bottom- and top-driven Earth dynamics, physically described by fluid-dynamic analogies, the Rayleigh-Benard and Bénard-Marangoni convection, respectively. We discuss the implications for true polar wander (TPW), global kinematic reorganisations (50 and 100 Ma) and the Earth's magnetic field inversion frequency.

  12. Emission polarization study on quartz and calcite.

    Science.gov (United States)

    Vincent, R. K.

    1972-01-01

    Calculation of the spectral emission polarization of quartz and calcite polished plates for observation angles of 20 and 70 deg by the substitution of complex index of refraction values for each mineral into Fresnel's equations. The emission polarization is shown to be quite wavelength-dependent, demonstrating that selected narrow or medium-width spectral bands exhibit a significantly higher percentage of polarization than a broad spectral band for these two minerals. Field measurements with a broadband infrared radiometer yield polarizations on the order of 2% for a coarse-grained granite rock and beach sand (both quartz-rich). This implies that a more sensitive detector with a selected medium-width filter may be capable of measuring emission polarization accurately enough to make this parameter useful as a remote sensing tool for discrimination among rocks on the basis of texture.

  13. Nuclear physics with polarized particles

    CERN Document Server

    Paetz gen Schieck, Hans

    2012-01-01

    The measurement of spin-polarization observables in reactions of nuclei and particles is of great utility and advantage when the effects of single-spin sub-states are to be investigated. Indeed, the unpolarized differential cross-section encompasses the averaging over the spin states of the particles, and thus loses details of the interaction process. This introductory text combines, in a single volume, course-based lecture notes on spin physics and on polarized-ion sources with the aim of providing a concise yet self-contained starting point for newcomers to the field, as well as for lecturers in search of suitable material for their courses and seminars. A significant part of the book is devoted to introducing the formal theory-a description of polarization and of nuclear reactions with polarized particles. The remainder of the text describes the physical basis of methods and devices necessary to perform experiments with polarized particles and to measure polarization and polarization effects in nuclear rea...

  14. Strategic Polarization.

    Science.gov (United States)

    Kalai, Adam; Kalai, Ehud

    2001-08-01

    In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.

  15. Is There Really A North American Plate?

    Science.gov (United States)

    Krill, A.

    2011-12-01

    elsewhere, such as S.J. Shand (1933), E.B. Bailey (1939), and Arthur Holmes (1944), presented continental drift as a working hypothesis that could elegantly solve important geological problems. Americans were preconditioned to dislike continental drift theory, ever since James Dwight Dana taught in his Manual of Geology (1863...1895) that North America was the type continent of the world, and that it had stood alone since earliest time. Such beliefs sometimes trump geologic evidence. As noted by Stephen Jay Gould (1999) Sigmund Freud had much insight into the psychology of scientific revolutions: they involve a scientific development that shows humans to have lesser status than previously perceived. In the Copernican revolution (geocentrism vs. heliocentrism) humans no longer inhabited the center of the universe. In the Darwinian revolution (creationism vs. evolutionism) humans were no longer uniquely created. In the Wegenerian revolution (fixism vs. mobilism) North America was no longer uniquely created; it was just other fragment from Pangaea. North American geologists were pleased when Press & Siever gave them their own lithospheric plate. Being a global-tectonic killjoy, I would like to take away that small consolation as well. Or at least pose the question: Is there really a North American Plate?

  16. Thermoelastic waves without energy dissipation in an elastic plate to ...

    African Journals Online (AJOL)

    The linear theory of thermoelasticity without energy dissipation for isotropic and homogeneous materials is employed to study waves in an elastic plate. The waves are assumed to arise out of a ramp-type stress on the plate's boundary which is maintained at constant temperature. Laplace transforms are used to solve the ...

  17. Create Your Plate

    Medline Plus

    Full Text Available ... Monthly In Memory In Honor Become a Member En Español Type 1 Type 2 About Us Online ... Print Page Text Size: A A A Listen En Español Create Your Plate Create Your Plate is ...

  18. Create Your Plate

    Medline Plus

    Full Text Available ... Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal Planning ... Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets ...

  19. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal Planning What Can I Eat? Making ... Forecast® magazine: wcie-meal-planning, . In this ... Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook ...

  20. Create Your Plate

    Medline Plus

    Full Text Available ... In Memory In Honor Become a Member En Español Type 1 Type 2 About Us Online Community ... Page Text Size: A A A Listen En Español Create Your Plate Create Your Plate is a ...

  1. Growth Plate Injuries

    Science.gov (United States)

    ... cause any lasting problems for your child or teen. Growth plates are areas of growing tissues that cause ... are replaced by solid bone. Who gets them? Growth plate injuries happen to children and teens. This injury happens twice as often in boys ...

  2. Create Your Plate

    Medline Plus

    Full Text Available ... Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart- ... Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods ...

  3. ITRF2014 plate motion model

    Science.gov (United States)

    Altamimi, Zuheir; Métivier, Laurent; Rebischung, Paul; Rouby, Hélène; Collilieux, Xavier

    2017-06-01

    For various geodetic and geophysical applications, users need to have access to a plate motion model (PMM) that is consistent with the ITRF2014 frame. This paper describes the approach used for determining a PMM from the horizontal velocities of a subset of the ITRF2014 sites away from plate boundaries, Glacial Isostatic Adjustment regions and other deforming zones. In theory it would be necessary to include in the inversion model a translational motion vector (called in this paper origin rate bias, ORB) that would represent the relative motion between the ITRF2014 origin (long-term averaged centre of mass of the Earth as sensed by SLR) and the centre of tectonic plate motion. We show that in practice, the magnitude of the estimated ORB is strongly dependent on the selection of ITRF2014 sites used for the PMM adjustment. Its Z-component can in particular range between 0 and more than 1 mm yr-1 depending on the station network used, preventing any geophysical interpretation of the estimated value. Relying on rigorous statistical criteria, the site selection finally adopted for the ITRF2014-PMM adjustment leads to a relatively small ORB (0.30 ± 0.18 mm yr-1 in the Z-component), which is statistically insignificant at the 2-sigma level, but also according to an F-ratio test. Therefore we opted for an ITRF2014-PMM without estimating the ORB, which in turn accommodates geodetic applications that require access to the ITRF2014 frame through pure plate rotation poles.

  4. Random vibrations of composite beams and plates

    Science.gov (United States)

    Abdelnaser, Ahmad Shehadeh

    In this study, a generalized modal approach is presented to solve more general vibration problems of composite beams and plates. The coupled systems of partial differential equations, representing the equations of motion, are uncoupled into modal equations by utilizing the eigenfunctions of the system and its adjoint. A method is presented to obtain these eigenfunctions for beams with arbitrary boundary conditions and for plates with Levy-type boundary conditions. The forced vibration solutions obtained by this method are then used to calculate the random response characteristics of beams and plates subjected to spatially and temporally correlated random loads. In the analysis of beams, both symmetric cross-ply and angle-ply configurations have been considered. In the symmetric cross-ply configuration with no torsional loads, of course, the warping effects are absent. The angle-ply case, however, includes torsion-warping effects and coupled bending-torsion motions. A simple displacement field is introduced to reflect warping in the third-order shear deformation theory. In the analysis of plates two configurations of the laminates have also been considered: symmetric cross-ply and antisymmetric angle-ply. At this time, these are the only two configurations which can be solved by the closed-form modal analysis approach for the Levy-type boundary conditions. In both cases of the beams and plates, the numerical results with and without shear deformations are obtained and compared. The result for no shear deformation theory are obtained with the classical lamination theory. The results have also been obtained for the first-order shear deformation theory with a somewhat simpler displacement field which has been commonly used in the past. The numerical results are obtained for the global response quantities such as frequencies, displacements, and crossing rates as well as for the local response quantities such as normal and shear stresses across a cross section. The

  5. Geomagnetic polarity transitions

    Science.gov (United States)

    Merrill, Ronald T.; McFadden, Phillip L.

    1999-05-01

    reasonable to draw the following conclusions with varying degrees of confidence. There appears to be a substantial decrease in the mean intensity of the dipole field during a transition to ˜25% of its usual value. The duration of an average geomagnetic polarity transition is not well known but probably lies between 1000 and 8000 years. Values outside these bounds have been reported, but we give reasons as to why such outliers are likely to be artifacts. The reversal process is probably longer than the manifestation of the reversal at Earth's surface as recorded in paleomagnetic directional data. Convection hiatus during a geomagnetic polarity transition seems unlikely, and free-decay models for reversals appear to be generally incompatible with the data. This implies that certain theorems in dynamo theory, such as Cowling's theorem, should not be invoked to explain the origin of reversals. Unfortunately, the detailed description of directional changes during transitions remains controversial. Contrary to common belief, certain low-degree nondipole fields can produce significant longitudinal confinement of virtual geomagnetic poles (VGP) during a transition. The data are currently inadequate to refute or verify claims of longitudinal dipole confinement, VGP clustering, or other systematics during polarity transitions.

  6. Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging.

    Science.gov (United States)

    Zhou, Jialing; He, Honghui; Chen, Zhenhua; Wang, Ye; Ma, Hui

    2018-01-01

    We have developed a polarization microscope based on a commercial transmission microscope. We replace the halogen light source by a collimated LED light source module of six different colors. We use achromatic polarized optical elements that can cover the six different wavelength ranges in the polarization state generator (PSG) and polarization state analyzer (PSA) modules. The dual-rotating wave plate method is used to measure the Mueller matrix of samples, which requires the simultaneous rotation of the two quarter-wave plates in both PSG and PSA at certain angular steps. A scientific CCD detector is used as the image receiving module. A LabView-based software is developed to control the rotation angels of the wave plates and the exposure time of the detector to allow the system to run fully automatically in preprogrammed schedules. Standard samples, such as air, polarizers, and quarter-wave plates, are used to calibrate the intrinsic Mueller matrix of optical components, such as the objectives, using the eigenvalue calibration method. Errors due to the images walk-off in the PSA are studied. Errors in the Mueller matrices are below 0.01 using air and polarizer as standard samples. Data analysis based on Mueller matrix transformation and Mueller matrix polarization decomposition is used to demonstrate the potential application of this microscope in pathological diagnosis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  7. Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging

    Science.gov (United States)

    Zhou, Jialing; He, Honghui; Chen, Zhenhua; Wang, Ye; Ma, Hui

    2018-01-01

    We have developed a polarization microscope based on a commercial transmission microscope. We replace the halogen light source by a collimated LED light source module of six different colors. We use achromatic polarized optical elements that can cover the six different wavelength ranges in the polarization state generator (PSG) and polarization state analyzer (PSA) modules. The dual-rotating wave plate method is used to measure the Mueller matrix of samples, which requires the simultaneous rotation of the two quarter-wave plates in both PSG and PSA at certain angular steps. A scientific CCD detector is used as the image receiving module. A LabView-based software is developed to control the rotation angels of the wave plates and the exposure time of the detector to allow the system to run fully automatically in preprogrammed schedules. Standard samples, such as air, polarizers, and quarter-wave plates, are used to calibrate the intrinsic Mueller matrix of optical components, such as the objectives, using the eigenvalue calibration method. Errors due to the images walk-off in the PSA are studied. Errors in the Mueller matrices are below 0.01 using air and polarizer as standard samples. Data analysis based on Mueller matrix transformation and Mueller matrix polarization decomposition is used to demonstrate the potential application of this microscope in pathological diagnosis.

  8. Polarization of Coronal Forbidden Lines

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao; Qu, Zhongquan [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China); Landi Degl’Innocenti, Egidio, E-mail: sayahoro@ynao.ac.cn [Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze, Largo E. Fermi 2, I-50125 Firenze (Italy)

    2017-03-20

    Since the magnetic field is responsible for most manifestations of solar activity, one of the most challenging problems in solar physics is the diagnostics of solar magnetic fields, particularly in the outer atmosphere. To this end, it is important to develop rigorous diagnostic tools to interpret polarimetric observations in suitable spectral lines. This paper is devoted to analyzing the diagnostic content of linear polarization imaging observations in coronal forbidden lines. Although this technique is restricted to off-limb observations, it represents a significant tool to diagnose the magnetic field structure in the solar corona, where the magnetic field is intrinsically weak and still poorly known. We adopt the quantum theory of polarized line formation developed in the framework of the density matrix formalism, and synthesize images of the emergent linear polarization signal in coronal forbidden lines using potential-field source-surface magnetic field models. The influence of electronic collisions, active regions, and Thomson scattering on the linear polarization of coronal forbidden lines is also examined. It is found that active regions and Thomson scattering are capable of conspicuously influencing the orientation of the linear polarization. These effects have to be carefully taken into account to increase the accuracy of the field diagnostics. We also found that linear polarization observation in suitable lines can give valuable information on the long-term evolution of the magnetic field in the solar corona.

  9. Continuum Mechanics of Beam and Plate Flexure

    DEFF Research Database (Denmark)

    Jönsson, Jeppe

    This text has been written and used during the spring of 1995 for a course on flexural mechanics of beams and plates at Aalborg University. The idea has been to concentrate on basic principles of the theories, which are of importance to the modern structural engineer. Today's structural engineer...... must be acquainted with the classic beam and plate theories, when reading manuals and using modern software tools such as the finite element method. Each chapter includes supplementary theory and derivations enabling consultation of the notes also at a later stage of study. A preliminary chapter...... introduces the modern notation used in textbooks and in research today. It further gives an introduction to three-dimensional continuum mechanics of elastic bodies and the related principles of virtual work. The ideas to give the students a basic understanding of the stresses and strains, the equilibrium...

  10. Precessing deuteron polarization

    International Nuclear Information System (INIS)

    Sitnik, I.M.; Volkov, V.I.; Kirillov, D.A.; Piskunov, N.M.; Plis, Yu.A.

    2002-01-01

    The feasibility of the acceleration in the Nuclotron of deuterons polarized in the horizontal plane is considered. This horizontal polarization is named precessing polarization. The effects of the main magnetic field and synchrotron oscillations are included. The precessing polarization is supposed to be used in studying the polarization parameters of the elastic dp back-scattering and other experiments

  11. Lohse's historic plate archive

    Science.gov (United States)

    Tsvetkov, M.; Tsvetkova, K.; Richter, G.; Scholz, G.; Böhm, P.

    The description and the analysis of Oswald Lohse's astrophotographic plates, collected at the Astrophysical Observatory Potsdam in the period 1879 - 1889, are presented. 67 plates of the archive, taken with the greatest instrument of the observatory at that time - the refractor (D = 0.30 m, F = 5.40 m, scale = 38''/mm) and with the second heliographic objective (D = 0.13 m, F = 1.36 m, scale = 152''/mm) - - survived two world wars in relative good condition. The plate emulsions are from different manufacturers in the beginning of astrophotography (Gädicke, Schleussner, Beernaert, etc.). The sizes of the plates are usually 9x12 cm2, which corresponds to fields of 1.2deg and 5deg respectively for each instrument mentioned above. The average limiting magnitude is 13.0(pg). Besides of the plates received for technical experiments (work on photographic processes, testing of new instruments and methods of observations), the scientific observations follow programs for studies of planet surfaces, bright stars, some double stars, stellar clusters and nebulous objects. Lohse's archive is included into the Wide Field Plate Database (http://www.skyarchive.org) as the oldest systematic one, covering the fields of Orion (M42/43), Pleiades, h & chi Persei, M37, M3, M11, M13, M92, M31, etc. With the PDS 2020 GM+ microdensitometer of Münster University 10 archive plates were digitized.

  12. Polarization-sensitive optical coherence tomography for imaging of biological tissues

    Science.gov (United States)

    Chen, Xiaodong; Wang, Yi; Li, Wanhui; Yu, Daoyin

    2006-09-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a new non-contact and non-invasive method for measuring the change of birefringence in biological tissues caused by pathological changes of body. It has great potential in imaging the structural properties of turbid biological media because the polarization state of light backscattered from biological tissues is influenced by the birefringence of fibrous structures. The arrangement is based on a Michelson interferometer with use of quarter-wave plates and polarimeter. Through the detection of light backscattered from biological tissues and reflected from a reference mirror, the optical phase delay between orthogonal polarization compositions propagating in the birefringence media can be measured. PS-OCT is a powerful tool for research of tendon, dentin, lesions, which have strong polarization effective. We in this paper describe the experimental scheme and its mathematical representation, along with the theory of PS-OCT imaging. Besides, we introduce a fiber-based PS-OCT system for measuring the tissue birefringence.

  13. Legendre polynomial modeling for vibrations of guided Lamb waves modes in [001]c, [011]c and [111]c polarized (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (x = 0.29 and 0.33) piezoelectric plates: Physical phenomenon of multiple intertwining of An and Sn modes

    Science.gov (United States)

    Othmani, Cherif; Takali, Farid; Njeh, Anouar

    2017-12-01

    Guided wave devices have recently become one of the most important applications in the industry because such waves are directly related to applications in sensor technology, chemical sensing, agricultural science, fields of bio-sensing and surface acoustic wave (SAW) devices that are used in electronic filters and signal processing. On that account, this numerical investigation aims to study the propagation behavior of guided Lamb waves in a (1-x)Pb(Mg1/3Nb2/3)O3- x PbTiO3 [PMN- x PT] ( x=0.29 or 0.33) piezoelectric single crystal plate. In fact, the PMN- xPT ( x=0.29 or 0.33) piezoelectric crystals are being polarized along [001]c, [011]c and [111]c of the cubic reference directions so that the macroscopic symmetries are tetragonal 4 mm, orthogonal mm2 and rhombohedral 3 m, respectively. Both open- and short-circuit conditions are considered. Here, the Legendre polynomial method is proposed to solve the guided Lamb waves equations. The validity of the proposed method is illustrated by comparison with the ordinary differential equation (ODE). The convergence of this method is discussed. Consequently, the converged results are obtained with very low truncation order M . This constitutes a major advantage of the present method when compared with the other matrix methods. There is cross-crossings among multiple modes for both symmetric ( Sn) and the anti-symmetric ( An) guided Lamb waves propagation. A displacement field has been illustrated to judge whether Sn and An modes cross with each other. Moreover, electric displacement, stress field and electric potential for the open-circuit case were presented for both S0 and A0 Lamb modes.

  14. High loading uranium plate

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Domagala, R.F.; Thresh, H.R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pari of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat hiving a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process

  15. Polare maskuliniteter

    Directory of Open Access Journals (Sweden)

    Marit Anne Hauan

    2012-05-01

    Full Text Available In this paper my aim is to read and understand the journal of Gerrit de Veer from the last journey of William Barents to the Arctic Regions in 1596 and the journal of captain Junge on his hunting trip from Tromsø to Svalbard in 1834.It is nearly 240 years between this to voyages. The first journal is known as the earliest report from the arctic era. Gerrit de Veer adds instructive copper engravings to his text and give us insight in the crews meeting with this new land. Captain Junges journal is found together with his dead crew in a house in a fjord nearby Ny-Ålesund and has no drawings, but word. Both of these journals may be read as sources of the knowledge and understanding of the polar region. They might also unveil the ideas of how to deal with and survive under the challenges that is given. In addition one can ask if the sources can tell us more about how men describe their challenges. Can the way they expressed themselves in the journals give us an understanding of masculinity? And not least help us to create good questions of the change in the ideas of masculinities which is said to follow the change in understanding of the wilderness.

  16. Vacuum polarization and Hawking radiation

    Science.gov (United States)

    Rahmati, Shohreh

    Quantum gravity is one of the interesting fields in contemporary physics which is still in progress. The purpose of quantum gravity is to present a quantum description for spacetime at 10-33cm or find the 'quanta' of gravitational interaction.. At present, the most viable theory to describe gravitational interaction is general relativity which is a classical theory. Semi-classical quantum gravity or quantum field theory in curved spacetime is an approximation to a full quantum theory of gravity. This approximation considers gravity as a classical field and matter fields are quantized. One interesting phenomena in semi-classical quantum gravity is Hawking radiation. Hawking radiation was derived by Stephen Hawking as a thermal emission of particles from the black hole horizon. In this thesis we obtain the spectrum of Hawking radiation using a new method. Vacuum is defined as the possible lowest energy state which is filled with pairs of virtual particle-antiparticle. Vacuum polarization is a consequence of pair creation in the presence of an external field such as an electromagnetic or gravitational field. Vacuum polarization in the vicinity of a black hole horizon can be interpreted as the cause of the emission from black holes known as Hawking radiation. In this thesis we try to obtain the Hawking spectrum using this approach. We re-examine vacuum polarization of a scalar field in a quasi-local volume that includes the horizon. We study the interaction of a scalar field with the background gravitational field of the black hole in the desired quasi-local region. The quasi-local volume is a hollow cylinder enclosed by two membranes, one inside the horizon and one outside the horizon. The net rate of particle emission can be obtained as the difference of the vacuum polarization from the outer boundary and inner boundary of the cylinder. Thus we found a new method to derive Hawking emission which is unitary and well defined in quantum field theory.

  17. Fiber-Based Polarization Diversity Detection for Polarization-Sensitive Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Hamid Pahlevaninezhad

    2014-09-01

    Full Text Available We present a new fiber-based polarization diversity detection (PDD scheme for polarization sensitive optical coherence tomography (PSOCT. This implementation uses a new custom miniaturized polarization-maintaining fiber coupler with single mode (SM fiber inputs and polarization maintaining (PM fiber outputs. The SM fiber inputs obviate matching the optical lengths of the two orthogonal OCT polarization channels prior to interference while the PM fiber outputs ensure defined orthogonal axes after interference. Advantages of this detection scheme over those with bulk optics PDD include lower cost, easier miniaturization, and more relaxed alignment and handling issues. We incorporate this PDD scheme into a galvanometer-scanned OCT system to demonstrate system calibration and PSOCT imaging of an achromatic quarter-wave plate, fingernail in vivo, and chicken breast, salmon, cow leg, and basa fish muscle samples ex vivo.

  18. Create Your Plate

    Medline Plus

    Full Text Available ... managing diabetes and losing weight. Creating your plate lets you still choose the foods you want, but ... you have an easy portion control solution that works. Last Reviewed: October 8, 2015 Last Edited: September ...

  19. What's On Your Plate?

    Science.gov (United States)

    ... what these nutrients do in your body and what foods they are found in. Plans for Healthy Living ... food choices. Get more nutrition information online with What's On Your Plate? Smart Food Choices for Healthy Aging from the National Institute ...

  20. Create Your Plate

    Medline Plus

    Full Text Available ... Plate is a simple and effective way to manage your blood glucose levels and lose weight. With ... been easier. It can be a challenge to manage portion control wherever you are. Now, our best- ...

  1. Create Your Plate

    Medline Plus

    Full Text Available ... Count Glycemic Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get Started Safely ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...

  2. Create Your Plate

    Medline Plus

    Full Text Available ... Edited: September 14, 2016 Articles from Diabetes Forecast® magazine: wcie-meal-planning, . In this section Food Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten ...

  3. Create Your Plate

    Medline Plus

    Full Text Available ... Children and Type 2 Diabetes Know Your Rights Employment Discrimination Health Care Professionals Law Enforcement Driver's License ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...

  4. Humvee Armor Plate Drilling

    National Research Council Canada - National Science Library

    2004-01-01

    When drilling holes in hard steel plate used in up-armor kits for Humvee light trucks, the Anniston Army Depot, Anniston, Alabama, requested the assistance of the National Center for Defense Manufacturing and Machining (NCDMM...

  5. Create Your Plate

    Medline Plus

    Full Text Available ... one side, cut it again so you will have three sections on your plate. Fill the largest ... home, the office, or somewhere in between, you have an easy portion control solution that works. Last ...

  6. Modeling diffusion coefficients in binary mixtures of polar and non-polar compounds

    DEFF Research Database (Denmark)

    Medvedev, Oleg; Shapiro, Alexander

    2005-01-01

    The theory of transport coefficients in liquids, developed previously, is tested on a description of the diffusion coefficients in binary polar/non-polar mixtures, by applying advanced thermodynamic models. Comparison to a large set of experimental data shows good performance of the model. Only...

  7. Thick plate flexure. [for lithospheric models of Mars and earth

    Science.gov (United States)

    Comer, R. P.

    1983-01-01

    Analytical expressions are derived for the displacements and stresses due to loading of a floating, uniform, elastic plate of arbitrary thickness by a plane or axisymmetric harmonic load. The solution is exact except for assumptions of small strains and linear boundary conditions, and gravitation within the plate is neglected. For typical earth parameters its predictions are comparable to those of the usual thin plate theory frequently assumed in studies of lithospheric flexure, gravity and regional isostasy. Even for a very thick lithosphere, which may exist in some regions of Mars, the thin plate theory is a better approximation to the thick plate solution than the elastic half-space limit, except for short-wavelength loads.

  8. Hydroelastic analysis of a rectangular plate subjected to slamming loads

    Science.gov (United States)

    Wang, Shan; Guedes Soares, C.

    2017-12-01

    A hydroelastic analysis of a rectangular plate subjected to slamming loads is presented. An analytical model based on Wagner theory is used for calculations of transient slamming load on the ship plate. A thin isotropic plate theory is considered for determining the vibration of a rectangular plate excited by an external slamming force. The forced vibration of the plate is calculated by the modal expansion method. Analytical results of the transient response of a rectangular plate induced by slamming loads are compared with numerical calculations from finite element method. The theoretical slamming pressure based on Wagner model is applied on the finite element model of a plate. Good agreement is obtained between the analytical and numerical results for the structural deflection of a rectangular plate due to slamming pressure. The effects of plate dimension and wave profile on the structural vibration are discussed as well. The results show that a low impact velocity and a small wetted radial length of wave yield negligible effects of hydroelasticity.

  9. Microstructural characteristics on bead on plate welding of AISI 904 ...

    African Journals Online (AJOL)

    In the present work, bead-on -plate welds were carried out on AISI 904 L super austenitic stainless steel sheets using Gas Metal Arc Welding (GMAW) process. In this present investigation AISI 904 L solid wire having 1.2 mm diameter was used as an electrode with direct current electrode positive polarity. Argon was ...

  10. Neutron imaging plates

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1995-01-01

    Imaging plates have been used in the field of medical diagnosis since long ago, but their usefulness was verified as the two-dimensional detector for analyzing the X-ray crystalline structure of high bio molecules like protein, and they have contributed to the remarkable progress in this field. The great contribution is due to the excellent features, such as the detection efficiency of about 100%, the positional resolution smaller than 0.2 mm, the dynamic range of five digits, and the area of several hundreds mm square. The neutron imaging plates have not yet obtained the sufficient results. It was planned to construct the neutron diffractometer for biological matters, and to put imaging plate neutron detectors (IP-ND) to practical use as the detector. The research on the development of IP-NDs was carried out, and the IPp-NDs having the performance comparable with that for X-ray were able to be produced. Imaging plates are the integral type two-dimensional radiation detector using photostimulated luminescence matters, and their principle is explained. As to neutron imaging plates, the converter, neutron detection efficiency and the flight of secondary particles in photo-stimulated luminescence matters are described. As for the present state of development of neutron imaging plates, the IP-NDs made for trial, the dynamic range, the positional resolution, the detection efficiency and the kinds of converters, and the application of IP-NDs are reported. (K.I.)

  11. Polarization Bremsstrahlung

    CERN Document Server

    Korol, Andrey V

    2014-01-01

    This book introduces and reviews both theory and applications of polarizational bremsstrahlung, i.e. the electromagnetic radiation emitted during collisions of charged particles with structured, thus polarizable targets, such as atoms, molecules and clusters.   The subject, following the first experimental evidence a few decades ago, has gained importance through a number of modern applications.  Thus, the study of several radiative mechanisms is expected to lead to the design of novel light sources, operating in various parts of the electromagnetic spectrum. Conversely, the analysis of the spectral and angular distribution of the photon emission constitutes a new tool for extracting information on the interaction of the colliding particles, and on their internal structure and dynamical properties.   Last but not least, accurate quantitative descriptions of the photon emission processes determine the radiative energy losses of particles in various media, thereby providing essential  information required f...

  12. BEPLATE emdash simulation of electrochemical plating

    Energy Technology Data Exchange (ETDEWEB)

    Giles, G.E. (Oak Ridge K-25 Site, TN (USA)); Gray, L.J. (Oak Ridge National Lab., TN (USA)); Bullock, J.S. IV (Oak Ridge Y-12 Plant, TN (USA))

    1990-09-01

    BEPLATE is a FORTRAN code that uses the boundary element method to simulate the electrochemical plating of material on parts, primarily rotating axisymmetric parts. A boundary element technique is used to solve for the local current density and thus the plating rate on the part, which is used to calculate the growth in the plated layer over a user-specified time step. The surface is moved to reflect this growth, and the new surface is used to generate the local current density. This cycle is repeated until the final time specified by the analyst, producing the final plated thickness. BEPLATE includes models for the polarization effects at both the part (cathode) and anode and allows the use of symmetry planes and nonconducting shields. For electroplating simulations, the part shape is normally assumed to be axisymmetric with a centerline along the z-axis. More general part shapes can be analyzed by BEPLATE if the surface growth simulation is not needed. In either case, the shield, anode, and tank geometries are not restricted to specific shapes. This report includes the information required to run BEPLATE, specifically, a brief description of the BEPLATE system including hardware and software requirements, a description of the complete simulation process, discussion of rules for generating models, and additional reference material. This system of codes consists of model generators (PIGS or PATRAN), input processor (BEPIN), the simulation code (BEPLATE) and postprocessing codes (PATRAN or CONPLOT).

  13. How campaigns polarize the electorate

    DEFF Research Database (Denmark)

    Hansen, Kasper Møller; Kosiara-Pedersen, Karina

    2015-01-01

    The minimal effect theory of campaign studies stipulates that intense political competition during campaigns assures and reinforces the initial party choice of the electorate. We find that this reinforcement is two-fold. During the campaign, the party preference of the voters’ in-group party...... an increase in their preference for their most preferred party and a decrease for their least liked party as the campaign progresses. These trends show that the political campaign polarizes the electorate by increasing the affective distance between in-group party and out-group party preferences, thereby...... resulting in stronger political polarization after the campaign than before the campaign. The data utilized in this study is a large six-wave panel-study of Danish voters’ party preferences during the Danish parliamentary election of 2011. Thus, the analysis provides evidence of the minimal effect theory...

  14. Visualization of polarization state and its application in optics classroom teaching

    Science.gov (United States)

    Lei, Bing; Liu, Wei; Shi, Jianhua; Wang, Wei; Yao, Tianfu; Liu, Shugang

    2017-08-01

    Polarization of light and the related knowledge are key and difficult points in optical teaching, and they are difficult to be understood since they are very abstract concepts. To help students understand the polarization properties of light, some classroom demonstration experiments have been constructed by employing the optical source, polarizers, wave plates optical cage system and polarization axis finder (PAF). The PAF is a polarization indicating device with many linear polarizing components concentric circles, which can visualize the polarization axis's direction of linearly polarized light intuitively. With the help of these demonstration experiment systems, the conversion and difference between the linear polarized light and circularly polarized light have been observed directly by inserting or removing a quarter-wave plate. The rotation phenomenon of linearly polarized light's polarization axis when it propagates through an optical active medium has been observed and studied in experiment, and the strain distribution of some mounted and unmounted lenses have also been demonstrated and observed in experiment conveniently. Furthermore, some typical polarization targets, such as liquid crystal display (LCD), polarized dark glass and skylight, have been observed based on PAF, which is quite suitable to help students understand these targets' polarization properties and the related physical laws. Finally, these demonstration experimental systems have been employed in classroom teaching of our university in physical optics, optoelectronics and photoelectric detection courses, and they are very popular with teachers and students.

  15. Cadmium plating replacements

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, M.J.; Groshart, E.C.

    1995-03-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  16. Coherence and Polarization of Polarization Speckle Generated by Depolarizers and Their Changes through Complex ABCD Matrix

    DEFF Research Database (Denmark)

    Ma, Ning; Hanson, Steen Grüner; Lee, Tim K.

    2015-01-01

    Recent research work on speckle patterns indicates a variation of the polarization state during propagation and its nonuniformly spatial distribution. The preliminary step for the investigation of this polarization speckle is the generation of the corresponding field. In this paper, a kind of spe...... of coherence (DoC). and degree of polarization (DoP) P. The changes of the coherence and polarization when the speckle field propagates through any optical system are analysed within the framework of the complex ABCD-matrix theory....

  17. Plate tectonics in the late Paleozoic

    Directory of Open Access Journals (Sweden)

    Mathew Domeier

    2014-05-01

    Full Text Available As the chronicle of plate motions through time, paleogeography is fundamental to our understanding of plate tectonics and its role in shaping the geology of the present-day. To properly appreciate the history of tectonics—and its influence on the deep Earth and climate—it is imperative to seek an accurate and global model of paleogeography. However, owing to the incessant loss of oceanic lithosphere through subduction, the paleogeographic reconstruction of ‘full-plates’ (including oceanic lithosphere becomes increasingly challenging with age. Prior to 150 Ma ∼60% of the lithosphere is missing and reconstructions are developed without explicit regard for oceanic lithosphere or plate tectonic principles; in effect, reflecting the earlier mobilistic paradigm of continental drift. Although these ‘continental’ reconstructions have been immensely useful, the next-generation of mantle models requires global plate kinematic descriptions with full-plate reconstructions. Moreover, in disregarding (or only loosely applying plate tectonic rules, continental reconstructions fail to take advantage of a wealth of additional information in the form of practical constraints. Following a series of new developments, both in geodynamic theory and analytical tools, it is now feasible to construct full-plate models that lend themselves to testing by the wider Earth-science community. Such a model is presented here for the late Paleozoic (410–250 Ma together with a review of the underlying data. Although we expect this model to be particularly useful for numerical mantle modeling, we hope that it will also serve as a general framework for understanding late Paleozoic tectonics, one on which future improvements can be built and further tested.

  18. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  19. Plating on Zircaloy-2

    International Nuclear Information System (INIS)

    Dini, J.W.; Johnson, H.R.; Jones, A.

    1979-03-01

    Zircaloy-2 is a difficult alloy to coat with an adherent electroplate because it easily forms a tenacious oxide film in air and aqueous solutions. Procedures reported in the literature and those developed at SLL for surmounting this problem were investigated. The best results were obtained when specimens were first etched in either an ammonium bifluoride/sulfuric acid or an ammonium bifluoride solution, plated, and then heated at 700 0 C for 1 hour in a constrained condition. Machining threads in the Zircaloy-2 for the purpose of providing sites for mechanical interlocking of the plating also proved satisfactory

  20. NICKEL PLATING PROCESS

    Science.gov (United States)

    Hoover, T.B.; Zava, T.E.

    1959-05-12

    A simplified process is presented for plating nickel by the vapor decomposition of nickel carbonyl. In a preferred form of the invention a solid surface is nickel plated by subjecting the surface to contact with a mixture containing by volume approximately 20% nickel carbonyl vapor, 2% hydrogen sulfide and .l% water vapor or 1% oxygen and the remainder carbon dioxide at room temperature until the desired thickness of nickel is obtained. The advantage of this composition over others is that the normally explosive nickel carbonyl is greatly stabilized.

  1. Synthesis of a polar ordered oxynitride perovskite

    Science.gov (United States)

    Vadapoo, Rajasekarakumar; Ahart, Muhtar; Somayazulu, Maddury; Holtgrewe, Nicholas; Meng, Yue; Konopkova, Zuzana; Hemley, Russell J.; Cohen, R. E.

    2017-06-01

    For decades, numerous attempts have been made to produce polar oxynitride perovskites, where some of the oxygen is replaced by nitrogen, but a polar ordered oxynitride has never been demonstrated. Caracas and Cohen [Appl. Phys. Lett. 91, 092902 (2007), 10.1063/1.2776370] studied possible ordered polar oxynitrides within density-functional theory (DFT) and found a few candidates that were predicted to be insulating and at least metastable. YSi O2N stood out with huge predicted polarization and nonlinear optic coefficients. In this study, we demonstrate the synthesis of perovskite-structured YSi O2N by using a combination of a diamond-anvil cell and in situ laser-heating techniques. Subsequent in situ x-ray diffraction, second-harmonic generation, and Raman-scattering measurements confirm that it is polar and a strong nonlinear optical material, with structure and properties similar to those predicted by DFT.

  2. Synthesis of a polar ordered oxynitride perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Vadapoo, Rajasekarakumar; Ahart, Muhtar; Somayazulu, Maddury; Holtgrewe, Nicholas; Meng, Yue; Konopkova, Zuzana; Hemley, Russell J.; Cohen, R. E.

    2017-06-01

    For decades, numerous attempts have been made to produce polar oxynitride perovskites, where some of the oxygen is replaced by nitrogen, but a polar ordered oxynitride has never been demonstrated. Caracas and Cohen [Appl. Phys. Lett. 91, 092902 (2007)] studied possible ordered polar oxynitrides within density-functional theory (DFT) and found a few candidates that were predicted to be insulating and at least metastable. YSi O 2 N stood out with huge predicted polarization and nonlinear optic coefficients. In this study, we demonstrate the synthesis of perovskite-structured YSi O 2 N by using a combination of a diamond-anvil cell and in situ laser-heating techniques. Subsequent in situ x-ray diffraction, second-harmonic generation, and Raman-scattering measurements confirm that it is polar and a strong nonlinear optical material, with structure and properties similar to those predicted by DFT.

  3. Vortex Airy beams directly generated via liquid crystal q-Airy-plates

    Science.gov (United States)

    Wei, Bing-Yan; Liu, Sheng; Chen, Peng; Qi, Shu-Xia; Zhang, Yi; Hu, Wei; Lu, Yan-Qing; Zhao, Jian-Lin

    2018-03-01

    Liquid crystal q-Airy-plates with director distributions integrated by q-plates and polarization Airy masks are proposed and demonstrated via the photoalignment technique. Single/dual vortex Airy beams of opposite topological charges and orthogonal circular polarizations are directly generated with polarization-controllable characteristic. The singular phase of the vortex part is verified by both astigmatic transformation and digital holography. The trajectory of vortex Airy beams is investigated, manifesting separate propagation dynamics of optical vortices and Airy beams. Meanwhile, Airy beams still keep their intrinsic transverse acceleration, self-healing, and nondiffraction features. This work provides a versatile candidate for generating high-quality vortex Airy beams.

  4. Nuclear reactor alignment plate configuration

    Energy Technology Data Exchange (ETDEWEB)

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  5. Layered magnets: polarized neutron reflection studies

    Energy Technology Data Exchange (ETDEWEB)

    Zabel, H.; Schreyer, A. [Ruhr-Univ. Bochum, Lehrstuhl fuer Experimentalphysik/Festkoerperphysik, Bochum (Germany)

    1996-11-01

    Neutron reflectivity measurements from extended surfaces, thin films and superlattices provide information on the chemical profile parallel to the film normal, including film thicknesses, average composition and interfacial roughness parameters. Reflectivity measurements with polarized neutrons are particularly powerful for analyzing the magnetic density profiles in thin films and superlattices in addition to chemical profiles. The basic theory of polarized neutron reflectivity is provided, followed by some examples and more recent applications concerning polarized neutron reflectivity studies from exchange coupled Fe/Cr superlattices. (author) 5 figs., 13 refs.

  6. Create Your Plate

    Medline Plus

    Full Text Available ... 1 Type 2 About Us Online Community Meal Planning Sign In Search: Search More Sites Search ≡ Are ... Fitness Home Food MyFoodAdvisor Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create Your Plate Gluten ...

  7. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods donate en -- A Future Without Diabetes - a-future-without-diabetes-2.html A Future Without Diabetes Donate towards research today and your gift will be matched. Donate ...

  8. The Plate Tectonics Project

    Science.gov (United States)

    Hein, Annamae J.

    2011-01-01

    The Plate Tectonics Project is a multiday, inquiry-based unit that facilitates students as self-motivated learners. Reliable Web sites are offered to assist with lessons, and a summative rubric is used to facilitate the holistic nature of the project. After each topic (parts of the Earth, continental drift, etc.) is covered, the students will…

  9. Create Your Plate

    Medline Plus

    Full Text Available ... meal-planning, . In this section Food Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods donate en -- A Future Without Diabetes - a-future-without-diabetes-1.html A Future ...

  10. Create Your Plate

    Medline Plus

    Full Text Available ... Types of Activity Weight Loss Assess Your Lifestyle Getting Started Food Choices In My Community Home Find Your ... but changes the portion sizes so you are getting larger portions of ... seven steps to get started: Using your dinner plate, put a line down ...

  11. Create Your Plate

    Medline Plus

    Full Text Available ... Create Your Plate is a simple and effective way to manage your blood glucose levels and lose weight. With ... for Donations - ways-to-give-201710-hotelscom.html Ways to Give ... to help prevent and manage diabetes. Ask the Experts: Learn to Live Well ...

  12. Create Your Plate

    Medline Plus

    Full Text Available ... meal-planning, . In this section Food Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods donate en -- A Future Without Diabetes - a-future-without-diabetes-2.html A Future ...

  13. Create Your Plate

    Medline Plus

    Full Text Available ... Type 1 Type 2 About Us Online Community Meal Planning Sign In Search: Search More Sites Search ≡ ... Home Food MyFoodAdvisor Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free ...

  14. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods donate en -- A Future Without Diabetes - a-future-without-diabetes.html A Future Without Diabetes Donate towards research today and your gift will be matched. Donate Today We Can Help - we- ...

  15. Create Your Plate

    Medline Plus

    Full Text Available ... tax-deductible gift today can fund critical diabetes research and support vital diabetes education services that improve the ... way to manage your blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...

  16. Plate girders under bending

    NARCIS (Netherlands)

    Abspoel, R.; Dubina, D.; Ungureanu, V.

    2016-01-01

    In a material economy driven plate girder design, the lever arm between the flanges will increase. This leads to higher stiffness and bending moment resistance, but also to an in-crease of the web slenderness. This means that high strength steels can be used leading to a large reduction of the steel

  17. Simplified description of out-of-plane waves in thin annular elastic plates

    DEFF Research Database (Denmark)

    Zadeh, Maziyar Nesari; Sorokin, Sergey

    2013-01-01

    of the elementary beam theory is validated. The wave finite element method in the formulation of the three-dimensional elasticity theory is used to ensure that the comparison of dispersion diagrams is performed in the frequency range, where the classical thin plate theory is valid. Thus, the paper summarizes......Dispersion relations are derived for the out-of-plane wave propagation in planar elastic plates with constant curvature using the classical Kirchhoff thin plate theory. The dispersion diagrams and the mode shapes are compared with their counterparts for a straight plate strip and the role...... of curvature is assessed for plates with unconstrained edges. Elementary Bernoulli–Euler theory for a beam of rectangular cross-section with the circular shape of its axis is also employed to analyze the wave guide properties of this structure in its out-of-plane deformation. The applicability range...

  18. Measuring polarization dependent dispersion of non-polarizing beam splitter cubes with spectrally resolved white light interferometry

    Science.gov (United States)

    Csonti, K.; Hanyecz, V.; Mészáros, G.; Kovács, A. P.

    2017-06-01

    In this work we have measured the group-delay dispersion of an empty Michelson interferometer for s- and p-polarized light beams applying two different non-polarizing beam splitter cubes. The interference pattern appearing at the output of the interferometer was resolved with two different spectrometers. It was found that the group-delay dispersion of the empty interferometer depended on the polarization directions in case of both beam splitter cubes. The results were checked by inserting a glass plate in the sample arm of the interferometer and similar difference was obtained for the two polarization directions. These results show that to reach high precision, linearly polarized white light beam should be used and the residual dispersion of the empty interferometer should be measured at both polarization directions.

  19. Geographical Income Polarization

    DEFF Research Database (Denmark)

    Azhar, Hussain; Jonassen, Anders Bruun

    inter municipal income inequality. Counter factual simulations show that rising property prices to a large part explain the rise in polarization. One side-effect of polarization is tendencies towards a parallel polarization of residence location patterns, where low skilled individuals tend to live......In this paper we estimate the degree, composition and development of geographical income polarization based on data at the individual and municipal level in Denmark from 1984 to 2002. Rising income polarization is reconfirmed when applying new polarization measures, the driving force being greater...

  20. Coccolithophorids in polar waters: Trigonaspis spp. revisited

    DEFF Research Database (Denmark)

    Thomsen, Helge Abildhauge; Østergaard, Jette B.

    2015-01-01

    of crystallites that cover the surfaces of both the tower-shaped flagellar pole coccoliths and the disc-shaped body coccoliths are the keystone features of the genus. Circumstantial evidence exists linking species of Trigonaspis with species of Pappomonas in haploid-diploid life cycles.......A group of weakly calcified coccolithophorid genera and species were described from polar regions several decades ago. In the interim period a few additional findings have been reported adding to the morphological and biogeographical databases of some of the species. The holococcolithophorid genus...... Trigonaspis is revisited here with the purpose of providing, based on additional sampling from both polar regions, an update on species morphology, life history aspects and biogeography. The genus Trigonaspis as currently circumscribed comprises four taxa – two from each polar region. The triangular plates...

  1. High speed imaging of Raleigh-Taylor instabilities in laser driven plates

    Energy Technology Data Exchange (ETDEWEB)

    Frank, A.M.; Gillespie, C.H. [Lawrence Livermore National Lab., CA (United States); Trott, W.M. [Sandia National Labs., Albuquerque, NM (United States)

    1996-10-01

    Recent improvements and modifications of the imaging techniques have identified and provided measurements of Raleigh-Taylor (R-T) instabilities that occur in these events. The microscope system in the LLNL Micro Detonics Facility, was converted to an epi-illuminated polarization configuration. A double pulse nanosecond illuminator and a second independently focusable frame camera were also added to the system. A laser driven plate, that is a dense solid driven by a laser heated, lower density plasma, is inherently R-T unstable. The plates are aluminum, deposited on the ends of optical fibers. They are launched by a YAG Laser pulse traveling down the fiber. Plate velocities are several kilometers per second and characteristic dimensions of the instabilities are a few to tens of microns. Several techniques were used to examine the plates, the most successful being specularly reflecting polarization microscopy looking directly at the plate as it flies toward the camera. These images gave data on the spatial frequencies of the instabilities but could not give the amplitudes. To measure the amplitude of the instability a semi- transparent witness plate was placed a known distance from the plate. As above, the plate was observed using the polarization microscope but using the streak camera as the detector. Both the launch of the plate and its impact into the witness plate are observed on the streak record. Knowing the plate velocity function from earlier velocimetry measurements and observing the variations in the arrival time across the plate, the amplitude of the instability can be calculated.

  2. Classifying spaces of degenerating polarized Hodge structures

    CERN Document Server

    Kato, Kazuya

    2009-01-01

    In 1970, Phillip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kazuya Kato and Sampei Usui realize this dream by creating a logarithmic Hodge theory. They use the logarithmic structures begun by Fontaine-Illusie to revive nilpotent orbits as a logarithmic Hodge structure. The book focuses on two principal topics. First, Kato and Usui construct the fine moduli space of polarized logarithmic Hodge structures with additional structures. Even for a Hermitian symmetric domain D, the present theory is a refinem

  3. THE EFFECT OF SUPPORT PLATE ON DRILLING-INDUCED DELAMINATION

    Directory of Open Access Journals (Sweden)

    Navid Zarif Karimi

    2016-02-01

    Full Text Available Delamination is considered as a major problem in drilling of composite materials, which degrades the mechanical properties of these materials. The thrust force exerted by the drill is considered as the major cause of delamination; and one practical approach to reduce delamination is to use a back-up plate under the specimen. In this paper, the effect of exit support plate on delamination in twist drilling of glass fiber reinforced composites is studied. Firstly, two analytical models based on linear fracture mechanics and elastic bending theory of plates are described to find critical thrust forces at the beginning of crack growth for drilling with and without back-up plate. Secondly, two series of experiments are carried out on glass fiber reinforced composites to determine quantitatively the effect of drilling parameters on the amount of delamination. Experimental findings verify a large reduction in the amount of delaminated area when a back-up plate is placed under the specimen.

  4. Ultrasonic plate waves in wood-based composite panels

    Science.gov (United States)

    Tucker, Brian James

    Two key shortcomings of current ultrasonic nondestructive evaluation (NDE) techniques for plywood, medium density fiberboard (MDF), and oriented strandboard are the reliance on empirical correlations and the neglect of valuable waveform information. The research reported herein examined the feasibility of using fundamental physical relationships along with advanced signal analysis to evaluate material properties and locate defects in wood-based composite panels. Dispersion curves were constructed exhibiting the variation of ultrasonic flexural plate wave phase velocity with frequency. Based on shear deformation plate wave theory, flexural and transverse shear rigidity values for a variety of wood-based composite panels were obtained from the dispersion curves. Axial rigidity values were obtained directly from extensional plate wave phase velocity. Excellent agreement (within 5%) of flexural rigidity values was obtained between NDE and mechanical testing for thin panels (less than or equal to 6.4 mm). Transverse shear rigidity values were obtained from NDE, but no reliable mechanical results were obtained for comparison. Tensile and compressive axial rigidity values obtained from NDE were from 12% to 31% and from 22% to 41% higher than mechanical tension and compression test results, respectively. These differences between NDE and axial mechanical testing results are likely due to load-rate effects. Nondestructive rigidity results for thicker panels using the setup described herein were either unreliable or not interpretable due to highly attenuated signals and/or violation of plate wave assumptions. Shear deformation laminated plate theory was used to predict flexural and axial laminate rigidity values of wood-based laminates from NDE measurements to within 3% and 25%, respectively. Plate wave NDE was also used to successfully locate a 60-mm square delaminated area within a 6.4-mm thick MDF laminate. This fundamental research advances the state-of-the-art of wood

  5. Analysis of Flat-Plate Solar Array and Solar Lantern

    OpenAIRE

    P. L. N. V. Aashrith; M. Sameera Sarma

    2014-01-01

    A very detailed theortical analysis of a solar array has been carried out based on established values of solar radiation data to predict the performance of solar lamp . The analysis is based on established theory about flat-plate collectors. Top heat loss coefficient (Ut), Bottom heat loss coefficient (Ub), Overall heat loss coefficient (Ul), Useful energy (Qu), efficiency (hp) of the flat-plate solar array and efficiency (hl) of the solar lantern has been calculated.

  6. On the time-dependent behavior of FGM plates

    OpenAIRE

    Altenbach, Holm; Eremeyev, Victor,

    2009-01-01

    International audience; A non-classical plate theory based on the direct approach is introduced and applied to plates composed of functionally graded materials (FGM). The governing two-dimensional equations are formulated for a deformable surface, the viscoelastic stiffness parameters are identified assuming linear-viscoelastic material behavior. In addition, the material properties are changing in the thickness direction. Solving some problems of the global structural analysis it can be show...

  7. Polarized Light Corridor Demonstrations.

    Science.gov (United States)

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  8. Magnetic field sensor based on the Ampere's force using dual-polarization DBR fiber laser

    Science.gov (United States)

    Yao, Shuang; Zhang, Yang; Guan, Baiou

    2015-08-01

    A novel magnetic field sensor using distributed Bragg reflector (DBR) fiber laser by Ampere's force effect is proposed and experimentally demonstrated. The key sensing element, that is the dual-polarization DBR fiber laser, is fixed on the middle part of two copper plates which carry the current. Ampere's force is applied onto the coppers due to an external magnetic field generated by a DC solenoid. Thus, the lateral force from the coppers is converted to a corresponding beat frequency signal shift produced by the DBR laser. The electric current sensing is also realized by the same configuration and same principle simultaneously in an intuitive manner. Good agreement between the theory calculation and the experimental results is obtained, which shows a good linearity. This sensor's sensitivity to the magnetic field and to the electric current finally reaches ~258.92 kHz/mT and ~1.08727 MHz/A, respectively.

  9. Effect of plate shapes in orifice plate type flowmeters

    International Nuclear Information System (INIS)

    Moeller, S.V.

    1984-01-01

    The study of unusual plate shapes in orifice plate type flowmeters is presented, with a view to providing data for the substitution of the plate with one centered circular orifice in those applications where its use is not possible. For this purpose, six pairs of plates with different forms, with and without chamfered edges, were made and tested in a closed water loop. Results show that, generally, the use of chamfers improves the results and, in the case of perforated and slotlike orificed plates, the narrow-ness of the fluid passage tends to make unnecessary its use. (Author) [pt

  10. Accelerating polarized beams in Tevatron

    International Nuclear Information System (INIS)

    Teng, L.C.

    1989-02-01

    In this paper, we will examine the totality of equipment, manpower and cost necessary to obtain a polarized proton beam in the Tevatron. We will not, however, be concerned with the acquisition and acceleration of polarized /bar p/ beams. Furthermore we will consider only a planar main ring without overpass, although it is expected that Siberian snake schemes could be made to apply equally well to non-planar machines. In addition to not wanting to tackle here the task of reformulating the theory for a non-planar closed orbit, we also anticipate that as part of the Tevatron upgrade the main ring will in the not too distant future, be replaced by a planar main injector situated in a separate tunnel. 4 refs., 11 figs., 1 tab

  11. Polarized Moessbauer transitions

    International Nuclear Information System (INIS)

    Barb, D.

    1975-01-01

    Theoretical aspects of the emission, absorption and scattering of polarized gamma rays are reviewed for a general case of combined magnetic and electric hyperfine interactions; various possibilities of obtaining polarized gamma sources are described and examples are given of the applications of Moessbauer spectroscopy with polarized gamma rays in solving problems of solid state physics. (A.K.)

  12. Preparation of electrospun polyacrylonitrile fibers containing only the polarization charges

    Science.gov (United States)

    Zhong, Qin; Yao, Yongyi; Guo, Xiaoming; Zhou, Tao; Xiang, Ruili

    2017-03-01

    In this paper, we report a simple method to separate immobile charges into polarization charges and trapped charges and successfully prepare electrospun polyacrylonitrile fibers only containing polarization charge. The amount of surface polarization charges and trapped charges were +5.34 nC/g and -2.98 nC/g, respectively. We also tried to explain the mechanism of formation and location of immobile charges by using a model of a parallel plate capacitor, and to track the route and location of charges. Additionally, we investigated the influence of residual solvent, a water bath and the temperature of the water bath on the immobile charges.

  13. A form of MHD universal equations of unsteady incompressible fluid flow with variable elctroconductivity on heated moving plate

    Directory of Open Access Journals (Sweden)

    Boričić Zoran

    2005-01-01

    Full Text Available This paper deals with laminar, unsteady flow of viscous, incompressible and electro conductive fluid caused by variable motion of flat plate. Fluid electro conductivity is variable. Velocity of the plate is time function. Plate moves in its own plane and in "still" fluid. Present external magnetic filed is perpendicular to the plate. Plate temperature is a function of longitudinal coordinate and time. Viscous dissipation, Joule heat, Hole and polarization effects are neglected. For obtaining of universal equations system general similarity method is used as well as impulse and energy equation of described problem.

  14. Looking for Plate Tectonics in all the wrong fluids

    Science.gov (United States)

    Davaille, Anne

    2017-04-01

    Ever since the theory of Plate Tectonics in the 1960's, the dream of the geomodeler has been to generate plate tectonics self-consistently from thermal convection in the laboratory. By selfconsistenly, I mean that the configuration of the plate boundaries is in no way specified a priori, so that the plates develop and are wholly consumed without intervention from the modeler. The reciepe is simple : put a well-chosen fluid in a fishtank heated from below and cooled from above, wait and see. But the « well-chosen » is the difficult part... and the interesting one. Plate tectonics is occuring on Earth because of the characteristics of the lithosphere rheology. The latter are complex to estimate as they depend on temperature, pressure, phase, water content, chemistry, strain rate, memory and scale. As a result, the ingredients necessary for plate tectonics are still debated, and it would be useful to find an analog fluid who could reproduce plate tectonics in the laboratory. I have therefore spent the last 25 years to try out fluids, and I shall present a number of failures to generate plate tectonics using polymers, colloids, ketchup, milk, chocolate, sugar, oils. To understand why they failed is important to narrow down the « well-chosen » fluid.

  15. Rigid-Plastic Post-Buckling Analysis of Columns and Quadratic Plates

    DEFF Research Database (Denmark)

    Jönsson, Jeppe

    2008-01-01

    The objective of this paper is to show the application of a novel approach to the rigid plastic hinge and yield line theory in post-buckling analysis of slender plates and columns. The upper bound theorem of plasticity theory and the associated flow law of plasticity are used to find...... yield lines accommodate differential rotations of rigid parts and the area “collapse” yield lines accommodate local area changes of the rigid parts thereby preserving compatibility of the rigid parts of a plate. The approach will be illustrated for rigid plastic column analysis and for a quadratic plate...... of the post-buckling behaviour. The rigid plastic theory of plates, referred to as yield line theory, involves large rigid parts of the plate mutually rotating about yielding hinge lines, however in order to accommodate in plane plastic deformations area “collapse” yield lines have been introduced. The hinge...

  16. Surface ionization theory

    International Nuclear Information System (INIS)

    Bonnal, J.-F.; Pelissier, Andre

    1974-01-01

    After a brief theoretical review, the relationship existing between the ionization rate in the vicinity of a metallic plate in thermodynamic equilibrium with a cesium plasma and the density of electron current issued from the same plate is presented. The evolution of this density of current is represented by the Langmuir S-curves. It is shown that knowledge of the S-curves leads to that of the critical temperatures and of the ionization rates when the generated ions are extracted by an electric field. The influence of the principal parameters (the nature and temperature of the plate and the cesium flow supplying it) is analyzed using the Rasor theory. The theoretical results obtained using a model of the flat plate represent fairly closely the operations observed experimentally on porous tungstem ionizers [fr

  17. Quantum mechanics theory and experiment

    CERN Document Server

    Beck, Mark

    2012-01-01

    This textbook presents quantum mechanics at the junior/senior undergraduate level. It is unique in that it describes not only quantum theory, but also presents five laboratories that explore truly modern aspects of quantum mechanics. These laboratories include "proving" that light contains photons, single-photon interference, and tests of local realism. The text begins by presenting the classical theory of polarization, moving on to describe the quantum theory of polarization. Analogies between the two theories minimize conceptual difficulties that students typically have when first presented with quantum mechanics. Furthermore, because the laboratories involve studying photons, using photon polarization as a prototypical quantum system allows the laboratory work to be closely integrated with the coursework. Polarization represents a two-dimensional quantum system, so the introduction to quantum mechanics uses two-dimensional state vectors and operators. This allows students to become comfortable with the mat...

  18. Finite-Element Modeling of Timber Joints with Punched Metal Plate Fasteners

    DEFF Research Database (Denmark)

    Ellegaard, Peter

    2006-01-01

    The focus of this paper is to describe the idea and the theory behind a finite-element model developed for analysis of timber trusses with punched metal plate fasteners (nail plates). The finite-element model includes the semirigid and nonlinear behavior of the joints (nonlinear nail and plate...... area over the joint lines. The finite-element model is based on the Foschi model, but with further improvements. After the theory of the model is described, results from experimental tests with two types of nail plate joints are compared with predictions given by the model. The model estimates...

  19. The Physics of Polarization

    Science.gov (United States)

    Landi Degl'Innocenti, Egidio

    2015-10-01

    The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.

  20. Fuel cell end plate structure

    Science.gov (United States)

    Guthrie, Robin J.; Katz, Murray; Schroll, Craig R.

    1991-04-23

    The end plates (16) of a fuel cell stack (12) are formed of a thin membrane. Pressure plates (20) exert compressive load through insulation layers (22, 26) to the membrane. Electrical contact between the end plates (16) and electrodes (50, 58) is maintained without deleterious making and breaking of electrical contacts during thermal transients. The thin end plate (16) under compressive load will not distort with a temperature difference across its thickness. Pressure plate (20) experiences a low thermal transient because it is insulated from the cell. The impact on the end plate of any slight deflection created in the pressure plate by temperature difference is minimized by the resilient pressure pad, in the form of insulation, therebetween.

  1. On liquid films on an inclined plate

    KAUST Repository

    BENILOV, E. S.

    2010-08-18

    This paper examines two related problems from liquid-film theory. Firstly, a steady-state flow of a liquid film down a pre-wetted plate is considered, in which there is a precursor film in front of the main film. Assuming the former to be thin, a full asymptotic description of the problem is developed and simple analytical estimates for the extent and depth of the precursor film\\'s influence on the main film are provided. Secondly, the so-called drag-out problem is considered, where an inclined plate is withdrawn from a pool of liquid. Using a combination of numerical and asymptotic means, the parameter range where the classical Landau-Levich-Wilson solution is not unique is determined. © 2010 Cambridge University Press.

  2. Elastic stability of superplastically formed/diffusion-bonded orthogonally corrugated core sandwich plates

    Science.gov (United States)

    Ko, W. L.

    1980-01-01

    The paper concerns the elastic buckling behavior of a newly developed superplastically formed/diffusion-bonded (SPF/DB) orthogonally corrugated core sandwich plate. Uniaxial buckling loads were calculated for this type of sandwich plate with simply supported edges by using orthotropic sandwich plate theory. The buckling behavior of this sandwich plate was then compared with that of an SPF/DB unidirectionally corrugated core sandwich plate under conditions of equal structural density. It was found that the buckling load for the former was considerably higher than that of the latter.

  3. Plate Full of Color

    Centers for Disease Control (CDC) Podcasts

    2008-08-04

    The Eagle Books are a series of four books that are brought to life by wise animal characters - Mr. Eagle, Miss Rabbit, and Coyote - who engage Rain That Dances and his young friends in the joy of physical activity, eating healthy foods, and learning from their elders about health and diabetes prevention. Plate Full of Color teaches the value of eating a variety of colorful and healthy foods.  Created: 8/4/2008 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 8/5/2008.

  4. Effect of spin polarization on the structural properties and bond ...

    Indian Academy of Sciences (India)

    coupled to semi-empirical hardness theory proved effective in hardness prediction for the metal borides which agree well with the experimental values. These results would help to gain insight into the spin-polarized effect on the structural and bond hardness. Keywords. Iron boride; DFT; spin polarized; critical pressure; ...

  5. Two-photon polarization Fourier spectroscopy of metastable atomic hydrogen

    International Nuclear Information System (INIS)

    Duncan, A.J.; Beyer, H.-J.; Kleinpoppen, H.; Sheikh, Z.A,; B-Z Univ., Multan

    1997-01-01

    A novel Fourier-transform spectroscopic method using two-photon polarization to determine the spectral distribution of the two photons emitted in the spontaneous decay of metastable atomic hydrogen is described. The method uses birefringent retardation plates and takes advantage of the subtle interplay between the spectral properties and the entangled polarization properties of the radiation emitted in the decay. Assuming the validity of the theoretical spectral distribution, it is shown that the experimental results agree well with theory. On the other hand, success in solving the inverse problem of determining the spectral distribution from the experimental results is limited by the small number of experimental points. However, making reasonable assumptions it is deduced that the observed spectrum is characterized by a broadband signal of width (0.43 ± 0.06) x 10 16 rad s -1 and centre angular frequency (0.77 ± 0.03) x 10 16 rad s -1 in good agreement with the predictions of 0.489 x 10 16 rad s -1 and 0.775 x 10 16 rad s -1 , respectively, obtained from the theoretical spectral distribution modified to take account of the absorption of the two-photon radiation in air. The values of 1.5 fs for the coherence time and 440 nm for the coherence length for single photons of the two-photon pair which are obtained from the measured bandwidth imply that, in the ideal case, these values are determined by the essentially zero lifetime of the virtual intermediate state of the decay process rather than the long lifetime of the metastable state which, it is suggested, determines the coherence time and coherence length appropriate to certain types of fourth-order interference experiments. (Author)

  6. Subduction controls the distribution and fragmentation of Earth’s tectonic plates.

    Science.gov (United States)

    Mallard, Claire; Coltice, Nicolas; Seton, Maria; Müller, R Dietmar; Tackley, Paul J

    2016-07-07

    The theory of plate tectonics describes how the surface of Earth is split into an organized jigsaw of seven large plates of similar sizes and a population of smaller plates whose areas follow a fractal distribution. The reconstruction of global tectonics during the past 200 million years suggests that this layout is probably a long-term feature of Earth, but the forces governing it are unknown. Previous studies, primarily based on the statistical properties of plate distributions, were unable to resolve how the size of the plates is determined by the properties of the lithosphere and the underlying mantle convection. Here we demonstrate that the plate layout of Earth is produced by a dynamic feedback between mantle convection and the strength of the lithosphere. Using three-dimensional spherical models of mantle convection that self-consistently produce the plate size–frequency distribution observed for Earth, we show that subduction geometry drives the tectonic fragmentation that generates plates. The spacing between the slabs controls the layout of large plates, and the stresses caused by the bending of trenches break plates into smaller fragments. Our results explain why the fast evolution in small back-arc plates reflects the marked changes in plate motions during times of major reorganizations. Our study opens the way to using convection simulations with plate-like behaviour to unravel how global tectonics and mantle convection are dynamically connected.

  7. Organization of the tectonic plates in the last 200 Myr (Invited)

    Science.gov (United States)

    Morra, G.; Seton, M.; Quevedo, L. E.; Müller, D.

    2013-12-01

    The present tessellation of the Earth's surface into tectonic plates displays a remarkably regular plate size distribution, described by either one (Sornette and Pisarenko, 2003) or two (Bird, 2003) statistically distinct groups, characterised by large and small plate size. A unique distribution implies a hierarchical structure from the largest to the smallest plate. Alternatively, two distributions indicate distinct evolutionary laws for large and small plates, the first tied to mantle flow, the second determined by a hierarchical fragmentation process. We analyse detailed reconstructions of plate boundaries during the last 200 Myr and find that (i) large and small plates display distinct statistical distributions, (ii) the small plates display little organisational change since 60 Ma and (iii) the large plates oscillate between heterogeneous (200-170 Ma and 65-50 Ma) and homogeneous (120-100 Ma) plate tessellations on a timescale of about 100 Myr. Heterogeneous states are reached more rapidly, while the plate configuration decays into homogeneous states following a slower asymptotic curve, suggesting that heterogeneous configurations are excited states while homogeneous tessellations are equilibrium states. We explain this evolution by proposing a model that alternates between bottom- and top-driven Earth dynamics, physically described by fluid-dynamic analogies, the Rayleigh-Benard and Bénard-Marangoni convection, respectively. We discuss the implications for true polar wander (TPW), global kinematic reorganisations (50 and 100 Ma) and the Earth's magnetic field inversion frequency. Earth's present tessellation: grey scale proportional to the logarithm of plate size. Plot: logarithm of complementary 'cumulative plate count' (Y-axis) vs. the logarithm of the plate size (X-axis). Time evolution of the 'standard deviation' of the plate size every one million years.

  8. CMS Resistive plate Champers

    CERN Document Server

    Zainab, Karam

    2013-01-01

    There are many types of gas detectors which are used in CERN in LHC project, There is a main parts for the gas detectors which must be in all gas detectors types like Multiwire proportional chambers, such as the micromesh gaseous structure chamber (the MicroMegas), Gas-electron multiplier (GEM) detector, Resistive Plate Champers... Compact Muon Solenoid (CMS) experiment detecting muons which are powerful tool for recognizing signatures of interesting physics processes. The CMS detector uses: drift tube (DT), cathode strip chamber (CSC) and resistive plate chamber (RPC). Building RPC’s was my project in summer student program (hardware). RPC’s have advantages which are triggering detector and Excellent time resolution which reinforce the measurement of the correct beam crossing time. RPC’s Organized in stations :  RPC barrel (RB) there are 4 stations, namely RB1, RB2, RB3, and RB4  While in the RPC endcap (RE) the 3 stations are RE1, RE2, and RE3. In the endcaps a new starion will be added and this...

  9. Some isomorphic properties ofm-polar fuzzy graphs with applications.

    Science.gov (United States)

    Ghorai, Ganesh; Pal, Madhumangal

    2016-01-01

    The theory of graphs are very useful tool in solving the combinatorial problems in different areas of computer science and computational intelligence systems. In this paper, we present a frame work to handle m -polar fuzzy information by combining the theory of m -polar fuzzy sets with graphs. We introduce the notion of weak self complement m -polar fuzzy graphs and establish a necessary condition for m -polar fuzzy graph to be weak self complement. Some properties of self complement and weak self complement m -polar fuzzy graphs are discussed. The order, size, busy vertices and free vertices of an m -polar fuzzy graphs are also defined and proved that isomorphic m -polar fuzzy graphs have same order, size and degree. Also, we have presented some results of busy vertices in isomorphic and weak isomorphic m -polar fuzzy graphs. Finally, a relative study of complement and operations on m -polar fuzzy graphs have been made. Applications of m -polar fuzzy graph are also given at the end.

  10. [Review] Polarization and Polarimetry

    Science.gov (United States)

    Trippe, Sascha

    2014-02-01

    Polarization is a basic property of light and is fundamentally linked to the internal geometry of a source of radiation. Polarimetry complements photometric, spectroscopic, and imaging analyses of sources of radiation and has made possible multiple astrophysical discoveries. In this article I review (i) the physical basics of polarization: electromagnetic waves, photons, and parameterizations; (ii) astrophysical sources of polarization: scattering, synchrotron radiation, active media, and the Zeeman, Goldreich-Kylafis, and Hanle effects, as well as interactions between polarization and matter (like birefringence, Faraday rotation, or the Chandrasekhar-Fermi effect); (iii) observational methodology: on-sky geometry, influence of atmosphere and instrumental polarization, polarization statistics, and observational techniques for radio, optical, and X/γ wavelengths; and (iv) science cases for astronomical polarimetry: solar and stellar physics, planetary system bodies, interstellar matter, astrobiology, astronomical masers, pulsars, galactic magnetic fields, gamma-ray bursts, active galactic nuclei, and cosmic microwave background radiation.

  11. Transient vibration of thin viscoelastic orthotropic plates

    Czech Academy of Sciences Publication Activity Database

    Soukup, J.; Valeš, František; Volek, J.; Skočilas, J.

    2011-01-01

    Roč. 27, č. 1 (2011), s. 98-107 ISSN 0567-7718. [International Conference on Dynamical Systems - Theory and Applications /10./. Lodz, 07.12.2009-10.12.2009] R&D Projects: GA ČR GA101/07/0946 Institutional research plan: CEZ:AV0Z20760514 Keywords : transient vibration thin plate * orthotropic * general viscoelastic standard solid Subject RIV: BI - Acoustics Impact factor: 0.860, year: 2011 http://www.springerlink.com/content/hn67324178846n4r/

  12. Extraordinary sound screening in perforated plates.

    Science.gov (United States)

    Estrada, Héctor; Candelas, Pilar; Uris, Antonio; Belmar, Francisco; García de Abajo, F J; Meseguer, Francisco

    2008-08-22

    We report extraordinary effects in the transmission of sound through periodically perforated plates, supported by both measurements and theory. In agreement with recent observations in slit arrays, M. H. Lu et al. [Phys. Rev. Lett. 99, 174301 (2007)10.1103/PhysRevLett.99.174301], nearly full transmission is observed at certain resonant frequencies, pointing out similarities of the acoustic phenomena and their optical counterpart. However, acoustic screening well beyond that predicted by the mass law is achieved over a wide range of wavelengths in the vicinity of the period of the array, resulting in fundamentally unique behavior of the sound as compared to light.

  13. Polarization feedback laser stabilization

    Science.gov (United States)

    Esherick, P.; Owyoung, A.

    1987-09-28

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other. 4 figs.

  14. Polarization in Sagittarius A*

    OpenAIRE

    Bower, Geoffrey C.

    2000-01-01

    We summarize the current state of polarization observations of Sagittarius A*, the compact radio source and supermassive black hole candidate in the Galactic Center. These observations are providing new tools for understanding accretion disks, jets and their environments. Linear polarization observations have shown that Sgr A* is unpolarized at frequencies as high as 86 GHz. However, recent single-dish observations indicate that Sgr A* may have strong linear polarization at frequencies higher...

  15. Circularly Polarized Microwave Antenna Element with Very Low Off-Axis Cross-Polarization

    Science.gov (United States)

    Greem. David; DuToit, Cornelis

    2013-01-01

    The goal of this work was to improve off-axis cross-polarization performance and ease of assembly of a circularly polarized microwave antenna element. To ease assembly, the initial design requirement of Hexweb support for the internal circuit part, as well as the radiating disks, was eliminated. There is a need for different plating techniques to improve soldering. It was also desirable to change the design to eliminate soldering as well as the need to use the Hexweb support. Thus, a technique was developed to build the feed without using solder, solving the lathing and soldering issue. Internal parts were strengthened by adding curvature to eliminate Hexweb support, and in the process, the new geometries of the internal parts opened the way for improving the off-axis cross-polarization performance as well. The radiating disks curvatures were increased for increased strength, but it was found that this also improved crosspolarization. Optimization of the curvatures leads to very low off-axis cross-polarization. The feed circuit was curved into a cylinder for improved strength, eliminating Hexweb support. An aperture coupling feed mechanism eliminated the need for feed pins to the disks, which would have required soldering. The aperture coupling technique also improves cross-polarization performance by effectively exciting the radiating disks very close to the antenna s central axis of symmetry. Because of the shape of the parts, it allowed for an all-aluminum design bolted together and assembled with no solder needed. The advantage of a solderless design is that the reliability is higher, with no single-point failure (solder), and no need for special plating techniques in order to solder the unit together. The shapes (curved or round) make for a more robust build without extra support materials, as well as improved offaxis cross-polarization.

  16. Channel plate for DNA sequencing

    Science.gov (United States)

    Douthart, Richard J.; Crowell, Shannon L.

    1998-01-01

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface.

  17. Airborne Laser Polarization Sensor

    Science.gov (United States)

    Kalshoven, James, Jr.; Dabney, Philip

    1991-01-01

    Instrument measures polarization characteristics of Earth at three wavelengths. Airborne Laser Polarization Sensor (ALPS) measures optical polarization characteristics of land surface. Designed to be flown at altitudes of approximately 300 m to minimize any polarizing or depolarizing effects of intervening atmosphere and to look along nadir to minimize any effects depending on look angle. Data from measurements used in conjunction with data from ground surveys and aircraft-mounted video recorders to refine mathematical models used in interpretation of higher-altitude polarimetric measurements of reflected sunlight.

  18. Polarization at SLC

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-07-01

    The SLAC Linear Collider has been designed to readily accommodate polarized electron beams. Considerable effort has been made to implement a polarized source, a spin rotation system, and a system to monitor the beam polarization. Nearly all major components have been fabricated. At the current time, several source and polarimeter components have been installed. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. It is expected that a beam polarization of 45% will be achieved with no loss in luminosity. 13 refs., 15 figs

  19. Application of macro-polarization curve method to corrosion analysis of heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, S. [Dept. of Computational Science and Engineering, Toyo Univ., Kawagoe, Saitama (Japan); Amaya, K. [Dept. of Mechanical and Environmental Informatics, Tokyo Inst. of Tech., Tokyo (Japan); Miyuki, H. [Iron and Steel Research Labs., Sumitomo Steel Co. Ltd., Fuyocho, Amagasaki (Japan)

    2003-07-01

    A boundary element corrosion analysis was performed for a heat exchanger to predict the effect of zinc sacrificial anodes. Since a heat exchanger has thousands of stainless steel tubes held with two naval brass tube-holder plates, and hence the conventional BEM does not work, the equivalent macro-polarization curve method was applied. At first the part of the tube-holder plate surfaces which consist of a great number of stainless steel tube edges and brass tube-holder plate was assumed to be made of a homogeneous virtual material. Then, its equivalent macro-polarization curve was determined by analyzing a tube unit, which consists of a stainless steel tube and a part of naval brass tube-holder plate. By using the equivalent macro-polarization curve thus obtained, the heat exchanger was effectively analyzed with a small number of elements. (orig.)

  20. Three-dimensional vibration analysis of functionally graded material sandwich plates

    Science.gov (United States)

    Li, Q.; Iu, V. P.; Kou, K. P.

    2008-03-01

    Free vibration of functionally graded material sandwich rectangular plates with simply supported and clamped edges is studied based on the three-dimensional linear theory of elasticity. Two common types of FGM sandwich plates, namely, the sandwich with FGM facesheet and homogeneous core and the sandwich with homogeneous facesheet and FGM core, are considered. The three displacements of the plates are expanded by a series of Chebyshev polynomials multiplied by appropriate functions to satisfy the essential boundary conditions. The natural frequencies are obtained by Ritz method. Rapid convergence is observed in this study. The natural frequencies of simply supported power-law FGM sandwich plates are compared with results from different two-dimensional plate theories. Parametric study is performed for varying volume fraction, layer thickness ratios, thickness-length ratios and aspect ratios of the sandwich plates.

  1. Fracture Analyses of Cracked Delta Eye Plates in Ship Towing

    Science.gov (United States)

    Huang, Xiangbing; Huang, Xingling; Sun, Jizheng

    2018-01-01

    Based on fracture mechanics, a safety analysis approach is proposed for cracked delta eye plates in ship towing. The static analysis model is presented when the delta eye plate is in service, and the fracture criterion is introduced on basis of stress intensity factor, which is estimated with domain integral method. Subsequently, three-dimensional finite element analyses are carried out to obtain the effective stress intensity factors, and a case is studied to demonstrate the reasonability of the approach. The results show that the classical strength theory is not applicable to evaluate the cracked plate while fracture mechanics can solve the problem very well, and the load level, which a delta eye plate can carry on, decreases evidently when it is damaged.

  2. Effect of matrix cracking and material uncertainty on composite plates

    International Nuclear Information System (INIS)

    Gayathri, P.; Umesh, K.; Ganguli, R.

    2010-01-01

    A laminated composite plate model based on first order shear deformation theory is implemented using the finite element method. Matrix cracks are introduced into the finite element model by considering changes in the A, B and D matrices of composites. The effects of different boundary conditions, laminate types and ply angles on the behavior of composite plates with matrix cracks are studied. Finally, the effect of material property uncertainty, which is important for composite material on the composite plate, is investigated using Monte Carlo simulations. Probabilistic estimates of damage detection reliability in composite plates are made for static and dynamic measurements. It is found that the effect of uncertainty must be considered for accurate damage detection in composite structures. The estimates of variance obtained for observable system properties due to uncertainty can be used for developing more robust damage detection algorithms.

  3. Homogenized behaviour of the steam generator perforated plates

    International Nuclear Information System (INIS)

    Voldoire, F.

    1993-06-01

    To determine the overall behaviour of structures such as multiperforated plates, that are found in the industrial components (for instance in the nuclear plant steam generators), we propose to apply the theory of the heterogeneous thermoelastic plates. First we begin by the formulation of the model, lying on an asymptotic expansion. Then we describe the application to the tube sheet and support plates case, for 900 MW and 1300 MW steam generators. Numerical values of the homogenized behaviour are provided (thermal conductivity and thermoelastic coefficients). These values are compared with those available in the literature. Some comments on the mechanical fields distribution are added, for instance: hole ovalization, stress concentrations... This study completes earlier EDF works on the thermal and mechanical homogenization of the tube sheets, which are realized before the theoretical formulation of the homogenization for plates and shells structures. (author). 16 figs., 21 tabs., 14 refs

  4. Analyses of functionally graded plates with a magnetoelectroelastic layer

    Science.gov (United States)

    Sladek, J.; Sladek, V.; Krahulec, S.; Pan, E.

    2013-03-01

    A meshless local Petrov-Galerkin (MLPG) method is presented for the analysis of functionally graded material (FGM) plates with a sensor/actuator magnetoelectroelastic layer localized on the top surface of the plate. The Reissner-Mindlin shear deformation theory is applied to describe the plate bending problem. The expressions for the bending moment, shear force and normal force are obtained by integration through the FGM plate and magnetoelectric layer for the corresponding constitutive equations. Then, the original three-dimensional (3D) thick-plate problem is reduced to a two-dimensional (2D) problem. Nodal points are randomly distributed over the mean surface of the considered plate. Each node is the center of a circle surrounding the node. The weak-form on small subdomains with a Heaviside step function as the test function is applied to derive local integral equations. After performing the spatial MLS approximation, a system of ordinary differential equations of the second order for certain nodal unknowns is obtained. The derived ordinary differential equations are solved by the Houbolt finite-difference scheme. Pure mechanical loads or electromagnetic potentials are prescribed on the top of the layered plate. Both stationary and transient dynamic loads are analyzed.

  5. Analyses of functionally graded plates with a magnetoelectroelastic layer

    International Nuclear Information System (INIS)

    Sladek, J; Sladek, V; Krahulec, S; Pan, E

    2013-01-01

    A meshless local Petrov–Galerkin (MLPG) method is presented for the analysis of functionally graded material (FGM) plates with a sensor/actuator magnetoelectroelastic layer localized on the top surface of the plate. The Reissner–Mindlin shear deformation theory is applied to describe the plate bending problem. The expressions for the bending moment, shear force and normal force are obtained by integration through the FGM plate and magnetoelectric layer for the corresponding constitutive equations. Then, the original three-dimensional (3D) thick-plate problem is reduced to a two-dimensional (2D) problem. Nodal points are randomly distributed over the mean surface of the considered plate. Each node is the center of a circle surrounding the node. The weak-form on small subdomains with a Heaviside step function as the test function is applied to derive local integral equations. After performing the spatial MLS approximation, a system of ordinary differential equations of the second order for certain nodal unknowns is obtained. The derived ordinary differential equations are solved by the Houbolt finite-difference scheme. Pure mechanical loads or electromagnetic potentials are prescribed on the top of the layered plate. Both stationary and transient dynamic loads are analyzed. (paper)

  6. VISAS AND GREEN PLATES

    CERN Multimedia

    2000-01-01

    From 3 April 2000, all questions relating to visa requests for Switzerland, France, or Russia for a member of the personnel must be addressed to Ms. Agnita Querrou (telephone 72838, office 5-2-019, e-mail Agnita.Querrou@cern.ch).The Users' Office continues to deal with requests for letters of invitation and questions concerning visas for users in EP Division.Questions relating to removals, requests for green plates, to privileges of members of the personnel and to the importation of vehicles are still dealt with by Ms Zuzana Miller (telephone 79257, office 33-1-017, e-mail Zuzana.Muller@cern.ch) and Ms Joëlle Belleman (telephone 73962, office 33-1-019, e-mail Joelle.Belleman@cern.ch).

  7. Buckling Analysis of Functionally Graded Plates with Simply Supported Edges

    Directory of Open Access Journals (Sweden)

    Megueni ABDELKADER

    2009-12-01

    Full Text Available Thermal buckling analyses of S-FGM are investigated by using first order shear deformation theory. Material properties are varied continuously in the thickness direction according to a sigmoid distribution. The thermal buckling behaviours under uniform, linear and sinusoidal temperature rise across the thickness are analyzed. In addition, the effects of temperature field, volume fraction distributions, and system geometric parameters are investigated. The results are compared with the results of the classic plate theory (CPT.

  8. Plate osteosynthesis of simple forearm fractures : LCP versus DC plates

    NARCIS (Netherlands)

    Stevens, Charles Tjerk; Ten Duis, Henk Jan

    The aim of this study was to compare the time to radiological bony union of simple A-type fractures of the forearm, treated with either a locking compression plate (LCP) or a dynamic compression plate (DCP). For each fracture, the relation between the use of compression and radiological healing time

  9. The Dynamic Response of Multidirectional Functionally Graded Plates Impacted by Blast Loading

    Science.gov (United States)

    2013-11-11

    Mechanical Engineering Science, 255 Part C (2010) 526-536. [4] X.Q. He, T.Y. Ng, S. Sivashanker, K.M. Liew, Active control of FGM plates with...release The Dynamic Response of Multidirectional Functionally Graded Plates Impacted by Blast Loading Terry Hausea, Ph.D. aResearch...functionally graded thin plates under an in-air blast loading from a Friedlander type pressure loading is presented. The theory is presented in the context

  10. Initiation of Plate Tectonics from Post-Magma Ocean Thermo-Chemical Convection

    OpenAIRE

    Foley, Bradford J.; Bercovici, David; Elkins-Tanton, Linda T.

    2014-01-01

    Leading theories for the presence of plate tectonics on Earth typically appeal to the role of present day conditions in promoting rheological weakening of the lithosphere. However, it is unknown whether the conditions of the early Earth were favorable for plate tectonics, or any form of subduction, and thus how subduction begins is unclear. Using physical models based on grain-damage, a grainsize-feedback mechanism capable of producing plate-like mantle convection, we demonstrate that subduct...

  11. Theory of multiferroics

    International Nuclear Information System (INIS)

    Nagaosa, Naoto

    2009-01-01

    Theories of multiferroics are reviewed with a stress on the role of relativistic spin-orbit interaction and spin current. Ground state electric polarization induced by the non-collinear spin structures, and its dynamical fluctuation, i.e., electro-magnon are discussed. Treatments of the non-perturbative large amplitude thermal and quantum fluctuations are also described. (author)

  12. Detailed analysis of evolution of the state of polarization in all-fiber polarization transformers.

    Science.gov (United States)

    Zhu, Xiushan; Jain, Ravinder K

    2006-10-30

    We present a detailed analysis of key attributes and performance characteristics of controllably-spun birefringent-fiber-based all-fiber waveplates or "all fiber polarization transformers" (AFPTs), first proposed and demonstrated by Huang [11]; these AFPTs consist essentially of a long carefully-designed "spin-twisted" high-birefringence fiber, fabricated by slowly varying the spin rate of a birefringent fiber preform (either from very fast to very slow or vice versa) while the fiber is being drawn. The evolution of the eigenstate from a linear polarization state to a circular polarization state, induced by slow variation of the intrinsic structure from linear anisotropy at the unspun end to circular anisotropy at the fast-spun end, enables the AFPT to behave like an all-fiber quarter-wave plate independent of the wavelength of operation. Power coupling between local eigenstates causes unique evolution of the polarization state along the fiber, and has been studied to gain insight into - as well as to understand detailed characteristics of -- the polarization transformation behavior. This has been graphically illustrated via plots of the relative power in these local eigenstates as a function of distance along the length of the fiber and plots of the extinction ratio of the output state of polarization (SOP) as a function of distance and the normalized spin rate. Deeper understanding of such polarization transformers has been further elucidated by quantitative calculations related to two crucial requirements for fabricating practical AFPT devices. Our calculations have also indicated that the polarization mode dispersion behaviour of the AFPT is much smaller than that of the original birefringent fiber. Finally, a specific AFPT was experimentally investigated at two widely-separated wavelengths (1310 nm and 1550 nm) of interest in telecommunications systems applications, further demonstrating and elucidating the broadband character of such AFPTs.

  13. direct method of analysis of an isotropic rectangular plate direct

    African Journals Online (AJOL)

    eobe

    [1-5] have been devoted to the subject. Cauchy and Poisson, were first to formulate the problem of plate bending based on general equations of theory of elasticity [1]. They obtained the governing differential equation for deflections that coincides completely with the well-known Germain – Lagrange equation. However, the ...

  14. Strength of gusset plates in welded steel structures

    DEFF Research Database (Denmark)

    Jensen, Aage

    2004-01-01

    The design of gusset plates is normally carried out on the bases of the technical beam theory or other assumptions proved safe by experience. This design procedure has proved its usefulness by the length of life and use of existing structures, and is to some extend justified in simple loading cases...

  15. Modeling particulate removal in plate-plate and wire-plate electrostatic precipitators

    Directory of Open Access Journals (Sweden)

    S Ramechecandane

    2016-09-01

    Full Text Available The present study is concerned with the modeling of electrically charged particles in a model plate-plate and a single wire-plate electrostatic precipitator (ESP. The particle concentration distributions for both a plate-plate and a wire-plate ESP are calculated using a modified drift flux model. Numerical investigations are performed using the modified drift flux model for particle number concentration, in addition to the RNG k - ε model for the mean turbulent flow field and the Poisson equation for the electric field. The proposed model and the outlined methodology for coupling the flow field, electric field, charging kinetics and particle concentration is applied to two model precipitators that are truly representative of a wide class of commercialized ESPs. The present investigation is quite different from the earlier studies as it does not make assumptions like a homogeneous electric field or an infinite turbulent diffusivity. The electric field calculated is a strong function of position and controls the migration velocity of particles. Hence, the proposed model can be implemented in a flow solver to obtain a full-fledged solution for any kind of ESP with no limitations on the particle number concentration, as encountered in a Lagrangian approach. The effect of turbulent diffusivity on particle number concentration in a plate-plate ESP is investigated in detail and the results obtained are compared with available experimental data. Similarly, the effect of particle size/diameter and applied electric potential on the accumulative collection performance in the case of a wire-plate ESP is studied and the results obtained are compared with available numerical data. The numerical results obtained using the modified drift flux model for both the plate-plate and wire-plate ESP are in close agreement with available experimental and numerical data.

  16. RHIC Polarized proton operation

    International Nuclear Information System (INIS)

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D'Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.E.; Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-01-01

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP 4 . A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above

  17. RHIC Polarized proton operation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D' Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R,; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; J.; Severino, F.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J. Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP{sup 4}. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above

  18. Our Polar Past

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2009-01-01

    The study of polar exploration is fascinating and offers students insights into the history, culture, and politics that affect the developing sciences at the farthest ends of Earth. Therefore, the authors think there is value in incorporating polar exploration accounts within modern science classrooms, and so they conducted research to test their…

  19. Terahertz polarization imaging

    NARCIS (Netherlands)

    Van der Valk, N.C.J.; Van der Marel, W.A.M.; Planken, P.C.M.

    2005-01-01

    We present a new method to measure the polarization state of a terahertz pulse by using a modified electrooptic sampling setup. To illustrate the power of this method, we show two examples in which the knowledge of the polarization of the terahertz pulse is essential for interpreting the results:

  20. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  1. Polar Science Is Cool!

    Science.gov (United States)

    Weeks, Sophie

    2012-01-01

    Children are fascinated by the fact that polar scientists do research in extremely cold and dangerous places. In the Arctic they might be viewed as lunch by a polar bear. In the Antarctic, they could lose toes and fingers to frostbite and the wind is so fast it can rip skin off. They camp on ice in continuous daylight, weeks from any form of…

  2. Towards an International Polar Data Coordination Network

    Directory of Open Access Journals (Sweden)

    P L Pulsifer

    2014-10-01

    Full Text Available Data management is integral to sound polar science. Through analysis of documents reporting on meetings of the Arctic data management community, a set of priorities and strategies are identified. These include the need to improve data sharing, make use of existing resources, and better engage stakeholders. Network theory is applied to a preliminary inventory of polar and global data management actors to improve understanding of the emerging community of practice. Under the name the Arctic Data Coordination Network, we propose a model network that can support the community in achieving their goals through improving connectivity between existing actors.

  3. Precision Polarization of Neutrons

    Science.gov (United States)

    Martin, Elise; Barron-Palos, Libertad; Couture, Aaron; Crawford, Christopher; Chupp, Tim; Danagoulian, Areg; Estes, Mary; Hona, Binita; Jones, Gordon; Klein, Andi; Penttila, Seppo; Sharma, Monisha; Wilburn, Scott

    2009-05-01

    Determining polarization of a cold neutron beam to high precision is required for the next generation neutron decay correlation experiments at the SNS, such as the proposed abBA and PANDA experiments. Precision polarimetry measurements were conducted at Los Alamos National Laboratory with the goal of determining the beam polarization to the level of 10-3 or better. The cold neutrons from FP12 were polarized using optically polarized ^3He gas as a spin filter, which has a highly spin-dependent absorption cross section. A second ^ 3He spin filter was used to analyze the neutron polarization after passing through a resonant RF spin rotator. A discussion of the experiment and results will be given.

  4. Optically polarized 3He

    Science.gov (United States)

    Gentile, T. R.; Nacher, P. J.; Saam, B.; Walker, T. G.

    2018-01-01

    This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements. PMID:29503479

  5. Optically polarized 3He

    Science.gov (United States)

    Gentile, T. R.; Nacher, P. J.; Saam, B.; Walker, T. G.

    2017-10-01

    This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements.

  6. Laterally Loaded Nail-Plates

    DEFF Research Database (Denmark)

    Nielsen, Jacob; Rathkjen, Arne

    Load-displacement curves from about 200 short-term and laterally loaded nail-plate joints are analysed. The nail-plates are from Gang-Nail Systems, type GNA 20 S. The test specimens and the measuring systems are described. The tests are divided into 32 different series. The influence of the number...

  7. Seismic link at plate boundary

    Indian Academy of Sciences (India)

    time series to determine the causality and related orientation. The resulting link orientations at the plate boundary conditions indicate that causal triggering seems to be localized along a major fault, as a stress transfer between two major faults, and parallel to the geothermal area extension. 1. Introduction. Plate boundaries ...

  8. Scintillating plate calorimeter optical design

    International Nuclear Information System (INIS)

    McNeil, R.; Fazely, A.; Gunasingha, R.; Imlay, R.; Lim, J.

    1990-01-01

    A major technical challenge facing the builder of a general purpose detector for the SSC is to achieve an optimum design for the calorimeter. Because of its fast response and good energy resolution, scintillating plate sampling calorimeters should be considered as a possible technology option. The work of the Scintillating Plate Calorimeter Collaboration is focused on compensating plate calorimeters. Based on experimental and simulation studies, it is expected that a sampling calorimeter with alternating layers of high-Z absorber (Pb, W, DU, etc.) and plastic scintillator can be made compensating (e/h = 1.00) by suitable choice of the ratio of absorber/scintillator thickness. Two conceptual designs have been pursued by this subsystem collaboration. One is based on lead as the absorber, with read/out of the scintillator plates via wavelength shifter fibers. The other design is based on depleted uranium as the absorber with wavelength shifter (WLS) plate readout. Progress on designs for the optical readout of a compensating scintillator plate calorimeter are presented. These designs include readout of the scintillator plates via wavelength shifter plates or fiber readout. Results from radiation damage studies of the optical components are presented

  9. MyPlate Food Guide

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español MyPlate Food Guide KidsHealth / For Teens / MyPlate Food Guide What's ... and other sugary drinks. Avoid large portions . Five Food Groups Different food groups have different nutrients and ...

  10. Manipulating light polarizations with a hyperbolic metamaterial waveguide.

    Science.gov (United States)

    Zhu, Hua; Yin, Xiang; Chen, Lin; Zhu, Zhongshu; Li, Xun

    2015-10-15

    In this Letter we demonstrate that a hyperbolic metamaterial (HMM) waveguide array exhibits a giant modal birefringence between the TE and TM modes by utilization of a rectangular waveguide cross section. We further reveal that the designed polarization manipulation device using such a HMM waveguide array with a subwavelength thickness presents the ability to function as a polarizer or quarter- or half-wave plate that enables transmission only for electromagnetic wave (EW) that is polarized at a specific direction, or converting linearly polarized EW to circularly and elliptically polarized EW or rotating linearly polarized EW with 90° at terahertz (THz) frequencies. A giant modal birefringence between the TE and TM modes from 0.8 to 2 between 2 and 4.8 THz is achievable, which is dozens of times higher than conventional quartz birefringent crystals for THz waves. This polarization manipulation device has the performance merits including high transmission efficiency, ultra-compactness, and tunable birefringence, offering a promising approach to manipulating the polarization states of EW.

  11. Aseptic laboratory techniques: plating methods.

    Science.gov (United States)

    Sanders, Erin R

    2012-05-11

    Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: Perform plating procedures without contaminating media. Isolate single bacterial colonies by the streak-plating

  12. Strong Plate, Weak Slab Dichotomy

    Science.gov (United States)

    Petersen, R. I.; Stegman, D. R.; Tackley, P.

    2015-12-01

    Models of mantle convection on Earth produce styles of convection that are not observed on Earth.Moreover non-Earth-like modes, such as two-sided downwellings, are the de facto mode of convection in such models.To recreate Earth style subduction, i.e. one-sided asymmetric recycling of the lithosphere, proper treatment of the plates and plate interface are required. Previous work has identified several model features that promote subduction. A free surface or pseudo-free surface and a layer of material with a relatively low strength material (weak crust) allow downgoing plates to bend and slide past overriding without creating undue stress at the plate interface. (Crameri, et al. 2012, GRL)A low viscosity mantle wedge, possibly a result of slab dehydration, decouples the plates in the system. (Gerya et al. 2007, Geo)Plates must be composed of material which, in the case of the overriding plate, are is strong enough to resist bending stresses imposed by the subducting plate and yet, as in the case of the subducting plate, be weak enough to bend and subduct when pulled by the already subducted slab. (Petersen et al. 2015, PEPI) Though strong surface plates are required for subduction such plates may present a problem when they encounter the lower mantle.As the subducting slab approaches the higher viscosity, lower mantle stresses are imposed on the tip.Strong slabs transmit this stress to the surface.There the stress field at the plate interface is modified and potentially modifies the style of convection. In addition to modifying the stress at the plate interface, the strength of the slab affects the morphology of the slab at the base of the upper mantle. (Stegman, et al 2010, Tectonophysics)Slabs that maintain a sufficient portion of their strength after being bent require high stresses to unbend or otherwise change their shape.On the other hand slabs that are weakened though the bending process are more amenable to changes in morphology. We present the results of

  13. Fundamental processes in ion plating

    International Nuclear Information System (INIS)

    Mattox, D.M.

    1980-01-01

    Ion plating is a generic term applied to film deposition processes in which the substrate surface and/or the depositing film is subjected to a flux of high energy particles sufficient to cause changes in the interfacial region of film properties compared to a nonbombarded deposition. Ion plating is being accepted as an alternative coating technique to sputter deposition, vacuum evaporation and electroplating. In order to intelligently choose between the various deposition techniques, the fundamental mechanisms, relating to ion plating, must be understood. This paper reviews the effects of low energy ion bombardment on surfaces, interface formation and film development as they apply to ion plating and the implementation and applications of the ion plating process

  14. The Balloon-borne Large Aperture Telescope for Polarization - BLASTPol

    Science.gov (United States)

    Devlin, Mark

    We are proposing a comprehensive program to study the link between Galactic magnetic fields and star formation. After decades of study, the physical processes regulating star formation still remain poorly understood. Large-scale observations of star forming regions provide counts of the number of dense clouds each of which will eventually evolve into tens to hundreds of stars. However, when simple models of gravitational collapse are applied to the clouds they yield a Galactic star formation rate (SFR) which is many times what is actually observed. Some process or combination of processes must be slowing the collapse of the clouds. The two prevailing theories involve turbulence which prevents the effective dissipation of energy and Galactic magnetic fields which are captured and squeezed by the collapsing cloud provide a mechanism for mechanical support. Understanding these effects fits very well the SMD 2010 Science Plan's Cosmic Origins program. The Balloon-borne Large Aperture Telescope - BLAST was originally designed to conduct confusion-limited and wide-area extragalactic and Galactic surveys at submillimeter wavelengths from a long-duration balloon (LDB) platform. These wavelengths are impossible or very difficult to observe from even the best groundbased telescope sites. After a series of successful flights (Ft. Sumner 2003, Sweden 2005, and Antarctica 2006) resulting in over 25 publications, BLAST was converted to BLASTPol. The combination of a polarizing grid in front of each of the 266 feed horns at 250, 350 and 500 micron with a stepped Half Wave Plate (HWP) provided a quick and inexpensive way to make initial measurements of polarized dust emission in star forming regions. By mapping polarization from dust grains aligned with respect to their local magnetic field, the field orientation (projected on the sky) can be traced. The development of the Next Generation BLASTPol instrument is now complete. It has increased spatial resolution (22 arcseconds at

  15. Asymptotic splitting in the three-dimensional problem of elasticity for non-homogeneous piezoelectric plates.

    Science.gov (United States)

    Vetyukov, Yury; Kuzin, Alexey; Krommer, Michael

    2011-01-01

    A novel asymptotic approach to the theory of non-homogeneous anisotropic plates is suggested. For the problem of linear static deformations we consider solutions, which are slowly varying in the plane of the plate in comparison to the thickness direction. A small parameter is introduced in the general equations of the theory of elasticity. According to the procedure of asymptotic splitting, the principal terms of the series expansion of the solution are determined from the conditions of solvability for the minor terms. Three-dimensional conditions of compatibility make the analysis more efficient and straightforward. We obtain the system of equations of classical Kirchhoff's plate theory, including the balance equations, compatibility conditions, elastic relations and kinematic relations between the displacements and strain measures. Subsequent analysis of the edge layer near the contour of the plate is required in order to satisfy the remaining boundary conditions of the three-dimensional problem. Matching of the asymptotic expansions of the solution in the edge layer and inside the domain provides four classical plate boundary conditions. Additional effects, like electromechanical coupling for piezoelectric plates, can easily be incorporated into the model due to the modular structure of the analysis. The results of the paper constitute a sound basis to the equations of the theory of classical plates with piezoelectric effects, and provide a trustworthy algorithm for computation of the stressed state in the three-dimensional problem. Numerical and analytical studies of a sample electromechanical problem demonstrate the asymptotic nature of the present theory.

  16. Polarized backlight unit using a polarization-preserving light-redirecting film for improving luminance gain

    Science.gov (United States)

    Moon, Jeongmin; Lee, Sungrae; Oh, Kyunghwan

    2015-05-01

    We proposed and demonstrated a polarized backlight unit (BLU) configuration with a new light-redirecting film (LRF) to improve the luminance gain and light transmittance in liquid crystal displays. We combined a very low birefringence triacetyl cellulose (TAC) base layer with UV-cured prismatic patterns in a mass-producible process to demonstrate a polarization-preserving LRF. Detailed analyses of the states of polarization (SOP) through the LRF were reported. We also fabricated a 7-in. edge-lit BLU using the new LRF. We found that the light directing capability of the new LRF was equivalent to that of a conventional prism film whose base layer was a poly(ethylene terephthalate) (PET) film, and that the new LRF successfully suppressed random polarization changes of the transmitted light. Utilizing these new advantages, we obtained 68% transmittance through the polarizer over the BLU with the new LRF, which was about 1.3-fold that for the BLU with the conventional prism film (54%). We also obtained 127% luminance gain using the new LRF, which was equivalent to that of the conventional prism film. Here, the luminance gain is referred to as the amount of increase in luminance on the surface normal of the light-guiding plate without any film.

  17. The Golosyiv plate archive digitisation

    Science.gov (United States)

    Sergeeva, T. P.; Sergeev, A. V.; Pakuliak, L. K.; Yatsenko, A. I.

    2007-08-01

    The plate archive of the Main Astronomical Observatory of the National Academy of Sciences of Ukraine (Golosyiv, Kyiv) includes about 85 000 plates which have been taken in various observational projects during 1950-2005. Among them are about 25 000 of direct northern sky area plates and more than 600 000 plates containing stellar, planetary and active solar formations spectra. Direct plates have a limiting magnitude of 14.0-16.0 mag. Since 2002 we have been organising the storage, safeguarding, cataloguing and digitization of the plate archive. The very initial task was to create the automated system for detection of astronomical objects and phenomena, search of optical counterparts in the directions of gamma-ray bursts, research of long period, flare and other variable stars, search and rediscovery of asteroids, comets and other Solar System bodies to improve the elements of their orbits, informational support of CCD observations and space projects, etc. To provide higher efficiency of this work we have prepared computer readable catalogues and database for 250 000 direct wide field plates. Now the catalogues have been adapted to Wide Field Plate Database (WFPDB) format and integrated into this world database. The next step will be adaptation of our catalogues, database and images to standards of the IVOA. Some magnitude and positional accuracy estimations for Golosyiv archive plates have been done. The photometric characteristics of the images of NGC 6913 cluster stars on two plates of the Golosyiv's double wide angle astrograph have been determined. Very good conformity of the photometric characteristics obtained with external accuracies of 0.13 and 0.15 mag. has been found. The investigation of positional accuracy have been made with A3± format fixed bed scanner (Microtek ScanMaker 9800XL TMA). It shows that the scanner has non-detectable systematic errors on the X-axis, and errors of ± 15 μm on the Y-axis. The final positional errors are about ± 2 μm (

  18. Indonesian Landforms and Plate Tectonics

    Directory of Open Access Journals (Sweden)

    Herman Th. Verstappen

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v5i3.103The horizontal configuration and vertical dimension of the landforms occurring in the tectonically unstable parts of Indonesia were resulted in the first place from plate tectonics. Most of them date from the Quaternary and endogenous forces are ongoing. Three major plates – the northward moving Indo-Australian Plate, the south-eastward moving SE-Asian Plate and the westward moving Pacific Plate - meet at a plate triple-junction situated in the south of New Guinea’s Bird’s Head. The narrow North-Moluccan plate is interposed between the Asia and Pacific. It tapers out northward in the Philippine Mobile Belt and is gradually disappearing. The greatest relief amplitudes occur near the plate boundaries: deep ocean trenches are associated with subduction zones and mountain ranges with collision belts. The landforms of the more stable areas of the plates date back to a more remote past and, where emerged, have a more subdued relief that is in the first place related to the resistance of the rocks to humid tropical weathering Rising mountain ranges and emerging island arcs are subjected to rapid humid-tropical river erosions and mass movements. The erosion products accumulate in adjacent sedimentary basins where their increasing weight causes subsidence by gravity and isostatic compensations. Living and raised coral reefs, volcanoes, and fault scarps are important geomorphic indicators of active plate tectonics. Compartmental faults may strongly affect island arcs stretching perpendicular to the plate movement. This is the case on Java. Transcurrent faults and related pull-apart basins are a leading factor where plates meet at an angle, such as on Sumatra. The most complicated situation exists near the triple-junction and in the Moluccas. Modern research methods, such as GPS measurements of plate movements and absolute dating of volcanic outbursts and raised coral reefs are important tools. The mega-landforms resulting

  19. Polarization at the SLC

    Energy Technology Data Exchange (ETDEWEB)

    Moffeit, K.C.

    1988-10-01

    The Stanford Linear collider was designed to accommodate polarized electron beams. Longitudinally polarized electrons colliding with unpolarized positrons at a center of mass energy near the Z/sup 0/ mass can be used as novel and sensitive probes of the electroweak process. A gallium arsenide based photon emission source will provide a beam of longitudinally polarized electrons of about 45 percent polarization. A system of bend magnets and a superconducting solenoid will be used to rotate the spins so that the polarization is preserved while the 1.21 GeV electrons are stored in the damping ring. Another set of bend magnets and two superconducting solenoids orient the spin vectors so that longitudinal polarization of the electrons is achieved at the collision point with the unpolarized positrons. A system to monitor the polarization based on Moller and Compton scattering will be used. Nearly all major components have been fabricated and tested. Subsystems of the source and polarimeters have been installed, and studies are in progress. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. 8 refs., 16 figs., 1 tab.

  20. Non-diffuseness of vibration fields in ribbed plates.

    Science.gov (United States)

    Brunskog, Jonas; Chung, Hyuck

    2011-03-01

    This paper presents numerical simulations of structural intensity in a rib-reinforced plate, investigating the diffuseness. Many prediction models of building and structural acoustics, such as statistical energy analysis or energy flow methods, assume the vibrational wave fields to be diffuse. However, the diffuseness assumption is not always valid. One such example is a rib-reinforced plate typically found in a lightweight floor with wooden joists. Other examples can be found in aircraft and ship structures. The structural intensity of a ribbed plate is computed at low to mid frequencies using the Fourier sine expansion of the transverse displacement of the plate. Hamilton's principle is used in combination with thin plate theory and Euler beam theory. The model takes into account interactions between components. The Fourier sine modes are re-formulated as plane waves in a radial coordinate system, which can express the structural intensity in terms of the angular component of the modes. In the simulations, ensemble averages and rain-on-the-roof excitations are used. The numerical results show that the structural intensity varies significantly as the angle of propagation changes and cannot be assumed to form a diffuse field. © 2011 Acoustical Society of America

  1. Multicomponent Adsorption Model for Polar and Associating Mixtures

    DEFF Research Database (Denmark)

    Nesterov, Igor; Shapiro, Alexander; Kontogeorgis, Georgios M.

    2015-01-01

    The multicomponent potential adsorption theory (MPTA) is revisited in this work for polar and associating systems. MPTA is used in combination with the CPA equation of state. Previous Studies have shown that both MPTA and other theories present difficulties for complex systems. Some of these prob...

  2. Ion source for IMS based on wire-to-plate corona discharge

    Science.gov (United States)

    Xia, Qing; Zhang, Yu; Ouyang, Jiting

    2017-08-01

    In this paper, an ion source based on wire-to-plate corona is developed for Ion Mobility Spectrometer (IMS). The characteristics of the corona discharge and the ion current detected on Faraday plate are investigated under different electrode spacing and voltage. The effect of voltage polarity is also studied. The features of this new designed ion source are compared with that of point-to-plate corona. The results show that the present IMS prototype machine can provide a much larger value of ion current connected by Faraday plate than the point-to-plate corona and/or the traditional 63Ni source. The corona configuration can also act as a good electromagnetic shielding to defense the electromagnetic emission from the corona discharge.

  3. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    Grueebler, W.

    1984-01-01

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  4. Polarized scintillator targets

    Science.gov (United States)

    van den Brandt, B.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.; Mango, S.

    2000-05-01

    The hydrogen nuclei in an organic scintillator have been polarized to more than 80% and the deuterons in its fully deuterated version to 24%. The scintillator, doped with TEMPO, has been polarized dynamically in a field of 2.5 T in a vertical dilution refrigerator in which a plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat. Sizeable solid samples with acceptable optical properties and light output have been prepared and successfully operated as "live" polarized targets in nuclear physics experiments.

  5. Polarized scintillator targets

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, B. van den E-mail: vandenbrandt@psi.ch; Bunyatova, E.I.; Hautle, P.; Konter, J.A.; Mango, S

    2000-05-21

    The hydrogen nuclei in an organic scintillator have been polarized to more than 80% and the deuterons in its fully deuterated version to 24%. The scintillator, doped with TEMPO, has been polarized dynamically in a field of 2.5 T in a vertical dilution refrigerator in which a plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat. Sizeable solid samples with acceptable optical properties and light output have been prepared and successfully operated as 'live' polarized targets in nuclear physics experiments.

  6. Heidelberg polarized alkali source

    International Nuclear Information System (INIS)

    Kraemer, D.; Steffens, E.; Jaensch, H.; Philipps Universitaet, Marburg, Germany)

    1984-01-01

    A new atomic beam type polarized alkali ion source has been installed at Heidelberg. In order to improve the beam polarization considerably optical pumping is applied in combination with an adiabatic medium field transition which results in beams in single hyperfine sublevels. The m state population is determined by laser-induced fluorescence spectroscopy. Highly polarized beams (P/sub s/ > 0.9, s = z, zz) with intensities of 30 to 130 μA can be extracted for Li + and Na + , respectively

  7. Polarization measurement in the COMPASS polarized target

    CERN Document Server

    Kondo, K; Baum, G; Berglund, P; Doshita, N; Gautheron, F; Görtz, S; Hasegawa, T; Horikawa, N; Ishimoto, S; Iwata, T; Kisselev, Yu V; Koivuniemi, J H; Le Goff, J M; Magnon, A; Meyer, W; Reicherz, G; Matsuda, T

    2004-01-01

    Continuous wave nuclear magnetic resonance (NMR) is used to determine the target polarization in the COMPASS experiment. The system is made of the so-called Liverpool Q-meters, Yale-cards, and VME modules for data taking and system controlling. In 2001 the NMR coils were embedded in the target material, while in 2002 and 2003 the coils were mounted on the outer surface of the target cells to increase the packing factor of the material. Though the error of the measurement became larger with the outer coils than with the inner coils, we have performed stable measurements throughout the COMPASS run time for 3 years. The maximum polarization was +57% and -53% as the average in the target cells.

  8. Dielectric polarization in random media

    International Nuclear Information System (INIS)

    Ramshaw, J.D.

    1984-01-01

    The theory of dielectric polarization in random media is systematically formulated in terms of response kernels. The primary response kernel K(12) governs the mean dielectric response at the point r 1 to the external electric field at the point r 2 in an infinite system. The inverse of K(12) is denoted by L(12);. it is simpler and more fundamental than K(12) itself. Rigorous expressions are obtained for the effective dielectric constant epsilon( in terms of L(12) and K(12). The latter expression involves the Onsger-Kirkwood function (epsilon(-epsilon 0 (2epsilon(+epsilon 0 )/epsilon 0 epsilon( (where epsilon 0 is an arbitrary reference value), and appears to be new to the random medium context. A wide variety of series representations for epsilon( are generated by means of general perturbation expansions for K(12) and L(12). A discussion is given of certain pitfalls in the theory, most of which are related to the fact that the response kernels are long ranged. It is shown how the dielectric behavior of nonpolar molecular fluids may be treated as a special case of the general theory. The present results for epsilon( apply equally well to other effective phenomenological coefficients of the same generic type, such as thermal and electrical conductivity, magnetic susceptibility, and diffusion coefficients

  9. A refined finite element method for bending analysis of laminated plates integrated with piezoelectric fiber-reinforced composite actuators

    Science.gov (United States)

    Rouzegar, J.; Abbasi, A.

    2018-03-01

    This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforced composite actuator under electromechanical loading. The four-variable refined plate theory is a simple and efficient higher-order shear deformation theory, which predicts parabolic variation of transverse shear stresses across the plate thickness and satisfies zero traction conditions on the plate free surfaces. The weak form of governing equations is derived using the principle of minimum potential energy, and a 4-node non-conforming rectangular plate element with 8 degrees of freedom per node is introduced for discretizing the domain. Several benchmark problems are solved by the developed MATLAB code and the obtained results are compared with those from exact and other numerical solutions, showing good agreement.

  10. Effect of light source parameters on the polarization properties of the beam

    Science.gov (United States)

    Liu, Dan; Liu, Yan; Jiang, Hui-lin; Liu, Zhi; Zhou, Xin; Fang, Hanhan

    2013-08-01

    Polarized laser has been widely used in free space optical communication, laser radar, and laser ranging system because of its advantages of good performance in recent years. The changes of laser polarization properties in the process of transmission in atmospheric turbulence have a certain impact on the system performance. The paper research on the rule of polarization properties changes of Gauss Schell model beam in turbulent conditions. And analysis the main factors to affect the polarization properties by numerical simulation using MATLAB software tools. The factors mainly including: initial polarization, coherence coefficient, spot size and the intensity of the atmospheric turbulent. The simulation results show that, the degree of polarization will converge to the initial polarization when the beam propagation in turbulent conditions. The degrees of polarization change to different value when initial polarization of beam is different in a short distance. And, the degrees of polarization converge to the initial polarization after long distance. Beam coherence coefficient bigger, the degree of polarization and change range increases bigger. The change of polarization more slowly for spot size is bigger. The change of polarization change is faster for longer wavelength. The conclusion of the study indicated that the light source parameters effect the changes of polarization properties under turbulent conditions. The research provides theory basis for the polarization properties of the laser propagation, and it will plays a significant role in optical communication and target recognition.

  11. Nonlinear oscillations, bifurcations and chaos of functionally graded materials plate

    Science.gov (United States)

    Hao, Y. X.; Chen, L. H.; Zhang, W.; Lei, J. G.

    2008-05-01

    An analysis on the nonlinear dynamics of a simply supported functionally graded materials (FGMs) rectangular plate subjected to the transversal and in-plane excitations is presented in a thermal environment for the first time. Material properties are assumed to be temperature dependent. Based on Reddy's third-order plate theory, the nonlinear governing equations of motion for the FGM plates are derived using Hamilton's principle. Galerkin's method is utilized to discretize the governing partial equations to a two-degree-of-freedom nonlinear system including the quadratic and cubic nonlinear terms under combined parametric and external excitations. The resonant case considered here is 1:1 internal resonance and principal parametric resonance. The asymptotic perturbation method is utilized to obtain four-dimensional nonlinear averaged equation. The numerical method is used to find the nonlinear dynamic responses of the FGM rectangular plate. It was found that periodic, quasi-periodic solutions and chaotic motions exist for the FGM rectangular plates under certain conditions. It is believed that the forcing excitations f1 and f2 can change the form of motions for the FGM rectangular plate.

  12. Nonlinear analysis of piezoelectric nanocomposite energy harvesting plates

    International Nuclear Information System (INIS)

    Rafiee, M; He, X Q; Liew, K M

    2014-01-01

    This paper investigates the nonlinear analysis of energy harvesting from piezoelectric functionally graded carbon nanotube reinforced composite plates under combined thermal and mechanical loadings. The excitation, which derives from harmonically varying mechanical in-plane loading, results in parametric excitation. The governing equations of the piezoelectric functionally graded carbon nanotube reinforced composite plates are derived based on classical plate theory and von Kármán geometric nonlinearity. The material properties of the nanocomposite plate are assumed to be graded in the thickness direction. The single-walled carbon nanotubes (SWCNTs) are assumed to be aligned, straight and have a uniform layout. The linear buckling and vibration behavior of the nanocomposite plates is obtained in the first step. Then, Galerkin’s method is employed to derive the nonlinear governing equations of the problem with cubic nonlinearities associated with mid-plane stretching. Periodic solutions are determined by using the Poincaré–Lindstedt perturbation scheme with movable simply supported boundary conditions. The effects of temperature change, the volume fraction and the distribution pattern of the SWCNTs on the parametric resonance, in particular the amplitude of vibration and the average harvested power of the smart functionally graded carbon nanotube reinforced composite plates, are investigated through a detailed parametric study. (paper)

  13. Wire-grid polarizer sheet in the terahertz region fabricated by nanoimprint technology.

    Science.gov (United States)

    Takano, Keisuke; Yokoyama, Hiroshi; Ichii, Akira; Morimoto, Isao; Hangyo, Masanori

    2011-07-15

    Wire-grid polarizer sheets in the terahertz region have been fabricated on flexible substrates by nanoimprint technology. They show an ideal polarization property in the terahertz frequency region, whereas the cost is very low. Since the wire pitch is far smaller than the wavelength, the effective medium theory agrees well with experimental results. The effective medium theory shows the possibility of further improvement of polarization properties by selecting appropriate materials for wire grids. © 2011 Optical Society of America

  14. Stability of Plates and Plated Structures - General Report

    Czech Academy of Sciences Publication Activity Database

    Maquoi, R.; Škaloud, Miroslav

    2000-01-01

    Roč. 55, 1-3 (2000), s. 45-68 ISSN 0143-974X. [Stability and Ductility of Steel Structures . Timisoara, 09.09.1999-11.09.1999] R&D Projects: GA ČR GA103/97/0002; GA AV ČR IAA2071701 Keywords : stability * plates * plated structures * web breathing * design Subject RIV: JM - Building Engineering Impact factor: 0.418, year: 2000

  15. Plating on stainless steel alloys

    International Nuclear Information System (INIS)

    Dini, J.W.; Johnson, H.R.

    1981-01-01

    Quantitative adhesion data are presented for a variety of electroplated stainless steel type alloys. Results show that excellent adhesion can be obtained by using a Wood's nickel strike or a sulfamate nickel strike prior to final plating. Specimens plated after Wood's nickel striking failed in the deposit rather than at the interface between the substrate and the coating. Flyer plate quantitative tests showed that use of anodic treatment in sulfuric acid prior to Wood's nickel striking even further improved adhesion. In contrast activation of stainless steels by immersion or cathodic treatment in hydrochloric acid resulted in very reduced bond strengths with failure always occurring at the interface between the coating and substrate

  16. Modeling Gravitational Waves to Test GR Dispersion and Polarization

    Science.gov (United States)

    Tso, Rhondale; Chen, Yanbei; Isi, Maximilliano

    2017-01-01

    Given continued observation runs from the Laser Interferometer Gravitational-Wave Observatory Scientific Collaboration, further gravitational wave (GW) events will provide added constraints on beyond-general relativity (b-GR) theories. One approach, independent of the GW generation mechanism at the source, is to look at modification to the GW dispersion and propagation, which can accumulate over vast distances. Generic modification of GW propagation can also, in certain b-GR theories, impact the polarization content of GWs. To this end, a comprehensive approach to testing the dispersion and polarization content is developed by modeling anisotropic deformations to the waveforms' phase, along with birefringence effects and corollary consequences for b-GR polarizations, i.e., breathing, vector, and longitudinal modes. Such an approach can be mapped to specific theories like Lorentz violation, amplitude birefringence in Chern-Simons, and provide hints at additional theories to be included. An overview of data analysis routines to be implemented will also be discussed.

  17. Metallic plates lens focalizing a high power microwave beam

    International Nuclear Information System (INIS)

    Rebuffi, L.

    1987-08-01

    A metallic grating composed of thin parallel plates opportunely spaced, permits to correct the phase of an incident high power microwave beam. In this work we show how it is possible to obtain a beam focalisation (lens), a beam deflection (prisma), or a variation in the polarization (polarizer) using parallel metallic plates. The main design parameters are here presented, in order to obtain the wanted phase modification keeping low the diffraction, the reflected power, the ohmic losses and avoiding breakdowns. Following the given criteria, a metallic plate lens has been realized to focalize the 200 KW, 100 msec 60 GHz beam used in the ECRH experiment on the TFR tokamak. The experimental beam concentration followed satisfactory the design requirements. In fact, the maximum intensity increased about twice the value without lens. In correspondence of this distance a reduction of the beam size of about 50% have been measured for the -3 dB radius. The lens supported high power tests without breakdowns or increase of the reflected power

  18. Modeling and management vibroacoustic emission homogeneous plate under the action of external forces concentrated

    Directory of Open Access Journals (Sweden)

    В.M. Макаренко

    2009-03-01

    Full Text Available  The model of rectangular plate acoustic radiation and transverse motion were presented, and its investigation was performed. The solution is received based on classisal plate theory. Vibration response and sound radiation of plates with simply-supported boundary conditions was discussed. Concentrated harmonic forces are used as an external excitation. The general confirmities to the law have been established for the changes of sound radiation, depending on the parameters of external excitations. An experiment was performed for justification of analytical approach, which is used for computations. Eigenfrequencies of free plate oscillations, which are received analytically, are in good agreement with experimental results.

  19. Improved finite strip Mindlin plate bending element using assumed shear strain distributions

    Science.gov (United States)

    Chulya, Abhisak; Thompson, Robert L.

    1988-01-01

    A linear finite strip plate element based on Mindlin/Reissner plate theory is developed. The analysis is suitable for both thin and thick plates. In the formulation new transverse shear strains are introduced and assumed constant in each two-code linear strip. The element stiffness matrix is explicitly formulated for efficient computation and computer implementation. Numerical results showing the efficiency and predictive capability of the element for the analysis of plates are presented for different support and loading conditions and a wide range of thicknesses. No sign of shear locking phenomenon was observed with the newly developed element.

  20. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  1. Time Domain Induced Polarization

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest

    2012-01-01

    Time-domain-induced polarization has significantly broadened its field of reference during the last decade, from mineral exploration to environmental geophysics, e.g., for clay and peat identification and landfill characterization. Though, insufficient modeling tools have hitherto limited the use...... of time-domaininduced polarization for wider purposes. For these reasons, a new forward code and inversion algorithm have been developed using the full-time decay of the induced polarization response, together with an accurate description of the transmitter waveform and of the receiver transfer function......%. Furthermore, the presence of low-pass filters in time-domain-induced polarization instruments affects the early times of the acquired decays (typically up to 100 ms) and has to be modeled in the forward response to avoid significant loss of resolution. The developed forward code has been implemented in a 1D...

  2. Polarized proton colliders

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. This will allow the study of the spin structure of the proton and also the verification of the many well documented expectations of spin effects in perturbative QCD and parity violation in W and Z production. Proposals for polarized proton acceleration for several high energy colliders have been developed. A partial Siberian Snake in the AGS has recently been successfully tested and full Siberian Snakes, spin rotators, and polarimeters for RHIC are being developed to make the acceleration of polarized beams to 250 GeV possible. This allows for the unique possibility of colliding two 250 GeV polarized proton beams at luminosities of up to 2 x 10 32 cm -2 s -1

  3. A model of breakdown in parallel-plate detectors

    International Nuclear Information System (INIS)

    Fonte, P.

    1996-01-01

    Parallel-plate avalanche chambers (PPAC's) have many desirable properties, such as a fast, large area particle detector. However, the maximum gain is limited by a form of violent breakdown that limits the usefulness of this detector, despite its other evident qualities. The exact nature of this phenomenon is not yet sufficiently clear to sustain possible improvements. A previous experimental study is complemented in the present work by a quantitative model of the breakdown phenomenon in PPAC's, based on the streamer theory. The model reproduces well the peculiar behavior of the external current observed in PPAC's and resistive-plate chambers. Other breakdown properties measured in PPAC's are also well reproduced

  4. Plasma polarization spectroscopy

    International Nuclear Information System (INIS)

    Iwamae, Atsushi; Horimoto, Yasuhiro; Fujimoto, Takashi; Hasegawa, Noboru; Sukegawa, Kouta; Kawachi, Tetsuya

    2005-01-01

    The electron velocity distribution function (EVDF) in plasma can be anisotropic in laser-produced plasmas. We have developed a new technique to evaluate the polarization degree of the emission lines in the extreme vacuum ultra violet wavelength region. The polarization of the emission lines and the continuums from the lithium-like nitrogen and from helium- and hydrogen-like carbon in recombining plasma is evaluated. Particle simulation in the velocity space gives the time scale for relaxation of anisotropic EVDFs. (author)

  5. Ultracold Polar Molecules

    Science.gov (United States)

    2016-04-01

    AFRL-AFOSR-UK-TR-2016-0005 Ultracold Polar Molecules Jeremy Hutson UNIVERSITY OF DURHAM Final Report 04/01/2016 DISTRIBUTION A: Distribution approved...DATES COVERED (From - To) 15-Jan-2010 to 14-Jul-2015 4. TITLE AND SUBTITLE Final Report on Grant FA8655-10-1-3033 on Ultracold Polar Molecules 5a...formation of ultracold 87RbCs molecules in their rovibrational ground state by magnetoassociation followed by STIRAP, resulting in 14 papers acknowledging

  6. Birefringent phase demodulator: application to wave plate characterization.

    Science.gov (United States)

    Veiras, F E; Riobó, L M; Matteo, C L; Perez, L I; Garea, M T

    2015-03-20

    The scope of this work is to present a phase demodulator that enables the recovery of temporal phase information contained in the phase difference between two signals with different polarizations. This demodulator is a polarization interferometer that may consist only of a uniaxial crystal slab and a polarizer sheet. The phase shift between two orthogonal components of the electric field is translated into space by means of birefringent crystals, which act as demodulators or phase analyzers with great robustness. The experimental scheme utilized is based on a simple conoscopic interference setup. Each portion of the space in which the interference pattern is projected contains not only the unknown temporal phase we want to recover, but also a phase shift due to the uniaxial crystal itself. The underlying idea is developing simultaneous phase shifting with uniaxial crystals. Thus, different phase recovery techniques can be applied in order to maximize their ability to track high-speed signals. Depending on the characteristics of the fringe pattern, it will permit phase recovery via different classical procedures. In order to prove the demodulator under different experimental and signal processing schemes, we employed it for wave plate characterization. The results obtained not only allow some wave plate features such as axes determination and retardance to be characterized, but also prove the working principle and capabilities of the demodulator.

  7. Vacuum polarization and chiral lattice fermions

    International Nuclear Information System (INIS)

    Randjbar Daemi, S.; Strathdee, J.

    1995-09-01

    The vacuum polarization due to chiral fermions on a 4-dimensional Euclidean lattice is calculated according to the overlap prescription. The fermions are coupled to weak and slowly varying background gauge and Higgs fields, and the polarization tensor is given by second order perturbation theory. In this order the overlap constitutes a gauge invariant regularization of the fermion vacuum amplitude. Its low energy - long wavelength behaviour can be computed explicitly and we verify that it coincides with the Feynman graph result obtainable, for example, by dimensional regularization of continuum gauge theory. In particular, the Standard Model Callan-Symanzik, RG functions are recovered. Moreover, there are no residual lattice artefacts such as a dependence on Wilson-type mass parameters. (author). 16 refs

  8. Hsp Polarization Verification

    Science.gov (United States)

    Bless, Robert

    1991-07-01

    This proposal defines the procedure for determining the instrumental polarization of the polarimetric IDT (IDT#1, POL) on the HSP. 1 of 2 unpolarized standard stars wil be observed using various filter-polarizer combinations. These observations will permit the instrumental polarization to be calibrated. The instrumental polarization must be determined to a high precision in order to vectoriallly remove it from HSP polarization observations to determine the actual astronomical polarization. Final run of proposal will look at one of 2 possible stars previously observed to get another look at the throughput. Revision History: Mark H. Slovak 8/30/88 Translated to V2 proposal instructions (RPSS V6.2) S. Laurent 1/20/89 Updated: Sally Laurent 2/24/89, 3/20/89, 4/13/89, 5/12/89 Modified: P. Stanley 1/15/90 - change to use CTA selected targets only; Fixes for aberration problem - SALM 7/30/90; Based on SV/HSP 1386. New submission changed targets and revised scheduling strategy. Revised: 26 Aug 92 J. Dolan, L. Walter, P. Reppert want to re-run the proposal (3985) one last time to bring down errors.

  9. Tensor Target Polarization at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G

    2014-10-27

    The first measurements of tensor observables in $\\pi \\vec{d}$ scattering experiments were performed in the mid-80's at TRIUMF, and later at SIN/PSI. The full suite of tensor observables accessible in $\\pi \\vec{d}$ elastic scattering were measured: $T_{20}$, $T_{21}$, and $T_{22}$. The vector analyzing power $iT_{11}$ was also measured. These results led to a better understanding of the three-body theory used to describe this reaction. %Some measurements were also made in the absorption and breakup channels. A direct measurement of the target tensor polarization was also made independent of the usual NMR techniques by exploiting the (nearly) model-independent result for the tensor analyzing power at 90$^\\circ _{cm}$ in the $\\pi \\vec{d} \\rightarrow 2p$ reaction. This method was also used to check efforts to enhance the tensor polarization by RF burning of the NMR spectrum. A brief description of the methods developed to measure and analyze these experiments is provided.

  10. Parametric study on nonlinear vibration of composite truss core sandwich plate with internal resonance

    International Nuclear Information System (INIS)

    Chen, Jia Nen; Liu, Jun; Zhang, Wei; Yao, Ming Hui; Sun, Min

    2016-01-01

    Nonlinear vibrations of carbon fiber reinforced composite sandwich plate with pyramidal truss core are investigated. The governing equation of motion for the sandwich plate is derived by using a Zig-Zag theory under consideration of geometrically nonlinear. The natural frequencies of sandwich plates with different dimensions are calculated and compared with those obtained from the classic laminated plate theory and Reddy's third-order shear deformation plate theory. The frequency responses and waveforms of the sandwich plate when 1:3 internal resonance occurs are obtained, and the characteristics of the internal resonance are discussed. The influences of layer number of face sheet, strut radius, core height and inclination angle on the nonlinear responses of the sandwich plate are analyzed. The results demonstrate that the strut radius and inclination angle mainly affect the resonance frequency band of the sandwich plate, and the layer number and core height not only influence the resonance frequency band but also significantly affect the response amplitude

  11. The multigap resistive plate chamber

    Energy Technology Data Exchange (ETDEWEB)

    Zeballos, E. Cerron [European Organization for Nuclear Research (CERN), Geneva (Switzerland); World Lab., Lausanne (Switzerland); Crotty, I. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Hatzifotiadou, D. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); World Lab., Lausanne (Switzerland); Valverde, J. Lamas [European Organization for Nuclear Research (CERN), Geneva (Switzerland); World Lab., Lausanne (Switzerland); Univ. Louis Pasteur, Strasbourg (France); Neupane, S. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); World Lab., Lausanne (Switzerland); Williams, M. C. S. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Zichichi, A. [Univ. of Bologna, Bologna (Italy)

    2015-02-03

    The paper describes the multigap resistive plate chamber (RPC). This is a variant of the wide gap RPC. However it has much improved time resolution, while keeping all the other advantages of the wide gap RPC design.

  12. MyPlate Daily Checklist

    Science.gov (United States)

    ... Price Tag Read the Food Label Kitchen Timesavers Cooking for Your Family Tasty & Low-Cost Recipes Sample 2-Week Menus Resources for Professionals MyPlate Tip Sheets Print Materials Infographics 5 Ways ...

  13. Plate shell structures of glass

    DEFF Research Database (Denmark)

    Bagger, Anne

    to their curved shape. A plate shell structure maintains a high stiffness-to-weight ratio, while facilitating the use of plane structural elements. The study focuses on using laminated glass panes for the load bearing facets. Various methods of generating a plate shell geometry are suggested. Together with Ghent......, such as facet size, imperfections, and connection characteristics. The critical load is compared to that of a similar, but smoothly curved, shell structure. Based on the investigations throughout the study, a set of guidelines for the structural design of plate shells of glass is proposed.......This thesis is a study of plate shell structures -- a type of shell structure with a piecewise plane geometry, organized so that the load bearing system is constituted by distributed in-plane forces in the facets. The high stiffness-to-weight ratio of smoothly curved shell structures is mainly due...

  14. License plate recognition (phase B).

    Science.gov (United States)

    2010-06-01

    License Plate Recognition (LPR) technology has been used for off-line automobile enforcement purposes. The technology has seen mixed success with correct reading rate as high as 60 to 80% depending on the specific application and environment. This li...

  15. Armor Plate Surface Roughness Measurements

    National Research Council Canada - National Science Library

    Stanton, Brian; Coburn, William; Pizzillo, Thomas J

    2005-01-01

    ...., surface texture and coatings) that could become important at high frequency. We measure waviness and roughness of various plates to know the parameter range for smooth aluminum and rolled homogenous armor (RHA...

  16. Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface

    Science.gov (United States)

    Zhang, Qing; Li, Maozhong; Liao, Tingdi; Cui, Xudong

    2018-03-01

    Under the trend of miniaturization and reduction of system complexity, conventional bulky photonic elements are expected to be replaced by new compact and ultrathin dielectric metasurface elements. In this letter, we propose an αTiO2 dielectric metasurface (DM) platform that could be exploited to design high efficiency wave-front control devices at visible wavelength. Combining with fundamental principles and full wave simulations (Lumerical FDTD 3D solver ®), we successfully realize four DM devices, such as anomalous beam deflectors, polarization insensitive metalens, wave plates and polarization beam splitters. All these devices can achieve high transmission efficiencies (larger than 80%). Among them, the anomalous refraction beam deflectors can bend light propagation to any desired directions; the polarization insensitive metalens maintains diffraction limited focus (focal spot as small as 0.67 λ); the quarter-wave and half-wave plates have broadband working wavelengths from 550 to 1000 nm; and the polarization beam splitter can split an arbitrarily polarized incident beam into two orthogonally polarized beams, the TM components is deflected to the right side, and the TE components is deflected to the left side. These devices may find applications in the areas of imaging, polarization control, spectroscopy, and on-chip optoelectronic systems etc., and our studies may richen the design of all-dielectric optical elements at visible wavelength.

  17. Dynamic Analysis of Thick Plates Including Deep Beams on Elastic Foundations Using Modified Vlasov Model

    Directory of Open Access Journals (Sweden)

    Korhan Ozgan

    2013-01-01

    Full Text Available Dynamic analysis of foundation plate-beam systems with transverse shear deformation is presented using modified Vlasov foundation model. Finite element formulation of the problem is derived by using an 8-node (PBQ8 finite element based on Mindlin plate theory for the plate and a 2-node Hughes element based on Timoshenko beam theory for the beam. Selective reduced integration technique is used to avoid shear locking problem for the evaluation of the stiffness matrices for both the elements. The effect of beam thickness, the aspect ratio of the plate and subsoil depth on the response of plate-beam-soil system is analyzed. Numerical examples show that the displacement, bending moments and shear forces are changed significantly by adding the beams.

  18. Surface effects on the electroelastic responses of a thin piezoelectric plate with nanoscale thickness

    International Nuclear Information System (INIS)

    Yan Zhi; Jiang Liying

    2012-01-01

    This work aims to investigate the electroelastic responses of a thin piezoelectric plate under mechanical and electrical loads with the consideration of surface effects. Surface effects, including surface elasticity, residual surface stress and surface piezoelectricity, are incorporated into the conventional Kirchhoff plate theory for a piezoelectric plate via the surface piezoelectricity model and the generalized Young-Laplace equations. Different from the results predicted by the conventional plate theory ignoring the surface effects, the proposed model predicts size-dependent behaviours of the piezoelectric thin plate with nanoscale thickness. It is found that surface effects have significant influence on the electroelastic responses of the piezoelectric nanoplate. This work is expected to provide more accurate predictions on characterizing nanofilm or nanoribbon based piezoelectric devices in nanoelectromechanical systems. (paper)

  19. Nonlinear dynamic response and active vibration control for piezoelectric functionally graded plate

    Science.gov (United States)

    Yiqi, Mao; Yiming, Fu

    2010-05-01

    The nonlinear dynamic response and active vibration control of the piezoelectric functionally graded plate are analyzed in this paper. Based on higher-order shear plate theory and elastic piezoelectric theory, the nonlinear geometric and constitutive relations of the piezoelectric functionally graded plate are established, and then the nonlinear motion equations of the piezoelectric functionally graded plate are obtained through Hamilton's variational principle. The nonlinear active vibration control of the structure is carried out with adoption of the negative velocity feedback control algorithm. By applying finite difference method, the whole problem is solved by using iterative method synthetically. In numerical examples, the effects of mechanical load, electric load, the volume fraction and the geometric parameters on the dynamic response and vibration control of the piezoelectric FGM plate are investigated.

  20. Simple radiography by Imaging Plate

    Energy Technology Data Exchange (ETDEWEB)

    Takata, Shigeru; Koyama, Motoko; Tanizaki, Yoshiyuki [Tokyo Metropolitan Industrial Technology Research Insitute, Tokyo (Japan)

    1998-12-31

    Photo-stimulable phosphor is a material which emits luminescence by incitement of light. As useful photo-stimulable phosphor, alkali halide, like BaFBr: Eu, II - VI compound, like SrS: Eu and oxide, such as Al{sub 2}O{sub 3}: Care reported at present. Imaging Plate is a popular name of products, which is composed of thin layer of the phosphor fixed plastic plate. Photo-stimulable luminescence of Imaging Plate is emitted by scanning with narrow beam of incitement light. The light of luminescence is separated from incitement light by filter and it`s intensity is measured. The intensity of luminescence is proportional to absorbed dose of Imaging Plate from incident radiation. The map of luminescence intensity makes radiation image like radiograph taken by X-ray film. Reusability and usability of digital image are another advantage. The problem to solve of Imaging Plate are less resolution than X-ray film, expensive reading instrument and fading, which means decrease of luminescence intensity depend on elapse time after irradiation. High sensitivity of Imaging Plate makes possible of simple radiography by small radiation source. In Japanese law, sealed radioisotopes source less than 3.7 MBq can use without permission and register. If radiograph can be taken by sealed source less than 3.7 MBq, application of radiography is widely developed. So we try to take radiographs of some objects using Imaging Plate and sealed radioisotope sources under 3.7 MBq. As the result, useful radiographs are taken under conditions that exposure time is more than a few hours and distance between the source and the Plate is less than 30 cm. Quality of the image is poor than general radiograph by large radiation source. But the simple radiography taken by small source is of great value. (J.P.N.)

  1. Pulse plating of nickel deposits

    Energy Technology Data Exchange (ETDEWEB)

    Stimetz, C.J.; Stevenson, M.F.

    1980-02-01

    Pulse plated and conventional nickel deposits have been compared for differences in morphology, mechanical properties, and microstructure. The deposits were obtained from nickel sulfamate, nickel chloride, and Watts nickel plating solutions. No significant differences were found in the direct and pulse current deposits from the sulfamate and chloride solutions; however, significant differences in microstructure, yield strength, and microhardness were observed in deposits from the Watts nickel solution.

  2. Polarized Light Microscopy

    Science.gov (United States)

    Frandsen, Athela F.

    2016-01-01

    Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often

  3. Waltz's Theory of Theory

    DEFF Research Database (Denmark)

    Wæver, Ole

    2009-01-01

    Kenneth N. Waltz's 1979 book, Theory of International Politics, is the most influential in the history of the discipline. It worked its effects to a large extent through raising the bar for what counted as theoretical work, in effect reshaping not only realism but rivals like liberalism and refle......Kenneth N. Waltz's 1979 book, Theory of International Politics, is the most influential in the history of the discipline. It worked its effects to a large extent through raising the bar for what counted as theoretical work, in effect reshaping not only realism but rivals like liberalism...... and reflectivism. Yet, ironically, there has been little attention to Waltz's very explicit and original arguments about the nature of theory. This article explores and explicates Waltz's theory of theory. Central attention is paid to his definition of theory as ‘a picture, mentally formed' and to the radical anti...

  4. Interaction between subducting plates: results from numerical and analogue modeling

    Science.gov (United States)

    Kiraly, Agnes; Capitanio, Fabio A.; Funiciello, Francesca; Faccenna, Claudio

    2016-04-01

    The tectonic setting of the Alpine-Mediterranean area is achieved during the late Cenozoic subduction, collision and suturing of several oceanic fragments and continental blocks. In this stage, processes such as interactions among subducting slabs, slab migrations and related mantle flow played a relevant role on the resulting tectonics. Here, we use numerical models to first address the mantle flow characteristic in 3D. During the subduction of a single plate the strength of the return flow strongly depends on the slab pull force, that is on the plate's buoyancy, however the physical properties of the slab, such as density, viscosity or width, do not affect largely the morphology of the toroidal cell. Instead, dramatic effects on the geometry and the dynamics of the toroidal cell result in models where the thickness of the mantle is varied. The vertical component of the vorticity vector is used to define the characteristic size of the toroidal cell, which is ~1.2-1.3 times the mantle depth. This latter defines the range of viscous stress propagation through the mantle and consequent interactions with other slabs. We thus further investigate on this setup where two separate lithospheric plates subduct in opposite sense, developing opposite polarities and convergent slab retreat, and model different initial sideways distance between the plates. The stress profiles in time illustrate that the plates interacts when slabs are at the characteristic distance and the two slabs toroidal cells merge. Increased stress and delayed slab migrations are the results. Analogue models of double-sided subduction show similar maximum distance and allow testing the additional role of stress propagated through the plates. We use a silicon plate subducting on its two opposite margins, which is either homogeneous or comprises oceanic and continental lithospheres, differing in buoyancy. The modeling results show that the double-sided subduction is strongly affected by changes in plate

  5. The evolution of tensor polarization

    International Nuclear Information System (INIS)

    Huang, H.; Lee, S.Y.; Ratner, L.

    1993-01-01

    By using the equation of motion for the vector polarization, the spin transfer matrix for spin tensor polarization, the spin transfer matrix for spin tensor polarization is derived. The evolution equation for the tensor polarization is studied in the presence of an isolate spin resonance and in the presence of a spin rotor, or snake

  6. Experimental demonstration of producing high resolution zone plates by spatial-frequency multiplication

    International Nuclear Information System (INIS)

    Yun, W.B.; Howells, M.R.

    1987-01-01

    In an earlier publication, the possibility of producing high resolution zone plates for x-ray applications by spatial-frequency multiplication was analyzed theoretically. The theory predicted that for a daughter zone plate generated from the interference of mth and nth diffraction orders of a parent zone plate, its primary focal spot size and focal length are one (m + n)th of their counterparts of the parent zone plate, respectively. It was also shown that a zone plate with the outermost zone width of as small as 13.8 nm might be produced by this technique. In this paper, we report an experiment which we carried out with laser light (λ = 4166A) for demonstrating this technique. In addition, an outlook for producing high resolution zone plates for x-ray application is briefly discussed

  7. EXACT SOLUTION FOR TEMPERATURE-DEPENDENT BUCKLING ANALYSIS OF FG-CNT-REINFORCED MINDLIN PLATES

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Mousavi

    2016-03-01

    Full Text Available This research deals with the buckling analysis of nanocomposite polymeric temperature-dependent plates reinforced by single-walled carbon nanotubes (SWCNTs. For the carbon-nanotube reinforced composite (CNTRC plate, uniform distribution (UD and three types of functionally graded (FG distribution patterns of SWCNT reinforcements are assumed. The material properties of FG-CNTRC plate are graded in the thickness direction and estimated based on the rule of mixture. The CNTRC is located in a elastic medium which is simulated with temperature-dependent Pasternak medium. Based on orthotropic Mindlin plate theory, the governing equations are derived using Hamilton’s principle and solved by Navier method. The influences of the volume fractions of carbon nanotubes, elastic medium, temperature and distribution type of CNTs are considered on the buckling of the plate. Results indicate that CNT distribution close to top and bottom are more efficient than those distributed nearby the mid-plane for increasing the stiffness of plates.

  8. Polarized Electrons at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, C.K.

    1997-12-31

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously.initial operational experience with the polarized source will be presented.

  9. Polarized electrons at Jefferson laboratory

    International Nuclear Information System (INIS)

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously. Initial operational experience with the polarized source will be presented

  10. Polar low monitoring

    Science.gov (United States)

    Bobylev, Leonid; Zabolotskikh, Elizaveta; Mitnik, Leonid

    2010-05-01

    Polar lows are intense mesoscale atmospheric low pressure weather systems, developing poleward of the main baroclinic zone and associated with high surface wind speeds. Small size and short lifetime, sparse in-situ observations in the regions of their development complicate polar low study. Our knowledge of polar lows and mesocyclones has come almost entirely during the period of satellite remote sensing since, by virtue of their small horizontal scale, it was rarely possible to analyse these lows on conventional weather charts using only the data from the synoptic observing network. However, the effects of intense polar lows have been felt by coastal communities and seafarers since the earliest times. These weather systems are thought to be responsible for the loss of many small vessels over the centuries, although the nature of the storms was not understood and their arrival could not be predicted. The actuality of the polar low research is stipulated by their high destructive power: they are a threat to such businesses as oil and gas exploration, fisheries and shipping. They could worsen because of global warming: a shrinking of sea ice around the North Pole, which thawed to its record minimum in the summer of 2007, is likely to give rise to more powerful storms that form only over open water and can cause hurricane-strength winds. Therefore, study of polar lows, their timely detection, tracking and forecasting represents a challenge for today meteorology. Satellite passive microwave data, starting from Special Sensor Microwave Imager (SSM/I) onboard Defense Meteorological Satellite Program (DMSP) satellite, remain invaluable source of regularly available remotely sensed data to study polar lows. The sounding in this spectral range has several advantages in comparison with observations in visible and infrared ranges and Synthetic Aperture Radar (SAR) data: independence on day time and clouds, regularity and high temporal resolution in Polar Regions. Satellite

  11. Compression behavior of delaminated composite plates

    Science.gov (United States)

    Peck, Scott O.; Springer, George S.

    1989-01-01

    The response of delaminated composite plates to compressive in-plane loads was investigated. The delaminated region may be either circular or elliptical, and may be located between any two plies of the laminate. For elliptical delaminations, the axes of the ellipse may be arbitrarily oriented with respect to the applied loads. A model was developed that describes the stresses, strains, and deformation of the sublaminate created by the delamination. The mathematical model is based on a two dimensional nonlinear plate theory that includes the effects of transverse shear deformation. The model takes into account thermal and moisture induced strains, transverse pressures acting on the sublaminate, and contact between the sublaminate and plate. The solution technique used is the Ritz method. A computationally efficient computer implementation of the model was developed. The code can be used to predict the nonlinear-load-strain behavior of the sublaminate including the buckling load, postbuckling behavior, and the onset of delamination growth. The accuracy of the code was evaluated by comparing the model results to benchmark analytical solutions. A series of experiments was conducted on Fiberite T300/976 graphite/epoxy laminates bonded to an aluminum honeycomb core forming a sandwich panel. Either circles or ellipses made from Teflon film were embedded in the laminates, simulating the presence of a delamination. Each specimen was loaded in compression and the strain history of the sublaminate was recorded far into the postbuckling regime. The extent of delamination growth was evaluated by C-scan examination of each specimen. The experimental data were compared to code predictions. The code was found to describe the data with reasonable accuracy. A sensitivity study examined the relative importance of various material properties, the delamination dimensions, the contact model, the transverse pressure differential, the critical strain energy release rate, and the relative

  12. Polarization-controlled asymmetric excitation of surface plasmons

    KAUST Repository

    Xu, Quan

    2017-08-28

    Free-space light can be coupled into propagating surface waves at a metal–dielectric interface, known as surface plasmons (SPs). This process has traditionally faced challenges in preserving the incident polarization information and controlling the directionality of the excited SPs. The recently reported polarization-controlled asymmetric excitation of SPs in metasurfaces has attracted much attention for its promise in developing innovative plasmonic devices. However, the unit elements in these works were purposely designed in certain orthogonal polarizations, i.e., linear or circular polarizations, resulting in limited two-level polarization controllability. Here, we introduce a coupled-mode theory to overcome this limit. We demonstrated theoretically and experimentally that, by utilizing the coupling effect between a pair of split-ring-shaped slit resonators, exotic asymmetric excitation of SPs can be obtained under the x-, y-, left-handed circular, and right-handed circular polarization incidences, while the polarization information of the incident light can be preserved in the excited SPs. The versatility of the presented design scheme would offer opportunities for polarization sensing and polarization-controlled plasmonic devices.

  13. Polarized protons at RHIC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1990-12-01

    The Physics case is presented for the use of polarized protons at RHIC for one or two months each year. This would provide a facility with polarizations of approx-gt 50% high luminosity ∼2.0 x 10 32 cm -2 s -1 , the possibility of both longitudinal and transverse polarization at the interaction regions, and frequent polarization reversal for control of systematic errors. The annual integrated luminosity for such running (∼10 6 sec per year) would be ∫ Ldt = 2 x 10 38 cm -2 -- roughly 20 times the total luminosity integrated in ∼ 10 years of operation of the CERN Collider (∼10 inverse picobarns, 10 37 cm -2 ). This facility would be unique in the ability to perform parity-violating measurements and polarization test of QCD. Also, the existence of p-p collisions in a new energy range would permit the study of ''classical'' reactions like the total cross section and elastic scattering, etc., and serve as a complement to measurements from p-bar p colliders. 11 refs

  14. The Bochum Polarized Target

    International Nuclear Information System (INIS)

    Reicherz, G.; Goertz, S.; Harmsen, J.; Heckmann, J.; Meier, A.; Meyer, W.; Radtke, E.

    2001-01-01

    The Bochum 'Polarized Target' group develops the target material 6 LiD for the COMPASS experiment at CERN. Several different materials like alcohols, alcanes and ammonia are under investigation. Solid State Targets are polarized in magnetic fields higher than B=2.5T and at temperatures below T=1K. For the Dynamic Nuclear Polarization process, paramagnetic centers are induced chemically or by irradiation with ionizing beams. The radical density is a critical factor for optimization of polarization and relaxation times at adequate magnetic fields and temperatures. In a high sensitive EPR--apparatus, an evaporator and a dilution cryostat with a continuous wave NMR--system, the materials are investigated and optimized. To improve the polarization measurement, the Liverpool NMR-box is modified by exchanging the fixed capacitor for a varicap diode which not only makes the tuning very easy but also provides a continuously tuned circuit. The dependence of the signal area upon the circuit current is measured and it is shown that it follows a linear function

  15. A retrospective comparison of four plate constructs for first metatarsophalangeal joint fusion: static plate, static plate with lag screw, locked plate, and locked plate with lag screw.

    Science.gov (United States)

    Hyer, Christopher F; Scott, Ryan T; Swiatek, Michael

    2012-01-01

    The primary treatment for progressive first metatarsophalangeal (MTP) joint arthritis is arthrodesis. Multiple fixation types have been used to accomplish fusion including plating. There have been no published articles reporting the outcomes of these 4 plate and/or screw constructs. We present our experience with 138 first MTP joint fusions using these constructs. A retrospective comparison and radiographic chart review of 132 patients (138 feet) was performed to compare different constructs in regards to successful union and time to fusion. All operations were performed by 4 fellowship-trained foot and ankle surgeons. The radiographs were independently read by 2 authors not involved in the index procedures. Radiographic fusion was determined by bridging cortices across the joint line. The mean time to union (in days) and rate of fusion were static plate: 59, 95%, static plate with lag screw: 56, 86%, locked plate: 66, 92%, and locked plate with lag screw: 53, 96%. There was not a statistically significant difference between the groups in regards to patient age, time to weight bearing, time to fusion, or rate of fusion. We report on the results of fusion comparing 4 different plate and/or screw constructs for first MTP joint fusion. The data reveal no significant difference in time to fusion or rate of fusion between static and locked plates, with or without a lag screw. Copyright © 2012 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Corrosion behaviour of nickel during anodic polarization in chloride solution

    International Nuclear Information System (INIS)

    Memon, S.A.; Isani, A.A.; Memon, A.N.

    1998-01-01

    This research presents the effect of oxygen and nitrogen on the corrosion behaviour of nickel in the chloride solution, at the steady state polarized and unpolarized potentials. The additives were selected from those, which are used for bright nickel plating. It was observed that the agitation of electrolyte in a particular pH-(Cl)' range increase the potentials in comparison of the potentials to the un-agitated electrolytes. (author)

  17. In-line Fiber Polarizer

    OpenAIRE

    Perumalsamy, Priya

    1998-01-01

    Polarizers and polarization devices are important components in fiber optic communication and sensor systems. There is a growing need for efficient low loss components that are compatible with optical fibers. An all fiber in-line polarizer is a more desirable alternative that could be placed at appropriate intervals along communication links. An in-line fiber polarizer was fabricated and tested. The in-line fiber polarizer operates by coupling optical energy propagatin...

  18. Delamination, upper plate extension, and plate margin complexity

    Science.gov (United States)

    Ueda, Kosuke; Gerya, Taras; Willett, Sean

    2017-04-01

    We investigate the syn- and post-subduction margin evolution with respect to extension, lithospheric removal, and magmatic and topographic consequences by employing 3D geodynamic models. In all experiments, regions of extended partial melting are overlain by up to 3 km high plateaus. There is complex geometric entanglement between upper mantle, partially molten rocks, and lithosphere, which is thermally eroded, over hundreds of kilometers across the plate contact. A complex lithosphere-asthenosphere-boundary features elongated anomalies at scales of few tens to hundred kilometers. First-order, synthetic seismic anomaly patterns, based on thermodynamic velocities which are tabulated for model p,T conditions, are accordingly complex. Passive margin geometry variations in the lower plate effect consistent and inherited differences in dynamic evolution. Promontories along the margin tend to trigger three stages of evolution: 1) a magmatic arc; 2) a lower plate, eduction-like exhumation of buried continental crust in domal patterns of few tens of km wavelength; and subsequently, 3) the formation of extended zones on the upper plate which lack a lithospheric mantle, undergo partial extension, and feature lower crustal melting. Slab break-off is consistently favoured in locations where the lower plate margin is relatively recessed. Concerning the classical removal mechanisms, transitions and co-evolution between delamination, convective thinning, and upper-plate extension are gradual and these modes are not mutually exclusive. Almost complete mixed-mode removal and extension can be compared to the Aegean. Slab window formation by margin geometry variation produces characteristic uplift patterns that are comparable to the Apennines, where higher uplift rates could be a consequence of incipient necking of the slab below central Calabria.

  19. Macroscopic polarization in crystalline dielectrics: the geometric phase approach

    International Nuclear Information System (INIS)

    Resta, R.

    1994-01-01

    The macroscopic electric polarization of a crystal is often defined as the dipole of a unit cell. In fact, such a dipole moment is ill defined, and the above definition is incorrect. Looking more closely, the quantity generally measured is differential polarization, defined with respect to a ''reference state'' of the same material. Such differential polarizations include either derivatives of the polarization (dielectric permittivity, Born effective charges, piezoelectricity, pyroelectricity) or finite differences (ferroelectricity). On the theoretical side, the differential concept is basic as well. Owing to continuity, a polarization difference is equivalent to a macroscopic current, which is directly accessible to the theory as a bulk property. Polarization is a quantum phenomenon and cannot be treated with a classical model, particularly whenever delocalized valence electrons are present in the dielectric. In a quantum picture, the current is basically a property of the phase of the wave functions, as opposed to the charge, which is a property of their modulus. An elegant and complete theory has recently been developed by King-Smith and Vanderbilt, in which the polarization difference between any two crystal states--in a null electric field--takes the form of a geometric quantum phase. This gives a comprehensive account of this theory, which is relevant for dealing with transverse-optic phonons, piezoelectricity, and ferroelectricity. Its relation to the established concepts of linear-response theory is also discussed. Within the geometric phase approach, the relevant polarization difference occurs as the circuit integral of a Berry connection (or ''vector potential''), while the corresponding curvature (or ''magnetic field'') provides the macroscopic linear response

  20. Muon polarization in e+e- → μ+μ-

    International Nuclear Information System (INIS)

    Gary, J.W.

    1978-01-01

    A calculation of the cross section for e + e - → μ + μ - interactions is performed assuming colliding beam conditions and propagation of a neutral intermediate vector boson. From this a derivation of the expression for the longitudinal polarization of the final state μ - is made. The calculation, using relativistic, weak interaction, and field theory, demonstrates the connection between the polarization and the weak force parameters explicity

  1. Political Competition and Polarization

    DEFF Research Database (Denmark)

    Schultz, Christian

    This paper considers political competition and the consequences of political polarization when parties are better informed about how the economy functions than voters are. Specifically, parties know the cost producing a public good, voters do not. An incumbent's choice of policy acts like a signa...... for costs before an upcoming election. It is shown that the more polarized the political parties the more distorted the incumbent's policy choice.......This paper considers political competition and the consequences of political polarization when parties are better informed about how the economy functions than voters are. Specifically, parties know the cost producing a public good, voters do not. An incumbent's choice of policy acts like a signal...

  2. Physics of polarized targets

    CERN Document Server

    Niinikoski, Tapio

    2014-01-01

    For developing, building and operating solid polarized targets we need to understand several fields of physics that have seen sub stantial advances during the last 50 years. W e shall briefly review a selection of those that are important today. These are: 1) quantum statistical methods to describe saturation and relaxation in magnetic resonance; 2) equal spin temperature model for dy namic nuclear polarization; 3 ) weak saturation during NMR polarization measurement; 4 ) refrigeration using the quantum fluid properties of helium isotopes. These, combined with superconducting magnet technologies, permit today to reach nearly complete pola rization of almost any nuclear spins. Targets can be operated in frozen spin mode in rather low and inhomogeneous field of any orientation, and in DNP mode in beams of high intensity. Beyond such experiments of nuclear and particle physics, applications a re also emerging in macromolecular chemistry and in magnetic resonance imaging. This talk is a tribute to Michel Borghini...

  3. No More Polarization, Please!

    DEFF Research Database (Denmark)

    Hansen, Mia Reinholt

    The organizational science literature on motivation has for long been polarized into two main positions; the organizational economic position focusing on extrinsic motivation and the organizational behavior position emphasizing intrinsic motivation. With the rise of the knowledge economy...... and the increasing levels of complexities it entails, such polarization is not fruitful in the attempt to explain motivation of organizational members. This paper claims that a more nuanced perspective on motivation, acknowledging the co-existence of intrinsic and extrinsic motivation, the possible interaction...... between the two as well as different types of motivations filling in the gap between the two polar types, is urgently needed in the organizational science literature. By drawing on the research on intrinsic and extrinsic motivation conducted in social psychology and combining this with contributions from...

  4. Polarized source upgrading

    International Nuclear Information System (INIS)

    Clegg, T.B.; Rummel, R.L.; Carter, E.P.; Westerfeldt, C.R.; Lovette, A.W.; Edwards, S.E.

    1985-01-01

    The decision was made this past year to move the Lamb-shift polarized ion source which was first installed in the laboratory in 1970. The motivation was the need to improve the flexibility of spin-axis orientation by installing the ion source with a new Wien-filter spin precessor which is capable of rotating physically about the beam axis. The move of the polarized source was accomplished in approximately two months, with the accelerator being turned off for experiments during approximately four weeks of this time. The occasion of the move provided the opportunity to rewire completely the entire polarized ion source frame and to rebuild approximately half of the electronic chassis on the source. The result is an ion source which is now logically wired and carefully documented. Beams obtained from the source are much more stable than those previously available

  5. A lunar polar expedition

    Science.gov (United States)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-09-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  6. Spirit Near 'Stapledon' on Sol 1802 (Polar)

    Science.gov (United States)

    2009-01-01

    NASA Mars Exploration Rover Spirit used its navigation camera for the images assembled into this full-circle view of the rover's surroundings during the 1,802nd Martian day, or sol, (January 26, 2009) of Spirit's mission on the surface of Mars. North is at the top. This view is presented as a polar projection with geometric seam correction. Spirit had driven down off the low plateau called 'Home Plate' on Sol 1782 (January 6, 2009) after spending 12 months on a north-facing slope on the northern edge of Home Plate. The position on the slope (at about the 9-o'clock position in this view) tilted Spirit's solar panels toward the sun, enabling the rover to generate enough electricity to survive its third Martian winter. Tracks at about the 11-o'clock position of this panorama can be seen leading back to that 'Winter Haven 3' site from the Sol 1802 position about 10 meters (33 feet) away. For scale, the distance between the parallel wheel tracks is about one meter (40 inches). Where the receding tracks bend to the left, a circular pattern resulted from Spirit turning in place at a soil target informally named 'Stapledon' after William Olaf Stapledon, a British philosopher and science-fiction author who lived from 1886 to 1950. Scientists on the rover team suspected that the soil in that area might have a high concentration of silica, resembling a high-silica soil patch discovered east of Home Plate in 2007. Bright material visible in the track furthest to the right was examined with Spirit's alpha partical X-ray spectrometer and found, indeed, to be rich in silica. The team laid plans to drive Spirit from this Sol 1802 location back up onto Home Plate, then southward for the rover's summer field season.

  7. Structural Analysis of Plate Based Tensegrity Structures

    DEFF Research Database (Denmark)

    Hald, Frederik; Kirkegaard, Poul Henning; Damkilde, Lars

    2013-01-01

    Plate tensegrity structures combine tension cables with a cross laminated timber plate and can then form e.g. a roof structure. The topology of plate tensegrity structures is investigated through a parametric investigation. Plate tensegrity structures are investigated, and a method...

  8. Use of savart plates in grating interferometers.

    Science.gov (United States)

    Peek, T H

    1971-05-01

    An analysis is given of Savart plates for arbitrary angles between the optic axis and the plate normal. Conoscopic interference patterns of thin Savart plates cut nearly parallel to the optic axis are shown and the use of such plates combined with diffraction gratings is discussed.

  9. Flexoelectricity and the polarity of complex ferroelastic twin patterns

    Science.gov (United States)

    Salje, Ekhard K. H.; Li, Suzhi; Stengel, Massimiliano; Gumbsch, Peter; Ding, Xiangdong

    2016-07-01

    We study, by means of an atomistic toy model, the interplay of ferroelastic twin patterns and electrical polarization. Our molecular dynamics simulations reproduce polarity in straight twin walls as observed experimentally. We show, by making contact with continuum theory, that the effect is governed by linear flexoelectricity. Complex twin patterns, with very high densities of kinks and/or junctions, produce winding structures in the dipolar field, which are reminiscent of polarization vortices. By means of a "cold shearing" technique, we produce patches with high vortex densities; these unexpectedly show a net macroscopic polarization even if neither the original sample nor the applied mechanical perturbation breaks inversion symmetry by itself. These results may explain some puzzling experimental observations of "parasitic" polarity in the paraelectric phase of BaTi O3 and LaAl O3 .

  10. Plating on some difficult-to-plate metals and alloys

    International Nuclear Information System (INIS)

    Dini, J.W.; Johnson, H.R.

    1980-02-01

    Electrodeposition of coatings on metals such as beryllium, beryllium-copper, Kovar, lead, magnesium, thorium, titanium, tungsten, uranium, zirconium, and their alloys can be problematic. This is due in most cases to a natural oxide surface film that readily reforms after being removed. The procedures we recommend for plating on these metals rely on replacing the oxide film with a displacement coating, or etching to allow mechanical keying between the substrate and plated deposit. The effectiveness of the procedures is demonstrated by interface bond strengths found in ring-shear and conical-head tensile tests

  11. POLARIZED NEUTRONS IN RHIC

    Energy Technology Data Exchange (ETDEWEB)

    COURANT,E.D.

    1998-04-27

    There does not appear to be any obvious way to accelerate neutrons, polarized or otherwise, to high energies by themselves. To investigate the behavior of polarized neutrons the authors therefore have to obtain them by accelerating them as components of heavier nuclei, and then sorting out the contribution of the neutrons in the analysis of the reactions produced by the heavy ion beams. The best neutron carriers for this purpose are probably {sup 3}He nuclei and deuterons. A polarized deuteron is primarily a combination of a proton and a neutron with their spins pointing in the same direction; in the {sup 3}He nucleus the spins of the two protons are opposite and the net spin (and magnetic moment) is almost the same as that of a free neutron. Polarized ions other than protons may be accelerated, stored and collided in a ring such as RHIC provided the techniques proposed for polarized proton operation can be adapted (or replaced by other strategies) for these ions. To accelerate polarized particles in a ring, one must make provisions for overcoming the depolarizing resonances that occur at certain energies. These resonances arise when the spin tune (ratio of spin precession frequency to orbit frequency) resonates with a component present in the horizontal field. The horizontal field oscillates with the vertical motion of the particles (due to vertical focusing); its frequency spectrum is dominated by the vertical oscillation frequency and its modulation by the periodic structure of the accelerator ring. In addition, the magnet imperfections that distort the closed orbit vertically contain all integral Fourier harmonics of the orbit frequency.

  12. Dark Polar Dunes

    Science.gov (United States)

    2005-01-01

    20 January 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, acquired during northern summer in December 2004, shows dark, windblown sand dunes in the north polar region of Mars. A vast sea of sand dunes nearly surrounds the north polar cap. These landforms are located near 80.3oN, 144.1oW. Light-toned features in the image are exposures of the substrate that underlies the dune field. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the lower left.

  13. Imaging with Polarized Neutrons

    Directory of Open Access Journals (Sweden)

    Nikolay Kardjilov

    2018-01-01

    Full Text Available Owing to their zero charge, neutrons are able to pass through thick layers of matter (typically several centimeters while being sensitive to magnetic fields due to their intrinsic magnetic moment. Therefore, in addition to the conventional attenuation contrast image, the magnetic field inside and around a sample can be visualized by detecting changes of polarization in a transmitted beam. The method is based on the spatially resolved measurement of the cumulative precession angles of a collimated, polarized, monochromatic neutron beam that traverses a magnetic field or sample.

  14. The polar mesosphere

    International Nuclear Information System (INIS)

    Morris, Ray; Murphy, Damian

    2008-01-01

    The mesosphere region, which lies at the edge of space, contains the coldest layer of the Earth's atmosphere, with summer temperatures as low as minus 130 °C. In this extreme environment ice aerosol layers have appeared since the dawn of industrialization—whose existence may arguably be linked to human influence—on yet another layer of the Earth's fragile atmosphere. Ground-based and space-based experiments conducted in the Arctic and Antarctic during the International Polar Year (IPY) aim to address limitations in our knowledge and to advance our understanding of thermal and dynamical processes at play in the polar mesosphere

  15. Internal polarized targets

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, E.R.; Coulter, K.; Gilman, R.; Holt, R.J.; Kowalczyk, R.S.; Napolitano, J.; Potterveld, D.H.; Young, L. (Argonne National Lab., IL (USA)); Mishnev, S.I.; Nikolenko, D.M.; Popov, S.G.; Rachek, I.A.; Temnykh, A.B.; Toporkov, D.K.; Tsentalovich, E.P.; Wojtsekhowski, B.B. (AN SSSR, Novosibirsk (USSR). Inst. Yadernoj Fiziki)

    1989-01-01

    Internal polarized targets offer a number of advantages over external targets. After a brief review of the basic motivation and principles behind internal polarized targets, the technical aspects of the atomic storage cell will be discussed in particular. Sources of depolarization and the means by which their effects can be ameliorated will be described, especially depolarization by the intense magnetic fields arising from the circulating particle beam. The experience of the Argonne Novosibirsk collaboration with the use of a storage cell in a 2 GeV electron storage ring will be the focus of this technical discussion. 17 refs., 11 figs.

  16. AGS polarized H- source

    International Nuclear Information System (INIS)

    Kponou, A.; Alessi, J.G.; Sluyters, T.

    1985-01-01

    The AGS polarized H - source is now operational. During a month-long experimental physics run in July 1984, pulses equivalent to 15 μA x 300 μs (approx. 3 x 10 10 protons) were injected into the RFQ preaccelerator. Beam polarization, measured at 200 MeV, was approx. 75%. After the run, a program to increase the H - yield of the source was begun and significant progress has been made. The H - current is now frequently 20 to 30 μA. A description of the source and some details of our operating experience are given. We also briefly describe the improvement program

  17. Polarization-free generators and the S-matrix

    International Nuclear Information System (INIS)

    Borchers, H.J.; Buchholz, D.; Schroer, B.

    2001-01-01

    Polarization-free generators, i.e. ''interacting'' Heisenberg operators which are localized in wedge-shaped regions of Minkowski space and generate single particle states from the vacuum, are a novel tool in the analysis and synthesis of two-dimensional integrable quantum field theories. In the present article, the status of these generators is analyzed in a general setting. It is shown that such operators exist in any theory and in any number of spacetime dimensions. But in more than two dimensions they have rather delicate domain properties in the presence of interaction. If, for example, they are defined and temperate on a translation-invariant, dense domain, then the underlying theory yields only trivial scattering. In two-dimensional theories, these domain properties are consistent with non-trivial interaction, but they exclude particle production. Thus the range of applications of polarization-free generators seems to be limited to the realm of two-dimensional theories. (orig.)

  18. Capacity of the circular plate condenser: analytical solutions for large gaps between the plates

    International Nuclear Information System (INIS)

    Rao, T V

    2005-01-01

    A solution of Love's integral equation (Love E R 1949 Q. J. Mech. Appl. Math. 2 428), which forms the basis for the analysis of the electrostatic field due to two equal circular co-axial parallel conducting plates, is considered for the case when the ratio, τ, of distance of separation to radius of the plates is greater than 2. The kernel of the integral equation is expanded into an infinite series in odd powers of 1/τ and an approximate kernel accurate to O(τ -(2N+1) ) is deduced therefrom by terminating the series after an arbitrary but finite number of terms, N. The approximate kernel is rearranged into a degenerate form and the integral equation with this kernel is reduced to a system of N linear equations. An explicit analytical solution is obtained for N = 4 and the resulting analytical expression for the capacity of the circular plate condenser is shown to be accurate to O(τ -9 ). Analytical expressions of lower orders of accuracy with respect to 1/τ are deduced from the four-term (i.e., N 4) solution and predictions (of capacity) from the expressions of different orders of accuracy (with respect to 1/τ) are compared with very accurate numerical solutions obtained by solving the linear system for large enough N. It is shown that the O(τ -9 ) approximation predicts the capacity extremely well for any τ ≥ 2 and an O(τ -3 ) approximation gives, for all practical purposes, results of adequate accuracy for τ ≥ 4. It is further shown that an approximate solution, applicable for the case of large distances of separation between the plates, due to Sneddon (Sneddon I N 1966 Mixed Boundary Value Problems in Potential Theory (Amsterdam: North-Holland) pp 230-46) is accurate to O(τ -6 ) for τ ≥ 2

  19. Refined Modeling of Flexural Deformation of Layered Plates with a Regular Structure Made from Nonlinear Hereditary Materials

    Science.gov (United States)

    Yankovskii, A. P.

    2018-01-01

    On the basis of constitutive equations of the Rabotnov nonlinear hereditary theory of creep, the problem on the rheonomic flexural behavior of layered plates with a regular structure is formu-lated. Equations allowing one to describe, with different degrees of accuracy, the stress-strain state of such plates with account of their weakened resistance to transverse shear were ob-tained. From them, the relations of the nonclassical Reissner- and Reddytype theories can be found. For axially loaded annular plates clamped at one edge and loaded quasistatically on the other edge, a simplified version of the refined theory, whose complexity is comparable to that of the Reissner and Reddy theories, is developed. The flexural strains of such metal-composite annular plates in shortterm and long-term loadings at different levels of heat action are calcu-lated. It is shown that, for plates with a relative thickness of order of 1/10, neither the classical theory, nor the traditional nonclassical Reissner and Reddy theories guarantee reliable results for deflections even with the rough 10% accuracy. The accuracy of these theories decreases at elevated temperatures and with time under long-term loadings of structures. On the basic of relations of the refined theory, it is revealed that, in bending of layered metal-composite heat-sensitive plates under elevated temperatures, marked edge effects arise in the neighborhood of the supported edge, which characterize the shear of these structures in the transverse direction

  20. Control of Domain Wall Polarity by Current Pulses

    Science.gov (United States)

    Vanhaverbeke, A.; Bischof, A.; Allenspach, R.

    2008-09-01

    Direct observation of current-induced propagation of purely transverse magnetic domain walls with spin-polarized scanning electron microscopy is reported in Fe30Ni70 nanowires. After propagation, the domain walls keep their transverse nature but switch polarity in some cases. For uniform Ni70Fe30 wires, the effect is random and illustrates domain-wall propagation above the Walker threshold. In the case of Ni70Fe30/Fe wires, the transverse magnetization component in the wall is entirely determined by the polarity of the current pulse, an effect that is not reconciled by present theories even when taking into account the nonuniform Oersted field generated by the current.

  1. NATURAL TRANSVERSE VIBRATIONS OF A PRESTRESSED ORTHOTROPIC PLATE-STRIPE

    Directory of Open Access Journals (Sweden)

    Egorychev Oleg Aleksandrovich

    2012-10-01

    Full Text Available The article represents a new outlook at the boundary-value problem of natural vibrations of a homogeneous pre-stressed orthotropic plate-stripe. In the paper, the motion equation represents a new approximate hyperbolic equation (rather than a parabolic equation used in the majority of papers covering the same problem describing the vibration of a homogeneous orthotropic plate-stripe. The proposed research is based on newly derived boundary conditions describing the pin-edge, rigid, and elastic (vertical types of fixing, as well as the boundary conditions applicable to the unfixed edge of the plate. The paper contemplates the application of the Laplace transformation and a non-standard representation of a homogeneous differential equation with fixed factors. The article proposes a detailed representation of the problem of natural vibrations of a homogeneous orthotropic plate-stripe if rigidly fixed at opposite sides; besides, the article also provides frequency equations (no conclusions describing the plate characterized by the following boundary conditions: rigid fixing at one side and pin-edge fixing at the opposite side; pin-edge fixing at one side and free (unfixed other side; rigid fixing at one side and elastic fixing at the other side. The results described in the article may be helpful if applied in the construction sector whenever flat structural elements are considered. Moreover, specialists in solid mechanics and theory of elasticity may benefit from the ideas proposed in the article.

  2. Linear polarization-discriminatory state inverter fabricated by oblique angle deposition.

    Science.gov (United States)

    Park, Yong Jun; Sobahan, K M A; Kim, Jin Joo; Hwangbo, Chang Kwon

    2009-06-22

    In this paper, we report a linear polarization-discriminatory state inverter made of three-layer sculpture thin film fabricated by oblique angle deposition technique. The first and third layers are quarter-wave plates of zigzag structure and the middle of them is a circular Bragg reflector of left-handed helical structure. It is found that the normal incidence of P-polarized light on this polarization-discriminatory state inverter becomes the S-polarized light at output, while the incident S-polarized light of wavelength lying in the Bragg regime is reflected. The microstructure of the linear polarization-discriminatory state inverter is also investigated by using a scanning electron microscope.

  3. Second-order all-fiber comb filter based on polarization-diversity loop configuration.

    Science.gov (United States)

    Lee, Yong Wook; Kim, Hyun-Tak; Lee, Yong Wan

    2008-03-17

    By concatenating three birefringence loops in series, a second-order all-fiber comb filter based on a polarization-diversity loop configuration is newly proposed. The proposed filter consists of one polarization beam splitter, polarization-maintaining fibers, and two halfwave plates. The effect of a second-order structure of polarization-maintaining fiber loops on a bandwidth of the filter passband was theoretically analyzed and experimentally demonstrated. Transmission output of the second-order filter (flat-top and narrow-band transmission spectra) could be obtained by adjusting two half-wave plates. 1 and 3 dB bandwidths of the proposed filter in flat-top and narrow-band operations were greater by approximately 102.9 and 44.3 % and smaller by approximately 47.9 and 47.1 % than those of a conventional Sagnac birefringence filter, respectively.

  4. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  5. application of the reissners plate theory in the delamination analysis ...

    African Journals Online (AJOL)

    Dr Obe

    dimensional, time-dependent problem. This three-dimensional problem is reduced to two- dimensional problem in the strip with use of. (i) conjugate gradient method and (ii) the fast. Fourier transform. Here, an axially symmetric conditioned operator is used to solve non- axially symmetric problem [9]. 2.4 Global Step Solving ...

  6. Application of the Reissners Plate Theory in the Delamination ...

    African Journals Online (AJOL)

    The prediction of delamination using Damage Mechanics and Interface Modeling approaches were reviewed and their limitations noted. Target was set to obtain a model free from the limitations of the Damage Mechanics approach, which involved a non- linear, three-dimensional evolution problem and the Interface ...

  7. Differential response to circularly polarized light by the jewel scarab beetle Chrysina gloriosa.

    Science.gov (United States)

    Brady, Parrish; Cummings, Molly

    2010-05-01

    Circularly polarized light is rare in the terrestrial environment, and cuticular reflections from scarab beetles are one of the few natural sources. Chrysina gloriosa LeConte 1854, a scarab beetle found in montane juniper forests of the extreme southwestern United States and northern Mexico, are camouflaged in juniper foliage; however, when viewed with right circularly polarizing filters, the beetles exhibit a stark black contrast. Given the polarization-specific changes in the appearance of C. gloriosa, we hypothesized that C. gloriosa can detect circularly polarized light. We tested for phototactic response and differential flight orientation of C. gloriosa toward different light stimuli. Chrysina gloriosa exhibited (a) positive phototaxis, (b) differential flight orientation between linear and circularly polarized light stimuli of equal intensities, and (c) discrimination between circularly polarized and unpolarized lights of different intensities consistent with a model of circular polarization sensitivity based on a quarter-wave plate. These results demonstrate that C. gloriosa beetles respond differentially to circularly polarized light. In contrast, Chrysina woodi Horn 1885, a close relative with reduced circularly polarized reflection, exhibited no phototactic discrimination between linear and circularly polarized light. Circularly polarized sensitivity may allow C. gloriosa to perceive and communicate with conspecifics that remain cryptic to predators, reducing indirect costs of communication.

  8. Asymptotical construction of a fully coupled, Reissner–Mindlin model for piezoelectric composite plates

    International Nuclear Information System (INIS)

    Liao Lin; Yu Wenbin

    2008-01-01

    The variational asymptotic method is used to construct a fully coupled Reissner–Mindlin model for piezoelectric composite plates with some surfaces parallel to the reference surface coated with electrodes. Taking advantage of the smallness of the plate thickness, we asymptotically split the original three-dimensional electromechanical problem into a one-dimensional through-the-thickness analysis and a two-dimensional plate analysis. The through-the-thickness analysis serves as a link between the original three-dimensional analysis and the plate analysis by providing a constitutive model for the plate analysis and recovering the three-dimensional field variables in terms of two-dimensional plate global responses. The present theory is implemented into the computer program VAPAS (variational asymptotic plate and shell analysis). The resulting model is as simple as an equivalent single-layer, first-order shear deformation theory with accuracy comparable to higher-order layerwise theories. Various numerical examples have been used to validate the present model

  9. A Comparative Study of Solutions Concerning Thick Elastic Plates on Bi-modulus Foundation

    Directory of Open Access Journals (Sweden)

    Ioana Vlad

    2004-01-01

    Full Text Available The classical bending theory of elastic plates is based upon the assumption that the internal moments are proportional to the curvatures of the median deformed surface. This theory does not include the effects of shear and normal pressure in the plate. The model of a bi-modulus foundation is a realistic generalization of the Winkler’s classical one and is widely used to represent the subgrade of railroad systems, airport lanes [1], [2]. The derived equation of elastic thick plates on bi-modulus foundation considers shear and normal stress as linear variable across the plate thickness. This paper presents numerical solutions for thick plate resting on bi-modulus subgrade. These solutions take into account the shear distortion, and they are compared to the solution obtained by Finite Element Analysis and with the Winkler’s model. Particular solutions for the rectangular plate of clamped boundary, for the hinged rectangular plate and for a semi-elliptical plate, are discussed. The numerical solutions consist of double power series and they were obtained based on the minimum of the total strain energy [1]. Parametric studies have been performed in order to emphasize the effects of the chosen foundation and that of the geometry.

  10. Shell-like structures advanced theories and applications

    CERN Document Server

    Eremeyev, Victor

    2017-01-01

    The book presents mathematical and mechanical aspects of the theory of plates and shells, applications in civil, aero-space and mechanical engineering, as well in other areas. The focus relates to the following problems: • comprehensive review of the most popular theories of plates and shells, • relations between three-dimensional theories and two-dimensional ones, • presentation of recently developed new refined plates and shells theories (for example, the micropolar theory or gradient-type theories), • modeling of coupled effects in shells and plates related to electromagnetic and temperature fields, phase transitions, diffusion, etc., • applications in modeling of non-classical objects like, for example, nanostructures, • presentation of actual numerical tools based on the finite element approach.

  11. [The anatomical plates of Antommarchi].

    Science.gov (United States)

    Dumaitre, P

    1981-09-01

    Mascagni, professor of anatomy in Florence, died in the same town in 1815, leaving manuscripts and drawings for an intended publication of a comprehensive complete anatomy with life-size figures. His prosector, Antommarchi, prepared the publication but was meanwhile called to Saint Helena. He left, taking with him three copies of Mascagni's plates. When he returned, he published these plates, printed from lithographs, under his own name in a monumental work which appeared from 1823 to 1826 under the title of: Planches anatomiques du corps humain exécutées d'après les dimensions naturelles.

  12. an elasticity solution for simply suported rectangular plates

    African Journals Online (AJOL)

    MIS

    1983-09-01

    Sep 1, 1983 ... σx, σy, σz. = direct stresses ξxy, ξxz, ξyz. = shear stresses εy, εy, εz. = direct strains rxy, rxz ryz. = shear strains μ. = Poisson's ratio α = rm /Pb. = nπ/2b. R = 2 ... based on Donnell's5 thick plate theory are examined. 2. BASIC EQUATIONS. The general solution of the equations of elasticity can be expressed in.

  13. Nodally Integrated Finite Element Formulation for Mindlin-Reissner Plates

    Science.gov (United States)

    Simoes, D. A.; Jadhav, T. A.

    2014-01-01

    This work describes a nodally integrated finite element formulation for plates under the Mindlin-Reissner theory. The formulation makes use of the weighted residual method and nodal integration to derive the assumed strain relations. An element formulation for four-node quadrilateral elements is implemented in the nonlinear finite element solver Abaqus using the UEL user element subroutine. Numerical tests are carried out on the new element and the results are presented.

  14. Super-resolution longitudinally polarized light needle achieved by tightly focusing radially polarized beams

    Science.gov (United States)

    Shi, Chang-kun; Nie, Zhong-quan; Tian, Yan-ting; Liu, Chao; Zhao, Yong-chuang; Jia, Bao-hua

    2018-01-01

    Based on the vector diffraction theory, a super-resolution longitudinally polarized optical needle with ultra-long depth of focus ( DOF) is generated by tightly focusing a radially polarized beam that is modulated by a self-designed ternary hybrid (phase/amplitude) filter (THF). Both the phase and the amplitude patterns of THF are judiciously optimized by the versatile particle swarm optimization (PSO) searching algorithm. For the focusing configuration with a combination of a high numerical aperture ( NA) and the optimized sine-shaped THFs, an optical needle with the full width at half maximum ( FWHM) of 0.414λ and the DOF of 7.58λ is accessed, which corresponds to an aspect ratio of 18.3. The demonstrated longitudinally polarized super-resolution light needle with high aspect ratio opens up broad applications in high-density optical data storage, nano-photolithography, super-resolution imaging and high-efficiency particle trapping.

  15. Electromagnetic cloaking devices for TE and TM polarizations

    International Nuclear Information System (INIS)

    Bilotti, Filiberto; Tricarico, Simone; Vegni, Lucio

    2008-01-01

    In this paper, we present the design of an electromagnetic cloaking device working for both transverse electric (TE) and transverse magnetic (TM) polarizations. The theoretical approach to cloaking used here is inspired by the one presented by Alu and Engheta (2005 Phys. Rev. E 72 016623) for TM polarization. The case of TE polarization is firstly considered and, then, an actual inclusion-based cloak for TE polarization is also designed. In such a case, the cloak is made of a mu-near-zero (MNZ) metamaterial, as the dual counterpart of the epsilon-near-zero (ENZ) material that can be used for purely dielectric objects. The operation and the robustness of the cloaking device for the TE polarization is deeply investigated through a complete set of full-wave numerical simulations. Finally, the design and an application of a cloak operating for both TE and TM polarizations employing both magnetic inclusions and the parallel plate medium already used by Silveirinha et al (Phys. Rev. E 75 036603) are presented.

  16. Lobbying and political polarization

    OpenAIRE

    Ursprung, Heinrich W.

    2002-01-01

    Standard spatial models of political competition give rise to equilibria in which the competing political parties or candidates converge to a common position. In this paper I show how political polarization can be generated in models that focus on the nexus between pre-election interest group lobbying and electoral competition.

  17. Fluorescence confocal polarizing microscopy

    Indian Academy of Sciences (India)

    Much of the modern understanding of orientational order in liquid crystals (LCs) is based on polarizing microscopy (PM). A PM image bears only two-dimensional (2D) information, integrating the 3D pattern of optical birefringence over the path of light. Recently, we proposed a technique to image 3D director patterns by ...

  18. Polarization of Bremsstrahlung

    International Nuclear Information System (INIS)

    Miller, J.

    1957-01-01

    The numerical results for the polarization of Bremsstrahlung are presented. The multiple scattering of electrons in the target is taken into account. The angular-and photon energy dependences are seen on the curves for an incident 25 MeV electron energy. (Author) [fr

  19. DESY: HERA polarization

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The new HERA electron-proton collider at DESY in Hamburg achieved the first luminosity for electron-proton collisions on 19 October last year. Only one month later, on 20 November, HERA passed another important milestone with the observation of transverse electron polarization

  20. Titan Polar Landscape Evolution

    Science.gov (United States)

    Moore, Jeffrey M.

    2016-01-01

    With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.

  1. Graphics of polar figure

    International Nuclear Information System (INIS)

    Macias B, L.R.

    1991-11-01

    The objective of this work, is that starting from a data file coming from a spectra that has been softened, and of the one that have been generated its coordinates to project it in stereographic form, to create the corresponding polar figure making use of the Cyber computer of the ININ by means of the GRAPHOS package. This work only requires a Beta, Fi and Intensity (I) enter data file. It starts of the existence of a softened spectra of which have been generated already with these data, making use of some language that in this case was FORTRAN for the Cyber computer, a program is generated supported in the Graphos package that allows starting of a reading of the Beta, Fi, I file, to generate the points in a stereographic projection and that it culminates with the graph of the corresponding polar figure. The program will request the pertinent information that is wanted to capture in the polar figure just as: date, name of the enter file, indexes of the polar figure, number of levels, radio of the stereographic projection (cms.), crystalline system to which belongs the sample, name the neuter graph file by create and to add the own general data. (Author)

  2. Depth enhancement of multi-layer light field display using polarization dependent internal reflection.

    Science.gov (United States)

    Jo, Na-Young; Lim, Hong-Gi; Lee, Sung-Keun; Kim, Yong-Soo; Park, Jae-Hyeung

    2013-12-02

    A technique to enhance the depth range of the multi-layer light field three-dimensional display is proposed. A set of the optical plates are stacked in front of the conventional multi-layer light field display, creating additional internal reflection for one polarization state. By switching between two orthogonal polarization states in synchronization with the displayed three-dimensional images, the depth range of the display can be doubled. The proposed method is verified experimentally, confirming its feasibility.

  3. Gauge theories in particle physics

    International Nuclear Information System (INIS)

    Taylor, J.

    1993-01-01

    Forces and the background theory, special relativity, space-time and quantum theory are first reviewed and linked in particles physics (relativity plus quantum theory); spin in quantum mechanics is then detailed and electromagnetism is explained with the view of the generalization of the gauge aspect of electromagnetism; gauge fields interacting with leptons and quarks, short-range forces from gauge theories, the high-energy limit, strong interactions, electric and magnetic properties of matter, vacuum polarization and asymptotic freedom, confinement, are also discussed. 29 figs

  4. Evaluation of silver-coated stainless steel bipolar plates for fuel cell applications

    Science.gov (United States)

    Huang, Ing-Bang

    In this study, computer-aided design and manufacturing (CAD/CAM) technology were applied to develop and produce stainless steel bipolar plates for DMFC (direct methanol fuel cell). Effect of surface modification on the cell performance of DMFC was investigated. Surface modifications of the stainless steel bipolar plates were made by the electroless plating method. A DMFC consisting of silver coated stainless steel as anode and uncoated stainless steel as cathode was assembled and evaluated. The methanol crossover rate (R c) of the proton exchange membrane (PEM) was decreased by about 52.8%, the efficiency (E f) of DMFC increased about 7.1% and amounts of methanol electro-oxidation at the cathode side (M co) were decreased by about 28.6%, as compared to uncoated anode polar plates. These measurements were determined by the transient current and mathematical analysis.

  5. Modeling of nonlinear responses for reciprocal transducers involving polarization switching

    DEFF Research Database (Denmark)

    Willatzen, Morten; Wang, Linxiang

    2007-01-01

    Nonlinearities and hysteresis effects in a reciprocal PZT transducer are examined by use of a dynamical mathematical model on the basis of phase-transition theory. In particular, we consider the perovskite piezoelectric ceramic in which the polarization process in the material can be modeled...... by Landau theory for the first-order phase transformation, in which each polarization state is associated with a minimum of the Landau free-energy function. Nonlinear constitutive laws are obtained by using thermodynamical equilibrium conditions, and hysteretic behavior of the material can be modeled...

  6. Characteristics of volume polarization holography with linear polarization light

    Science.gov (United States)

    Zang, Jinliang; Wu, An'an; Liu, Ying; Wang, Jue; Lin, Xiao; Tan, Xiaodi; Shimura, Tsutomu; Kuroda, Kazuo

    2015-10-01

    Volume polarization holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) (PQ-PMMA) photopolymer with linear polarized light is obtained. The characteristics of the volume polarization hologram are experimentally investigated. It is found that beyond the paraxial approximation the polarization states of the holographic reconstruction light are generally different from the signal light. Based on vector wave theoretical analyses and material properties, the special exposure condition for correctly holographic reconstruction is obtained and experimentally demonstrated.

  7. Capsize of polarization in dilute photonic crystals.

    Science.gov (United States)

    Gevorkian, Zhyrair; Hakhoumian, Arsen; Gasparian, Vladimir; Cuevas, Emilio

    2017-11-29

    We investigate, experimentally and theoretically, polarization rotation effects in dilute photonic crystals with transverse permittivity inhomogeneity perpendicular to the traveling direction of waves. A capsize, namely a drastic change of polarization to the perpendicular direction is observed in a one-dimensional photonic crystal in the frequency range 10 ÷ 140 GHz. To gain more insights into the rotational mechanism, we have developed a theoretical model of dilute photonic crystal, based on Maxwell's equations with a spatially dependent two dimensional inhomogeneous dielectric permittivity. We show that the polarization's rotation can be explained by an optical splitting parameter appearing naturally in Maxwell's equations for magnetic or electric fields components. This parameter is an optical analogous of Rashba like spin-orbit interaction parameter present in quantum waves, introduces a correction to the band structure of the two-dimensional Bloch states, creates the dynamical phase shift between the waves propagating in the orthogonal directions and finally leads to capsizing of the initial polarization. Excellent agreement between theory and experiment is found.

  8. New Reference Models for Pacific Absolute Plate Motion

    Science.gov (United States)

    Wessel, P.

    2012-12-01

    Absolute plate motion (APM) models are commonly derived by assuming that age-progressive seamount chains represent the surface expressions of mantle plumes; the chain geometries thus record the relative motion between plumes and plates. Traditionally, plumes have been assigned zero motion (i.e., the fixed hotspot hypothesis), and with this assumption the trails directly reflect plate motion. However, since the early 1970s arguments from sedimentary facies and marine magnetics have been marshaled against the fixity of hotspots, perhaps culminating with more recent and direct inferences of anomalous paleolatitudes for several seamounts in both the Emperor and Louisville chains. These data can broadly be explained by drifting plumes, but paleomagnetic data remain scarce and may allow for some true polar wander; furthermore, several age progressions are incomplete or inconsistent and the present locations of some hotspots are uncertain. Finally, APM models with moving hotspots derive largely from mantle flow modeling whose predictions do not match observations directly. Here, I present new absolute plate motion models for the Pacific plate back to 150 Ma. The first model assumes fixed hotspots and is meant to serve as a reference model representing the classic fixed hotspot hypothesis. It is an updated version of the Wessel and Kroenke [2008] model but now including all available chains, recently published age data and processed using improved modeling techniques. The second model uses the same data but also attempts to honor available data on hotspot mobility. It is intended to be a "work in progress" model that will be updated as additional paleolatitude or age data become available. These models can serve as test beds for tectonic hypothesis and be used to identify seamount chain segments where additional paleomagnetic or age observations would have the most impact.

  9. Measurement of pzz of the laser-driven polarized deuterium target

    International Nuclear Information System (INIS)

    Jones, C.E.; Coulter, K.P.; Holt, R.J.; Poelker, M.; Potterveld, D.P.; Kowalczyk, R.S.; Buchholz, M.; Neal, J.; van den Brand, J.F.J.

    1993-01-01

    The question of whether nuclei are polarized as a result of H-H (D-D) spin-exchange collisions within the relatively dense gas of a laser-driven source of polarized hydrogen (deuterium) can be addressed directly by measuring the nuclear polarization of atoms from the source. The feasibility of using a polarimeter based on the D + T → n + 4 He reaction to measure the tensor polarization of deuterium in an internal target fed by the laser-driven source has been tested. The device and the measurements necessary to test the spin-exchange polarization theory are described

  10. Measurement of p{sub zz} of the laser-driven polarized deuterium target

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.E.; Coulter, K.P.; Holt, R.J.; Poelker, M.; Potterveld, D.P.; Kowalczyk, R.S. [Argonne National Lab., IL (United States); Buchholz, M.; Neal, J.; van den Brand, J.F.J. [Wisconsin Univ., Madison, WI (United States)

    1993-08-01

    The question of whether nuclei are polarized as a result of H-H (D-D) spin-exchange collisions within the relatively dense gas of a laser-driven source of polarized hydrogen (deuterium) can be addressed directly by measuring the nuclear polarization of atoms from the source. The feasibility of using a polarimeter based on the D + T {yields} n + {sup 4}He reaction to measure the tensor polarization of deuterium in an internal target fed by the laser-driven source has been tested. The device and the measurements necessary to test the spin-exchange polarization theory are described.

  11. Management of Intra-Articular Distal Radius Fractures: Volar or Dorsal Locking Plate-Which Has Fewer Complications?

    Science.gov (United States)

    Abe, Yoshihiro; Tokunaga, Susumu; Moriya, Takuro

    2017-11-01

    The aim of this study was to compare the functional outcomes and complications of volar and dorsal plating for the management of intra-articular distal radius fractures, with special regard to indications for dorsal plating. Furthermore, we examine the rationale for choosing dorsal plating and its frequency of use. Clinical assessments included range of motion measurements at the wrist; grip strength; the Quick Disabilities of the Arm, Shoulder, and Hand score; and the Gartland and Werley score. Clinical results were compared with those achieved using a volarly placed locking plate system. According to Lutsky's plate theory, the rationale for choosing dorsal plating was based on 4 types of pathologic fractures. Of 112 patients, 38 patients were treated with open reduction internal fixation via a dorsal approach and 68 patients were treated using a volar approach. Except for wrist flexion, there were no other statistical differences in the clinical results between groups for both subjective and objective parameters. There were no statistically significant differences in the complication rates between the volar and dorsal plated groups. One serious complication occurred after volar plating. The most common reason for choosing dorsal plating was irreducible dorsal die-punch fractures. The treatment of displaced intra-articular distal radius fractures with a dorsally versus a volarly placed interlocking plate system demonstrated similar clinical results. Postoperative complications were not readily observed in the patients treated with a dorsal locking plate. Certain fracture patterns are more appropriately stabilized using a dorsal plate fixation.

  12. Electrically tunable polarizer based on 2D orthorhombic ferrovalley materials

    Science.gov (United States)

    Shen, Xin-Wei; Tong, Wen-Yi; Gong, Shi-Jing; Duan, Chun-Gang

    2018-03-01

    The concept of ferrovalley materials has been proposed very recently. The existence of spontaneous valley polarization, resulting from ferromagnetism, in such hexagonal 2D materials makes nonvolatile valleytronic applications realizable. Here, we introduce a new member of ferrovalley family with orthorhombic lattice, i.e. monolayer group-IV monochalcogenides (GIVMs), in which the intrinsic valley polarization originates from ferroelectricity, instead of ferromagnetism. Combining the group theory analysis and first-principles calculations, we demonstrate that, different from the valley-selective circular dichroism in hexagonal lattice, linearly polarized optical selectivity for valleys exists in the new type of ferrovalley materials. On account of the distinctive property, a prototype of electrically tunable polarizer is realized. In the ferrovalley-based polarizer, a laser beam can be optionally polarized in x- or y-direction, depending on the ferrovalley state controlled by external electric fields. Such a device can be further optimized to emit circularly polarized radiation with specific chirality and to realize the tunability for operating wavelength. Therefore, we show that 2D orthorhombic ferrovalley materials are the promising candidates to provide an advantageous platform to realize the polarizer driven by electric means, which is of great importance in extending the practical applications of valleytronics.

  13. Application of the Modified Vlasov Model to the Free Vibration Analysis of Thick Plates Resting on Elastic Foundations

    Directory of Open Access Journals (Sweden)

    Korhan Ozgan

    2009-01-01

    Full Text Available The Modified Vlasov Model is applied to the free vibration analysis of thick plates resting on elastic foundations. The effects of the subsoil depth, plate dimensions and their ratio, the value of the vertical deformation parameter within the subsoil on the frequency parameters of plates on elastic foundations are investigated. A four-noded, twelve degrees of freedom quadrilateral finite element (PBQ4 is used for plate bending analysis based on Mindlin plate theory which is effectively applied to the analysis of thin and thick plates when selective reduced integration technique is used. The first ten natural frequency parameters are presented in tabular and graphical forms to show the effects of the parameters considered in the study. It is concluded that the effect of the subsoil depth on the frequency parameters of the plates on elastic foundation is generally larger than that of the other parameters considered in the study.

  14. Experiments with Fermilab polarized proton and polarized antiproton beams

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1990-01-01

    We summarize activities concerning the Fermilab polarized beams. They include a brief description of the polarized-beam facility, measurements of beam polarization by polarimeters, asymmetry measurements in the π degree production at high p perpendicular and in the Λ (Σ degree), π ± , π degree production at large x F , and Δσ L (pp, bar pp) measurements. 18 refs

  15. NUCLEON POLARIZATION IN 3-BODY MODELS OF POLARIZED LI-6

    NARCIS (Netherlands)

    SCHELLINGERHOUT, NW; KOK, LP; COON, SA; ADAM, RM

    1993-01-01

    Just as He-3 --> can be approximately characterized as a polarized neutron target, polarized Li-6D has been advocated as a good isoscalar nuclear target for the extraction of the polarized gluon content of the nucleon. The original argument rests upon a presumed ''alpha + deuteron'' picture of Li-6,

  16. Seismic link at plate boundary

    Indian Academy of Sciences (India)

    transfer between two major faults, and parallel to the geothermal area extension. 1. Introduction. Plate boundaries are the zones where most earth dynamics are focussed. The complexity of tectonic boundaries draws attention to them as the largest earthquakes are felt in these areas and they elicit the natural hazard of ...

  17. Seismic link at plate boundary

    Indian Academy of Sciences (India)

    ... tested using the coherence of time series to determine the causality and related orientation. The resulting link orientations at the plate boundary conditions indicate that causal triggering seems to be localized along a major fault, as a stress transfer between two major faults, and parallel to the geothermal area extension.

  18. An enhancement of spin polarization by multiphoton pumping in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-08-15

    Highlights: {yields} Multiphoton pumping and spin generation in semiconductors. {yields} Optical selection rules for inter-band transitions. {yields} Calculations of spin polarization using band-energy model and the second order perturbation theory. {yields} Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.

  19. An enhancement of spin polarization by multiphoton pumping in semiconductors

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    Highlights: → Multiphoton pumping and spin generation in semiconductors. → Optical selection rules for inter-band transitions. → Calculations of spin polarization using band-energy model and the second order perturbation theory. → Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.

  20. Plate tectonics on the Earth triggered by plume-induced subduction initiation.

    Science.gov (United States)

    Gerya, T V; Stern, R J; Baes, M; Sobolev, S V; Whattam, S A

    2015-11-12

    Scientific theories of how subduction and plate tectonics began on Earth--and what the tectonic structure of Earth was before this--remain enigmatic and contentious. Understanding viable scenarios for the onset of subduction and plate tectonics is hampered by the fact that subduction initiation processes must have been markedly different before the onset of global plate tectonics because most present-day subduction initiation mechanisms require acting plate forces and existing zones of lithospheric weakness, which are both consequences of plate tectonics. However, plume-induced subduction initiation could have started the first subduction zone without the help of plate tectonics. Here, we test this mechanism using high-resolution three-dimensional numerical thermomechanical modelling. We demonstrate that three key physical factors combine to trigger self-sustained subduction: (1) a strong, negatively buoyant oceanic lithosphere; (2) focused magmatic weakening and thinning of lithosphere above the plume; and (3) lubrication of the slab interface by hydrated crust. We also show that plume-induced subduction could only have been feasible in the hotter early Earth for old oceanic plates. In contrast, younger plates favoured episodic lithospheric drips rather than self-sustained subduction and global plate tectonics.