Polar plate theory for orthogonal anisotropy
Bailey, Michelle D.
1998-11-01
The following paper discusses the derivation and evaluation of the plate equations for a circular composite disk with orthogonal anisotropy. The work will be on a macromechanical level and include buckling, static and dynamic load applications. Necessary to a complete examination of the circular disk is the conversion of the stiffness matrix to cylindrical coordinates. In the transformed state, these coefficients are no longer constant, adding to the complexity of the proposed differential equations. Laminated fiber-reinforced (or filamentary) composites are used today for their high strength-to weight and stiffness-to-weight ratios. However, because of the typical anisotropic behavior of composites, determining the material properties on a microscopic level and the mechanics on a macroscopic level is much more difficult. This difficulty manifests itself particularly well in the evaluation of material properties and governing differential equations of a circular disk with the fibers of the lamina oriented orthogonally. One could encounter such a situation in space structures that require a circular geometry. For example, determining fastener pull through in a circular composite plate would best be performed in a polar coordinate system. In order to calculate the strain (which is a function of the angle, θ) from the displacements, the stiffness matrix and boundary conditions would need to be expressed in cylindrical coordinates. Naturally the composite would be constructed with fibers in orthogonal directions, then the necessary geometry would be cut out, thus the required lengthy transformation of coordinate systems. To bypass this derivation, numerical methods have been used and finite element models have been attempted. FEM over predicts plate stiffness by 20% and underpredicts failure by 70%. Obviously there is a need to transform classical plate theory to a cylindrical coordinate system.
A Geometrically—Nonlinear Plate Theory 12
Institute of Scientific and Technical Information of China (English)
AlbertC.J.LUO
1999-01-01
An approximate plate theory developed in this paper is based on an assumed displacement field,the strains described by a Taylor series in the normal distance from the middle surface,the exact strains of the middle surface and the equations of equilibrium governing the exact configuration of the deformed middle surface,In this theory the exact geometry of the deformed middle surface is used to derive the strains and equilibrium of the plate.Application of this theory does not depend on the constitutive law.THis theory can reduce to some existing nonlinear theories through imposition of constraints.
Semiclassical theory of plate vibrations
International Nuclear Information System (INIS)
Bogomolny, E.; Hugues, E.
1996-11-01
The bi-harmonic equation of flexural vibrations of elastic plates is studied by a semiclassical method which can easily be generalized for other models of wave propagation. The surface and perimeter terms of the asymptotic number of levels are derived exactly. The next constant term is also derived. A semiclassical approximation of the quantization condition is obtained. A Berry-Tabor formula and a Gutzwiller trace formula are deduced for the integrable and chaotic cases respectively. From 600 eigenvalues of a clamped stadium plate obtained by a specially developed numerical algorithm, the trace formula is assessed, looking at its Fourier transform compared with the membrane case. (author)
Coherence and polarization speckle generated by a rough-surfaced retardation plate depolarizer
DEFF Research Database (Denmark)
Ma, Ning; Hanson, Steen Grüner; Takeda, Mitsuo
2015-01-01
of position introducing random phase differences between the two orthogonal components of the electric vector. Under the assumption of Gaussian statistics with zero mean, the surface model for the depolarizer of the rough-surfaced retardation plate is obtained. The propagation of the modulated fields through...... any quadratic optical system is examined within the framework of the complex ABCD matrix theory to show how the degree of coherence and polarization of the beam changes on propagation, including propagation in free space...
Theories for Elastic Plates via Orthogonal Polynomials
DEFF Research Database (Denmark)
Krenk, Steen
1981-01-01
A complementary energy functional is used to derive an infinite system of two-dimensional differential equations and appropriate boundary conditions for stresses and displacements in homogeneous anisotropic elastic plates. Stress boundary conditions are imposed on the faces a priori......, and this introduces a weight function in the variations of the transverse normal and shear stresses. As a result the coupling between the two-dimensional differential equations is described in terms of a single difference operator. Special attention is given to a truncated system of equations for bending...... of transversely isotropic plates. This theory has three boundary conditions, like Reissner's, but includes the effect of transverse normal strain, essentially through a reinterpretation of the transverse displacement function. Full agreement with general integrals to the homogeneous three-dimensional equations...
Hyperon polarization: theory and experiments
International Nuclear Information System (INIS)
Magnin, J.; Simao, F.R.A.
1996-01-01
We give a brief review of the experimental situation concerning hyperon polarization. We mention also the current models developed to understand the experimental results and make some comments on some theoretical aspects contained in the Thomas precession model. (author). 8 ref
Robust sky light polarization detection with an S-wave plate in a light field camera.
Zhang, Wenjing; Zhang, Xuanzhe; Cao, Yu; Liu, Haibo; Liu, Zejin
2016-05-01
The sky light polarization navigator has many advantages, such as low cost, no decrease in accuracy with continuous operation, etc. However, current celestial polarization measurement methods often suffer from low performance when the sky is covered by clouds, which reduce the accuracy of navigation. In this paper we introduce a new method and structure based on a handheld light field camera and a radial polarizer, composed of an S-wave plate and a linear polarizer, to detect the sky light polarization pattern across a wide field of view in a single snapshot. Each micro-subimage has a special intensity distribution. After extracting the texture feature of these subimages, stable distribution information of the angle of polarization under a cloudy sky can be obtained. Our experimental results match well with the predicted properties of the theory. Because the polarization pattern is obtained through image processing, rather than traditional methods based on mathematical computation, this method is less sensitive to errors of pixel gray value and thus has better anti-interference performance.
On the theory of polar ozone holes
International Nuclear Information System (INIS)
Njau, E.C.
1990-12-01
The viable theories already proposed to explain polar ozone holes generally fall into two main categories, namely, chemical theories and dynamical theories. In both of these categories, polar stratospheric clouds (PSCs) are taken as part of the essential basis. Besides, all the dynamical theories are based upon temperature changes. Since formation of the PSCs is highly temperature-dependent, it has been concluded from recent research (e.g. see Kawahira and Hirooka) that temperature changes are a cause, not a result of ozone depletion in polar regions. On this basis, formulations are developed that represent short-term and long-term temperature variations in the polar regions due to natural processes. These variations, which are confined to a limited area around each pole, include specific oscillations with periods ranging from ∼ 2 years up to ∼ 218,597 years. Polar ozone variations are normally expected to be influenced by these temperature oscillations. It is, therefore, apparent that the generally decreasing trend observed in mean October ozone column at Halley Bay (76 deg. S, 27 deg. W) from 1956 up to 1987 is mostly caused by the decreasing phase of a combination of two natural temperature oscillations, one with a period of ∼ 70-80 years and the other with a period of ∼ 160-180 years. Contributions of other natural temperature oscillations are also mentioned and briefly discussed. (author). 35 refs, 4 figs
Asymptotic theory of circular polarization memory.
Dark, Julia P; Kim, Arnold D
2017-09-01
We establish a quantitative theory of circular polarization memory, which is the unexpected persistence of the incident circular polarization state in a strongly scattering medium. Using an asymptotic analysis of the three-dimensional vector radiative transfer equation (VRTE) in the limit of strong scattering, we find that circular polarization memory must occur in a boundary layer near the portion of the boundary on which polarized light is incident. The boundary layer solution satisfies a one-dimensional conservative scattering VRTE. Through a spectral analysis of this boundary layer problem, we introduce the dominant mode, which is the slowest-decaying mode in the boundary layer. To observe circular polarization memory for a particular set of optical parameters, we find that this dominant mode must pass three tests: (1) this dominant mode is given by the largest, discrete eigenvalue of a reduced problem that corresponds to Fourier mode k=0 in the azimuthal angle, and depends only on Stokes parameters U and V; (2) the polarization state of this dominant mode is largely circular polarized so that |V|≫|U|; and (3) the circular polarization of this dominant mode is maintained for all directions so that V is sign-definite. By applying these three tests to numerical calculations for monodisperse distributions of Mie scatterers, we determine the values of the size and relative refractive index when circular polarization memory occurs. In addition, we identify a reduced, scalar-like problem that provides an accurate approximation for the dominant mode when circular polarization memory occurs.
Gordon, R. G.; Woodworth, D.
2017-12-01
In this presentation we review prior work on Pacific plate apparent polar wander and its implications (1) for true polar wander since ≈125 Ma and (2) for testing the global plate motion circuit through Antarctica. We furthermore update prior analyses using our recently improved and expanded apparent polar wander path for the Pacific plate [Woodworth et al., this meeting]. Three episodes of rapid motion of Pacific hotspots relative to the spin axis have occurred in the past ≈125 Ma: a ≈15° shift near 85 Ma [Gordon, 1983; Sager and Koppers, 2000], an ≈8° shift near the age of the Hawaiian-Emperor Bend [Petronotis et al., 1994; Woodworth et al., this meeting], and a 3°-°4 shift since 12 Ma [Woodworth et al., this meeting]. These shifts are in general agreement with the shifts of Indo-Atlantic hotspots relative to the spin axis. It has long been recognized that paleomagnetic poles from the continents, when rotated into the Pacific plate reference frame through plate motion circuits through Antarctica, are inconsistent with indigenous Pacific plate paleomagnetic poles and paleolatitudes [Suárez and Molnar, 1980; Gordon and Cox, 1980; Acton and Gordon, 1994]. We update such tests using our new and improved Pacific apparent polar wander path and show that the plate motion circuit through Antarctica still fails such paleomagnetic tests of consistency. Implications for global plate reconstructions and the hotspot reference frame will be discussed.
Zimmerman, Dawn M; Dew, Terry; Douglass, Michael; Perez, Edward
2010-02-01
To report successful femoral fracture repair in a polar bear. Case report. Female polar bear (Ursus maritimus) 5 years and approximately 250 kg. A closed, complete, comminuted fracture of the distal midshaft femur was successfully reduced and stabilized using a compression plating technique with 2 specialized human femur plates offering axial, rotational, and bending support, and allowing the bone to share loads with the implant. Postoperative radiographs were obtained at 11.5 weeks, 11 months, and 24 months. Bone healing characterized by marked periosteal reaction was evident at 11 months with extensive remodeling evident at 24 months. No complications were noted. Distal mid shaft femoral fracture was reduced, stabilized, and healed in an adult polar bear with a locking plate technique using 2 plates. Previously, femoral fractures in polar bears were considered irreparable. Use of 2 plates applied with a locking plate technique can result in successful fracture repair despite large body weight and inability to restrict postoperative activity.
Rotational inertia of continents: A proposed link between polar wandering and plate tectonics
Kane, M.F.
1972-01-01
A mechanism is proposed whereby displacement between continents and the earth's pole of rotation (polar wandering) gives rise to latitudinal transport of continental plates (continental drift) because of their relatively greater rotational inertia. When extended to short-term polar wobble, the hypothesis predicts an energy change nearly equivalent to the seismic energy rate.
Design technique for all-dielectric non-polarizing beam splitter plate
Rizea, A.
2012-03-01
There are many situations when, for the proper working, an opto-electronic device requiring optical components does not change the polarization state of light after a reflection, splitting or filtering. In this paper, a design for a non-polarizing beam splitter plate is proposed. Based on certain optical properties of homogeneous dielectric materials we will establish a reliable thin film package formula, excellent for the start of optimization to obtain a 20-nm bandwidth non-polarizing beam splitter.
Development of new bi-polar plates based on electrically conductive filled polymers for PEMFC
Energy Technology Data Exchange (ETDEWEB)
Jousse, F.; Salas, J.F.; Giroud, F. [C.E.A., Le Ripault, Monts (France); Icard, B.; Laurent, J.Y.; Serre Combe, P.
2000-07-01
In polymer electrolyte membrane fuel cell technology, the bi-polar plates are dedicated to: the current collection, the separation and distribution of gas (hydrogen and oxygen) at the cathode and the anode. To achieve these functions, bi-polar plate materials must satisfy the following properties: high conductivity (higher than 10 S/cm), high chemical resistance to acid and water, very low permeability to hydrogen (permeability < Pe{sup H2}{sub Nafion} (20 C) = 7.10{sup -17} m{sup 2}/Pa/s). Traditionally bi-polar plates have been designed with stainless steel or graphite. However, the cost of these plates are incompatible to transport applications, principally because of the gas channel machining step. Recently, we have noticed the work of T.M. Besmann [1] on the manufacturing of bi-polar plates based on carbon fibres and phenolic resin, processed by pyrolisis and densification on surface by a chemical vapour infiltration process. However, this kind of process seems too expensive and complex for the needs of the road electric transportation industry. Organic composites based on conductive chemical resistant fillers and processed by molding could be an alternative solution. Bi-polar plates requirements can be achieved by controlling and optimising experimental parameters such as the nature and morphology of fillers, the resin characteristics, and the process conditions. To avoid corrosion of the composite material, and then, the contamination of the cell, we have selected non metallic fillers, based on graphite or carbon black. (orig.)
A beginner's guide to the modern theory of polarization
International Nuclear Information System (INIS)
Spaldin, Nicola A.
2012-01-01
The so-called Modern Theory of Polarization, which rigorously defines the spontaneous polarization of a periodic solid and provides a route for its computation in electronic structure codes through the Berry phase, is introduced in a simple qualitative discussion. - Graphical abstract: Cartoon of Wannier functions in a covalent solid shifting to contribute to the ferroelectric polarization.
Atti, C. Ciofi degli; Pace, E.; Salmé, G.
1993-01-01
The theory of inclusive lepton scattering of polarized leptons by polarized J = 1/2 hadrons is presented and the origin of different expressions for the polarized nuclear response function appearing in the literature is explained. The sensitivity of the longitudinal asymmetry upon the neutron form factors is investigated.
Statistics of polarization speckle: theory versus experiment
DEFF Research Database (Denmark)
Wang, Wei; Hanson, Steen Grüner; Takeda, Mitsuo
2010-01-01
In this paper, we reviewed our recent work on the statistical properties of polarization speckle, described by stochastic Stokes parameters fluctuating in space. Based on the Gaussian assumption for the random electric field components and polar-interferometer, we investigated theoretically...... and experimentally the statistics of Stokes parameters of polarization speckle, including probability density function of Stokes parameters with the spatial degree of polarization, autocorrelation of Stokes vector and statistics of spatial derivatives for Stokes parameters....
Nonlinear Gyrokinetic Theory With Polarization Drift
International Nuclear Information System (INIS)
Wang, L.; Hahm, T.S.
2010-01-01
A set of the electrostatic toroidal gyrokinetic Vlasov equation and the Poisson equation, which explicitly includes the polarization drift, is derived systematically by using Lie-transform method. The polarization drift is introduced in the gyrocenter equations of motion, and the corresponding polarization density is derived. Contrary to the wide-spread expectation, the inclusion of the polarization drift in the gyrocenter equations of motion does not affect the expression for the polarization density significantly. This is due to modification of the gyrocenter phase-space volume caused by the electrostatic potential [T. S. Hahm, Phys. Plasmas 3, 4658 (1996)].
Bragg transmission phase plates for the production of circularly polarized x-rays
International Nuclear Information System (INIS)
Lang, J.C.; Srajer, G.
1994-01-01
A thin-crystal Si (400) Bragg transmission x-ray phase plate has been constructed for the production of 5 to 12 keV circularly polarized x-rays. Using multiple beam diffraction from a GaAs crystal, a direct measurement of the degree of circular polarization as a function of off-Bragg position was made. These measurements indicated nearly complete circular polarization (|P c | ≥ 0.95) and full helicity reversal on opposite sides of the rocking curve
Polarization characterization of PZT disks and of embedded PZT plates by thermal wave methods
International Nuclear Information System (INIS)
Eydam, Agnes; Suchaneck, Gunnar; Gerlach, Gerald; Esslinger, Sophia; Schönecker, Andreas; Neumeister, Peter
2014-01-01
In this work, the thermal wave method was applied to characterize PZT disks and embedded PZT plates with regard to the polarization magnitude and spatial homogeneity. The samples were exposed to periodic heating by means of a laser beam and the pyroelectric response was determined. Thermal relaxation times (single time constants or distributions of time constants) describe the heat losses of the PZT samples to the environment. The resulting pyroelectric current spectrum was fitted to the superposition of thermal relaxation processes. The pyroelectric coefficient gives insight in the polarization distribution. For PZT disks, the polarization distribution in the surface region showed a characteristic decrease towards the electrodes
Rodriguez, Ernesto; Kim, Yunjin; Durden, Stephen L.
1992-01-01
A numerical evaluation is presented of the regime of validity for various rough surface scattering theories against numerical results obtained by employing the method of moments. The contribution of each theory is considered up to second order in the perturbation expansion for the surface current. Considering both vertical and horizontal polarizations, the unified perturbation method provides best results among all theories weighed.
Static Analysis of Laminated Composite Plate using New Higher Order Shear Deformation Plate Theory
Directory of Open Access Journals (Sweden)
Ibtehal Abbas Sadiq
2017-02-01
Full Text Available In the present work a theoretical analysis depending on the new higher order . element in shear deformation theory for simply supported cross-ply laminated plate is developed. The new displacement field of the middle surface expanded as a combination of exponential and trigonometric function of thickness coordinate with the transverse displacement taken to be constant through the thickness. The governing equations are derived using Hamilton’s principle and solved using Navier solution method to obtain the deflection and stresses under uniform sinusoidal load. The effect of many design parameters such as number of laminates, aspect ratio and thickness ratio on static behavior of the laminated composite plate has been studied. The modal of the present work has been verified by comparing the results of shape functions with that were obtained by other workers. Result shows the good agreement with 3D elasticity solution and that published by other researchers.
Method for measuring retardation of infrared wave-plate by modulated-polarized visible light
Zhang, Ying; Song, Feijun
2012-11-01
A new method for precisely measuring the optical phase retardation of wave-plates in the infrared spectral region is presented by using modulated-polarized visible light. An electro-optic modulator is used to accurately determine the zero point by the frequency-doubled signal of the Modulated-polarized light. A Babinet-Soleil compensator is employed to make the phase delay compensation. Based on this method, an instrument is set up to measure the retardations of the infrared wave-plates with visible region laser. Measurement results with high accuracy and sound repetition are obtained by simple calculation. Its measurement precision is less than and repetitive precision is within 0.3%.
Quasi-Linear Polarized Modes in Y-Rotated Piezoelectric GaPO4 Plates
Directory of Open Access Journals (Sweden)
Cinzia Caliendo
2014-07-01
Full Text Available The propagation of both surface and flexural acoustic plate modes along y-rotated x-propagation GaPO4 piezoelectric substrates was studied for several y-cut angles: the phase velocity and coupling coefficient dispersion curves were theoretically calculated for two different electroacoustic coupling configurations. The investigation of the acoustic field profile across the plate thickness revealed the presence of thin plate modes having polarization predominantly oriented along the propagation direction, and hence suitable for operation in liquid environment. These modes include the linearly polarized Anisimkin Jr. and the quasi longitudinal plate modes, AMs and QLs, showing a phase velocity close to that of the longitudinal bulk acoustic wave propagating in the same direction. The temperature coefficient of delay (TCD of these longitudinal modes was investigated in the −20 to 420 °C temperature range, in order to identify thermally stable or low TCD cuts. The power flow angle, i.e., the angle between the phase and group velocity vectors, was also estimated to evaluate the substrate anisotropy effect on the acoustic wave propagation. The GaPO4 intrinsic properties, such as its resistance to high temperature and its chemical inertness, make it especially attractive for the development of acoustic waves-based sensors for applications in harsh liquid environment.
Takae, Kyohei; Onuki, Akira
2013-09-28
We develop an efficient Ewald method of molecular dynamics simulation for calculating the electrostatic interactions among charged and polar particles between parallel metallic plates, where we may apply an electric field with an arbitrary size. We use the fact that the potential from the surface charges is equivalent to the sum of those from image charges and dipoles located outside the cell. We present simulation results on boundary effects of charged and polar fluids, formation of ionic crystals, and formation of dipole chains, where the applied field and the image interaction are crucial. For polar fluids, we find a large deviation of the classical Lorentz-field relation between the local field and the applied field due to pair correlations along the applied field. As general aspects, we clarify the difference between the potential-fixed and the charge-fixed boundary conditions and examine the relationship between the discrete particle description and the continuum electrostatics.
Directory of Open Access Journals (Sweden)
N. Bhardwaj
2008-01-01
Full Text Available In the present paper, asymmetric vibration of polar orthotropic annular circular plates of quadratically varying thickness resting on Winkler elastic foundation is studied by using boundary characteristic orthonormal polynomials in Rayleigh-Ritz method. Convergence of the results is tested and comparison is made with results already available in the existing literature. Numerical results for the first ten frequencies for various values of parameters describing width of annular plate, thickness profile, material orthotropy and foundation constant for all three possible combinations of clamped, simply supported and free edge conditions are shown and discussed. It is found that (a higher elastic property in circumferential direction leads to higher stiffness against lateral vibration; (b Lateral vibration characteristics of F-Fplates is more sensitive towards parametric changes in material orthotropy and foundation stiffness than C-C and S-Splates; (c Effect of quadratical thickness variation on fundamental frequency is more significant in cases of C-C and S-S plates than that of F-Fplates. Thickness profile which is convex relative to plate center-line tends to result in higher stiffness of annular plates against lateral vibration than the one which is concave and (d Fundamental mode of vibration of C-C and S-Splates is axisymmetrical while that of F-Fplates is asymmetrical.
Randall, Rachel M; Shao, Yvonne Y; Wang, Lai; Ballock, R Tracy
2012-12-01
Disrupting the Wnt Planar Cell Polarity (PCP) signaling pathway in vivo results in loss of columnar growth plate architecture, but it is unknown whether activation of this pathway in vitro is sufficient to promote column formation. We hypothesized that activation of the Wnt PCP pathway in growth plate chondrocyte cell pellets would promote columnar organization in these cells that are normally oriented randomly in culture. Rat growth plate chondrocytes were transfected with plasmids encoding the Fzd7 cell-surface Wnt receptor, a Fzd7 deletion mutant lacking the Wnt-binding domain, or Wnt receptor-associated proteins Ror2 or Vangl2, and then cultured as three-dimensional cell pellets in the presence of recombinant Wnt5a or Wnt5b for 21 days. Cellular morphology was evaluated using histomorphometric measurements. Activation of Wnt PCP signaling components promoted the initiation of columnar morphogenesis in the chondrocyte pellet culture model, as measured by histomorphometric analysis of the column index (ANOVA p = 0.01). Activation of noncanonical Wnt signaling through overexpression of both the cell-surface Wnt receptor Fzd7 and receptor-associated protein Ror2 with addition of recombinant Wnt5a promotes the initiation of columnar architecture of growth plate chondrocytes in vitro, representing an important step toward growth plate regeneration. Copyright © 2012 Orthopaedic Research Society.
Geometric invariant theory for polarized curves
Bini, Gilberto; Melo, Margarida; Viviani, Filippo
2014-01-01
We investigate GIT quotients of polarized curves. More specifically, we study the GIT problem for the Hilbert and Chow schemes of curves of degree d and genus g in a projective space of dimension d-g, as d decreases with respect to g. We prove that the first three values of d at which the GIT quotients change are given by d=a(2g-2) where a=2, 3.5, 4. We show that, for a>4, L. Caporaso's results hold true for both Hilbert and Chow semistability. If 3.5
Schellart, W. P.
2007-01-01
A geodynamic model exists, the westward lithospheric drift model, in which the variety of overriding plate deformation, trench migration and slab dip angles is explained by the polarity of subduction zones. The model predicts overriding plate extension, a fixed trench and a steep slab dip for
Directory of Open Access Journals (Sweden)
Daniel W. Zietlow
2012-12-01
Full Text Available The experimentally measured resonance frequencies of a thin annular plate with a small ratio of inner to outer radii and clamped on the inner boundary are compared to the predictions of classical thin-plate (CTP theory and a finite-element (FE model. The results indicate that, contrary to the conclusions presented in a number of publications, CTP theory does not accurately predict the frequencies of a relatively small number of resonant modes at lower frequencies. It is shown that these inaccuracies are attributable to shear deformations, which are thought to be negligible in thin plates and are neglected in CTP theory. Of particular interest is the failure of CTP theory to accurately predict the resonance frequency of the lowest vibrational mode, which was shifted approximately 30% by shear motion at the inner boundary.
Michel Borghini as a Mentor and Father of the Theory of Polarization in Polarized Targets
de Boer, Wim
2016-02-01
This paper is a contribution to the memorial session for Michel Borghini at the Spin 2014 conference in Bejing, honoring his pivotal role for the development of polarized targets in high energy physics. Borghini proposed for the first time the correct mechanism for dynamic polarization in polarized targets using organic materials doped with free radicals. In these amorphous materials the spin levels are broadened by spin-spin interactions and g-factor anisotropy, which allows a high dynamic polarization of nuclei by cooling of the spin-spin interaction reservoir. In this contribution I summarize the experimental evidence for this mechanism. These pertinent experiments were done at CERN in the years 1971 - 1974, when I was a graduate student under the guidance of Michel Borghini. I finish by shortly describing how Borghini’s spin temperature theory is now applied in cancer therapy.
Study of polarization properties of fiber-optics probes with use of a binary phase plate.
Alferov, S V; Khonina, S N; Karpeev, S V
2014-04-01
We conduct a theoretical and experimental study of the distribution of the electric field components in the sharp focal domain when rotating a zone plate with a π-phase jump placed in the focused beam. Comparing the theoretical and experimental results for several kinds of near-field probes, an analysis of the polarization sensitivity of different types of metal-coated aperture probes is conducted. It is demonstrated that with increasing diameter of the non-metal-coated tip part there occurs an essential redistribution of sensitivity in favor of the transverse electric field components and an increase of the probe's energy throughput.
Linearly Polarized IR Spectroscopy Theory and Applications for Structural Analysis
Kolev, Tsonko
2011-01-01
A technique that is useful in the study of pharmaceutical products and biological molecules, polarization IR spectroscopy has undergone continuous development since it first emerged almost 100 years ago. Capturing the state of the science as it exists today, "Linearly Polarized IR Spectroscopy: Theory and Applications for Structural Analysis" demonstrates how the technique can be properly utilized to obtain important information about the structure and spectral properties of oriented compounds. The book starts with the theoretical basis of linear-dichroic infrared (IR-LD) spectroscop
The problem of the black plate with zero thickness and finite width in neutron transport theory
International Nuclear Information System (INIS)
Benoist, Pierre.
1979-08-01
A black plate with zero thickness, finite width and infinite height, imbedded in an infinite and homogeneous medium which scatters and absorbs neutrons, is considered. The problem is time-independent and the neutrons, which are supposed to have a unique speed, are issued, either from a current at infinity (problem A), or from a uniform source (problem B). It is shown that the Csub(N) method seems to be particularly well suited to the resolution of this 'two-dimensional Milne problem'. A particular interest is attached to the determination of the radius R of the black cylinder leading to the same polar behaviour of the flux at infinity as the plate (criterion 1), or absorbing the same number of neutrons as the plate (criterion 2). In this preliminary report, values of R are calculated in various limit cases: the width of the plate being taken equal to one, l being the mean free path and c the number of secondaries par collision in the outer medium, R is calculated at first in the limit l → 0 (for c = 1) by the theory of Musklelishvili, and then in the limit l → infinity (whatever c is) and c → 0 (whatever l is). In the limit c → 1 (whatever l is), R is shown to be the same in problems A and B and criteria 1 and 2. On the other hand, whatever l and c are; the values of R obtained in the problem A with the criterion 2 and in the problem B with the criterion 1 are shown to be equal. All these results allow henceforth a reasonable interpolation which can be useful in the practice [fr
Anomalous Late Jurassic motion of the Pacific Plate with implications for true polar wander
Fu, R. R.; Kent, D.
2017-12-01
True polar wander, or TPW, is the rotation of the entire mantle-crust system that results in simultaneous change in latitude and orientation for all lithospheric plates. One of the most recent candidate TPW events consists of a 30˚ rotation during Late Jurassic time (160 - 145 Ma). However, existing paleomagnetic documentation of this event derives exclusively from continental studies. Because all major landmasses except China were connected directly or via spreading centers in the Late Jurassic, the velocities of these continents were mutually constrained and their motion as a group over the underlying mantle would be indistinguishable from TPW using only continental data. On the other hand, plates of the Pacific Basin constituted a kinematically independent domain, interfacing with continents at subduction zones and slip-strike boundaries. Coherent motion of both Pacific Basin and continental plates would therefore indicate uniform motion of virtually the entire lithosphere, providing a means to distinguish TPW from continental drift. We performed thermal demagnetization on remaining samples from Ocean Drilling Program (ODP) Site 801B, which were cored from the oldest sampled oceanic crust in the Western Pacific, to determine its change in paleolatitude during the Late Jurassic and Early Cretaceous (167 - 134 Ma). We find that the Pacific Plate likely underwent a steady southward drift during this time period, consistent with previous results from magnetic anomalies, except for an episode of northward motion between Oxfordian and Tithonian time (161 - 147 Ma). Although the amplitude of this northward shift is subject to significant uncertainty due to the sparse recovery of core samples, the trajectory of the Pacific Plate is most simply explained by TPW in the 160 - 145 Ma interval as inferred from continental data. Furthermore, such an interpretation is consistent with the sense of shear inferred at the Farallon-North American Plate boundary, whereas uniform
A Variational Statistical-Field Theory for Polar Liquid Mixtures
Zhuang, Bilin; Wang, Zhen-Gang
Using a variational field-theoretic approach, we derive a molecularly-based theory for polar liquid mixtures. The resulting theory consists of simple algebraic expressions for the free energy of mixing and the dielectric constant as functions of mixture composition. Using only the dielectric constants and the molar volumes of the pure liquid constituents, the theory evaluates the mixture dielectric constants in good agreement with the experimental values for a wide range of liquid mixtures, without using adjustable parameters. In addition, the theory predicts that liquids with similar dielectric constants and molar volumes dissolve well in each other, while sufficient disparity in these parameters result in phase separation. The calculated miscibility map on the dielectric constant-molar volume axes agrees well with known experimental observations for a large number of liquid pairs. Thus the theory provides a quantification for the well-known empirical ``like-dissolves-like'' rule. Bz acknowledges the A-STAR fellowship for the financial support.
Thermal flexural analysis of cross-ply laminated plates using trigonometric shear deformation theory
Directory of Open Access Journals (Sweden)
Yuwaraj Marotrao Ghugal
Full Text Available Thermal stresses and displacements for orthotropic, two-layer antisymmetric, and three-layer symmetric square cross-ply laminated plates subjected to nonlinear thermal load through the thickness of laminated plates are presented by using trigonometric shear deformation theory. The in-plane displacement field uses sinusoidal function in terms of thickness co-ordinate to include the shear deformation effect. The theory satisfies the shear stress free boundary conditions on the top and bottom surfaces of the plate. The present theory obviates the need of shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. The validity of present theory is verified by comparing the results with those of classical plate theory and first order shear deformation theory and higher order shear deformation theory.
Nonlinear analysis of 0-3 polarized PLZT microplate based on the new modified couple stress theory
Wang, Liming; Zheng, Shijie
2018-02-01
In this study, based on the new modified couple stress theory, the size- dependent model for nonlinear bending analysis of a pure 0-3 polarized PLZT plate is developed for the first time. The equilibrium equations are derived from a variational formulation based on the potential energy principle and the new modified couple stress theory. The Galerkin method is adopted to derive the nonlinear algebraic equations from governing differential equations. And then the nonlinear algebraic equations are solved by using Newton-Raphson method. After simplification, the new model includes only a material length scale parameter. In addition, numerical examples are carried out to study the effect of material length scale parameter on the nonlinear bending of a simply supported pure 0-3 polarized PLZT plate subjected to light illumination and uniform distributed load. The results indicate the new model is able to capture the size effect and geometric nonlinearity.
International Nuclear Information System (INIS)
Chen, Peng; Ji, Wei; Wei, Bing-Yan; Hu, Wei; Lu, Yan-Qing; Chigrinov, Vladimir
2015-01-01
Arbitrary vector beams (VBs) are realized by the designed polarization converters and corresponding vector-photoaligned q-plates. The polarization converter is a specific twisted nematic cell with one substrate homogeneously aligned and the other space-variantly aligned. By combining a polarization-sensitive alignment agent with a dynamic micro-lithography system, various categories of liquid crystal polarization converters are demonstrated. Besides, traditional radially/azimuthally polarized light, high-order and multi-ringed VBs, and a VB array with different orders are generated. The obtained converters are further utilized as polarization masks to implement vector-photoaligning. The technique facilitates both the volume duplication of these converters and the generation of another promising optical element, the q-plate, which is suitable for the generation of VBs for coherent lasers. The combination of proposed polarization converters and correspondingly fabricated q-plates would drastically enhance the capability of polarization control and may bring more possibilities for the design of photonic devices
Kononets, I
2002-01-01
%NA59 %title\\\\ \\\\We present a proposal to study the use of a crystal as a `quarter-wave plate' to produce high energy circularly polarized photons, starting from unpolarized electrons. The intention is to generate linearly polarized photons by letting electrons pass a crystalline target, where they interact coherently with the lattice nuclei. The photon polarization is subsequently turned into circular polarization after passing another crystal, which acts as a `quarter-wave plate'.
Kinetic theory of thermotransport of polar semiconductors: Degenerate limit
Energy Technology Data Exchange (ETDEWEB)
Rangel-Huerta, A. [Facultad de Ciencias de la Computacion Benemerita, Universidad Autonoma de Puebla, 14 Sur y San Claudio C.U., Puebla 72570 (Mexico); Rodriguez-Meza, M.A. [Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico D.F. 11801 (Mexico)
2005-08-01
We develop a kinetic theory approach from the semiclassical Boltzmann transport equation for the thermotransport of electrons in degenerate polar semiconductors. The method of moments applied to the Boltzmann equation gives us a set of hydrodynamical equations which are closed up to thirteen relevant variables, including energy density, the stress tensor and the heat flux in the description. The closure of the balance equations is achieved by evaluating the higher order momenta, as well as the production terms, through a non equilibrium distribution function coming from the maximum entropy principle. We assume that electronoptical polar phonon interaction is the leading scattering process in order to obtain analytical expressions for both, the characteristic relaxation times and the usual thermoelectric coefficients. We also show that in this case the Onsager symmetry relationship is not satisfied. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Nguyen Van Do, Vuong
2018-04-01
In this paper, a modified Kirchhoff theory is presented for free vibration analyses of functionally graded material (FGM) plate based on modified radial point interpolation method (RPIM). The shear deformation effects are taken account into modified theory to ignore the locking phenomenon of thin plates. Due to the proposed refined plate theory, the number of independent unknowns reduces one variable and exists with four degrees of freedom per node. The simulated free vibration results employed by the modified RPIM are compared with the other analytical solutions to verify the effectiveness and the accuracy of the developed mesh-free method. Detail parametric studies of the proposed method are then conducted including the effectiveness of thickness ratio, boundary condition and material inhomogeneity on the sample problems of square plates. Results illustrated that the modified mesh-free RPIM can effectively predict the numerical calculation as compared to the exact solutions. The obtained numerical results are indicated that the proposed method are stable and well accurate prediction to evaluate with other published analyses.
Anomalous Late Jurassic motion of the Pacific Plate with implications for true polar wander
Fu, Roger R.; Kent, Dennis V.
2018-05-01
True polar wander, or TPW, is the rotation of the entire mantle-crust system about an equatorial axis that results in a coherent velocity contribution for all lithospheric plates. One of the most recent candidate TPW events consists of a ∼30° rotation during Late Jurassic time (160-145 Ma). However, existing paleomagnetic documentation of this event derives exclusively from continents, which compose less than 50% of the Earth's surface area and may not reflect motion of the entire mantle-crust system. Additional paleopositional information from the Pacific Basin would significantly enhance coverage of the Earth's surface and allow more rigorous testing for the occurrence of TPW. We perform paleomagnetic analyses on core samples from Ocean Drilling Program (ODP) Site 801B, which were taken from the oldest available Pacific crust, to determine its paleolatitude during the Late Jurassic and Early Cretaceous (167-133 Ma). We find that the Pacific Plate underwent a steady southward drift of 0.49°-0.74° My-1 except for an interval between Kimmeridgian and Tithonian time (157-147 Ma), during which it underwent northward motion at 1.45° ± 0.76° My-1 (1σ). This trajectory indicates that the plates of the Pacific Basin participated in the same large-amplitude (∼30°) rotation as continental lithosphere in the 160-145 Ma interval. Such coherent motion of a large majority of the Earth's surface strongly supports the occurrence of TPW, suggesting that a combination of subducting slabs and rising mantle plumes was sufficient to significantly perturb the Earth's inertia tensor in the Late Jurassic.
Absolute plate motions and true polar wander in the absence of hotspot tracks.
Steinberger, Bernhard; Torsvik, Trond H
2008-04-03
The motion of continents relative to the Earth's spin axis may be due either to rotation of the entire Earth relative to its spin axis--true polar wander--or to the motion of individual plates. In order to distinguish between these over the past 320 Myr (since the formation of the Pangaea supercontinent), we present here computations of the global average of continental motion and rotation through time in a palaeomagnetic reference frame. Two components are identified: a steady northward motion and, during certain time intervals, clockwise and anticlockwise rotations, interpreted as evidence for true polar wander. We find approximately 18 degrees anticlockwise rotation about 250-220 Myr ago and the same amount of clockwise rotation about 195-145 Myr ago. In both cases the rotation axis is located at about 10-20 degrees W, 0 degrees N, near the site that became the North American-South American-African triple junction at the break-up of Pangaea. This was followed by approximately 10 degrees clockwise rotation about 145-135 Myr ago, followed again by the same amount of anticlockwise rotation about 110-100 Myr ago, with a rotation axis in both cases approximately 25-50 degrees E in the reconstructed area of North Africa and Arabia. These rotation axes mark the maxima of the degree-two non-hydrostatic geoid during those time intervals, and the fact that the overall net rotation since 320 Myr ago is nearly zero is an indication of long-term stability of the degree-two geoid and related mantle structure. We propose a new reference frame, based on palaeomagnetism, but corrected for the true polar wander identified in this study, appropriate for relating surface to deep mantle processes from 320 Myr ago until hotspot tracks can be used (about 130 Myr ago).
Gravitational Wave Polarizations in f (R Gravity and Scalar-Tensor Theory
Directory of Open Access Journals (Sweden)
Gong Yungui
2018-01-01
Full Text Available The detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory opens a new era to use gravitational waves to test alternative theories of gravity. We investigate the polarizations of gravitational waves in f (R gravity and Horndeski theory, both containing scalar modes. These theories predict that in addition to the familiar + and × polarizations, there are transverse breathing and longitudinal polarizations excited by the massive scalar mode and the new polarization is a single mixed state. It would be very difficult to detect the longitudinal polarization by interferometers, while pulsar timing array may be the better tool to detect the longitudinal polarization.
Electrical polarization and orbital magnetization: the modern theories
International Nuclear Information System (INIS)
Resta, Raffaele
2010-01-01
Macroscopic polarization P and magnetization M are the most fundamental concepts in any phenomenological description of condensed media. They are intensive vector quantities that intuitively carry the meaning of dipole per unit volume. But for many years both P and the orbital term in M evaded even a precise microscopic definition, and severely challenged quantum-mechanical calculations. If one reasons in terms of a finite sample, the electric (magnetic) dipole is affected in an extensive way by charges (currents) at the sample boundary, due to the presence of the unbounded position operator in the dipole definitions. Therefore P and the orbital term in M-phenomenologically known as bulk properties-apparently behave as surface properties; only spin magnetization is problemless. The field has undergone a genuine revolution since the early 1990s. Contrary to a widespread incorrect belief, P has nothing to do with the periodic charge distribution of the polarized crystal: the former is essentially a property of the phase of the electronic wavefunction, while the latter is a property of its modulus. Analogously, the orbital term in M has nothing to do with the periodic current distribution in the magnetized crystal. The modern theory of polarization, based on a Berry phase, started in the early 1990s and is now implemented in most first-principle electronic structure codes. The analogous theory for orbital magnetization started in 2005 and is partly work in progress. In the electrical case, calculations have concerned various phenomena (ferroelectricity, piezoelectricity, and lattice dynamics) in several materials, and are in spectacular agreement with experiments; they have provided thorough understanding of the behaviour of ferroelectric and piezoelectric materials. In the magnetic case the very first calculations are appearing at the time of writing (2010). Here I review both theories on a uniform ground in a density functional theory (DFT) framework, pointing out
International Nuclear Information System (INIS)
Anjomshoa, Amin; Tahani, Masoud
2016-01-01
In the present study a continuum model based on the nonlocal elasticity theory is developed for free vibration analysis of embedded ortho tropic thick circular and elliptical nano-plates rested on an elastic foundation. The elastic foundation is considered to behave like a Pasternak type of foundations. Governing equations for vibrating nano-plate are derived according to the Mindlin plate theory in which the effects of shear deformations of nano-plate are also included. The Galerkin method is then employed to obtain the size dependent natural frequencies of nano-plate. The solution procedure considers the entire nano-plate as a single super-continuum element. Effect of nonlocal parameter, lengths of nano-plate, aspect ratio, mode number, material properties, thickness and foundation on circular frequencies are investigated. It is seen that the nonlocal frequencies of the nano-plate are smaller in comparison to those from the classical theory and this is more pronounced for small lengths and higher vibration modes. It is also found that as the aspect ratio increases or the nanoplate becomes more elliptical, the small scale effect on natural frequencies increases. Further, it is observed that the elastic foundation decreases the influence of nonlocal parameter on the results. Since the effect of shear deformations plays an important role in vibration analysis and design of nano-plates, by predicting smaller values for fundamental frequencies, the study of these nano-structures using thick plate theories such as Mindlin plate theory is essential.
Directory of Open Access Journals (Sweden)
Shuohui Yin
2013-01-01
Full Text Available The isogeometric analysis with nonuniform rational B-spline (NURBS based on the classical plate theory (CPT is developed for free vibration analyses of functionally graded material (FGM thin plates. The objective of this work is to provide an efficient and accurate numerical simulation approach for the nonhomogeneous thin plates and shells. Higher order basis functions can be easily obtained in IGA, thus the formulation of CPT based on the IGA can be simplified. For the FGM thin plates, material property gradient in the thickness direction is unsymmetrical about the midplane, so effects of midplane displacements cannot be ignored, whereas the CPT neglects midplane displacements. To eliminate the effects of midplane displacements without introducing new unknown variables, the physical neutral surface is introduced into the CPT. The approximation of the deflection field and the geometric description are performed by using the NURBS basis functions. Compared with the first-order shear deformation theory, the present method has lower memory consumption and higher efficiency. Several numerical results show that the present method yields highly accurate solutions.
Natural Frequency of F.G. Rectangular Plate by Shear Deformation Theory
International Nuclear Information System (INIS)
Shahrjerdi, Ali; Sapuan, S M; Shahzamanian, M M; Mustapha, F; Zahari, R; Bayat, M
2011-01-01
Natural frequency of functionally graded (F.G.) rectangular plate is carried out by using second-order shear deformation theory (SSDT). The material properties of functionally graded rectangular plates, except the Poisson's ratio, are assumed to vary continuously through the thickness of the plate in accordance with the exponential law distribution. The equations of motion are obtained by energy method. Numerical results for functionally graded plates are given in dimensionless graphical forms and the effects of material properties on natural frequency are determined.
ON HAMILTONIAN FORMULATIONS AND CONSERVATION LAWS FOR PLATE THEORIES OF VEKUA-AMOSOV TYPE
Directory of Open Access Journals (Sweden)
Sergey I. Zhavoronok
2017-12-01
Full Text Available Some variants of the generalized Hamiltonian formulation of the plate theory of I. N. Vekua – A. A. Amosov type are presented. The infinite dimensional formulation with one evolution variable, or an “instantaneous” formalism, as well as the de Donder – Weyl one are considered, and their application to the numerical simulation of shell and plate dynamics is briefly discussed. The main conservation laws are formulated for the general plate theory of Nth order, and the possible motion integrals are introduced
The spin polarized linear response from density functional theory: Theory and application to atoms
Energy Technology Data Exchange (ETDEWEB)
Fias, Stijn, E-mail: sfias@vub.ac.be; Boisdenghien, Zino; De Proft, Frank; Geerlings, Paul [General Chemistry (ALGC), Vrije Universiteit Brussel (Free University Brussels – VUB), Pleinlaan 2, 1050 Brussels (Belgium)
2014-11-14
Within the context of spin polarized conceptual density functional theory, the spin polarized linear response functions are introduced both in the [N, N{sub s}] and [N{sub α}, N{sub β}] representations. The mathematical relations between the spin polarized linear response functions in both representations are examined and an analytical expression for the spin polarized linear response functions in the [N{sub α}, N{sub β}] representation is derived. The spin polarized linear response functions were calculated for all atoms up to and including argon. To simplify the plotting of our results, we integrated χ(r, r′) to a quantity χ(r, r{sup ′}), circumventing the θ and ϕ dependence. This allows us to plot and to investigate the periodicity throughout the first three rows in the periodic table within the two different representations. For the first time, χ{sub αβ}(r, r{sup ′}), χ{sub βα}(r, r{sup ′}), and χ{sub SS}(r, r{sup ′}) plots have been calculated and discussed. By integration of the spin polarized linear response functions, different components to the polarisability, α{sub αα}, α{sub αβ}, α{sub βα}, and α{sub ββ} have been calculated.
Directory of Open Access Journals (Sweden)
Shi-Chao Yi
2017-01-01
Full Text Available Closed-form solution of a special higher-order shear and normal deformable plate theory is presented for the static situations, natural frequencies, and buckling responses of simple supported functionally graded materials plates (FGMs. Distinguished from the usual theories, the uniqueness is the differentia of the new plate theory. Each individual FGM plate has special characteristics, such as material properties and length-thickness ratio. These distinctive attributes determine a set of orthogonal polynomials, and then the polynomials can form an exclusive plate theory. Thus, the novel plate theory has two merits: one is the orthogonality, where the majority of the coefficients of the equations derived from Hamilton’s principle are zero; the other is the flexibility, where the order of the plate theory can be arbitrarily set. Numerical examples with different shapes of plates are presented and the achieved results are compared with the reference solutions available in the literature. Several aspects of the model involving relevant parameters, length-to-thickness, stiffness ratios, and so forth affected by static and dynamic situations are elaborate analyzed in detail. As a consequence, the applicability and the effectiveness of the present method for accurately computing deflection, stresses, natural frequencies, and buckling response of various FGM plates are demonstrated.
Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali
2009-10-29
The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree-Fock theory and hybrid density functional theory. The computational results are illustrated by considering a set of bimolecular complexes of small organic molecules and ions with water. The computed interaction energies and hydrogen bond geometries are in good accord with CCSD(T) calculations and B3LYP/aug-cc-pVDZ optimizations.
International Nuclear Information System (INIS)
Butler, R.F.; Coney, P.J.
1981-01-01
Magnetostratiographic studies of a continental sedimentary sequence in the Clark's Fork Basin, Wyoming and a marine sedimentary sequence at Gubbio, Italy indicate that the Paleocene--Eocene boundary occurs just stratigraphically above normal polarity zones correlative with magnetic anomaly 25 chron. These data indicate that the older boundary of anomaly 24 chron is 52.5 Ma. This age is younger than the late Paleocene age assigned by LaBrecque et al. [1977] and also younger than the basal Eocene age assigned by Ness et al. [1980]. A revised magnetic polarity time scale for the Paleocene and early Eocene is presented in this paper. Several changes in the relative motion system between the Pacific plate and neighboring plates occurred in the interval between anomaly 24 and anomaly 21. A major change in absolute motion of the Pacific plate is indicated by the bend in the Hawaiian--Emperor Seamount chain at approx.43 Ma. The revised magnetic polarity time scale indicates that the absolute motion change lags the relative motion changes by only approx.3--5 m.y. rather than by >10 m.y. as indicated by previous polarity time scales
A nonlinear theory for elastic plates with application to characterizing paper properties
M. W. Johnson; Thomas J. Urbanik
1984-03-01
A theory of thin plates which is physically as well as kinematically nonlinear is, developed and used to characterize elastic material behavior for arbitrary stretching and bending deformations. It is developed from a few clearly defined assumptions and uses a unique treatment of strain energy. An effective strain concept is introduced to simplify the theory to a...
Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory.
Voit, Florian; Hohmann, Ansgar; Schäfer, Jan; Kienle, Alwin
2012-04-01
For many research areas in biomedical optics, information about scattering of polarized light in turbid media is of increasing importance. Scattering simulations within this field are mainly performed on the basis of radiative transfer theory. In this study a polarization sensitive Monte Carlo solution of radiative transfer theory is compared to exact Maxwell solutions for all elements of the scattering Müller matrix. Different scatterer volume concentrations are modeled as a multitude of monodisperse nonabsorbing spheres randomly positioned in a cubic simulation volume which is irradiated with monochromatic incident light. For all Müller matrix elements effects due to dependent scattering and multiple scattering are analysed. The results are in overall good agreement between the two methods with deviations related to dependent scattering being prominent for high volume concentrations and high scattering angles.
A New Hyperbolic Shear Deformation Theory for Bending Analysis of Functionally Graded Plates
Directory of Open Access Journals (Sweden)
Tahar Hassaine Daouadji
2012-01-01
Full Text Available Theoretical formulation, Navier’s solutions of rectangular plates based on a new higher order shear deformation model are presented for the static response of functionally graded plates. This theory enforces traction-free boundary conditions at plate surfaces. Shear correction factors are not required because a correct representation of transverse shearing strain is given. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Numerical illustrations concern flexural behavior of FG plates with metal-ceramic composition. Parametric studies are performed for varying ceramic volume fraction, volume fractions profiles, aspect ratios, and length to thickness ratios. Results are verified with available results in the literature. It can be concluded that the proposed theory is accurate and simple in solving the static bending behavior of functionally graded plates.
Directory of Open Access Journals (Sweden)
Olga Ossipova
2015-07-01
Full Text Available The vertebrate neural tube forms as a result of complex morphogenetic movements, which require the functions of several core planar cell polarity (PCP proteins, including Vangl2 and Prickle. Despite the importance of these proteins for neurulation, their subcellular localization and the mode of action have remained largely unknown. Here we describe the anteroposterior planar cell polarity (AP-PCP of the cells in the Xenopus neural plate. At the neural midline, the Vangl2 protein is enriched at anterior cell edges and that this localization is directed by Prickle, a Vangl2-interacting protein. Our further analysis is consistent with the model, in which Vangl2 AP-PCP is established in the neural plate as a consequence of Wnt-dependent phosphorylation. Additionally, we uncover feedback regulation of Vangl2 polarity by Myosin II, reiterating a role for mechanical forces in PCP. These observations indicate that both Wnt signaling and Myosin II activity regulate cell polarity and cell behaviors during vertebrate neurulation.
Lamb wave extraction of dispersion curves in micro/nano-plates using couple stress theories
Ghodrati, Behnam; Yaghootian, Amin; Ghanbar Zadeh, Afshin; Mohammad-Sedighi, Hamid
2018-01-01
In this paper, Lamb wave propagation in a homogeneous and isotropic non-classical micro/nano-plates is investigated. To consider the effect of material microstructure on the wave propagation, three size-dependent models namely indeterminate-, modified- and consistent couple stress theories are used to extract the dispersion equations. In the mentioned theories, a parameter called 'characteristic length' is used to consider the size of material microstructure in the governing equations. To generalize the parametric studies and examine the effect of thickness, propagation wavelength, and characteristic length on the behavior of miniature plate structures, the governing equations are nondimensionalized by defining appropriate dimensionless parameters. Then the dispersion curves for phase and group velocities are plotted in terms of a wide frequency-thickness range to study the lamb waves propagation considering microstructure effects in very high frequencies. According to the illustrated results, it was observed that the couple stress theories in the Cosserat type material predict more rigidity than the classical theory; so that in a plate with constant thickness, by increasing the thickness to characteristic length ratio, the results approach to the classical theory, and by reducing this ratio, wave propagation speed in the plate is significantly increased. In addition, it is demonstrated that for high-frequency Lamb waves, it converges to dispersive Rayleigh wave velocity.
Contribution to the theory of ultracold highly polarized Fermi gases
International Nuclear Information System (INIS)
Giraud, Sebastien
2010-01-01
This thesis deals with the N+1 body problem in highly polarized Fermi gases. This is the situation where a single atom of one spin species is immersed in a Fermi sea of atoms of the other species. The first part uses a Hamiltonian approach based on a general expansion for the wave function of the system with any number of particle-hole pairs. We show that the constructed series of successive approximations converges very rapidly and thus we get an essentially exact solution for the energy and the effective mass of the polaron. In one dimension, for two particular cases, this problem can be solved analytically. The excellent agreement with our series of approximations provides a further check of the reliability of this expansion. Finally, we consider more specifically various limiting cases, as well as the effect of the mass ratio between the two spin species. In the second part, we use the Feynman diagrams formalism to describe both the polaron and the bound state. For the polaron, we develop a theory which is equivalent to the Hamiltonian approach. For the bound state, we get again a series of successive approximations whose fast convergence is perfectly understood. Therefore, this approach provides an essentially exact solution to the problem along the whole BEC-BCS crossover. Finally, by comparing the energies of the two quasi-particles, we study the position of the polaron to bound state transition. (author)
Directory of Open Access Journals (Sweden)
Alireza Shooshtari
Full Text Available Abstract Free vibration of a magnetoelectroelastic rectangular plate is investigated based on the Reddy's third-order shear deformation theory. The plate rests on an elastic foundation and it is considered to have different boundary conditions. Gauss's laws for electrostatics and magnetostatics are used to model the electric and magnetic behavior. The partial differential equations of motion are reduced to a single partial differential equation and then by using the Galerkin method, the ordinary differential equation of motion as well as an analytical relation for the natural frequency of the plate is obtained. Some numerical examples are presented to validate the proposed model and to investigate the effects of several parameters on the vibration frequency of the considered smart plate.
Assessment of Theories for Free Vibration Analysis of Homogeneous and Multilayered Plates
Directory of Open Access Journals (Sweden)
Erasmo Carrera
2004-01-01
Full Text Available This paper assesses classical and advanced theories for free vibrational response of homogeneous and multilayered simply supported plates. Closed form solutions are given for thick and thin geometries. Single layer and multilayered plates made of metallic, composite and piezo-electric materials, are considered. Classical theories based on Kirchhoff and Reissner-Mindlin assumptions are compared with refined theories obtained by enhancing the order of the expansion of the displacement fields in the thickness direction z. The effect of the Zig-Zag form of the displacement distribution in z as well as of the Interlaminar Continuity of transverse shear and normal stresses at the layer interface were evaluated. A number of conclusions have been drawn. These conclusions could be used as desk-bed in order to choose the most valuable theories for a given problem.
Liu, Hong; Zhu, Jingping; Wang, Kai
2015-08-24
The geometrical attenuation model given by Blinn was widely used in the geometrical optics bidirectional reflectance distribution function (BRDF) models. Blinn's geometrical attenuation model based on symmetrical V-groove assumption and ray scalar theory causes obvious inaccuracies in BRDF curves and negatives the effects of polarization. Aiming at these questions, a modified polarized geometrical attenuation model based on random surface microfacet theory is presented by combining of masking and shadowing effects and polarized effect. The p-polarized, s-polarized and unpolarized geometrical attenuation functions are given in their separate expressions and are validated with experimental data of two samples. It shows that the modified polarized geometrical attenuation function reaches better physical rationality, improves the precision of BRDF model, and widens the applications for different polarization.
Simulation of circularly polarized luminescence spectra using coupled cluster theory
Energy Technology Data Exchange (ETDEWEB)
McAlexander, Harley R.; Crawford, T. Daniel, E-mail: crawdad@vt.edu [Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061 (United States)
2015-04-21
We report the first computations of circularly polarized luminescence (CPL) rotatory strengths at the equation-of-motion coupled cluster singles and doubles (EOM-CCSD) level of theory. Using a test set of eight chiral ketones, we compare both dipole and rotatory strengths for absorption (electronic circular dichroism) and emission to the results from time-dependent density-functional theory (TD-DFT) and available experimental data for both valence and Rydberg transitions. For two of the compounds, we obtained optimized geometries of the lowest several excited states using both EOM-CCSD and TD-DFT and determined that structures and EOM-CCSD transition properties obtained with each structure were sufficiently similar that TD-DFT optimizations were acceptable for the remaining test cases. Agreement between EOM-CCSD and the Becke three-parameter exchange function and Lee-Yang-Parr correlation functional (B3LYP) corrected using the Coulomb attenuating method (CAM-B3LYP) is typically good for most of the transitions, though agreement with the uncorrected B3LYP functional is significantly worse for all reported properties. The choice of length vs. velocity representation of the electric dipole operator has little impact on the EOM-CCSD transition strengths for nearly all of the states we examined. For a pair of closely related β, γ-enones, (1R)-7-methylenebicyclo[2.2.1]heptan-2-one and (1S)-2-methylenebicyclo[2.2.1]heptan-7-one, we find that EOM-CCSD and CAM-B3LYP agree with the energetic ordering of the two possible excited-state conformations, resulting in good agreement with experimental rotatory strengths in both absorption and emission, whereas B3LYP yields a qualitatively incorrect result for the CPL signal of (1S)-2-methylenebicyclo[2.2.1]heptan-7-one. Finally, we predict that one of the compounds considered here, trans-bicyclo[3.3.0]octane-3,7-dione, is unique in that it exhibits an achiral ground state and a chiral first excited state, leading to a strong CPL
Theory and analysis of a large field polarization imaging system with obliquely incident light.
Lu, Xiaotian; Jin, Weiqi; Li, Li; Wang, Xia; Qiu, Su; Liu, Jing
2018-02-05
Polarization imaging technology provides information about not only the irradiance of a target but also the polarization degree and angle of polarization, which indicates extensive application potential. However, polarization imaging theory is based on paraxial optics. When a beam of obliquely incident light passes an analyser, the direction of light propagation is not perpendicular to the surface of the analyser and the applicability of the traditional paraxial optical polarization imaging theory is challenged. This paper investigates a theoretical model of a polarization imaging system with obliquely incident light and establishes a polarization imaging transmission model with a large field of obliquely incident light. In an imaging experiment with an integrating sphere light source and rotatable polarizer, the polarization imaging transmission model is verified and analysed for two cases of natural light and linearly polarized light incidence. Although the results indicate that the theoretical model is consistent with the experimental results, the theoretical model distinctly differs from the traditional paraxial approximation model. The results prove the accuracy and necessity of the theoretical model and the theoretical guiding significance for theoretical and systematic research of large field polarization imaging.
Directory of Open Access Journals (Sweden)
Yener Eyuboglu
2011-01-01
Full Text Available The Eastern Pontides orogenic belt in the Black Sea region of Turkey offers a critical window to plate kinematics and subduction polarity during the closure of the Paleotethys. Here we provide a brief synthesis on recent information from this belt. We infer a southward subduction for the origin of the Eastern Pontides orogenic belt and its associated late Mesozoic–Cenozoic magmatism based on clear spatial and temporal variations in Late Cretaceous and Cenozoic arc magmatism, together with the existence of a prominent south-dipping reverse fault system along the entire southern coast of the Black Sea. Our model is at variance with some recent proposals favoring a northward subduction polarity, and illustrates the importance of arc magmatism in evaluating the geodynamic milieu associated with convergent margin processes.
Heavy quark fragmentation into polarized quarkonium in the heavy quark effective theory
International Nuclear Information System (INIS)
Martynenko, A.P.; Saleev, V.A.
1996-01-01
Fragmentation of b-antiquark into polarized B* c -mesons is investigated within the framework of effective theory of heavy quarks. Functions of b fragmentation into longitudinally polarized and transversely polarized S-wave states of b c are calculated with an exact regard tot he first order corrections by 1/m b . Agreement of the results obtained with the corresponding calculations, performed in the quantum chromodynamics, is shown. 17 refs.; 2 figs
Grover, D.; Seth, R. K.
2018-05-01
Analysis and numerical results are presented for the thermoelastic dissipation of a homogeneous isotropic, thermally conducting, Kelvin-Voigt type circular micro-plate based on Kirchhoff's Love plate theory utilizing generalized viscothermoelasticity theory of dual-phase-lagging model. The analytical expressions for thermoelastic damping of vibration and frequency shift are obtained for generalized dual-phase-lagging model and coupled viscothermoelastic plates. The scaled thermoelastic damping has been illustrated in case of circular plate and axisymmetric circular plate for fixed aspect ratio for clamped and simply supported boundary conditions. It is observed that the damping of vibrations significantly depend on time delay and mechanical relaxation times in addition to thermo-mechanical coupling in circular plate under resonance conditions and plate dimensions.
Statistical polarization in greenhouse gas emissions: Theory and evidence
International Nuclear Information System (INIS)
Remuzgo, Lorena; Trueba, Carmen
2017-01-01
The current debate on climate change is over whether global warming can be limited in order to lessen its impacts. In this sense, evidence of a decrease in the statistical polarization in greenhouse gas (GHG) emissions could encourage countries to establish a stronger multilateral climate change agreement. Based on the interregional and intraregional components of the multivariate generalised entropy measures (Maasoumi, 1986), Gigliarano and Mosler (2009) proposed to study the statistical polarization concept from a multivariate view. In this paper, we apply this approach to study the evolution of such phenomenon in the global distribution of the main GHGs. The empirical analysis has been carried out for the time period 1990–2011, considering an endogenous grouping of countries (Aghevli and Mehran, 1981; Davies and Shorrocks, 1989). Most of the statistical polarization indices showed a slightly increasing pattern that was similar regardless of the number of groups considered. Finally, some policy implications are commented. - Highlights: • We study the evolution of global polarization in GHG emissions. • We consider the four main GHGs: CO2, CH4, N2O and F-gases. • We use the multidimensional polarization indices (). • We consider an endogenous grouping of countries (). • Most of the polarization indices showed a slightly increasing pattern.
DEFF Research Database (Denmark)
Wang, Wei; Zhao, Juan; Hu, Xiaoying
2017-01-01
All optical fields undergo random fluctuation and the underlying theory referred to as coherence and polarization of optical fields has played a fundamental role as an important manifestation of the random fluctuations of the electric fields. In this paper, we reviewed our recent theoretical...... and experimental work on the unified theory of polarization and coherence including coherence tensor wave, degree of coherence tensor, degree of generalized Stokes parameters, and their applications including coherence tensor holography and two-point resolution of polarimetric imaging....
Statistical polarization in greenhouse gas emissions: Theory and evidence.
Remuzgo, Lorena; Trueba, Carmen
2017-11-01
The current debate on climate change is over whether global warming can be limited in order to lessen its impacts. In this sense, evidence of a decrease in the statistical polarization in greenhouse gas (GHG) emissions could encourage countries to establish a stronger multilateral climate change agreement. Based on the interregional and intraregional components of the multivariate generalised entropy measures (Maasoumi, 1986), Gigliarano and Mosler (2009) proposed to study the statistical polarization concept from a multivariate view. In this paper, we apply this approach to study the evolution of such phenomenon in the global distribution of the main GHGs. The empirical analysis has been carried out for the time period 1990-2011, considering an endogenous grouping of countries (Aghevli and Mehran, 1981; Davies and Shorrocks, 1989). Most of the statistical polarization indices showed a slightly increasing pattern that was similar regardless of the number of groups considered. Finally, some policy implications are commented. Copyright © 2017 Elsevier Ltd. All rights reserved.
Discrete quintic spline for boundary value problem in plate deflation theory
Wong, Patricia J. Y.
2017-07-01
We propose a numerical scheme for a fourth-order boundary value problem arising from plate deflation theory. The scheme involves a discrete quintic spline, and it is of order 4 if a parameter takes a specific value, else it is of order 2. We also present a well known numerical example to illustrate the efficiency of our method as well as to compare with other numerical methods proposed in the literature.
Parallel double-plate capacitive proximity sensor modelling based on effective theory
International Nuclear Information System (INIS)
Li, Nan; Zhu, Haiye; Wang, Wenyu; Gong, Yu
2014-01-01
A semi-analytical model for a double-plate capacitive proximity sensor is presented according to the effective theory. Three physical models are established to derive the final equation of the sensor. Measured data are used to determine the coefficients. The final equation is verified by using measured data. The average relative error of the calculated and the measured sensor capacitance is less than 7.5%. The equation can be used to provide guidance to engineering design of the proximity sensors
A phenomenological theory for polarization flop in spiral multiferroic ...
Indian Academy of Sciences (India)
found to be in good agreement with the experiment. This could be an ... DM energy and a com- petition between DM interaction and other interactions results in polarization flop. ... In the case of soft or amorphous materials character- ized by a ...
Theory of coherent dynamic nuclear polarization in quantum dots
DEFF Research Database (Denmark)
Neder, Izhar; Rudner, Mark Spencer; Halperin, Bertrand
2014-01-01
We consider the production of dynamic nuclear spin polarization (DNP) in a two-electron double quantum dot, in which the electronic levels are repeatedly swept through a singlet-triplet avoided crossing. Our analysis helps to elucidate the intriguing interplay between electron-nuclear hyperfine...
International Nuclear Information System (INIS)
Miranda Diaz, L. J.
2016-01-01
Using an optical system comprising a light source to semiconductor, two collimating lenses, one rotating polarizer, two focusing lenses and an electronic circuit mounted amplifiers based on operational, two pulse outputs of variable width is obtained according to the orientation of the plane of polarized light incident on the lenses coplanar standing together with the electronic circuit inside the optoelectronic head. The difference between the width of both pulses is equivalent to the amount has rotated the plane of polarization and is calculated by the use and programming of a PIC and displayed on an alphanumeric LCD. the result of the measurements are shown performed well plates that you can see the change in the value on the LCD to rotate the polarizer. (Author)
International Nuclear Information System (INIS)
Luo, Quantian; Tong, Liyong
2011-01-01
This paper presents a novel finite element formulation for 0–3 polarized PbLaZrTi (PLZT) plates and a comparison of the predicted and measured bending displacements. The coupled multi-physics fields and Hamilton's principle for piezoelectric (PZT) materials are first extended to PLZT ceramics by including the anomalous photovoltaic and photo-thermal effects. The photo-induced non-uniform electrical field and mechanical strains across the thickness are modeled in the present finite element formulation for 0–3 polarized PLZT plates, and the associated actuator and sensor equations are derived. The transverse displacements of a 0–3 polarized PLZT plate are predicted using the present finite element formulation and compared with the measured data given in part I. A reasonably good correlation is noted for the transverse displacements at the ten measurement points
Polarization correction in the theory of energy losses by charged particles
Energy Technology Data Exchange (ETDEWEB)
Makarov, D. N., E-mail: makarovd0608@yandex.ru; Matveev, V. I. [Lomonosov Northern (Arctic) Federal University (Russian Federation)
2015-05-15
A method for finding the polarization (Barkas) correction in the theory of energy losses by charged particles in collisions with multielectron atoms is proposed. The Barkas correction is presented in a simple analytical form. We make comparisons with experimental data and show that applying the Barkas correction improves the agreement between theory and experiment.
Polarization-color mapping strategies: catching up with color theory
Kruse, Andrew W.; Alenin, Andrey S.; Vaughn, Israel J.; Tyo, J. Scott
2017-09-01
Current visualization techniques for mapping polarization data to a color coordinates defined by the Hue, Saturation, Value (HSV) color representation are analyzed in the context of perceptual uniformity. Since HSV is not designed to be perceptually uniform, the extent of non-uniformity should be evaluated by using robust color difference formulae and by comparison to the state-of-the-art uniform color space CAM02-UCS. For mapping just angle of polarization with HSV hue, the results show clear non-uniformity and implications for how this can misrepresent the data. UCS can be used to create alternative mapping techniques that are perceptually uniform. Implementing variation in lightness may increase shape discrimination within the scene. Future work will be dedicated to measuring performance of both current and proposed methods using psychophysical analysis.
Free Vibration Analysis of Composite Plates via Refined Theories Accounting for Uncertainties
Directory of Open Access Journals (Sweden)
G. Giunta
2011-01-01
Full Text Available The free vibration analysis of composite thin and relatively thick plates accounting for uncertainty is addressed in this work. Classical and refined two-dimensional models derived via Carrera's Unified Formulation (CUF are considered. Material properties and geometrical parameters are supposed to be random. The fundamental frequency related to the first bending eigenmode is stochastically described in terms of the mean value, the standard deviation, the related confidence intervals and the cumulative distribution function. The Monte Carlo Method is employed to account for uncertainty. Cross-ply, simply supported, orthotropic plates are accounted for. Symmetric and anti-symmetric lay-ups are investigated. Displacements based and mixed two-dimensional theories are adopted. Equivalent single layer and layer wise approaches are considered. A Navier type solution is assumed. The conducted analyses have shown that for the considered cases, the fundamental natural frequency is not very sensitive to the uncertainty in the material parameters, while uncertainty in the geometrical parameters should be accounted for. In the case of thin plates, all the considered models yield statistically matching results. For relatively thick plates, the difference in the mean value of the natural frequency is due to the different number of degrees of freedom in the model.
International Nuclear Information System (INIS)
Macrander, A.T.; Blasdell, R.C.
1993-09-01
Dynamical x-ray diffraction theory can be cast in matrix form. In recent years, an 8x8 matrix theory was developed that treated asymmetric reflections from strained crystals. The polarization of the incident, specularly reflected, reflected diffracted, transmitted diffracted, and transmitted electromagnetic wave fields were all defined as s or p. That is, polarizations were defined with respect to the plane containing the incident beam direction and the surface normal. The authors present modifications of the theory to treat σ and π polarizations for Bragg diffraction from asymmetric planes, that is, for polarizations defined with respect to the plane containing the incident beam direction and the reciprocal lattice vector for Bragg diffraction. They present results of this theory for unstrained crystals in the inclined geometry. In this geometry the incident beam wavevector, the reciprocal lattice vector, and the surface normal are not coplanar. The inclined crystal geometry appears promising for use in a high-heat-load monochromator for undulator radiation at the Advanced Photon Source. As expected, they find a weak π-polarization component in the diffracted beam when the polarization of the incident beam is pure σ
Spin-polarized neutron matter at different orders of chiral effective field theory
Sammarruca, F.; Machleidt, R.; Kaiser, N.
2015-01-01
Spin-polarized neutron matter is studied using chiral two- and three-body forces. We focus, in particular, on predictions of the energy per particle in ferromagnetic neutron matter at different orders of chiral effective field theory and for different choices of the resolution scale. We discuss the convergence pattern of the predictions and their cutoff dependence. We explore to which extent fully polarized neutron matter behaves (nearly) like a free Fermi gas. We also consider the more gener...
Nuclear reactivity indices in the context of spin polarized density functional theory
International Nuclear Information System (INIS)
Cardenas, Carlos; Lamsabhi, Al Mokhtar; Fuentealba, Patricio
2006-01-01
In this work, the nuclear reactivity indices of density functional theory have been generalized to the spin polarized case and their relationship to electron spin polarized indices has been established. In particular, the spin polarized version of the nuclear Fukui function has been proposed and a finite difference approximation has been used to evaluate it. Applications to a series of triatomic molecules demonstrate the ability of the new functions to predict the geometrical changes due to a change in the spin multiplicity. The main equations in the different ensembles have also been presented
International Nuclear Information System (INIS)
Nonaka, S.
1991-01-01
In order to seek for a radio frequency (RF) eigen-mode of waves in producing a plasma between a pair of long dielectric-covered parallel-plate RF electrodes, this paper analyzed all normal modes propagating along the electrodes by solving Maxwell's equations. The result showed that only an odd surface wave mode will produce the plasma in usual experimental conditions, which will become a basic transmission line theory when use of such long electrodes for on-line mass-production of amorphous silicon solar cells
Directory of Open Access Journals (Sweden)
A. M. Abd El-Latief
2016-01-01
Full Text Available The fractional mathematical model of Maxwell’s equations in an electromagnetic field and the fractional generalized thermoelastic theory associated with two relaxation times are applied to a 1D problem for a thick plate. Laplace transform is used. The solution in Laplace transform domain has been obtained using a direct method and its inversion is calculated numerically using a method based on Fourier series expansion technique. Finally, the effects of the two fractional parameters (thermo and magneto on variable fields distributions are made. Numerical results are represented graphically.
Polarization asymmetries and gauge theory interactions at short distances
International Nuclear Information System (INIS)
Craigie, N.S.
1983-01-01
In this talk, we give the arguments as to why spin asymmetries test fundamental properties of the underlying gauge theories of elementary particles, concentrating mainly on electro-weak and QCD interactions, but also looking at the future and possible signatures for supersymmetric strong interactions. We also mention briefly the role helicity asymmetry measurements can play as regards higher order corrections, including higher twist, in QCD. (orig./HSI)
Polarized two-photon photoselection in EGFP: Theory and experiment.
Masters, T A; Marsh, R J; Blacker, T S; Armoogum, D A; Larijani, B; Bain, A J
2018-04-07
In this work, we present a complete theoretical description of the excited state order created by two-photon photoselection from an isotropic ground state; this encompasses both the conventionally measured quadrupolar (K = 2) and the "hidden" degree of hexadecapolar (K = 4) transition dipole alignment, their dependence on the two-photon transition tensor and emission transition dipole moment orientation. Linearly and circularly polarized two-photon absorption (TPA) and time-resolved single- and two-photon fluorescence anisotropy measurements are used to determine the structure of the transition tensor in the deprotonated form of enhanced green fluorescent protein. For excitation wavelengths between 800 nm and 900 nm, TPA is best described by a single element, almost completely diagonal, two-dimensional (planar) transition tensor whose principal axis is collinear to that of the single-photon S 0 → S 1 transition moment. These observations are in accordance with assignments of the near-infrared two-photon absorption band in fluorescent proteins to a vibronically enhanced S 0 → S 1 transition.
Polarized two-photon photoselection in EGFP: Theory and experiment
Masters, T. A.; Marsh, R. J.; Blacker, T. S.; Armoogum, D. A.; Larijani, B.; Bain, A. J.
2018-04-01
In this work, we present a complete theoretical description of the excited state order created by two-photon photoselection from an isotropic ground state; this encompasses both the conventionally measured quadrupolar (K = 2) and the "hidden" degree of hexadecapolar (K = 4) transition dipole alignment, their dependence on the two-photon transition tensor and emission transition dipole moment orientation. Linearly and circularly polarized two-photon absorption (TPA) and time-resolved single- and two-photon fluorescence anisotropy measurements are used to determine the structure of the transition tensor in the deprotonated form of enhanced green fluorescent protein. For excitation wavelengths between 800 nm and 900 nm, TPA is best described by a single element, almost completely diagonal, two-dimensional (planar) transition tensor whose principal axis is collinear to that of the single-photon S0 → S1 transition moment. These observations are in accordance with assignments of the near-infrared two-photon absorption band in fluorescent proteins to a vibronically enhanced S0 → S1 transition.
Nonlinear polarization of ionic liquids: theory, simulations, experiments
Kornyshev, Alexei
2010-03-01
Room temperature ionic liquids (RTILs) composed of large, often asymmetric, organic cations and simple or complex inorganic or organic anions do not freeze at ambient temperatures. Their rediscovery some 15 years ago is widely accepted as a ``green revolution'' in chemistry, offering an unlimited number of ``designer'' solvents for chemical and photochemical reactions, homogeneous catalysis, lubrication, and solvent-free electrolytes for energy generation and storage. As electrolytes they are non-volatile, some can sustain without decomposition up to 6 times higher voltages than aqueous electrolytes, and many are environmentally friendly. The studies of RTILs and their applications have reached a critical stage. So many of them can be synthesized - about a thousand are known already - their mixtures can further provide ``unlimited'' number of combinations! Thus, establishing some general laws that could direct the best choice of a RTIL for a given application became crucial; guidance is expected from theory and modelling. But for a physical theory, RTILs comprise a peculiar and complex class of media, the description of which lies at the frontier line of condensed matter theoretical physics: dense room temperature ionic plasmas with ``super-strong'' Coulomb correlations, which behave like glasses at short time-scale, but like viscous liquids at long-time scale. This talk will introduce RTILs to physicists and overview the current understanding of the nonlinear response of RTILs to electric field. It will focus on the theory, simulations, and experimental characterisation of the structure and nonlinear capacitance of the electrical double layer at a charged electrode. It will also discuss pros and contras of supercapacitor applications of RTILs.
Theory of surface recombination of spin-polarized hydrogen
International Nuclear Information System (INIS)
Christou, C.T.; Haftel, M.I.
1989-01-01
A theory is presented, based on the Faddeev equations, for direct two-body recombination of hydrogen atoms on a liquid helium surface. The equations developed are applicable to hydrogen or deuterium atoms in any spin state, but are applied in particular to dipolar recombination of b state hydrogen atoms. The equations yield terms corresponding to one- and two-step processes. These terms are calculated for low temperatures (T = 0.1 to 1.1 K) and high field strengths (B = 4 to 14 T). The one-step term increases slowly with B, while the two-step term is rapidly decreasing. While the overall rate is quite small (∼5 x 10 -18 cm 2 /s) compared to recombination by two-body spin-relaxation, the results have important consequences in understanding the experimentally measured three-atom dipolar surface recombination rates. In three-atom recombination, where the role of spin-relaxation and the two-atom one-step processes are repressed, the role of the underlying two-atom, two-step process is enhanced. The field dependence of the process relevant to the three-atom system is calculated and found to be in fairly good agreement with the experimental three-atom data. The role of possible liquid excitations in enhancing the contribution of the two-step processes is also discussed. 33 refs.; 1 figure; 6 tabs
DEFF Research Database (Denmark)
Karakatsani, Eirini; Kontogeorgis, Georgios; Economou, Ioannis
2006-01-01
Perturbed chain-statistical associating fluid theory (PC-SAFT) was extended rigorously to polar fluids based on the theory of Stell and co-workers [Mol. Phys. 1977, 33, 987]. The new PC-PSAFT was simplified to truncated PC-PSAFT (tPC-PSAFT) so that it can be practical for real polar fluid...
Nonadiabatic theory of strong-field atomic effects under elliptical polarization
International Nuclear Information System (INIS)
Wang Xu; Eberly, J. H.
2012-01-01
Elliptically polarized laser fields provide a new channel for access to strong-field processes that are either suppressed or not present under linear polarization. Quantum theory is mostly unavailable for their analysis, and we report here results of a systematic study based on a classical ensemble theory with solution of the relevant ab inito time-dependent Newton equations for selected model atoms. The study's approach is necessarily nonadiabatic, as it follows individual electron trajectories leading to single, double, and triple ionizations. Of particular interest are new results bearing on open questions concerning experimental reports of unexplained species dependences as well as double-electron release times that are badly matched by a conventional adiabatic quantum tunneling theory. We also report the first analysis of electron trajectories for sequential and non-sequential triple ionization.
International Nuclear Information System (INIS)
Astapenko, V.A.; Bureeva, L.A.; Lisitsa, V.S.
2000-01-01
Classical and quantum theories of polarization bremsstrahlung in a statistical (Thomas-Fermi) potential of complex atoms and ions are developed. The basic assumptions of the theories correspond to the approximations employed earlier in classical and quantum calculations of ordinary bremsstrahlung in a static potential. This makes it possible to study on a unified basis the contribution of both channels in the radiation taking account of their interference. The classical model makes it possible to obtain simple universal formulas for the spectral characteristics of the radiation. The theory is applied to electrons with moderate energies, which are characteristic for plasma applications, specifically, radiation from electrons on the argon-like ion KII at frequencies close to its ionization potential. The computational results show the importance of taking account of the polarization channel of the radiation for plasma with heavy ions
Sairyo, Koichi; Nagamachi, Akihiro; Matsuura, Tetsuya; Higashino, Kosaku; Sakai, Toshinori; Suzue, Naoto; Hamada, Daisuke; Takata, Yoichiro; Goto, Tomohiro; Nishisho, Toshihiko; Goda, Yuichiro; Tsutsui, Takahiko; Tonogai, Ichiro; Miyagi, Ryo; Abe, Mitsunobu; Morimoto, Masatoshi; Mineta, Kazuaki; Kimura, Tetsuya; Nitta, Akihiro; Higuchi, Tadahiro; Hama, Shingo; Jha, Subash C; Takahashi, Rui; Fukuta, Shoji
2015-01-01
Spondylolysis is a stress fracture of the pars interarticularis, which in some cases progresses to spondylolisthesis (forward slippage of the vertebral body). This slip progression is prevalent in children and occurs very rarely after spinal maturation. The pathomechanism and predilection for children remains controversial despite considerable clinical and basic research into the disorder over the last three decades. Here we review the pathomechanism of spondylolytic spondylolisthesis in children and adolescents, and specifically the Tokushima theory of growth plate slippage developed from our extensive research findings. Clinically, we have observed the slippage site near the growth plate on MRI; then, using fresh cadaveric spines, we found the weakest link against forward shear loading was the growth plate. We subsequently developed an immature rat model showing forward slippage after growth plate injury. Moreover, finite element analysis of the pediatric spine clearly showed increased mechanical stress at the growth plate in the spondylolytic pediatric spine model compared with the intact pediatric spine. Thus, spondylolysis progresses to spondylolisthesis (forward slippage) in children and adolescents with the growth plate as the site of the slippage. Repetitive mechanical loading on to the growth plate may serve to separate the growth plate and subsequently progress to spondylolisthesis.
Hardness and softness reactivity kernels within the spin-polarized density-functional theory
International Nuclear Information System (INIS)
Chamorro, Eduardo; De Proft, Frank; Geerlings, Paul
2005-01-01
Generalized hardness and softness reactivity kernels are defined within a spin-polarized density-functional theory (SP-DFT) conceptual framework. These quantities constitute the basis for the global, local (i.e., r-position dependent), and nonlocal (i.e., r and r ' -position dependents) indices devoted to the treatment of both charge-transfer and spin-polarization processes in such a reactivity framework. The exact relationships between these descriptors within a SP-DFT framework are derived and the implications for chemical reactivity in such context are outlined
International Nuclear Information System (INIS)
Pervez, T.
1992-01-01
Composite materials have been used for centuries, brick reinforced with straw, laminated iron-steel swords, gun-barrels and concrete, to name but a few. Today industrial innovations improved energy planning, uncertain availability have created a greater interest in search of new materials. Now that increasingly performance requirements are forcing many conventional materials to the limit, the engineer's approach of fitting the design to the properties is changing into one of finding materials with the right properties to meet the demand of design, service of economics. The use of composite materials have progressed through several stages in past two and half decade. First, demonstration pieces were built with the idea of let's see if we can build one. For second stage, replacement pieces, part of the objective was to test a part designed to replace a metal part in an existing application. The last stage is actual production pieces designed from the beginning to be fabricated wholly from composite. This last goal is being approached in deliberate, conservation and multistage fashion. A substantial composite technology has been developed and awaits further challenge. In this paper new higher order shear deformable theory for anisotropic laminated composite is presented. The finite element method is used to get static and dynamic solution for the plate with and without damping effects. Finally, example and discussion are presented to demonstrate the accuracy of the theory presented herein. (author)
Kinematic approximation in the theory of stimulated nuclear polarization in radical recombination
International Nuclear Information System (INIS)
Mikhailov, S.A.; Purtov, P.A.
1989-01-01
Within the kinematic approximation, we have developed the theory of stimulated nuclear polarization (SNP) in reactions of geminal recombination of radicals in a strong d.c. magnetic field. We have obtained analytical formulas which are applicable for analysis of SNP effects occurring when the reactions are carried out in nonviscous solutions. The result is represented in the form of integrals with respect to the Green's function determining the kinematics of reagent approach. As an illustration of the proposed theory, we have calculated the polarization of nuclei formed in the reaction products of p-benzoquinone in CD 3 OD and in C 6 D 6 with addition of phenol, and we compare with experiment
Dual descriptors within the framework of spin-polarized density functional theory.
Chamorro, E; Pérez, P; Duque, M; De Proft, F; Geerlings, P
2008-08-14
Spin-polarized density functional theory (SP-DFT) allows both the analysis of charge-transfer (e.g., electrophilic and nucleophilic reactivity) and of spin-polarization processes (e.g., photophysical changes arising from electron transitions). In analogy with the dual descriptor introduced by Morell et al. [J. Phys. Chem. A 109, 205 (2005)], we introduce new dual descriptors intended to simultaneously give information of the molecular regions where the spin-polarization process linking states of different multiplicity will drive electron density and spin density changes. The electronic charge and spin rearrangement in the spin forbidden radiative transitions S(0)-->T(n,pi(*)) and S(0)-->T(pi,pi(*)) in formaldehyde and ethylene, respectively, have been used as benchmark examples illustrating the usefulness of the new spin-polarization dual descriptors. These quantities indicate those regions where spin-orbit coupling effects are at work in such processes. Additionally, the qualitative relationship between the topology of the spin-polarization dual descriptors and the vertical singlet triplet energy gap in simple substituted carbene series has been also discussed. It is shown that the electron density and spin density rearrangements arise in agreement with spectroscopic experimental evidence and other theoretical results on the selected target systems.
Abe, Keina; Akamatsu, Rie
2013-01-01
Purpose/Objectives: The purpose of this study was to identify the aspects of the Theory of Planned Behavior with the greatest relevance to plate waste (PW) among elementary school children in Tokyo, Japan. Methods: A total of 111 fifth- and sixth-grade students at an elementary school in Tokyo, Japan responded to a self-report questionnaire. The…
Kusaka, A; Essinger-Hileman, T; Appel, J W; Gallardo, P; Irwin, K D; Jarosik, N; Nolta, M R; Page, L A; Parker, L P; Raghunathan, S; Sievers, J L; Simon, S M; Staggs, S T; Visnjic, K
2014-02-01
We evaluate the modulation of cosmic microwave background polarization using a rapidly rotating, half-wave plate (HWP) on the Atacama B-Mode Search. After demodulating the time-ordered-data (TOD), we find a significant reduction of atmospheric fluctuations. The demodulated TOD is stable on time scales of 500-1000 s, corresponding to frequencies of 1-2 mHz. This facilitates recovery of cosmological information at large angular scales, which are typically available only from balloon-borne or satellite experiments. This technique also achieves a sensitive measurement of celestial polarization without differencing the TOD of paired detectors sensitive to two orthogonal linear polarizations. This is the first demonstration of the ability to remove atmospheric contamination at these levels from a ground-based platform using a rapidly rotating HWP.
A molecular Debye-Hückel theory of solvation in polar fluids: An extension of the Born model
Xiao, Tiejun; Song, Xueyu
2017-12-01
A dielectric response theory of solvation beyond the conventional Born model for polar fluids is presented. The dielectric response of a polar fluid is described by a Born response mode and a linear combination of Debye-Hückel-like response modes that capture the nonlocal response of polar fluids. The Born mode is characterized by a bulk dielectric constant, while a Debye-Hückel mode is characterized by its corresponding Debye screening length. Both the bulk dielectric constant and the Debye screening lengths are determined from the bulk dielectric function of the polar fluid. The linear combination coefficients of the response modes are evaluated in a self-consistent way and can be used to evaluate the electrostatic contribution to the thermodynamic properties of a polar fluid. Our theory is applied to a dipolar hard sphere fluid as well as interaction site models of polar fluids such as water, where the electrostatic contribution to their thermodynamic properties can be obtained accurately.
2016-06-02
Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals: theory and experimental validation...Gilles Roy, Luc Bissonnette, Christian Bastille, and Gilles Vallee Multiple-field-of-view (MFOV) secondary-polarization lidar signals are used to...use secondary polarization. A mathematical relation among the PSD, the lidar fields of view, the scattering angles, and the angular depolarization
Photon polarization tensor in the light front field theory at zero and finite temperatures
International Nuclear Information System (INIS)
Silva, Charles da Rocha; Perez, Silvana; Strauss, Stefan
2012-01-01
Full text: In recent years, light front quantized field theories have been successfully generalized to finite temperature. The light front frame was introduced by Dirac , and the quantization of field theories on the null-plane has found applications in many branches of physics. In order to obtain the thermal contribution, we consider the hard thermal loop approximation. This technique was developed by Braaten and Pisarski for the thermal quantum field theory at equal times and is particularly useful to extract the leading thermal contributions to the amplitudes in perturbative quantum field theories. In this work, we consider the light front quantum electrodynamics in (3+1) dimensions and evaluate the photon polarization tensor at one loop for both zero and finite temperatures. In the first case, we apply the dimensional regularization method to extract the finite contribution and find the transverse structure for the amplitude in terms of the light front coordinates. The result agrees with one-loop covariant calculation. For the thermal corrections, we generalize the hard thermal loop approximation to the light front and calculate the dominant temperature contribution to the polarization tensor, consistent with the Ward identity. In both zero as well as finite temperature calculations, we use the oblique light front coordinates. (author)
Vishwakarma, R K; Shivhare, U S; Nanda, S K
2012-09-01
Hertz's theory of contact stresses was applied to predict the splitting of guar seeds during uni-axial compressive loading between 2 rigid parallel plates. The apparent modulus of elasticity of guar seeds varied between 296.18 and 116.19 MPa when force was applied normal to hilum joint (horizontal position), whereas it varied between 171.86 and 54.18 MPa when force was applied in the direction of hilum joint (vertical position) with in moisture content range of 5.16% to 15.28% (d.b.). At higher moisture contents, the seeds yielded after considerable deformation, thus showing ductile nature. Distribution of stresses below the point of contact were plotted to predict the location of critical point, which was found at 0.44 to 0.64 mm and 0.37 to 0.53 mm below the contact point in vertical and horizontal loading, respectively, depending upon moisture content. The separation of cotyledons from each other initiated before yielding of cotyledons and thus splitting of seed took place. The relationships between apparent modulus of elasticity, principal stresses with moisture content were described using second-order polynomial equations and validated experimentally. Manufacture of guar gum powder requires dehulling and splitting of guar seeds. This article describes splitting behavior of guar seeds under compressive loading. Results of this study may be used for design of dehulling and splitting systems of guar seeds. © 2012 Institute of Food Technologists®
A theory for fluidelastic instability of tube-support-plate-inactive modes
International Nuclear Information System (INIS)
Cai, Y.; Chen, S.S.; Chandra, S.
1991-01-01
Fluidelastic instability of loosely supported tubes, vibrating in a tube support plate (TSP)-inactive mode, is suspected to be one of the main causes of the tube failure in some operating steam generators and heat exchangers. This paper presents a mathematical model for fluidelastic instability of loosely supported tubes exposed to nonuniform crossflow. the model incorporates all motion-dependent fluid forces based on the unsteady-flow theory. In the unstable region associated with a TSP-inactive mode, tube motion can be described by two linear models: TSP-inactive mode when tubes do not strike the TSP, and TSP-active mode when tubes do strike the TSP. The bilinear model (consisting of these linear models) presented here simulates the characteristics of fluidelastic instability of loosely supported tubes in stable and unstable regions associated with TSP-inactive modes. Analytical results obtained with the model are compared with published experimental data; they agree reasonably well. The prediction procedure presented for the fluidelastic instability response of loosely supported tubes is applicable to the stable and unstable regions of the TSP-inactive mode
Pishtshev, A.; Kristoffel, N.
2017-05-01
We outline our novel results relating to the physics of the electron-TO-phonon (el-TO-ph) interaction in a polar crystal. We explained why the el-TO-ph interaction becomes effectively strong in a ferroelectric, and showed how the electron density redistribution establishes favorable conditions for soft-behavior of the long-wavelength branch of the active TO vibration. In the context of the vibronic theory it has been demonstrated that at the macroscopic level the interaction of electrons with the polar zone-centre TO phonons can be associated with the internal long-range dipole forces. Also we elucidated a methodological issue of how local field effects are incorporated within the vibronic theory. These result provided not only substantial support for the vibronic mechanism of ferroelectricity but also presented direct evidence of equivalence between vibronic and the other lattice dynamics models. The corresponding comparison allowed us to introduce the original parametrization for constants of the vibronic interaction in terms of key material constants. The applicability of the suggested formula has been tested for a wide class of polar materials.
Theory of space-charge polarization for determining ionic constants of electrolytic solutions
Sawada, Atsushi
2007-06-01
A theoretical expression of the complex dielectric constant attributed to space-charge polarization has been derived under an electric field calculated using Poisson's equation considering the effects of bound charges on ions. The frequency dependence of the complex dielectric constant of chlorobenzene solutions doped with tetrabutylammonium tetraphenylborate (TBATPB) has been analyzed using the theoretical expression, and the impact of the bound charges on the complex dielectric constant has been clarified quantitatively in comparison with a theory that does not consider the effect of the bound charges. The Stokes radius of TBA +(=TPB-) determined by the present theory shows a good agreement with that determined by conductometry in the past; hence, the present theory should be applicable to the direct determination of the mobility of ion species in an electrolytic solution without the need to measure ionic limiting equivalent conductance and transport number.
Institute of Scientific and Technical Information of China (English)
戴天民
2003-01-01
The purpose is to reestablish the balance laws of momentum, angular momentumand energy and to derive the corresponding local and nonlocal balance equations formicromorphic continuum mechanics and couple stress theory. The desired results formicromorphic continuum mechanics and couple stress theory are naturally obtained via directtransitions and reductions from the coupled conservation law of energy for micropolarcontinuum theory, respectively. The basic balance laws and equation s for micromorphiccontinuum mechanics and couple stress theory are constituted by combining these resultsderived here and the traditional conservation laws and equations of mass and microinertiaand the entropy inequality. The incomplete degrees of the former related continuum theoriesare clarified. Finally, some special cases are conveniently derived.
Chowdhury, Debanjan; Skinner, Brian; Lee, Patrick A.
2018-05-01
Electron tunneling into a system with strong interactions is known to exhibit an anomaly, in which the tunneling conductance vanishes continuously at low energy due to many-body interactions. Recent measurements have probed this anomaly in a quantum Hall bilayer of the half-filled Landau level, and shown that the anomaly apparently gets stronger as the half-filled Landau level is increasingly spin polarized. Motivated by this result, we construct a semiclassical hydrodynamic theory of the tunneling anomaly in terms of the charge-spreading action associated with tunneling between two copies of the Halperin-Lee-Read state with partial spin polarization. This theory is complementary to our recent work (D. Chowdhury, B. Skinner, and P. A. Lee, arXiv:1709.06091) where the electron spectral function was computed directly using an instanton-based approach. Our results show that the experimental observation cannot be understood within conventional theories of the tunneling anomaly, in which the spreading of the injected charge is driven by the mean-field Coulomb energy. However, we identify a qualitatively new regime, in which the mean-field Coulomb energy is effectively quenched and the tunneling anomaly is dominated by the finite compressibility of the composite Fermion liquid.
Bending and stretching of plates
Mansfield, E H; Hemp, W S
1964-01-01
The Bending and Stretching of Plates deals with elastic plate theory, particularly on small- and large-deflexion theory. Small-deflexion theory concerns derivation of basic equations, rectangular plates, plates of various shapes, plates whose boundaries are amenable to conformal transformation, plates with variable rigidity, and approximate methods. Large-deflexion theory includes general equations and some exact solutions, approximate methods in large-deflexion theory, asymptotic large-deflexion theories for very thin plates. Asymptotic theories covers membrane theory, tension field theory, a
International Nuclear Information System (INIS)
Ibral, Asmaa; Zouitine, Asmaa; Assaid, El Mahdi
2015-01-01
Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap
Energy Technology Data Exchange (ETDEWEB)
Ibral, Asmaa [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Zouitine, Asmaa [Département de Physique, Ecole Nationale Supérieure d' Enseignement Technique, Université Mohammed V Souissi, B. P. 6207 Rabat-Instituts, Rabat, Royaume du Maroc (Morocco); Assaid, El Mahdi, E-mail: eassaid@yahoo.fr [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); and others
2015-02-01
Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap.
Theory and design of heat exchanger : air cooled plate, spiral heat exchanger
International Nuclear Information System (INIS)
Min, Ui Dong
1960-02-01
This book deals with air cooled heat exchanger, which introduces heat rejection system, wet surface cooler in new from, explanation of structure and design, materials, basic design like plenums chambers and fan ring, finned tube fouling factor, airflow in forced draft and fan design. It also tells of plate heat exchanger and spiral heat exchanger giving descriptions of summary, selection, basic design, device and safety function, maintenance, structure of plate heat exchanger, frames and connector plate and, basic things of spiral tube heat exchanger.
Generalized nuclear Fukui functions in the framework of spin-polarized density-functional theory
International Nuclear Information System (INIS)
Chamorro, E.; Proft, F. de; Geerlings, P.
2005-01-01
An extension of Cohen's nuclear Fukui function is presented in the spin-polarized framework of density-functional theory (SP-DFT). The resulting new nuclear Fukui function indices Φ Nα and Φ Sα are intended to be the natural descriptors for the responses of the nuclei to changes involving charge transfer at constant multiplicity and also the spin polarization at constant number of electrons. These generalized quantities allow us to gain new insights within a perturbative scheme based on DFT. Calculations of the electronic and nuclear SP-DFT quantities are presented within a Kohn-Sham framework of chemical reactivity for a sample of molecules, including H 2 O, H 2 CO, and some simple nitrenes (NX) and phosphinidenes (PX), with X=H, Li, F, Cl, OH, SH, NH 2 , and PH 2 . Results have been interpreted in terms of chemical bonding in the context of Berlin's theorem, which provides a separation of the molecular space into binding and antibinding regions
Random matrix theory and acoustic resonances in plates with an approximate symmetry
DEFF Research Database (Denmark)
Andersen, Anders Peter; Ellegaard, C.; Jackson, A.D.
2001-01-01
We discuss a random matrix model of systems with an approximate symmetry and present the spectral fluctuation statistics and eigenvector characteristics for the model. An acoustic resonator like, e.g., an aluminum plate may have an approximate symmetry. We have measured the frequency spectrum and...
Iurlaro, Luigi; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander
2013-01-01
The Refined Zigzag Theory (RZT) enables accurate predictions of the in-plane displacements, strains, and stresses. The transverse shear stresses obtained from constitutive equations are layer-wise constant. Although these transverse shear stresses are generally accurate in the average, layer-wise sense, they are nevertheless discontinuous at layer interfaces, and thus they violate the requisite interlaminar continuity of transverse stresses. Recently, Tessler applied Reissner's mixed variational theorem and RZT kinematic assumptions to derive an accurate and efficient shear-deformation theory for homogeneous, laminated composite, and sandwich beams, called RZT(m), where "m" stands for "mixed". Herein, the RZT(m) for beams is extended to plate analysis, where two alternative assumptions for the transverse shear stresses field are examined: the first follows Tessler's formulation, whereas the second is based on Murakami's polynomial approach. Results for elasto-static simply supported and cantilever plates demonstrate that Tessler's formulation results in a powerful and efficient structural theory that is well-suited for the analysis of multilayered composite and sandwich panels.
Otsuki, Soichi
2016-02-01
This paper presents a theory describing totally incoherent multiple scattering of turbid spherical samples. It is proved that if reciprocity and mirror symmetry hold for single scattering by a particle, they also hold for multiple scattering in spherical samples. Monte Carlo simulations generate a reduced effective scattering Mueller matrix, which virtually satisfies reciprocity and mirror symmetry. The scattering matrix was factorized by using the symmetric decomposition in a predefined form, as well as the Lu-Chipman polar decomposition, approximately into a product of a pure depolarizer and vertically oriented linear retarding diattenuators. The parameters of these components were calculated as a function of the polar angle. While the turbid spherical sample is a pure depolarizer at low polar angles, it obtains more functions of the retarding diattenuator with increasing polar angle.
New directions in the theory of spin-polarized atomic hydrogen and deuterium
International Nuclear Information System (INIS)
Koelman, J.M.V.A.
1988-01-01
The three chapters of this thesis dealing with collisions between hydrogen (or deuterium) atoms in their ground state, each treat a different development in the theory of atomic hydrogen or deuterium gas. The decay due to interatomic collisions hindered till now all attempts to reach the low temperature, high-density regime where effects due to degeneracy are expected to show up. In ch. 2 a simple way out is presented for the case of Fermi gases: In spin-polarized Fermi systems at very low temperatures collisions are much effective than in Bose systems. For the Fermi gas, consisting of magnetically confined deuterium atoms, it appears that fast spin-exchange collisions automatically lead to a completely spin-polarized gas for which the spin-relaxation limited lifetime increases dramatically with decreasing temperature. As also the ratio of internal thermalization rate over decay rate increases with decreasing temperature, this gas can be cooled by forced evaporation down to very low temperatures. In ch. 3 it iis shown that the nuclear spin dynamics due to the hyperfine interaction during collisions, strongly limits the improvement in frequency stability attainable by H masers operating at low temperatures. In ch. 4 the phenomenon of spin waves is studied. It is shown that, despite the fact that interactions between two atoms are nuclear-spin independent, the outcome of a scattering event does not depend on the nuclear spins involved due to the particle indistinguishability effects at low collision energies. This effect gives rise to quantum phenomena on a macroscopic scale via the occurrence of spin waves. (author). 185 refs.; 34 figs
International Nuclear Information System (INIS)
Moss, R.L.
1977-10-01
A wrapper face is assumed to be a long, narrow, rectangular plate. The mechanical interaction between adjacent dilating wrappers in contact along an axial line is discussed in terms of the theory of the bending of plates. A variational method is used to obtain neat and concise equations that determine both the interaction load and the length of the line of contact. The prime objective of the work is to compare the results obtained from plate theory with corresponding expressions from much simpler calculations based on beam theory. Numerical results indicate that the elastic dilation of a wrapper and its interaction with a neighbouring wrapper can be calculated to adequate accuracy by simple beam theory. (author)
Gordon, R. G.; Horner-Johnson, B. C.
2010-12-01
Prior studies have shown that Pacific hotspots and Indo-Atlantic hotspots have moved in approximate unison relative to the spin axis since 65 Ma B.P. [Morgan, 1981; Gordon and Cape, 1981; Gordon, 1982] and since 56 Ma B.P. [Petronotis et al., 1994], which is most simply interpreted as true polar wander. In contrast, Pacific hotspots and Indo-Atlantic hotspots give conflicting results for 72 Ma B.P. and for 81 Ma B.P., which may indicate motion between Pacific hotspots and Indo-Atlantic hotspots [Tarduno and Cottrell, 1997; Petronotis et al., 1999; Tarduno et al., 2003]. Thus it is important to estimate Pacific plate apparent polar wander (APW) for more time intervals. From such estimates the APW of Pacific hotspots can be inferred and compared with that of Indo-Atlantic hotspots [e.g., Besse and Courtillot 2002]. Here we present a study of the skewness of anomaly 12r between the Galapagos and Clipperton and between the Clipperton and Clarion fracture zones. We chose this region for several reasons: First, numerical experiments, like those conducted by Acton and Gordon [1991], indicate that magnetic profiles between the Galapagos and Clarion fracture zones should contain the most information about the Pacific plate paleomagnetic pole for chron C12r (32 Ma B.P.). Second, in these two spreading rate corridors, spreading half rates range from 72 to 86 mm/a and therefore have negligible anomalous skewness, given that they exceed ≈50 mm/a [Roest et al., 1992; Dyment et al. 1994]. Third, vector aeromagnetic profiles are available for analysis. One of the challenges to interpreting magnetic anomalies in low latitudes where the anomalies strike nearly north-south is the very low amplitude of the signal relative to the noise, the latter of which can be especially intense near the present magnetic equator due to the amplification of diurnal variation by the equatorial electrojet. Previously we showed that vector aeromagnetic profiles record low-latitude Pacific plate
Energy Technology Data Exchange (ETDEWEB)
Stupakov, Gennady; Zhou, Demin
2016-04-21
We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.
Tsuchida, Satoshi; Kuratsuji, Hiroshi
2018-05-01
A stochastic theory is developed for the light transmitting the optical media exhibiting linear and nonlinear birefringence. The starting point is the two-component nonlinear Schrödinger equation (NLSE). On the basis of the ansatz of “soliton” solution for the NLSE, the evolution equation for the Stokes parameters is derived, which turns out to be the Langevin equation by taking account of randomness and dissipation inherent in the birefringent media. The Langevin equation is converted to the Fokker-Planck (FP) equation for the probability distribution by employing the technique of functional integral on the assumption of the Gaussian white noise for the random fluctuation. The specific application is considered for the optical rotation, which is described by the ellipticity (third component of the Stokes parameters) alone: (i) The asymptotic analysis is given for the functional integral, which leads to the transition rate on the Poincaré sphere. (ii) The FP equation is analyzed in the strong coupling approximation, by which the diffusive behavior is obtained for the linear and nonlinear birefringence. These would provide with a basis of statistical analysis for the polarization phenomena in nonlinear birefringent media.
Caputo, Miranda; Andersson, B.-G.; Kulas, Kristin Rose
2018-06-01
Although it is known that the dust grains in the ISM align with magnetic fields, the alignment physics of these particles is still somewhat unclear. Utilizing direct observational data and Radiative Alignment Torque (RAT) theory, further constraints can be put onto this alignment. Due to the physics of this alignment, there is a linear relationship between the extinction of the light seen through a dust cloud (AV) and the wavelength of maximum polarization. A previous study, focusing on the Taurus cloud, found that there is a second, steeper relationship seen beyond an extinction of about four magnitudes, likely due to grain growth, in addition to the original linear relationship. We present early results from observations of low-to-medium extinction lines of sight in the starless cloud L183 (aka L134N), aimed at testing the Taurus results. We are currently extending the survey of stars behind L183 to higher extinctions to better probe the origins of the bifurcation seen in the Taurus results.
On three phase lags thermodi¤usion theory in micropolar porous circular plate
Directory of Open Access Journals (Sweden)
Rajneesh Kumar
2017-09-01
Full Text Available The present work examines a two dimensional axisymmetric problem of micropolar porous thermodi¤usion circular plate due to thermal and chemical potential sources. The governing equations are solved by using the potential function. The expressions of displacements, microrotation, volume fraction field, temperature distribution, concentration and stresses are obtained in the transformed domain by using Laplace and Hankel transforms. The inversion of transforms using Fourier expansion techniques has been applied to obtain the results in the physical domain. The numerical results for resulting quantities are obtained and depicted graphically to show the influence of porosity, relaxation time, phase lags, with and without energy dissipation on the resulting quantities. Some particular cases are also deduced.
Polarity in GaN and ZnO: Theory, measurement, growth, and devices
Zúñiga-Pérez, Jesús; Consonni, Vincent; Lymperakis, Liverios; Kong, Xiang; Trampert, Achim; Fernández-Garrido, Sergio; Brandt, Oliver; Renevier, Hubert; Keller, Stacia; Hestroffer, Karine; Wagner, Markus R.; Reparaz, Juan Sebastián; Akyol, Fatih; Rajan, Siddharth; Rennesson, Stéphanie; Palacios, Tomás; Feuillet, Guy
2016-12-01
The polar nature of the wurtzite crystalline structure of GaN and ZnO results in the existence of a spontaneous electric polarization within these materials and their associated alloys (Ga,Al,In)N and (Zn,Mg,Cd)O. The polarity has also important consequences on the stability of the different crystallographic surfaces, and this becomes especially important when considering epitaxial growth. Furthermore, the internal polarization fields may adversely affect the properties of optoelectronic devices but is also used as a potential advantage for advanced electronic devices. In this article, polarity-related issues in GaN and ZnO are reviewed, going from theoretical considerations to electronic and optoelectronic devices, through thin film, and nanostructure growth. The necessary theoretical background is first introduced and the stability of the cation and anion polarity surfaces is discussed. For assessing the polarity, one has to make use of specific characterization methods, which are described in detail. Subsequently, the nucleation and growth mechanisms of thin films and nanostructures, including nanowires, are presented, reviewing the specific growth conditions that allow controlling the polarity of such objects. Eventually, the demonstrated and/or expected effects of polarity on the properties and performances of optoelectronic and electronic devices are reported. The present review is intended to yield an in-depth view of some of the hot topics related to polarity in GaN and ZnO, a fast growing subject over the last decade.
Li, Yuwei; Li, Ang; Junge, Jason; Bronner, Marianne
2017-10-10
Both oriented cell divisions and cell rearrangements are critical for proper embryogenesis and organogenesis. However, little is known about how these two cellular events are integrated. Here we examine the linkage between these processes in chick limb cartilage. By combining retroviral-based multicolor clonal analysis with live imaging, the results show that single chondrocyte precursors can generate both single-column and multi-column clones through oriented division followed by cell rearrangements. Focusing on single column formation, we show that this stereotypical tissue architecture is established by a pivot-like process between sister cells. After mediolateral cell division, N-cadherin is enriched in the post-cleavage furrow; then one cell pivots around the other, resulting in stacking into a column. Perturbation analyses demonstrate that planar cell polarity signaling enables cells to pivot in the direction of limb elongation via this N-cadherin-mediated coupling. Our work provides new insights into the mechanisms generating appropriate tissue architecture of limb skeleton.
Wang, Wenjun; Li, Peng; Jin, Feng
2016-09-01
A novel two-dimensional linear elastic theory of magneto-electro-elastic (MEE) plates, considering both surface and nonlocal effects, is established for the first time based on Hamilton’s principle and the Lee plate theory. The equations derived are more general, suitable for static and dynamic analyses, and can also be reduced to the piezoelectric, piezomagnetic, and elastic cases. As a specific application example, the influences of the surface and nonlocal effects, poling directions, piezoelectric phase materials, volume fraction, damping, and applied magnetic field (i.e., constant applied magnetic field and time-harmonic applied magnetic field) on the magnetoelectric (ME) coupling effects are first investigated based on the established two-dimensional plate theory. The results show that the ME coupling coefficient has an obvious size-dependent characteristic owing to the surface effects, and the surface effects increase the ME coupling effects significantly when the plate thickness decreases to its critical thickness. Below this critical thickness, the size-dependent effect is obvious and must be considered. In addition, the output power density of a magnetic energy nanoharvester is also evaluated using the two-dimensional plate theory obtained, with the results showing that a relatively larger output power density can be achieved at the nanoscale. This study provides a mathematical tool which can be used to analyze the mechanical properties of nanostructures theoretically and numerically, as well as evaluating the size effect qualitatively and quantitatively.
Institute of Scientific and Technical Information of China (English)
戴安民
2003-01-01
The purpose is to reestablish the coupled conservation laws, the local conservation equations and the jump conditions of mass and inertia for polar continuum theories. In this connection the new material derivatives of the deformation gradient, the line element, the surface element and the volume element were derived and the generalized Reynolds transport theorem was presented. Combining these conservation laws of mass and inertia with the balance laws of momentum, angular momentum and energy derived in our previous papers of this series, a rather complete system of coupled basic laws and principles for polar continuum theories is constituted on the whole. From this system the coupled nonlocal balance equations of mass, inertia, momentum, angular momentum and energy may be obtained by the usual localization.
Directory of Open Access Journals (Sweden)
Susan Basile
2016-01-01
Full Text Available Background: Overuse injuries in children and adolescents are becoming increasingly common, particularly in those who regularly participate in a single sport. As a result, prevention, early detection and treatment of these injuries is vital. However, existing research in adult populations cannot always be directly applied to analogous cases in younger populations. This study attempts to provide an example of how both mathematical and computer modeling can be utilized to predict alterations in load locations, directions, and magnitudes resulting from maturational changes in a way not possible in vivo. Methods: A 2D leg extension model was created and used to calculate relevant forces at the proximal knee joint. Individual aspects of the model, such as quadriceps force and leg length, were changed to quantify how increases in a growing adolescent’s force generation and limb length may affect the forces at the joint. The derived forces were input into a 3D finite element model incorporating a growing young adult’s relatively weaker epiphyseal plate material to calculate the stresses and strains on the tibia of an adolescent. Results: Findings indicated that a shortened patellar tendon and increased quadriceps muscle strength were potentially greater contributors to increased stress on the proximal tibia, as opposed to aspects such as height and weight changes. Conclusions: The theoretical and computational methods employed show promise in their ability to predict potential injury risks in populations for whom evidence-based research is lacking. Models incorporating the elbow and shoulder have high impact potential for young baseball pitchers.
Study of squeeze film damping in a micro-beam resonator based on micro-polar theory
Directory of Open Access Journals (Sweden)
Mina Ghanbari
Full Text Available In this paper, squeeze film damping in a micro-beam resonator based on micro-polar theory has been investigated. The proposed model for this study consists of a clamped-clamped micro-beam bounded between two fixed layers. The gap between the micro-beam and layers is filled with air. As fluid behaves differently in micro scale than macro, the micro-scale fluid field in the gap has been modeled based on micro-polar theory. Equation of motion governing transverse deflection of the micro- beam based on modified couple stress theory and also non-linear Reynolds equation of the fluid field based on micropolar theory have been non-dimensionalized, linearized and solved simultaneously in order to calculate the quality factor of the resonator. The effect of micropolar parameters of air on the quality factor has been investigated. The quality factor of the of the micro-beam resonator for different values of non-dimensionalized length scale of the beam, squeeze number and also non-dimensionalized pressure has been calculated and compared to the obtained values of quality factor based on classical theory.
Okamoto, Ryuichi; Onuki, Akira
2012-03-21
We investigate the critical behavior of a near-critical fluid confined between two parallel plates in contact with a reservoir by calculating the order parameter profile and the Casimir amplitudes (for the force density and for the grand potential). Our results are applicable to one-component fluids and binary mixtures. We assume that the walls absorb one of the fluid components selectively for binary mixtures. We propose a renormalized local functional theory accounting for the fluctuation effects. Analysis is performed in the plane of the temperature T and the order parameter in the reservoir ψ(∞). Our theory is universal if the physical quantities are scaled appropriately. If the component favored by the walls is slightly poor in the reservoir, there appears a line of first-order phase transition of capillary condensation outside the bulk coexistence curve. The excess adsorption changes discontinuously between condensed and noncondensed states at the transition. With increasing T, the transition line ends at a capillary critical point T=T(c) (ca) slightly lower than the bulk critical temperature T(c) for the upper critical solution temperature. The Casimir amplitudes are larger than their critical point values by 10-100 times at off-critical compositions near the capillary condensation line. © 2012 American Institute of Physics
Cahill, James A; Green, Richard E; Fulton, Tara L; Stiller, Mathias; Jay, Flora; Ovsyanikov, Nikita; Salamzade, Rauf; St John, John; Stirling, Ian; Slatkin, Montgomery; Shapiro, Beth
2013-01-01
Despite extensive genetic analysis, the evolutionary relationship between polar bears (Ursus maritimus) and brown bears (U. arctos) remains unclear. The two most recent comprehensive reports indicate a recent divergence with little subsequent admixture or a much more ancient divergence followed by extensive admixture. At the center of this controversy are the Alaskan ABC Islands brown bears that show evidence of shared ancestry with polar bears. We present an analysis of genome-wide sequence data for seven polar bears, one ABC Islands brown bear, one mainland Alaskan brown bear, and a black bear (U. americanus), plus recently published datasets from other bears. Surprisingly, we find clear evidence for gene flow from polar bears into ABC Islands brown bears but no evidence of gene flow from brown bears into polar bears. Importantly, while polar bears contributed bear, they contributed 6.5% of the X chromosome. The magnitude of sex-biased polar bear ancestry and the clear direction of gene flow suggest a model wherein the enigmatic ABC Island brown bears are the descendants of a polar bear population that was gradually converted into brown bears via male-dominated brown bear admixture. We present a model that reconciles heretofore conflicting genetic observations. We posit that the enigmatic ABC Islands brown bears derive from a population of polar bears likely stranded by the receding ice at the end of the last glacial period. Since then, male brown bear migration onto the island has gradually converted these bears into an admixed population whose phenotype and genotype are principally brown bear, except at mtDNA and X-linked loci. This process of genome erosion and conversion may be a common outcome when climate change or other forces cause a population to become isolated and then overrun by species with which it can hybridize.
Directory of Open Access Journals (Sweden)
James A Cahill
Full Text Available Despite extensive genetic analysis, the evolutionary relationship between polar bears (Ursus maritimus and brown bears (U. arctos remains unclear. The two most recent comprehensive reports indicate a recent divergence with little subsequent admixture or a much more ancient divergence followed by extensive admixture. At the center of this controversy are the Alaskan ABC Islands brown bears that show evidence of shared ancestry with polar bears. We present an analysis of genome-wide sequence data for seven polar bears, one ABC Islands brown bear, one mainland Alaskan brown bear, and a black bear (U. americanus, plus recently published datasets from other bears. Surprisingly, we find clear evidence for gene flow from polar bears into ABC Islands brown bears but no evidence of gene flow from brown bears into polar bears. Importantly, while polar bears contributed <1% of the autosomal genome of the ABC Islands brown bear, they contributed 6.5% of the X chromosome. The magnitude of sex-biased polar bear ancestry and the clear direction of gene flow suggest a model wherein the enigmatic ABC Island brown bears are the descendants of a polar bear population that was gradually converted into brown bears via male-dominated brown bear admixture. We present a model that reconciles heretofore conflicting genetic observations. We posit that the enigmatic ABC Islands brown bears derive from a population of polar bears likely stranded by the receding ice at the end of the last glacial period. Since then, male brown bear migration onto the island has gradually converted these bears into an admixed population whose phenotype and genotype are principally brown bear, except at mtDNA and X-linked loci. This process of genome erosion and conversion may be a common outcome when climate change or other forces cause a population to become isolated and then overrun by species with which it can hybridize.
Energy Technology Data Exchange (ETDEWEB)
Balakin, Alexander B.; Popov, Vladimir A., E-mail: alexander.balakin@kpfu.ru, E-mail: vladipopov@mail.ru [Department of General Relativity and Gravitation, Institute of Physics, Kazan Federal University, Kremlevskaya str. 18, Kazan 420008 (Russian Federation)
2017-04-01
In the framework of the Einstein-aether theory we consider a cosmological model, which describes the evolution of the unit dynamic vector field with activated rotational degree of freedom. We discuss exact solutions of the Einstein-aether theory, for which the space-time is of the Gödel-type, the velocity four-vector of the aether motion is characterized by a non-vanishing vorticity, thus the rotational vectorial modes can be associated with the source of the universe rotation. The main goal of our paper is to study the motion of test relativistic particles with a vectorial internal degree of freedom (spin or polarization), which is coupled to the unit dynamic vector field. The particles are considered as the test ones in the given space-time background of the Gödel-type; the spin (polarization) coupling to the unit dynamic vector field is modeled using exact solutions of three types. The first exact solution describes the aether with arbitrary Jacobson's coupling constants; the second one relates to the case, when the Jacobson's constant responsible for the vorticity is vanishing; the third exact solution is obtained using three constraints for the coupling constants. The analysis of the exact expressions, which are obtained for the particle momentum and for the spin (polarization) four-vector components, shows that the interaction of the spin (polarization) with the unit vector field induces a rotation, which is additional to the geodesic precession of the spin (polarization) associated with the universe rotation as a whole.
International Nuclear Information System (INIS)
Weitsman, J.; Harvard Univ., Cambridge, MA
1991-01-01
We study the quantization of the moduli space of flat connections on a surface of genus one, using the real polarization of this space. The quantum wave functions in this formalism are exponential functions supported along the integral fibres of the polarization. The space of wave functions obtained in this way is isomorphic to a space of theta functions. We use our construction to cunstruct part of what may be a topological field theory in genus one, and to compute the associated invariants of some three manifolds. These computations agree with those of Witten, but the invariants are expressed as sums of quantities computed at a discrete set of connections with curvature concentrated on a link in the three manifold. A similar prescription is used to produce knot invariants. (orig.)
Merrett, Craig G.
-partial differential equations. The spatial component of the governing equations is eliminated using a series expansion of basis functions and by applying Galerkin's method. The number of terms in the series expansion affects the convergence of the spatial component, and convergence is best determined by the von Koch rules that previously appeared for column buckling problems. After elimination of the spatial component, an ordinary integral-differential equation in time remains. The dynamic stability of elastic and viscoelastic problems is assessed using the determinant of the governing system of equations and the time component of the solution in the form exp (lambda t). The determinant is in terms of lambda where the values of lambda are the latent roots of the aero-servo-viscoelastic system. The real component of lambda dictates the stability of the system. If all the real components are negative, the system is stable. If at least one real component is zero and all others are negative, the system is neutrally stable. If one or more real components are positive, the system is unstable. In aero-servo-viscoelasticity, the neutrally stable condition is termed flutter. For an aero-servo-viscoelastic lifting surface, the unstable condition is historically termed torsional divergence. The more general aero-servo-viscoelastic theory has produced a number of important results, enumerated in the following list: 1. Subsonic panel flutter can occur before panel instability. This result overturned a long held assumption in aeroelasticity, and was produced by the novel application of the von Koch rules for convergence. Further, experimental results from the 1950s by the Air Force were retrieved to provide additional proof. 2. An expanded definition for flutter of a lifting surface. The legacy definition is that flutter is the first occurrence of simple harmonic motion of a structure, and the flight velocity at which this motion occurs is taken as the flutter speed. The expanded definition
Theory of the photoelectric effect assisted by an elliptically polarized laser field
International Nuclear Information System (INIS)
Li Shumin; Jentschura, Ulrich D
2009-01-01
The laser-assisted photoelectric effect in atomic hydrogen is investigated for linear, circular and general elliptic polarizations. The perturbative dressed state of the atom in an elliptically polarized nonresonant laser field is derived in the velocity gauge. The continuum state of the ejected electron is described by a Coulomb-Volkov wavefunction. Numerical results show that the ionization cross section by a vacuum ultraviolet photon is enhanced at high laser field intensities and low frequencies. At small and extremely large scattering angles (measured with respect to the wave vector of the incoming vacuum ultraviolet photon), the process for emitting a laser photon is predominant, while at medium angles, the result favours the process without a laser photon exchange. The dependence of the results on the laser polarization and on various geometries is studied, and an interesting pattern is found for the dependence on the frequency of the dressing laser; an intuitive explanation is offered.
Digital Repository Service at National Institute of Oceanography (India)
Chaubey, A.K.
's continental drift theory was later disproved, it was one of the first times that the idea of crustal movement had been introduced to the scientific community; and it has laid the groundwork for the development of modern plate tectonics. In the early... of the structure of the atom was to physical sciences and the theory of evolution was to the life sciences. Tectonics is the study of the forces within the Earth that give rise to continents, ocean basins, mountain ranges, earthquake belts and other large-scale...
Directory of Open Access Journals (Sweden)
Billy W. Day
2010-11-01
Full Text Available Biosensors have been used extensively in the scientific community for several purposes, most notably to determine association and dissociation kinetics, protein-ligand, protein-protein, or nucleic acid hybridization interactions. A number of different types of biosensors are available in the field, each with real or perceived benefits over the others. This review discusses the basic theory and operational arrangements of four commercially available types of optical biosensors: surface plasmon resonance, resonant mirror, resonance waveguide grating, and dual polarization interferometry. The different applications these techniques offer are discussed from experiments and results reported in recently published literature. Additionally, recent advancements or modifications to the current techniques are also discussed.
Energy Technology Data Exchange (ETDEWEB)
Melnikov, N.B., E-mail: melnikov@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Reser, B.I., E-mail: reser@imp.uran.ru [Miheev Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Paradezhenko, G.V., E-mail: gparadezhenko@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation)
2016-08-01
To study the spin-density correlations in the ferromagnetic metals above the Curie temperature, we relate the spin correlator and neutron scattering cross-section. In the dynamic spin-fluctuation theory, we obtain explicit expressions for the effective and local magnetic moments and spatial spin-density correlator. Our theoretical results are demonstrated by the example of bcc Fe. The effective and local moments are found in good agreement with results of polarized neutron scattering experiment over a wide temperature range. The calculated short-range order is small (up to 4 Å) and slowly decreases with temperature.
Polarization correlations of S-1(0) proton pairs as tests of hidden-variable theories
Polachic, C; Rangacharyulu, C; van den Berg, AM; Hamieh, S; Harakeh, MN; Hunyadi, M; de Huu, MA; Wortche, HJ; Heyse, J; Baumer, C; Frekers, D; Brooke, JA; Busch, P
2004-01-01
We are investigating the feasibility of nuclear physics experiments designed to overcome the loopholes of observer-dependent reality and satisfying the counterfactuality condition. In a first approach, we have measured polarization correlations of S-1(0) proton pairs produced in C-12(d, He-2) and
On the theory of elastic scattering of spin polarized electrons from ferromagnets
International Nuclear Information System (INIS)
Helman, J.S.
1984-01-01
The first Born approximation supposedly inadequate for dealing with elastic scattering of spin polarized electrons on ferromagnets is reconsidered. It is found that when used in conjunction with a spin dependent pseudopotential, it can describe the gross features of the ansisotropy. (Author) [pt
On the theory of elastic scattering of spin polarized electrons from ferromagnets
International Nuclear Information System (INIS)
Helman, J.S.; Baltenspenger, W.
1984-01-01
The first Born approximation supposedly inadequate for dealing with the elastic scattering of spin polarized electrons on ferromagnets is reconsidered. It is found that when used in conjunction with a spin dependent pseudo-potential, it can describe the gross features of the anisotropy. (author) [pt
Quantum Monte Carlo formulation of volume polarization in dielectric continuum theory
Amovilli, Claudio; Filippi, Claudia; Floris, Franca Maria
2008-01-01
We present a novel formulation based on quantum Monte Carlo techniques for the treatment of volume polarization due to quantum mechanical penetration of the solute charge density in the solvent domain. The method allows to accurately solve Poisson’s equation of the solvation model coupled with the
Inertial polarization of dielectrics
Zavodovsky, A. G.
2011-01-01
It was proved that accelerated motion of a linear dielectric causes its polarization. Accelerated translational motion of a dielectric's plate leads to the positive charge of the surface facing the direction of motion. Metal plates of a capacitor were used to register polarized charges on a dielectric's surface. Potential difference between the capacitor plates is proportional to acceleration, when acceleration is constant potential difference grows with the increase of a dielectric's area, o...
International Nuclear Information System (INIS)
Mahan, G.D.
1992-01-01
Ferroelectricity occurs in many different kinds of materials. Many of the technologically important solids, which are ferroelectric, can be classified as ionic. Any microscopic theory of ferroelectricity must contain a description of local polarization forces. We have collaborated in the development of a theory of ionic polarization which is quite successful. Its basic assumption is that the polarization is derived from the properties of the individual ions. We have applied this theory successfully to diverse subjects as linear and nonlinear optical response, phonon dispersion, and piezoelectricity. We have developed numerical methods using the local Density approximation to calculate the multipole polarizabilities of ions when subject to various fields. We have also developed methods of calculating the nonlinear hyperpolarizability, and showed that it can be used to explain light scattering experiments. This paper elaborates on this polarization theory
Ebrahimi, Farzad; Barati, Mohammad Reza
2016-10-01
In this article, a nonlocal four-variable refined plate theory is developed to examine the buckling behavior of nanoplates made of magneto-electro-elastic functionally graded (MEE-FG) materials resting on Winkler-Pasternak foundation. Material properties of nanoplate change in spatial coordinate based on power-law distribution. The nonlocal governing equations are deduced by employing the Hamilton principle. For various boundary conditions, the analytical solutions of nonlocal MEE-FG plates for buckling problem will be obtained based on an exact solution approach. Finally, dependency of buckling response of MEE-FG nanoplate on elastic foundation parameters, magnetic potential, external electric voltage, various boundary conditions, small scale parameter, power-law index, plate side-to-thickness ratio and aspect ratio will be figure out. These results can be advantageous for the mechanical analysis and design of intelligent nanoscale structures constructed from magneto-electro-thermo-elastic functionally graded materials.
International Nuclear Information System (INIS)
Lipperheide, R.; Wille, U.
2006-01-01
A theory of spin-polarized electron transport in ferromagnet-semiconductor heterostructures, based on a unified semiclassical description of ballistic and diffusive transport in semiconductors, is outlined. The aim is to provide a framework for studying the interplay of spin relaxation and transport mechanism in spintronic devices. Transport inside the (nondegenerate) semiconductor is described in terms of a thermoballistic current, in which electrons move ballistically in the electric field arising from internal and external electrostatic potentials, and are thermalized at randomly distributed equilibration points. Spin relaxation is allowed to take place during the ballistic motion. For arbitrary potential profile and arbitrary values of the momentum and spin relaxation lengths, an integral equation for a spin transport function determining the spin polarization in the semiconductor is derived. For field-driven transport in a homogeneous semiconductor, the integral equation can be converted into a second-order differential equation that generalizes the spin drift-diffusion equation. The spin polarization in ferromagnet-semiconductor structures is obtained by matching the spin-resolved chemical potentials at the interfaces, with allowance for spin-selective interface resistances. Illustrative examples are considered
DEFF Research Database (Denmark)
Sørensen, Herman
1997-01-01
Fundamental analytical methods for the calculation of the bending strength and stability of isotrop and stiffened panels typically used in ship structures.Practical working examples with references to the rules of ship classification societies....
Electron traps in polar liquids. An application of the formalism of the random field theory
International Nuclear Information System (INIS)
Hilczer, M.; Bartczak, W.M.
1992-01-01
The potential energy surface in a disordered medium is described, using the concepts of the mathematical theory of random fields. The statistics of trapping sites (the regions of an excursion of the random field) is obtained for liquid methanol as a numerical example of the theory. (author). 15 refs, 4 figs
Polarization ray tracing in anisotropic optically active media. II. Theory and physics
International Nuclear Information System (INIS)
McClain, S.C.; Hillman, L.W.; Chipman, R.A.
1993-01-01
Refraction, reflection, and amplitude relations are derived that apply to polarization ray tracing in anisotropic, optically active media such as quartz. The constitutive relations for quartz are discussed. The refractive indices and polarization states associated with the two modes of propagation are derived as a function of wave direction. A procedure for refracting at any uniaxial or optically active interface is derived that computes both the ray direction and the wave direction. A method for computing the optical path length is given, and Fresnel transmission and ref lection equations are derived from boundary conditions on the electromagnetic fields. These ray-tracing formulas apply to uniaxial, optically active media and therefore encompass uniaxial, non-optically active materials and isotropic, optically active materials
Forward scattering of polarized light from a turbid slab: theory and Monte Carlo simulations.
Otsuki, Soichi
2016-12-20
It is proved that if reciprocity and mirror symmetry hold for single scattering by a particle, they also hold for multiple scattering in turbid slab media. Monte Carlo simulations generate a reduced effective Mueller matrix for forward scattering, which satisfies reciprocity and mirror symmetry, but satisfies only reciprocity if the medium contains chiral components. The scattering matrix was factorized by using the Lu-Chipman polar decomposition, which affords the polarization parameters as a function of the radial distance from the center. The depolarization coefficients decrease with increasing distance, whereas the scattering-induced linear diattenuation and retardance become larger in the middle-distance range. The optical rotation for a chiral medium increases with increasing distance.
Application of the Ursell-Mayer method in the theory of spin-polarized atomic hydrogen
International Nuclear Information System (INIS)
Kilic, S.; Radelja, T.
1981-01-01
Employing the Ursell-Mayer method and Ljolje semi-free gas model analytic relations describing ground state properties (energy, pressure, compressibility, sound velocity, radial distribution function and one-particle density matrix) of spin-polarized atomic hydrogen were derived. The expressions are valid up to density 2 10 26 atoms/m 3 . It was found out that at density of 2 10 26 atoms/m 3 the condensation of particle in momentum space is 88% (at absolute zero). (orig.)
Ratiometric fluorescence polarization as a cytometric functional parameter: theory and practice
International Nuclear Information System (INIS)
Yishai, Yitzhak; Fixler, Dror; Cohen-Kashi, Meir; Zurgil, Naomi; Deutsch, Mordechai
2003-01-01
The use of ratiometric fluorescence polarization (RFP) as a functional parameter in monitoring cellular activation is suggested, based on the physical phenomenon of fluorescence polarization dependency on emission wavelengths in multiple (at least binary) solutions. The theoretical basis of this dependency is thoroughly discussed and examined via simulation. For simulation, aimed to imitate a fluorophore-stained cell, real values of the fluorescence spectrum and polarization of different single fluorophore solutions were used. The simulation as well as the experimentally obtained values of RFP indicated the high sensitivity of this measure. Finally, the RFP parameter was utilized as a cytometric measure in three exemplary cellular bioassays. In the first, the apoptotic effect of oxLDL in a human Jurkat FDA-stained T cell line was monitored by RFP. In the second, the interaction between cell surface membrane receptors of human T lymphocyte cells was monitored by RFP measurements as a complementary means to the fluorescence resonance energy transfer (FRET) technique. In the third bioassay, cellular thiol level of FDA- and CMFDA-labelled Jurkat T cells was monitored via RFP
Energy Technology Data Exchange (ETDEWEB)
Nami, Mohammad Rahim [Shiraz University, Shiraz, Iran (Iran, Islamic Republic of); Janghorban, Maziar [Islamic Azad University, Marvdash (Iran, Islamic Republic of)
2015-06-15
In this work, dynamic analysis of rectangular nanoplates subjected to moving load is presented. In order to derive the governing equations of motion, second order plate theory is used. To capture the small scale effects, the nonlocal elasticity theory is adopted. It is assumed that the nanoplate is subjected to a moving concentrated load with the constant velocity V in the x direction. To solve the governing equations, state-space method is used to find the deflections of rectangular nanoplate under moving load. The results obtained here reveal that the nonlocality has significant effect on the deflection of rectangular nanoplate subjected to moving load.
Directory of Open Access Journals (Sweden)
O. P. Verkhoglyadova
2009-12-01
Full Text Available We show a case of an outer zone magnetospheric electromagnetic wave propagating at the Gendrin angle, within uncertainty of the measurements. The chorus event occurred in a "minimum B pocket". For the illustrated example, the measured angle of wave propagation relative to the ambient magnetic field θkB was 58°±4°. For this event the theoretical Gendrin angle was 62°. Cold plasma model is used to demonstrate that Gendrin mode waves are right-hand circularly polarized, in excellent agreement with the observations.
String theory in polar coordinates and the vanishing of the one-loop Rindler entropy
Energy Technology Data Exchange (ETDEWEB)
Mertens, Thomas G. [Joseph Henry Laboratories, Princeton University,Princeton, NJ 08544 (United States); Verschelde, Henri [Ghent University, Department of Physics and Astronomy,Krijgslaan, 281-S9, 9000 Gent (Belgium); Zakharov, Valentin I. [ITEP, B. Cheremushkinskaya 25, Moscow, 117218 (Russian Federation); Moscow Inst Phys & Technol,Dolgoprudny, Moscow Region, 141700 (Russian Federation); School of Biomedicine, Far Eastern Federal University,Sukhanova str 8, Vladivostok 690950 (Russian Federation)
2016-08-19
We analyze the string spectrum of flat space in polar coordinates, following the small curvature limit of the SL(2,ℝ)/U(1) cigar CFT. We first analyze the partition function of the cigar itself, making some clarifications of the structure of the spectrum that have escaped attention up to this point. The superstring spectrum (type 0 and type II) is shown to exhibit an involution symmetry, that survives the small curvature limit. We classify all marginal states in polar coordinates for type II superstrings, with emphasis on their links and their superconformal structure. This classification is confirmed by an explicit large τ{sub 2} analysis of the partition function. Next we compare three approaches towards the type II genus one entropy in Rindler space: using a sum-over-fields strategy, using a Melvin model approach as in http://dx.doi.org/10.1007/JHEP05(2015)106 and finally using a saddle point method on the cigar partition function. In each case we highlight possible obstructions and motivate that the correct procedures yield a vanishing result: S=0. We finally discuss how the QFT UV divergences of the fields in the spectrum disappear when computing the free energy and entropy using Euclidean techniques.
Azar, R Julian; Horn, Paul Richard; Sundstrom, Eric Jon; Head-Gordon, Martin
2013-02-28
The problem of describing the energy-lowering associated with polarization of interacting molecules is considered in the overlapping regime for self-consistent field wavefunctions. The existing approach of solving for absolutely localized molecular orbital (ALMO) coefficients that are block-diagonal in the fragments is shown based on formal grounds and practical calculations to often overestimate the strength of polarization effects. A new approach using a minimal basis of polarized orthogonal local MOs (polMOs) is developed as an alternative. The polMO basis is minimal in the sense that one polarization function is provided for each unpolarized orbital that is occupied; such an approach is exact in second-order perturbation theory. Based on formal grounds and practical calculations, the polMO approach is shown to underestimate the strength of polarization effects. In contrast to the ALMO method, however, the polMO approach yields results that are very stable to improvements in the underlying AO basis expansion. Combining the ALMO and polMO approaches allows an estimate of the range of energy-lowering due to polarization. Extensive numerical calculations on the water dimer using a large range of basis sets with Hartree-Fock theory and a variety of different density functionals illustrate the key considerations. Results are also presented for the polarization-dominated Na(+)CH4 complex. Implications for energy decomposition analysis of intermolecular interactions are discussed.
Energy Technology Data Exchange (ETDEWEB)
Morgan, F. Dale; Sogade, John
2004-12-14
This project was designed as a broad foundational study of spectral induced polarization (SIP) for characterization of contaminated sites. It encompassed laboratory studies of the effects of chemistry on induced polarization, development of 3D forward modeling and inversion codes, and investigations of inductive and capacitive coupling problems. In the laboratory part of the project a physico-chemical model developed in this project was used to invert laboratory IP spectra for the grain size and the effective grain size distribution of the sedimentary rocks as well as the formation factor, porosity, specific surface area, and the apparent fractal dimension. Furthermore, it was established that the IP response changed with the solution chemistry, the concentration of a given solution chemistry, valence of the constituent ions, and ionic radius. In the field part of the project, a 3D complex forward and inverse model was developed. It was used to process data acquired at two frequencies (1/16 Hz and 1/ 4Hz) in a cross-borehole configuration at the A-14 outfall area of the Savannah River Site (SRS) during March 2003 and June 2004. The chosen SRS site was contaminated with Tetrachloroethylene (TCE) and Trichloroethylene (PCE) that were disposed in this area for several decades till the 1980s. The imaginary conductivity produced from the inverted 2003 data correlated very well with the log10 (PCE) concentration derived from point sampling at 1 ft spacing in five ground-truth boreholes drilled after the data acquisition. The equivalent result for the 2004 data revealed that there were significant contaminant movements during the period March 2003 and June 2004, probably related to ground-truth activities and nearby remediation activities. Therefore SIP was successfully used to develop conceptual models of volume distributions of PCE/TCE contamination. In addition, the project developed non-polarizing electrodes that can be deployed in boreholes for years. A total of 28
Methanesulfonic acid (MSA) migration in polar ice: data synthesis and theory
Osman, Matthew; Das, Sarah B.; Marchal, Olivier; Evans, Matthew J.
2017-11-01
Methanesulfonic acid (MSA; CH3SO3H) in polar ice is a unique proxy of marine primary productivity, synoptic atmospheric transport, and regional sea-ice behavior. However, MSA can be mobile within the firn and ice matrix, a post-depositional process that is well known but poorly understood and documented, leading to uncertainties in the integrity of the MSA paleoclimatic signal. Here, we use a compilation of 22 ice core MSA records from Greenland and Antarctica and a model of soluble impurity transport in order to comprehensively investigate the vertical migration of MSA from summer layers, where MSA is originally deposited, to adjacent winter layers in polar ice. We find that the shallowest depth of MSA migration in our compilation varies over a wide range (˜ 2 to 400 m) and is positively correlated with snow accumulation rate and negatively correlated with ice concentration of Na+ (typically the most abundant marine cation). Although the considered soluble impurity transport model provides a useful mechanistic framework for studying MSA migration, it remains limited by inadequate constraints on key physico-chemical parameters - most notably, the diffusion coefficient of MSA in cold ice (DMS). We derive a simplified version of the model, which includes DMS as the sole parameter, in order to illuminate aspects of the migration process. Using this model, we show that the progressive phase alignment of MSA and Na+ concentration peaks observed along a high-resolution West Antarctic core is most consistent with 10-12 m2 s-1 values previously estimated from laboratory studies. More generally, our data synthesis and model results suggest that (i) MSA migration may be fairly ubiquitous, particularly at coastal and (or) high-accumulation regions across Greenland and Antarctica; and (ii) can significantly change annual and multiyear MSA concentration averages. Thus, in most cases, caution should be exercised when interpreting polar ice core MSA records, although records
Theory of current-induced spin polarization in an electron gas
Gorini, Cosimo; Maleki Sheikhabadi, Amin; Shen, Ka; Tokatly, Ilya V.; Vignale, Giovanni; Raimondi, Roberto
2017-05-01
We derive the Bloch equations for the spin dynamics of a two-dimensional electron gas in the presence of spin-orbit coupling. For the latter we consider both the intrinsic mechanisms of structure inversion asymmetry (Rashba) and bulk inversion asymmetry (Dresselhaus), and the extrinsic ones arising from the scattering from impurities. The derivation is based on the SU(2) gauge-field formulation of the Rashba-Dresselhaus spin-orbit coupling. Our main result is the identification of a spin-generation torque arising from Elliot-Yafet scattering, which opposes a similar term arising from Dyakonov-Perel relaxation. Such a torque, which to the best of our knowledge has gone unnoticed so far, is of basic nature, i.e., should be effective whenever Elliott-Yafet processes are present in a system with intrinsic spin-orbit coupling, irrespective of further specific details. The spin-generation torque contributes to the current-induced spin polarization (CISP), also known as inverse spin-galvanic or Edelstein effect. As a result, the behavior of the CISP turns out to be more complex than one would surmise from consideration of the internal Rashba-Dresselhaus fields alone. In particular, the symmetry of the current-induced spin polarization does not necessarily coincide with that of the internal Rashba-Dresselhaus field, and an out-of-plane component of the CISP is generally predicted, as observed in recent experiments. We also discuss the extension to the three-dimensional electron gas, which may be relevant for the interpretation of experiments in thin films.
Directory of Open Access Journals (Sweden)
Zihao Yang
Full Text Available A microstructure-dependent model for the free vibration and buckling analysis of an orthotropic functionally graded micro-plate was proposed on the basis of a re-modified couple stress theory. The macro- and microscopic anisotropy were simultaneously taken into account by introducing two material length scale parameters. The material attributes were assumed to vary continuously through the thickness direction by a power law. The governing equations and corresponding boundary conditions were derived through Hamilton’s principle. The Navier method was used to calculate the natural frequencies and buckling loads of a simply supported micro-plate. The numerical results indicated that the present model predicts higher natural frequencies and critical buckling loads than the classical model, particular when the geometric size of the micro-plates is comparable to the material length scale parameters, i.e., the scale effect is well represented. The scale effect becomes more noticeable as the material length scale parameters increase, the anisotropy weaken or the power law index increases, and vice versa. Keywords: Free vibration, Buckling, Functionally graded materials, Modified couple stress theory, Scale effect
International Nuclear Information System (INIS)
Mao Wei; She Wei-Bo; Zhang Chao; Zhang Jin-Cheng; Zhang Jin-Feng; Liu Hong-Xia; Yang Lin-An; Zhang Kai; Zhao Sheng-Lei; Chen Yong-He; Zheng Xue-Feng; Hao Yue; Yang Cui; Ma Xiao-Hua
2014-01-01
In this paper, we present a two-dimensional (2D) fully analytical model with consideration of polarization effect for the channel potential and electric field distributions of the gate field-plated high electron mobility transistor (FP-HEMT) on the basis of 2D Poisson's solution. The dependences of the channel potential and electric field distributions on drain bias, polarization charge density, FP structure parameters, AlGaN/GaN material parameters, etc. are investigated. A simple and convenient approach to designing high breakdown voltage FP-HEMTs is also proposed. The validity of this model is demonstrated by comparison with the numerical simulations with Silvaco—Atlas. The method in this paper can be extended to the development of other analytical models for different device structures, such as MIS-HEMTs, multiple-FP HETMs, slant-FP HEMTs, etc. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
The theory of polarization: From its origins to the modern day
Resta, Raffaele
Textbooks define macroscopic polarization P as the dipole of a bounded sample, divided by its volume, in the large sample limit. When instead we address unbounded samples within periodic boundary conditions (PBCs) the above definition cannot be adopted. The breakthrough came 25 years ago, when the focus was shifted from P itself to adiabatic changes in P, and it was soon realized that such changes take the form of a Berry phase of the electronic wavefunction. Even P itself can be defined, but it is not a vector: it is a lattice. Such exotic feature has outstanding physical consequences. For instance for an insulating centrosymmetric polymer P is a Z2 invariant: either P=e/2 mod e, or P=0 mod e: the Z2 class depends on the bulk, while the ``mod'' value depends on actual termination of the bounded sample. Besides P, other quantum-mechanical observables are based on the ``bare'' position r, which is not a legitimate operator within PBCs: foremost among them is orbital magnetization M. Here I express such observables in terms of a ``projected'' position operator r , which is legitimate for both bounded and unbounded samples, and yields very compact expressions for the relevant PBCs formulae. Besides P and M, I will also express in terms of r the anomalous Hall conductivity (for insulators and metals), and the Marzari-Vanderbilt gauge-invariant quadratic spread.
Polarization of electron-positron vacuum by strong magnetic field in theory with fundamental mass
International Nuclear Information System (INIS)
Kadyshevskij, V.G.; ); Rodionov, V.N.
2003-01-01
The exact Lagrangian function of the intensive constant magnetic field, replacing the Heisenberg-Euler Lagrangian in the traditional quantum electrodynamics, is calculated within the frames of the theory with the fundamental mass in the single-loop approximation. It is established that the obtained generalization of the Lagrangian function is substantial by arbitrary values of the magnetic field. The calculated Lagrangian in the weak field coincides with the known Heisenberg-Euler formula. The Lagrangian dependence on the field in the extremely strong fields completely disappears and it tends in this area to the threshold value, which is determined by the fundamental and lepton mass ratio [ru
Some theory of a dual-polarization interferometer for sensor applications
International Nuclear Information System (INIS)
Abram, R A; Brand, S
2015-01-01
It is shown that by making straightforward approximations it is possible to simplify the analysis of the measurements of a well-established dual-waveguide interferometer for sensor applications. In particular we derive approximate algebraic formulae for the mode phase shifts that are measured in the interferometric sensor when a layer of the entity to be detected is deposited. Knowledge of the shifts of both the TE and TM mode phases allows the deduction of both the thickness and refractive index of a homogeneous deposited layer, and the formulae derived make that possible with significantly reduced numerical computation. More generally the algebraic formulae and the ease with which numerical results can be obtained for a wide range of layer parameter combinations provide opportunities to improve our understanding of device behaviour. In an application of the theory to a specific practical structure, the numerical results show that the ratio of the TE and TM mode phase shifts varies linearly with deposited layer refractive index but is only weakly dependent on layer thickness, as has been observed previously in some experiments. The numerical results are interpreted using the theory and a simple formula describing the linear dependence of phase shift ratio on deposited layer refractive index is derived. (paper)
The nucleon as soliton in an effective chiral theory with polarized Dirac sea
International Nuclear Information System (INIS)
Meissner, T.
1991-07-01
We consider the Nambu-Jona-Lasinio model for SU(2) flavor with N F = 3 color degrees of freedom and a current mass m o =m u =m d , which interact via scalar-isoscalar and pseudoscalar-isovectorial 4-point coupling of the strength G. We show that it is for the soft-poin limit essentially equivalent to treat the 4-quark theory in the HFA+BSE and the bozonized theory with classical meson fields, if the collective field π with the physical pion. By the requirement that in the vacuum the experimental values for the pion mass m π =139 MeV and the weak pion decay constant f π =93 MeV are reproduced finally only one free parameter remains, which is in our case the constituent quark mass M. All other parameters and vacuum quantities can be calculated as function of M. We do this for the UV cut-off parameter Λ, the 4-quark coupling strength G, the quark current mass m O as well as the vacuum condensate (anti qq)v. Thereby especially the influence of the regularization scheme on m O and (anti q)v is studied. For the construction of states with good spin and isospin quantum numbers we apply the semiclassical cranking procedure. Finally we compare the NJL with the chiral sigma model of Gell-Mann and Levi, which is connected with the NJL by the gradient respectively heat-kernel expansion. (orig./HSI) [de
Isegawa, Miho; Gao, Jiali; Truhlar, Donald G
2011-08-28
Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi-Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi-Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. © 2011 American Institute of Physics
Directory of Open Access Journals (Sweden)
S. W. Y. Tam
Full Text Available Recent in situ observations have revealed novel features in the polar wind. Measurements between 5000 and 9000 km altitude by the Akebono satellite indicate that both H^{+} and O^{+} ions can have remarkably higher outflow velocities in the sunlit region than on the nightside. Electrons also display an asymmetric behavior: the dayside difference in energy spread, greater for upward-moving than downward-moving electrons, is absent on the nightside. Here, we discuss the further development of a theory by Tam et al. that can explain most of these observed peculiar properties by properly taking into account the global, kinetic, collisional effects of the sunlit photoelectrons, on the background polar wind and the electric field. Quantitative comparisons of the calculated results with actual data will be described. In addition, transition from the daytime photoelectron-driven polar wind to the night-time polar wind will be discussed.
Lee, Dorothy B; Faget, Maxime A
1956-01-01
A modified method of Van Driest's flat-plate theory for turbulent boundary layer has been found to simplify the calculation of local skin-friction coefficients which, in turn, have made it possible to obtain through Reynolds analogy theoretical turbulent heat-transfer coefficients in the form of Stanton number. A general formula is given and charts are presented from which the modified method can be solved for Mach numbers 1.0 to 12.0, temperature ratios 0.2 to 6.0, and Reynolds numbers 0.2 times 10 to the 6th power to 200 times 10 to the 6th power.
Ueda, Shigenori; Hamada, Ikutaro
2017-12-01
The X-ray polarization dependent valence band HAXPES spectra of 3d transition metals (TMs) of Ti-Zn were measured to investigate the orbital resolved electronic structures by utilizing that the fact the photoionization cross-section of the atomic orbitals strongly depends on the experimental geometry. We have calculated the HAXPES spectra, which correspond to the cross-section weighted densities of states (CSW-DOSs), where the DOSs were obtained by the density functional theory calculations, and we have determined the relative photoionization cross-sections of the 4s and 4p orbitals to the 3d orbital in the 3d TMs. The experimentally obtained bulk-sensitive 3d and 4s DOSs were good agreement with the calculated DOSs in Ti, V, Cr, and Cu. In contrast, the deviations between the experimental and calculated 3d DOSs for Mn, Fe, Co, Ni were found, suggesting that the electron correlation plays an important role in the electronic structures for these materials.
Guha, Abhijit; Nayek, Subhajit
2017-10-01
A compulsory element of all textbooks on natural convection has been a detailed similarity analysis for laminar natural convection on a heated semi-infinite vertical plate and a routinely used boundary condition for such analysis is u = 0 at x = 0. The same boundary condition continues to be assumed in related theoretical analyses, even in recent publications. The present work examines the consequence of this long-held assumption, which appears to have never been questioned in the literature, on the fluid dynamics and heat transfer characteristics. The assessment has been made here by solving the Navier-Stokes equations numerically with two boundary conditions—one with constrained velocity at x = 0 to mimic the similarity analysis and the other with no such constraints simulating the case of a heated vertical plate in an infinite expanse of the quiescent fluid medium. It is found that the fluid flow field given by the similarity theory is drastically different from that given by the computational fluid dynamics (CFD) simulations with unconstrained velocity. This also reflects on the Nusselt number, the prediction of the CFD simulations with unconstrained velocity being quite close to the experimentally measured values at all Grashof and Prandtl numbers (this is the first time theoretically computed values of the average Nusselt number N u ¯ are found to be so close to the experimental values). The difference of the Nusselt number (Δ N u ¯ ) predicted by the similarity theory and that by the CFD simulations (as well as the measured values), both computed with a high degree of precision, can be very significant, particularly at low Grashof numbers and at Prandtl numbers far removed from unity. Computations show that within the range of investigations (104 ≤ GrL ≤ 108, 0.01 ≤ Pr ≤ 100), the maximum value of Δ N u ¯ may be of the order 50%. Thus, for quantitative predictions, the available theory (i.e., similarity analysis) can be rather inadequate. With
Multiphoton polarization Bremsstrahlung effect
International Nuclear Information System (INIS)
Golovinskij, P.A.
2001-01-01
A general approach to induced polarization effects was formulated on the basis of theory of many particles in a strong periodic field. Correlation with the perturbation theory is shown and the types of effective polarization potentials both for isolated atoms and ions, and for ions in plasma, are provided. State of art in the theory of forced polarization Bremsstrahlung effect is analyzed and some outlooks for further experimental and theoretical studies are outlined [ru
International Nuclear Information System (INIS)
Yoon, Heonjun; Youn, Byeng D; Kim, Heung Soo
2016-01-01
As a compact and durable design concept, piezoelectric energy harvesting skin (PEH skin) has been recently proposed for self-powered electronic device applications. This study aims to develop an electromechanically-coupled analytical model of PEH skin considering the inertia and stiffness effects of a piezoelectric patch. Based on Kirchhoff plate theory, Hamilton’s principle is used to derive the electromechanically-coupled differential equation of motion. Due to the geometric discontinuity of the piezoelectric patch, the Rayleigh–Ritz method is applied to calculate the natural frequency and corresponding mode shapes. The electrical circuit equation is derived from Gauss’s law. Output voltage is estimated by solving the equation of motion and electrical circuit equation, simultaneously. For the purpose of evaluating the predictive capability, the results of the electromechanically-coupled analytical model are compared with those of the finite element method in a hierarchical manner. The outstanding merits of the electromechanically-coupled analytical model of PEH skin are three-fold: (1) consideration of the inertia and stiffness effects of the piezoelectric patches; (2) physical parameterization between the two-dimensional mechanical configuration and piezoelectric transduction; (3) manipulability of the twisting modes of a cantilever plate with a small aspect ratio. (paper)
International Nuclear Information System (INIS)
Murygin, I.V.; Chebotin, V.N.
1979-01-01
The polarization of fuel-cell electrodes (mixtures CO + CO 2 and H 2 + H 2 O) in systems with solid oxide electrolytes is discussed. The theory is based upon a process model where the electrode reaction zone can spread along the line of three-phase contact by diffusion of reaction partners and products across the electrolyte/electrode and electrolyte/gas interface
Energy Technology Data Exchange (ETDEWEB)
Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong
2018-02-13
A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.
Energy Technology Data Exchange (ETDEWEB)
Liu, W.L. [Department of Materials Science and Engineering, National Formosa University, 64, Wunhua Road, Huwei, Yunlin 632, Taiwan (China); Chien, W.T.; Jiang, M.H. [Department of Mechanical Engineering, National Pingtung University of Science and Technology, 1, Shuehfu Road, Neipu, Pingtung 912, Taiwan (China); Chen, W.J., E-mail: chenwjau@yuntech.edu.t [Graduate School of Materials Science, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan (China)
2010-04-09
An electroless Ni-P film was first deposited on a spiegel-iron plate and then annealed by an Nd:YAG pulsed wave laser. In order to obtain the optimal laser annealing parameters for maximizing the hardness and minimizing the surface roughness of electroless Ni-P films, the Taguchi method and grey system theory were used to analyze the experimental data. The electroless Ni-P film was also characterized by scanning electron microscopy for the morphology, and transmission electron microscopy for the microstructure and crystal structure. The results showed that the hardness and the surface roughness of electroless Ni-P films can be, at the same time, improved to 50.8% and 68%, respectively, by the laser annealing with the optimal parameters.
International Nuclear Information System (INIS)
Liu, W.L.; Chien, W.T.; Jiang, M.H.; Chen, W.J.
2010-01-01
An electroless Ni-P film was first deposited on a spiegel-iron plate and then annealed by an Nd:YAG pulsed wave laser. In order to obtain the optimal laser annealing parameters for maximizing the hardness and minimizing the surface roughness of electroless Ni-P films, the Taguchi method and grey system theory were used to analyze the experimental data. The electroless Ni-P film was also characterized by scanning electron microscopy for the morphology, and transmission electron microscopy for the microstructure and crystal structure. The results showed that the hardness and the surface roughness of electroless Ni-P films can be, at the same time, improved to 50.8% and 68%, respectively, by the laser annealing with the optimal parameters.
International Nuclear Information System (INIS)
Seamster, A.G.; Weitkamp, W.G.
1984-01-01
The lead plating of the prototype resonator has been conducted entirely in the plating laboratory at SUNY Stony Brook. Because of the considerable cost and inconvenience in transporting personnel and materials to and from Stony Brook, it is clearly impractical to plate all the resonators there. Furthermore, the high-beta resonator cannot be accommodated at Stony Brook without modifying the set up there. Consequently the authors are constructing a plating lab in-house
Hwu, Chyanbin
2010-01-01
As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a
International Nuclear Information System (INIS)
Gardes, D.; Volkov, P.
1981-01-01
A 5x3cm 2 (timing only) and a 15x5cm 2 (timing and position) parallel plate avalanche counters (PPAC) are considered. The theory of operation and timing resolution is given. The measurement set-up and the curves of experimental results illustrate the possibilities of the two counters [fr
Czech Academy of Sciences Publication Activity Database
Vinš, Václav; Planková, Barbora; Hrubý, Jan
2013-01-01
Roč. 34, č. 5 (2013), s. 792-812 ISSN 0195-928X R&D Projects: GA AV ČR IAA200760905; GA ČR(CZ) GPP101/11/P046; GA ČR GA101/09/1633 Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : chemical polarity * gradient theory * surface tension Subject RIV: BJ - Thermodynamics Impact factor: 0.623, year: 2013 http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10765-012-1207-z
Thurber, Kent R; Tycko, Robert
2012-08-28
We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T(1e) is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants.
Elastic stability of thick auxetic plates
International Nuclear Information System (INIS)
Lim, Teik-Cheng
2014-01-01
Auxetic materials and structures exhibit a negative Poisson’s ratio while thick plates encounter shear deformation, which is not accounted for in classical plate theory. This paper investigates the effect of a negative Poisson’s ratio on thick plates that are subjected to buckling loads, taking into consideration the shear deformation using Mindlin plate theory. Using a highly accurate shear correction factor that allows for the effect of Poisson’s ratio, the elastic stability of circular and square plates are evaluated in terms of dimensionless parameters, namely the Mindlin-to-Kirchhoff critical buckling load ratio and Mindlin critical buckling load factors. Results for thick square plates reveal that both parameters increase as the Poisson’s ratio becomes more negative. In the case of thick circular plates, the Mindlin-to-Kirchhoff critical buckling load ratios and the Mindlin critical buckling load factors increase and decrease, respectively, as the Poisson’s ratio becomes more negative. The results obtained herein show that thick auxetic plates behave as thin conventional plates, and therefore suggest that the classical plate theory can be used to evaluate the elastic stability of thick plates if the Poisson’s ratio of the plate material is sufficiently negative. The results also suggest that materials with highly negative Poisson’s ratios are recommended for square plates, but not circular plates, that are subjected to buckling loads. (paper)
International Nuclear Information System (INIS)
Williams, W.G.
1988-01-01
The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)
Sollberger, David; Greenhalgh, Stewart A.; Schmelzbach, Cedric; Van Renterghem, Cédéric; Robertsson, Johan O. A.
2018-04-01
We provide a six-component (6-C) polarization model for P-, SV-, SH-, Rayleigh-, and Love-waves both inside an elastic medium as well as at the free surface. It is shown that single-station 6-C data comprised of three components of rotational motion and three components of translational motion provide the opportunity to unambiguously identify the wave type, propagation direction, and local P- and S-wave velocities at the receiver location by use of polarization analysis. To extract such information by conventional processing of three-component (3-C) translational data would require large and dense receiver arrays. The additional rotational components allow the extension of the rank of the coherency matrix used for polarization analysis. This enables us to accurately determine the wave type and wave parameters (propagation direction and velocity) of seismic phases, even if more than one wave is present in the analysis time window. This is not possible with standard, pure-translational 3-C recordings. In order to identify modes of vibration and to extract the accompanying wave parameters, we adapt the multiple signal classification algorithm (MUSIC). Due to the strong nonlinearity of the MUSIC estimator function, it can be used to detect the presence of specific wave types within the analysis time window at very high resolution. We show how the extracted wavefield properties can be used, in a fully automated way, to separate the wavefield into its different wave modes using only a single 6-C recording station. As an example, we apply the method to remove surface wave energy while preserving the underlying reflection signal and to suppress energy originating from undesired directions, such as side-scattered waves.
Polarization correlations of {sup 1}S{sub 0} proton pairs as tests of hidden-variable theories
Energy Technology Data Exchange (ETDEWEB)
Polachic, C.; Rangacharyulu, C.; Berg, A.M. van den; Hamieh, S.; Harakeh, M.N.; Hunyadi, M.; Huu, M.A. de; Woertche, H.J.; Heyse, J.; Baeumer, C.; Frekers, D.; Rakers, S.; Brooke, J.A.; Busch, P
2004-03-22
We are investigating the feasibility of nuclear physics experiments designed to overcome the loopholes of observer-dependent reality and satisfying the counterfactuality condition. In a first approach, we have measured polarization correlations of {sup 1}S{sub 0} proton pairs produced in {sup 12}C(d, {sup 2}He) and {sup 1}H(d, {sup 2}He) reactions in one setting. The results of these measurements are used to test the Bell and Wigner-Belinfante inequalities against the predictions of quantum mechanics.
Application of generalized function to dynamic analysis of thick plates
International Nuclear Information System (INIS)
Zheng, D.; Weng, Z.
1987-01-01
The structures with thick plates have been used extensively in national defence, mechanical engineering, chemical engineering, nuclear engineering, civil engineering, etc.. Various theories have been established to deal with the problems of elastic plates, which include the classical theory of thin plates, the improved theory of thick plates, three-dimensional elastical theory. In this paper, the derivative of δ-function is handled by using the generalized function. The dynamic analysis of thick plates subjected the concentrated load is presented. The improved Donnell's equation of thick plates is deduced and employed as the basic equation. The generalized coordinates are solved by using the method of MWR. The general expressions for the dynamic response of elastic thick plates subjected the concentrated load are given. The numerical results for rectangular plates are given herein. The results are compared with those obtained from the improved theory and the classical theory of plates. (orig./GL)
Polarization phenomena in heavy-ion reactions
International Nuclear Information System (INIS)
Sugimoto, K.; Ishihara, M.; Takahashi, N.
1984-01-01
This chapter presents a few key experiments which provide direct evidence of the polarization phenomena in heavy-ion reactions. The theory of polarization observables and measurements is given with the necessary formulae. The polarization phenomena is described and studies of product nuclear polarization in heavy-ion reactions are discussed. Studies of heavy-ion reactions induced by polarized beams are examined
Energy Technology Data Exchange (ETDEWEB)
Macchi, A. [CNR/INFM/polyLAB, Pisa (Italy); Macchi, A.; Tuveri, S.; Veghini, S. [Pisa Univ., Dept. of Physics E. Fermi (Italy); Liseikina, T.V. [Max Planck Institute for Nuclear Physics, Heidelberg (Germany)
2009-03-15
Ion acceleration driven by the radiation pressure of circularly polarized pulses is investigated via analytical modeling and particle-in-cell simulations. Both thick and thin targets, i.e. the 'hole boring' and 'light sail' regimes are considered. Parametric studies in one spatial dimension are used to determine the optimal thickness of thin targets and to address the effects of preformed plasma profiles and laser pulse ellipticity in thick targets. Three-dimensional (3D) simulations show that 'flat-top' radial profiles of the intensity are required to prevent early laser pulse breakthrough in thin targets. The 3D simulations are also used to address the issue of the conservation of the angular momentum of the laser pulse and its absorption in the plasma. (authors)
International Nuclear Information System (INIS)
Hubbell, J.H.
1993-01-01
This report reviews available information on polarization effects arising when photons in the X-ray and gamma-ray energy regime undergo coherent (Rayleigh) scattering and incoherent (Compton) scattering by atomic electrons. In addition to descriptions and discussions of these effects, including estimates of their magnitudes as they apply to radiation transport calculations, an annotated bibliography of 102 selected works covering the period 1905-1991 is provided, with particularly relevant works for the purpose of this report flagged with asterisks (*). A major resource for this report is a 1948 unpublished informal report by L.V. Spencer which has been quoted here almost in its entirety, since, of all the works cited in the annotated bibliography, it appears to be the only one which explicitly and directly addresses the purpose of this report. Hence this valuable material should be re-introduced into the available and current literature. (author). 119 refs., 7 figs
International Nuclear Information System (INIS)
Adohi, B J-P; Bouanga, C Vanga; Fatyeyeva, K; Tabellout, M
2009-01-01
A new approach to explain the interfacial polarization phenomenon in conducting composite films is proposed. HCl-doped poly(ethylene terephthalate) (PET) and polyamide-6 (PA-6) matrices with embedded polyaniline (PANI) particles as filler were investigated and analysed, combining dielectric spectroscopy and AFM electrical images with the effective medium theory analysis. Up to three relaxation peaks attributed to the interfacial polarization phenomena were detected in the studied frequency range (0.1 Hz-1 MHz). The AFM electrical images revealed that the doped PA-6/PANI composite can be modelled as a single-type particle medium and the PET/PANI one as a two-type particle medium. A simple dielectric loss expression was derived from the Maxwell-Wagner-Hanai mixture equation and was applied to the experimental data to identify the interfaces involved in each of the relaxation peaks. The parameter values (permittivity, conductivity, volume fraction of the PANI particles) were found to agree well with the measured one, hence validating the models.
Li, Ying; Fabiano-Tixier, Anne Sylvie; Ruiz, Karine; Rossignol Castera, Anne; Bauduin, Pierre; Diat, Olivier; Chemat, Farid
2015-04-15
Since the polar paradox theory rationalised the fact that polar antioxidants are more effective in nonpolar media, extractions of phenolic compounds in vegetable oils were inspired and achieved in this study for obtaining oils enriched in phenolic compounds. Moreover, the influence of surfactants on the extractability of phenolic compounds was experimentally studied first, followed by the small angle X-ray scattering analysis for the oil structural observation before and after extraction so as to better understand the dissolving mechanism underpinning the extraction. The results showed a significant difference on the extraction yield of phenolic compounds among oils, which was mainly dependent on their composition instead of the unsaturation of fatty acids. Appropriate surfactant additions could significantly improve extraction yield for refined sunflower oils, which 1% w/w addition of glyceryl oleate was determined as the optimal. Besides, 5% w/w addition of lecithin performed the best in oil enrichments compared with mono- and di-glycerides. Copyright © 2014 Elsevier Ltd. All rights reserved.
Katili, Irwan
1993-06-01
A new three-node nine-degree-of-freedom triangular plate bending element is proposed which is valid for the analysis of both thick and thin plates. The element, called the discrete Kirchhoff-Mindlin triangle (DKMT), has a proper rank, passes the patch test for thin and thick plates in an arbitrary mesh, and is free of shear locking. As an extension of the DKMT element, a four-node element with 3 degrees of freedom per node is developed. The element, referred to as DKMQ (discrete Kirchhoff-Mindlin quadrilateral) is found to provide good results for both thin and thick plates without any compatibility problems.
Cabrera-Trujillo, R.; Cruz, S. A.; Soullard, J.
The energy deposited by swift atomic-ion projectiles when colliding with a given target material has been a topic of special scientific interest for the last century due to the variety of applications of ion beams in modern materials technology as well as in medical physics. In this work, we summarize our contributions in this field as a consequence of fruitful discussions and enlightening ideas put forward by one of the main protagonists in stopping power theory during the last three decades: Jens Oddershede. Our review, mainly motivated by Jens' work, evolves from the extension of the orbital implementation of the kinetic theory of stopping through the orbital local plasma approximation, its use in studies of orbital and total mean excitation energies for the study of atomic and molecular stopping until the advances on generalized oscillator strength and sum rules in the study of stopping cross sections. Finally, as a tribute to Jens' work on the orbital implementation of the kinetic theory of stopping, in this work we present new results on the use of the Thomas-Fermi-Dirac-Weizsäcker density functional for the calculation of orbital and total atomic mean excitation energies. The results are applied to free-atoms and and extension is done to confined atoms - taking Si as an example - whereby target pressure effects on stopping are derived. Hence, evidence of the far-yield of Jens' ideas is given.
Interferometric polarization control
International Nuclear Information System (INIS)
Chuss, David T.; Wollack, Edward J.; Moseley, S. Harvey; Novak, Giles
2006-01-01
We develop the Jones and Mueller matrices for structures that allow control of the path length difference between two linear orthogonal polarizations and consider the effect of placing multiple devices in series. Specifically, we find that full polarization modulation (measurement of Stokes Q, U, and V) can be achieved by placing two such modulators in series if the relative angles of the beam-splitting grids with respect to the analyzer orientation are appropriately chosen. Such a device has several potential advantages over a spinning wave plate modulator for measuring astronomical polarization in the far infrared through millimeter: (i) The use of small, linear motions eliminates the need for cryogenic rotational bearings; (ii) the phase flexibility allows measurement of circular as well as linear polarization; and (iii) this architecture allows for both multiwavelength and broadband modulation. We also present initial laboratory results
Gobrecht, Alexia; Bendoula, Ryad; Roger, Jean-Michel; Bellon-Maurel, Véronique
2015-01-01
Visible and Near Infrared (Vis-NIR) Spectroscopy is a powerful non destructive analytical method used to analyze major compounds in bulk materials and products and requiring no sample preparation. It is widely used in routine analysis and also in-line in industries, in-vivo with biomedical applications or in-field for agricultural and environmental applications. However, highly scattering samples subvert Beer-Lambert law's linear relationship between spectral absorbance and the concentrations. Instead of spectral pre-processing, which is commonly used by Vis-NIR spectroscopists to mitigate the scattering effect, we put forward an optical method, based on Polarized Light Spectroscopy to improve the absorbance signal measurement on highly scattering samples. This method selects part of the signal which is less impacted by scattering. The resulted signal is combined in the Absorption/Remission function defined in Dahm's Representative Layer Theory to compute an absorbance signal fulfilling Beer-Lambert's law, i.e. being linearly related to concentration of the chemicals composing the sample. The underpinning theories have been experimentally evaluated on scattering samples in liquid form and in powdered form. The method produced more accurate spectra and the Pearson's coefficient assessing the linearity between the absorbance spectra and the concentration of the added dye improved from 0.94 to 0.99 for liquid samples and 0.84-0.97 for powdered samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Research on generating various polarization-modes in polarized illumination system
Huang, Jinping; Lin, Wumei; Fan, Zhenjie
2013-08-01
With the increase of the numerical aperture (NA), the polarization of light affects the imaging quality of projection lens more significantly. On the contrary, according to the mask pattern, the resolution of projection lens can be improved by using the polarized illumination. That is to say, using the corresponding polarized beam (or polarization-mode) along with the off-axis illumination will improve the resolution and the imaging quality of the of projection lens. Therefore, the research on the generation of various polarization modes and its conversion methods become more and more important. In order to realize various polarization modes in polarized illumination system, after read a lot of references, we provide a way that fitting for the illumination system with the wavelength of 193nm.Six polarization-modes and a depolarized mode are probably considered. Wave-plate stack is used to generate linearly polarization-mode, which have a higher degree polarization. In order to generate X-Y and Y-X polarization mode, the equipment consisting of four sectors of λ/2 wave plate was used. We combined 16 sectors of λ/2 wave plate which have different orientations of the "slow" axis to generate radial and azimuthal polarization. Finally, a multi-polarization control device was designed. Using the kind of multi-polarization control device which applying this method could help to choose the polarization modes conveniently and flexibility for the illumination system.
Rhodium platings – experimental study
Rudolf, R.; Budić, B.; Stamenković, D.; Čolić, M.; Ivanič, A.; Kosec, B.
2013-01-01
Modern rhodium plating solutions are based on either sulphate or phosphate. Although in theory there are four possible combinations, in practice only three different rhodium electrolytes are used. These are based on dilutions of rhodium sulphate or phosphate concentrates with added sulphuric or phosphoric acid. These processes are be discussed in this paper with a demonstration of Rh platings in the Slovenian firm Zlatarna Celje d.d.
Rhodium platings – experimental study
Directory of Open Access Journals (Sweden)
R. Rudolf
2013-07-01
Full Text Available Modern rhodium plating solutions are based on either sulphate or phosphate. Although in theory there are four possible combinations, in practice only three different rhodium electrolytes are used. These are based on dilutions of rhodium sulphate or phosphate concentrates with added sulphuric or phosphoric acid. These processes are be discussed in this paper with a demonstration of Rh platings in the Slovenian firm Zlatarna Celje d.d.
Hansal, Wolfgang E G; Green, Todd; Leisner, Peter; Reichenbach, Andreas
2012-01-01
The electrodeposition of metals using pulsed current has achieved practical importance in recent years. Although it has long been known that changes in potential, with or without polarity reversal, can significantly affect the deposition process, the practical application of this has been slow to be adopted. This can largely be explained in terms of the complex relationship between the current regime and its effect on the electrodeposition process. In order to harness these effects, an understanding of the anodic and cathodic electrochemical processes is necessary, together with the effects of polarity reversal and the rate of such reversals. In this new monograph, the basics of metal electrodeposition from solution are laid out in great detail in seven distinct chapters. With this knowledge, the reader is able to predict how a given pulse train profile can be adopted to achieve a desired outcome. Equally important is the choice of a suitable rectifier and the ancillary control circuits to enable pulse platin...
Full Text Available ... Plate Share Create Your Plate ! Share: Seven Simple Steps to Create Your Plate It's simple and effective ... foods within each food category. Try these seven steps to get started: Using your dinner plate, put ...
Parallel Polarization State Generation.
She, Alan; Capasso, Federico
2016-05-17
The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.
Fahy, Stephen; Murray, Eamonn
2015-03-01
Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of a ultrafast pulse of polarized light. To compare the results with recent ultra-fast, time-resolved x-ray diffraction experiments, we include the decay of the force due to carrier scattering, as measured in optical Raman scattering experiments, and simulate the optical absorption process, depth-dependent atomic driving forces, and x-ray diffraction in the experimental geometry. We find excellent agreement between the theoretical predictions and the observed oscillations of the x-ray diffraction signal, indicating that first-principles theory of optical absorption is well suited to the calculation of initial atomic driving forces in photo-excited materials following ultrafast excitation. This work is supported by Science Foundation Ireland (Grant No. 12/IA/1601) and EU Commission under the Marie Curie Incoming International Fellowships (Grant No. PIIF-GA-2012-329695).
Optics for People Stuck in Traffic: License Plates.
Chagnon, Paul
1995-01-01
Explains the theory behind the working of Scotchlite, a retrodirective material used for coating automotive license plates, and the Ensure Imaging System that allows law enforcement officers to verify the authenticity of the plate. (JRH)
analytical bending solution of all clamped isotropic rectangular plate
African Journals Online (AJOL)
HP
PLATE ON WINKLER'S FOUNDATION USING CHARACTERISTIC. ORTHOGONAL ... foundations, storage tanks, swimming pools, floor system of buildings, highways ..... “Energy Methods in Theory of Rectangular Plates. (use of Polynomial ...
Array elements for a DBS flat-plate antenna
Maddocks, M. C. D.
1988-07-01
The introduction of a direct broadcast by satellite (DBS) television service requires suitable receiving antennas to be available. An alternative to the parabolic dish antenna is a flat-plate antenna. The overall design of a circularly-polarized flat-plate antenna which can be mounted flat on the wall of a building has been considered in a companion Report. In this Report various types of elements are investigated and their advantages and disadvantages discussed. The most suitable element for use in a flat-plate array is identified as a linearly-polarized folded-dipole element; its performance is reported here. Linearly-polarized elements are found to perform better than circularly-polarized elements and could be used with a polarization converter to receive the circularly-polarized radiation that would be transmitted by DBS.
Bipolar plates for PEM fuel cells
Middelman, E.; Kout, W.; Vogelaar, B.; Lenssen, J.; de Waal, E.
The bipolar plates are in weight and volume the major part of the PEM fuel cell stack, and are also a significant contributor to the stack costs. The bipolar plate is therefore a key component if power density has to increase and costs must come down. Three cell plate technologies are expected to reach targeted cost price levels, all having specific advantages and drawbacks. NedStack has developed a conductive composite materials and a production process for fuel cell plates (bipolar and mono-polar). The material has a high electric and thermal conductivity, and can be processed into bipolar plates by a proprietary molding process. Process cycle time has been reduced to less than 10 s, making the material and process suitable for economical mass production. Other development work to increase material efficiency resulted in thin bipolar plates with integrated cooling channels, and integrated seals, and in two-component bipolar plates. Total thickness of the bipolar plates is now less than 3 mm, and will be reduced to 2 mm in the near future. With these thin integrated plates it is possible to increase power density up to 2 kW/l and 2 kW/kg, while at the same time reducing cost by integrating other functions and less material use.
Energy Technology Data Exchange (ETDEWEB)
W. Bentz; I. C. Cloet; A. W. Thomas
2007-02-01
We calculate both the spin independent and spin dependent nuclear structure functions in an effective quark theory. The nucleon is described as a composite quark-diquark state, and the nucleus is treated in the mean field approximation. We predict a sizable polarized EMC effect, which could be confirmed in future experiments.
Dynamic elections and ideological polarization
Czech Academy of Sciences Publication Activity Database
Nunnari, S.; Zápal, Jan
2017-01-01
Roč. 25, č. 4 (2017), s. 505-534 ISSN 1047-1987 Institutional support: RVO:67985998 Keywords : elections * political polarization Subject RIV: AH - Economics OBOR OECD: Economic Theory Impact factor: 3.361, year: 2016
Dynamic elections and ideological polarization
Czech Academy of Sciences Publication Activity Database
Nunnari, S.; Zápal, Jan
2017-01-01
Roč. 25, č. 4 (2017), s. 505-534 ISSN 1047-1987 Institutional support: Progres-Q24 Keywords : elections * political polarization Subject RIV: AH - Economics OBOR OECD: Economic Theory Impact factor: 3.361, year: 2016
Maximizing band gaps in plate structures
DEFF Research Database (Denmark)
Halkjær, Søren; Sigmund, Ole; Jensen, Jakob Søndergaard
2006-01-01
periodic plate using Bloch theory, which conveniently reduces the maximization problem to that of a single base cell. Secondly, we construct a finite periodic plate using a number of the optimized base cells in a postprocessed version. The dynamic properties of the finite plate are investigated......Band gaps, i.e., frequency ranges in which waves cannot propagate, can be found in elastic structures for which there is a certain periodic modulation of the material properties or structure. In this paper, we maximize the band gap size for bending waves in a Mindlin plate. We analyze an infinite...... theoretically and experimentally and the issue of finite size effects is addressed....
Design and analysis of all-dielectric broadband nonpolarizing parallel-plate beam splitters.
Wang, Wenliang; Xiong, Shengming; Zhang, Yundong
2007-06-01
Past research on the all-dielectric nonpolarizing beam splitter is reviewed. With the aid of the needle thin-film synthesis method and the conjugate graduate refine method, three different split ratio nonpolarizing parallel-plate beam splitters over a 200 nm spectral range centered at 550 nm with incidence angles of 45 degrees are designed. The chosen materials component and the initial stack are based on the Costich and Thelen theories. The results of design and analysis show that the designs maintain a very low polarization ratio in the working range of the spectrum and has a reasonable angular field.
International Nuclear Information System (INIS)
Prescott, C.Y.
1993-07-01
Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist
Buckling Response of Thick Functionally Graded Plates
Directory of Open Access Journals (Sweden)
BOUAZZA MOKHTAR
2014-11-01
Full Text Available In this paper, the buckling of a functionally graded plate is studied by using first order shear deformation theory (FSDT. The material properties of the plate are assumed to be graded continuously in the direction of thickness. The variation of the material properties follows a simple power-law distribution in terms of the volume fractions of constituents. The von Karman strains are used to construct the equilibrium equations of the plates subjected to two types of thermal loading, linear temperature rise and gradient through the thickness are considered. The governing equations are reduced to linear differential equation with boundary conditions yielding a simple solution procedure. In addition, the effects of temperature field, volume fraction distributions, and system geometric parameters are investigated. The results are compared with the results of the no shear deformation theory (classic plate theory, CPT.
Joslin, Ronald D.; Streett, Craig L.; Chang, Chau-Lyan
1992-01-01
Spatially evolving instabilities in a boundary layer on a flat plate are computed by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations. In a truncated physical domain, a nonstaggered mesh is used for the grid. A Chebyshev-collocation method is used normal to the wall; finite difference and compact difference methods are used in the streamwise direction; and a Fourier series is used in the spanwise direction. For time stepping, implicit Crank-Nicolson and explicit Runge-Kutta schemes are used to the time-splitting method. The influence-matrix technique is used to solve the pressure equation. At the outflow boundary, the buffer-domain technique is used to prevent convective wave reflection or upstream propagation of information from the boundary. Results of the DNS are compared with those from both linear stability theory (LST) and parabolized stability equation (PSE) theory. Computed disturbance amplitudes and phases are in very good agreement with those of LST (for small inflow disturbance amplitudes). A measure of the sensitivity of the inflow condition is demonstrated with both LST and PSE theory used to approximate inflows. Although the DNS numerics are very different than those of PSE theory, the results are in good agreement. A small discrepancy in the results that does occur is likely a result of the variation in PSE boundary condition treatment in the far field. Finally, a small-amplitude wave triad is forced at the inflow, and simulation results are compared with those of LST. Again, very good agreement is found between DNS and LST results for the 3-D simulations, the implication being that the disturbance amplitudes are sufficiently small that nonlinear interactions are negligible.
International Nuclear Information System (INIS)
Firk, F.W.K.
1976-01-01
Some recent experiments involving polarized neutrons are discussed; they demonstrate how polarization studies provide information on fundamental aspects of nuclear structure that cannot be obtained from more traditional neutron studies. Until recently, neutron polarization studies tended to be limited either to very low energies or to restricted regions at higher energies, determined by the kinematics of favorable (p, vector n) and (d, vector n) reactions. With the advent of high intensity pulsed electron and proton accelerators and of beams of vector polarized deuterons, this is no longer the case. One has entered an era in which neutron polarization experiments are now being carried out, in a routine way, throughout the entire range from thermal energies to tens-of-MeV. The significance of neutron polarization studies is illustrated in discussions of a wide variety of experiments that include the measurement of T-invariance in the β-decay of polarized neutrons, a search for the effects of meson exchange currents in the photo-disintegration of the deuteron, the determination of quantum numbers of states in the fission of aligned 235 U and 237 Np induced by polarized neutrons, and the double- and triple-scattering of fast neutrons by light nuclei
McDavid, D.
2005-11-01
Recent near-infrared measurements of the angular diameter of Achernar (the bright Be star alpha Eridani) with the ESO VLT interferometer have been interpreted as the detection of an extremely oblate photosphere, with a ratio of equatorial to polar radius of at least 1.56 ± 0.05 and a minor axis orientation of 39° ± 1° (from North to East). The optical linear polarization of this star during an emission phase in 1995 September was 0.12 ± 0.02% at position angle 37° ± 8° (in equatorial coordinates), which is the direction of the projection of the rotation axis on the plane of the sky according to the theory of polarization by electron scattering in an equatorially flattened circumstellar disk. These two independent determinations of the orientation of the rotation axis are therefore in agreement. The observational history of correlations between Hα emission and polarization as found in the literature is that of a typical Be star, with the exception of an interesting question raised by the contrast between Schröder's measurement of a small polarization perpendicular to the projected rotation axis in 1969--70 and Tinbergen's measurement of zero polarization in 1974.5, both at times when emission was reportedly absent.
DEFF Research Database (Denmark)
Nikolova, L.; Ramanujam, P.S.
Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...
Polarized Moessbauer transitions in mixed hyperfine interactions
International Nuclear Information System (INIS)
Barb, D.; Tarina, D.
1975-01-01
A contribution to the theory of elliptical polarization in the Moessbauer effect for transitions between mixed nuclear states is reported. A relation between the two-dimensional complex vector parameterization and the photon polarization density matrix was used in describing changes in the polarization of the gamma-ray involved. (A.K.)
The tectonic plates are moving!
Livermore, Roy
2018-01-01
Written in a witty and informal style, this book explains modern plate tectonics in a non-technical manner, showing not only how it accounts for phenomena such as great earthquakes, tsunamis, and volcanic eruptions, but also how it controls conditions at the Earth’s surface, including global geography and climate, making it suitable for life. The book presents the advances that have been made since the establishment of plate tectonics in the 1960s, highlighting, on the fiftieth anniversary of the theory, the contributions of a small number of scientists who have never been widely recognized for their discoveries. Beginning with the publication of a short article in Nature by Vine and Matthews, the book traces the development of plate tectonics through two generations of the theory. First-generation plate tectonics covers the exciting scientific revolution of the 1960s, its heroes, and its villains. The second generation includes the rapid expansions in sonar, satellite, and seismic technologies during the 1...
Terahertz broadband polarization converter based on metamaterials
Li, Yonghua; Zhao, Guozhong
2018-01-01
Based on the metamaterial composed of symmetrical split resonant ring, a broadband reflective terahertz polarization converter is proposed. The numerical simulation shows that it can rotate the polarization direction of linear polarized wave 90° in the range of 0.7-1.8THz and the polarization conversion ratio is over 90%. The reflection coefficient of the two electric field components in the diagonal direction is the same and the phase difference is 180° ,which leads to the cross-polarization rotation.In order to further study the physical mechanism of high polarization conversion, we analyze the surface current distribution of the resonant ring. The polarization converter has potential applications in terahertz wave plate and metamaterial antenna design.
On the lamb wave propagation in anisotropic laminated composite plates
International Nuclear Information System (INIS)
Park, Soo Keun; Jeong, Hyun Jo; Kim, Moon Saeng
1998-01-01
This paper examines the propagation of Lamb (or plate) waves in anisotropic laminated composite plates. The dispersion relations are explicitly derived using the classical plate theory (CLT), the first-order shear deformation theory (FSDT) and the exact solution (ES), Attention is paid to the lowest antisymmetric (flexural) and lowest symmetric(extensional) modes in the low frequency, long wavelength limit. Different values of shear correction factor were tested in FSDT and comparisons between flexural wave dispersion curves were made with exact results to asses the range of validity of approximate plate theories in the frequency domain.
International Nuclear Information System (INIS)
Kobayashi, Torakichi; Sugawara, Takeo.
1983-01-01
Purpose: To reduce the weight and stabilize the configuration of a radiation shielding plate which is used in close contact with an object to be irradiated with radiation rays. Constitution: The radiation shielding plate comprises a substrate made of lead glass and a metallic lead coating on the surface of the substrate by means of plating, vapor deposition or the like. Apertures for permeating radiation rays are formed to the radiation shielding plate. Since the shielding plate is based on a lead glass plate, a sufficient mechanical strength can be obtained with a thinner structure as compared with the conventional plate made of metallic lead. Accordingly, if the shielding plate is disposed on a soft object to be irradiated with radiation rays, the object and the plate itself less deform to obtain a radiation irradiation pattern with distinct edges. (Moriyama, K.)
Advancements on Radar Polarization Information Acquisition and Processing
Directory of Open Access Journals (Sweden)
Dai Dahai
2016-04-01
Full Text Available The study on radar polarization information acquisition and processing has currently been one important part of radar techniques. The development of the polarization theory is simply reviewed firstly. Subsequently, some key techniques which include polarization measurement, polarization anti-jamming, polarization recognition, imaging and parameters inversion using radar polarimetry are emphatically analyzed in this paper. The basic theories, the present states and the development trends of these key techniques are presented and some meaningful conclusions are derived.
Introduction to Analysis and Design of Plate Panels
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher; Lützen, Marie
, composite materials as glass-fibre-reinforced plates, sandwich plates and reinforced concrete plates are not included as they are topics for other courses. The present notes are mainly based on Pedersen and Jensen (1983), written in Danish. The first version of the notes was prepared by Marie L......The present notes cover plate theory dealing with bending, vibrations, elastic buckling and ultimate strength. The plate structures considered are isotropic, orthotropic and stiffened plates made of metallic materials. The main objective of the notes is to give an introduction to plates and plate...... panels and to present some fairly easy methods and results to be used in the design phase to judge, whether a plate panel can be considered safe from a structural point of view or requires a more detailed numerical analysis, typically using the Finite Element Method. Furthermore, a short introduction...
Wakayama, Toshitaka; Higashiguchi, Takeshi; Oikawa, Hiroki; Sakaue, Kazuyuki; Washio, Masakazu; Yonemura, Motoki; Yoshizawa, Toru; Tyo, J Scott; Otani, Yukitoshi
2015-03-24
Vectorial vortex analysis is used to determine the polarization states of an arbitrarily polarized terahertz (0.1-1.6 THz) beam using THz achromatic axially symmetric wave (TAS) plates, which have a phase retardance of Δ = 163° and are made of polytetrafluorethylene. Polarized THz beams are converted into THz vectorial vortex beams with no spatial or wavelength dispersion, and the unknown polarization states of the incident THz beams are reconstructed. The polarization determination is also demonstrated at frequencies of 0.16 and 0.36 THz. The results obtained by solving the inverse source problem agree with the values used in the experiments. This vectorial vortex analysis enables a determination of the polarization states of the incident THz beam from the THz image. The polarization states of the beams are estimated after they pass through the TAS plates. The results validate this new approach to polarization detection for intense THz sources. It could find application in such cutting edge areas of physics as nonlinear THz photonics and plasmon excitation, because TAS plates not only instantaneously elucidate the polarization of an enclosed THz beam but can also passively control THz vectorial vortex beams.
International Nuclear Information System (INIS)
Halzen, F.
1977-02-01
In a theoretical review of polarization experiments two important points are emphasized: (a) their versatility and their relevance to a large variety of aspects of hadron physics (tests of basic symmetries; a probe of strong interaction dynamics; a tool for hadron spectroscopy); (b) the wealth of experimental data on polarization parameters in pp and np scattering in the Regge language and in the diffraction language. (author)
Tolhoek, H.A.; Groot, S.R. de
The consequences of alignment of nuclei, which show allowed ß-transitions, are investigated. A general formula is derived for the transition probability of an allowed β-transition, in which the direction of emission of electron and neutrino, the polarization of the electron and the orientation of
Czech Academy of Sciences Publication Activity Database
Mutombo, Pingo; Romanyuk, Olexandr
2014-01-01
Roč. 115, č. 20 (2014), "203508-1"-"203508-5" ISSN 0021-8979 Grant - others:AVČR(CZ) M100101201 Institutional support: RVO:68378271 Keywords : non-polar GaN * semipolar GaN * surface reconstructions * DFT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2014
Polarization measurement for internal polarized gaseous targets
International Nuclear Information System (INIS)
Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun
2004-01-01
The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)
Full Text Available ... foods you want, but changes the portion sizes so you are getting larger portions of non-starchy ... plate. Then on one side, cut it again so you will have three sections on your plate. ...
Full Text Available ... of the differences in types of vegetables. When creating your plate at home, remember that half of ... effective for both managing diabetes and losing weight. Creating your plate lets you still choose the foods ...
Full Text Available ... Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get Started Safely Get And ... Plate Create Your Plate is a simple and effective way to manage your blood glucose levels and ...
Full Text Available ... Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with ... Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy ...
Full Text Available ... Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal ... Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook ...
International Nuclear Information System (INIS)
Walter, L.
1983-01-01
Various sources of polarized neutrons are reviewed. Monoenergetic source produced with unpolarized or polarized beams, white sources of polarized neutrons, production by transmissions through polarized hydrogen targets and polarized thermal neutronsare discussed, with appropriate applications included. (U.K.)
Mongeau, Paul A.
Interest has recently focused on group polarization as a function of attitude processes. Several recent reviewers have challenged polarization researchers to integrate the explanations of polarization to existing theories of attitude change. This review suggests that there exists a clear similarity between the social comparison and persuasive…
Measuring the sea quark polarization
International Nuclear Information System (INIS)
Makdisi, Y.
1993-01-01
Spin is a fundamental degree of freedom and measuring the spin structure functions of the nucleon should be a basic endeavor for hadron physics. Polarization experiments have been the domain of fixed target experiments. Over the years large transverse asymmetries have been observed where the prevailing QCD theories predicted little or no asymmetries, and conversely the latest deep inelastic scattering experiments of polarized leptons from polarized targets point to the possibility that little of the nucleon spin is carried by the valence quarks. The possibility of colliding high luminosity polarized proton beams in the Brookhaven Relativistic Heavy Ion Collider (RHIC) provides a great opportunity to extend these studies and systematically probe the spin dependent parton distributions specially to those reactions that are inaccessible to current experiments. This presentation focuses on the measurement of sea quark and possibly the strange quark polarization utilizing the approved RHIC detectors
Carrilho, Emanuel; Phillips, Scott T; Vella, Sarah J; Martinez, Andres W; Whitesides, George M
2009-08-01
This paper describes 96- and 384-microzone plates fabricated in paper as alternatives to conventional multiwell plates fabricated in molded polymers. Paper-based plates are functionally related to plastic well plates, but they offer new capabilities. For example, paper-microzone plates are thin (approximately 180 microm), require small volumes of sample (5 microL per zone), and can be manufactured from inexpensive materials ($0.05 per plate). The paper-based plates are fabricated by patterning sheets of paper, using photolithography, into hydrophilic zones surrounded by hydrophobic polymeric barriers. This photolithography used an inexpensive formulation photoresist that allows rapid (approximately 15 min) prototyping of paper-based plates. These plates are compatible with conventional microplate readers for quantitative absorbance and fluorescence measurements. The limit of detection per zone loaded for fluorescence was 125 fmol for fluorescein isothiocyanate-labeled bovine serum albumin, and this level corresponds to 0.02 the quantity of analyte per well used to achieve comparable signal-to-noise in a 96-well plastic plate (using a solution of 25 nM labeled protein). The limits of detection for absorbance on paper was approximately 50 pmol per zone for both Coomassie Brilliant Blue and Amaranth dyes; these values were 0.4 that required for the plastic plate. Demonstration of quantitative colorimetric correlations using a scanner or camera to image the zones and to measure the intensity of color, makes it possible to conduct assays without a microplate reader.
Mathematical methods for elastic plates
Constanda, Christian
2014-01-01
Mathematical models of deformation of elastic plates are used by applied mathematicians and engineers in connection with a wide range of practical applications, from microchip production to the construction of skyscrapers and aircraft. This book employs two important analytic techniques to solve the fundamental boundary value problems for the theory of plates with transverse shear deformation, which offers a more complete picture of the physical process of bending than Kirchhoff’s classical one. The first method transfers the ellipticity of the governing system to the boundary, leading to singular integral equations on the contour of the domain. These equations, established on the basis of the properties of suitable layer potentials, are then solved in spaces of smooth (Hölder continuous and Hölder continuously differentiable) functions. The second technique rewrites the differential system in terms of complex variables and fully integrates it, expressing the solution as a combination of complex ana...
Nonlinear morphoelastic plates II: Exodus to buckled states
McMahon, J.
2011-05-11
Morphoelasticity is the theory of growing elastic materials. The theory is based on the multiplicative decomposition of the deformation gradient and provides a formulation of the deformation and stresses induced by growth. Following a companion paper, a general theory of growing non-linear elastic Kirchhoff plate is described. First, a complete geometric description of incompatibility with simple examples is given. Second, the stability of growing Kirchhoff plates is analyzed. © SAGE Publications 2011.
Nonlinear morphoelastic plates II: Exodus to buckled states
McMahon, J.; Goriely, A.; Tabor, M.
2011-01-01
Morphoelasticity is the theory of growing elastic materials. The theory is based on the multiplicative decomposition of the deformation gradient and provides a formulation of the deformation and stresses induced by growth. Following a companion paper, a general theory of growing non-linear elastic Kirchhoff plate is described. First, a complete geometric description of incompatibility with simple examples is given. Second, the stability of growing Kirchhoff plates is analyzed. © SAGE Publications 2011.
Nonlinear analysis of flexible plates lying on elastic foundation
Directory of Open Access Journals (Sweden)
Trushin Sergey
2017-01-01
Full Text Available This article describes numerical procedures for analysis of flexible rectangular plates lying on elastic foundation. Computing models are based on the theory of plates with account of transverse shear deformations. The finite difference energy method of discretization is used for reducing the initial continuum problem to finite dimensional problem. Solution procedures for nonlinear problem are based on Newton-Raphson method. This theory of plates and numerical methods have been used for investigation of nonlinear behavior of flexible plates on elastic foundation with different properties.
International Nuclear Information System (INIS)
Nurushev, S.B.
1989-01-01
Brief review is presented of the high energy polarization study including experimental data and the theoretical descriptions. The mostimportant proposals at the biggest accelerators and the crucial technical developments are also listed which may become a main-line of spin physics. 35 refs.; 10 figs.; 4 tabs
1999-01-01
These three images were taken on three different orbits over the north polar cap in April 1999. Each shows a different part of the same ice-free trough. The left and right images are separated by a distance of more than 100 kilometers (62 miles). Note the similar layers in each image.
Carbon nanotube fiber terahertz polarizer
Energy Technology Data Exchange (ETDEWEB)
Zubair, Ahmed [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Tsentalovich, Dmitri E.; Young, Colin C. [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005 (United States); Heimbeck, Martin S. [Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Everitt, Henry O. [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Pasquali, Matteo [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005 (United States); Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Kono, Junichiro, E-mail: kono@rice.edu [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (United States)
2016-04-04
Conventional, commercially available terahertz (THz) polarizers are made of uniformly and precisely spaced metallic wires. They are fragile and expensive, with performance characteristics highly reliant on wire diameters and spacings. Here, we report a simple and highly error-tolerant method for fabricating a freestanding THz polarizer with nearly ideal performance, reliant on the intrinsically one-dimensional character of conduction electrons in well-aligned carbon nanotubes (CNTs). The polarizer was constructed on a mechanical frame over which we manually wound acid-doped CNT fibers with ultrahigh electrical conductivity. We demonstrated that the polarizer has an extinction ratio of ∼−30 dB with a low insertion loss (<0.5 dB) throughout a frequency range of 0.2–1.1 THz. In addition, we used a THz ellipsometer to measure the Müller matrix of the CNT-fiber polarizer and found comparable attenuation to a commercial metallic wire-grid polarizer. Furthermore, based on the classical theory of light transmission through an array of metallic wires, we demonstrated the most striking difference between the CNT-fiber and metallic wire-grid polarizers: the latter fails to work in the zero-spacing limit, where it acts as a simple mirror, while the former continues to work as an excellent polarizer even in that limit due to the one-dimensional conductivity of individual CNTs.
Takács, Péter; Barta, András; Pye, David; Horváth, Gábor
2017-10-20
When the sun is near the horizon, a circular band with approximately vertically polarized skylight is formed at 90° from the sun, and this skylight is only weakly reflected from the region of the water surface around the Brewster's angle (53° from the nadir). Thus, at low solar heights under a clear sky, an extended dark patch is visible on the water surface when one looks toward the north or south quarter perpendicular to the solar vertical. In this work, we study the radiance distribution of this so-called Brewster's dark patch (BDP) in still water as functions of the solar height and sky conditions. We calculate the pattern of reflectivity R of a water surface for a clear sky and obtain from this idealized situation the shape of the BDP. From three full-sky polarimetric pictures taken about a clear, a partly cloudy, and an overcast sky, we determine the R pattern and compose from that synthetic color pictures showing how the radiance distribution of skylight reflected at the water surface and the BDPs would look under these sky conditions. We also present photographs taken without a linearly polarizing filter about the BDP. Finally, we show a 19th century painting on which a river is seen with a dark region of the water surface, which can be interpreted as an artistic illustration of the BDP.
Coherent scattering of electromagnetic radiation by a polarized particle system
International Nuclear Information System (INIS)
Agre, M.Ya.; Rapoport, L.P.
1996-01-01
The paper deals with the development of the theory of coherent scattering of electromagnetic waves by a polarized atom or molecular system. Peculiarities of the angular distribution and polarization peculiarities of scattered radiation are discussed
Full Text Available ... Type 2 Diabetes Know Your Rights Employment Discrimination Health Care Professionals Law ... Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart- ...
Full Text Available ... Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday ... Carbohydrates Types of Carbohydrates Carbohydrate Counting Make Your Carbs ...
Stresses in Circular Plates with Rigid Elements
Velikanov, N. L.; Koryagin, S. I.; Sharkov, O. V.
2018-05-01
Calculations of residual stress fields are carried out by numerical and static methods, using the flat cross-section hypothesis. The failure of metal when exposed to residual stresses is, in most cases, brittle. The presence in the engineering structures of rigid elements often leads to the crack initiation and structure failure. This is due to the fact that rigid elements under the influence of external stresses are stress concentrators. In addition, if these elements are fixed by welding, the residual welding stresses can lead to an increase in stress concentration and, ultimately, to failure. The development of design schemes for such structures is a very urgent task for complex technical systems. To determine the stresses in a circular plate with a welded circular rigid insert under the influence of an external load, one can use the solution of the plane stress problem for annular plates in polar coordinates. The polar coordinates of the points are the polar radius and the polar angle, and the stress state is determined by normal radial stresses, tangential and shearing stresses. The use of the above mentioned design schemes, formulas, will allow more accurate determination of residual stresses in annular welded structures. This will help to establish the most likely directions of failure and take measures at the stages of designing, manufacturing and repairing engineering structures to prevent these failures. However, it must be taken into account that the external load, the presence of insulation can lead to a change in the residual stress field.
Multi-channel polarized thermal emitter
Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P
2013-07-16
A multi-channel polarized thermal emitter (PTE) is presented. The multi-channel PTE can emit polarized thermal radiation without using a polarizer at normal emergence. The multi-channel PTE consists of two layers of metallic gratings on a monolithic and homogeneous metallic plate. It can be fabricated by a low-cost soft lithography technique called two-polymer microtransfer molding. The spectral positions of the mid-infrared (MIR) radiation peaks can be tuned by changing the periodicity of the gratings and the spectral separation between peaks are tuned by changing the mutual angle between the orientations of the two gratings.
Energy Technology Data Exchange (ETDEWEB)
Sasaki, S., E-mail: s.sasaki@ecei.tohoku.ac.j [Electrical Engineering Department, Graduate School, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Shimada, K.; Yagai, T.; Tsuda, M.; Hamajima, T. [Electrical Engineering Department, Graduate School, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Kawai, N.; Yasui, K. [Okumura Corporation, 5-6-1 Shiba, Minato-ku, Tokyo 180-8381 (Japan)
2010-11-01
We have devised a magnetic levitation type superconducting seismic isolation device taking advantage of the specific characteristic of HTS bulk that the HTS bulk returns to its original position by restoring force against a horizontal displacement. The superconducting seismic isolation device is composed of HTS bulks and permanent magnets (PM rails). The PMs are fixed on an iron plate to realize the same polarities in the longitudinal direction and the different polarities in the transverse direction. The superconducting seismic isolation device can theoretically remove any horizontal vibrations completely. Therefore, the vibration transmissibility in the longitudinal direction of the PM rail becomes zero in theory. The zero vibration transmissibility and the stationary levitation, however, cannot be achieved in the real device because a uniform magnetic field distribution in the longitudinal direction of PM rail cannot be realized due to the individual difference of the PMs. Therefore, to achieve stationary levitation in the real device we adopted a PM-PM system that the different polarities are faced each other. The stationary levitation could be achieved by the magnetic interaction between the PMs in the PM-PM system, while the vibration transmitted to the seismic isolation object due to the magnetic interaction. We adopted a copper plate between the PMs to reduce the vibration transmissibility. The PM-PM system with the copper plate is very useful for realizing the stationary levitation and reducing the vibration transmissibility.
International Nuclear Information System (INIS)
Sasaki, S.; Shimada, K.; Yagai, T.; Tsuda, M.; Hamajima, T.; Kawai, N.; Yasui, K.
2010-01-01
We have devised a magnetic levitation type superconducting seismic isolation device taking advantage of the specific characteristic of HTS bulk that the HTS bulk returns to its original position by restoring force against a horizontal displacement. The superconducting seismic isolation device is composed of HTS bulks and permanent magnets (PM rails). The PMs are fixed on an iron plate to realize the same polarities in the longitudinal direction and the different polarities in the transverse direction. The superconducting seismic isolation device can theoretically remove any horizontal vibrations completely. Therefore, the vibration transmissibility in the longitudinal direction of the PM rail becomes zero in theory. The zero vibration transmissibility and the stationary levitation, however, cannot be achieved in the real device because a uniform magnetic field distribution in the longitudinal direction of PM rail cannot be realized due to the individual difference of the PMs. Therefore, to achieve stationary levitation in the real device we adopted a PM-PM system that the different polarities are faced each other. The stationary levitation could be achieved by the magnetic interaction between the PMs in the PM-PM system, while the vibration transmitted to the seismic isolation object due to the magnetic interaction. We adopted a copper plate between the PMs to reduce the vibration transmissibility. The PM-PM system with the copper plate is very useful for realizing the stationary levitation and reducing the vibration transmissibility.
Cheng, Yayun; Qi, Bo; Liu, Siyuan; Hu, Fei; Gui, Liangqi; Peng, Xiaohui
2016-10-01
Polarimetric measurements can provide additional information as compared to unpolarized ones. In this paper, linear polarization ratio (LPR) is created to be a feature discriminator. The LPR properties of several materials are investigated using Fresnel theory. The theoretical results show that LPR is sensitive to the material type (metal or dielectric). Then a linear polarization ratio-based (LPR-based) method is presented to distinguish between metal and dielectric materials. In order to apply this method to practical applications, the optimal range of incident angle have been discussed. The typical outdoor experiments including various objects such as aluminum plate, grass, concrete, soil and wood, have been conducted to validate the presented classification method.
Fluorescence confocal polarizing microscopy: Three-dimensional ...
Indian Academy of Sciences (India)
journal of. August 2003 physics pp. 373–384. Fluorescence confocal polarizing ... and focal conic domains in flat samples of lamellar LCs are practically indistinguishable. ... or less) LC layer confined between two transparent plates. ... in studies of electro-optic effects such as the Frederiks effect, defects, surface anchoring,.
Sanbi, M.; Saadani, R.; Sbai, K.; Rahmoune, M.
2015-01-01
Theoretical and numerical results of the modeling of a smart plate are presented for optimal active vibration control. The smart plate consists of a rectangular aluminum piezocomposite plate modeled in cantilever configuration with surface bonded thermopiezoelectric patches. The patches are symmetrically bonded on top and bottom surfaces. A generic thermopiezoelastic theory for piezocomposite plate is derived, using linear thermopiezoelastic theory and Kirchhoff assumptions. Finite element eq...
Emission polarization study on quartz and calcite.
Vincent, R. K.
1972-01-01
Calculation of the spectral emission polarization of quartz and calcite polished plates for observation angles of 20 and 70 deg by the substitution of complex index of refraction values for each mineral into Fresnel's equations. The emission polarization is shown to be quite wavelength-dependent, demonstrating that selected narrow or medium-width spectral bands exhibit a significantly higher percentage of polarization than a broad spectral band for these two minerals. Field measurements with a broadband infrared radiometer yield polarizations on the order of 2% for a coarse-grained granite rock and beach sand (both quartz-rich). This implies that a more sensitive detector with a selected medium-width filter may be capable of measuring emission polarization accurately enough to make this parameter useful as a remote sensing tool for discrimination among rocks on the basis of texture.
Full Text Available ... In Memory In Honor Become a Member En Español Type 1 Type 2 About Us Online Community ... Page Text Size: A A A Listen En Español Create Your Plate Create Your Plate is a ...
Full Text Available ... Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal Planning ... Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets ...
Full Text Available ... Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart- ... Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods ...
Full Text Available ... ready, you can try new foods within each food category. Try these seven steps to get started: Using your dinner plate, put a line down the middle of the plate. Then on one side, cut it ... and starchy foods. See this list of grains and starchy foods . ...
Is There Really A North American Plate?
Krill, A.
2011-12-01
elsewhere, such as S.J. Shand (1933), E.B. Bailey (1939), and Arthur Holmes (1944), presented continental drift as a working hypothesis that could elegantly solve important geological problems. Americans were preconditioned to dislike continental drift theory, ever since James Dwight Dana taught in his Manual of Geology (1863...1895) that North America was the type continent of the world, and that it had stood alone since earliest time. Such beliefs sometimes trump geologic evidence. As noted by Stephen Jay Gould (1999) Sigmund Freud had much insight into the psychology of scientific revolutions: they involve a scientific development that shows humans to have lesser status than previously perceived. In the Copernican revolution (geocentrism vs. heliocentrism) humans no longer inhabited the center of the universe. In the Darwinian revolution (creationism vs. evolutionism) humans were no longer uniquely created. In the Wegenerian revolution (fixism vs. mobilism) North America was no longer uniquely created; it was just other fragment from Pangaea. North American geologists were pleased when Press & Siever gave them their own lithospheric plate. Being a global-tectonic killjoy, I would like to take away that small consolation as well. Or at least pose the question: Is there really a North American Plate?
International Nuclear Information System (INIS)
Werner, S; Rehbein, S; Guttman, P; Heim, S; Schneider, G
2009-01-01
Fresnel zone plates are the key optical elements for soft and hard x-ray microscopy. For short exposure times and minimum radiation load of the specimen the diffraction efficiency of the zone plate objectives has to be maximized. As the efficiency strongly depends on the height of the diffracting zone structures the achievable aspect ratio of the nanostructures determines these limits. To reach aspect ratios ≥ 20:1 for high efficient optics we propose to superimpose zone plates on top of each other. With this multiplication approach the final aspect ratio is only limited by the number of stacked zone plate layers. For the stack process several nanostructuring process steps have to be developed and/or improved. Our results show for the first time two layers of zone plates stacked on top of each other.
Nuclear physics with polarized particles
Paetz gen Schieck, Hans
2012-01-01
The measurement of spin-polarization observables in reactions of nuclei and particles is of great utility and advantage when the effects of single-spin sub-states are to be investigated. Indeed, the unpolarized differential cross-section encompasses the averaging over the spin states of the particles, and thus loses details of the interaction process. This introductory text combines, in a single volume, course-based lecture notes on spin physics and on polarized-ion sources with the aim of providing a concise yet self-contained starting point for newcomers to the field, as well as for lecturers in search of suitable material for their courses and seminars. A significant part of the book is devoted to introducing the formal theory-a description of polarization and of nuclear reactions with polarized particles. The remainder of the text describes the physical basis of methods and devices necessary to perform experiments with polarized particles and to measure polarization and polarization effects in nuclear rea...
2005-01-01
18 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark-outlined polygons on a frost-covered surface in the south polar region of Mars. In summer, this surface would not be bright and the polygons would not have dark outlines--these are a product of the presence of seasonal frost. Location near: 77.2oS, 204.8oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring
Kalai, Adam; Kalai, Ehud
2001-08-01
In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.
Metallic stereostructured layer: An approach for broadband polarization state manipulation
International Nuclear Information System (INIS)
Xiong, Xiang; Hu, Yuan-Sheng; Jiang, Shang-Chi; Hu, Yu-Hui; Fan, Ren-Hao; Ma, Guo-Bin; Shu, Da-Jun; Peng, Ru-Wen; Wang, Mu
2014-01-01
In this letter, we report a full-metallic broadband wave plate assembled by standing metallic L-shaped stereostructures (LSSs). We show that with an array of LSSs, high polarization conversion ratio is achieved within a broad frequency band. Moreover, by rotating the orientation of the array of LSSs, the electric components of the reflection beam in two orthogonal directions and their phase difference can be independently tuned. In this way, all the polarization states on the Poincaré sphere can be realized. As examples, the functionalities of a quarter wave plate and a half wave plate are experimentally demonstrated with both reflection spectra and focal-plane-array imaging. Our designing provides a unique approach in realizing the broadband wave plate to manipulate the polarization state of light
Efficient composite broadband polarization retarders and polarization filters
Dimova, E.; Ivanov, S. S.; Popkirov, G.; Vitanov, N. V.
2014-12-01
A new type of broadband polarization half-wave retarder and narrowband polarization filters are described and experimentally tested. Both, the retarders and the filters are designed as composite stacks of standard optical half-wave plates, each of them twisted at specific angles. The theoretical background of the proposed optical devices was obtained by analogy with the method of composite pulses, known from the nuclear and quantum physics. We show that combining two composite filters built from different numbers and types of waveplates, the transmission spectrum is reduced from about 700 nm to about 10 nm width.We experimentally demonstrate that this method can be applied to different types of waveplates (broadband, zero-order, multiple order, etc.).
International Nuclear Information System (INIS)
Wiencek, T.C.; Domagala, R.F.; Thresh, H.R.
1990-01-01
Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pari of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat hiving a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process
Continuum Mechanics of Beam and Plate Flexure
DEFF Research Database (Denmark)
Jönsson, Jeppe
This text has been written and used during the spring of 1995 for a course on flexural mechanics of beams and plates at Aalborg University. The idea has been to concentrate on basic principles of the theories, which are of importance to the modern structural engineer. Today's structural engineer...... must be acquainted with the classic beam and plate theories, when reading manuals and using modern software tools such as the finite element method. Each chapter includes supplementary theory and derivations enabling consultation of the notes also at a later stage of study. A preliminary chapter...... introduces the modern notation used in textbooks and in research today. It further gives an introduction to three-dimensional continuum mechanics of elastic bodies and the related principles of virtual work. The ideas to give the students a basic understanding of the stresses and strains, the equilibrium...
Polarized secondary radioactive beams
International Nuclear Information System (INIS)
Zaika, N.I.
1992-01-01
Three methods of polarized radioactive nuclei beam production: a) a method nuclear interaction of the non-polarized or polarized charged projectiles with target nuclei; b) a method of polarization of stopped reaction radioactive products in a special polarized ion source with than following acceleration; c) a polarization of radioactive nuclei circulating in a storage ring are considered. Possible life times of the radioactive ions for these methods are determined. General schemes of the polarization method realizations and depolarization problems are discussed
Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging.
Zhou, Jialing; He, Honghui; Chen, Zhenhua; Wang, Ye; Ma, Hui
2018-01-01
We have developed a polarization microscope based on a commercial transmission microscope. We replace the halogen light source by a collimated LED light source module of six different colors. We use achromatic polarized optical elements that can cover the six different wavelength ranges in the polarization state generator (PSG) and polarization state analyzer (PSA) modules. The dual-rotating wave plate method is used to measure the Mueller matrix of samples, which requires the simultaneous rotation of the two quarter-wave plates in both PSG and PSA at certain angular steps. A scientific CCD detector is used as the image receiving module. A LabView-based software is developed to control the rotation angels of the wave plates and the exposure time of the detector to allow the system to run fully automatically in preprogrammed schedules. Standard samples, such as air, polarizers, and quarter-wave plates, are used to calibrate the intrinsic Mueller matrix of optical components, such as the objectives, using the eigenvalue calibration method. Errors due to the images walk-off in the PSA are studied. Errors in the Mueller matrices are below 0.01 using air and polarizer as standard samples. Data analysis based on Mueller matrix transformation and Mueller matrix polarization decomposition is used to demonstrate the potential application of this microscope in pathological diagnosis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
International Nuclear Information System (INIS)
Makosinski, S.
1981-01-01
In many applications polar cranes have to be repeatedly positioned with high accuracy. A guidance system is disclosed which has two pairs of guides. Each guide consists of two rollers carried by a sheave rotatable mounted on the crane bridge, the rollers being locatable one on each side of a guideway, e.g. the circular track on which the bridge runs. The pairs of guides are interconnected by respective rope loops which pass around and are locked to the respective pairs of sheaves in such a manner that movement of one guide results in equal movement of the other guide in a sense to maintain the repeatability of positioning of the centre of the bridge. A hydraulically-linked guide system is also described. (author)
Othmani, Cherif; Takali, Farid; Njeh, Anouar
2017-12-01
Guided wave devices have recently become one of the most important applications in the industry because such waves are directly related to applications in sensor technology, chemical sensing, agricultural science, fields of bio-sensing and surface acoustic wave (SAW) devices that are used in electronic filters and signal processing. On that account, this numerical investigation aims to study the propagation behavior of guided Lamb waves in a (1-x)Pb(Mg1/3Nb2/3)O3- x PbTiO3 [PMN- x PT] ( x=0.29 or 0.33) piezoelectric single crystal plate. In fact, the PMN- xPT ( x=0.29 or 0.33) piezoelectric crystals are being polarized along [001]c, [011]c and [111]c of the cubic reference directions so that the macroscopic symmetries are tetragonal 4 mm, orthogonal mm2 and rhombohedral 3 m, respectively. Both open- and short-circuit conditions are considered. Here, the Legendre polynomial method is proposed to solve the guided Lamb waves equations. The validity of the proposed method is illustrated by comparison with the ordinary differential equation (ODE). The convergence of this method is discussed. Consequently, the converged results are obtained with very low truncation order M . This constitutes a major advantage of the present method when compared with the other matrix methods. There is cross-crossings among multiple modes for both symmetric ( Sn) and the anti-symmetric ( An) guided Lamb waves propagation. A displacement field has been illustrated to judge whether Sn and An modes cross with each other. Moreover, electric displacement, stress field and electric potential for the open-circuit case were presented for both S0 and A0 Lamb modes.
Energy Technology Data Exchange (ETDEWEB)
Allan, J.A.F.
1976-10-28
Micro-porous insulation plates are dealt with, for example, how they are used in the insulation of heat storage devices. Since one side of such plates is exposed to a temperature of over 700/sup 0/C, a shrinkage of the glass texture of the covering can occur, which can exceed the shrinkage of the inner micro-porous material, so that cracks and splits in the high temperature side of the covering can come about. The task of the invention is to design the plate in such a way as to prevent this from happening. For this purpose the plate is provided, according to invention specifications, with flutes, waves, ribs, waffle or grid patterns and the covering is set into the recesses originating from this.
Full Text Available ... Plate is a simple and effective way to manage your blood glucose levels and lose weight. With ... been easier. It can be a challenge to manage portion control wherever you are. Now, our best- ...
Full Text Available ... Food Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods donate en -- A Future Without Diabetes - a- ...
Full Text Available ... Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ... Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart- ...
Full Text Available ... Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ... Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets ...
Full Text Available ... Children and Type 2 Diabetes Know Your Rights Employment Discrimination Health Care Professionals Law Enforcement Driver's License ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...
Full Text Available ... diabetes. Other Ways to Give Become a Member Vehicle Donation Planned Giving Options Memorial Giving Brochures & Envelopes ... to manage your blood glucose levels and lose weight. With this method, you fill your plate with ...
Full Text Available ... breast cancer and AIDS combined. Your gift today will help us get closer to curing diabetes and ... on one side, cut it again so you will have three sections on your plate. Fill the ...
Full Text Available ... Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning ... serving of dairy or both as your meal plan allows. Choose healthy fats in small amounts. For ...
Full Text Available ... Count Glycemic Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get Started Safely ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...
Full Text Available ... these seven steps to get started: Using your dinner plate, put a line down the middle of ... Fitness Food Recipes Planning Meals What Can I Eat Weight Loss Fitness In My Community Calendar of ...
Full Text Available ... Food MyFoodAdvisor Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal ...
Full Text Available ... for Association Events Messaging Tools Recruiting Advocates Local Market Planning Training Webinars News & Events Advocacy News Call ... Meals > Create Your Plate Share: Print Page Text Size: A A A Listen En Español Create Your ...
Full Text Available ... Us in the Fight for a Cure Your tax-deductible gift today can fund critical diabetes research ... Close www.diabetes.org > Food and Fitness > Food > Planning Meals > Create Your Plate Share: Print Page Text ...
Full Text Available ... critical diabetes research and support vital diabetes education services that improve the lives of those with diabetes. $50 $100 $250 $500 Other Other Ways ... Meals > Create Your Plate ...
Full Text Available ... 800-342-2383) Give by Mail Close ... your plate with more non-starchy veggies and smaller portions of starchy foods and protein—no special tools or counting required! You can ...
National Research Council Canada - National Science Library
2004-01-01
When drilling holes in hard steel plate used in up-armor kits for Humvee light trucks, the Anniston Army Depot, Anniston, Alabama, requested the assistance of the National Center for Defense Manufacturing and Machining (NCDMM...
Full Text Available ... Easy Advocacy Checklists for Association Events Messaging Tools Recruiting Advocates Local Market Planning Training Webinars News & Events ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...
Full Text Available ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ... Complications Health Insurance For Parents & Kids Know Your Rights We Can Help Enroll in the Living WIth ...
Full Text Available ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ... today and help fund grants supporting next generation scientists. Donate Today We Can Help - we-can-help. ...
Electromagnetic response of extraordinary transmission plates inspired on Babinet’s principle
Navarro Cía, Miguel; Beruete Díaz, Miguel; Sorolla Ayza, Mario
2011-01-01
This chapter is devoted to polarization effects arisen from perforated metallic plates exhibiting extraordinary transmission (ET). Setting aside the state-of-the-art of perforated metallic plates, we show that by applying Babinet’s principle, subwavelength hole arrays (SHAs) arranged in rectangular lattice can further enhance its potential polarization response. Different perspectives are brought about to describe and understand the particular behaviour of self-complementarines...
Mickaelian, A. M.; Gigoyan, K. S.; Gyulzadyan, M. V.; Paronyan, G. M.; Abrahamyan, H. V.; Andreasyan, H. R.; Azatyan, N. M.; Kostandyan, G. R.; Samsonyan, A. L.; Mikayelyan, G. A.; Farmanyan, S. V.; Harutyunyan, V. L.
2017-12-01
We present the Byurakan Astrophysical Observatory (BAO) Plate Archive Project that is aimed at digitization, extraction and analysis of archival data and building an electronic database and interactive sky map. BAO Plate Archive consists of 37,500 photographic plates and films, obtained with 2.6m telescope, 1m and 0.5m Schmidt telescopes and other smaller ones during 1947-1991. The famous Markarian Survey (or the First Byurakan Survey, FBS) 2000 plates were digitized in 2002-2005 and the Digitized FBS (DFBS, www.aras.am/Dfbs/dfbs.html) was created. New science projects have been conducted based on this low-dispersion spectroscopic material. Several other smaller digitization projects have been carried out as well, such as part of Second Byurakan Survey (SBS) plates, photographic chain plates in Coma, where the blazar ON 231 is located and 2.6m film spectra of FBS Blue Stellar Objects. However, most of the plates and films are not digitized. In 2015, we have started a project on the whole BAO Plate Archive digitization, creation of electronic database and its scientific usage. Armenian Virtual Observatory (ArVO, www.aras.am/Arvo/arvo.htm) database will accommodate all new data. The project runs in collaboration with the Armenian Institute of Informatics and Automation Problems (IIAP) and will continues during 4 years in 2015-2018. The final result will be an Electronic Database and online Interactive Sky map to be used for further research projects. ArVO will provide all standards and tools for efficient usage of the scientific output and its integration in international databases.
International Nuclear Information System (INIS)
Niimura, Nobuo
1995-01-01
Imaging plates have been used in the field of medical diagnosis since long ago, but their usefulness was verified as the two-dimensional detector for analyzing the X-ray crystalline structure of high bio molecules like protein, and they have contributed to the remarkable progress in this field. The great contribution is due to the excellent features, such as the detection efficiency of about 100%, the positional resolution smaller than 0.2 mm, the dynamic range of five digits, and the area of several hundreds mm square. The neutron imaging plates have not yet obtained the sufficient results. It was planned to construct the neutron diffractometer for biological matters, and to put imaging plate neutron detectors (IP-ND) to practical use as the detector. The research on the development of IP-NDs was carried out, and the IPp-NDs having the performance comparable with that for X-ray were able to be produced. Imaging plates are the integral type two-dimensional radiation detector using photostimulated luminescence matters, and their principle is explained. As to neutron imaging plates, the converter, neutron detection efficiency and the flight of secondary particles in photo-stimulated luminescence matters are described. As for the present state of development of neutron imaging plates, the IP-NDs made for trial, the dynamic range, the positional resolution, the detection efficiency and the kinds of converters, and the application of IP-NDs are reported. (K.I.)
Polarization of Coronal Forbidden Lines
Energy Technology Data Exchange (ETDEWEB)
Li, Hao; Qu, Zhongquan [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China); Landi Degl’Innocenti, Egidio, E-mail: sayahoro@ynao.ac.cn [Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze, Largo E. Fermi 2, I-50125 Firenze (Italy)
2017-03-20
Since the magnetic field is responsible for most manifestations of solar activity, one of the most challenging problems in solar physics is the diagnostics of solar magnetic fields, particularly in the outer atmosphere. To this end, it is important to develop rigorous diagnostic tools to interpret polarimetric observations in suitable spectral lines. This paper is devoted to analyzing the diagnostic content of linear polarization imaging observations in coronal forbidden lines. Although this technique is restricted to off-limb observations, it represents a significant tool to diagnose the magnetic field structure in the solar corona, where the magnetic field is intrinsically weak and still poorly known. We adopt the quantum theory of polarized line formation developed in the framework of the density matrix formalism, and synthesize images of the emergent linear polarization signal in coronal forbidden lines using potential-field source-surface magnetic field models. The influence of electronic collisions, active regions, and Thomson scattering on the linear polarization of coronal forbidden lines is also examined. It is found that active regions and Thomson scattering are capable of conspicuously influencing the orientation of the linear polarization. These effects have to be carefully taken into account to increase the accuracy of the field diagnostics. We also found that linear polarization observation in suitable lines can give valuable information on the long-term evolution of the magnetic field in the solar corona.
Spontaneous spin polarization in quantum wires
Energy Technology Data Exchange (ETDEWEB)
Vasilchenko, A.A., E-mail: a_vas2002@mail.ru
2015-12-04
The total energy of a quasi-one-dimensional electron system was calculated using the density functional theory. In the absence of a magnetic field, we have found that ferromagnetic state occurs in the quantum wires. The phase diagram of the transition into the spin-polarized state is constructed. The critical electron density below which electrons are in spin-polarized state is estimated analytically. - Highlights: • Density functional theory used to study a spin-polarized state in quantum wires. • The Kohn–Sham equation for quasi-one-dimensional electrons solved numerically. • The phase diagram of the transition into the spin-polarized state is constructed. • The electron density below which electrons are in a spin-polarized state was found. • The critical density of electrons was estimated analytically.
Spontaneous spin polarization in quantum wires
International Nuclear Information System (INIS)
Vasilchenko, A.A.
2015-01-01
The total energy of a quasi-one-dimensional electron system was calculated using the density functional theory. In the absence of a magnetic field, we have found that ferromagnetic state occurs in the quantum wires. The phase diagram of the transition into the spin-polarized state is constructed. The critical electron density below which electrons are in spin-polarized state is estimated analytically. - Highlights: • Density functional theory used to study a spin-polarized state in quantum wires. • The Kohn–Sham equation for quasi-one-dimensional electrons solved numerically. • The phase diagram of the transition into the spin-polarized state is constructed. • The electron density below which electrons are in a spin-polarized state was found. • The critical density of electrons was estimated analytically.
BEPLATE emdash simulation of electrochemical plating
Energy Technology Data Exchange (ETDEWEB)
Giles, G.E. (Oak Ridge K-25 Site, TN (USA)); Gray, L.J. (Oak Ridge National Lab., TN (USA)); Bullock, J.S. IV (Oak Ridge Y-12 Plant, TN (USA))
1990-09-01
BEPLATE is a FORTRAN code that uses the boundary element method to simulate the electrochemical plating of material on parts, primarily rotating axisymmetric parts. A boundary element technique is used to solve for the local current density and thus the plating rate on the part, which is used to calculate the growth in the plated layer over a user-specified time step. The surface is moved to reflect this growth, and the new surface is used to generate the local current density. This cycle is repeated until the final time specified by the analyst, producing the final plated thickness. BEPLATE includes models for the polarization effects at both the part (cathode) and anode and allows the use of symmetry planes and nonconducting shields. For electroplating simulations, the part shape is normally assumed to be axisymmetric with a centerline along the z-axis. More general part shapes can be analyzed by BEPLATE if the surface growth simulation is not needed. In either case, the shield, anode, and tank geometries are not restricted to specific shapes. This report includes the information required to run BEPLATE, specifically, a brief description of the BEPLATE system including hardware and software requirements, a description of the complete simulation process, discussion of rules for generating models, and additional reference material. This system of codes consists of model generators (PIGS or PATRAN), input processor (BEPIN), the simulation code (BEPLATE) and postprocessing codes (PATRAN or CONPLOT).
Free vibration analysis of rectangular plates with central cutout
Directory of Open Access Journals (Sweden)
Kanak Kalita
2016-12-01
Full Text Available A nine-node isoparametric plate element in conjunction with first-order shear deformation theory is used for free vibration analysis of rectangular plates with central cutouts. Both thick and thin plate problems are solved for various aspect ratios and boundary conditions. In this article, primary focus is given to the effect of rotary inertia on natural frequencies of perforated rectangular plates. It is found that rotary inertia has significant effect on thick plates, while for thin plates the rotary inertia term can be ignored. It is seen that the numerical convergence is very rapid and based on comparison with experimental and analytical data from literature, it is proposed that the present formulation is capable of yielding highly accurate results. Finally, some new numerical solutions are provided here, which may serve as benchmark for future research on similar problems.
Fiber-Based Polarization Diversity Detection for Polarization-Sensitive Optical Coherence Tomography
Directory of Open Access Journals (Sweden)
Hamid Pahlevaninezhad
2014-09-01
Full Text Available We present a new fiber-based polarization diversity detection (PDD scheme for polarization sensitive optical coherence tomography (PSOCT. This implementation uses a new custom miniaturized polarization-maintaining fiber coupler with single mode (SM fiber inputs and polarization maintaining (PM fiber outputs. The SM fiber inputs obviate matching the optical lengths of the two orthogonal OCT polarization channels prior to interference while the PM fiber outputs ensure defined orthogonal axes after interference. Advantages of this detection scheme over those with bulk optics PDD include lower cost, easier miniaturization, and more relaxed alignment and handling issues. We incorporate this PDD scheme into a galvanometer-scanned OCT system to demonstrate system calibration and PSOCT imaging of an achromatic quarter-wave plate, fingernail in vivo, and chicken breast, salmon, cow leg, and basa fish muscle samples ex vivo.
Dynamic coupled piezothermoelasticity of pyroelectric composite plate
International Nuclear Information System (INIS)
Heidary, F.; Reza Eslami, M.
2005-01-01
The equations governing the linear response of coupled piezothermolelastic composite plate, considering the pyroelectric effect, are outlined in this paper. The finite element method with linear shape functions for a first-order shear deformation theory of laminated plates is used to obtain the defections and temperature. The finite element equations are developed for piezothermoelectric sensor and actuator. The governing equations are solved using the time marching method. Numerical results are presented for the conventional active direct proportional control of the plate. Controlled and uncontrolled displacements and temperature responses are graphically illustrated. the corresponding temperature response with consideration of the pyroelectric effects is also presented. Dynamic case studies are carried out to observe the pyroelectric effects in the piezothermoelastic control systems. (authors)
Concentration of solar radiation by white painted transparent plates.
Smestad, G; Hamill, P
1982-04-01
A simple flat-plate solar concentrator is described in this paper. The device is composed of a white painted transparent plate with a photovoltaic cell fixed to an unpainted area on the bottom of the plate. Light scattering off the white material is either lost or directed to the solar cell. Experimental concentrations of up to 1.9 times the incident solar flux have been achieved using white clays. These values are close to those predicted by theory for the experimental parameters investigated. A theory of the device operation is developed. Using this theory suggestions are made for optimizing the concentrator system. For reasonable choices of cell and plate size and reflectivities of 80% concentrations of over 2x are possible. The concentrator has the advantage over other systems in that the concentration is independent of incidence angle and the concentrator is easy to produce. The device needs no tracking system and will concentrate on a cloudy day.
Vacuum polarization and Hawking radiation
Rahmati, Shohreh
Quantum gravity is one of the interesting fields in contemporary physics which is still in progress. The purpose of quantum gravity is to present a quantum description for spacetime at 10-33cm or find the 'quanta' of gravitational interaction.. At present, the most viable theory to describe gravitational interaction is general relativity which is a classical theory. Semi-classical quantum gravity or quantum field theory in curved spacetime is an approximation to a full quantum theory of gravity. This approximation considers gravity as a classical field and matter fields are quantized. One interesting phenomena in semi-classical quantum gravity is Hawking radiation. Hawking radiation was derived by Stephen Hawking as a thermal emission of particles from the black hole horizon. In this thesis we obtain the spectrum of Hawking radiation using a new method. Vacuum is defined as the possible lowest energy state which is filled with pairs of virtual particle-antiparticle. Vacuum polarization is a consequence of pair creation in the presence of an external field such as an electromagnetic or gravitational field. Vacuum polarization in the vicinity of a black hole horizon can be interpreted as the cause of the emission from black holes known as Hawking radiation. In this thesis we try to obtain the Hawking spectrum using this approach. We re-examine vacuum polarization of a scalar field in a quasi-local volume that includes the horizon. We study the interaction of a scalar field with the background gravitational field of the black hole in the desired quasi-local region. The quasi-local volume is a hollow cylinder enclosed by two membranes, one inside the horizon and one outside the horizon. The net rate of particle emission can be obtained as the difference of the vacuum polarization from the outer boundary and inner boundary of the cylinder. Thus we found a new method to derive Hawking emission which is unitary and well defined in quantum field theory.
Energy Technology Data Exchange (ETDEWEB)
Nelson, M.J.; Groshart, E.C.
1995-03-01
The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.
Nuclear polarization and neutrons
International Nuclear Information System (INIS)
Glaettli, H.
1985-01-01
Different possibilities for the use of polarized nuclei in thermal neutron scattering on condensed matter are reviewed. Highly polarized nuclei are the starting point for studying dipolar magnetic order. Systematic measurement of spin-dependent scattering lengths is possible on samples with polarized nuclei. Highly polarized hydrogen should help to unravel complicated structures in chemistry and biology. The use of polarized proton targets as an energy-independent neutron polarizer in the thermal and epithermal region should be considered afresh. (author)
Modeling diffusion coefficients in binary mixtures of polar and non-polar compounds
DEFF Research Database (Denmark)
Medvedev, Oleg; Shapiro, Alexander
2005-01-01
The theory of transport coefficients in liquids, developed previously, is tested on a description of the diffusion coefficients in binary polar/non-polar mixtures, by applying advanced thermodynamic models. Comparison to a large set of experimental data shows good performance of the model. Only f...
Plate tectonics in the late Paleozoic
Directory of Open Access Journals (Sweden)
Mathew Domeier
2014-05-01
Full Text Available As the chronicle of plate motions through time, paleogeography is fundamental to our understanding of plate tectonics and its role in shaping the geology of the present-day. To properly appreciate the history of tectonics—and its influence on the deep Earth and climate—it is imperative to seek an accurate and global model of paleogeography. However, owing to the incessant loss of oceanic lithosphere through subduction, the paleogeographic reconstruction of ‘full-plates’ (including oceanic lithosphere becomes increasingly challenging with age. Prior to 150 Ma ∼60% of the lithosphere is missing and reconstructions are developed without explicit regard for oceanic lithosphere or plate tectonic principles; in effect, reflecting the earlier mobilistic paradigm of continental drift. Although these ‘continental’ reconstructions have been immensely useful, the next-generation of mantle models requires global plate kinematic descriptions with full-plate reconstructions. Moreover, in disregarding (or only loosely applying plate tectonic rules, continental reconstructions fail to take advantage of a wealth of additional information in the form of practical constraints. Following a series of new developments, both in geodynamic theory and analytical tools, it is now feasible to construct full-plate models that lend themselves to testing by the wider Earth-science community. Such a model is presented here for the late Paleozoic (410–250 Ma together with a review of the underlying data. Although we expect this model to be particularly useful for numerical mantle modeling, we hope that it will also serve as a general framework for understanding late Paleozoic tectonics, one on which future improvements can be built and further tested.
Application of generalized function to dynamic analysis of elasto-plastic thick plates
International Nuclear Information System (INIS)
Zheng, D.; Weng, Z.
1987-01-01
The elasto-plastic dynamic analysis of thick plates is of great significance to the research and the design on an anti-seismic structure and an anti-explosive structure. In this paper, the derivative of δ-function is handled by using the generalized function. The dynamic influence coefficient of thick plates in deduced. A dynamic response of elasto-plastic thick plates its material has hardening behaviour considered, is analysed by using known elastic solutions. The general expressions for the dynamic response of elasto-plastic rectangular thick plates subjected arbitrary loads are given. Detailed computations are performed for the square plates of various height-span ratios. The results are compared with those obtained from the improved theory and the classical theory of plates. The modification of the classical deflection theory for plates is employed. The increment analysis is used for calculations. The yield function is considered as a function of inplane and transverse shear stresses. (orig./GL)
Neutron polarization in polarized 3He targets
International Nuclear Information System (INIS)
Friar, J.L.; Gibson, B.F.; Payne, G.L.; Bernstein, A.M.; Chupp, T.E.
1990-01-01
Simple formulas for the neutron and proton polarizations in polarized 3 He targets are derived assuming (1) quasielastic final states; (2) no final-state interactions; (3) no meson-exchange currents; (4) large momentum transfers; (5) factorizability of 3 He SU(4) response-function components. Numerical results from a wide variety of bound-state solutions of the Faddeev equations are presented. It is found that this simple model predicts the polarization of neutrons in a fully polarized 3 He target to be 87%, while protons should have a slight residual polarization of -2.7%. Numerical studies show that this model works very well for quasielastic electron scattering
International Nuclear Information System (INIS)
Dini, J.W.; Johnson, H.R.; Jones, A.
1979-03-01
Zircaloy-2 is a difficult alloy to coat with an adherent electroplate because it easily forms a tenacious oxide film in air and aqueous solutions. Procedures reported in the literature and those developed at SLL for surmounting this problem were investigated. The best results were obtained when specimens were first etched in either an ammonium bifluoride/sulfuric acid or an ammonium bifluoride solution, plated, and then heated at 700 0 C for 1 hour in a constrained condition. Machining threads in the Zircaloy-2 for the purpose of providing sites for mechanical interlocking of the plating also proved satisfactory
Hoover, T.B.; Zava, T.E.
1959-05-12
A simplified process is presented for plating nickel by the vapor decomposition of nickel carbonyl. In a preferred form of the invention a solid surface is nickel plated by subjecting the surface to contact with a mixture containing by volume approximately 20% nickel carbonyl vapor, 2% hydrogen sulfide and .l% water vapor or 1% oxygen and the remainder carbon dioxide at room temperature until the desired thickness of nickel is obtained. The advantage of this composition over others is that the normally explosive nickel carbonyl is greatly stabilized.
Hydrodynamics of a flexible plate between pitching rigid plates
Kim, Junyoung; Kim, Daegyoum
2017-11-01
The dynamics of a flexible plate have been studied as a model problem in swimming and flying of animals and fluid-structure interaction of plants and flags. Motivated by fish schooling and an array of sea grasses, we investigate the dynamics of a flexible plate closely placed between two pitching rigid plates. In most studies on passive deformation of the flexible plate, the plate is immersed in a uniform flow or a wavy flow. However, in this study, the flexible plate experiences periodic deformation by the oscillatory flow generated by the prescribed pitching motion of the rigid plates. In our model, the pitching axes of the rigid plates and the clamping position of the flexible plate are aligned on the same line. The flexible plate shows various responses depending on length and pitching frequency of rigid plates, thickness of a flexible plate, and free-stream velocity. To find the effect of each variable on the response of the flexible plate, amplitude of a trailing edge and modal contribution of a flapping motion are compared, and flow structure around the flexible plate is examined.
Korol, Andrey V
2014-01-01
This book introduces and reviews both theory and applications of polarizational bremsstrahlung, i.e. the electromagnetic radiation emitted during collisions of charged particles with structured, thus polarizable targets, such as atoms, molecules and clusters. The subject, following the first experimental evidence a few decades ago, has gained importance through a number of modern applications. Thus, the study of several radiative mechanisms is expected to lead to the design of novel light sources, operating in various parts of the electromagnetic spectrum. Conversely, the analysis of the spectral and angular distribution of the photon emission constitutes a new tool for extracting information on the interaction of the colliding particles, and on their internal structure and dynamical properties. Last but not least, accurate quantitative descriptions of the photon emission processes determine the radiative energy losses of particles in various media, thereby providing essential information required f...
Visualization of polarization state and its application in optics classroom teaching
Lei, Bing; Liu, Wei; Shi, Jianhua; Wang, Wei; Yao, Tianfu; Liu, Shugang
2017-08-01
Polarization of light and the related knowledge are key and difficult points in optical teaching, and they are difficult to be understood since they are very abstract concepts. To help students understand the polarization properties of light, some classroom demonstration experiments have been constructed by employing the optical source, polarizers, wave plates optical cage system and polarization axis finder (PAF). The PAF is a polarization indicating device with many linear polarizing components concentric circles, which can visualize the polarization axis's direction of linearly polarized light intuitively. With the help of these demonstration experiment systems, the conversion and difference between the linear polarized light and circularly polarized light have been observed directly by inserting or removing a quarter-wave plate. The rotation phenomenon of linearly polarized light's polarization axis when it propagates through an optical active medium has been observed and studied in experiment, and the strain distribution of some mounted and unmounted lenses have also been demonstrated and observed in experiment conveniently. Furthermore, some typical polarization targets, such as liquid crystal display (LCD), polarized dark glass and skylight, have been observed based on PAF, which is quite suitable to help students understand these targets' polarization properties and the related physical laws. Finally, these demonstration experimental systems have been employed in classroom teaching of our university in physical optics, optoelectronics and photoelectric detection courses, and they are very popular with teachers and students.
Polarization Of Light In The Natural Environment
Coulson, Kinsell L.
1990-01-01
This paper provides a characterization of the fields of light polarization with which the optical designer or user of optical devices in the natural environment must be concerned. After a brief historical outline of the principal developments in polarization theory and observations during the last two centuries, the main emphasis is on the two primary processes responsible for the polarization of light in nature--scattering of light by particles of the atmosphere and reflection from soils, vegetation, snow, and water at the earth's surface. Finally, a seven minute film on polarization effects which can be seen in everyday surroundings will be shown. Scattering by atmospheric particles is responsible for high values of polarization in various atmospheric conditions and at certain scattering geometries. Such scattering particles include molecules of the atmospheric gases, aerosols of dust, haze, and air pollution, water droplets of fog and clouds, and the ice crystals of cirrus. It is seen that development of the theory of scattering by such particles has outstripped the measurements necessary for validation of the theory, a fact which points up the importance of symposia such as the present one. The reverse is true, however, for the polarizing properties of natural surfaces. Only in the case of still water is the theory of reflection adequate to characterize in a quantitative fashion the polarizing effects produced by the reflection of light from such natural surfaces. Polarization of light by reflection from vegetation is of prime importance in a remote sensing context, but much further work is needed to characterize vegetative reflectance for the purpose. The short film on polarization effects provides a good visualization technique and training aid for students interested in the field.
How campaigns polarize the electorate
DEFF Research Database (Denmark)
Hansen, Kasper M.; Kosiara-Pedersen, Karina
2017-01-01
The minimal effect theory of campaign studies stipulates that intense political competition during campaigns assures and reinforces the initial party choice of the electorate. We find that this reinforcement is two-fold. During the campaign, the party preference of the voters’ in-group party...... an increase in their preference for their most preferred party and a decrease for their least liked party as the campaign progresses. These trends show that the political campaign polarizes the electorate by increasing the affective distance between in-group party and out-group party preferences, thereby...... resulting in stronger political polarization after the campaign than before the campaign. The data utilized in this study is a large six-wave panel-study of Danish voters’ party preferences during the Danish parliamentary election of 2011. Thus, the analysis provides evidence of the minimal effect theory...
DYNAMIC RESPONSE OF THICK PLATES ON TWO PARAMETER ELASTIC FOUNDATION UNDER TIME VARIABLE LOADING
Ozgan, Korhan; Daloglu, Ayse T.
2014-01-01
In this paper, behavior of foundation plates with transverse shear deformation under time variable loading is presented using modified Vlasov foundation model. Finite element formulation of thick plates on elastic foundation is derived by using an 8-noded finite element based on Mindlin plate theory. Selective reduced integration technique is used to avoid shear locking problem which arises when smaller plate thickness is considered for the evaluation of the stiffness matrices. After comparis...
Investigation of Heat Transfer to a Flat Plate in a Shock Tube.
1987-12-01
2 Objectives and Scope . . . . . .. .. .. .... 5 11. Theory ............... ....... 7 Shock Tube Principles........... 7 Boundary Layer Theory ...in *excess of theory , but the rounded edge flat plate exhibited data which matched or was less than what theory predicted for each Mach number tested...normal shock advancing along an infinite flat plate. For x< Ugt there is a region of interaction between the downstream influence of the leading edge
International Nuclear Information System (INIS)
Gorodetski, Y.; Biener, G.; Niv, A.; Kleiner, V.; Hasman, E.
2005-01-01
Full Text:The behavior of geometrical phase elements illuminated with partially polarized monochromatic beams is being theoretically as well as experimentally investigated. The element discussed in this paper is composed of wave plates with retardation and space-variant orientation angle. We found that a beam emerging from such an element comprises two polarization orders of right and left-handed circularly polarized states with conjugate geometrical phase modification. This phase equals twice the orientation angle of the space-variant wave plate comprising the element. Apart from the two polarization orders, the emerging beam coherence polarization matrix comprises a matrix termed as the vectorial interference matrix. This matrix contains the information concerning the correlation between the two orthogonal circularly polarized portions of the incident beam. In this paper we measure this correlation by a simple interference experiment. Furthermore, we found that the equivalent mutual intensity of the emerging beam is being modulated according to the geometrical phase induced by the element. Other interesting phenomena along propagation will be discussed theoretically and experimentally demonstrated. We demonstrate experimentally our analysis by using a spherical geometrical phase element, which is realized by use of space-variant sub wavelength grating and illuminated with a CO 2 laser radiation of 10.6μm wavelength
Vortex Airy beams directly generated via liquid crystal q-Airy-plates
Wei, Bing-Yan; Liu, Sheng; Chen, Peng; Qi, Shu-Xia; Zhang, Yi; Hu, Wei; Lu, Yan-Qing; Zhao, Jian-Lin
2018-03-01
Liquid crystal q-Airy-plates with director distributions integrated by q-plates and polarization Airy masks are proposed and demonstrated via the photoalignment technique. Single/dual vortex Airy beams of opposite topological charges and orthogonal circular polarizations are directly generated with polarization-controllable characteristic. The singular phase of the vortex part is verified by both astigmatic transformation and digital holography. The trajectory of vortex Airy beams is investigated, manifesting separate propagation dynamics of optical vortices and Airy beams. Meanwhile, Airy beams still keep their intrinsic transverse acceleration, self-healing, and nondiffraction features. This work provides a versatile candidate for generating high-quality vortex Airy beams.
Full Text Available ... meal-planning, . In this section Food Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods donate en -- A Future Without Diabetes - a-future-without-diabetes-2.html A Future ...
Full Text Available ... tool is not to scale because of the differences in types of vegetables. When creating your plate ... function (data) { $('#survey-errors').remove(); $('.survey-form .form-group .survey-alert-wrap').remove(); if (data.submitSurveyResponse.success == ' ...
Full Text Available ... Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods donate en -- A Future Without Diabetes - a-future-without-diabetes-2.html A Future Without Diabetes Donate towards research today and your gift will be matched. Donate ...
Full Text Available ... Planning Meals > Create Your Plate Share: Print Page Text Size: A A A Listen En Español Create ... Type 2 Education Series Hear audio clips and full recordings of past Q&A events at your ...
Full Text Available ... 1 Type 2 About Us Online Community Meal Planning Sign In Search: Search More Sites Search ≡ Are ... Fitness Home Food MyFoodAdvisor Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create Your Plate Gluten ...
Full Text Available ... tax-deductible gift today can fund critical diabetes research and support vital diabetes education services that improve the ... effective way to manage your blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...
Microchannel plate photodetectors
International Nuclear Information System (INIS)
Majka, R.
1977-01-01
A review is given the status of development work on photodetectors using microchannel plates (MCP) as the electron gain element. Projections are made and opinions are presented on what might be available in the next few years. Several uses for these devices at ISABELLE are mentioned
Flat plate collector. Solarflachkollektor
Energy Technology Data Exchange (ETDEWEB)
Raab, N
1979-03-29
The invention refers to a flat solar collector with an absorber plate, which is arranged on a support and is covered by a transparent window, between which and the plate there is an air space. The previously known structures of this type had the disadvantage that the thermal expansion of the enclosed air caused considerable difficulties. The purpose of the invention is therefore to create a collector, which can be used on the modular system, retains its properties and is safe in spite of the great temperature variations. According to the invention this problem is solved by providing a compensating space in the collector, which is separated by a diaphragm from the airspace between the plate and the covering window. The airspace therefore remains sealed against the atmosphere, so that no dirt, corrosion of the inside and no condensation can reduce the efficiency of the collector. A rise in pressure due to an increase in temperature is immediately reduced by expansion of the diaphragm, which enters the compensation space. In order to increase the pressure in the airspace above the plate for increases in temperature, the compensation space is connected to the atmosphere. The diaphragm can be mirrored on the side towards the absorber, which makes the diaphragm into an insulating element, as it reflects radiated heat from the absorber.
Ozgan, Korhan; Daloglu, Ayse T.
2009-01-01
The Modified Vlasov Model is applied to the free vibration analysis of thick plates resting on elastic foundations. The effects of the subsoil depth, plate dimensions and their ratio, the value of the vertical deformation parameter within the subsoil on the frequency parameters of plates on elastic foundations are investigated. A four-noded, twelve degrees of freedom quadrilateral finite element (PBQ4) is used for plate bending analysis based on Mindlin plate theory which is effectively appli...
International Nuclear Information System (INIS)
Prepost, R.
1994-01-01
The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented
Energy Technology Data Exchange (ETDEWEB)
Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)
1994-12-01
The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.
Polarized neutron spectrometer
International Nuclear Information System (INIS)
Abov, Yu.G.; Novitskij, V.V.; Alfimenkov, V.P.; Galinskij, E.M.; Mareev, Yu.D.; Pikel'ner, L.B.; Chernikov, A.N.; Lason', L.; Tsulaya, V.M.; Tsulaya, M.I.
2000-01-01
The polarized neutron spectrometer, intended for studying the interaction of polarized neutrons with nuclei and condensed media in the area of energies from thermal up to several electron-volt, is developed at the IBR-2 reactor (JINR, Dubna). Diffraction on the Co(92%)-Fe(8%) magnetized monocrystals is used for the neutron polarization and polarization analysis. The neutron polarization within the whole energy range equals ∼ 95% [ru
Simplified description of out-of-plane waves in thin annular elastic plates
DEFF Research Database (Denmark)
Zadeh, Maziyar Nesari; Sorokin, Sergey
2013-01-01
Dispersion relations are derived for the out-of-plane wave propagation in planar elastic plates with constant curvature using the classical Kirchhoff thin plate theory. The dispersion diagrams and the mode shapes are compared with their counterparts for a straight plate strip and the role...... of curvature is assessed for plates with unconstrained edges. Elementary Bernoulli–Euler theory for a beam of rectangular cross-section with the circular shape of its axis is also employed to analyze the wave guide properties of this structure in its out-of-plane deformation. The applicability range...... of the elementary beam theory is validated. The wave finite element method in the formulation of the three-dimensional elasticity theory is used to ensure that the comparison of dispersion diagrams is performed in the frequency range, where the classical thin plate theory is valid. Thus, the paper summarizes...
Theoretical model of polar cap auroral arcs
International Nuclear Information System (INIS)
Kan, J.R.; Burke, W.J.; USAF, Bedford, MA)
1985-01-01
A theory of the polar cap auroral arcs is proposed under the assumption that the magnetic field reconnection occurs in the cusp region on tail field lines during northward interplanetary magnetic field (IMF) conditions. Requirements of a convection model during northward IMF are enumerated based on observations and fundamental theoretical considerations. The theta aurora can be expected to occur on the closed field lines convecting sunward in the central polar cap, while the less intense regular polar cap arcs can occur either on closed or open field lines. The dynamo region for the polar cap arcs is required to be on closed field lines convecting tailward in the plasma sheet which is magnetically connected to the sunward convection in the central polar cap. 43 references
Theories of Notation and Polar Motion I,
1980-12-01
relative motions such as ocean currents and winds, as we shall do. For the consideration of such effects see (Munk and Macdonald, 1960, p. 123; Lambeck...n)e ,uite general and niot irestricted to a solid body. In Fact, we na~it also in toe Poi ncar model . The equation K 12-1:: no;s the exponencial
Flow-induced plastic collapse of stacked fuel plates
Energy Technology Data Exchange (ETDEWEB)
Davis, D C; Scarton, H A
1985-03-01
Flow-induced plastic collapse of stacked fuel plate assemblies was first noted in experimental reactors such as the ORNL High Flux Reactor Assembly and the Engineering Test Reactor (ETR). The ETR assembly is a stack of 19 thin flat rectangular fuel plates separated by narrow channels through which a coolant flows to remove the heat generated by fission of the fuel within the plates. The uranium alloyed plates have been noted to buckle laterally and plastically collapse at the system design coolant flow rate of 10.7 m/s, thus restricting the coolant flow through adjacent channels. A methodology and criterion are developed for predicting the plastic collapse of ETR fuel plates. The criterion is compared to some experimental results and the Miller critical velocity theory.
THE EFFECT OF SUPPORT PLATE ON DRILLING-INDUCED DELAMINATION
Directory of Open Access Journals (Sweden)
Navid Zarif Karimi
2016-02-01
Full Text Available Delamination is considered as a major problem in drilling of composite materials, which degrades the mechanical properties of these materials. The thrust force exerted by the drill is considered as the major cause of delamination; and one practical approach to reduce delamination is to use a back-up plate under the specimen. In this paper, the effect of exit support plate on delamination in twist drilling of glass fiber reinforced composites is studied. Firstly, two analytical models based on linear fracture mechanics and elastic bending theory of plates are described to find critical thrust forces at the beginning of crack growth for drilling with and without back-up plate. Secondly, two series of experiments are carried out on glass fiber reinforced composites to determine quantitatively the effect of drilling parameters on the amount of delamination. Experimental findings verify a large reduction in the amount of delaminated area when a back-up plate is placed under the specimen.
Buckling transition and boundary layer in non-Euclidean plates.
Efrati, Efi; Sharon, Eran; Kupferman, Raz
2009-07-01
Non-Euclidean plates are thin elastic bodies having no stress-free configuration, hence exhibiting residual stresses in the absence of external constraints. These bodies are endowed with a three-dimensional reference metric, which may not necessarily be immersible in physical space. Here, based on a recently developed theory for such bodies, we characterize the transition from flat to buckled equilibrium configurations at a critical value of the plate thickness. Depending on the reference metric, the buckling transition may be either continuous or discontinuous. In the infinitely thin plate limit, under the assumption that a limiting configuration exists, we show that the limit is a configuration that minimizes the bending content, among all configurations with zero stretching content (isometric immersions of the midsurface). For small but finite plate thickness, we show the formation of a boundary layer, whose size scales with the square root of the plate thickness and whose shape is determined by a balance between stretching and bending energies.
Centers for Disease Control (CDC) Podcasts
The Eagle Books are a series of four books that are brought to life by wise animal characters - Mr. Eagle, Miss Rabbit, and Coyote - who engage Rain That Dances and his young friends in the joy of physical activity, eating healthy foods, and learning from their elders about health and diabetes prevention. Plate Full of Color teaches the value of eating a variety of colorful and healthy foods.
Institute of Scientific and Technical Information of China (English)
MENG Xianghua; GE Ming
2003-01-01
This paper gives an account of the research that the authors conducted on the cyclic sequences, events and evolutionary history from Proterozoic to Meso-Cenozoic in the Sino-Korean plate based on the principle of the Cosmos-Earth System. The authors divided this plate into 20 super-cyclic or super-mega-cyclic periods and more than 100 Oort periods. The research focused on important sea flooding events, uplift interruption events, tilting movement events, molar-tooth carbonate events, thermal events, polarity reversal events, karst events, volcanic explosion events and storm events, as well as types of resource areas and paleotectonic evolution. By means of the isochronous theory of the Cosmos-Earth System periodicity and based on long-excentricity and periodicity, the authors elaborately studied the paleogeographic evolution of the aulacogen of the Sino-Korean plate, the oolitic beach platform formation, the development of foreland basin and continental rift valley basin, and reconstructed the evolution of tectonic paleogeography and stratigraphic framework in the Sino-Korean plate in terms of evolutionary maps. Finally, the authors gave a profound discussion on the formation and development of molar-tooth carbonates, phosphorites and source rocks.
International Nuclear Information System (INIS)
Meyer, W.
1985-01-01
First the experimental situation of the single-pion photoproduction and the photodisintegration of the deuteron is briefly discussed. Then a description of the Bonn polarization facilities is given. The point of main effort is put on the polarized target which plays a vital role in the program. A facility for photon induced double polarization experiments at ELSA will be presented in section 4. Properties of a tensor polarized deuteron target are discussed in section 5. The development in the field of polarized targets, especially on new target materials, enables a new generation of polarized target experiments with (polarized) electrons. Some comments on the use of a polarized target in combination with electron beams will be discussed in section 6. Electron deuteron scattering from a tensor polarized deuteron target is considered and compared with other experimental possibilities. (orig./HSI)
Layered magnets: polarized neutron reflection studies
Energy Technology Data Exchange (ETDEWEB)
Zabel, H; Schreyer, A [Ruhr-Univ. Bochum, Lehrstuhl fuer Experimentalphysik/Festkoerperphysik, Bochum (Germany)
1996-11-01
Neutron reflectivity measurements from extended surfaces, thin films and superlattices provide information on the chemical profile parallel to the film normal, including film thicknesses, average composition and interfacial roughness parameters. Reflectivity measurements with polarized neutrons are particularly powerful for analyzing the magnetic density profiles in thin films and superlattices in addition to chemical profiles. The basic theory of polarized neutron reflectivity is provided, followed by some examples and more recent applications concerning polarized neutron reflectivity studies from exchange coupled Fe/Cr superlattices. (author) 5 figs., 13 refs.
Effect of plate shapes in orifice plate type flowmeters
International Nuclear Information System (INIS)
Moeller, S.V.
1984-01-01
The study of unusual plate shapes in orifice plate type flowmeters is presented, with a view to providing data for the substitution of the plate with one centered circular orifice in those applications where its use is not possible. For this purpose, six pairs of plates with different forms, with and without chamfered edges, were made and tested in a closed water loop. Results show that, generally, the use of chamfers improves the results and, in the case of perforated and slotlike orificed plates, the narrow-ness of the fluid passage tends to make unnecessary its use. (Author) [pt
Csonti, K.; Hanyecz, V.; Mészáros, G.; Kovács, A. P.
2017-06-01
In this work we have measured the group-delay dispersion of an empty Michelson interferometer for s- and p-polarized light beams applying two different non-polarizing beam splitter cubes. The interference pattern appearing at the output of the interferometer was resolved with two different spectrometers. It was found that the group-delay dispersion of the empty interferometer depended on the polarization directions in case of both beam splitter cubes. The results were checked by inserting a glass plate in the sample arm of the interferometer and similar difference was obtained for the two polarization directions. These results show that to reach high precision, linearly polarized white light beam should be used and the residual dispersion of the empty interferometer should be measured at both polarization directions.
Plate removal following orthognathic surgery.
Little, Mhairi; Langford, Richard Julian; Bhanji, Adam; Farr, David
2015-11-01
The objectives of this study are to determine the removal rates of orthognathic plates used during orthognathic surgery at James Cook University Hospital and describe the reasons for plate removal. 202 consecutive orthognathic cases were identified between July 2004 and July 2012. Demographics and procedure details were collected for these patients. Patients from this group who returned to theatre for plate removal between July 2004 and November 2012 were identified and their notes were analysed for data including reason for plate removal, age, smoking status, sex and time to plate removal. 3.2% of plates were removed with proportionally more plates removed from the mandible than the maxilla. 10.4% of patients required removal of one or more plate. Most plates were removed within the first post-operative year. The commonest reasons for plate removal were plate exposure and infection. The plate removal rates in our study are comparable to those seen in the literature. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Simonsen, Bo Cerup
1997-01-01
The present paper is concerned with steady-state plate tearing by a cone. This is a scenario where a cone is forced through a ductile metal plate with a constant lateral tip penetration in a motion in the plane of the plate. The considered process could be an idealisaton of the damage, which...... as for the out-of-plane reaction force....
Normal and abnormal growth plate
International Nuclear Information System (INIS)
Kumar, R.; Madewell, J.E.; Swischuk, L.E.
1987-01-01
Skeletal growth is a dynamic process. A knowledge of the structure and function of the normal growth plate is essential in order to understand the pathophysiology of abnormal skeletal growth in various diseases. In this well-illustrated article, the authors provide a radiographic classification of abnormal growth plates and discuss mechanisms that lead to growth plate abnormalities
Peculiarities of light transformation by the plate-lane biisotropic layer
International Nuclear Information System (INIS)
Dovydenko, S.N.
2011-01-01
In this article the peculiarities of transformation of light wave with arbitrary polarization by a half-infinity biisotropic medium and a biisotropic layer surrounded by different media are considered. Analytical expressions are obtained for refraction and reflection coefficients of transformed waves. The influence of layer parameters on refraction and reflection is investigated. It is shown that at arbitrary polarization of incident light the reflected wave is elliptically polarized. The possibility is established and the conditions are determined for π/2 turning the polarization plate of the wave at reflection from the biisotropic medium/layer. The refraction of the light wave by a plate-lake biisotropic layer is analyzed. It is grounded that the wave, transmitted the layer, is elliptically polarized, at that its ellipticity depends on chiral and non-reciprocal parameters, the non-reciprocality influence is weaker. (authors)
Study of uranium plating measurement
International Nuclear Information System (INIS)
Lin Jufang; Wen Zhongwei; Wang Mei; Wang Dalun; Liu Rong; Jiang Li; Lu Xinxin
2007-06-01
In neutron physics experiments, the measurement for plate-thickness of uranium can directly affect uncertainties of experiment results. To measure the plate-thickness of transform target (enriched uranium plating and depleted uranium plating), the back to back ionization chamber, small solid angle device and Au-Si surface barrier semi-conductor, were used in the experiment study. Also, the uncertainties in the experiment were analyzed. Because the inhomo-geneous of uranium lay of plate can quantitively affect the result, the homogeneity of uranium lay is checked, the experiment result reflects the homogeneity of uranium lay is good. (authors)
Classifying spaces of degenerating polarized Hodge structures
Kato, Kazuya
2009-01-01
In 1970, Phillip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kazuya Kato and Sampei Usui realize this dream by creating a logarithmic Hodge theory. They use the logarithmic structures begun by Fontaine-Illusie to revive nilpotent orbits as a logarithmic Hodge structure. The book focuses on two principal topics. First, Kato and Usui construct the fine moduli space of polarized logarithmic Hodge structures with additional structures. Even for a Hermitian symmetric domain D, the present theory is a refinem
Directory of Open Access Journals (Sweden)
Boričić Zoran
2005-01-01
Full Text Available This paper deals with laminar, unsteady flow of viscous, incompressible and electro conductive fluid caused by variable motion of flat plate. Fluid electro conductivity is variable. Velocity of the plate is time function. Plate moves in its own plane and in "still" fluid. Present external magnetic filed is perpendicular to the plate. Plate temperature is a function of longitudinal coordinate and time. Viscous dissipation, Joule heat, Hole and polarization effects are neglected. For obtaining of universal equations system general similarity method is used as well as impulse and energy equation of described problem.
Looking for Plate Tectonics in all the wrong fluids
Davaille, Anne
2017-04-01
Ever since the theory of Plate Tectonics in the 1960's, the dream of the geomodeler has been to generate plate tectonics self-consistently from thermal convection in the laboratory. By selfconsistenly, I mean that the configuration of the plate boundaries is in no way specified a priori, so that the plates develop and are wholly consumed without intervention from the modeler. The reciepe is simple : put a well-chosen fluid in a fishtank heated from below and cooled from above, wait and see. But the « well-chosen » is the difficult part... and the interesting one. Plate tectonics is occuring on Earth because of the characteristics of the lithosphere rheology. The latter are complex to estimate as they depend on temperature, pressure, phase, water content, chemistry, strain rate, memory and scale. As a result, the ingredients necessary for plate tectonics are still debated, and it would be useful to find an analog fluid who could reproduce plate tectonics in the laboratory. I have therefore spent the last 25 years to try out fluids, and I shall present a number of failures to generate plate tectonics using polymers, colloids, ketchup, milk, chocolate, sugar, oils. To understand why they failed is important to narrow down the « well-chosen » fluid.
Size-Dependent Dynamic Behavior of a Microcantilever Plate
Directory of Open Access Journals (Sweden)
Xiaoming Wang
2012-01-01
Full Text Available Material length scale considerably affects the mechanical properties of microcantilever components. Recently, cantilever-plate-like structures have been commonly used, whereas the lack of studies on their size effects constrains the design, testing, and application of these structures. We have studied the size-dependent dynamic behavior of a cantilever plate based on a modified couple stress theory and the differential quadrature method in this note. The numerical solutions of microcantilever plate equation involving the size effect have been presented. We have also analyzed the bending and vibration of the microcantilever plates considering the size effect and discussed the dependence of the size effect on their geometric dimensions. The results have shown that (1 the mechanical characteristics of the cantilever plate show obvious size effects; as a result, the bending deflection of a microcantilever plate reduces whereas the natural frequency increases effectively and (2 for the plates with the same material, the size effect becomes more obvious when the plates are thinner.
Vibration analysis of partially cracked plate submerged in fluid
Soni, Shashank; Jain, N. K.; Joshi, P. V.
2018-01-01
The present work proposes an analytical model for vibration analysis of partially cracked rectangular plates coupled with fluid medium. The governing equation of motion for the isotropic plate based on the classical plate theory is modified to accommodate a part through continuous line crack according to simplified line spring model. The influence of surrounding fluid medium is incorporated in the governing equation in the form of inertia effects based on velocity potential function and Bernoulli's equations. Both partially and totally submerged plate configurations are considered. The governing equation also considers the in-plane stretching due to lateral deflection in the form of in-plane forces which introduces geometric non-linearity into the system. The fundamental frequencies are evaluated by expressing the lateral deflection in terms of modal functions. The assessment of the present results is carried out for intact submerged plate as to the best of the author's knowledge the literature lacks in analytical results for submerged cracked plates. New results for fundamental frequencies are presented as affected by crack length, fluid level, fluid density and immersed depth of plate. By employing the method of multiple scales, the frequency response and peak amplitude of the cracked structure is analyzed. The non-linear frequency response curves show the phenomenon of bending hardening or softening and the effect of fluid dynamic pressure on the response of the cracked plate.
Structured light generation by magnetic metamaterial half-wave plates at visible wavelength
Zeng, Jinwei; Luk, Ting S.; Gao, Jie; Yang, Xiaodong
2017-12-01
Metamaterial or metasurface unit cells functioning as half-wave plates play an essential role for realizing ideal Pancharatnam-Berry phase optical elements capable of tailoring light phase and polarization as desired. Complex light beam manipulation through these metamaterials or metasurfaces unveils new dimensions of light-matter interactions for many advances in diffraction engineering, beam shaping, structuring light, and holography. However, the realization of metamaterial or metasurface half-wave plates in visible spectrum range is still challenging mainly due to its specific requirements of strong phase anisotropy with amplitude isotropy in subwavelength scale. Here, we propose magnetic metamaterial structures which can simultaneously exploit the electric field and magnetic field of light for achieving the nanoscale half-wave plates at visible wavelength. We design and demonstrate the magnetic metamaterial half-wave plates in linear grating patterns with high polarization conversion purity in a deep subwavelength thickness. Then, we characterize the equivalent magnetic metamaterial half-wave plates in cylindrical coordinate as concentric-ring grating patterns, which act like an azimuthal half-wave plate and accordingly exhibit spatially inhomogeneous polarization and phase manipulations including spin-to-orbital angular momentum conversion and vector beam generation. Our results show potentials for realizing on-chip beam converters, compact holograms, and many other metamaterial devices for structured light beam generation, polarization control, and wavefront manipulation.
Guthrie, Robin J.; Katz, Murray; Schroll, Craig R.
1991-04-23
The end plates (16) of a fuel cell stack (12) are formed of a thin membrane. Pressure plates (20) exert compressive load through insulation layers (22, 26) to the membrane. Electrical contact between the end plates (16) and electrodes (50, 58) is maintained without deleterious making and breaking of electrical contacts during thermal transients. The thin end plate (16) under compressive load will not distort with a temperature difference across its thickness. Pressure plate (20) experiences a low thermal transient because it is insulated from the cell. The impact on the end plate of any slight deflection created in the pressure plate by temperature difference is minimized by the resilient pressure pad, in the form of insulation, therebetween.
Scattering with polarized neutrons
International Nuclear Information System (INIS)
Schweizer, J.
2007-01-01
In the history of neutron scattering, it was shown very soon that the use of polarized neutron beams brings much more information than usual scattering with unpolarized neutrons. We shall develop here the different scattering methods that imply polarized neutrons: 1) polarized beams without polarization analysis, the flipping ratio method; 2) polarized beams with a uniaxial polarization analysis; 3) polarized beams with a spherical polarization analysis. For all these scattering methods, we shall give examples of the physical problems which can been solved by these methods, particularly in the field of magnetism: investigation of complex magnetic structures, investigation of spin or magnetization densities in metals, insulators and molecular compounds, separation of magnetic and nuclear scattering, investigation of magnetic properties of liquids and amorphous materials and even, for non magnetic material, separation between coherent and incoherent scattering. (author)
Polarized Light Corridor Demonstrations.
Davies, G. R.
1990-01-01
Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)
Zhang, Jiankun; Li, Ziyang; Dang, Anhong
2018-06-01
It has been recntly shown that polarization state of propagation beam would suffer from polarization fluctuations due to the detrimental effects of atmospheric turbulence. This paper studies the performance of wireless optical communication (WOC) systems in the presence of polarization effect of atmosphere. We categorize the atmospheric polarization effect into polarization rotation, polarization-dependent power loss, and phase shift effect, with each effect described and modeled with the help of polarization-coherence theory and the extended Huygens-Fresnelprinciple. The channel matrices are derived to measure the cross-polarization interference of the system. Signal-to-noise ratio and bit error rate for polarization multiplexing system and polarization modulation system are obtained to assess the viability using the approach of M turbulence model. Monte Carlo simulation results show the performance of polarization based WOC systems to be degraded by atmospheric polarization effect, which could be evaluated precisely using the proposed model with given turbulent strengths.
Fuel plate stability experiments and analysis for the Advanced Neutron Source
International Nuclear Information System (INIS)
Swinson, W.F.; Battiste, R.L.; Luttrell, C.R.; Yahr, G.T.
1992-01-01
The planned Advanced Neutron Source (ANS) and several existing reactors use closely spaced arrays of involute shaped fuel-plates which are cooled by water flowing through the channels between the plates. There is concern that at certain coolant flow velocities adjacent plates may deflect and touch, with resulting failure of the plates. Experiments have been conducted at the Oak Ridge National Laboratory to examine this potential phenomenon. Results of the experiments and comparison with analytical predictions are reported in this paper. The tests were conducted using full scale epoxy plate models of the aluminum/uranium silicide ANS involute shaped fuel plates. Use of epoxy plates and model theory allowed lower flow velocities and pressures to explore the potential failure mechanism. Plate deflections and channel pressures as function of the flow velocity are examined. Comparisons with mathematical models are noted. 12 refs
Fuel plate stability experiments and analysis for the Advanced Neutron Source
International Nuclear Information System (INIS)
Swinson, W.F.; Battiste, R.L.; Luttrell, C.R.; Yahr, G.T.
1993-05-01
The planned reactor for the Advanced Neutron Source (ANS) will use closely spaced arrays of involute-shaped fuel plates that will be cooled by water flowing through the channels between the plates. There is concern that at certain coolant flow velocities, adjacent plates may deflect and touch, with resulting failure of the plates. Experiments have been conducted at the Oak Ridge National Laboratory to examine this potential phenomenon. Results of the experiments and comparison with analytical predictions are reported. The tests were conducted using full-scale epoxy plate models of the aluminum/uranium silicide ANS involute-shaped fuel plates. Use of epoxy plates and model theory allowed lower flow velocities and pressures to explore the potential failure mechanism. Plate deflections and channel pressures as functions of the flow velocity are examined. Comparisons with mathematical models are noted
Magnetic field sensor based on the Ampere's force using dual-polarization DBR fiber laser
Yao, Shuang; Zhang, Yang; Guan, Baiou
2015-08-01
A novel magnetic field sensor using distributed Bragg reflector (DBR) fiber laser by Ampere's force effect is proposed and experimentally demonstrated. The key sensing element, that is the dual-polarization DBR fiber laser, is fixed on the middle part of two copper plates which carry the current. Ampere's force is applied onto the coppers due to an external magnetic field generated by a DC solenoid. Thus, the lateral force from the coppers is converted to a corresponding beat frequency signal shift produced by the DBR laser. The electric current sensing is also realized by the same configuration and same principle simultaneously in an intuitive manner. Good agreement between the theory calculation and the experimental results is obtained, which shows a good linearity. This sensor's sensitivity to the magnetic field and to the electric current finally reaches ~258.92 kHz/mT and ~1.08727 MHz/A, respectively.
New investigations of polarized solid HD targets
International Nuclear Information System (INIS)
Honig, A.; Whisnant, C.S.
1995-01-01
Polarized solid HD targets in a frozen-spin mode, with superior nuclear physics characteristics and simple operational configurations, have previously been restricted in their deployment due to a disproportionate target production time with respect to utilization time. Recent investigations have yielded frozen-spin polarization lifetimes, at a convenient target temperature of 1.5 K, of nearly a year for both H and D at high holding fields, and of more than a week at sub-Tesla holding fields. These results, taken together with the advent of new interesting spin-physics using relatively weakly ionizing beams, such as polarized photon beams, remove the above impediment and open up the use of polarized solid HD to long duration nuclear spin-physics experiments. Large, multiple targets can be produced, retrieved from the polarization-production apparatus with a cold-transport (4 K) device, stored for very long times in inexpensive (1.5 K, 7 T) cryostats, and introduced 'off-the-shelf' into in-beam cryostats via the portable cold-transport apparatus. Various modes for achieving polarized H and/or D, as well as already achieved and expected polarization values, are reported. Experimental results are given on Kapitza resistance between the solid HD and the cooling wires necessary to obtain low temperatures during the heat-evolving polarization process. 15 mK is achievable using gold-plated aluminum wires, which constitute 15% extraneous nucleons over the number of polarizable H or D nucleons. Application to more highly ionizing beams is also given consideration. ((orig.))
Techniques in polarization physics
International Nuclear Information System (INIS)
Clausnitzer, G.
1974-01-01
A review of the current status of the technical tools necessary to perform different kinds of polarization experiments is presented, and the absolute and relative accuracy with which data can be obtained is discussed. A description of polarized targets and sources of polarized fast neutrons is included. Applications of polarization techniques to other fields is mentioned briefly. (14 figures, 3 tables, 110 references) (U.S.)
[Conventional plate osteosynthesis].
Klaue, K
2010-02-01
Consolidation of bone is an essential clinical problem when treating fractures, fixing osteotomies and fusing joints. In most cases, the means of fixation are plates and screws. The goal is functional postoperative therapy by moving the adjacent joints and thus avoiding the deleterious disadvantages of long-lasting articular immobilization. Pre-operative planning, surgical approach, a good understanding of the precise mechanics of the structure and the biological answer for the various tissues are prerequisites of successful osteosynthesis. The choice of implants and the application of their versatility, as well as their adaptation to individual cases are the key to good results.
Centers for Disease Control (CDC) Podcasts
2008-08-04
The Eagle Books are a series of four books that are brought to life by wise animal characters - Mr. Eagle, Miss Rabbit, and Coyote - who engage Rain That Dances and his young friends in the joy of physical activity, eating healthy foods, and learning from their elders about health and diabetes prevention. Plate Full of Color teaches the value of eating a variety of colorful and healthy foods. Created: 8/4/2008 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP). Date Released: 8/5/2008.
On liquid films on an inclined plate
BENILOV, E. S.
2010-08-18
This paper examines two related problems from liquid-film theory. Firstly, a steady-state flow of a liquid film down a pre-wetted plate is considered, in which there is a precursor film in front of the main film. Assuming the former to be thin, a full asymptotic description of the problem is developed and simple analytical estimates for the extent and depth of the precursor film\\'s influence on the main film are provided. Secondly, the so-called drag-out problem is considered, where an inclined plate is withdrawn from a pool of liquid. Using a combination of numerical and asymptotic means, the parameter range where the classical Landau-Levich-Wilson solution is not unique is determined. © 2010 Cambridge University Press.
Polarized Moessbauer transitions
International Nuclear Information System (INIS)
Barb, D.
1975-01-01
Theoretical aspects of the emission, absorption and scattering of polarized gamma rays are reviewed for a general case of combined magnetic and electric hyperfine interactions; various possibilities of obtaining polarized gamma sources are described and examples are given of the applications of Moessbauer spectroscopy with polarized gamma rays in solving problems of solid state physics. (A.K.)
Geographical Income Polarization
DEFF Research Database (Denmark)
Azhar, Hussain; Jonassen, Anders Bruun
inter municipal income inequality. Counter factual simulations show that rising property prices to a large part explain the rise in polarization. One side-effect of polarization is tendencies towards a parallel polarization of residence location patterns, where low skilled individuals tend to live...
Calculation of polarization effects
International Nuclear Information System (INIS)
Chao, A.W.
1983-09-01
Basically there are two areas of accelerator applications that involve beam polarization. One is the acceleration of a polarized beam (most likely a proton beam) in a synchrotron. Another concerns polarized beams in an electron storage ring. In both areas, numerical techniques have been very useful
Accelerating polarized beams in Tevatron
International Nuclear Information System (INIS)
Teng, L.C.
1989-02-01
In this paper, we will examine the totality of equipment, manpower and cost necessary to obtain a polarized proton beam in the Tevatron. We will not, however, be concerned with the acquisition and acceleration of polarized /bar p/ beams. Furthermore we will consider only a planar main ring without overpass, although it is expected that Siberian snake schemes could be made to apply equally well to non-planar machines. In addition to not wanting to tackle here the task of reformulating the theory for a non-planar closed orbit, we also anticipate that as part of the Tevatron upgrade the main ring will in the not too distant future, be replaced by a planar main injector situated in a separate tunnel. 4 refs., 11 figs., 1 tab
Characterization of a microfocused circularly polarized x-ray probe
International Nuclear Information System (INIS)
Pollmann, J.; Srajer, G.; Maser, J.; Lang, J. C.; Nelson, C. S.; Venkataraman, C. T.; Isaacs, E. D.
2000-01-01
We report on the development of a circularly polarized x-ray microprobe in the intermediate energy range from 5 to 10 keV. In this experiment linearly polarized synchrotron radiation was circularly polarized by means of a Bragg-diffracting diamond phase retarder and subsequently focused down to a spot size of about 4x2 μm 2 by a Fresnel zone plate. The properties of the microprobe were characterized, and the technique was applied to the two-dimensional mapping of magnetic domains in HoFe 2 . (c) 2000 American Institute of Physics
Acceleration of polarized particles
International Nuclear Information System (INIS)
Buon, J.
1992-05-01
The spin kinetics of polarized beams in circular accelerators is reviewed in the case of spin-1/2 particles (electrons and protons) with emphasis on the depolarization phenomena. The acceleration of polarized proton beams in synchrotrons is described together with the cures applied to reduce depolarization, including the use of 'Siberian Snakes'. The in-situ polarization of electrons in storage rings due to synchrotron radiation is studied as well as depolarization in presence of ring imperfections. The applications of electron polarization to accurately calibrate the rings in energy and to use polarized beams in colliding-beam experiments are reviewed. (author) 76 refs., 19 figs., 1 tab
Plating on difficult-to-plate metals: what's new
International Nuclear Information System (INIS)
Wiesner, H.J.
1980-01-01
Some of the changes since 1970 in procedures for plating on such materials as titanium, molybdenum, silicon, aluminum, and gallium arsenide are summarized. While basic procedures for plating some of these materials were developed as many as 30 to 40 years ago, changes in the end uses of the plated products have necessitated new plating processes. In some cases, vacuum techniques - such as ion bombardment, ion implantation, and vacuum metallization - have been introduced to improve the adhesion of electrodeposits. In other cases, these techniques have been used to deposit materials upon which electrodeposits are required
Polarization effects. Volume 2
Energy Technology Data Exchange (ETDEWEB)
Courant, E.
1981-01-01
The use of polarized proton beams in ISABELLE is important for several general reasons: (1) With a single longitudinally polarized proton beam, effects involving parity violation can be identified and hence processes involving weak interactions can be separated from those involving strong and electromagnetic interactions. (2) Spin effects are important in the strong interactions and can be useful for testing QCD. The technique for obtaining polarized proton beams in ISABELLE appears promising, particularly in view of the present development of a polarized proton beam for the AGS. Projections for the luminosity in ISABELLE for collisions of polarized protons - one or both beams polarized with longitudinal or transverse polarization - range from 1/100 to 1 times the luminosity for unpolarized protons.
Landi Degl'Innocenti, Egidio
2015-10-01
The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.
Transmission type Sc/Cr multilayers as a quarter-wave plate for 398.6 eV
International Nuclear Information System (INIS)
Kimura, H.; Hirono, T.; Tamenori, Y.; Saitoh, Y.; Salashchenko, N.N.; Ishikawa, T.
2004-01-01
Full text: Full polarization measurement using a phase shifter and a polarizer is needed to determine the degree of circular polarization. A quarter-wave plate, which is a phase shifter having retardation of 90 deg., is especially desired for accurate determination of the full polarization measurement for highly circularly polarized light. In the soft x-ray region, a self-standing multilayer with high reflectance can be used as a phase shifter having large retardation angle under transmission geometry. In this region, Mo/Si multilayer has been reported as a quarter-wave plate for photon energy of 97 eV. To perform the full polarization measurement in higher photon energy, we newly developed a quarter-wave plate by transmission type Sc/Cr multilayer. Polarization characteristics of the multilayer were measured by mean of rotating analyzer ellipsometry method using a linearly polarized SR of 398.6 eV. Figure 1 shows the retardation of the multilayer (Sc/Cr, d = 3.15 nm, 300 pairs). As is shown the phase shifter can be used as a quarter-wave plate at the incident angle of 59.7 deg. At this angle its transmittance for p-component and the ratio of those for p- and s-component were 0.4 % and 1.47, respectively
Nuclear-optical methods for production of polarized photons with energies of a few hundred GeV
International Nuclear Information System (INIS)
Ispiryan, K.A.; Ispiryan, M.K.
1985-01-01
The absorption coefficients of linearly polarized photons passing through a crystal in parallel to its crystallographic planes are calculated. The methods of determination of the obtainable degree of polarization as well as of the intensity losses for the cases when non-polarized photon beams pass through various crystals in parallel to the planes (110) are described. The energy dependence of the thickness of the quarter-wave plate crystals transforming the linear polarization of the beam into circular one is obtained
DEFF Research Database (Denmark)
Simonsen, Bo Cerup
1998-01-01
The present paper is concerned with steady-state plate tearing by a cone. This is a scenario where a cone is forced through a ductile metal plate with a constant lateral tip penetration in a motion in the plane of the plate. The considered process could be an idealisation of the damage, which...... as for the out-of-plane reaction force. (C) 1998 Elsevier Science Ltd. All rights reserved....
Bipolar Plates for PEM Systems
Lædre, Sigrid
2016-01-01
Summary of thesis: The Bipolar Plate (BPP) is an important component in both Proton Exchange Membrane Fuel Cells (PEMFCs) and Proton Exchange Membrane Water Electrolyzers (PEMWEs). Bipolar plate material and processing constitutes for a large fraction of the cost and weight of a PEM cell stack. The main tasks for the bipolar plates in both systems are to separate single cell in a stack, conduct current between single cells and remove heat from active areas. In addition, the BPPs distribu...
DEFF Research Database (Denmark)
Ma, Ning; Hanson, Steen Grüner; Lee, Tim K.
2015-01-01
Recent research work on speckle patterns indicates a variation of the polarization state during propagation and its nonuniformly spatial distribution. The preliminary step for the investigation of this polarization speckle is the generation of the corresponding field. In this paper, a kind...... of special depolarizer: the random roughness birefringent screen (RRBS) is introduced to meet this requirement. The statistical properties of the field generated by the depolarizer is investigated and illustrated in terms of the 2x2 beam coherence and polarization matrix (BCPM) with the corresponding degree...... of coherence (DoC). and degree of polarization (DoP) P. The changes of the coherence and polarization when the speckle field propagates through any optical system are analysed within the framework of the complex ABCD-matrix theory....
Scintillator plate calorimetry
International Nuclear Information System (INIS)
Price, L.E.
1990-01-01
Calorimetry using scintillator plates or tiles alternated with sheets of (usually heavy) passive absorber has been proven over multiple generations of collider detectors. Recent detectors including UA1, CDF, and ZEUS have shown good results from such calorimeters. The advantages offered by scintillator calorimetry for the SSC environment, in particular, are speed (<10 nsec), excellent energy resolution, low noise, and ease of achieving compensation and hence linearity. On the negative side of the ledger can be placed the historical sensitivity of plastic scintillators to radiation damage, the possibility of nonuniform response because of light attenuation, and the presence of cracks for light collection via wavelength shifting plastic (traditionally in sheet form). This approach to calorimetry is being investigated for SSC use by a collaboration of Ames Laboratory/Iowa State University, Argonne National Laboratory, Bicron Corporation, Florida State University, Louisiana State University, University of Mississippi, Oak Ridge National Laboratory, Virginia Polytechnic Institute and State University, Westinghouse Electric Corporation, and University of Wisconsin
Reviewing metallic PEMFC bipolar plates
Energy Technology Data Exchange (ETDEWEB)
Wang, H.; Turner, J.A. [National Renewable Energy Laboratory, Golden, CO (United States)
2010-08-15
A bipolar plate is one of the most important components in a polymer exchange membrane fuel cell (PEMFC) stack and has multiple functions. Metallic bipolar plate candidates have advantages over composite rivals in excellent electrical and thermal conductivity, good mechanical strength, high chemical stability, very wide alloy choices, low cost and, most importantly, existing pathways for high-volume, high-speed mass production. The challenges with metallic bipolar plates are the higher contact resistance and possible corrosion products, which may contaminate the membrane electrode assembly. This review evaluates the candidate metallic and coating materials for bipolar plates and gives the perspective of the research trends. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Design of reinforced concrete plates and shells
International Nuclear Information System (INIS)
Schulz, M.
1984-01-01
Nowadays, the internal forces of reinforced concrete laminar structures can be easily evaluated by the finite element procedures. The longitudinal design in each direction is not adequate, since the whole set of internal forces in each point must be concomitantly considered. The classic formulation for the design and new design charts which bring reduction of the amount of necessary reinforcement are presented. A rational reinforced concrete mathematical theory which makes possible the limit state design of plates and shells is discussed. This model can also be applied to define the constitutive relationships of laminar finite elements of reinforced concrete. (Author) [pt
Transient vibration of thin viscoelastic orthotropic plates
Czech Academy of Sciences Publication Activity Database
Soukup, J.; Valeš, František; Volek, J.; Skočilas, J.
2011-01-01
Roč. 27, č. 1 (2011), s. 98-107 ISSN 0567-7718. [International Conference on Dynamical Systems - Theory and Applications /10./. Lodz, 07.12.2009-10.12.2009] R&D Projects: GA ČR GA101/07/0946 Institutional research plan: CEZ:AV0Z20760514 Keywords : transient vibration thin plate * orthotropic * general viscoelastic standard solid Subject RIV: BI - Acoustics Impact factor: 0.860, year: 2011 http://www.springerlink.com/content/hn67324178846n4r/
Deconvolution using thin-plate splines
International Nuclear Information System (INIS)
Toussaint, Udo v.; Gori, Silvio
2007-01-01
The ubiquitous problem of estimating 2-dimensional profile information from a set of line integrated measurements is tackled with Bayesian probability theory by exploiting prior information about local smoothness. For this purpose thin-plate-splines (the 2-D minimal curvature analogue of cubic-splines in 1-D) are employed. The optimal number of support points required for inversion of 2-D tomographic problems is determined using model comparison. Properties of this approach are discussed and the question of suitable priors is addressed. Finally, we illustrated the properties of this approach with 2-D inversion results using data from line-integrated measurements from fusion experiments
Two-photon polarization Fourier spectroscopy of metastable atomic hydrogen
International Nuclear Information System (INIS)
Duncan, A.J.; Beyer, H.-J.; Kleinpoppen, H.; Sheikh, Z.A,; B-Z Univ., Multan
1997-01-01
A novel Fourier-transform spectroscopic method using two-photon polarization to determine the spectral distribution of the two photons emitted in the spontaneous decay of metastable atomic hydrogen is described. The method uses birefringent retardation plates and takes advantage of the subtle interplay between the spectral properties and the entangled polarization properties of the radiation emitted in the decay. Assuming the validity of the theoretical spectral distribution, it is shown that the experimental results agree well with theory. On the other hand, success in solving the inverse problem of determining the spectral distribution from the experimental results is limited by the small number of experimental points. However, making reasonable assumptions it is deduced that the observed spectrum is characterized by a broadband signal of width (0.43 ± 0.06) x 10 16 rad s -1 and centre angular frequency (0.77 ± 0.03) x 10 16 rad s -1 in good agreement with the predictions of 0.489 x 10 16 rad s -1 and 0.775 x 10 16 rad s -1 , respectively, obtained from the theoretical spectral distribution modified to take account of the absorption of the two-photon radiation in air. The values of 1.5 fs for the coherence time and 440 nm for the coherence length for single photons of the two-photon pair which are obtained from the measured bandwidth imply that, in the ideal case, these values are determined by the essentially zero lifetime of the virtual intermediate state of the decay process rather than the long lifetime of the metastable state which, it is suggested, determines the coherence time and coherence length appropriate to certain types of fourth-order interference experiments. (Author)
Workshop on polarized neutron filters and polarized pulsed neutron experiments
International Nuclear Information System (INIS)
Itoh, Shinichi
2004-07-01
The workshop was held in KEK by thirty-three participants on April 26, 2004. The polarized neutron filter method was only discussed. It consists of three parts; the first part was discussed on the polarized neutron methods, the second part on the polarized neutron experiments and the third on the pulse neutron spectrometer and polarized neutron experiments. The six papers were presented such as the polarized 3 He neutron spin filter, neutron polarization by proton polarized filter, soft master and neutron scattering, polarized neutron in solid physics, polarization experiments by chopper spectroscope and neutron polarization system in superHRPD. (S.Y.)
Polarization modulation in Young's interference experiment
International Nuclear Information System (INIS)
Tervo, Jani
2008-01-01
Polarization properties at the observation screen in Young's interference experiment are examined. Several recent results on the modulation of Stokes parameters, including the minimum number of modulated parameters, are reviewed. The theory is then applied to find out the relation between the Stokes parameters at the pinholes and the Pancharatnam-Berry phase at the screen.
Spin polarization of electrons in quantum wires
Vasilchenko, A. A.
2013-01-01
The total energy of a quasi-one-dimensional electron system is calculated using density functional theory. It is shown that spontaneous ferromagnetic state in quantum wire occurs at low one-dimensional electron density. The critical electron density below which electrons are in spin-polarized state is estimated analytically.
International Nuclear Information System (INIS)
Niinikoski, T.O.
1976-01-01
Optimum linear filter theory is employed for maximizing the signal-to-noise ratio in measurements of small polarization asymmetry in the presence of severe counting efficiency fluctuation, most likely to occur in high-energy inclusive and inelastic scattering experiments, using a polarized target. The r.m.s. error of the polarization asymmetry is obtained in closed form, allowing numeric optimization of the operation of the target. Guidelines are given for processing the record of data. (Auth.)
Fracture Analyses of Cracked Delta Eye Plates in Ship Towing
Huang, Xiangbing; Huang, Xingling; Sun, Jizheng
2018-01-01
Based on fracture mechanics, a safety analysis approach is proposed for cracked delta eye plates in ship towing. The static analysis model is presented when the delta eye plate is in service, and the fracture criterion is introduced on basis of stress intensity factor, which is estimated with domain integral method. Subsequently, three-dimensional finite element analyses are carried out to obtain the effective stress intensity factors, and a case is studied to demonstrate the reasonability of the approach. The results show that the classical strength theory is not applicable to evaluate the cracked plate while fracture mechanics can solve the problem very well, and the load level, which a delta eye plate can carry on, decreases evidently when it is damaged.
Effect of matrix cracking and material uncertainty on composite plates
International Nuclear Information System (INIS)
Gayathri, P.; Umesh, K.; Ganguli, R.
2010-01-01
A laminated composite plate model based on first order shear deformation theory is implemented using the finite element method. Matrix cracks are introduced into the finite element model by considering changes in the A, B and D matrices of composites. The effects of different boundary conditions, laminate types and ply angles on the behavior of composite plates with matrix cracks are studied. Finally, the effect of material property uncertainty, which is important for composite material on the composite plate, is investigated using Monte Carlo simulations. Probabilistic estimates of damage detection reliability in composite plates are made for static and dynamic measurements. It is found that the effect of uncertainty must be considered for accurate damage detection in composite structures. The estimates of variance obtained for observable system properties due to uncertainty can be used for developing more robust damage detection algorithms.
Instrumentation with polarized neutrons
International Nuclear Information System (INIS)
Boeni, P.; Muenzer, W.; Ostermann, A.
2009-01-01
Neutron scattering with polarization analysis is an indispensable tool for the investigation of novel materials exhibiting electronic, magnetic, and orbital degrees of freedom. In addition, polarized neutrons are necessary for neutron spin precession techniques that path the way to obtain extremely high resolution in space and time. Last but not least, polarized neutrons are being used for fundamental studies as well as very recently for neutron imaging. Many years ago, neutron beam lines were simply adapted for polarized beam applications by adding polarizing elements leading usually to unacceptable losses in neutron intensity. Recently, an increasing number of beam lines are designed such that an optimum use of polarized neutrons is facilitated. In addition, marked progress has been obtained in the technology of 3 He polarizers and the reflectivity of large-m supermirrors. Therefore, if properly designed, only factors of approximately 2-3 in neutron intensity are lost. It is shown that S-benders provide neutron beams with an almost wavelength independent polarization. Using twin cavities, polarized beams with a homogeneous phase space and P>0.99 can be produced without significantly sacrificing intensity. It is argued that elliptic guides, which are coated with large m polarizing supermirrors, provide the highest flux.
Probing the f(R) formalism through gravitational wave polarizations
International Nuclear Information System (INIS)
Alves, M.E.S.; Miranda, O.D.; Araujo, J.C.N. de
2009-01-01
The direct observation of gravitational waves (GW) in the near future, and the corresponding determination of the number of independent polarizations, is a powerful tool to test general relativity and alternative theories of gravity. In the present work we use the Newman-Penrose formalism to characterize GWs in quadratic gravity and in a particular class of f(R) Lagrangians. We find that both quadratic gravity and the f(R) theory belong to the most general invariant class of GWs, i.e., they can present up to six independent polarizations of GWs. For a particular combination of the parameters, we find that quadratic gravity can present up to five polarizations states. On the other hand, if we use the Palatini approach for f(R) theories, GWs present only the usual two transverse-traceless polarizations such as in general relativity. Thus, we conclude that the observation of GWs can strongly constrain the suitable formalism for these theories.
Surface electrostatics: theory and computations
Chatzigeorgiou, G.; Javili, A.; Steinmann, P.
2014-01-01
are also expressed in a consistent manner. The theory is accompanied by numerical examples on porous materials using the finite-element method, where the influence of the surface electric permittivity on the electric displacement, the polarization stress
Quantum mechanics theory and experiment
Beck, Mark
2012-01-01
This textbook presents quantum mechanics at the junior/senior undergraduate level. It is unique in that it describes not only quantum theory, but also presents five laboratories that explore truly modern aspects of quantum mechanics. These laboratories include "proving" that light contains photons, single-photon interference, and tests of local realism. The text begins by presenting the classical theory of polarization, moving on to describe the quantum theory of polarization. Analogies between the two theories minimize conceptual difficulties that students typically have when first presented with quantum mechanics. Furthermore, because the laboratories involve studying photons, using photon polarization as a prototypical quantum system allows the laboratory work to be closely integrated with the coursework. Polarization represents a two-dimensional quantum system, so the introduction to quantum mechanics uses two-dimensional state vectors and operators. This allows students to become comfortable with the mat...
Modeling particulate removal in plate-plate and wire-plate electrostatic precipitators
Directory of Open Access Journals (Sweden)
S Ramechecandane
2016-09-01
Full Text Available The present study is concerned with the modeling of electrically charged particles in a model plate-plate and a single wire-plate electrostatic precipitator (ESP. The particle concentration distributions for both a plate-plate and a wire-plate ESP are calculated using a modified drift flux model. Numerical investigations are performed using the modified drift flux model for particle number concentration, in addition to the RNG k - ε model for the mean turbulent flow field and the Poisson equation for the electric field. The proposed model and the outlined methodology for coupling the flow field, electric field, charging kinetics and particle concentration is applied to two model precipitators that are truly representative of a wide class of commercialized ESPs. The present investigation is quite different from the earlier studies as it does not make assumptions like a homogeneous electric field or an infinite turbulent diffusivity. The electric field calculated is a strong function of position and controls the migration velocity of particles. Hence, the proposed model can be implemented in a flow solver to obtain a full-fledged solution for any kind of ESP with no limitations on the particle number concentration, as encountered in a Lagrangian approach. The effect of turbulent diffusivity on particle number concentration in a plate-plate ESP is investigated in detail and the results obtained are compared with available experimental data. Similarly, the effect of particle size/diameter and applied electric potential on the accumulative collection performance in the case of a wire-plate ESP is studied and the results obtained are compared with available numerical data. The numerical results obtained using the modified drift flux model for both the plate-plate and wire-plate ESP are in close agreement with available experimental and numerical data.
New Applications of m-Polar Fuzzy Matroids
Directory of Open Access Journals (Sweden)
Musavarah Sarwar
2017-12-01
Full Text Available Mathematical modelling is an important aspect in apprehending discrete and continuous physical systems. Multipolar uncertainty in data and information incorporates a significant role in various abstract and applied mathematical modelling and decision analysis. Graphical and algebraic models can be studied more precisely when multiple linguistic properties are dealt with, emphasizing the need for a multi-index, multi-object, multi-agent, multi-attribute and multi-polar mathematical approach. An m-polar fuzzy set is introduced to overcome the limitations entailed in single-valued and two-valued uncertainty. Our aim in this research study is to apply the powerful methodology of m-polar fuzzy sets to generalize the theory of matroids. We introduce the notion of m-polar fuzzy matroids and investigate certain properties of various types of m-polar fuzzy matroids. Moreover, we apply the notion of the m-polar fuzzy matroid to graph theory and linear algebra. We present m-polar fuzzy circuits, closures of m-polar fuzzy matroids and put special emphasis on m-polar fuzzy rank functions. Finally, we also describe certain applications of m-polar fuzzy matroids in decision support systems, ordering of machines and network analysis.
DEFF Research Database (Denmark)
Stotz, Ingo Leonardo; Iaffaldano, Giampiero; Davies, DR
2017-01-01
and the consequent subduction polarity reversal. The uncertainties associated with the timing of this event, however, make it difficult to quantitatively demonstrate a dynamical association. Here, we first reconstruct the Pacific plate's absolute motion since the mid-Miocene (15 Ma), at high-temporal resolution....../lithosphere system to test hypotheses on the dynamics driving this change. These indicate that the arrival of the OJP at the Melanesian arc, between 10 and 5 Ma, followed by a subduction polarity reversal that marked the initiation of subduction of the Australian plate underneath the Pacific realm, were the key...... drivers of this kinematic change....
Zhao, Chen-Guang; Tan, Jiu-Bin; Liu, Tao
2010-09-01
The mechanism of a non-polarizing beam splitter (NPBS) with asymmetrical transfer coefficients causing the rotation of polarization direction is explained in principle, and the measurement nonlinear error caused by NPBS is analyzed based on Jones matrix theory. Theoretical calculations show that the nonlinear error changes periodically, and the error period and peak values increase with the deviation between transmissivities of p-polarization and s-polarization states. When the transmissivity of p-polarization is 53% and that of s-polarization is 48%, the maximum error reaches 2.7 nm. The imperfection of NPBS is one of the main error sources in simultaneous phase-shifting polarization interferometer, and its influence can not be neglected in the nanoscale ultra-precision measurement.
EBEX: A Balloon-Borne Telescope for Measuring Cosmic Microwave Background Polarization
Chapman, Daniel
2015-05-01
EBEX is a long-duration balloon-borne (LDB) telescope designed to probe polarization signals in the cosmic microwave background (CMB). It is designed to measure or place an upper limit on the inflationary B-mode signal, a signal predicted by inflationary theories to be imprinted on the CMB by gravitational waves, to detect the effects of gravitational lensing on the polarization of the CMB, and to characterize polarized Galactic foreground emission. The payload consists of a pointed gondola that houses the optics, polarimetry, detectors and detector readout systems, as well as the pointing sensors, control motors, telemetry sytems, and data acquisition and flight control computers. Polarimetry is achieved with a rotating half-wave plate and wire grid polarizer. The detectors are sensitive to frequency bands centered on 150, 250, and 410 GHz. EBEX was flown in 2009 from New Mexico as a full system test, and then flown again in December 2012 / January 2013 over Antarctica in a long-duration flight to collect scientific data. In the instrumentation part of this thesis we discuss the pointing sensors and attitude determination algorithms. We also describe the real-time map making software, "QuickLook", that was custom-designed for EBEX. We devote special attention to the design and construction of the primary pointing sensors, the star cameras, and their custom-designed flight software package, "STARS" (the Star Tracking Attitude Reconstruction Software). In the analysis part of this thesis we describe the current status of the post-flight analysis procedure. We discuss the data structures used in analysis and the pipeline stages related to attitude determination and map making. We also discuss a custom-designed software framework called "LEAP" (the LDB EBEX Analysis Pipeline) that supports most of the analysis pipeline stages.
Circularly Polarized Microwave Antenna Element with Very Low Off-Axis Cross-Polarization
Greem. David; DuToit, Cornelis
2013-01-01
The goal of this work was to improve off-axis cross-polarization performance and ease of assembly of a circularly polarized microwave antenna element. To ease assembly, the initial design requirement of Hexweb support for the internal circuit part, as well as the radiating disks, was eliminated. There is a need for different plating techniques to improve soldering. It was also desirable to change the design to eliminate soldering as well as the need to use the Hexweb support. Thus, a technique was developed to build the feed without using solder, solving the lathing and soldering issue. Internal parts were strengthened by adding curvature to eliminate Hexweb support, and in the process, the new geometries of the internal parts opened the way for improving the off-axis cross-polarization performance as well. The radiating disks curvatures were increased for increased strength, but it was found that this also improved crosspolarization. Optimization of the curvatures leads to very low off-axis cross-polarization. The feed circuit was curved into a cylinder for improved strength, eliminating Hexweb support. An aperture coupling feed mechanism eliminated the need for feed pins to the disks, which would have required soldering. The aperture coupling technique also improves cross-polarization performance by effectively exciting the radiating disks very close to the antenna s central axis of symmetry. Because of the shape of the parts, it allowed for an all-aluminum design bolted together and assembled with no solder needed. The advantage of a solderless design is that the reliability is higher, with no single-point failure (solder), and no need for special plating techniques in order to solder the unit together. The shapes (curved or round) make for a more robust build without extra support materials, as well as improved offaxis cross-polarization.
DEFF Research Database (Denmark)
Nielsen, Jacob; Rathkjen, Arne
Load-displacement curves from about 200 short-term and laterally loaded nail-plate joints are analysed. The nail-plates are from Gang-Nail Systems, type GNA 20 S. The test specimens and the measuring systems are described. The tests are divided into 32 different series. The influence of the number...
... Safe Videos for Educators Search English Español MyPlate Food Guide KidsHealth / For Teens / MyPlate Food Guide What's ... and other sugary drinks. Avoid large portions . Five Food Groups Different food groups have different nutrients and ...
Scintillating plate calorimeter optical design
International Nuclear Information System (INIS)
McNeil, R.; Fazely, A.; Gunasingha, R.; Imlay, R.; Lim, J.
1990-01-01
A major technical challenge facing the builder of a general purpose detector for the SSC is to achieve an optimum design for the calorimeter. Because of its fast response and good energy resolution, scintillating plate sampling calorimeters should be considered as a possible technology option. The work of the Scintillating Plate Calorimeter Collaboration is focused on compensating plate calorimeters. Based on experimental and simulation studies, it is expected that a sampling calorimeter with alternating layers of high-Z absorber (Pb, W, DU, etc.) and plastic scintillator can be made compensating (e/h = 1.00) by suitable choice of the ratio of absorber/scintillator thickness. Two conceptual designs have been pursued by this subsystem collaboration. One is based on lead as the absorber, with read/out of the scintillator plates via wavelength shifter fibers. The other design is based on depleted uranium as the absorber with wavelength shifter (WLS) plate readout. Progress on designs for the optical readout of a compensating scintillator plate calorimeter are presented. These designs include readout of the scintillator plates via wavelength shifter plates or fiber readout. Results from radiation damage studies of the optical components are presented
Bending analysis of laminated composite plates using finite element ...
African Journals Online (AJOL)
user
theory to analyze the laminated composite plates. They concluded that ...... Aeronautics and Astronautics”, Inc.1801, Chapter 8, pp. 240. Baltacıoğlu A.K .... He is working as Assistant Professor in the Department of Mechanical. Engineering in ...
Airborne Laser Polarization Sensor
Kalshoven, James, Jr.; Dabney, Philip
1991-01-01
Instrument measures polarization characteristics of Earth at three wavelengths. Airborne Laser Polarization Sensor (ALPS) measures optical polarization characteristics of land surface. Designed to be flown at altitudes of approximately 300 m to minimize any polarizing or depolarizing effects of intervening atmosphere and to look along nadir to minimize any effects depending on look angle. Data from measurements used in conjunction with data from ground surveys and aircraft-mounted video recorders to refine mathematical models used in interpretation of higher-altitude polarimetric measurements of reflected sunlight.
International Nuclear Information System (INIS)
Johns, M.W.
1975-01-01
Linear polarization of starlight may be produced by electron scattering in the extended atmospheres of early type stars. Techniques are investigated for the measurement and interpretation of this polarization. Polarimetric observations were made of twelve visual double star systems in which at least one member was a B type star as a means of separating the intrinsic stellar polarization from the polarization produced in the interstellar medium. Four of the double stars contained a Be star. Evidence for intrinsic polarization was found in five systems including two of the Be systems, one double star with a short period eclipsing binary, and two systems containing only normal early type stars for which emission lines have not been previously reported. The interpretation of these observations in terms of individual stellar polarizations and their wavelength dependence is discussed. The theoretical basis for the intrinsic polarization of early type stars is explored with a model for the disk-like extended atmospheres of Be stars. Details of a polarimeter for the measurement of the linear polarization of astronomical point sources are also presented with narrow band (Δ lambda = 100A) measurements of the polarization of γ Cas from lambda 4000 to lambda 5800
International Nuclear Information System (INIS)
Swartz, M.L.
1988-07-01
The SLAC Linear Collider has been designed to readily accommodate polarized electron beams. Considerable effort has been made to implement a polarized source, a spin rotation system, and a system to monitor the beam polarization. Nearly all major components have been fabricated. At the current time, several source and polarimeter components have been installed. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. It is expected that a beam polarization of 45% will be achieved with no loss in luminosity. 13 refs., 15 figs
Fundamental processes in ion plating
International Nuclear Information System (INIS)
Mattox, D.M.
1980-01-01
Ion plating is a generic term applied to film deposition processes in which the substrate surface and/or the depositing film is subjected to a flux of high energy particles sufficient to cause changes in the interfacial region of film properties compared to a nonbombarded deposition. Ion plating is being accepted as an alternative coating technique to sputter deposition, vacuum evaporation and electroplating. In order to intelligently choose between the various deposition techniques, the fundamental mechanisms, relating to ion plating, must be understood. This paper reviews the effects of low energy ion bombardment on surfaces, interface formation and film development as they apply to ion plating and the implementation and applications of the ion plating process
Detailed analysis of evolution of the state of polarization in all-fiber polarization transformers.
Zhu, Xiushan; Jain, Ravinder K
2006-10-30
We present a detailed analysis of key attributes and performance characteristics of controllably-spun birefringent-fiber-based all-fiber waveplates or "all fiber polarization transformers" (AFPTs), first proposed and demonstrated by Huang [11]; these AFPTs consist essentially of a long carefully-designed "spin-twisted" high-birefringence fiber, fabricated by slowly varying the spin rate of a birefringent fiber preform (either from very fast to very slow or vice versa) while the fiber is being drawn. The evolution of the eigenstate from a linear polarization state to a circular polarization state, induced by slow variation of the intrinsic structure from linear anisotropy at the unspun end to circular anisotropy at the fast-spun end, enables the AFPT to behave like an all-fiber quarter-wave plate independent of the wavelength of operation. Power coupling between local eigenstates causes unique evolution of the polarization state along the fiber, and has been studied to gain insight into - as well as to understand detailed characteristics of -- the polarization transformation behavior. This has been graphically illustrated via plots of the relative power in these local eigenstates as a function of distance along the length of the fiber and plots of the extinction ratio of the output state of polarization (SOP) as a function of distance and the normalized spin rate. Deeper understanding of such polarization transformers has been further elucidated by quantitative calculations related to two crucial requirements for fabricating practical AFPT devices. Our calculations have also indicated that the polarization mode dispersion behaviour of the AFPT is much smaller than that of the original birefringent fiber. Finally, a specific AFPT was experimentally investigated at two widely-separated wavelengths (1310 nm and 1550 nm) of interest in telecommunications systems applications, further demonstrating and elucidating the broadband character of such AFPTs.
The Golosyiv plate archive digitisation
Sergeeva, T. P.; Sergeev, A. V.; Pakuliak, L. K.; Yatsenko, A. I.
2007-08-01
The plate archive of the Main Astronomical Observatory of the National Academy of Sciences of Ukraine (Golosyiv, Kyiv) includes about 85 000 plates which have been taken in various observational projects during 1950-2005. Among them are about 25 000 of direct northern sky area plates and more than 600 000 plates containing stellar, planetary and active solar formations spectra. Direct plates have a limiting magnitude of 14.0-16.0 mag. Since 2002 we have been organising the storage, safeguarding, cataloguing and digitization of the plate archive. The very initial task was to create the automated system for detection of astronomical objects and phenomena, search of optical counterparts in the directions of gamma-ray bursts, research of long period, flare and other variable stars, search and rediscovery of asteroids, comets and other Solar System bodies to improve the elements of their orbits, informational support of CCD observations and space projects, etc. To provide higher efficiency of this work we have prepared computer readable catalogues and database for 250 000 direct wide field plates. Now the catalogues have been adapted to Wide Field Plate Database (WFPDB) format and integrated into this world database. The next step will be adaptation of our catalogues, database and images to standards of the IVOA. Some magnitude and positional accuracy estimations for Golosyiv archive plates have been done. The photometric characteristics of the images of NGC 6913 cluster stars on two plates of the Golosyiv's double wide angle astrograph have been determined. Very good conformity of the photometric characteristics obtained with external accuracies of 0.13 and 0.15 mag. has been found. The investigation of positional accuracy have been made with A3± format fixed bed scanner (Microtek ScanMaker 9800XL TMA). It shows that the scanner has non-detectable systematic errors on the X-axis, and errors of ± 15 μm on the Y-axis. The final positional errors are about ± 2 μm (
Indonesian Landforms and Plate Tectonics
Directory of Open Access Journals (Sweden)
Herman Th. Verstappen
2014-06-01
Full Text Available DOI: 10.17014/ijog.v5i3.103The horizontal configuration and vertical dimension of the landforms occurring in the tectonically unstable parts of Indonesia were resulted in the first place from plate tectonics. Most of them date from the Quaternary and endogenous forces are ongoing. Three major plates – the northward moving Indo-Australian Plate, the south-eastward moving SE-Asian Plate and the westward moving Pacific Plate - meet at a plate triple-junction situated in the south of New Guinea’s Bird’s Head. The narrow North-Moluccan plate is interposed between the Asia and Pacific. It tapers out northward in the Philippine Mobile Belt and is gradually disappearing. The greatest relief amplitudes occur near the plate boundaries: deep ocean trenches are associated with subduction zones and mountain ranges with collision belts. The landforms of the more stable areas of the plates date back to a more remote past and, where emerged, have a more subdued relief that is in the first place related to the resistance of the rocks to humid tropical weathering Rising mountain ranges and emerging island arcs are subjected to rapid humid-tropical river erosions and mass movements. The erosion products accumulate in adjacent sedimentary basins where their increasing weight causes subsidence by gravity and isostatic compensations. Living and raised coral reefs, volcanoes, and fault scarps are important geomorphic indicators of active plate tectonics. Compartmental faults may strongly affect island arcs stretching perpendicular to the plate movement. This is the case on Java. Transcurrent faults and related pull-apart basins are a leading factor where plates meet at an angle, such as on Sumatra. The most complicated situation exists near the triple-junction and in the Moluccas. Modern research methods, such as GPS measurements of plate movements and absolute dating of volcanic outbursts and raised coral reefs are important tools. The mega-landforms resulting
Polarization of charmonium in πN collisions
International Nuclear Information System (INIS)
Tang, Wai-Keung.
1994-09-01
Measurements of the polarization of J/ψ produced in pion-nucleus collisions are in disagreement with leading twist QCD prediction were J/ψ is observed to have negligible polarization whereas theory predicts substantial polarization. We argue that this discrepancy cannot be due to poorly known structure functions nor the relative production rates of J/ψ and X J . The disagreement between theory and experiment suggests important higher twist corrections, as has earlier been surmised from the anomalous non-factorized nuclear A-dependence of the J/ψ cross section
TRANSVERSELY POLARIZED Λ PRODUCTION
International Nuclear Information System (INIS)
BORER, D.
2000-01-01
Transversely polarized Λ production in hard scattering processes is discussed in terms of a leading twist T-odd fragmentation function which describes the fragmentation of an unpolarized quark into a transversely polarized Λ. We focus on the properties of this function and its relevance for the RHIC and HERMES experiments
Clary, Renee; Wandersee, James
2009-01-01
The study of polar exploration is fascinating and offers students insights into the history, culture, and politics that affect the developing sciences at the farthest ends of Earth. Therefore, the authors think there is value in incorporating polar exploration accounts within modern science classrooms, and so they conducted research to test their…
International Nuclear Information System (INIS)
Stonik, Valentin A
2001-01-01
Structures, taxonomic distribution and biological activities of polar steroids isolated from various marine organisms over the last 8-10 years are considered. The peculiarities of steroid biogenesis in the marine biota and their possible biological functions are discussed. Syntheses of some highly active marine polar steroids are described. The bibliography includes 254 references.
International Nuclear Information System (INIS)
Roser, T.
1995-01-01
The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders
Polarization Optics in Telecommunications
Damask, Jay N
2005-01-01
The strong investments into optical telecommunications in the late 1990s resulted in a wealth of new research, techniques, component designs, and understanding of polarization effects in fiber. Polarization Optics in Telecommunications brings together recent advances in the field to create a standard, practical reference for component designers and optical fiber communication engineers. Beginning with a sound foundation in electromagnetism, the author offers a dissertation of the spin-vector formalism of polarization and the interaction of light with media. Applications discussed include optical isolators, optical circulators, fiber collimators, and a variety of applied waveplate and prism combinations. Also included in an extended discussion of polarization-mode dispersion (PMD) and polarization-dependent loss (PDL), their representation, behavior, statistical properties, and measurement. This book draws extensively from the technical and patent literature and is an up-to-date reference for researchers and c...
Towards an International Polar Data Coordination Network
Directory of Open Access Journals (Sweden)
P L Pulsifer
2014-10-01
Full Text Available Data management is integral to sound polar science. Through analysis of documents reporting on meetings of the Arctic data management community, a set of priorities and strategies are identified. These include the need to improve data sharing, make use of existing resources, and better engage stakeholders. Network theory is applied to a preliminary inventory of polar and global data management actors to improve understanding of the emerging community of practice. Under the name the Arctic Data Coordination Network, we propose a model network that can support the community in achieving their goals through improving connectivity between existing actors.
Polarization effects in the 3-body system
International Nuclear Information System (INIS)
Ohlsen, G.G.
1978-01-01
An experimental review is given of polarization effects in the three-nucleon system. Inelastic processes are emphasized and some special topics on elastic scattering are also considered. The recent elastic nucleon--deuteron scattering result are discussed including the determination of the deuteron D state, vector n - d vs vector p - d vector analyzing power, the status of fits to polarization observables via Faddeev-type theory, and medium-energy elastic scattering. The treatment of the breakup experiments covers a general discussion of some of the possible kinematically complete breakup measurements and kinematically incomplete breakup experiments. 71 references
Plate shell structures of glass
DEFF Research Database (Denmark)
Bagger, Anne
to their curved shape. A plate shell structure maintains a high stiffness-to-weight ratio, while facilitating the use of plane structural elements. The study focuses on using laminated glass panes for the load bearing facets. Various methods of generating a plate shell geometry are suggested. Together with Ghent......, such as facet size, imperfections, and connection characteristics. The critical load is compared to that of a similar, but smoothly curved, shell structure. Based on the investigations throughout the study, a set of guidelines for the structural design of plate shells of glass is proposed....
Plating on stainless steel alloys
International Nuclear Information System (INIS)
Dini, J.W.; Johnson, H.R.
1981-01-01
Quantitative adhesion data are presented for a variety of electroplated stainless steel type alloys. Results show that excellent adhesion can be obtained by using a Wood's nickel strike or a sulfamate nickel strike prior to final plating. Specimens plated after Wood's nickel striking failed in the deposit rather than at the interface between the substrate and the coating. Flyer plate quantitative tests showed that use of anodic treatment in sulfuric acid prior to Wood's nickel striking even further improved adhesion. In contrast activation of stainless steels by immersion or cathodic treatment in hydrochloric acid resulted in very reduced bond strengths with failure always occurring at the interface between the coating and substrate
Nonlinear analysis of piezoelectric nanocomposite energy harvesting plates
International Nuclear Information System (INIS)
Rafiee, M; He, X Q; Liew, K M
2014-01-01
This paper investigates the nonlinear analysis of energy harvesting from piezoelectric functionally graded carbon nanotube reinforced composite plates under combined thermal and mechanical loadings. The excitation, which derives from harmonically varying mechanical in-plane loading, results in parametric excitation. The governing equations of the piezoelectric functionally graded carbon nanotube reinforced composite plates are derived based on classical plate theory and von Kármán geometric nonlinearity. The material properties of the nanocomposite plate are assumed to be graded in the thickness direction. The single-walled carbon nanotubes (SWCNTs) are assumed to be aligned, straight and have a uniform layout. The linear buckling and vibration behavior of the nanocomposite plates is obtained in the first step. Then, Galerkin’s method is employed to derive the nonlinear governing equations of the problem with cubic nonlinearities associated with mid-plane stretching. Periodic solutions are determined by using the Poincaré–Lindstedt perturbation scheme with movable simply supported boundary conditions. The effects of temperature change, the volume fraction and the distribution pattern of the SWCNTs on the parametric resonance, in particular the amplitude of vibration and the average harvested power of the smart functionally graded carbon nanotube reinforced composite plates, are investigated through a detailed parametric study. (paper)
Plate with a hole obeys the averaged null energy condition
International Nuclear Information System (INIS)
Graham, Noah; Olum, Ken D.
2005-01-01
The negative energy density of Casimir systems appears to violate general relativity energy conditions. However, one cannot test the averaged null energy condition (ANEC) using standard calculations for perfectly reflecting plates, because the null geodesic would have to pass through the plates, where the calculation breaks down. To avoid this problem, we compute the contribution to ANEC for a geodesic that passes through a hole in a single plate. We consider both Dirichlet and Neumann boundary conditions in two and three space dimensions. We use a Babinet's principle argument to reduce the problem to a complementary finite disk correction to the perfect mirror result, which we then compute using scattering theory in elliptical and spheroidal coordinates. In the Dirichlet case, we find that the positive correction due to the hole overwhelms the negative contribution of the infinite plate. In the Neumann case, where the infinite plate gives a positive contribution, the hole contribution is smaller in magnitude, so again ANEC is obeyed. These results can be extended to the case of two plates in the limits of large and small hole radii. This system thus provides another example of a situation where ANEC turns out to be obeyed when one might expect it to be violated
Metallic plates lens focalizing a high power microwave beam
International Nuclear Information System (INIS)
Rebuffi, L.
1987-08-01
A metallic grating composed of thin parallel plates opportunely spaced, permits to correct the phase of an incident high power microwave beam. In this work we show how it is possible to obtain a beam focalisation (lens), a beam deflection (prisma), or a variation in the polarization (polarizer) using parallel metallic plates. The main design parameters are here presented, in order to obtain the wanted phase modification keeping low the diffraction, the reflected power, the ohmic losses and avoiding breakdowns. Following the given criteria, a metallic plate lens has been realized to focalize the 200 KW, 100 msec 60 GHz beam used in the ECRH experiment on the TFR tokamak. The experimental beam concentration followed satisfactory the design requirements. In fact, the maximum intensity increased about twice the value without lens. In correspondence of this distance a reduction of the beam size of about 50% have been measured for the -3 dB radius. The lens supported high power tests without breakdowns or increase of the reflected power
Optics. Observation of optical polarization Möbius strips.
Bauer, Thomas; Banzer, Peter; Karimi, Ebrahim; Orlov, Sergej; Rubano, Andrea; Marrucci, Lorenzo; Santamato, Enrico; Boyd, Robert W; Leuchs, Gerd
2015-02-27
Möbius strips are three-dimensional geometrical structures, fascinating for their peculiar property of being surfaces with only one "side"—or, more technically, being "nonorientable" surfaces. Despite being easily realized artificially, the spontaneous emergence of these structures in nature is exceedingly rare. Here, we generate Möbius strips of optical polarization by tightly focusing the light beam emerging from a q-plate, a liquid crystal device that modifies the polarization of light in a space-variant manner. Using a recently developed method for the three-dimensional nanotomography of optical vector fields, we fully reconstruct the light polarization structure in the focal region, confirming the appearance of Möbius polarization structures. The preparation of such structured light modes may be important for complex light beam engineering and optical micro- and nanofabrication. Copyright © 2015, American Association for the Advancement of Science.
International Nuclear Information System (INIS)
Nagaosa, Naoto
2009-01-01
Theories of multiferroics are reviewed with a stress on the role of relativistic spin-orbit interaction and spin current. Ground state electric polarization induced by the non-collinear spin structures, and its dynamical fluctuation, i.e., electro-magnon are discussed. Treatments of the non-perturbative large amplitude thermal and quantum fluctuations are also described. (author)
... Price Tag Read the Food Label Kitchen Timesavers Cooking for Your Family Tasty & Low-Cost Recipes Sample 2-Week Menus Resources for Professionals MyPlate Tip Sheets Print Materials Infographics 5 Ways ...
License plate recognition (phase B).
2010-06-01
License Plate Recognition (LPR) technology has been used for off-line automobile enforcement purposes. The technology has seen mixed success with correct reading rate as high as 60 to 80% depending on the specific application and environment. This li...
Armor Plate Surface Roughness Measurements
National Research Council Canada - National Science Library
Stanton, Brian; Coburn, William; Pizzillo, Thomas J
2005-01-01
...., surface texture and coatings) that could become important at high frequency. We measure waviness and roughness of various plates to know the parameter range for smooth aluminum and rolled homogenous armor (RHA...
Decagonal quasicrystal plate with elliptic holes subjected to out-of-plane bending moments
Energy Technology Data Exchange (ETDEWEB)
Li, Lian He, E-mail: nmglilianhe@163.com [College of Mathematics Science, Inner Mongolia Normal University, Hohhot 010022 (China); College of Physical Science and Technology, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Hohhot 010021 (China); Liu, Guan Ting [College of Mathematics Science, Inner Mongolia Normal University, Hohhot 010022 (China)
2014-02-01
In the present paper, we consider only the ideal elastic behavior, neglecting the dissipation associated with the atomic rearrangements. Under these conditions, the decagonal quasicrystal plate bending problems have been discussed. The Stroh-like formalism for the bending theory of decagonal quasicrystal plate is developed. The analytical solutions for problems of decagonal quasicrystal plate with elliptic hole subjected to out-of-plane bending moments are obtained directly by using the forms. The resultant bending moments around the hole boundaries are also given explicitly. When the phonon–phason coupling is absent, the results reduce to the corresponding solutions for the isotropic elastic plates.
A model of breakdown in parallel-plate detectors
International Nuclear Information System (INIS)
Fonte, P.
1996-01-01
Parallel-plate avalanche chambers (PPAC's) have many desirable properties, such as a fast, large area particle detector. However, the maximum gain is limited by a form of violent breakdown that limits the usefulness of this detector, despite its other evident qualities. The exact nature of this phenomenon is not yet sufficiently clear to sustain possible improvements. A previous experimental study is complemented in the present work by a quantitative model of the breakdown phenomenon in PPAC's, based on the streamer theory. The model reproduces well the peculiar behavior of the external current observed in PPAC's and resistive-plate chambers. Other breakdown properties measured in PPAC's are also well reproduced
Energy Technology Data Exchange (ETDEWEB)
Norris, S.; Rosentrater, L.; Eid, P.M. [WWF International Arctic Programme, Oslo (Norway)
2002-05-01
Polar bears, the world's largest terrestrial carnivore, spend much of their lives on the arctic sea ice. This is where they hunt and move between feeding, denning, and resting areas. The world population, estimated at 22,000 bears, is made up of 20 relatively distinct populations varying in size from a few hundred to a few thousand animals. About 60 per cent of all polar bears are found in Canada. In general, the status of this species is stable, although there are pronounced differences between populations. Reductions in the extent and thickness of sea ice has lead the IUCN Polar Bear Specialist Group to describe climate change as one of the major threats facing polar bears today. Though the long-term effects of climate change will vary in different areas of the Arctic, impacts on the condition and reproductive success of polar bears and their prey are likely to be negative. Longer ice-free periods resulting from earlier break-up of sea ice in the spring and later formation in the fall is already impacting polar bears in the southern portions of their range. In Canada's Hudson Bay, for example, bears hunt on the ice through the winter and into early summer, after which the ice melts completely, forcing bears ashore to fast on stored fat until freeze-up in the fall. The time bears have on the ice to hunt and build up their body condition is cut short when the ice melts early. Studies from Hudson Bay show that for every week earlier that ice break-up occurs, bears will come ashore 10 kg lighter and in poorer condition. It is likely that populations of polar bears dividing their time between land and sea will be severely reduced and local extinctions may occur as greenhouse gas emissions continue to rise and sea ice melts. Expected changes in regional weather patterns will also impact polar bears. Rain in the late winter can cause maternity dens to collapse before females and cubs have departed, thus exposing occupants to the elements and to predators. Such
Polarized atomic beams for targets
International Nuclear Information System (INIS)
Grueebler, W.
1984-01-01
The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density
2010-03-01
underlying linguistic theory is an adaptation of X-Bar Theory ( Chomsky , 1970; Jackendoff, 1977) called Bi- Polar Theory (Ball, 2007a). In Bi-Polar...University Press. Chomsky , N. (1970). Remarks on Nominalization. In Jacobs & Rosembaum, (Eds.), Readings in English Transformational Grammar. Waltham, MA
Sailor, V.L.; Aichroth, R.W.
1962-12-01
The plane of polarization of a beam of polarized neutrons is changed by this invention, and the plane can be flipped back and forth quicitly in two directions in a trouble-free manner. The invention comprises a guide having a plurality of oppositely directed magnets forming a gap for the neutron beam and the gaps are spaced longitudinally in a spiral along the beam at small stepped angles. When it is desired to flip the plane of polarization the magnets are suitably rotated to change the direction of the spiral of the gaps. (AEC)
Heidelberg polarized alkali source
International Nuclear Information System (INIS)
Kraemer, D.; Steffens, E.; Jaensch, H.; Philipps Universitaet, Marburg, Germany)
1984-01-01
A new atomic beam type polarized alkali ion source has been installed at Heidelberg. In order to improve the beam polarization considerably optical pumping is applied in combination with an adiabatic medium field transition which results in beams in single hyperfine sublevels. The m state population is determined by laser-induced fluorescence spectroscopy. Highly polarized beams (P/sub s/ > 0.9, s = z, zz) with intensities of 30 to 130 μA can be extracted for Li + and Na + , respectively
A novel polarization interferometer for measuring upper atmospheric winds
International Nuclear Information System (INIS)
Ting-Kui, Mu; Chun-Min, Zhang
2010-01-01
A static polarization interferometer for measuring upper atmospheric winds is presented, based on two Savart plates with their optical axes perpendicular to each other. The principle and characteristics of the interferometer are described. The interferometer with a wide field of view can offer a stable benchmark optical path difference over a specified spectral region of 0.55–0.63 μm because there are no quarter wave plates. Since the instrument employs a straight line common-path configuration but without moving parts and slits, it is very compact, simple, inherently robust and has high throughput. The paper is limited to a theoretical analysis. (general)
Zhang, Qing; Li, Maozhong; Liao, Tingdi; Cui, Xudong
2018-03-01
Under the trend of miniaturization and reduction of system complexity, conventional bulky photonic elements are expected to be replaced by new compact and ultrathin dielectric metasurface elements. In this letter, we propose an αTiO2 dielectric metasurface (DM) platform that could be exploited to design high efficiency wave-front control devices at visible wavelength. Combining with fundamental principles and full wave simulations (Lumerical FDTD 3D solver ®), we successfully realize four DM devices, such as anomalous beam deflectors, polarization insensitive metalens, wave plates and polarization beam splitters. All these devices can achieve high transmission efficiencies (larger than 80%). Among them, the anomalous refraction beam deflectors can bend light propagation to any desired directions; the polarization insensitive metalens maintains diffraction limited focus (focal spot as small as 0.67 λ); the quarter-wave and half-wave plates have broadband working wavelengths from 550 to 1000 nm; and the polarization beam splitter can split an arbitrarily polarized incident beam into two orthogonally polarized beams, the TM components is deflected to the right side, and the TE components is deflected to the left side. These devices may find applications in the areas of imaging, polarization control, spectroscopy, and on-chip optoelectronic systems etc., and our studies may richen the design of all-dielectric optical elements at visible wavelength.
Energy Technology Data Exchange (ETDEWEB)
Chen, Jia Nen; Liu, Jun [Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, Tianjin University of Technology, Tianjin (China); Zhang, Wei; Yao, Ming Hui [College of Mechanical Engineering, Beijing University of Technology, Beijing (China); Sun, Min [School of Science, Tianjin Chengjian University, Tianjin (China)
2016-09-15
Nonlinear vibrations of carbon fiber reinforced composite sandwich plate with pyramidal truss core are investigated. The governing equation of motion for the sandwich plate is derived by using a Zig-Zag theory under consideration of geometrically nonlinear. The natural frequencies of sandwich plates with different dimensions are calculated and compared with those obtained from the classic laminated plate theory and Reddy's third-order shear deformation plate theory. The frequency responses and waveforms of the sandwich plate when 1:3 internal resonance occurs are obtained, and the characteristics of the internal resonance are discussed. The influences of layer number of face sheet, strut radius, core height and inclination angle on the nonlinear responses of the sandwich plate are analyzed. The results demonstrate that the strut radius and inclination angle mainly affect the resonance frequency band of the sandwich plate, and the layer number and core height not only influence the resonance frequency band but also significantly affect the response amplitude.
Energy Technology Data Exchange (ETDEWEB)
Taylor, R P; Viskanta, R
1975-01-01
An analysis is presented for predicting the effective spectral directional radiation characteristics of an isothermal, semitransparent sheet surrounded on both sides by massive dielectrics. The sheet can be coated with an optically thin film and used as selective cover plates for solar collectors. Directional and polarization effects and the spectral transmittance and reflectance are considered. Sample results for candidate materials are presented.
The representation of neutron polarization
International Nuclear Information System (INIS)
Byrne, J.
1979-01-01
Neutron beam polarization representation is discussed under the headings; transfer matrices, coherent parity violation for neutrons, neutron spin rotation in helical magnetic fields, polarization and interference. (UK)
Design of a device for sky light polarization measurements.
Wang, Yujie; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Xian, Zhiwen; Ma, Tao
2014-08-14
Sky polarization patterns can be used both as indicators of atmospheric turbidity and as a sun compass for navigation. The objective of this study is to improve the precision of sky light polarization measurements by optimal design of the device used. The central part of the system is composed of a Charge Coupled Device (CCD) camera; a fish-eye lens and a linear polarizer. Algorithms for estimating parameters of the polarized light based on three images are derived and the optimal alignments of the polarizer are analyzed. The least-squares estimation is introduced for sky light polarization pattern measurement. The polarization patterns of sky light are obtained using the designed system and they follow almost the same patterns of the single-scattering Rayleigh model. Deviations of polarization angles between observation and the theory are analyzed. The largest deviations occur near the sun and anti-sun directions. Ninety percent of the deviations are less than 5° and 40% percent of them are less than 1°. The deviations decrease evidently as the degree of polarization increases. It also shows that the polarization pattern of the cloudy sky is almost identical as in the blue sky.
International Nuclear Information System (INIS)
Yan Zhi; Jiang Liying
2012-01-01
This work aims to investigate the electroelastic responses of a thin piezoelectric plate under mechanical and electrical loads with the consideration of surface effects. Surface effects, including surface elasticity, residual surface stress and surface piezoelectricity, are incorporated into the conventional Kirchhoff plate theory for a piezoelectric plate via the surface piezoelectricity model and the generalized Young-Laplace equations. Different from the results predicted by the conventional plate theory ignoring the surface effects, the proposed model predicts size-dependent behaviours of the piezoelectric thin plate with nanoscale thickness. It is found that surface effects have significant influence on the electroelastic responses of the piezoelectric nanoplate. This work is expected to provide more accurate predictions on characterizing nanofilm or nanoribbon based piezoelectric devices in nanoelectromechanical systems. (paper)
Two dimensional dynamic analysis of sandwich plates with gradient foam cores
Energy Technology Data Exchange (ETDEWEB)
Mu, Lin; Xiao, Deng Bao; Zhao, Guiping [State Key Laboratory for Mechanical structure Strength and Vibration, School of AerospaceXi' an Jiaotong University, Xi' an (China); Cho, Chong Du [Dept. of Mechanical Engineering, Inha University, Inchon (Korea, Republic of)
2016-09-15
Present investigation is concerned about dynamic response of composite sandwich plates with the functionally gradient foam cores under time-dependent impulse. The analysis is based on a model of the gradient sandwich plate, in which the face sheets and the core adopt the Kirchhoff theory and a [2, 1]-order theory, respectively. The material properties of the gradient foam core vary continuously along the thickness direction. The gradient plate model is validated with the finite element code ABAQUS®. And the results show that the proposed model can predict well the free vibration of composite sandwich plates with gradient foam cores. The influences of gradient foam cores on the natural frequency, deflection and energy absorbing of the sandwich plates are also investigated.
Directory of Open Access Journals (Sweden)
Korhan Ozgan
2013-01-01
Full Text Available Dynamic analysis of foundation plate-beam systems with transverse shear deformation is presented using modified Vlasov foundation model. Finite element formulation of the problem is derived by using an 8-node (PBQ8 finite element based on Mindlin plate theory for the plate and a 2-node Hughes element based on Timoshenko beam theory for the beam. Selective reduced integration technique is used to avoid shear locking problem for the evaluation of the stiffness matrices for both the elements. The effect of beam thickness, the aspect ratio of the plate and subsoil depth on the response of plate-beam-soil system is analyzed. Numerical examples show that the displacement, bending moments and shear forces are changed significantly by adding the beams.
International Nuclear Information System (INIS)
Hirono, T.; Kimura, H.; Muro, T.; Saitoh, Y.; Ishikawa, T.
2004-01-01
Full text: Many of scientific measurements utilizing the polarization characteristics such as MCD are vigorously studied in soft x-ray region. To obtain polarization state precisely is important to study physical phenomena quantitatively. For example, using information of accurate polarization state of probe beam we are able to discuss not only a structure of spectrum but also absolute value of measured data. We carried out the full polarization measurements at BL25SU in SPring-8. The measurements were performed for synchrotron radiation (SR) beam of 398.6 eV emitted from twin helical undulators. All parameters of polarization state of the beam were determined with phase shifting transmission multilayer and polarizing reflection multilayer. The phase shifter was a newly developed Sc/Cr multilayer and was evaluated as a quarter-wave plate. In the presentation, we will report the full polarization measurement of circularly polarized light using the quarter-wave plate
Huang, Ningfeng; Martínez, Luis Javier; Povinelli, Michelle L
2013-09-09
We demonstrate a system consisting of a two-dimensional photonic crystal slab and two polarizers which has a tunable transmission lineshape. The lineshape can be tuned from a symmetric Lorentzian to a highly asymmetric Fano lineshape by rotating the output polarizer. We use temporal coupled mode theory to explain the measurement results. The theory also predicts tunable phase shift and group delay.
Dielectric polarization in random media
International Nuclear Information System (INIS)
Ramshaw, J.D.
1984-01-01
The theory of dielectric polarization in random media is systematically formulated in terms of response kernels. The primary response kernel K(12) governs the mean dielectric response at the point r 1 to the external electric field at the point r 2 in an infinite system. The inverse of K(12) is denoted by L(12);. it is simpler and more fundamental than K(12) itself. Rigorous expressions are obtained for the effective dielectric constant epsilon( in terms of L(12) and K(12). The latter expression involves the Onsger-Kirkwood function (epsilon(-epsilon 0 (2epsilon(+epsilon 0 )/epsilon 0 epsilon( (where epsilon 0 is an arbitrary reference value), and appears to be new to the random medium context. A wide variety of series representations for epsilon( are generated by means of general perturbation expansions for K(12) and L(12). A discussion is given of certain pitfalls in the theory, most of which are related to the fact that the response kernels are long ranged. It is shown how the dielectric behavior of nonpolar molecular fluids may be treated as a special case of the general theory. The present results for epsilon( apply equally well to other effective phenomenological coefficients of the same generic type, such as thermal and electrical conductivity, magnetic susceptibility, and diffusion coefficients
Dynamic nuclear spin polarization
Energy Technology Data Exchange (ETDEWEB)
Stuhrmann, H B [GKSS-Forschungszentrum Geesthacht GmbH (Germany)
1996-11-01
Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.
International Nuclear Information System (INIS)
Roser, T.
1995-01-01
High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. This will allow the study of the spin structure of the proton and also the verification of the many well documented expectations of spin effects in perturbative QCD and parity violation in W and Z production. Proposals for polarized proton acceleration for several high energy colliders have been developed. A partial Siberian Snake in the AGS has recently been successfully tested and full Siberian Snakes, spin rotators, and polarimeters for RHIC are being developed to make the acceleration of polarized beams to 250 GeV possible. This allows for the unique possibility of colliding two 250 GeV polarized proton beams at luminosities of up to 2 x 10 32 cm -2 s -1
Plasma polarization spectroscopy on the WT-3 tokamak
International Nuclear Information System (INIS)
Furukubo, Takeo; Fujimoto, Takashi
1998-01-01
By placing a calcite plate behind the entrance slit of the spectrometer we obtain polarization resolved spectra of impurity emission lines. We have obtained the intensity and the polarization degree (the longitudinal alignment) of the berylliumlike oxygen triplet lines. In a kinetic model, or the PACR model, the population and the alignment of the upper levels of these transitions are calculated for electrons with an anisotropic velocity distribution, and the result is compared with the experiment. We thus infer the distribution function of electrons in the velocity space to be of a cigar' shape in our example. (author)
International Nuclear Information System (INIS)
Yun, W.B.; Howells, M.R.
1987-01-01
In an earlier publication, the possibility of producing high resolution zone plates for x-ray applications by spatial-frequency multiplication was analyzed theoretically. The theory predicted that for a daughter zone plate generated from the interference of mth and nth diffraction orders of a parent zone plate, its primary focal spot size and focal length are one (m + n)th of their counterparts of the parent zone plate, respectively. It was also shown that a zone plate with the outermost zone width of as small as 13.8 nm might be produced by this technique. In this paper, we report an experiment which we carried out with laser light (λ = 4166A) for demonstrating this technique. In addition, an outlook for producing high resolution zone plates for x-ray application is briefly discussed
EXACT SOLUTION FOR TEMPERATURE-DEPENDENT BUCKLING ANALYSIS OF FG-CNT-REINFORCED MINDLIN PLATES
Directory of Open Access Journals (Sweden)
Seyed Mohammad Mousavi
2016-03-01
Full Text Available This research deals with the buckling analysis of nanocomposite polymeric temperature-dependent plates reinforced by single-walled carbon nanotubes (SWCNTs. For the carbon-nanotube reinforced composite (CNTRC plate, uniform distribution (UD and three types of functionally graded (FG distribution patterns of SWCNT reinforcements are assumed. The material properties of FG-CNTRC plate are graded in the thickness direction and estimated based on the rule of mixture. The CNTRC is located in a elastic medium which is simulated with temperature-dependent Pasternak medium. Based on orthotropic Mindlin plate theory, the governing equations are derived using Hamilton’s principle and solved by Navier method. The influences of the volume fractions of carbon nanotubes, elastic medium, temperature and distribution type of CNTs are considered on the buckling of the plate. Results indicate that CNT distribution close to top and bottom are more efficient than those distributed nearby the mid-plane for increasing the stiffness of plates.
Energy flow analysis of out-of-plane vibration in coplanar coupled finite Mindlin plates
Directory of Open Access Journals (Sweden)
Young-Ho Park
2015-01-01
Full Text Available : In this paper, an Energy Flow Analysis (EFA for coplanar coupled Mindlin plates was performed to estimate their dynamic responses at high frequencies. Mindlin plate theory can consider the effects of shear distortion and rotatory inertia, which are very important at high frequencies. For EFA for coplanar coupled Mindlin plates, the wave transmission and reflection relationship for progressing out-of-plane waves (out-of-plane shear wave, bending dominant flexural wave, and shear dominant flexural wave in coplanar coupled Mindlin plates was newly derived. To verify the validity of the EFA results, numerical analyses were performed for various cases where coplanar coupled Mindlin plates are excited by a harmonic point force, and the energy flow solutions for coplanar coupled Mindlin plates were compared with the classical solutions in the various conditions.
Plasma polarization spectroscopy
International Nuclear Information System (INIS)
Iwamae, Atsushi; Horimoto, Yasuhiro; Fujimoto, Takashi; Hasegawa, Noboru; Sukegawa, Kouta; Kawachi, Tetsuya
2005-01-01
The electron velocity distribution function (EVDF) in plasma can be anisotropic in laser-produced plasmas. We have developed a new technique to evaluate the polarization degree of the emission lines in the extreme vacuum ultra violet wavelength region. The polarization of the emission lines and the continuums from the lithium-like nitrogen and from helium- and hydrogen-like carbon in recombining plasma is evaluated. Particle simulation in the velocity space gives the time scale for relaxation of anisotropic EVDFs. (author)
Reinholt, Mia
2006-01-01
The organizational science literature on motivation has for long been polarized into two main positions; the organizational economic position focusing on extrinsic motivation and the organizational behavior position emphasizing intrinsic motivation. With the rise of the knowledge economy and the increasing levels of complexities it entails, such polarization is not fruitful in the attempt to explain motivation of organizational members. This paper claims that a more nuanced perspective on mot...
Two-Photon Luminescence and Second Harmonic Generation from Gold Micro-Plates
Directory of Open Access Journals (Sweden)
Xu Wang
2014-09-01
Full Text Available Micron-sized gold plates were prepared by reducing chloroauric acid with lemongrass extract. Their two-photon luminescence (TPL and second harmonic generation (SHG were investigated. The results show that the TPL and SHG intensity of gold plates is dependent on the wavelength and polarization of excitation laser. The TPL intensity of gold plates decreases with the increase of the excitation wavelength except for a small peak around 820–840 nm, while SHG intensity increases with the excitation wavelength redshift. In addition, it is found that the TPL intensity of the gold plate’s edge is related with the angle between the edge orientation and the polarization direction of the excitation light. The TPL intensity increases with the angle increase from 0° to 90°.
Fusion of a polarized projectile with a polarized target
International Nuclear Information System (INIS)
Christley, J.A.; Johnson, R.C.; Thompson, I.J.
1995-01-01
The fusion cross sections for a polarized target with both unpolarized and polarized projectiles are studied. Expressions for the observables are given for the case when both nuclei are polarized. Calculations for fusion of an aligned 165 Ho target with 16 O and polarized 7 Li beams are presented
A New Limit on CMB Circular Polarization from SPIDER
Nagy, J. M.; Ade, P. A. R.; Amiri, M.; Benton, S. J.; Bergman, A. S.; Bihary, R.; Bock, J. J.; Bond, J. R.; Bryan, S. A.; Chiang, H. C.; Contaldi, C. R.; Doré, O.; Duivenvoorden, A. J.; Eriksen, H. K.; Farhang, M.; Filippini, J. P.; Fissel, L. M.; Fraisse, A. A.; Freese, K.; Galloway, M.; Gambrel, A. E.; Gandilo, N. N.; Ganga, K.; Gudmundsson, J. E.; Halpern, M.; Hartley, J.; Hasselfield, M.; Hilton, G.; Holmes, W.; Hristov, V. V.; Huang, Z.; Irwin, K. D.; Jones, W. C.; Kuo, C. L.; Kermish, Z. D.; Li, S.; Mason, P. V.; Megerian, K.; Moncelsi, L.; Morford, T. A.; Netterfield, C. B.; Nolta, M.; Padilla, I. L.; Racine, B.; Rahlin, A. S.; Reintsema, C.; Ruhl, J. E.; Runyan, M. C.; Ruud, T. M.; Shariff, J. A.; Soler, J. D.; Song, X.; Trangsrud, A.; Tucker, C.; Tucker, R. S.; Turner, A. D.; Van Der List, J. F.; Weber, A. C.; Wehus, I. K.; Wiebe, D. V.; Young, E. Y.
2017-08-01
We present a new upper limit on cosmic microwave background (CMB) circular polarization from the 2015 flight of Spider, a balloon-borne telescope designed to search for B-mode linear polarization from cosmic inflation. Although the level of circular polarization in the CMB is predicted to be very small, experimental limits provide a valuable test of the underlying models. By exploiting the nonzero circular-to-linear polarization coupling of the half-wave plate polarization modulators, data from Spider's 2015 Antarctic flight provide a constraint on Stokes V at 95 and 150 GHz in the range 33< {\\ell }< 307. No other limits exist over this full range of angular scales, and Spider improves on the previous limit by several orders of magnitude, providing 95% C.L. constraints on {\\ell }({\\ell }+1){C}{\\ell }{VV}/(2π ) ranging from 141 to 255 μK2 at 150 GHz for a thermal CMB spectrum. As linear CMB polarization experiments become increasingly sensitive, the techniques described in this paper can be applied to obtain even stronger constraints on circular polarization.
Vacuum polarization and chiral lattice fermions
International Nuclear Information System (INIS)
Randjbar Daemi, S.; Strathdee, J.
1995-09-01
The vacuum polarization due to chiral fermions on a 4-dimensional Euclidean lattice is calculated according to the overlap prescription. The fermions are coupled to weak and slowly varying background gauge and Higgs fields, and the polarization tensor is given by second order perturbation theory. In this order the overlap constitutes a gauge invariant regularization of the fermion vacuum amplitude. Its low energy - long wavelength behaviour can be computed explicitly and we verify that it coincides with the Feynman graph result obtainable, for example, by dimensional regularization of continuum gauge theory. In particular, the Standard Model Callan-Symanzik, RG functions are recovered. Moreover, there are no residual lattice artefacts such as a dependence on Wilson-type mass parameters. (author). 16 refs
Pisano, Giampaolo; Savini, Giorgio; Ade, Peter A R; Haynes, Vic; Gear, Walter K
2006-09-20
An achromatic half-wave plate (HWP) to be used in millimeter cosmic microwave background (CMB) polarization experiments has been designed, manufactured, and tested. The design is based on the 5-plates Pancharatnam recipe and it works in the frequency range 85-185 GHz. A model has been used to predict the transmission, reflection, absorption, and phase shift as a function of frequency. The HWP has been tested by using coherent radiation from a back-wave oscillator to investigate its modulation efficiency and with incoherent radiation from a polarizing Fourier transform spectrometer (FTS) to explore its frequency behavior. The FTS measurements have been fitted with an optical performance model which is in excellent agreement with the data. A detailed analysis of the data also allows a precise determination of the HWP fast and slow axes in the frequency band of operation. A list of the HWP performance characteristics is reported including estimates of its cross polarization.
Modeling RERTR experimental fuel plates using the PLATE code
International Nuclear Information System (INIS)
Hayes, S.L.; Meyer, M.K.; Hofman, G.L.; Snelgrove, J.L.; Brazener, R.A.
2003-01-01
Modeling results using the PLATE dispersion fuel performance code are presented for the U-Mo/Al experimental fuel plates from the RERTR-1, -2, -3 and -5 irradiation tests. Agreement of the calculations with experimental data obtained in post-irradiation examinations of these fuels, where available, is shown to be good. Use of the code to perform a series of parametric evaluations highlights the sensitivity of U-Mo dispersion fuel performance to fabrication variables, especially fuel particle shape and size distributions. (author)
Plating on some difficult-to-plate metals and alloys
International Nuclear Information System (INIS)
Dini, J.W.; Johnson, H.R.
1980-02-01
Electrodeposition of coatings on metals such as beryllium, beryllium-copper, Kovar, lead, magnesium, thorium, titanium, tungsten, uranium, zirconium, and their alloys can be problematic. This is due in most cases to a natural oxide surface film that readily reforms after being removed. The procedures we recommend for plating on these metals rely on replacing the oxide film with a displacement coating, or etching to allow mechanical keying between the substrate and plated deposit. The effectiveness of the procedures is demonstrated by interface bond strengths found in ring-shear and conical-head tensile tests
Observation of Polarization Vortices in Momentum Space
Zhang, Yiwen; Chen, Ang; Liu, Wenzhe; Hsu, Chia Wei; Wang, Bo; Guan, Fang; Liu, Xiaohan; Shi, Lei; Lu, Ling; Zi, Jian
2018-05-01
The vortex, a fundamental topological excitation featuring the in-plane winding of a vector field, is important in various areas such as fluid dynamics, liquid crystals, and superconductors. Although commonly existing in nature, vortices were observed exclusively in real space. Here, we experimentally observed momentum-space vortices as the winding of far-field polarization vectors in the first Brillouin zone of periodic plasmonic structures. Using homemade polarization-resolved momentum-space imaging spectroscopy, we mapped out the dispersion, lifetime, and polarization of all radiative states at the visible wavelengths. The momentum-space vortices were experimentally identified by their winding patterns in the polarization-resolved isofrequency contours and their diverging radiative quality factors. Such polarization vortices can exist robustly on any periodic systems of vectorial fields, while they are not captured by the existing topological band theory developed for scalar fields. Our work provides a new way for designing high-Q plasmonic resonances, generating vector beams, and studying topological photonics in the momentum space.
Electroless metal plating of plastics
International Nuclear Information System (INIS)
Krause, L.J.
1986-01-01
The product of an electroless plating process is described for plating at least one main group metal directly on a surface of a polymeric substrate comprising the steps of forming a nonaqueous solution containing a metallic salt of an alkali metal in a positive valence state and at least one main group metal in a negative valence state, the main group metal being selected from the group consisting of Ge, Sn, Pb, As, Sb, Bi, Si and Te, selecting an aromatic polymeric substrate reducible by the solublized salt and resistant to degration during the reaction, and carrying out a redox reaction between the salt in solution and the substrate by contacting the solution with the substrate for a sufficient time to oxidize and deposit the main group metal in elemental form to produce a plated substrate. The product is characterized by the plated metal being directly on the surface of the polymeric substrate and the alkali metal being retained in the plated substrate with the substrate being negatively charged with electrons transferred from the main group metal during the redox reaction
Frandsen, Athela F.
2016-01-01
Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often
Compensation of non-ideal beam splitter polarization distortion effect in Michelson interferometer
Liu, Yeng-Cheng; Lo, Yu-Lung; Liao, Chia-Chi
2016-02-01
A composite optical structure consisting of two quarter-wave plates and a single half-wave plate is proposed for compensating for the polarization distortion induced by a non-ideal beam splitter in a Michelson interferometer. In the proposed approach, the optimal orientations of the optical components within the polarization compensator are determined using a genetic algorithm (GA) such that the beam splitter can be treated as a free-space medium and modeled using a unit Mueller matrix accordingly. Two implementations of the proposed polarization controller are presented. In the first case, the compensator is placed in the output arm of Michelson interferometer such that the state of polarization of the interfered output light is equal to that of the input light. However, in this configuration, the polarization effects induced by the beam splitter in the two arms of the interferometer structure cannot be separately addressed. Consequently, in the second case, compensator structures are placed in the Michelson interferometer for compensation on both the scanning and reference beams. The practical feasibility of the proposed approach is introduced by considering a Mueller polarization-sensitive (PS) optical coherence tomography (OCT) structure with three polarization controllers in the input, reference and sample arms, respectively. In general, the results presented in this study show that the proposed polarization controller provides an effective and experimentally-straightforward means of compensating for the polarization distortion effects induced by the non-ideal beam splitters in Michelson interferometers and Mueller PS-OCT structures.
Polarization phenomena in two body systems
International Nuclear Information System (INIS)
Thomas, G.H.
1978-01-01
A review is given of strong interactions at very low, low, intermediate, and high energies over the range 6.14 MeV to 150 GeV/c with regard to polarization phenomena in two-body systems. From the one-pion-exchange model to the theory that can possibly relate to all the phenomena, namely, quantum electrodynamics the review pointed to a unified explanation for the interactions under study. 46 references
When measured spin polarization is not spin polarization
International Nuclear Information System (INIS)
Dowben, P A; Wu Ning; Binek, Christian
2011-01-01
Spin polarization is an unusually ambiguous scientific idiom and, as such, is rarely well defined. A given experimental methodology may allow one to quantify a spin polarization but only in its particular context. As one might expect, these ambiguities sometimes give rise to inappropriate interpretations when comparing the spin polarizations determined through different methods. The spin polarization of CrO 2 and Cr 2 O 3 illustrate some of the complications which hinders comparisons of spin polarization values. (viewpoint)
The evolution of tensor polarization
International Nuclear Information System (INIS)
Huang, H.; Lee, S.Y.; Ratner, L.
1993-01-01
By using the equation of motion for the vector polarization, the spin transfer matrix for spin tensor polarization, the spin transfer matrix for spin tensor polarization is derived. The evolution equation for the tensor polarization is studied in the presence of an isolate spin resonance and in the presence of a spin rotor, or snake
The polarization of fast neutrons
International Nuclear Information System (INIS)
Talov, V.V.
2000-01-01
The present work is the review of polarization of fast neutrons and methods of polarization analysis. This also includes information about polarization of fast neutrons from first papers, which described polarization in the D(d,n) 3 He, 7 Li(p,n) 7 Be, and T(p,n) 3 He reactions. (authors)
Capacity of the circular plate condenser: analytical solutions for large gaps between the plates
International Nuclear Information System (INIS)
Rao, T V
2005-01-01
A solution of Love's integral equation (Love E R 1949 Q. J. Mech. Appl. Math. 2 428), which forms the basis for the analysis of the electrostatic field due to two equal circular co-axial parallel conducting plates, is considered for the case when the ratio, τ, of distance of separation to radius of the plates is greater than 2. The kernel of the integral equation is expanded into an infinite series in odd powers of 1/τ and an approximate kernel accurate to O(τ -(2N+1) ) is deduced therefrom by terminating the series after an arbitrary but finite number of terms, N. The approximate kernel is rearranged into a degenerate form and the integral equation with this kernel is reduced to a system of N linear equations. An explicit analytical solution is obtained for N = 4 and the resulting analytical expression for the capacity of the circular plate condenser is shown to be accurate to O(τ -9 ). Analytical expressions of lower orders of accuracy with respect to 1/τ are deduced from the four-term (i.e., N 4) solution and predictions (of capacity) from the expressions of different orders of accuracy (with respect to 1/τ) are compared with very accurate numerical solutions obtained by solving the linear system for large enough N. It is shown that the O(τ -9 ) approximation predicts the capacity extremely well for any τ ≥ 2 and an O(τ -3 ) approximation gives, for all practical purposes, results of adequate accuracy for τ ≥ 4. It is further shown that an approximate solution, applicable for the case of large distances of separation between the plates, due to Sneddon (Sneddon I N 1966 Mixed Boundary Value Problems in Potential Theory (Amsterdam: North-Holland) pp 230-46) is accurate to O(τ -6 ) for τ ≥ 2
Soft Plate and Impact Tectonics
Tikoff, Basil
In the field of tectonics, most of our ideas are published in journals. This is not true of other fields, such as history, in which ideas are primarily published in books. Within my own field of structural geology, I can recall only one book, Strain Fades by E. Hansen (Springer-Verlag, 1971), which presents a new idea in book form. However, even this book is more useful for its philosophical approach and particular methodology of determining directions of folding, than for its overarching idea.Enter Soft Plate and Impact Tectonics, a new book with an interesting hypothesis that has been informally discussed in the geoscience community: A fundamental tenet of plate tectonics is incorrect—namely, that the plates are rigid. This assertion is evident when looking at any mountain range, and is perhaps most clearly stated in Molnar [1988].
Polarized particles in storage rings
International Nuclear Information System (INIS)
Derbenev, Ya.S.; Kondratenko, A.M.; Serednyakov, S.I.; Skrinskij, A.N.; Tumajkin, G.M.; Shatunov, Yu.M.
1977-01-01
Experiments with polarized beams on the VEPP-2M and SPEAK storage rings are described. Possible methods of producing polarized particle beams in storage rings as well as method of polarization monitoring are counted. Considered are the processes of radiation polarization of electrons and positrons. It is shown, that to preserve radiation polarization the introduction of regions with a strong sign-variable magnetic field is recommended. Methods of polarization measurement are counted. It is suggested for high energies to use dependence of synchrotron radiation power on transverse polarization of electrons and positrons. Examples of using polarizability of colliding beams in storage rings are presented
Corrosion behaviour of nickel during anodic polarization in chloride solution
International Nuclear Information System (INIS)
Memon, S.A.; Isani, A.A.; Memon, A.N.
1998-01-01
This research presents the effect of oxygen and nitrogen on the corrosion behaviour of nickel in the chloride solution, at the steady state polarized and unpolarized potentials. The additives were selected from those, which are used for bright nickel plating. It was observed that the agitation of electrolyte in a particular pH-(Cl)' range increase the potentials in comparison of the potentials to the un-agitated electrolytes. (author)
Gentilly 2 divider plate replacement
International Nuclear Information System (INIS)
Forest, J.; Klisel, E.; McClellan, G.; Schnelder, W.
1995-01-01
The steam generators at the Gentilly 2 Nuclear Plant in operation since 1983 were built with primary divider plates of a bolted panel configuration. During a routine outage inspection, it was noted that two bolts had dislodged from the divider and were located lying in the primary head. Subsequent inspections revealed erosion damage to a substantial number of divider plate bolts and to a lesser extent, to the divider plate itself. After further inspection and repair the units were returned to operation, however, it was determined that a permanent replacement of the primary divider plates was going to be necessary. After evaluation of various options, it was decided that the panel type dividers would be replaced with a single piece floating design. The divider itself was to be of a one piece all-welded arrangement to be constructed from individual panels to be brought in through the manways. In view of the strength limitations of the bolted attachment of the upper seat bar to the tubesheet, a new welded seat bar was provided. To counteract erosion concerns, the new divider is fitted with erosion resistant inserts or weld buildup and with improved sealing features in order to minimize leakage and erosion. At an advanced stage in the design and manufacture of the components, the issue of divider strength during LOCA conditions came into focus. Analysis was performed to determine the strength and/or failure characteristics of the divider to a variety of small and large LOCA conditions. The paper describes the diagnosis of the original divider plates and the design, manufacture, field mobilization, installation and subsequent operation of the replacement divider plates. (author)
Polarized electrons at Jefferson laboratory
International Nuclear Information System (INIS)
Sinclair, C.K.
1998-01-01
The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously. Initial operational experience with the polarized source will be presented. copyright 1998 American Institute of Physics
Polarized Electrons at Jefferson Laboratory
Energy Technology Data Exchange (ETDEWEB)
Sinclair, C.K.
1997-12-31
The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously.initial operational experience with the polarized source will be presented.
Polarization: A Must for Fusion
Directory of Open Access Journals (Sweden)
Guidal M.
2012-10-01
Full Text Available Recent realistic simulations confirm that the polarization of the fuel would improve significantly the DT fusion efficiency. We have proposed an experiment to test the persistence of the polarization in a fusion process, using a terawatt laser hitting a polarized HD target. The polarized deuterons heated in the plasma induced by the laser can fuse producing a 3He and a neutron in the final state. The angular distribution of the neutrons and the change in the corresponding total cross section are related to the polarization persistence. The experimental polarization of DT fuel is a technological challenge. Possible paths for Magnetic Confinement Fusion (MCF and for Inertial Confinement Fusion (ICF are reviewed. For MCF, polarized gas can be used. For ICF, cryogenic targets are required. We consider both, the polarization of gas and the polarization of solid DT, emphasizing the Dynamic Nuclear polarization (DNP of HD and DT molecules.
Chaos control for the plates subjected to subsonic flow
Norouzi, Hamed; Younesian, Davood
2016-07-01
The suppression of chaotic motion in viscoelastic plates driven by external subsonic air flow is studied. Nonlinear oscillation of the plate is modeled by the von-Kármán plate theory. The fluid-solid interaction is taken into account. Galerkin's approach is employed to transform the partial differential equations of the system into the time domain. The corresponding homoclinic orbits of the unperturbed Hamiltonian system are obtained. In order to study the chaotic behavior of the plate, Melnikov's integral is analytically applied and the threshold of the excitation amplitude and frequency for the occurrence of chaos is presented. It is found that adding a parametric perturbation to the system in terms of an excitation with the same frequency of the external force can lead to eliminate chaos. Variations of the Lyapunov exponent and bifurcation diagrams are provided to analyze the chaotic and periodic responses. Two perturbation-based control strategies are proposed. In the first scenario, the amplitude of control forces reads a constant value that should be precisely determined. In the second strategy, this amplitude can be proportional to the deflection of the plate. The performance of each controller is investigated and it is found that the second scenario would be more efficient.
NATURAL TRANSVERSE VIBRATIONS OF A PRESTRESSED ORTHOTROPIC PLATE-STRIPE
Directory of Open Access Journals (Sweden)
Egorychev Oleg Aleksandrovich
2012-10-01
Full Text Available The article represents a new outlook at the boundary-value problem of natural vibrations of a homogeneous pre-stressed orthotropic plate-stripe. In the paper, the motion equation represents a new approximate hyperbolic equation (rather than a parabolic equation used in the majority of papers covering the same problem describing the vibration of a homogeneous orthotropic plate-stripe. The proposed research is based on newly derived boundary conditions describing the pin-edge, rigid, and elastic (vertical types of fixing, as well as the boundary conditions applicable to the unfixed edge of the plate. The paper contemplates the application of the Laplace transformation and a non-standard representation of a homogeneous differential equation with fixed factors. The article proposes a detailed representation of the problem of natural vibrations of a homogeneous orthotropic plate-stripe if rigidly fixed at opposite sides; besides, the article also provides frequency equations (no conclusions describing the plate characterized by the following boundary conditions: rigid fixing at one side and pin-edge fixing at the opposite side; pin-edge fixing at one side and free (unfixed other side; rigid fixing at one side and elastic fixing at the other side. The results described in the article may be helpful if applied in the construction sector whenever flat structural elements are considered. Moreover, specialists in solid mechanics and theory of elasticity may benefit from the ideas proposed in the article.
Model to Analyze Micro Circular Plate Subjected to Electrostatic Force
Directory of Open Access Journals (Sweden)
Cao Tian-Jie
2013-06-01
Full Text Available In this paper a distributed model with three possible static modes was presented to investigate the behavior of the plate subjected to electrostatic force and uniform hydrostatic pressure both before pull in and beyond pull in. The differential governing equation of the micro circular plate specifically used for numerical solution of the three modes, in which the singularity at the center of the micro plate did not occur, was presented based on the classical thin plate theory, Taylor's series expansion and Saint-Venant's principle. The numerical solution to the differential governing equation for the different mode was mainly attributed to solve for one unknown boundary condition and the applied voltage, which could be obtained by using a two-fold method of bisection based on the shooting method. The voltage ranges over which the three modes could exist and the points where transitions occurred between the modes were computed. Incorporating the above numerical solution to the applied voltage at the normal mode with some constrained optimization method, pull-in voltage and the corresponding pull-in position can automatically be obtained. In examples, the entire mechanical behavior of the circular plate over the operational voltage ranges was investigated and the effects of different parameters on pull-in voltage were studied. The obtained results were compared with the existing results and good agreement has been achieved.
International Nuclear Information System (INIS)
Yamazaki, Toshimitsu
1977-01-01
Experiments by using polarized muon beam are reported. The experiments were performed at Berkeley, U.S.A., and at Vancouver, Canada. The muon spin rotation is a useful method for the study of the spin polarization of conductive electrons in paramagnetic Pd metal. The muon Larmor frequency and the relaxation time can be obtained by measuring the time distribution of decay electrons of muon-electron process. The anomalous depolarization of negative muon spin rotation in the transitional metal was seen. The circular polarization of the negative muon X-ray was measured to make clear this phenomena. The experimental results show that the anomalous depolarization is caused at the 1-S-1/2 state. For the purpose to obtain the strong polarization of negative muon, a method of artificial polarization is proposed, and the test experiments are in progress. The study of the hyperfine structure of mu-mesic atoms is proposed. The muon capture rate was studied systematically. (Kato, T.)
International Nuclear Information System (INIS)
Tannenbaum, M.J.
1990-12-01
The Physics case is presented for the use of polarized protons at RHIC for one or two months each year. This would provide a facility with polarizations of approx-gt 50% high luminosity ∼2.0 x 10 32 cm -2 s -1 , the possibility of both longitudinal and transverse polarization at the interaction regions, and frequent polarization reversal for control of systematic errors. The annual integrated luminosity for such running (∼10 6 sec per year) would be ∫ Ldt = 2 x 10 38 cm -2 -- roughly 20 times the total luminosity integrated in ∼ 10 years of operation of the CERN Collider (∼10 inverse picobarns, 10 37 cm -2 ). This facility would be unique in the ability to perform parity-violating measurements and polarization test of QCD. Also, the existence of p-p collisions in a new energy range would permit the study of ''classical'' reactions like the total cross section and elastic scattering, etc., and serve as a complement to measurements from p-bar p colliders. 11 refs
International Nuclear Information System (INIS)
Reicherz, G.; Goertz, S.; Harmsen, J.; Heckmann, J.; Meier, A.; Meyer, W.; Radtke, E.
2001-01-01
The Bochum 'Polarized Target' group develops the target material 6 LiD for the COMPASS experiment at CERN. Several different materials like alcohols, alcanes and ammonia are under investigation. Solid State Targets are polarized in magnetic fields higher than B=2.5T and at temperatures below T=1K. For the Dynamic Nuclear Polarization process, paramagnetic centers are induced chemically or by irradiation with ionizing beams. The radical density is a critical factor for optimization of polarization and relaxation times at adequate magnetic fields and temperatures. In a high sensitive EPR--apparatus, an evaporator and a dilution cryostat with a continuous wave NMR--system, the materials are investigated and optimized. To improve the polarization measurement, the Liverpool NMR-box is modified by exchanging the fixed capacitor for a varicap diode which not only makes the tuning very easy but also provides a continuously tuned circuit. The dependence of the signal area upon the circuit current is measured and it is shown that it follows a linear function
[Research on Spectral Polarization Imaging System Based on Static Modulation].
Zhao, Hai-bo; Li, Huan; Lin, Xu-ling; Wang, Zheng
2015-04-01
The main disadvantages of traditional spectral polarization imaging system are: complex structure, with moving parts, low throughput. A novel method of spectral polarization imaging system is discussed, which is based on static polarization intensity modulation combined with Savart polariscope interference imaging. The imaging system can obtain real-time information of spectral and four Stokes polarization messages. Compared with the conventional methods, the advantages of the imaging system are compactness, low mass and no moving parts, no electrical control, no slit and big throughput. The system structure and the basic theory are introduced. The experimental system is established in the laboratory. The experimental system consists of reimaging optics, polarization intensity module, interference imaging module, and CCD data collecting and processing module. The spectral range is visible and near-infrared (480-950 nm). The white board and the plane toy are imaged by using the experimental system. The ability of obtaining spectral polarization imaging information is verified. The calibration system of static polarization modulation is set up. The statistical error of polarization degree detection is less than 5%. The validity and feasibility of the basic principle is proved by the experimental result. The spectral polarization data captured by the system can be applied to object identification, object classification and remote sensing detection.
Polarization-controlled asymmetric excitation of surface plasmons
Xu, Quan
2017-08-28
Free-space light can be coupled into propagating surface waves at a metal–dielectric interface, known as surface plasmons (SPs). This process has traditionally faced challenges in preserving the incident polarization information and controlling the directionality of the excited SPs. The recently reported polarization-controlled asymmetric excitation of SPs in metasurfaces has attracted much attention for its promise in developing innovative plasmonic devices. However, the unit elements in these works were purposely designed in certain orthogonal polarizations, i.e., linear or circular polarizations, resulting in limited two-level polarization controllability. Here, we introduce a coupled-mode theory to overcome this limit. We demonstrated theoretically and experimentally that, by utilizing the coupling effect between a pair of split-ring-shaped slit resonators, exotic asymmetric excitation of SPs can be obtained under the x-, y-, left-handed circular, and right-handed circular polarization incidences, while the polarization information of the incident light can be preserved in the excited SPs. The versatility of the presented design scheme would offer opportunities for polarization sensing and polarization-controlled plasmonic devices.
Spirit Near 'Stapledon' on Sol 1802 (Polar)
2009-01-01
NASA Mars Exploration Rover Spirit used its navigation camera for the images assembled into this full-circle view of the rover's surroundings during the 1,802nd Martian day, or sol, (January 26, 2009) of Spirit's mission on the surface of Mars. North is at the top. This view is presented as a polar projection with geometric seam correction. Spirit had driven down off the low plateau called 'Home Plate' on Sol 1782 (January 6, 2009) after spending 12 months on a north-facing slope on the northern edge of Home Plate. The position on the slope (at about the 9-o'clock position in this view) tilted Spirit's solar panels toward the sun, enabling the rover to generate enough electricity to survive its third Martian winter. Tracks at about the 11-o'clock position of this panorama can be seen leading back to that 'Winter Haven 3' site from the Sol 1802 position about 10 meters (33 feet) away. For scale, the distance between the parallel wheel tracks is about one meter (40 inches). Where the receding tracks bend to the left, a circular pattern resulted from Spirit turning in place at a soil target informally named 'Stapledon' after William Olaf Stapledon, a British philosopher and science-fiction author who lived from 1886 to 1950. Scientists on the rover team suspected that the soil in that area might have a high concentration of silica, resembling a high-silica soil patch discovered east of Home Plate in 2007. Bright material visible in the track furthest to the right was examined with Spirit's alpha partical X-ray spectrometer and found, indeed, to be rich in silica. The team laid plans to drive Spirit from this Sol 1802 location back up onto Home Plate, then southward for the rover's summer field season.
Yankovskii, A. P.
2018-01-01
On the basis of constitutive equations of the Rabotnov nonlinear hereditary theory of creep, the problem on the rheonomic flexural behavior of layered plates with a regular structure is formu-lated. Equations allowing one to describe, with different degrees of accuracy, the stress-strain state of such plates with account of their weakened resistance to transverse shear were ob-tained. From them, the relations of the nonclassical Reissner- and Reddytype theories can be found. For axially loaded annular plates clamped at one edge and loaded quasistatically on the other edge, a simplified version of the refined theory, whose complexity is comparable to that of the Reissner and Reddy theories, is developed. The flexural strains of such metal-composite annular plates in shortterm and long-term loadings at different levels of heat action are calcu-lated. It is shown that, for plates with a relative thickness of order of 1/10, neither the classical theory, nor the traditional nonclassical Reissner and Reddy theories guarantee reliable results for deflections even with the rough 10% accuracy. The accuracy of these theories decreases at elevated temperatures and with time under long-term loadings of structures. On the basic of relations of the refined theory, it is revealed that, in bending of layered metal-composite heat-sensitive plates under elevated temperatures, marked edge effects arise in the neighborhood of the supported edge, which characterize the shear of these structures in the transverse direction
International Nuclear Information System (INIS)
Liao Lin; Yu Wenbin
2008-01-01
The variational asymptotic method is used to construct a fully coupled Reissner–Mindlin model for piezoelectric composite plates with some surfaces parallel to the reference surface coated with electrodes. Taking advantage of the smallness of the plate thickness, we asymptotically split the original three-dimensional electromechanical problem into a one-dimensional through-the-thickness analysis and a two-dimensional plate analysis. The through-the-thickness analysis serves as a link between the original three-dimensional analysis and the plate analysis by providing a constitutive model for the plate analysis and recovering the three-dimensional field variables in terms of two-dimensional plate global responses. The present theory is implemented into the computer program VAPAS (variational asymptotic plate and shell analysis). The resulting model is as simple as an equivalent single-layer, first-order shear deformation theory with accuracy comparable to higher-order layerwise theories. Various numerical examples have been used to validate the present model
Directory of Open Access Journals (Sweden)
B. Attaf
2015-08-01
Full Text Available The present investigation aims to examine the influence of geometric ratios and fibre orientation on the natural frequencies of fibre-reinforced laminated composite plates using finite element method based on Yang’s theory and his collaborators. The transverse shear and rotatory inertia effects were taken into consideration in the developed Fortran computer program. It has been shown that the use of first-order displacement field provides the same accuracy as higher-order displacement field when the number of elements representing the plate structure is increased (refined mesh. However, poor precision may appear for plates with high thickness-to-side ratio h/a (thickness/side length. This discrepancy limits the application of the developed theory to thick plates (h/a<0.5. The various curves show the evolution of the dimensionless frequency (w* versus fibre orientation angle (q and illustrate the apparition of a “triple-point” phenomenon engendered by the increase of the plate aspect ratio a/b (length/width for a specific value of h/a. This point defines the maximum natural frequency and the associated fibre orientation. Also, results show that for high and/or low aspect ratios, the triple-point phenomenon does not occur. This latter is rapidly reached for thick plates than thin plates when the plate aspect ratio a/b is progressively increased.
International Nuclear Information System (INIS)
Clegg, T.B.; Rummel, R.L.; Carter, E.P.; Westerfeldt, C.R.; Lovette, A.W.; Edwards, S.E.
1985-01-01
The decision was made this past year to move the Lamb-shift polarized ion source which was first installed in the laboratory in 1970. The motivation was the need to improve the flexibility of spin-axis orientation by installing the ion source with a new Wien-filter spin precessor which is capable of rotating physically about the beam axis. The move of the polarized source was accomplished in approximately two months, with the accelerator being turned off for experiments during approximately four weeks of this time. The occasion of the move provided the opportunity to rewire completely the entire polarized ion source frame and to rebuild approximately half of the electronic chassis on the source. The result is an ion source which is now logically wired and carefully documented. Beams obtained from the source are much more stable than those previously available