WorldWideScience

Sample records for polar ozone loss

  1. Tracer-tracer relations as a tool for research on polar ozone loss

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Rolf

    2010-07-01

    The report includes the following chapters: (1) Introduction: ozone in the atmosphere, anthropogenic influence on the ozone layer, polar stratospheric ozone loss; (2) Tracer-tracer relations in the stratosphere: tracer-tracer relations as a tool in atmospheric research; impact of cosmic-ray-induced heterogeneous chemistry on polar ozone; (3) quantifying polar ozone loss from ozone-tracer relations: principles of tracer-tracer correlation techniques; reference ozone-tracer relations in the early polar vortex; impact of mixing on ozone-tracer relations in the polar vortex; impact of mesospheric intrusions on ozone-tracer relations in the stratospheric polar vortex calculation of chemical ozone loss in the arctic in March 2003 based on ILAS-II measurements; (4) epilogue.

  2. Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2)

    Science.gov (United States)

    Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2017-07-01

    The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs) and Earth system models (ESMs) to enable the simulation of mutual interactions between the ozone layer and climate. To date, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. Polar SWIFT is based on a set of coupled differential equations, which simulate the polar vortex-averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, chemically active chlorine (ClOx), HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the Polar SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex-averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at individual processes and an independent validation of the different parameterizations contained in the differential equations. The training of the original Polar SWIFT model was based on fitting complete model runs to satellite observations and did not allow for this. A revised formulation of the system of differential equations is developed, which closely fits vortex-averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the Polar SWIFT model are purely chemical rates of change in the new version, whereas in the original Polar SWIFT model, they included a transport effect caused by the

  3. Sensitivity of polar stratospheric ozone loss to uncertainties in chemical reaction kinetics

    Directory of Open Access Journals (Sweden)

    M. L. Santee

    2009-11-01

    Full Text Available The impact and significance of uncertainties in model calculations of stratospheric ozone loss resulting from known uncertainty in chemical kinetics parameters is evaluated in trajectory chemistry simulations for the Antarctic and Arctic polar vortices. The uncertainty in modeled ozone loss is derived from Monte Carlo scenario simulations varying the kinetic (reaction and photolysis rate parameters within their estimated uncertainty bounds. Simulations of a typical winter/spring Antarctic vortex scenario and Match scenarios in the Arctic produce large uncertainty in ozone loss rates and integrated seasonal loss. The simulations clearly indicate that the dominant source of model uncertainty in polar ozone loss is uncertainty in the Cl2O2 photolysis reaction, which arises from uncertainty in laboratory-measured molecular cross sections at atmospherically important wavelengths. This estimated uncertainty in JCl2O2 from laboratory measurements seriously hinders our ability to model polar ozone loss within useful quantitative error limits. Atmospheric observations, however, suggest that the Cl2O2 photolysis uncertainty may be less than that derived from the lab data. Comparisons to Match, South Pole ozonesonde, and Aura Microwave Limb Sounder (MLS data all show that the nominal recommended rate simulations agree with data within uncertainties when the Cl2O2 photolysis error is reduced by a factor of two, in line with previous in situ ClOx measurements. Comparisons to simulations using recent cross sections from Pope et al. (2007 are outside the constrained error bounds in each case. Other reactions producing significant sensitivity in polar ozone loss include BrO + ClO and its branching ratios. These uncertainties challenge our confidence in modeling polar ozone depletion and projecting future changes in response to changing halogen

  4. A closer look at Arctic ozone loss and polar stratospheric clouds

    Directory of Open Access Journals (Sweden)

    N. R. P. Harris

    2010-09-01

    Full Text Available The empirical relationship found between column-integrated Arctic ozone loss and the potential volume of polar stratospheric clouds inferred from meteorological analyses is recalculated in a self-consistent manner using the ERA Interim reanalyses. The relationship is found to hold at different altitudes as well as in the column. The use of a PSC formation threshold based on temperature dependent cold aerosol formation makes little difference to the original, empirical relationship. Analysis of the photochemistry leading to the ozone loss shows that activation is limited by the photolysis of nitric acid. This step produces nitrogen dioxide which is converted to chlorine nitrate which in turn reacts with hydrogen chloride on any polar stratospheric clouds to form active chlorine. The rate-limiting step is the photolysis of nitric acid: this occurs at the same rate every year and so the interannual variation in the ozone loss is caused by the extent and persistence of the polar stratospheric clouds. In early spring the ozone loss rate increases as the solar insolation increases the photolysis of the chlorine monoxide dimer in the near ultraviolet. However the length of the ozone loss period is determined by the photolysis of nitric acid which also occurs in the near ultraviolet. As a result of these compensating effects, the amount of the ozone loss is principally limited by the extent of original activation rather than its timing. In addition a number of factors, including the vertical changes in pressure and total inorganic chlorine as well as denitrification and renitrification, offset each other. As a result the extent of original activation is the most important factor influencing ozone loss. These results indicate that relatively simple parameterisations of Arctic ozone loss could be developed for use in coupled chemistry climate models.

  5. Technical Note: SWIFT - a fast semi-empirical model for polar stratospheric ozone loss

    Science.gov (United States)

    Rex, M.; Kremser, S.; Huck, P.; Bodeker, G.; Wohltmann, I.; Santee, M. L.; Bernath, P.

    2014-07-01

    An extremely fast model to estimate the degree of stratospheric ozone depletion during polar winters is described. It is based on a set of coupled differential equations that simulate the seasonal evolution of vortex-averaged hydrogen chloride (HCl), nitric acid (HNO3), chlorine nitrate (ClONO2), active forms of chlorine (ClOx = Cl + ClO + 2 ClOOCl) and ozone (O3) on isentropic levels within the polar vortices. Terms in these equations account for the chemical and physical processes driving the time rate of change of these species. Eight empirical fit coefficients associated with these terms are derived by iteratively fitting the equations to vortex-averaged satellite-based measurements of HCl, HNO3 and ClONO2 and observationally derived ozone loss rates. The system of differential equations is not stiff and can be solved with a time step of one day, allowing many years to be processed per second on a standard PC. The inputs required are the daily fractions of the vortex area covered by polar stratospheric clouds and the fractions of the vortex area exposed to sunlight. The resultant model, SWIFT (Semi-empirical Weighted Iterative Fit Technique), provides a fast yet accurate method to simulate ozone loss rates in polar regions. SWIFT's capabilities are demonstrated by comparing measured and modeled total ozone loss outside of the training period.

  6. Sensitivity of Polar Stratospheric Ozone Loss to Uncertainties in Chemical Reaction Kinetics

    Science.gov (United States)

    Kawa, S. Randolph; Stolarksi, Richard S.; Douglass, Anne R.; Newman, Paul A.

    2008-01-01

    Several recent observational and laboratory studies of processes involved in polar stratospheric ozone loss have prompted a reexamination of aspects of our understanding for this key indicator of global change. To a large extent, our confidence in understanding and projecting changes in polar and global ozone is based on our ability to simulate these processes in numerical models of chemistry and transport. The fidelity of the models is assessed in comparison with a wide range of observations. These models depend on laboratory-measured kinetic reaction rates and photolysis cross sections to simulate molecular interactions. A typical stratospheric chemistry mechanism has on the order of 50- 100 species undergoing over a hundred intermolecular reactions and several tens of photolysis reactions. The rates of all of these reactions are subject to uncertainty, some substantial. Given the complexity of the models, however, it is difficult to quantify uncertainties in many aspects of system. In this study we use a simple box-model scenario for Antarctic ozone to estimate the uncertainty in loss attributable to known reaction kinetic uncertainties. Following the method of earlier work, rates and uncertainties from the latest laboratory evaluations are applied in random combinations. We determine the key reactions and rates contributing the largest potential errors and compare the results to observations to evaluate which combinations are consistent with atmospheric data. Implications for our theoretical and practical understanding of polar ozone loss will be assessed.

  7. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Science.gov (United States)

    Meraner, Katharina; Schmidt, Hauke

    2018-01-01

    Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP) causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10-15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM). Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  8. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Directory of Open Access Journals (Sweden)

    K. Meraner

    2018-01-01

    Full Text Available Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10–15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM. Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  9. Chemical ozone losses in Arctic and Antarctic polar winter/spring season derived from SCIAMACHY limb measurements 2002–2009

    Directory of Open Access Journals (Sweden)

    T. Sonkaew

    2013-02-01

    Full Text Available Stratospheric ozone profiles are retrieved for the period 2002–2009 from SCIAMACHY measurements of limb-scattered solar radiation in the Hartley and Chappuis absorption bands of ozone. This data set is used to determine the chemical ozone losses in both the Arctic and Antarctic polar vortices by averaging the ozone in the vortex at a given potential temperature. The chemical ozone losses at isentropic levels between 450 K and 600 K are derived from the difference between observed ozone abundances and the ozone modelled taking diabatic cooling into account, but no chemical ozone loss. Chemical ozone losses of up to 30–40% between mid-January and the end of March inside the Arctic polar vortex are reported. Strong inter-annual variability of the Arctic ozone loss is observed, with the cold winters 2004/2005 and 2006/2007 showing chemical ozone losses inside the polar vortex at 475 K, where 1.7 ppmv and 1.4 ppmv of ozone were removed, respectively, over the period from 22 January to beginning of April and 0.9 ppmv and 1.2 ppmv, respectively, during February. For the winters of 2007/2008 and 2002/2003, ozone losses of about 0.8 ppmv and 0.4 ppmv, respectively are estimated at the 475 K isentropic level for the period from 22 January to beginning of April. Essentially no ozone losses were diagnosed for the relatively warm winters of 2003/2004 and 2005/2006. The maximum ozone loss in the SCIAMACHY data set was found in 2007 at the 600 K level and amounted to about 2.1 ppmv for the period between 22 January and the end of April. Enhanced losses close to this altitude were found in all investigated Arctic springs, in contrast to Antarctic spring. The inter-annual variability of ozone losses and PSC occurrence rates observed during Arctic spring is consistent with the known QBO effects on the Arctic polar vortex, with exception of the unusual Arctic winter 2008/2009.

    The maximum total ozone mass loss of about 25 million tons was found in the

  10. An overview of the combined second sage iii ozone loss and validation experiment (solve-ii) and the validations of international ozone loss - european polar stratospheric cloud and lee wave experiment (vintersol-euplex)

    Science.gov (United States)

    Newman, P.; Stroh, F.; Solve-Ii / Vintersol-Euplex Science Teams

    2003-04-01

    The SOLVE II/VINTERSOL-EUPLEX Field mission was an international field campaign designed to investigate polar ozone loss, polar stratospheric clouds, processes that lead to ozone loss, the dynamics of the polar stratosphere, and to acquire correlative data needed to validate satellite measurements of the polar stratosphere. The campaign was staged over the course of the winter of 2002-2003. Measurements were made from both aircraft (the NASA DC-8, the DLR Falcon, and the Russian M55 Geophysica), ozonesondes and other balloon payloads, ground-based instruments, and satellites. In particular SOLVE-II was designed to validate the Meteor-3M/Stratospheric Aerosol and Gas Experiment (SAGE) III satellite mission. In this presentation we will review the overall objectives of the combined campaigns, discuss some of the broad observations of the winter of 2002-2003, and highlight the major findings of this campaign.

  11. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    OpenAIRE

    Meraner, Katharina; Schmidt, Hauke

    2018-01-01

    Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP) causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Str...

  12. The potential for ozone depletion in the Arctic polar stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Brune, W.H. (Pennsylvania State Univ., University Park (United States)); Anderson, J.G.; Toohey, D.W. (Harvard Univ., Cambridge, MA (United States)); Fahey, D.W.; Kawa, S.R. (National Oceanic and Atmospheric Administration, Boulder, CO (United States)); Jones, R.L. (Univ. of Cambridge (England)); McKenna, D.S. (United Kingdom Meteorological Office, Berkshire (England)); Poole, L.R. (NASA Langley Research Center, Hampton, VA (United States))

    1991-05-31

    The nature of the Arctic polar stratosphere is observed to be similar in many respects to that of the Antarctic polar stratosphere, where an ozone hole has been identified. most of the available chlorine (HCl and ClONO{sub 2}) was converted by reactions on polar stratospheric clouds to reactive ClO and Cl{sub 2}O{sub 2} throughout the Arctic polar vortex before midwinter. Reactive nitrogen was converted to HNO{sub 3}, and some, with spatial inhomogeneity, fell out of the stratosphere. These chemical changes ensured characteristic ozone losses of 10 to 15% at altitudes inside the polar vortex where polar stratospheric clouds had occurred. These local losses can translate into 5 to 8% losses in the vertical column abundance of ozone. As the amount of stratospheric chlorine inevitably increases by 50% over the next two decades, ozone losses recognizable as an ozone hole may well appear.

  13. Summertime total ozone variations over middle and polar latitudes

    OpenAIRE

    Fioletov, Vitali E.; Shepherd, Theodore G.

    2005-01-01

    The statistical relationship between springtime and summertime ozone over middle and polar latitudes is analyzed using zonally averaged total ozone data. Shortterm variations in springtime midlatitude ozone demonstrate only a modest correlation with springtime polar ozone variations. However by early summer, ozone variations throughout the extratropics are highly correlated. Analysis of correlation functions indicates that springtime midlatitude ozone, not polar ozone, is the best predictor f...

  14. Stratospheric Ozone: Transport, Photochemical Production and Loss

    Science.gov (United States)

    Douglass, A. R.; Kawa, S. R.; Jackman, C. H.

    2003-01-01

    Observations from various satellite instruments (e.g., Total Ozone Mapping Spectrometer (TOMS), Halogen Occultation Experiment (HALOE), Microwave Limb Sounder (MLS)) specify the latitude and seasonal variations of total ozone and ozone as a function of altitude. These seasonal variations change with latitude and altitude partly due to seasonal variation in transport and temperature, partly due to differences in the balance between photochemical production and loss processes, and partly due to differences in the relative importance of the various ozone loss processes. Comparisons of modeled seasonal ozone behavior with observations test the following: the seasonal dependence of dynamical processes where these dominate the ozone tendency; the seasonal dependence of photochemical processes in the upper stratosphere; and the seasonal change in the balance between photochemical and dynamical processes.

  15. Stratospheric solar geoengineering without ozone loss?

    Science.gov (United States)

    Keutsch, F. N.; Keith, D.; Weisenstein, D.; Dykema, J. A.

    2016-12-01

    Injecting sulfate aerosol into the stratosphere, a form of solar geoengineering, may reduce some climate risks, but it also entails new risks including ozone loss and heating of the lower tropical stratosphere which in turn increases water vapor concentration causing additional ozone loss and surface warming. Selection of a solid aerosol such as alumina or diamond for geoengineering purposes was found to minimize stratospheric heating for a given shortwave forcing, though ozone depletion via heterogeneous surface activation remains a potential problem. Here we investigate the use of solid aerosols composed of alkaline metal salts whose surfaces would convert halogens, nitric and sulfuric acid into stable salts, reducing the ozone depletion potential of these ubiquitous stratospheric substances and preventing heterogeneous activation on the geoengineering particles. Specifically, injection of calcite (CaCO3) aerosol might reduce net radiative forcing while simultaneously increasing column ozone towards its pre-anthropogenic baseline. A radiative forcing of -1 Wm-2, for example, might be achieved with a simultaneous 3.8% increase in column ozone using 2.1 Tg yr-1 of 275 nm radius calcite aerosol with ten-fold less radiative heating compared to sulfate aerosol. Geoengineering injection of reactive alkali metal salts in combination with another high refractive index material may also enable solar geoengineering with lower risk than with sulfates.

  16. Stratospheric solar geoengineering without ozone loss

    Science.gov (United States)

    Keith, David W.; Weisenstein, Debra K.; Dykema, John A.; Keutsch, Frank N.

    2016-12-01

    Injecting sulfate aerosol into the stratosphere, the most frequently analyzed proposal for solar geoengineering, may reduce some climate risks, but it would also entail new risks, including ozone loss and heating of the lower tropical stratosphere, which, in turn, would increase water vapor concentration causing additional ozone loss and surface warming. We propose a method for stratospheric aerosol climate modification that uses a solid aerosol composed of alkaline metal salts that will convert hydrogen halides and nitric and sulfuric acids into stable salts to enable stratospheric geoengineering while reducing or reversing ozone depletion. Rather than minimizing reactive effects by reducing surface area using high refractive index materials, this method tailors the chemical reactivity. Specifically, we calculate that injection of calcite (CaCO3) aerosol particles might reduce net radiative forcing while simultaneously increasing column ozone toward its preanthropogenic baseline. A radiative forcing of -1 Wṡm-2, for example, might be achieved with a simultaneous 3.8% increase in column ozone using 2.1 Tgṡy-1 of 275-nm radius calcite aerosol. Moreover, the radiative heating of the lower stratosphere would be roughly 10-fold less than if that same radiative forcing had been produced using sulfate aerosol. Although solar geoengineering cannot substitute for emissions cuts, it may supplement them by reducing some of the risks of climate change. Further research on this and similar methods could lead to reductions in risks and improved efficacy of solar geoengineering methods.

  17. Design of a vehicle based system to prevent ozone loss

    Science.gov (United States)

    Lynn, Sean R.; Bunker, Deborah; Hesbach, Thomas D., Jr.; Howerton, Everett B.; Hreinsson, G.; Mistr, E. Kirk; Palmer, Matthew E.; Rogers, Claiborne; Tischler, Dayna S.; Wrona, Daniel J.

    1993-01-01

    Reduced quantities of ozone in the atmosphere allow greater levels of ultraviolet light (UV) radiation to reach the earth's surface. This is known to cause skin cancer and mutations. Chlorine liberated from Chlorofluorocarbons (CFC's) and natural sources initiate the destruction of stratospheric ozone through a free radical chain reaction. The project goals are to understand the processes which contribute to stratospheric ozone loss, examine ways to prevent ozone loss, and design a vehicle-based system to carry out the prevention scheme. The 1992/1993 design objectives were to accomplish the first two goals and define the requirements for an implementation vehicle to be designed in detail starting next year. Many different ozone intervention schemes have been proposed though few have been researched and none have been tested. A scheme proposed by R.J. Cicerone, Scott Elliot and R.P.Turco late in 1991 was selected because of its research support and economic feasibility. This scheme uses hydrocarbon injected into the Antarctic ozone hole to form stable compounds with free chlorine, thus reducing ozone depletion. Because most polar ozone depletion takes place during a 3-4 week period each year, the hydrocarbon must be injected during this time window. A study of the hydrocarbon injection requirements determined that 100 aircraft traveling Mach 2.4 at a maximum altitude of 66,000 ft. would provide the most economic approach to preventing ozone loss. Each aircraft would require an 8,000 nm. range and be able to carry 35,000 lbs. of propane. The propane would be stored in a three-tank high pressure system. Missions would be based from airport regions located in South America and Australia. To best provide the requirements of mission analysis, an aircraft with L/D(sub cruise) = 10.5, SFC = 0.65 (the faculty advisor suggested that this number is too low) and a 250,000 lb TOGW was selected as a baseline. Modularity and multi-role functionality were selected to be key

  18. The sensitivity of polar ozone depletion to proposed geoengineering schemes.

    Science.gov (United States)

    Tilmes, Simone; Müller, Rolf; Salawitch, Ross

    2008-05-30

    The large burden of sulfate aerosols injected into the stratosphere by the eruption of Mount Pinatubo in 1991 cooled Earth and enhanced the destruction of polar ozone in the subsequent few years. The continuous injection of sulfur into the stratosphere has been suggested as a "geoengineering" scheme to counteract global warming. We use an empirical relationship between ozone depletion and chlorine activation to estimate how this approach might influence polar ozone. An injection of sulfur large enough to compensate for surface warming caused by the doubling of atmospheric CO2 would strongly increase the extent of Arctic ozone depletion during the present century for cold winters and would cause a considerable delay, between 30 and 70 years, in the expected recovery of the Antarctic ozone hole.

  19. Reconciliation of Halogen-Induced Ozone Loss with the Total-Column Ozone Record

    Science.gov (United States)

    Shepherd, T. G.; Plummer, D. A.; Scinocca, J. F.; Hegglin, M. I.; Fioletov, V. E.; Reader, M. C.; Remsberg, E.; von Clarmann, T.; Wang, H. J.

    2014-01-01

    The observed depletion of the ozone layer from the 1980s onwards is attributed to halogen source gases emitted by human activities. However, the precision of this attribution is complicated by year-to-year variations in meteorology, that is, dynamical variability, and by changes in tropospheric ozone concentrations. As such, key aspects of the total-column ozone record, which combines changes in both tropospheric and stratospheric ozone, remain unexplained, such as the apparent absence of a decline in total-column ozone levels before 1980, and of any long-term decline in total-column ozone levels in the tropics. Here we use a chemistry-climate model to estimate changes in halogen-induced ozone loss between 1960 and 2010; the model is constrained by observed meteorology to remove the eects of dynamical variability, and driven by emissions of tropospheric ozone precursors to separate out changes in tropospheric ozone. We show that halogen-induced ozone loss closely followed stratospheric halogen loading over the studied period. Pronounced enhancements in ozone loss were apparent in both hemispheres following the volcanic eruptions of El Chichon and, in particular, Mount Pinatubo, which significantly enhanced stratospheric aerosol loads. We further show that approximately 40% of the long-term non-volcanic ozone loss occurred before 1980, and that long-term ozone loss also occurred in the tropical stratosphere. Finally, we show that halogeninduced ozone loss has declined by over 10% since stratospheric halogen loading peaked in the late 1990s, indicating that the recovery of the ozone layer is well underway.

  20. An Investigation of Polar Ozone Recovery in the 1997 Southern Hemisphere Spring

    Science.gov (United States)

    Pierson, J. M.; Douglass, A. R.; Kawa, S. R.; Newman, P. A.

    2000-01-01

    A chemical transport model is used to investigate the processes that control the depth and duration of the ozone 'hole' in the lower stratosphere through comparisons of model output with measurements from the Total Ozone Mapping Spectrometer (TOMS) and from the Microwave Limb Sounder (MLS) and Halogen Occultation Experiment (HALOE), both on the Upper Atmosphere Research Satellite (UARS). This study extends previous model comparisons with observations into October and November and examine levels in (greater than 31 hPa) and above (less than 31 hPa) the chemical loss region. Averages of column ozone in the model decrease through mid-October below 31 hPa but begin to increase in mid-September above 31 hPa. An investigation of model-tracer data comparisons and other meteorological parameters indicate that the model presents a consistent picture of top-down recovery and tracer transport. An O03budget study at 500 K (below 31 hPa) and 840 K (above 31 hPa) is carried out to investigate the processes that control the timing of the transition of ozone from a chemical to dynamically driven regime. The model ozone decrease at 500 K is due to chemical loss in August and September but is due to upward motion in October. The ozone increase at 840 K is primarily due to photochemical production, with a smaller contribution from transport. These results show that chemistry and dynamics can play different roles in polar vortex ozone recovery at different levels.

  1. An Overview of the Second SAGE III Ozone Loss and Validation Experiment (SOLVE-II)

    Science.gov (United States)

    Newman, P. A.

    2003-12-01

    The SOLVE II Field mission was a field campaign designed to investigate polar ozone loss, polar stratospheric clouds, processes that lead to ozone loss, the dynamics of the polar stratosphere, and to acquire correlative data needed to validate satellite measurements of the polar stratosphere. The campaign was closely coordinated with VINTERSOL-EUPLEX campaigns. This combined international campaign was staged over the course of the winter of 2002-2003. SOLVE-II measurements were made from the NASA DC-8 aircraft, ozonesondes and other balloon payloads, ground-based instruments, and satellites. In particular SOLVE-II was designed to validate the Meteor-3M/Stratospheric Aerosol and Gas Experiment (SAGE) III satellite mission. We will review the overall objectives of the combined campaigns, discuss some of the broad observations of the winter of 2002-2003, and highlight the major findings of this campaign.

  2. Tropospheric ozone variations in polar regions; Troposphaerische Ozonvariationen in Polarregionen

    Energy Technology Data Exchange (ETDEWEB)

    Wessel, S.

    1997-08-01

    An extensive analysis for the description of chemical and dynamical processes during tropospheric ozone minima in the Arctic and Antarctic was carried out in this work. One main task was the analysis of the source regions of tropospheric ozone destruction and the following transport of ozone depleted air masses to the measuring site. Furtheron the ozone destruction mechanism itself should be examined as well as the efficiency of heterogeneous reactions for the regeneration of non-reative bromine compounds, which seems to be necessary because bromine may be the key component in the destruction of tropospheric ozone in polar regions. (orig./KW) [Deutsch] In der vorliegenden Arbeit wurde eine umfangreiche Analyse zur Beschreibung der chemischen und dynamischen Prozesse waehrend troposphaerischer Ozonminima in der Arktis und Antarktis durchgefuehrt. Ziel war es, die Quellregion des Ozonabbaus sowie den ausloesenden ozonabbauenden Mechanismus zu benennen, die Effizienz heterogener Reaktionen zur Regenerierung nichtreaktiver Bromverbindungen waehrend des Ozonabbaus zu ermitteln und den Transport der ozonarmen Luftmassen zum Messort zu untersuchen. (orig./KW)

  3. Ozone production and losses in N2/O2 mixtures in an ozone generator

    Science.gov (United States)

    Mankelevich, Yu. A.; Poroykov, A. Yu.; Rakhimova, T. V.; Voloshin, D. G.; Chukalovskii, A. A.; Zosimov, A. V.; Lunin, V. V.; Samoilovich, V. G.

    2016-09-01

    Nonunique ozone concentrations at the output of an ozone generator under identical external conditions of barrier discharge activation of N2/O2 mixtures but with different prehistories of operating practice and employed gas mixtures are investigated theoretically. An analytical approach is developed to determine the ozone yield with regard for its heterogeneous loss. Plasma-chemical and electron kinetics in the N2/O2-mixtures are calculated numerically. The results of numerical calculations are compared to experimental data obtained by the authors. It is noted that the heterogeneous loss of ozone is the probable reason for the observed variety of behavior of O3 concentrations, depending on prehistory of ozone generator operation, along with the N2 and O2 gas flow rates and the specific active power.

  4. Efforts to reduce stratospheric ozone loss affect agriculture

    International Nuclear Information System (INIS)

    Weare, B.C.

    1995-01-01

    Research has shown that the increased ultraviolet radiation reaching the Earth's surface resulting from stratospheric ozone loss poses a danger to everyone. Concern about ozone loss prompted many nations to ratify the Montreal Protocol, the most comprehensive international environmental agreement ever enacted. Several provisions of this protocol will have substantial, long-term effects on the agricultural industry. Agriculture contributes substantially to ozone depletion, primarily through its use of chlorofluorocarbons (CFCs) for refrigeration in processing, storage and transport of meats and produce. This paper is meant to serve as an overview of the scientific basis for ozone depletion concerns, a description of the current international policy agreement, and the possible consequences of that policy for agriculture. (author)

  5. Ozone Induced Premature Mortality and Crop Yield Loss in China

    Science.gov (United States)

    Lin, Y.; Jiang, F.; Wang, H.

    2017-12-01

    Exposure to ambient ozone is a major risk factor for health impacts such as chronic obstructive pulmonary disease (COPD) and cause damage to plant and agricultural crops. But these impacts were usually evaluated separately in earlier studies. We apply Community Multi-scale Air Quality model to simulate the ambient O3 concentration at a resolution of 36 km×36 km across China. Then, we follow Global Burden of Diseases approach and AOT40 (i.e., above a threshold of 40 ppb) metric to estimate the premature mortalities and yield losses of major grain crops (i.e., winter wheat, rice and corn) across China due to surface ozone exposure, respectively. Our results show that ozone exposure leads to nearly 67,700 premature mortalities and 145 billion USD losses in 2014. The ozone induced yield losses of all crop production totaled 78 (49.9-112.6)million metric tons, worth 5.3 (3.4-7.6)billion USD, in China. The relative yield losses ranged from 8.5-14% for winter wheat, 3.9-15% for rice, and 2.2-5.5% for maize. We can see that the top four health affected provinces (Sichuan, Henan, Shandong, Jiangsu) are also ranking on the winter wheat and rice crop yield loss. Our results provide further evidence that surface ozone pollution is becoming urgent air pollution in China, and have important policy implications for China to alleviate the impacts of air pollution.

  6. Mass Loss Rates of Fasting Polar Bears.

    Science.gov (United States)

    Pilfold, Nicholas W; Hedman, Daryll; Stirling, Ian; Derocher, Andrew E; Lunn, Nicholas J; Richardson, Evan

    2016-01-01

    Polar bears (Ursus maritimus) have adapted to an annual cyclic regime of feeding and fasting, which is extreme in seasonal sea ice regions of the Arctic. As a consequence of climate change, sea ice breakup has become earlier and the duration of the open-water period through which polar bears must rely on fat reserves has increased. To date, there is limited empirical data with which to evaluate the potential energetic capacity of polar bears to withstand longer fasts. We measured the incoming and outgoing mass of inactive polar bears (n = 142) that were temporarily detained by Manitoba Conservation and Water Stewardship during the open-water period near the town of Churchill, Manitoba, Canada, in 2009-2014. Polar bears were given access to water but not food and held for a median length of 17 d. Median mass loss rates were 1.0 kg/d, while median mass-specific loss rates were 0.5%/d, similar to other species with high adiposity and prolonged fasting capacities. Mass loss by unfed captive adult males was identical to that lost by free-ranging individuals, suggesting that terrestrial feeding contributes little to offset mass loss. The inferred metabolic rate was comparable to a basal mammalian rate, suggesting that while on land, polar bears can maintain a depressed metabolic rate to conserve energy. Finally, we estimated time to starvation for subadults and adult males for the on-land period. Results suggest that at 180 d of fasting, 56%-63% of subadults and 18%-24% of adult males in this study would die of starvation. Results corroborate previous assessments on the limits of polar bear capacity to withstand lengthening ice-free seasons and emphasize the greater sensitivity of subadults to changes in sea ice phenology.

  7. The major stratospheric final warming in 2016: dispersal of vortex air and termination of Arctic chemical ozone loss

    Directory of Open Access Journals (Sweden)

    G. L. Manney

    2016-12-01

    Full Text Available The 2015/16 Northern Hemisphere winter stratosphere appeared to have the greatest potential yet seen for record Arctic ozone loss. Temperatures in the Arctic lower stratosphere were at record lows from December 2015 through early February 2016, with an unprecedented period of temperatures below ice polar stratospheric cloud thresholds. Trace gas measurements from the Aura Microwave Limb Sounder (MLS show that exceptional denitrification and dehydration, as well as extensive chlorine activation, occurred throughout the polar vortex. Ozone decreases in 2015/16 began earlier and proceeded more rapidly than those in 2010/11, a winter that saw unprecedented Arctic ozone loss. However, on 5–6 March 2016 a major final sudden stratospheric warming ("major final warming", MFW began. By mid-March, the mid-stratospheric vortex split after being displaced far off the pole. The resulting offspring vortices decayed rapidly preceding the full breakdown of the vortex by early April. In the lower stratosphere, the period of temperatures low enough for chlorine activation ended nearly a month earlier than that in 2011 because of the MFW. Ozone loss rates were thus kept in check because there was less sunlight during the cold period. Although the winter mean volume of air in which chemical ozone loss could occur was as large as that in 2010/11, observed ozone values did not drop to the persistently low values reached in 2011.We use MLS trace gas measurements, as well as mixing and polar vortex diagnostics based on meteorological fields, to show how the timing and intensity of the MFW and its impact on transport and mixing halted chemical ozone loss. Our detailed characterization of the polar vortex breakdown includes investigations of individual offspring vortices and the origins and fate of air within them. Comparisons of mixing diagnostics with lower-stratospheric N2O and middle-stratospheric CO from MLS (long-lived tracers show rapid vortex erosion and

  8. Denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter

    Science.gov (United States)

    Khosrawi, Farahnaz; Kirner, Oliver; Sinnhuber, Björn-Martin; Johansson, Sören; Höpfner, Michael; Santee, Michelle L.; Froidevaux, Lucien; Ungermann, Jörn; Ruhnke, Roland; Woiwode, Wolfgang; Oelhaf, Hermann; Braesicke, Peter

    2017-11-01

    The 2015/2016 Arctic winter was one of the coldest stratospheric winters in recent years. A stable vortex formed by early December and the early winter was exceptionally cold. Cold pool temperatures dropped below the nitric acid trihydrate (NAT) existence temperature of about 195 K, thus allowing polar stratospheric clouds (PSCs) to form. The low temperatures in the polar stratosphere persisted until early March, allowing chlorine activation and catalytic ozone destruction. Satellite observations indicate that sedimentation of PSC particles led to denitrification as well as dehydration of stratospheric layers. Model simulations of the 2015/2016 Arctic winter nudged toward European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the Polar Stratosphere in a Changing Climate (POLSTRACC) campaign. POLSTRACC is a High Altitude and Long Range Research Aircraft (HALO) mission aimed at the investigation of the structure, composition and evolution of the Arctic upper troposphere and lower stratosphere (UTLS). The chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, PSCs and cirrus clouds are investigated. In this study, an overview of the chemistry and dynamics of the 2015/2016 Arctic winter as simulated with EMAC is given. Further, chemical-dynamical processes such as denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter are investigated. Comparisons to satellite observations by the Aura Microwave Limb Sounder (Aura/MLS) as well as to airborne measurements with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) performed aboard HALO during the POLSTRACC campaign show that the EMAC simulations nudged toward ECMWF analysis generally agree well with observations. We derive a maximum polar stratospheric O3 loss of

  9. Denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter

    Directory of Open Access Journals (Sweden)

    F. Khosrawi

    2017-11-01

    Full Text Available The 2015/2016 Arctic winter was one of the coldest stratospheric winters in recent years. A stable vortex formed by early December and the early winter was exceptionally cold. Cold pool temperatures dropped below the nitric acid trihydrate (NAT existence temperature of about 195 K, thus allowing polar stratospheric clouds (PSCs to form. The low temperatures in the polar stratosphere persisted until early March, allowing chlorine activation and catalytic ozone destruction. Satellite observations indicate that sedimentation of PSC particles led to denitrification as well as dehydration of stratospheric layers. Model simulations of the 2015/2016 Arctic winter nudged toward European Centre for Medium-Range Weather Forecasts (ECMWF analysis data were performed with the atmospheric chemistry–climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC for the Polar Stratosphere in a Changing Climate (POLSTRACC campaign. POLSTRACC is a High Altitude and Long Range Research Aircraft (HALO mission aimed at the investigation of the structure, composition and evolution of the Arctic upper troposphere and lower stratosphere (UTLS. The chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, PSCs and cirrus clouds are investigated. In this study, an overview of the chemistry and dynamics of the 2015/2016 Arctic winter as simulated with EMAC is given. Further, chemical–dynamical processes such as denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter are investigated. Comparisons to satellite observations by the Aura Microwave Limb Sounder (Aura/MLS as well as to airborne measurements with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA performed aboard HALO during the POLSTRACC campaign show that the EMAC simulations nudged toward ECMWF analysis generally agree well with observations. We derive a maximum polar

  10. Mechanisms of impact of greenhouse gases on the Earth's ozone layer in the Polar Regions

    Science.gov (United States)

    Zadorozhny, Alexander; Dyominov, Igor

    A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the atmosphere including aerosol physics is used to examine the impact of the greenhouse gases CO2, CH4, and N2O on the future long-term changes of the Earth's ozone layer, in particular on its expected recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circu-lation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the North to South Poles, as well as distribution of sulphate aerosol particles and polar strato-spheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abun-dance of the greenhouse gases on the long-term changes of the Earth's ozone layer in the Polar Regions, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2, essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weak-ness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification be-gins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard

  11. As polar ozone mends, UV shield closer to equator thins

    Science.gov (United States)

    Reese, April

    2018-02-01

    Thirty years after nations banded together to phase out chemicals that destroy stratospheric ozone, the gaping hole in Earth's ultraviolet radiation shield above Antarctica is shrinking. But new findings suggest that at midlatitudes, where most people live, the ozone layer in the lower stratosphere is growing more tenuous—for reasons that scientists are struggling to fathom. In an analysis published this week, researchers found that from 1998 to 2016, ozone in the lower stratosphere ebbed by 2.2 Dobson units—a measure of ozone thickness—even as concentrations in the upper stratosphere rose by about 0.8 Dobson units. The culprit may be ozone-eating chemicals such as dichloromethane that break down within 6 months after escaping into the air.

  12. Dependence of model-simulated response to ozone depletion on stratospheric polar vortex climatology

    Science.gov (United States)

    Lin, Pu; Paynter, David; Polvani, Lorenzo; Correa, Gustavo J. P.; Ming, Yi; Ramaswamy, V.

    2017-06-01

    We contrast the responses to ozone depletion in two climate models: Community Atmospheric Model version 3 (CAM3) and Geophysical Fuild Dynamics Laboratory (GFDL) AM3. Although both models are forced with identical ozone concentration changes, the stratospheric cooling simulated in CAM3 is 30% stronger than in AM3 in annual mean, and twice as strong in December. We find that this difference originates from the dynamical response to ozone depletion, and its strength can be linked to the timing of the climatological springtime polar vortex breakdown. This mechanism is further supported by a variant of the AM3 simulation in which the southern stratospheric zonal wind climatology is nudged to be CAM3-like. Given that the delayed breakdown of the southern polar vortex is a common bias among many climate models, previous model-based assessments of the forced responses to ozone depletion may have been somewhat overestimated.

  13. Transport-driven formation of a polar ozone layer on Mars

    Science.gov (United States)

    Montmessin, Franck; Lefèvre, Franck

    2013-11-01

    Since the seasonal and spatial distribution of ozone on Mars was detected by the ultraviolet spectrometer onboard the spacecraft Mariner 7, our understanding has evolved considerably thanks to parallel efforts in observations and modelling. At low-to-mid latitudes, martian ozone is distributed vertically in two main layers, a near-surface layer and a layer at an altitude between 30 and 60km (ref. ). Here we report evidence from the SPICAM UV spectrometer onboard the Mars Express orbiter for the existence of a previously overlooked ozone layer that emerges in the southern polar night at 40-60km in altitude, with no counterpart observed at the north pole. Comparisons with global climate simulations for Mars indicate that this layer forms as a result of the large-scale transport of oxygen-rich air from sunlit latitudes to the poles, where the oxygen atoms recombine to form ozone during the polar night. However, transport-driven ozone formation is counteracted in our simulations by the destruction of ozone by reactions with hydrogen radicals, whose concentrations vary seasonally on Mars, reflecting seasonal variations of water vapour. We conclude that the observed dichotomy between the ozone layers of the two poles, with a significantly richer layer in the southern hemisphere, can be explained by the interplay of these mechanisms.

  14. Evolution of microwave limb sounder ozone and the polar vortex during winter

    Science.gov (United States)

    Manney, G. L.; Froidevaux, L.; Waters, J. W.; Zurek, R. W.

    1995-01-01

    The evolution of polar ozone observed by the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) is described for the northern hemisphere (NH) winters of 1991/1992, 1992/1993, and 1993/1994 and the southern hemisphere (SH) winters of 1992 and 1993. Imterannual and interhemispheric variability in polar ozone evolution are closely related to differences in the polar vortex and to the frequency, duration and strength of stratospheric sudden warmings. Ozone in the midstratospheric vortices increases during the winter, with largest increases associated with stratospheric warmings and a much larger increase in the NH than in the SH. A smaller NH increase was observed in 1993/1994, when the middle stratospheric vortex was stronger. During strong stratospheric warmings in the NH, the upper stratospheric vortex may be so much eroded that it presents little barrier to poleward transport; in contrast, the SH vortex remains strong throughout the stratosphere during wintertime warmings, and ozone increases only below the mixing ratio peak, due to enhanced diabatic descent. Ozone mixing ratios decrease rapidly in the lower stratosphere in both SH late winters, as expected from chemical destruction due to enhanced reactive chlorine. The interplay between dynamics and chemistry is more complex in the NH lower stratosphere and interannual variability is greater. Evidence has previously been shown for chemical ozone destruction in the 1991/1992 and 1992/1993 winters. We show here evidence suggesting some chemical destruction in late February and early March 1994. In the NH late winter lower stratosphere the pattern of high-ozone values (typical of the vortex) seen in mid-latitudes is related to the strength of the lower-stratospheric vortex, with the largest areal extent of high ozone outside the vortex in 1994, when the lower stratospheric vortex is relatively weak, and the least extent in 1993 when the lower stratospheric vortex is strongest.

  15. Quantifying Chemical Ozone Loss in the Arctic Stratosphere with GEOS-STRATCHEM Data Assimilation System

    Science.gov (United States)

    Wargan, K.; Nielsen, J. E.

    2017-01-01

    A faithful representation of polar stratospheric chemistry in models and its connection with dynamical variability is essential for our understanding of the evolution of the ozone layer in a changing climate and during the projected continuing decline of ozone depleting substances in the atmosphere. We use a new configuration of the Goddard Earth Observing System Data Assimilation System with a stratospheric chemistry model to study ozone depletion in the Arctic polar stratosphere during the exceptionally cold (in the stratosphere) winters 2015/2016 and 2010/2011.

  16. The breakup of the Southern Hemisphere spring polar ozone and temperature minimums from 1979 to 1987

    Science.gov (United States)

    Newman, Paul A.; Schoeberl, Mark R.

    1988-01-01

    The purpose of this study is to quantify the observations of the polar vortex breakup. The data used in this study consist of Total Ozone Mapping Spectrometer (TOMS) data, and National Meteorological Center (NMC) analyses. The final warming is diagnosed using the difference between zonal means at 80 degrees and 50 degrees S for temperature, ozone, and layer mean temperature. The polar vortex breakup can also be diagnosed by the onset of weak zonal mean zonal winds (i.e., u, overbar denotes a zonal average) at 60 degrees S. Computations of the polar vortex breakdown date using NMC meteorological data and TOMS total ozone data indicate that the breakdown is occurring later in the spring in the lowest portion of the stratosphere. At altitudes above 100 mb, the large interannual variance of the breakdown date renders any trend determination of the breakdown date difficult. Individual plots of TOMS total ozone indicate that the total ozone minimum remains intact for a longer period of time than is observed in earlier years.

  17. A quantitative analysis of the reactions involved in stratospheric ozone depletion in the polar vortex core

    Science.gov (United States)

    Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2017-09-01

    We present a quantitative analysis of the chemical reactions involved in polar ozone depletion in the stratosphere and of the relevant reaction pathways and cycles. While the reactions involved in polar ozone depletion are well known, quantitative estimates of the importance of individual reactions or reaction cycles are rare. In particular, there is no comprehensive and quantitative study of the reaction rates and cycles averaged over the polar vortex under conditions of heterogeneous chemistry so far. We show time series of reaction rates averaged over the core of the polar vortex in winter and spring for all relevant reactions and indicate which reaction pathways and cycles are responsible for the vortex-averaged net change of the key species involved in ozone depletion, i.e., ozone, chlorine species (ClOx, HCl, ClONO2), bromine species, nitrogen species (HNO3, NOx) and hydrogen species (HOx). For clarity, we focus on one Arctic winter (2004-2005) and one Antarctic winter (2006) in a layer in the lower stratosphere around 54 hPa and show results for additional pressure levels and winters in the Supplement. Mixing ratios and reaction rates are obtained from runs of the ATLAS Lagrangian chemistry and transport model (CTM) driven by the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis data. An emphasis is put on the partitioning of the relevant chemical families (nitrogen, hydrogen, chlorine, bromine and odd oxygen) and activation and deactivation of chlorine.

  18. A quantitative analysis of the reactions involved in stratospheric ozone depletion in the polar vortex core

    Directory of Open Access Journals (Sweden)

    I. Wohltmann

    2017-09-01

    Full Text Available We present a quantitative analysis of the chemical reactions involved in polar ozone depletion in the stratosphere and of the relevant reaction pathways and cycles. While the reactions involved in polar ozone depletion are well known, quantitative estimates of the importance of individual reactions or reaction cycles are rare. In particular, there is no comprehensive and quantitative study of the reaction rates and cycles averaged over the polar vortex under conditions of heterogeneous chemistry so far. We show time series of reaction rates averaged over the core of the polar vortex in winter and spring for all relevant reactions and indicate which reaction pathways and cycles are responsible for the vortex-averaged net change of the key species involved in ozone depletion, i.e., ozone, chlorine species (ClOx, HCl, ClONO2, bromine species, nitrogen species (HNO3, NOx and hydrogen species (HOx. For clarity, we focus on one Arctic winter (2004–2005 and one Antarctic winter (2006 in a layer in the lower stratosphere around 54 hPa and show results for additional pressure levels and winters in the Supplement. Mixing ratios and reaction rates are obtained from runs of the ATLAS Lagrangian chemistry and transport model (CTM driven by the European Centre for Medium-Range Weather Forecasts (ECMWF ERA-Interim reanalysis data. An emphasis is put on the partitioning of the relevant chemical families (nitrogen, hydrogen, chlorine, bromine and odd oxygen and activation and deactivation of chlorine.

  19. An Estimation of the Climatic Effects of Stratospheric Ozone Losses during the 1980s. Appendix K

    Science.gov (United States)

    MacKay, Robert M.; Ko, Malcolm K. W.; Shia, Run-Lie; Yang, Yajaing; Zhou, Shuntai; Molnar, Gyula

    1997-01-01

    In order to study the potential climatic effects of the ozone hole more directly and to assess the validity of previous lower resolution model results, the latest high spatial resolution version of the Atmospheric and Environmental Research, Inc., seasonal radiative dynamical climate model is used to simulate the climatic effects of ozone changes relative to the other greenhouse gases. The steady-state climatic effect of a sustained decrease in lower stratospheric ozone, similar in magnitude to the observed 1979-90 decrease, is estimated by comparing three steady-state climate simulations: 1) 1979 greenhouse gas concentrations and 1979 ozone, II) 1990 greenhouse gas concentrations with 1979 ozone, and III) 1990 greenhouse gas concentrations with 1990 ozone. The simulated increase in surface air temperature resulting from nonozone greenhouse gases is 0.272 K. When changes in lower stratospheric ozone are included, the greenhouse warming is 0.165 K, which is approximately 39% lower than when ozone is fixed at the 1979 concentrations. Ozone perturbations at high latitudes result in a cooling of the surface-troposphere system that is greater (by a factor of 2.8) than that estimated from the change in radiative forcing resulting from ozone depiction and the model's 2 x CO, climate sensitivity. The results suggest that changes in meridional heat transport from low to high latitudes combined with the decrease in the infrared opacity of the lower stratosphere are very important in determining the steady-state response to high latitude ozone losses. The 39% compensation in greenhouse warming resulting from lower stratospheric ozone losses is also larger than the 28% compensation simulated previously by the lower resolution model. The higher resolution model is able to resolve the high latitude features of the assumed ozone perturbation, which are important in determining the overall climate sensitivity to these perturbations.

  20. Observing the Impact of Calbuco Volcanic Aerosols on South Polar Ozone Depletion in 2015

    Science.gov (United States)

    Stone, Kane A.; Solomon, Susan; Kinnison, Doug E.; Pitts, Michael C.; Poole, Lamont R.; Mills, Michael J.; Schmidt, Anja; Neely, Ryan R.; Ivy, Diane; Schwartz, Michael J.; Vernier, Jean-Paul; Johnson, Bryan J.; Tully, Matthew B.; Klekociuk, Andrew R.; König-Langlo, Gert; Hagiya, Satoshi

    2017-11-01

    The Southern Hemisphere Antarctic stratosphere experienced two noteworthy events in 2015: a significant injection of sulfur from the Calbuco volcanic eruption in Chile in April and a record-large Antarctic ozone hole in October and November. Here we quantify Calbuco's influence on stratospheric ozone depletion in austral spring 2015 using observations and an Earth system model. We analyze ozonesondes, as well as data from the Microwave Limb Sounder. We employ the Community Earth System Model, version 1, with the Whole Atmosphere Community Climate Model (WACCM) in a specified dynamics setup, which includes calculations of volcanic effects. The Cloud-Aerosol Lidar with Orthogonal Polarization data indicate enhanced volcanic liquid sulfate 532 nm backscatter values as far poleward as 68°S during October and November (in broad agreement with WACCM). Comparison of the location of the enhanced aerosols to ozone data supports the view that aerosols played a major role in increasing the ozone hole size, especially at pressure levels between 150 and 100 hPa. Ozonesonde vertical ozone profiles from the sites of Syowa, South Pole, and Neumayer display the lowest individual October or November measurements at 150 hPa since the 1991 Mount Pinatubo eruption period, with Davis showing similarly low values, but no available 1990 data. The analysis suggests that under the cold conditions ideal for ozone depletion, stratospheric volcanic aerosol particles from the moderate-magnitude eruption of Calbuco in 2015 greatly enhanced austral ozone depletion, particularly at 55-68°S, where liquid binary sulfate aerosols have a large influence on ozone concentrations.

  1. Polar Mesospheric Clouds (PMCs) Observed by the Ozone Monitoring Instrument (OMI) on Aura

    Science.gov (United States)

    DeLand, Matthew T.; Shettle, Eric P.; Levelt, Pieternel F.; Kowalewski, Matthew G.

    2010-01-01

    Backscattered ultraviolet (BUV) instruments designed for measuring stratospheric ozone profiles have proven to be robust tools for observing polar mesospheric clouds (PMCs). These measurements are available for more than 30 years, and have been used to demonstrate the existence of long-term variations in PMC occurrence frequency and brightness. The Ozone Monitoring Instrument (OMI) on the EOS Aura satellite provides new and improved capabilities for PMC characterization. OMI uses smaller pixels than previous BUV instruments, which increases its ability to identify PMCs and discern more spatial structure, and its wide cross-track viewing swath provides full polar coverage up to 90 latitude every day in both hemispheres. This cross-track coverage allows the evolution of PMC regions to be followed over several consecutive orbits. Localized PMC variations determined from OMI measurements are consistent with coincident SBUV/2 measurements. Nine seasons of PMC observations from OMI are now available, and clearly demonstrate the advantages of these measurements for PMC analysis.

  2. The role of chlorine chemistry in Antarctic ozone loss - Implications of new kinetic data

    Science.gov (United States)

    Rodriguez, Jose M.; Ko, Malcolm K. W.; Sze, Nien Dak

    1990-01-01

    New kinetic data yielding a slower formation rate and larger absorption cross sections of Cl2O2 are incorporated into a photochemical model to reassess the role of chlorine chemistry in accounting for the ozone reductions derived from TOMS observations in different regions of the Antarctic polar vortex during 1987. The model is further constrained by existing measurements from the Airborne Antarctic Ozone Experiment and the National Ozone Expedition II. Calculated concentrations of ClO based on the new kinetic data increase by almost a factor of two between the collar and core regions of the vortex during the second half of September. The calculated ozone reductions in the vortex core appear to be consistent with the TOMS observations in spite of the slower rate for the self-reaction of ClO.

  3. Free Radicals and Reactive Intermediates for the SAGE III Ozone Loss and Validation Experiment (SOLVE) Mission

    Science.gov (United States)

    Anderson, James G.

    2001-01-01

    This grant provided partial support for participation in the SAGE III Ozone Loss and Validation Experiment. The NASA-sponsored SOLVE mission was conducted Jointly with the European Commission-sponsored Third European Stratospheric Experiment on Ozone (THESEO 2000). Researchers examined processes that control ozone amounts at mid to high latitudes during the arctic winter and acquired correlative data needed to validate the Stratospheric Aerosol and Gas Experiment (SAGE) III satellite measurements that are used to quantitatively assess high-latitude ozone loss. The campaign began in September 1999 with intercomparison flights out of NASA Dryden Flight Research Center in Edwards. CA. and continued through March 2000. with midwinter deployments out of Kiruna. Sweden. SOLVE was co-sponsored by the Upper Atmosphere Research Program (UARP). Atmospheric Effects of Aviation Project (AEAP). Atmospheric Chemistry Modeling and Analysis Program (ACMAP). and Earth Observing System (EOS) of NASA's Earth Science Enterprise (ESE) as part of the validation program for the SAGE III instrument.

  4. Snow-sourced bromine and its implications for polar tropospheric ozone

    Directory of Open Access Journals (Sweden)

    X. Yang

    2010-08-01

    Full Text Available In the last two decades, significant depletion of boundary layer ozone (ozone depletion events, ODEs has been observed in both Arctic and Antarctic spring. ODEs are attributed to catalytic destruction by bromine radicals (Br plus BrO, especially during bromine explosion events (BEs, when high concentrations of BrO periodically occur. However, neither the exact source of bromine nor the mechanism for sustaining the observed high BrO concentrations is completely understood. Here, by considering the production of sea salt aerosol from snow lying on sea ice during blowing snow events and the subsequent release of bromine, we successfully simulate the BEs using a global chemistry transport model. We find that heterogeneous reactions play an important role in sustaining a high fraction of the total inorganic bromine as BrO. We also find that emissions of bromine associated with blowing snow contribute significantly to BrO at mid-latitudes. Modeled tropospheric BrO columns generally compare well with the tropospheric BrO columns retrieved from the GOME satellite instrument (Global Ozone Monitoring Experiment. The additional blowing snow bromine source, identified here, reduces modeled high latitude lower tropospheric ozone amounts by up to an average 8% in polar spring.

  5. Halogens and their role in polar boundary-layer ozone depletion

    Directory of Open Access Journals (Sweden)

    W. R. Simpson

    2007-08-01

    Full Text Available During springtime in the polar regions, unique photochemistry converts inert halide salt ions (e.g. Br into reactive halogen species (e.g. Br atoms and BrO that deplete ozone in the boundary layer to near zero levels. Since their discovery in the late 1980s, research on ozone depletion events (ODEs has made great advances; however many key processes remain poorly understood. In this article we review the history, chemistry, dependence on environmental conditions, and impacts of ODEs. This research has shown the central role of bromine photochemistry, but how salts are transported from the ocean and are oxidized to become reactive halogen species in the air is still not fully understood. Halogens other than bromine (chlorine and iodine are also activated through incompletely understood mechanisms that are probably coupled to bromine chemistry. The main consequence of halogen activation is chemical destruction of ozone, which removes the primary precursor of atmospheric oxidation, and generation of reactive halogen atoms/oxides that become the primary oxidizing species. The different reactivity of halogens as compared to OH and ozone has broad impacts on atmospheric chemistry, including near complete removal and deposition of mercury, alteration of oxidation fates for organic gases, and export of bromine into the free troposphere. Recent changes in the climate of the Arctic and state of the Arctic sea ice cover are likely to have strong effects on halogen activation and ODEs; however, more research is needed to make meaningful predictions of these changes.

  6. The photodissociation dynamics of ozone at 193 nm: An O(D-1(2)) angular momentum polarization study

    NARCIS (Netherlands)

    Brouard, M.; Cireasa, D.R.; Clark, A.P.; Groenenboom, G.C.; Hancock, G.; Horrocks, S.J.; Quadrini, F.; Ritchie, G.A.D.; Vallance, C.

    2006-01-01

    Polarized laser photolysis, coupled with resonantly enhanced multiphoton ionization detection of O(D-1(2)) and velocity-map ion imaging, has been used to investigate the photodissociation dynamics of ozone at 193 nm. The use of multiple pump and probe laser polarization geometries and probe

  7. Role of the boundary layer in the occurrence and termination of the tropospheric ozone depletion events in polar spring

    Science.gov (United States)

    Cao, Le; Platt, Ulrich; Gutheil, Eva

    2016-05-01

    Tropospheric ozone depletion events (ODEs) in the polar spring are frequently observed in a stable boundary layer condition, and the end of the events occurs when there is a breakup of the boundary layer. In order to improve the understanding of the role of the boundary layer in the ozone depletion event, a one-dimensional model is developed, focusing on the occurrence and the termination period of the ozone depletion episode. A module accounting for the vertical air transport is added to a previous box model, and a first-order parameterization is used for the estimation of the vertical distribution of the turbulent diffusivity. Simulations are performed for different strengths of temperature inversion as well as for different wind speeds. The simulation results suggest that the reactive bromine species released from the underlying surface into the lowest part of the troposphere initially stay in the boundary layer, leading to an increase of the bromine concentration. This bromine accumulation causes the ozone destruction below the top of the boundary layer. After the ozone is totally depleted, if the temperature inversion intensity decreases or the wind speed increases, the severe ozone depletion event tends to transit into a partial ozone depletion event or it recovers to the normal ozone background level of 30-40 ppb. This recovery process takes about 2 h. Due to the presence of high-level HBr left from the initial occurrence of ODEs, the complete removal of ozone in the boundary layer is achieved a few days after the first termination of ODE. The time required for the recurrence of the ozone depletion in a 1000 m boundary layer is approximately 5 days, while the initial occurrence of the complete ozone consumption takes 15 days. The present model is suitable to clarify the reason for both the start and the termination of the severe ozone depletion as well as the partial ozone depletion in the observations.

  8. Depletion of stratospheric ozone over the Antarctic and Arctic : Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview

    NARCIS (Netherlands)

    Rozema, Jelte; Boelen, Peter; Blokker, Peter

    2005-01-01

    Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to

  9. Depletion of stratospheric ozone over the Antarctic and Arctic: Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview.

    NARCIS (Netherlands)

    Rozema, J.; Boelen, P.; Blokker, P.

    2005-01-01

    Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to

  10. Sources of reactive bromine in polar regions and its implications for ozone in the troposphere

    Science.gov (United States)

    Griffiths, Paul; Archibald, Alex; Yang, Xin; Pyle, John

    2014-05-01

    In the last two decades, significant depletion of boundary layer ozone (ozone depletion events, ODEs) has been observed in both Arctic and Antarctic spring. ODEs are attributed to catalytic destruction by bromine radicals (Br plus BrO), especially during bromine explosion events, when high concentrations of BrO periodically occur. The source of bromine and the mechanism that sustains the high BrO levels are still the subject of study, and there remains scope for improving our understanding of reactive bromine budgets in polar regions. Yang et al. (2008) suggested snow could provide a source of (depleted) sea-salt aerosol if blown from the surface of ice, while recent work by Pratt et al. (2013) posits Br2 production within saline snow and sea ice. In this poster, we consider the production of sea-salt aerosol from a mixture of snow and sea ice during periods of strong wind. We use a combination of box models and the United Kingdom Chemistry and Aerosols scheme, run as a component of the UK Met Office Unified Model, to quantify the effect of bromine release in the boundary layer and its effect on ozone at the regional scale. The importance of heterogeneous reactions is quantified and new data from the recent Polarstern cruise by members of the British Antarctic Survey as part of the NERC-funded BLOWSEA project will be considered.

  11. The role of Br2 and BrCl in surface ozone destruction at polar sunrise.

    Science.gov (United States)

    Foster, K L; Plastridge, R A; Bottenheim, J W; Shepson, P B; Finlayson-Pitts, B J; Spicer, C W

    2001-01-19

    Bromine atoms are believed to play a central role in the depletion of surface-level ozone in the Arctic at polar sunrise. Br2, BrCl, and HOBr have been hypothesized as bromine atom precursors, and there is evidence for chlorine atom precursors as well, but these species have not been measured directly. We report here measurements of Br2, BrCl, and Cl2 made using atmospheric pressure chemical ionization-mass spectrometry at Alert, Nunavut, Canada. In addition to Br2 at mixing ratios up to approximately 25 parts per trillion, BrCl was found at levels as high as approximately 35 parts per trillion. Molecular chlorine was not observed, implying that BrCl is the dominant source of chlorine atoms during polar sunrise, consistent with recent modeling studies. Similar formation of bromine compounds and tropospheric ozone destruction may also occur at mid-latitudes but may not be as apparent owing to more efficient mixing in the boundary layer.

  12. The place of hyperbaric oxygen therapy and ozone therapy in sudden hearing loss

    Directory of Open Access Journals (Sweden)

    Gülin Ergun Taşdöven

    Full Text Available Abstract Introduction: It is difficult to evaluate the effect of drugs clinically used for idiopathic sudden sensorineural hearing loss, mainly because its underlying mechanism remains unknown. Objective: This study assessed the efficacy of hyperbaric oxygen therapy or ozone therapy in the treatment of idiopathic sudden sensorineural hearing loss, when either therapy was included with steroid treatment. Methods: A retrospective analysis examined 106 patients with idiopathic sudden sensorineural hearing loss seen between January 2010 and June 2012. Those with an identified etiology were excluded. The patients were divided into three treatment groups: oral steroid only (n = 65, oral steroid + hyperbaric oxygen (n = 26, and oral steroid + ozone (n = 17. Treatment success was assessed using Siegel criteria and mean gains using pre- and post-treatment audiograms. Results: The highest response rate to treatment was observed in the oral steroid + ozone therapy group (82.4%, followed by the oral steroid + hyperbaric oxygen (61.5%, and oral steroid groups (50.8%. There were no significant differences in the response to treatment between the oral steroid and oral steroid + hyperbaric oxygen groups (p < 0.355. The oral steroid + ozone group showed a significantly higher response rate to treatment than the oral steroid group (p = 0.019. There were no significant differences between the oral steroid + hyperbaric oxygen and oral steroid + ozone groups (p = 0.146. Conclusion: The efficiency of steroid treatment in patients with severe hearing loss was low. It was statistically ascertained that adding hyperbaric oxygen or ozone therapy to the treatment contributed significantly to treatment success.

  13. The place of hyperbaric oxygen therapy and ozone therapy in sudden hearing loss.

    Science.gov (United States)

    Ergun Taşdöven, Gülin; Derin, Alper Tunga; Yaprak, Neslihan; Özçağlar, Hasan Ümit

    It is difficult to evaluate the effect of drugs clinically used for idiopathic sudden sensorineural hearing loss, mainly because its underlying mechanism remains unknown. This study assessed the efficacy of hyperbaric oxygen therapy or ozone therapy in the treatment of idiopathic sudden sensorineural hearing loss, when either therapy was included with steroid treatment. A retrospective analysis examined 106 patients with idiopathic sudden sensorineural hearing loss seen between January 2010 and June 2012. Those with an identified etiology were excluded. The patients were divided into three treatment groups: oral steroid only (n=65), oral steroid+hyperbaric oxygen (n=26), and oral steroid+ozone (n=17). Treatment success was assessed using Siegel criteria and mean gains using pre- and post-treatment audiograms. The highest response rate to treatment was observed in the oral steroid+ozone therapy group (82.4%), followed by the oral steroid+hyperbaric oxygen (61.5%), and oral steroid groups (50.8%). There were no significant differences in the response to treatment between the oral steroid and oral steroid+hyperbaric oxygen groups (phearing loss was low. It was statistically ascertained that adding hyperbaric oxygen or ozone therapy to the treatment contributed significantly to treatment success. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  14. NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002-2010

    Science.gov (United States)

    Sinnhuber, Miriam; Berger, Uwe; Funke, Bernd; Nieder, Holger; Reddmann, Thomas; Stiller, Gabriele; Versick, Stefan; von Clarmann, Thomas; Maik Wissing, Jan

    2018-01-01

    winter, ranging from 10-50 % during solar maximum to 2-10 % during solar minimum. Ozone loss continues throughout polar summer after strong solar proton events in the Southern Hemisphere and after large sudden stratospheric warmings in the Northern Hemisphere. During mid-winter, the ozone loss causes a reduction of the infrared radiative cooling, i.e., a positive change of the net radiative heating (effective warming), in agreement with analyses of geomagnetic forcing in stratospheric temperatures which show a warming in the late winter upper stratosphere. In late winter and spring, the sign of the net radiative heating change turns to negative (effective cooling). This spring-time cooling lasts well into summer and continues until the following autumn after large solar proton events in the Southern Hemisphere, and after sudden stratospheric warmings in the Northern Hemisphere.

  15. Numerical analysis of the chemical kinetic mechanisms of ozone depletion and halogen release in the polar troposphere

    Science.gov (United States)

    Cao, L.; Sihler, H.; Platt, U.; Gutheil, E.

    2014-04-01

    The role of halogen species (e.g., Br, Cl) in the troposphere of polar regions has been investigated since the discovery of their importance for boundary layer ozone destruction in the polar spring about 25 years ago. Halogen species take part in an auto-catalytic chemical reaction cycle, which releases Br2 and BrCl from the sea salt aerosols, fresh sea ice or snowpack, leading to ozone depletion. In this study, three different chemical reaction schemes are investigated: a bromine-only reaction scheme, which then is subsequently extended to include nitrogen-containing compounds and chlorine species and corresponding chemical reactions. The importance of specific reactions and their rate constants is identified by a sensitivity analysis. The heterogeneous reaction rates are parameterized by considering the aerodynamic resistance, a reactive surface ratio, β, i.e., the ratio of reactive surface area to total ground surface area, and the boundary layer height, Lmix. It is found that for β = 1, a substantial ozone decrease occurs after five days and ozone depletion lasts for 40 h for Lmix = 200 m. For about β ≥ 20, the time required for major ozone depletion ([O3] layer, and for β = 100 it approaches two days, 28 h of which are attributable to the induction and 20 h to the depletion time. In polar regions, a small amount of NOx may exist, which stems from nitrate contained in the snow, and may have a strong impact on the ozone depletion. Therefore, the role of nitrogen-containing species on the ozone depletion rate is studied. The results show that the NOx concentrations are influenced by different chemical reactions over different time periods. During ozone depletion, the reaction cycle involving the BrONO2 hydrolysis is dominant. A critical value of 0.0004 of the uptake coefficient of the BrONO2 hydrolysis reaction at the aerosol and saline surfaces is identified, beyond which the existence of NOx species accelerates the ozone depletion event, whereas for lower

  16. A One-Dimensional Model Study of the Occurrence and the Termination of Polar Boundary-Layer Ozone Depletion Events

    Science.gov (United States)

    Cao, Le; Gutheil, Eva

    2015-04-01

    The tropospheric ozone depletion events (ODEs) in polar spring have attracted increased attention in the last thirty years. A dramatic decline of the surface ozone mixing ratio from tens of parts per billion (ppb) to less than one ppb within a few days is observed in various observation sites in polar regions. Previous studies suggest that the halogen species, especially bromine, acts as a catalyst in a chemical reaction cycle, which causes the destruction of ozone in the polar boundary layer. Moreover, a group of heterogeneous reactions with the involvement of HOBr occur on the surface of different substrates such as suspended aerosols and sea ice, leading to the activation of bromide from these substrates, and a following enhancement of the total bromine amount in the boundary layer occurs. This phenomenon is widely known as the 'bromine explosion' mechanism. However, the initiation and the termination steps of the ODEs are still not well understood. In the present study, a one-dimensional model, KINAL-T, is developed with the aim of investigating the role of the boundary layer in the occurrence and the termination of the ODEs. The 1-D model is an extension of the previous box model study1, explicitly including the vertical convection of gas. The parameterization of the vertical profile of the turbulent diffusivity from Pielke and Mahrer (1975)2 is adopted. Moreover, in the 1-D model, a bromine-related reaction scheme taken from Cao et al. (2014)1 is used, in which not only the gas phase but also the heterogeneous reactions are implemented. The simulation results show that the tropospheric ozone depletion event in a 200 m boundary layer starts after 12 days under the condition of a potential temperature gradient of 0.7 K km-1 and a wind speed of 5 m s-1. The whole depletion process of ozone takes approximately 2.5 days. The vertical profiles of ozone and bromine-containing compounds at different days are also captured. Instead of preventing the ozone from the

  17. Lidar Atmopheric Sensing Experiment (LASE) Data Obtained During the SAGE III Ozone Loss and Validation Experiment (SOLVE)

    Data.gov (United States)

    National Aeronautics and Space Administration — LASE_SOLVE data are Lidar Atmospheric Sensing Experiment water vapor and aerosol data measurements taken during SAGE III Ozone Loss and Validation Experiment...

  18. A laboratory study of the UV Absorption Spectrum of the ClO Dimer (Cl2O2) and the Implications for Polar Stratospheric Ozone Depletion

    Science.gov (United States)

    Papanastasiou, D. K.; Papadimitriou, V. C.; Fahey, D. W.; Burkholder, J. B.

    2009-12-01

    Chlorine containing species play an important role in catalytic ozone depleting cycles in the Antarctic and Arctic stratosphere. The ClO dimer (Cl2O2) catalytic ozone destruction cycle accounts for the majority of the observed polar ozone loss. A key step in this catalytic cycle is the UV photolysis of Cl2O2. The determination of the Cl2O2 UV absorption spectrum has been the subject of several studies since the late 1980’s. Recently, Pope et al. (J. Phys. Chem. A, 111, 4322, 2007) reported significantly lower absorption cross sections for Cl2O2 for the atmospherically relevant wavelength region, >300 nm, than currently recommended for use in atmospheric models. If correct, the Pope et al. results would alter our understanding of the chemistry of polar ozone depletion significantly. In this study, the UV absorption spectrum and absolute cross sections of gas-phase Cl2O2 are reported for the wavelength range 200 - 420 nm at ~200 K. Sequential pulsed laser photolysis of various precursors were used to produce the ClO radical and Cl2O2 via the subsequent ClO + ClO + M reaction under static conditions. UV absorption spectra of the reaction mixture were measured using a diode array spectrometer after completion of the gas-phase radical chemistry. The spectral analysis utilized the observed isosbestic points, reaction stoichiometry, and chlorine mass balance to determine the UV spectrum and absolute cross section of Cl2O2. A complementary experimental technique similar to that used by Pope et al. was also used in this study. We obtained consistent Cl2O2 UV absorption spectra using the two different techniques. The Cl2O2 absorption cross sections for wavelengths in the 300 - 420 nm range were found to be in very good agreement with the values reported previously by Burkholder et al. (J. Phys. Chem. A, 94, 687, 1990) and significantly greater than the Pope et al. values in this atmospherically important wavelength region. A possible explanation for the disagreement with

  19. A study of polar ozone depletion based on sequential assimilation of satellite data from the ENVISAT/MIPAS and Odin/SMR instruments

    Directory of Open Access Journals (Sweden)

    J. D. Rösevall

    2007-01-01

    Full Text Available The objective of this study is to demonstrate how polar ozone depletion can be mapped and quantified by assimilating ozone data from satellites into the wind driven transport model DIAMOND, (Dynamical Isentropic Assimilation Model for OdiN Data. By assimilating a large set of satellite data into a transport model, ozone fields can be built up that are less noisy than the individual satellite ozone profiles. The transported fields can subsequently be compared to later sets of incoming satellite data so that the rates and geographical distribution of ozone depletion can be determined. By tracing the amounts of solar irradiation received by different air parcels in a transport model it is furthermore possible to study the photolytic reactions that destroy ozone. In this study, destruction of ozone that took place in the Antarctic winter of 2003 and in the Arctic winter of 2002/2003 have been examined by assimilating ozone data from the ENVISAT/MIPAS and Odin/SMR satellite-instruments. Large scale depletion of ozone was observed in the Antarctic polar vortex of 2003 when sunlight returned after the polar night. By mid October ENVISAT/MIPAS data indicate vortex ozone depletion in the ranges 80–100% and 70–90% on the 425 and 475 K potential temperature levels respectively while the Odin/SMR data indicates depletion in the ranges 70–90% and 50–70%. The discrepancy between the two instruments has been attributed to systematic errors in the Odin/SMR data. Assimilated fields of ENVISAT/MIPAS data indicate ozone depletion in the range 10–20% on the 475 K potential temperature level, (~19 km altitude, in the central regions of the 2002/2003 Arctic polar vortex. Assimilated fields of Odin/SMR data on the other hand indicate ozone depletion in the range 20–30%.

  20. Randomised, double-blinded, placebo-controlled, clinical trial of ozone therapy as treatment of sudden sensorineural hearing loss.

    Science.gov (United States)

    Ragab, A; Shreef, E; Behiry, E; Zalat, S; Noaman, M

    2009-01-01

    To investigate the safety and efficacy of ozone therapy in adult patients with sudden sensorineural hearing loss. Prospective, randomised, double-blinded, placebo-controlled, parallel group, clinical trial. Forty-five adult patients presented with sudden sensorineural hearing loss, and were randomly allocated to receive either placebo (15 patients) or ozone therapy (auto-haemotherapy; 30 patients). For the latter treatment, 100 ml of the patient's blood was treated immediately with a 1:1 volume, gaseous mixture of oxygen and ozone (from an ozone generator) and re-injected into the patient by intravenous infusion. Treatments were administered twice weekly for 10 sessions. The following data were recorded: pre- and post-treatment mean hearing gains; air and bone pure tone averages; speech reception thresholds; speech discrimination scores; and subjective recovery rates. Significant recovery was observed in 23 patients (77 per cent) receiving ozone treatment, compared with six (40 per cent) patients receiving placebo (p ozone-treated patients compared with placebo-treated patients (p Ozone therapy is a significant modality for treatment of sudden sensorineural hearing loss; no complications were observed.

  1. The role of ozone atmosphere-snow gas exchange on polar, boundaru-layer tropospheric ozone - a review sensitivity analysis

    NARCIS (Netherlands)

    Helmig, D.; Ganzeveld, L.N.; Butler, T.; Oltmans, S.

    2007-01-01

    Recent research on snowpack processes and atmosphere-snow gas exchange has demonstrated that chemical and physical interactions between the snowpack and the overlaying atmosphere have a substantial impact on the composition of the lower troposphere. These observations also imply that ozone

  2. The Distribution of Ozone in the Early Stages of Polar Vortex Development

    Science.gov (United States)

    Kawa, S. R.; Newman, P. A.; Schoeberl, M. R.; Bevilacqua, R.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Previous analysis has shown that the distribution of O3 at high northern latitudes in the lower-to-middle stratosphere at the beginning of the winter season, 1999-2000 has a characteristic distribution, which is consistent between in situ and satellite measurements [Kawa et al., The Interaction Between Dynamics and Chemistry of Ozone in the Set-up Phase of the Northern Hemisphere Polar Vortex, submitted manuscript, 2001 ]. Initial O3 profiles in the vortex are similar to each other and are quite different from outside the vortex at the same latitude and also from a zonal mean climatology. In the vortex, O3 is nearly constant from 500 to above 800 K with a value at 3 ppmv +/- approx.10%. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. The seasonal time series of POAM data shows that relatively low O3 mixing ratios, which characterize the vortex in late fall, are already present at high latitudes at the end of summer in September before the vortex circulation sets up. This suggests a possible feedback role between O3 chemistry and the formation of the vortex, which is dominated by the seasonal radiation balance. Here we show that these characteristic O3 distributions are consistent from year to year and between the hemispheres. We will attempt to determine whether variations in fall vortex O3 are related in any way to O3 abundances and vortex structure later during winter and into spring.

  3. Polar Vortex Conditions during the 1995-96 Artic Winter: Meteorology and MLS Ozone

    Science.gov (United States)

    Manney, G. L.; Santee, M. L.; Froidevaux, L.; Waters, J. W.; Zurek, R. W.

    1996-01-01

    The 1995-96 northern hemisphere (NH) 205 winter stratosphere was colder than in any of the previous 17 winters, with lower stratospheric temperatures continuously below the type 1 (primarily HN03) polar stratospheric cloud (PSC) threshold for over 2 1/2 months. Upper tropospheric ridges in late Feb and early Mar 1996 led to the lowest observed NH lower stratospheric temperatures, and the latest observed NH temperatures below the type 2 (water ice) PSC threshold. Consistent with the unusual cold and chemical processing on PSCS, Upper Atmosphere Research Satellite (UARS) MLS observed a greater decrease in lower stratospheric ozone (03) in 1995-96 than in any of the previous 4 NH winters. 03 decreased throughout the vortex over an altitude range nearly as large as that typical of the southern hemisphere (SH). The decrease between late Dec 1995 and early Mar 1996 was about 2/3 of that over the equivalent SH period. As in other NH winters, temperatures in 1996 rose above the PSC threshold before the spring equinox, ending chemical processing in the NH vortex much earlier than is usual in the SH. A downward trend in column 03 above 100 hPa during Jan and Feb 1996 appears to be related to the lower stratospheric 03 depletion.

  4. Optical coating on a corrugated surface to align the polarization of an unpolarized wave without loss

    Science.gov (United States)

    Jen, Yi Jun

    2017-12-01

    A multilayer comprising birefringent thin films is devised to present to function as a polarization beam splitter and waveplate simultaneously. By arranging such a multilayer on a right triangle-shaped corrugated surface, a polarizer is realized to align the randomly oscillating electric field of an unpolarized wave into a linear polarized wave without loss.

  5. NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002–2010

    Directory of Open Access Journals (Sweden)

    M. Sinnhuber

    2018-01-01

    the models in nearly every polar winter, ranging from 10–50 % during solar maximum to 2–10 % during solar minimum. Ozone loss continues throughout polar summer after strong solar proton events in the Southern Hemisphere and after large sudden stratospheric warmings in the Northern Hemisphere. During mid-winter, the ozone loss causes a reduction of the infrared radiative cooling, i.e., a positive change of the net radiative heating (effective warming, in agreement with analyses of geomagnetic forcing in stratospheric temperatures which show a warming in the late winter upper stratosphere. In late winter and spring, the sign of the net radiative heating change turns to negative (effective cooling. This spring-time cooling lasts well into summer and continues until the following autumn after large solar proton events in the Southern Hemisphere, and after sudden stratospheric warmings in the Northern Hemisphere.

  6. Ozone-Induced Rice Grain Yield Loss Is Triggered via a Change in Panicle Morphology That Is Controlled by ABERRANT PANICLE ORGANIZATION 1 Gene

    Science.gov (United States)

    Tsukahara, Keita; Sawada, Hiroko; Kohno, Yoshihisa; Matsuura, Takakazu; Mori, Izumi C.; Terao, Tomio; Ioki, Motohide; Tamaoki, Masanori

    2015-01-01

    Rice grain yield is predicted to decrease in the future because of an increase in tropospheric ozone concentration. However, the underlying mechanisms are unclear. Here, we investigated the responses to ozone of two rice (Oryza Sativa L.) cultivars, Sasanishiki and Habataki. Sasanishiki showed ozone-induced leaf injury, but no grain yield loss. By contrast, Habataki showed grain yield loss with minimal leaf injury. A QTL associated with grain yield loss caused by ozone was identified in Sasanishiki/Habataki chromosome segment substitution lines and included the ABERRANT PANICLE ORGANIZATION 1 (APO1) gene. The Habataki allele of the APO1 locus in a near-isogenic line also resulted in grain yield loss upon ozone exposure, suggesting APO1 involvement in ozone-induced yield loss. Only a few differences in the APO1 amino acid sequences were detected between the cultivars, but the APO1 transcript level was oppositely regulated by ozone exposure: i.e., it increased in Sasanishiki and decreased in Habataki. Interestingly, the levels of some phytohormones (jasmonic acid, jasmonoyl-L-isoleucine, and abscisic acid) known to be involved in attenuation of ozone-induced leaf injury tended to decrease in Sasanishiki but to increase in Habataki upon ozone exposure. These data indicate that ozone-induced grain yield loss in Habataki is caused by a reduction in the APO1 transcript level through an increase in the levels of phytohormones that reduce leaf damage. PMID:25923431

  7. γδ T Cells Are Required for M2 Macrophage Polarization and Resolution of Ozone-Induced Pulmonary Inflammation in Mice.

    Science.gov (United States)

    Mathews, Joel A; Kasahara, David I; Ribeiro, Luiza; Wurmbrand, Allison P; Ninin, Fernanda M C; Shore, Stephanie A

    2015-01-01

    We examined the role of γδ T cells in the induction of alternatively activated M2 macrophages and the resolution of inflammation after ozone exposure. Wildtype (WT) mice and mice deficient in γδ T cells (TCRδ-/- mice) were exposed to air or to ozone (0.3 ppm for up to 72h) and euthanized immediately or 1, 3, or 5 days after cessation of exposure. In WT mice, M2 macrophages accumulated in the lungs over the course of ozone exposure. Pulmonary mRNA abundance of the M2 genes, Arg1, Retnla, and Clec10a, also increased after ozone. In contrast, no evidence of M2 polarization was observed in TCRδ-/- mice. WT but not TCRδ-/- mice expressed the M2c polarizing cytokine, IL-17A, after ozone exposure and WT mice treated with an IL-17A neutralizing antibody exhibited attenuated ozone-induced M2 gene expression. In WT mice, ozone-induced increases in bronchoalveolar lavage neutrophils and macrophages resolved quickly after cessation of ozone exposure returning to air exposed levels within 3 days. However, lack of M2 macrophages in TCRδ-/- mice was associated with delayed clearance of inflammatory cells after cessation of ozone and increased accumulation of apoptotic macrophages in the lungs. Delayed restoration of normal lung architecture was also observed in TCRδ-/- mice. In summary, our data indicate that γδ T cells are required for the resolution of ozone-induced inflammation, likely because γδ T cells, through their secretion of IL-17A, contribute to changes in macrophage polarization that promote clearance of apoptotic cells.

  8. Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions (RECONCILE): activities and results

    NARCIS (Netherlands)

    von Hobe, M.; Röckmann, T.|info:eu-repo/dai/nl/304838233; Stroh, F.; et al., [No Value

    2013-01-01

    The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict

  9. Optimized design of polarizers with low ohmic loss and any polarization state for the 28 GHz QUEST ECH/ECCD system

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Toru Ii, E-mail: tsujimura.tohru@nifs.ac.jp [National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292 (Japan); Idei, Hiroshi [Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan); Kubo, Shin; Kobayashi, Sakuji [National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292 (Japan)

    2017-01-15

    Highlights: • Ohmic loss was calculated on the grooved mirror surface in simulated polarizers. • Polarizers with a low ohmic loss feature were optimally designed for 28 GHz. • Smooth rounded-rectangular grooves were made by mechanical machining. • The designed polarizers can realize all polarization states. - Abstract: In a high-power long-pulse millimeter-wave transmission line for electron cyclotron heating and current drive (ECH/ECCD), the ohmic loss on the grooved mirror surface of polarizers is one of the important issues for reducing the transmission loss. In this paper, the ohmic loss on the mirror surface is evaluated in simulated real-scale polarizer miter bends for different groove parameters under a linearly-polarized incident wave excitation. The polarizers with low ohmic loss are optimally designed for a new 28 GHz transmission line on the QUEST spherical tokamak. The calculated optimum ohmic loss is restricted to only less than 1.5 times as large as the theoretical loss for a copper flat mirror at room temperature. The copper rounded-rectangular grooves of the polarizers were relatively easy to make smooth in mechanical machining and the resultant surface roughness was not more than 0.15 μm, which is only 0.38 times as large as the skin depth. The combination of the designed elliptical polarizer and the polarization rotator can also realize any polarization state of the reflected wave.

  10. The Effect of Zonally Asymmetric Ozone Heating on the Northern Hemisphere Winter Polar Stratosphere

    Science.gov (United States)

    2010-12-09

    solar ultraviolet ir- radiance, stratospheric ozone, and planetary wave activity that have often been cited as possible mechanisms linking solar... photochemistry both contribute to the ZAOH effect, up to ∼0.01 hPa (∼65 km) where the ZAOH effect is controlled by ozone photochemistry . Overall, the... photochemistry parameterization for high-altitude NWP and climate models, Atmos. Chem. Phys., 6, 4943–4972. December 9, 2010, 2:01pm X - 12 MCCORMACK ET

  11. Observing the Impact of Calbuco Volcanic Aerosols on South Polar Ozone Depletion in 2015

    OpenAIRE

    Stone, KA; Solomon, S; Kinnison, DE; Pitts, MC; Poole, LR; Mills, MJ; Schmidt, Anja; Neely, RR; Ivy, D; Schwartz, MJ; Vernier, JP; Johnson, BJ; Tully, MB; Klekociuk, AR; König-Langlo, G

    2017-01-01

    The Southern Hemisphere Antarctic stratosphere experienced two noteworthy events in 2015: a significant injection of sulfur from the Calbuco volcanic eruption in Chile in April and a record-large Antarctic ozone hole in October and November. Here we quantify Calbuco's influence on stratospheric ozone depletion in austral spring 2015 using observations and an Earth system model. We analyze ozonesondes, as well as data from the Microwave Limb Sounder. We employ the Community Earth System Model,...

  12. Persistent polar depletion of stratospheric ozone and emergent mechanisms of ultraviolet radiation-mediated health dysregulation.

    Science.gov (United States)

    Dugo, Mark A; Han, Fengxiang; Tchounwou, Paul B

    2012-01-01

    Year 2011 noted the first definable ozone "hole" in the Arctic region, serving as an indicator to the continued threat of dangerous ultraviolet radiation (UVR) exposure caused by the deterioration of stratospheric ozone in the northern hemisphere. Despite mandates of the Montreal Protocol to phase out the production of ozone-depleting chemicals (ODCs), the relative stability of ODCs validates popular notions of persistent stratospheric ozone for several decades. Moreover, increased UVR exposure through stratospheric ozone depletion is occurring within a larger context of physiologic stress and climate change across the biosphere. In this review, we provide commentaries on stratospheric ozone depletion with relative comparisons between the well-known Antarctic ozone hole and the newly defined ozone hole in the Arctic. Compared with the Antarctic region, the increased UVR exposure in the Northern Hemisphere poses a threat to denser human populations across North America, Europe, and Asia. In this context, we discuss emerging targets of UVR exposure that can potentially offset normal biologic rhythms in terms of taxonomically conserved photoperiod-dependent seasonal signaling and entrainment of circadian clocks. Consequences of seasonal shifts during critical life history stages can alter fitness and condition, whereas circadian disruption is increasingly becoming associated as a causal link to increased carcinogenesis. We further review the significance of genomic alterations via UVR-induced modulations of phase I and II transcription factors located in skin cells, the aryl hydrocarbon receptor (AhR), and the nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2), with emphasis on mechanism that can lead to metabolic shifts and cancer. Although concern for adverse health consequences due to increased UVR exposure are longstanding, recent advances in biochemical research suggest that AhR and Nrf2 transcriptional regulators are likely targets for UVR

  13. Dehydration, denitrification and ozone loss during the Arctic winter 2015/2016: Simulations with the Chemistry-Climate Model EMAC and comparison to Aura/MLS and GLORIA observations

    Science.gov (United States)

    Khosrawi, Farahnaz; Kirner, Oliver; Sinnhuber, Bjoern-Martin; Johansson, Sören; Höpfner, Michael; Santee, Michelle L.; Manney, Gloria; Froidevaux, Lucien; Ungermann, Jörn; Preusse, Peter; Friedl-Vallon, Felix; Ruhnke, Roland; Woiwode, Wolfgang; Oelhaf, Hermann; Braesicke, Peter

    2017-04-01

    The Arctic winter 2015/2016 has been one of the coldest stratospheric winters in recent years. A stable vortex formed already in early December and the early winter has been exceptionally cold. Cold pool temperatures dropped below the Nitric Acid Trihydrate (NAT) existence temperature, thus allowing Polar Stratospheric Clouds (PSCs) to form. The low temperatures in the polar stratosphere persisted until early March allowing chlorine activation and catalytic ozone destruction. Satellite observations indicate that sedimentation of PSC particles have led to denitrification as well as dehydration of stratospheric layers. Nudged model simulations of the Arctic winter 2015/2016 were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the POLSTRACC (Polar Stratosphere in a Changing Climate) campaign. POLSTRACC was a HALO mission (High Altitude and LOng Range Research Aircraft) aiming on the investigation of the structure, composition and evolution of the Arctic Upper Troposphere Lower Stratosphere (UTLS). The chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, polar stratospheric clouds as well as cirrus clouds were investigated. In this presentation, an overview of the chemistry and dynamics of the Arctic winter 2015/2016 as simulated with EMAC will be given. Chemical-dynamical processes such as denitrification, dehydration and ozone loss will be investigated. Comparisons to satellite observations by the Aura Microwave Limb Sounder (Aura/MLS) as well as to airborne measurements with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) performed onboard of HALO during the POLSTRACC campaign show that the EMAC simulations are in good agreement with observations (differences generally within ±20%). However, larger differences between model and simulations are found e.g. in the areas of denitrification. Both

  14. The Interaction Between Dynamics and Chemistry of Ozone in the Set-up Phase of the Northern Hemisphere Polar Vortex

    Science.gov (United States)

    Kawa, S. R.; Bevilacqua, R.; Margitan, J. J.; Douglass, A. R.; Schoeberl, M. R.; Hoppel, K.; Sen, B.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    The morphology and evolution of the stratospheric ozone (O3) distribution at high latitudes in the Northern Hemisphere (NH) are examined for the late summer and fall seasons of 1999. This time period sets the O3 initial condition for the SOLVE/THESEO field mission performed during winter 1999-2000. In situ and satellite data are used along with a three-dimensional model of chemistry and transport (CTM) to determine the key processes that control the distribution of O3 in the lower-to-middle stratosphere. O3 in the vortex at the beginning of the winter season is found to be nearly constant from 500 to above 800 K with a value at 3 ppmv +/- approx. 10%. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. The seasonal time series of data from POAM shows that relatively low O3 mixing ratios, which characterize the vortex in late fall, are already present at high latitudes at the end of summer before the vortex circulation sets up. Analysis of the CTM output shows that the minimum O3 and increase in variance in late summer are the result of: 1) stirring of polar concentric O3 gradients by nascent wave-driven transport, and 2) an acceleration of net photochemical loss with decreasing solar illumination. The segregation of low O3 mixing ratios into the vortex as the circulation strengthens through the fall suggests a possible feedback role between O3 chemistry and the vortex formation dynamics. Trajectory calculations from O3 sample points early in the fall, however, show only a weak correlation between initial O3 mixing ratio and potential vorticity later in the season consistent with order-of-magnitude calculations for the relative importance of O3 in the fall radiative balance at high latitudes. The possible connection between O3 chemistry and the dynamics of vortex formation does suggest that these feedbacks and sensitivities need to be better understood in order to make confident predictions of the recovery

  15. Polar Ozone Response to Energetic Particle Precipitation Over Decadal Time Scales: The Role of Medium-Energy Electrons

    Science.gov (United States)

    Andersson, M. E.; Verronen, P. T.; Marsh, D. R.; Seppälä, A.; Päivärinta, S.-M.; Rodger, C. J.; Clilverd, M. A.; Kalakoski, N.; van de Kamp, M.

    2018-01-01

    One of the key challenges in polar middle atmosphere research is to quantify the total forcing by energetic particle precipitation (EPP) and assess the related response over solar cycle time scales. This is especially true for electrons having energies between about 30 keV and 1 MeV, so-called medium-energy electrons (MEE), where there has been a persistent lack of adequate description of MEE ionization in chemistry-climate simulations. Here we use the Whole Atmosphere Community Climate Model (WACCM) and include EPP forcing by solar proton events, auroral electron precipitation, and a recently developed model of MEE precipitation. We contrast our results from three ensemble simulations (147 years) in total with those from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) in order to investigate the importance of a more complete description of EPP to the middle atmospheric ozone, odd hydrogen, and odd nitrogen over decadal time scales. Our results indicate average EPP-induced polar ozone variability of 12-24% in the mesosphere, and 5-7% in the middle and upper stratosphere. This variability is in agreement with previously published observations. Analysis of the simulation results indicate the importance of inclusion of MEE in the total EPP forcing: In addition to the major impact on the mesosphere, MEE enhances the stratospheric ozone response by a factor of 2. In the Northern Hemisphere, where wintertime dynamical variability is larger than in the Southern Hemisphere, longer simulations are needed in order to reach more robust conclusions.

  16. Soil Water Availability Modulation Over Estimated Relative Yield Losses in Wheat (Triticum aestivum L.) Due to Ozone Exposure

    OpenAIRE

    De la Torre, Daniel; Sierra, Maria Jose

    2007-01-01

    The approach developed by Fuhrer in 1995 to estimate wheat yield losses induced by ozone and modulated by the soil water content (SWC) was applied to the data on Catalonian wheat yields. The aim of our work was to apply this approach and adjust it to Mediterranean environmental conditions by means of the necessary corrections. The main objective pursued was to prove the importance of soil water availability in the estimation of relative wheat yield losses as a factor that modifies the effects...

  17. Invariant polar bear habitat selection during a period of sea ice loss

    Science.gov (United States)

    Wilson, Ryan R.; Regehr, Eric V.; Rode, Karyn D.; St Martin, Michelle

    2016-01-01

    Climate change is expected to alter many species' habitat. A species' ability to adjust to these changes is partially determined by their ability to adjust habitat selection preferences to new environmental conditions. Sea ice loss has forced polar bears (Ursus maritimus) to spend longer periods annually over less productive waters, which may be a primary driver of population declines. A negative population response to greater time spent over less productive water implies, however, that prey are not also shifting their space use in response to sea ice loss. We show that polar bear habitat selection in the Chukchi Sea has not changed between periods before and after significant sea ice loss, leading to a 75% reduction of highly selected habitat in summer. Summer was the only period with loss of highly selected habitat, supporting the contention that summer will be a critical period for polar bears as sea ice loss continues. Our results indicate that bears are either unable to shift selection patterns to reflect new prey use patterns or that there has not been a shift towards polar basin waters becoming more productive for prey. Continued sea ice loss is likely to further reduce habitat with population-level consequences for polar bears.

  18. An investigation into the causes of stratospheric ozone loss in the southern Australasian region

    Science.gov (United States)

    Lehmann, P.; Karoly, D. J.; Newmann, P. A.; Clarkson, T. S.; Matthews, W. A.

    1992-01-01

    Measurements of total ozone at Macquarie Island (55 deg S, 159 deg E) reveal statistically significant reductions of approximately twelve percent during July to September when comparing the mean levels for 1987-90 with those in the seventies. In order to investigate the possibility that these ozone changes may not be a result of dynamic variability of the stratosphere, a simple linear model of ozone was created from statistical analysis of tropopause height and isentropic transient eddy heat flux, which were assumed representative of the dominant dynamic influences. Comparison of measured and modeled ozone indicates that the recent downward trend in ozone at Macquarie Island is not related to stratospheric dynamic variability and therefore suggests another mechanism, possibly changes in photochemical destruction of ozone.

  19. Assessment of rice yield loss due to exposure to ozone pollution in Southern Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Danh, Ngo Thanh; Huy, Lai Nguyen; Oanh, Nguyen Thi Kim, E-mail: kimoanh@ait.ac.th

    2016-10-01

    The study domain covered the Eastern region of Southern of Vietnam that includes Ho Chi Minh City (HCMC) and five other provinces. Rice production in the domain accounted for 13% of the national total with three crop cycles per year. We assessed ozone (O{sub 3}) induced rice production loss in the domain for 2010 using simulated hourly surface O{sub 3} concentrations (WRF/CAMx; 4 km resolution). Simulated O{sub 3} was higher in January–February (largely overlaps the first crop) and September–December (third crop), and lower in March–June (second crop). Spatially, O{sub 3} was higher in downwind locations of HCMC and were comparable with observed data. Relative yield loss (RYL) was assessed for each crop over the respective growing period (105 days) using three metrics: AOT40, M7 and flux-based O{sub 3} dose of POD{sub 10}. Higher RYL was estimated for the downwind of HCMC. Overall, the rice production loss due to O{sub 3} exposure in the study domain in 2010 was the highest for the first crop (up to 25,800 metric tons), the second highest for the third crop (up to 21,500 tons) and the least for the second crop (up to 6800 tons). The low RYL obtained for the second crop by POD{sub 10} may be due to the use of a high threshold value (Y = 10 nmol m{sup −2} s{sup −1}). Linear regression between non-null radiation POD{sub 0} and POD{sub 10} had similar slopes for the first and third crop when POD{sub 0} was higher and very low slope for the second crop when POD{sub 0} was low. The results of this study can be used for the rice crop planning to avoid the period of potential high RYL due to O{sub 3} exposure. - Highlights: • Simulated O{sub 3} was used to assess rice yield loss in a domain of Southern Vietnam. • Exposure metrics of AOT40, M7, POD{sub 0} and POD{sub 10} were considered. • POD{sub 10} gave the highest rice production loss. • Higher production loss was found downwind of Ho Chi Minh City.

  20. The Effect of Elevated Ozone Concentrations with Varying Shading on Dry Matter Loss in a Winter Wheat-Producing Region in China.

    Directory of Open Access Journals (Sweden)

    Jingxin Xu

    Full Text Available Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L. at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb, Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb, and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb, with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system. These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R(2 = 0.85 & T2: R(2 = 0.89 of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m(-2 of cumulative ozone uptake. At the regional level, dry matter

  1. The Effect of Elevated Ozone Concentrations with Varying Shading on Dry Matter Loss in a Winter Wheat-Producing Region in China.

    Science.gov (United States)

    Xu, Jingxin; Zheng, Youfei; He, Yuhong; Wu, Rongjun; Mai, Boru; Kang, Hanqing

    2016-01-01

    Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R(2) = 0.85 & T2: R(2) = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m(-2) of cumulative ozone uptake. At the regional level, dry matter loss in winter

  2. Depletion of stratospheric ozone over the Antarctic and Arctic: Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview

    International Nuclear Information System (INIS)

    Rozema, Jelte; Boelen, Peter; Blokker, Peter

    2005-01-01

    Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to experimentally varied UV-B through supplementation or exclusion. In supplementation studies comparing ambient and above ambient UV-B, no effect on growth occurred. UV-B-induced DNA damage, as measured in polar bryophytes, is repaired overnight by photoreactivation. With UV exclusion, growth at near ambient may be less than at below ambient UV-B levels, which relates to the UV response curve of polar plants. UV-B screening foils also alter PAR, humidity, and temperature and interactions of UV with environmental factors may occur. Plant phenolics induced by solar UV-B, as in pollen, spores and lignin, may serve as a climate proxy for past UV. Since the Antarctic and Arctic terrestrial ecosystems differ essentially (e.g. higher species diversity and more trophic interactions in the Arctic), generalization of polar plant responses to UV-B needs caution. - Polar plant responses to UV-B may be different in the Arctic than Antarctic regions

  3. Depletion of stratospheric ozone over the Antarctic and Arctic: Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview

    Energy Technology Data Exchange (ETDEWEB)

    Rozema, Jelte [Department of Systems Ecology, Institute of Ecological Science, Climate Centre, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam (Netherlands)]. E-mail: jelte.rozema@ecology.falw.vu.nl; Boelen, Peter [Department of Systems Ecology, Institute of Ecological Science, Climate Centre, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam (Netherlands); Blokker, Peter [Department of Systems Ecology, Institute of Ecological Science, Climate Centre, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam (Netherlands)

    2005-10-15

    Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to experimentally varied UV-B through supplementation or exclusion. In supplementation studies comparing ambient and above ambient UV-B, no effect on growth occurred. UV-B-induced DNA damage, as measured in polar bryophytes, is repaired overnight by photoreactivation. With UV exclusion, growth at near ambient may be less than at below ambient UV-B levels, which relates to the UV response curve of polar plants. UV-B screening foils also alter PAR, humidity, and temperature and interactions of UV with environmental factors may occur. Plant phenolics induced by solar UV-B, as in pollen, spores and lignin, may serve as a climate proxy for past UV. Since the Antarctic and Arctic terrestrial ecosystems differ essentially (e.g. higher species diversity and more trophic interactions in the Arctic), generalization of polar plant responses to UV-B needs caution. - Polar plant responses to UV-B may be different in the Arctic than Antarctic regions.

  4. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence

    Science.gov (United States)

    Steven C. Amstrup; Eric T. DeWeaver; David C. Douglas; Bruce G. Marcot; George M. Durner; Cecilia M. Bitz; David A. Bailey

    2010-01-01

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the world's polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible...

  5. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence

    Science.gov (United States)

    Amstrup, Steven C.; Deweaver, E.T.; Douglas, D.C.; Marcot, B.G.; Durner, G.M.; Bitz, C.M.; Bailey, D.A.

    2010-01-01

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the worlds polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout

  6. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence.

    Science.gov (United States)

    Amstrup, Steven C; Deweaver, Eric T; Douglas, David C; Marcot, Bruce G; Durner, George M; Bitz, Cecilia M; Bailey, David A

    2010-12-16

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the world's polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout

  7. Temporal trends and transport within and around the Antarctic polar vortex during the formation of the 1987 Antarctic ozone hole

    Science.gov (United States)

    Proffitt, M. H.; Powell, J. A.; Tuck, A. F.; Fahey, D. W.; Kelly, K. K.; Loewenstein, M.; Podolske, J. R.; Chan, K. Roland

    1988-01-01

    During AAOE in 1987 an ER-2 high altitude aircraft made twelve flights out of Punta Arenas, Chile (53 S, 71 W) into the Antarctic polar vortex. The aircraft was fitted with fast response instruments for in situ measurements of many trace species including O3, ClO, BrO, NO sub y, NO, H2O, and N2O. Grab samples of long-lived tracers were also taken and a scanning microwave radiometer measured temperatures above and below the aircraft. Temperature, pressure, and wind measurements were also made on the flight tracks. Most of these flights were flown to 72 S, at a constant potential temperature, followed by a dip to a lower altitude and again assuming a sometimes different potential temperature for the return leg. The potential temperature chosen was 425 K (17 to 18 km) on 12 of the flight legs, and 5 of the flight legs were flown at 450 K (18 to 19 km). The remaining 7 legs of the 12 flights were not flown on constant potential temperature surfaces. Tracer data have been analyzed for temporal trends. Data from the ascents out of Punta Arenas, the constant potential temperature flight legs, and the dips within the vortex are used to compare tracer values inside and outside the vortex, both with respect to constant potential temperature and constant N2O. The time trend during the one-month period of August 23 through September 22, 1987, shows that ozone decreased by 50 percent or more at altitudes form 15 to 19 km. This trend is evident whether analyzed with respect to constant potential temperature or constant N2O. The trend analysis for ozone outside the vortex shows no downward trend during this period. The analysis for N2O at a constant potential temperature indicates no significant trend either inside or outside the vortex; however, a decrease in N2O with an increase in latitude is evident.

  8. Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions (RECONCILE: activities and results

    Directory of Open Access Journals (Sweden)

    M. von Hobe

    2013-09-01

    Full Text Available The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii an improved scheme of polar stratospheric cloud (PSC processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv long transient simulations with a chemistry-climate model (CCM updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability.

  9. Spatio-temporal observations of the tertiary ozone maximum

    Directory of Open Access Journals (Sweden)

    V. F. Sofieva

    2009-07-01

    Full Text Available We present spatio-temporal distributions of the tertiary ozone maximum (TOM, based on GOMOS (Global Ozone Monitoring by Occultation of Stars ozone measurements in 2002–2006. The tertiary ozone maximum is typically observed in the high-latitude winter mesosphere at an altitude of ~72 km. Although the explanation for this phenomenon has been found recently – low concentrations of odd-hydrogen cause the subsequent decrease in odd-oxygen losses – models have had significant deviations from existing observations until recently. Good coverage of polar night regions by GOMOS data has allowed for the first time to obtain spatial and temporal observational distributions of night-time ozone mixing ratio in the mesosphere.

    The distributions obtained from GOMOS data have specific features, which are variable from year to year. In particular, due to a long lifetime of ozone in polar night conditions, the downward transport of polar air by the meridional circulation is clearly observed in the tertiary ozone maximum time series. Although the maximum tertiary ozone mixing ratio is achieved close to the polar night terminator (as predicted by the theory, TOM can be observed also at very high latitudes, not only in the beginning and at the end, but also in the middle of winter. We have compared the observational spatio-temporal distributions of the tertiary ozone maximum with that obtained using WACCM (Whole Atmosphere Community Climate Model and found that the specific features are reproduced satisfactorily by the model.

    Since ozone in the mesosphere is very sensitive to HOx concentrations, energetic particle precipitation can significantly modify the shape of the ozone profiles. In particular, GOMOS observations have shown that the tertiary ozone maximum was temporarily destroyed during the January 2005 and December 2006 solar proton events as a result of the HOx enhancement from the increased ionization.

  10. ER-2 #809 awaits pilot entry for the third flight of the SAGE III Ozone Loss and Validation Experime

    Science.gov (United States)

    2000-01-01

    ER-2 #809 awaiting pilot entry for the third flight of the SAGE III Ozone Loss and Validation Experiment (SOLVE). The ER-2, a civilian variant of Lockheed's U-2, and another NASA flying laboratory, Dryden's DC-8, were based north of the Arctic Circle in Kiruna, Sweden during the winter of 2000 to study ozone depletion as part of SOLVE. A large hangar built especially for research, 'Arena Arctica' housed the instrumented aircraft and the scientists. Scientists have observed unusually low levels of ozone over the Arctic during recent winters, raising concerns that ozone depletion there could become more widespread as in the Antarctic ozone hole. The NASA-sponsored international mission took place between November 1999 and March 2000 and was divided into three phases. The DC-8 was involved in all three phases returning to Dryden between each phase. The ER-2 flew sample collection flights between January and March, remaining in Sweden from Jan. 9 through March 16. 'The collaborative campaign will provide an immense new body of information about the Arctic stratosphere,' said program scientist Dr. Michael Kurylo, NASA Headquarters. 'Our understanding of the Earth's ozone will be greatly enhanced by this research.' ER-2s bearing tail numbers 806 and 809 are used as airborne science platforms by NASA's Dryden Flight Research Center. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, an ER-2 set a world record for

  11. Possible role of electric forces in bromine activation during polar boundary layer ozone depletion and aerosol formation events

    Science.gov (United States)

    Tkachenko, Ekaterina

    2017-11-01

    This work presents a hypothesis about the mechanism of bromine activation during polar boundary layer ozone depletion events (ODEs) as well as the mechanism of aerosol formation from the frost flowers. The author suggests that ODEs may be initiated by the electric-field gradients created at the sharp tips of ice formations as a result of the combined effect of various environmental conditions. According to the author's estimates, these electric-field gradients may be sufficient for the onset of point or corona discharges followed by generation of high local concentrations of the reactive oxygen species and initiation of free-radical and redox reactions. This process may be responsible for the formation of seed bromine which then undergoes further amplification by HOBr-driven bromine explosion. The proposed hypothesis may explain a variety of environmental conditions and substrates as well as poor reproducibility of ODE initiation observed by researchers in the field. According to the author's estimates, high wind can generate sufficient conditions for overcoming the Rayleigh limit and thus can initiate ;spraying; of charged aerosol nanoparticles. These charged aerosol nanoparticles can provoke formation of free radicals, turning the ODE on. One can also envision a possible emission of halogen ion as a result of the ;electrospray; process analogous to that of electrospray ionization mass-spectrometry.

  12. Brief communication "Stratospheric winds, transport barriers and the 2011 Arctic ozone hole"

    Directory of Open Access Journals (Sweden)

    M. J. Olascoaga

    2012-12-01

    Full Text Available The Arctic stratosphere throughout the late winter and early spring of 2011 was characterized by an unusually severe ozone loss, resulting in what has been described as an ozone hole. The 2011 ozone loss was made possible by unusually cold temperatures throughout the Arctic stratosphere. Here we consider the issue of what constitutes suitable environmental conditions for the formation and maintenance of a polar ozone hole. Our discussion focuses on the importance of the stratospheric wind field and, in particular, the importance of a high latitude zonal jet, which serves as a meridional transport barrier both prior to ozone hole formation and during the ozone hole maintenance phase. It is argued that stratospheric conditions in the boreal winter/spring of 2011 were highly unusual inasmuch as in that year Antarctic-like Lagrangian dynamics led to the formation of a boreal ozone hole.

  13. ER-2 #809 on the SAGE III Ozone Loss and Validation Experiment (SOLVE) with pilot Dee Porter prepari

    Science.gov (United States)

    2000-01-01

    Lockheed Martin pilot Dee Porter climbs up the ladder wearing a heavy tan pressure suit, preparing to board NASA ER-2 #809 at Kiruna, Sweden, for the third flight in the SAGE III Ozone Loss and Validation Experiment. Assisting him is Jim Sokolik, a Lockheed Martin life support technician. Number 809, one of Dryden's two high-flying ER-2 Airborne Science aircraft, a civilian variant of Lockheed's U-2, and another NASA flying laboratory, Dryden's DC-8, were based north of the Arctic Circle in Kiruna, Sweden during the winter of 2000 to study ozone depletion as part of the SAGE III Ozone Loss and Validation Experiment (SOLVE). A large hangar built especially for research, 'Arena Arctica' housed the instrumented aircraft and the scientists. Scientists have observed unusually low levels of ozone over the Arctic during recent winters, raising concerns that ozone depletion there could become more widespread as in the Antarctic ozone hole. The NASA-sponsored international mission took place between November 1999 and March 2000 and was divided into three phases. The DC-8 was involved in all three phases returning to Dryden between each phase. The ER-2 flew sample collection flights between January and March, remaining in Sweden from Jan. 9 through March 16. 'The collaborative campaign will provide an immense new body of information about the Arctic stratosphere,' said program scientist Dr. Michael Kurylo, NASA Headquarters. 'Our understanding of the Earth's ozone will be greatly enhanced by this research.' ER-2s bearing tail numbers 806 and 809 are used as airborne science platforms by NASA's Dryden Flight Research Center. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main

  14. Polar bears (Ursus maritimus), the most evolutionary advanced hibernators, avoid significant bone loss during hibernation.

    Science.gov (United States)

    Lennox, Alanda R; Goodship, Allen E

    2008-02-01

    Some hibernating animals are known to reduce muscle and bone loss associated with mechanical unloading during prolonged immobilisation,compared to humans. However, here we show that wild pregnant polar bears (Ursus maritimus) are the first known animals to avoid significant bone loss altogether, despite six months of continuous hibernation. Using serum biochemical markers of bone turnover, we showed that concentrations for bone resorption are not significantly increased as a consequence of hibernation in wild polar bears. This is in sharp contrast to previous studies on other hibernating species, where for example, black bears (Ursus americanus), show a 3-4 fold increase in serum bone resorption concentrations posthibernation,and must compensate for this loss through rapid bone recovery on remobilisation, to avoid the risk of fracture. In further contrast to black bears, serum concentrations of bone formation markers were highly significantly increased in pregnant female polar bears compared to non-pregnant,thus non-hibernating females both prior to and after hibernation. However, bone formation concentrations in new mothers were significantly reduced compared to pre-hibernation concentrations. The de-coupling of bone turnover in favour of bone formation prior to hibernation, suggests that wild polar bears may posses a unique physiological mechanism for building bone in protective preparation against expected osteopenia associated with disuse,starvation, and hormonal drives to mobilise calcium for reproduction, during hibernation. Understanding this physiological mechanism could have profound implications for a natural solution for the prevention of osteoporosis in animals subjected to captivity with inadequate space for exercise,humans subjected to prolonged bed rest while recovering from illness, or astronauts exposed to antigravity during spaceflight.© 2008 Elsevier Inc. All rights reserved.

  15. Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery

    Science.gov (United States)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stübi, Rene; Stenke, Andrea; Anderson, John; Bourassa, Adam; Davis, Sean M.; Degenstein, Doug; Frith, Stacey; Froidevaux, Lucien; Roth, Chris; Sofieva, Viktoria; Wang, Ray; Wild, Jeannette; Yu, Pengfei; Ziemke, Jerald R.; Rozanov, Eugene V.

    2018-02-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective ozone layer around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60° S and 60° N outside the polar regions (60-90°). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60° S and 60° N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60° S and 60° N. We find that total column ozone between 60° S and 60° N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  16. Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery

    Directory of Open Access Journals (Sweden)

    W. T. Ball

    2018-02-01

    Full Text Available Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer–Dobson circulation (BDC, forming a protective ozone layer around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60° S and 60° N outside the polar regions (60–90°. Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60° S and 60° N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60° S and 60° N. We find that total column ozone between 60° S and 60° N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  17. Tasmanian tigers and polar bears: The documentary moving image and (species loss

    Directory of Open Access Journals (Sweden)

    Belinda Smaill

    2015-04-01

    Full Text Available In this essay I explore how two divergent examples of the nonfiction moving image can be understood in relation to the problem of representing species loss. The species that provide the platform for this consideration are the thylacine, better known as the Tasmanian tiger, and the polar bear. They represent the two contingencies of species loss: endangerment and extinction. My analysis is structured around moving images from the 1930s of the last known thylacine and the very different example of Arctic Tale (Adam Ravetch, Sarah Robertson, 2007, a ‘Disneyfied’ film that dramatises climate change and its impact on the polar bear. Species loss is frequently perceived in a humanist sense, reflecting how we ‘imagine ourselves’ or anthropocentric charactersations of non-human others. I offer a close analysis of the two films, examining the problem of representing extinction through a consideration of the play of absence and presence, vitality and extinguishment, that characterises both the ontology of cinema and narratives about species loss.

  18. Polar boundary layer bromine explosion and ozone depletion events in the chemistry-climate model EMAC v2.52: implementation and evaluation of AirSnow algorithm

    Science.gov (United States)

    Falk, Stefanie; Sinnhuber, Björn-Martin

    2018-03-01

    Ozone depletion events (ODEs) in the polar boundary layer have been observed frequently during springtime. They are related to events of boundary layer enhancement of bromine. Consequently, increased amounts of boundary layer volume mixing ratio (VMR) and vertical column densities (VCDs) of BrO have been observed by in situ observation, ground-based as well as airborne remote sensing, and from satellites. These so-called bromine explosion (BE) events have been discussed serving as a source of tropospheric BrO at high latitudes, which has been underestimated in global models so far. We have implemented a treatment of bromine release and recycling on sea-ice- and snow-covered surfaces in the global chemistry-climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) based on the scheme of Toyota et al. (2011). In this scheme, dry deposition fluxes of HBr, HOBr, and BrNO3 over ice- and snow-covered surfaces are recycled into Br2 fluxes. In addition, dry deposition of O3, dependent on temperature and sunlight, triggers a Br2 release from surfaces associated with first-year sea ice. Many aspects of observed bromine enhancements and associated episodes of near-complete depletion of boundary layer ozone, both in the Arctic and in the Antarctic, are reproduced by this relatively simple approach. We present first results from our global model studies extending over a full annual cycle, including comparisons with Global Ozone Monitoring Experiment (GOME) satellite BrO VCDs and surface ozone observations.

  19. Reusing Joint Polar Satellite System (jpss) Ground System Components to Process AURA Ozone Monitoring Instrument (omi) Science Products

    Science.gov (United States)

    Moses, J. F.; Jain, P.; Johnson, J.; Doiron, J. A.

    2017-12-01

    New Earth observation instruments are planned to enable advancements in Earth science research over the next decade. Diversity of Earth observing instruments and their observing platforms will continue to increase as new instrument technologies emerge and are deployed as part of National programs such as Joint Polar Satellite System (JPSS), Geostationary Operational Environmental Satellite system (GOES), Landsat as well as the potential for many CubeSat and aircraft missions. The practical use and value of these observational data often extends well beyond their original purpose. The practicing community needs intuitive and standardized tools to enable quick unfettered development of tailored products for specific applications and decision support systems. However, the associated data processing system can take years to develop and requires inherent knowledge and the ability to integrate increasingly diverse data types from multiple sources. This paper describes the adaptation of a large-scale data processing system built for supporting JPSS algorithm calibration and validation (Cal/Val) node to a simplified science data system for rapid application. The new configurable data system reuses scalable JAVA technologies built for the JPSS Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) system to run within a laptop environment and support product generation and data processing of AURA Ozone Monitoring Instrument (OMI) science products. Of particular interest are the root requirements necessary for integrating experimental algorithms and Hierarchical Data Format (HDF) data access libraries into a science data production system. This study demonstrates the ability to reuse existing Ground System technologies to support future missions with minimal changes.

  20. Recovery of the Antarctic Ozone Hole

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Steve; Schauffler, Sue; Stolarski, Richard S.; Douglass, Anne R.; Pawson, Steven; Nielsen, J. Eric

    2006-01-01

    The Antarctic ozone hole develops each year and culminates by early Spring. Antarctic ozone values have been monitored since 1979 using satellite observations from the TOMS and OMI instruments. The severity of the hole has been assessed using the minimum total ozone value from the October monthly mean (depth of the hole), the average size during the September-October period, and the ozone mass deficit. Ozone is mainly destroyed by halogen catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this presentation, we show the relationships of halogens and temperature to both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. We use two methods to estimate ozone hole recovery. First, we use projections of halogen levels combined with age-of-air estimates in a parametric model. Second, we use a coupled chemistry climate model to assess recovery. We find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. Furthermore, full recovery to 1980 levels will not occur until approximately 2068. We will also show some error estimates of these dates and the impact of climate change on the recovery.

  1. Interannual Variability of Ozone in the Polar Vortex during the Fall Season

    Science.gov (United States)

    Bhartia, P. K. (Technical Monitor); Kawa, S. R.; Newman, P. A.; Schoeberl, M. R.; Stolarski, R. S.; Bevilacqua, R.

    2002-01-01

    Previous analysis has shown that the distribution of O3 at high northern latitudes in the lower-to-middle stratosphere at the beginning of the winter season has a characteristic distribution, which is consistent between in situ and satellite measurements. Initial O3 profiles in the vortex are similar to each other and are quite different from outside the vortex at the same latitude and also from a zonal mean climatology. In the vortex, O3 is nearly constant from 500 to above 800 K with a value near 3 ppmv. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. Model analysis indicates that the characteristic vortex O3 profiles arise from a combination of seasonally accelerated photochemical loss at high latitudes and minimal transport of air from lower latitudes. Analysis of the relatively high-resolution POAM data shows that these characteristic O3 distributions are consistent from year to year and between the hemispheres. Here we emphasize analysis of the 24-year time series of O3 data from SBUV in the lower-to-middle stratosphere at high latitudes in the fall vortex. We find that the variability of O3 from SBUV is relatively small in this regime and no significant trend is detectable. The implications of the findings for stratospheric O3 chemistry and transport will be explored.

  2. Hydrogen emissions and their effects on the arctic ozone losses. Risk analysis of a global hydrogen economy; Wasserstoff-Emissionen und ihre Auswirkungen auf den arktischen Ozonverlust. Risikoanalyse einer globalen Wasserstoffwirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Feck, Thomas

    2009-07-01

    Hydrogen (H{sub 2}) could be used as one of the major components in our future energy supply in an effort to avoid greenhouse gas emissions. ''Green'' hydrogen in particular, which is produced from renewable energy sources, should significantly reduce emissions that damage the climate. Despite this basically environmentally-friendly property, however, the complex chain of interactions of hydrogen with other compounds means that the implications for the atmosphere must be analysed in detail. For example, H{sub 2} emissions, which could increase the tropospheric H{sub 2} inventory, can be released throughout the complete hydrogen process chain. H{sub 2} enters the stratosphere via the tropical tropopause and is oxidised there to form water vapour (H{sub 2}O). This extra water vapour causes increased radiation in the infrared region of the electromagnetic spectrum and thus causes the stratosphere to cool down. Both the increase in H{sub 2}O and the resulting cooling down of the stratosphere encourage the formation of polar stratospheric clouds (PSC) and liquid sulphate aerosols, which facilitate the production of reactive chlorine, which in turn currently leads to dramatic ozone depletion in the polar stratosphere. In the future, H{sub 2} emissions from a global hydrogen economy could therefore encourage stratospheric ozone depletion in the polar regions and thus inhibit the ozone layer in recovering from the damage caused by chlorofluorocarbons (CFCs). In addition to estimating possible influences on the trace gas composition of the stratosphere, one of the main aims of this thesis is to evaluate the risk associated with increased polar ozone depletion caused by additional H{sub 2} emissions. Studies reported on here have shown that even if around 90% of today's fossil primary energy input was to be replaced by hydrogen and if around 9.5% of the gas was to escape in a ''worst-case'' scenario, the additional ozone loss for

  3. Stratospheric warmings - The quasi-biennial oscillation Ozone Hole in the Antarctic but not the Arctic - Correlations between the Solar Cycle, Polar Temperatures, and an Equatorial Oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, Ulf-Peter

    2010-05-15

    This report is a tutorial and overview over some of the complex dynamic phenomena in the polar and equatorial stratosphere, and the unexpected correlation that exists between these and the solar cycle. Sudden stratospheric warmings (stratwarms) occur in the polar stratosphere in winter, but not equally distributed between the two hemispheres. As a result, the ozone hole in the springtime polar stratosphere is much more severe in the Southern Hemisphere than in the Northern Hemisphere. The Quasi-Biennial Oscillation (QBO) is a dynamic phenomenon of the equatorial stratosphere. Through processes not fully understood, the phase of the QBO (easterly or westerly) influences the onset of stratwarms. In addition, a correlation between the stratospheric winter temperature over the poles and the solar cycle has been found, but only if the datapoints are ordered by the phase of the QBO. - The best explanations and figures from four recent textbooks are selected, and abstracts of most relevant publications from the six last years are collected, with the most relevant portions for these subjects highlighted. - In addition to being basic science, the understanding of these phenomena is important in the context of the ozone hole, the greenhouse effect, as well as anthropogenic and natural climate change. (author)

  4. Dystroglycan loss disrupts polarity and beta-casein induction inmammary epithelial cells by perturbing laminin anchoring

    Energy Technology Data Exchange (ETDEWEB)

    Weir, M. Lynn; Oppizzi, Maria Luisa; Henry, Michael D.; Onishi,Akiko; Campbell, Kevin P.; Bissell, Mina J.; Muschler, John L.

    2006-02-17

    Precise contact between epithelial cells and their underlying basement membrane is critical to the maintenance of tissue architecture and function. To understand the role that the laminin receptor dystroglycan (DG) plays in these processes, we assayed cell responses to laminin-111 following conditional ablation of DG expression in cultured mammary epithelial cells (MECs). Strikingly, DG loss disrupted laminin-111-induced polarity and {beta}-casein production, and abolished laminin assembly at the step of laminin binding to the cell surface. DG re-expression restored these deficiencies. Investigations of mechanism revealed that DG cytoplasmic sequences were not necessary for laminin assembly and signaling, and only when the entire mucin domain of extracellular DG was deleted did laminin assembly not occur. These results demonstrate that DG is essential as a laminin-111 co-receptor in MECs that functions by mediating laminin anchoring to the cell surface, a process that allows laminin polymerization, tissue polarity, and {beta}-casein induction. The observed loss of laminin-111 assembly and signaling in DG-/-MECs provides insights into the signaling changes occurring in breast carcinomas and other cancers, where DG's laminin-binding function is frequently defective.

  5. The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing.

    Science.gov (United States)

    Marshall, John; Armour, Kyle C; Scott, Jeffery R; Kostov, Yavor; Hausmann, Ute; Ferreira, David; Shepherd, Theodore G; Bitz, Cecilia M

    2014-07-13

    In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around 'climate response functions' (CRFs), i.e. the response of the climate to 'step' changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate.

  6. When will the Antarctic Ozone Hole Recover?

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Steve

    2006-01-01

    The Antarctic ozone hole develops each year and culminates by early Spring. Antarctic ozone values have been monitored since 1979 using satellite observations from the .TOMS instrument. The severity of the hole has been assessed from TOMS using the minimum total ozone value from the October monthly mean (depth of the hole) and by calculating the average size during the September-October period. Ozone is mainly destroyed by halogen catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this presentation, we show the relationships of halogens and temperature to, both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Using projections of halogen levels combined with age-of-air estimates, we find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. The ozone hole will begin to show first signs of recovery in about 2023, and the hole will fully recover to pre-1980 levels in approximately 2070. This 2070 recovery is 20 years later than recent projections.

  7. Polar boundary layer bromine explosion and ozone depletion events in the chemistry–climate model EMAC v2.52: implementation and evaluation of AirSnow algorithm

    Directory of Open Access Journals (Sweden)

    S. Falk

    2018-03-01

    Full Text Available Ozone depletion events (ODEs in the polar boundary layer have been observed frequently during springtime. They are related to events of boundary layer enhancement of bromine. Consequently, increased amounts of boundary layer volume mixing ratio (VMR and vertical column densities (VCDs of BrO have been observed by in situ observation, ground-based as well as airborne remote sensing, and from satellites. These so-called bromine explosion (BE events have been discussed serving as a source of tropospheric BrO at high latitudes, which has been underestimated in global models so far. We have implemented a treatment of bromine release and recycling on sea-ice- and snow-covered surfaces in the global chemistry–climate model EMAC (ECHAM/MESSy Atmospheric Chemistry based on the scheme of Toyota et al. (2011. In this scheme, dry deposition fluxes of HBr, HOBr, and BrNO3 over ice- and snow-covered surfaces are recycled into Br2 fluxes. In addition, dry deposition of O3, dependent on temperature and sunlight, triggers a Br2 release from surfaces associated with first-year sea ice. Many aspects of observed bromine enhancements and associated episodes of near-complete depletion of boundary layer ozone, both in the Arctic and in the Antarctic, are reproduced by this relatively simple approach. We present first results from our global model studies extending over a full annual cycle, including comparisons with Global Ozone Monitoring Experiment (GOME satellite BrO VCDs and surface ozone observations.

  8. Energy efficiency for the removal of non-polar pollutants during ultraviolet irradiation, visible light photocatalysis and ozonation of a wastewater effluent.

    Science.gov (United States)

    Santiago-Morales, Javier; Gómez, María José; Herrera-López, Sonia; Fernández-Alba, Amadeo R; García-Calvo, Eloy; Rosal, Roberto

    2013-10-01

    This study aims to assess the removal of a set of non-polar pollutants in biologically treated wastewater using ozonation, ultraviolet (UV 254 nm low pressure mercury lamp) and visible light (Xe-arc lamp) irradiation as well as visible light photocatalysis using Ce-doped TiO2. The compounds tracked include UV filters, synthetic musks, herbicides, insecticides, antiseptics and polyaromatic hydrocarbons. Raw wastewater and treated samples were analyzed using stir-bar sorptive extraction coupled with comprehensive two-dimensional gas chromatography (SBSE-CG × GC-TOF-MS). Ozone treatment could remove most pollutants with a global efficiency of over 95% for 209 μM ozone dosage. UV irradiation reduced the total concentration of the sixteen pollutants tested by an average of 63% with high removal of the sunscreen 2-ethylhexyl trans-4-methoxycinnamate (EHMC), the synthetic musk 7-acetyl-1,1,3,4,4,6-hexamethyltetrahydronaphthalene (tonalide, AHTN) and several herbicides. Visible light Ce-TiO2 photocatalysis reached ~70% overall removal with particularly high efficiency for synthetic musks. In terms of power usage efficiency expressed as nmol kJ(-1), the results showed that ozonation was by far the most efficient process, ten-fold over Xe/Ce-TiO2 visible light photocatalysis, the latter being in turn considerably more efficient than UV irradiation. In all cases the efficiency decreased along the treatments due to the lower reaction rate at lower pollutant concentration. The use of photocatalysis greatly improved the efficiency of visible light irradiation. The collector area per order decreased from 9.14 ± 5.11 m(2) m(-3) order(-1) for visible light irradiation to 0.16 ± 0.03 m(2) m(-3) order(-1) for Ce-TiO2 photocatalysis. The toxicity of treated wastewater was assessed using the green alga Pseudokirchneriella subcapitata. Ozonation reduced the toxicity of treated wastewater, while UV irradiation and visible light photocatalysis limited by 20-25% the algal growth due to

  9. [Ozone therapy and phototherapy with polarized polychromatic light in treatment of patients suffering from lower limb critical ischaemia].

    Science.gov (United States)

    Drozhzhin, E V; Sidorkina, O N

    2012-01-01

    The authors generalized their experience in treating a total of 77 patients presenting with atherosclerosis of the arteries of lower limbs with degree III-IV ischaemia according to the A.V. Pokrovsky-Fontain classification. The patients were subjected to comprehensive treatment including the impact of piler-light (apparatus Bioptron 2) and ozone therapy. The control group was composed of 66 people receiving conventional therapy. The two groups were comparable by the nosological entity of the disease, gender, age, and the nature of accompanying pathology. Despite carried out classical anticoagulation therapy there was a tendency towards hypercoagulation in phase I (formation of prothrombinase) and phase III (formation of fibrin) of plasma haemostasis, as well as insufficiency of the fibrinolytic system. The obtained results showed direct influence of ozone therapy and piler light on phase I and III plasmatic haemostasis, as well as enhanced fibrinolytic activity of blood on the background of their administration thereof.

  10. What would have happened to the ozone layer if chlorofluorocarbons (CFCs had not been regulated?

    Directory of Open Access Journals (Sweden)

    P. A. Newman

    2009-03-01

    Full Text Available Ozone depletion by chlorofluorocarbons (CFCs was first proposed by Molina and Rowland in their 1974 Nature paper. Since that time, the scientific connection between ozone losses and CFCs and other ozone depleting substances (ODSs has been firmly established with laboratory measurements, atmospheric observations, and modeling studies. This science research led to the implementation of international agreements that largely stopped the production of ODSs. In this study we use a fully-coupled radiation-chemical-dynamical model to simulate a future world where ODSs were never regulated and ODS production grew at an annual rate of 3%. In this "world avoided" simulation, 17% of the globally-averaged column ozone is destroyed by 2020, and 67% is destroyed by 2065 in comparison to 1980. Large ozone depletions in the polar region become year-round rather than just seasonal as is currently observed in the Antarctic ozone hole. Very large temperature decreases are observed in response to circulation changes and decreased shortwave radiation absorption by ozone. Ozone levels in the tropical lower stratosphere remain constant until about 2053 and then collapse to near zero by 2058 as a result of heterogeneous chemical processes (as currently observed in the Antarctic ozone hole. The tropical cooling that triggers the ozone collapse is caused by an increase of the tropical upwelling. In response to ozone changes, ultraviolet radiation increases, more than doubling the erythemal radiation in the northern summer midlatitudes by 2060.

  11. What Would Have Happened to the Ozone Layer if Chlorofluorocarbons (CFCs) had not been Regulated?

    Science.gov (United States)

    Newman, Paul A.; Oman, L. D.; Douglass, A. R.; Fleming, E. L.; Frith, S. M.; Hurwitz, M. M.; Kawa, S. R.; Jackman, C. H.; Krotkov, N. A.; Nash, E. R.; hide

    2008-01-01

    Ozone depletion by chlorofluorocarbons (CFCs) was first proposed by Molina and Rowland in their 1974 Nature paper. Since that time, the sci entific connection between ozone losses and CFCs and other ozone depl eting substances (ODSs) has been firmly established with laboratory m easurements, atmospheric observations, and modeling research. This science research led to the implementation of international agreements t hat largely stopped the production of ODSs. In this study we use a fu lly-coupled radiation-chemical-dynamical model to simulate a future world where ODSs were never regulated and ODS production grew at an ann ual rate of 3%. In this "world avoided" simulation 1.7 % of the globa lly-average column ozone is destroyed by 2020, and 67% is destroyed b y 2065 in comparison to 1980. Large ozone depletions in the polar region become year-round rather than just seasonal as is currently observ ed in the Antarctic ozone hole. Very large temperature decreases are observed in response to circulation changes and decreased shortwave radiation absorption by ozone. Ozone levels in the tropical lower strat osphere remain constant until about 2053 and then collapse to near ze ro by 2058 as a result of heterogeneous chemical processes (as curren tly observed in the Antarctic ozone hole). The tropical cooling that triggers the ozone collapse is caused by an increase of the tropical upwelling. In response to ozone changes, ultraviolet radiation increa ses, more than doubling the erythemal radiation in the northern summer midlatitudes by 2060.

  12. Influence of inter-annual variations of stratospheric dynamics in model simulations of ozone losses by aircraft emissions

    Energy Technology Data Exchange (ETDEWEB)

    Jadin, E.A. [Central Aerological Observatory, Dolgoprudny (Russian Federation)

    1997-12-31

    The questions of model predictions of aircraft emission impacts on the ozone variations are considered. Using the NMC data it is shown that the stratospheric circulation underwent the abrupt transition to a new regime in summer 1980. The strong correlations are found between the monthly mean total ozone and stratospheric angular momentum anomalies during 1979-1991. The natural long-term changes of transport processes are necessary to take into account in model simulations of anthropogenic impacts on the ozone layer. (author) 12 refs.

  13. Ozone and the stratosphere

    Science.gov (United States)

    Shimazaki, Tatsuo

    1987-01-01

    It is shown that the stratospheric ozone is effective in absorbing almost all radiation below 300 nm at heights below 300 km. The distribution of global ozone in the troposphere and the lower stratosphere, and the latitudinal variations of the total ozone column over four seasons are considered. The theory of the ozone layer production is discussed together with catalytic reactions for ozone loss and the mechanisms of ozone transport. Special attention is given to the anthropogenic perturbations, such as SST exhaust gases and freon gas from aerosol cans and refrigerators, that may cause an extensive destruction of the stratospheric ozone layer and thus have a profound impact on the world climate and on life.

  14. Loss of polarity alters proliferation and differentiation in low-grade endometrial cancers by disrupting Notch signaling.

    Directory of Open Access Journals (Sweden)

    Erin Williams

    Full Text Available Cell adhesion and apicobasal polarity together maintain epithelial tissue organization and homeostasis. Loss of adhesion has been described as a prerequisite for the epithelial to mesenchymal transition. However, what role misregulation of apicobasal polarity promotes tumor initiation and/or early progression remains unclear. We find that human low-grade endometrial cancers are associated with disrupted localization of the apical polarity protein Par3 and Ezrin while, the adhesion molecule E-cadherin remains unchanged, accompanied by decreased Notch signaling, and altered Notch receptor localization. Depletion of Par3 or Ezrin, in a cell-based model, results in loss of epithelial architecture, differentiation, increased proliferation, migration and decreased Notch signaling. Re-expression of Par3 in endometrial cancer cell lines with disrupted Par3 protein levels blocks proliferation and reduces migration in a Notch dependent manner. These data uncover a function for apicobasal polarity independent of cell adhesion in regulating Notch-mediated differentiation signals in endometrial epithelial cells.

  15. SEA-LEVEL RISE. Sea-level rise due to polar ice-sheet mass loss during past warm periods.

    Science.gov (United States)

    Dutton, A; Carlson, A E; Long, A J; Milne, G A; Clark, P U; DeConto, R; Horton, B P; Rahmstorf, S; Raymo, M E

    2015-07-10

    Interdisciplinary studies of geologic archives have ushered in a new era of deciphering magnitudes, rates, and sources of sea-level rise from polar ice-sheet loss during past warm periods. Accounting for glacial isostatic processes helps to reconcile spatial variability in peak sea level during marine isotope stages 5e and 11, when the global mean reached 6 to 9 meters and 6 to 13 meters higher than present, respectively. Dynamic topography introduces large uncertainties on longer time scales, precluding robust sea-level estimates for intervals such as the Pliocene. Present climate is warming to a level associated with significant polar ice-sheet loss in the past. Here, we outline advances and challenges involved in constraining ice-sheet sensitivity to climate change with use of paleo-sea level records. Copyright © 2015, American Association for the Advancement of Science.

  16. Loss of aPKCλ in differentiated neurons disrupts the polarity complex but does not induce obvious neuronal loss or disorientation in mouse brains.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Yamanaka

    Full Text Available Cell polarity plays a critical role in neuronal differentiation during development of the central nervous system (CNS. Recent studies have established the significance of atypical protein kinase C (aPKC and its interacting partners, which include PAR-3, PAR-6 and Lgl, in regulating cell polarization during neuronal differentiation. However, their roles in neuronal maintenance after CNS development remain unclear. Here we performed conditional deletion of aPKCλ, a major aPKC isoform in the brain, in differentiated neurons of mice by camk2a-cre or synapsinI-cre mediated gene targeting. We found significant reduction of aPKCλ and total aPKCs in the adult mouse brains. The aPKCλ deletion also reduced PAR-6β, possibly by its destabilization, whereas expression of other related proteins such as PAR-3 and Lgl-1 was unaffected. Biochemical analyses suggested that a significant fraction of aPKCλ formed a protein complex with PAR-6β and Lgl-1 in the brain lysates, which was disrupted by the aPKCλ deletion. Notably, the aPKCλ deletion mice did not show apparent cell loss/degeneration in the brain. In addition, neuronal orientation/distribution seemed to be unaffected. Thus, despite the polarity complex disruption, neuronal deletion of aPKCλ does not induce obvious cell loss or disorientation in mouse brains after cell differentiation.

  17. ER-2 #809 and DC-8 in Arena Arctica hangar in Kiruna, Sweden prior to the SAGE III Ozone Loss and Va

    Science.gov (United States)

    2000-01-01

    NASA ER-2 # 809 and its DC-8 shown in Arena Arctica before the SAGE III Ozone Loss and Validation Experiment (SOLVE). The two airborne science platforms were based north of the Arctic Circle in Kiruna, Sweden, during the winter of 2000 to study ozone depletion as part of SOLVE. A large hangar built especially for research, 'Arena Arctica' housed the instrumented aircraft and the scientists. Scientists have observed unusually low levels of ozone over the Arctic during recent winters, raising concerns that ozone depletion there could become more widespread as in the Antarctic ozone hole. The NASA-sponsored international mission took place between November 1999 and March 2000 and was divided into three phases. The DC-8 was involved in all three phases returning to Dryden between each phase. The ER-2 flew sample collection flights between January and March, remaining in Sweden from Jan. 9 through March 16. 'The collaborative campaign will provide an immense new body of information about the Arctic stratosphere,' said program scientist Dr. Michael Kurylo, NASA Headquarters. 'Our understanding of the Earth's ozone will be greatly enhanced by this research.' ER-2s bearing tail numbers 806 and 809 are used as airborne science platforms by NASA's Dryden Flight Research Center. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, an ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The

  18. Detecting the Recovery of the Antarctic Ozone Hole

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Steve

    2004-01-01

    The Antarctic ozone hole develops each year and culminates by early Spring. Antarctic ozone values have been monitored since 1979 using satellite observations from the TOMS instrument. The severity of the hole has been assessed from TOMS using the minimum total ozone value from the October monthly mean (depth of the hole) and by calculating the average size during the September-October period. Ozone is mainly destroyed by halogen catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this presentation, we show the relationships of halogens and temperature to both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Using projections of halogen levels combined with age-of-air estimates, we find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. We will show estimates of both when the ozone hole will begin to show first signs of recovery, and when the hole will fully recover to pre-1980 levels.

  19. On the possible causes of recent increases in northern hemispheric total ozone from a statistical analysis of satellite data from 1979 to 2003

    Directory of Open Access Journals (Sweden)

    S. Dhomse

    2006-01-01

    Full Text Available Global total ozone measurements from various satellite instruments such as SBUV, TOMS, and GOME show an increase in zonal mean total ozone at northern hemispheric (NH mid to high latitudes since the mid-nineties. This increase could be expected from the peaking and start of decline in the effective stratospheric halogen loading, but the rather rapid increase observed in NH zonal mean total ozone suggests that another physical mechanism such as winter planetary wave activity has increased which has led to higher stratospheric Arctic temperatures. This has enhanced ozone transport into higher latitudes in recent years as part of the residual circulation and at the same time reduced the frequency of cold Arctic winters with enhanced polar ozone loss. Results from various multi-variate linear regression analyses using SBUV V8 total ozone with explanatory variables such as a linear trend or, alternatively, EESC (equivalent effective stratospheric chlorine and on the other hand planetary wave driving (eddy heat flux or, alternatively, polar ozone loss (PSC volume in addition to proxies for stratospheric aerosol loading, QBO, and solar cycle, all considered to be main drivers for ozone variability, are presented. It is shown that the main contribution to the recent increase in NH total ozone is from the combined effect of rising tropospheric driven planetary wave activity associated with reduced polar ozone loss at high latitudes as well as increasing solar activity. This conclusion can be drawn regardless of the use of linear trend or EESC terms in our statistical model. It is also clear that more years of data will be needed to further improve our estimates of the relative contributions of the individual processes to decadal ozone variability. The question remains if the observed increase in planetary wave driving is part of natural decadal atmospheric variability or will persist. If the latter is the case, it could be interpreted as a possible

  20. Comment on "Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change"

    Science.gov (United States)

    Müller, Rolf; Grooß, Jens-Uwe

    2014-04-01

    Lu's "cosmic-ray-driven electron-induced reaction (CRE) theory" is based on the assumption that the CRE reaction of halogenated molecules (e.g., chlorofluorocarbons (CFCs), HCl, ClONO2) adsorbed or trapped in polar stratospheric clouds in the winter polar stratosphere is the key step in forming photoactive halogen species that are the cause of the springtime ozone hole. This theory has been extended to a warming theory of halogenated molecules for climate change. In this comment, we discuss the chemical and physical foundations of these theories and the conclusions derived from the theories. First, it is unclear whether the loss rates of halogenated molecules induced by dissociative electron attachment (DEA) observed in the laboratory can also be interpreted as atmospheric loss rates, but even if this were the case, the impact of DEA-induced reactions on polar chlorine activation and ozone loss in the stratosphere is limited. Second, we falsify several conclusions that are reported on the basis of the CRE theory: There is no polar ozone loss in darkness, there is no apparent 11-year periodicity in polar total ozone measurements, the age of air in the polar lower stratosphere is much older than 1-2 years, and the reported detection of a pronounced recovery (by about 20-25%) in Antarctic total ozone measurements by the year 2010 is in error. There are also conclusions about the future development of sea ice and global sea level which are fundamentally flawed because Archimedes' principle is neglected. Many elements of the CRE theory are based solely on correlations between certain datasets which are no substitute for providing physical and chemical mechanisms causing a particular behavior noticeable in observations. In summary, the CRE theory cannot be considered as an independent, alternative mechanism for polar stratospheric ozone loss and the conclusions on recent and future surface temperature and global sea level change do not have a physical basis.

  1. Ozonation of Canadian Athabasca asphaltene

    Science.gov (United States)

    Cha, Zhixiong

    . Two new solvent systems, a self-sustaining ozonation system and a cyclohexane/acetone/water or a cyclohexane/acetone/methanol system, were studied to overcome the drawback of using halogenated solvents. The self-sustaining ozonation process employed the final ozonation products as the reaction solvent. Compared to the self-sustaining ozonation, the cyclohexane solvent system showed higher ozone efficiency; however, it required dynamic adjustment of the solvent system during ozonation. An extensively ozonated asphaltene's weight would be doubled. Distillation of the products separated about 45% volatile products having biodiesel-style chemical structures. Compared to distillation, more than 90% of the ozonation products were extractable by acetone. The remaining acetone-insoluble part was further classified by dichloromethane and other solvents of different polarities. The separated ozonation products were good fuel additives or materials for other products.

  2. What-ifs for a Northern ozone hole

    Energy Technology Data Exchange (ETDEWEB)

    Newman, A.

    1993-08-01

    Based on papers presented at a recent American Geophysical Union meeting in Baltimore, this article discusses various processes that could lead to further significant stratospheric ozone losses over northern latitudes. In southern high latitudes, ClO, formed when Cl atoms react with O[sub 3], persists into the spring and enters a photocatalytic cycle that regenerates ozone-destroying Cl atoms. Type II polar stratospheric clouds (PSCs) are believed to act as catalysts in this cycle. Although type II PSCs rarely form in the warmer Arctic stratosphere, it is possible that type I PSCs and sulfuric acid droplets may act as catalytic surfaces in this region. The arctic however, currently lacks a pronounced ozone hole, unlike Antartica. This is because in the Northern Hemisphere, large-scale tropospheric weather disturbances leak a portion of their energy to the less dense stratosphere. This indirectly leads to the descent of air over the Arctic region which produces compression heating of the polar cap and keeps the Arctic winter stratosphere warm enough to evade the cold temperatures that would produce widespread PSCs, and the associated significant ozone destruction. However, the greenhouse effect could lead to a cooler stratosphere containing more water and weaker tropospheric large-scale disturbances meaning colder Arctic winters. All these factors would contribute to greater PSC formation and the associated ozone destruction.

  3. What-ifs for a Northern ozone hole

    International Nuclear Information System (INIS)

    Newman, A.

    1993-01-01

    Based on papers presented at a recent American Geophysical Union meeting in Baltimore, this article discusses various processes that could lead to further significant stratospheric ozone losses over northern latitudes. In southern high latitudes, ClO, formed when Cl atoms react with O 3 , persists into the spring and enters a photocatalytic cycle that regenerates ozone-destroying Cl atoms. Type II polar stratospheric clouds (PSCs) are believed to act as catalysts in this cycle. Although type II PSCs rarely form in the warmer Arctic stratosphere, it is possible that type I PSCs and sulfuric acid droplets may act as catalytic surfaces in this region. The arctic however, currently lacks a pronounced ozone hole, unlike Antartica. This is because in the Northern Hemisphere, large-scale tropospheric weather disturbances leak a portion of their energy to the less dense stratosphere. This indirectly leads to the descent of air over the Arctic region which produces compression heating of the polar cap and keeps the Arctic winter stratosphere warm enough to evade the cold temperatures that would produce widespread PSCs, and the associated significant ozone destruction. However, the greenhouse effect could lead to a cooler stratosphere containing more water and weaker tropospheric large-scale disturbances meaning colder Arctic winters. All these factors would contribute to greater PSC formation and the associated ozone destruction

  4. Modelling and prediction of crop losses from NOAA polar-orbiting operational satellites

    Directory of Open Access Journals (Sweden)

    Felix Kogan

    2016-05-01

    Full Text Available Weather-related crop losses have always been a concern for farmers, governments, traders, and policy-makers for the purpose of balanced food supply/demands, trade, and distribution of aid to the nations in need. Among weather disasters, drought plays a major role in large-scale crop losses. This paper discusses utility of operational satellite-based vegetation health (VH indices for modelling cereal yield and for early warning of drought-related crop losses. The indices were tested in Saratov oblast (SO, one of the principal grain growing regions of Russia. Correlation and regression analysis were applied to model cereal yield from VH indices during 1982–2001. A strong correlation between mean SO's cereal yield and VH indices were found during the critical period of cereals, which starts two–three weeks before and ends two–three weeks after the heading stage. Several models were constructed where VH indices served as independent variables (predictors. The models were validated independently based on SO cereal yield during 1982–2012. Drought-related cereal yield losses can be predicted three months in advance of harvest and six–eight months in advance of official grain production statistic is released. The error of production losses prediction is 7%–10%. The error of prediction drops to 3%–5% in the years of intensive droughts.

  5. Total Ozone Prediction: Stratospheric Dynamics

    Science.gov (United States)

    Jackman, Charles H.; Kawa, S. Ramdy; Douglass, Anne R.

    2003-01-01

    The correct prediction of total ozone as a function of latitude and season is extremely important for global models. This exercise tests the ability of a particular model to simulate ozone. The ozone production (P) and loss (L) will be specified from a well- established global model and will be used in all GCMs for subsequent prediction of ozone. This is the "B-3 Constrained Run" from M&MII. The exercise mostly tests a model stratospheric dynamics in the prediction of total ozone. The GCM predictions will be compared and contrasted with TOMS measurements.

  6. Unusually low ozone, HCl, and HNO3 column measurements at Eureka, Canada during winter/spring 2011

    Directory of Open Access Journals (Sweden)

    R. L. Mittermeier

    2012-04-01

    Full Text Available As a consequence of dynamically variable meteorological conditions, springtime Arctic ozone levels exhibit significant interannual variability in the lower stratosphere. In winter 2011, the polar vortex was strong and cold for an unusually long time. Our research site, located at Eureka, Nunavut, Canada (80.05° N, 86.42° W, was mostly inside the vortex from October 2010 until late March 2011. The Bruker 125HR Fourier transform infrared spectrometer installed at the Polar Environment Atmospheric Research Laboratory at Eureka acquired measurements from 23 February to 6 April during the 2011 Canadian Arctic Atmospheric Chemistry Experiment Validation Campaign. These measurements showed unusually low ozone, HCl, and HNO3 total columns compared to the previous 14 yr. To remove dynamical effects, we normalized these total columns by the HF total column. The normalized values of the ozone, HCl, and HNO3 total columns were smaller than those from previous years, and confirmed the occurrence of chlorine activation and chemical ozone depletion. To quantify the chemical ozone loss, a three-dimensional chemical transport model, SLIMCAT, and the passive subtraction method were used. The chemical ozone depletion was calculated as the mean percentage difference between the measured ozone and the SLIMCAT passive ozone, and was found to be 35%.

  7. Effect of Stabilization Heat Treatment on Time-Dependent Polarization Losses in Sintered Nd-Fe-B Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Tuominen S.

    2013-01-01

    Full Text Available Some companies in the motor and generator industry utilizing sintered NdFeB magnets have adopted pre-ageing heat treatment in order to improve the stability of the magnets. The parameters of this stabilization heat treatment are based mainly on assumptions rather than on any published research results. In this work, the effects of pre-ageing treatment on the time-dependent polarization losses of two different types of commercial sintered NdFeB magnets were studied. The material showing the squarer J(H curve did not benefit from the pre-ageing treatment, since it seems to be stable under a certain critical temperature. In contrast, a stabilizing effect was observed in the material showing rounder J(H curve. After the stabilization heat treatment, the polarization of the magnets was found to be at lower level, but unchanged over a certain period of time. The length of this period depends on the temperature and the duration of the pre-ageing treatment. In addition, our analysis reveals that the stabilization heat treatment performed in an open circuit condition does not stabilize the magnet uniformly.

  8. Direct transverse load profile determination using the polarization-dependent loss spectral response of a chirped fiber Bragg grating.

    Science.gov (United States)

    Descamps, Frédéric; Bette, Sébastien; Kinet, Damien; Caucheteur, Christophe

    2016-06-01

    The determination of stress profiles created by transverse loads was proved to be important in different domains, such as structural health monitoring and biomechanics, and, more specifically, in the prostheses domain. In this paper, we report an original method to estimate the transverse load profile from the polarization-dependent loss (PDL) spectrum of a chirped fiber Bragg grating (CFBG). This method makes use of the relationship between the integration of the PDL of a CFBG, and the force profile has the advantage of not requiring any iterative method to estimate the transverse load profile. The relationship linking the integration of the PDL and the force profile is demonstrated using an analytical approximation of the transmission spectrum of CFBGs. The validity of this method for the determination of non-uniform load profiles is then shown using a numerical analysis. An experimental demonstration is finally reported using a 48 mm-long CFBG subject to different step transverse load profiles.

  9. Ozone: What Would It Be Like to Live in a World Where the Sun Was Dangerous?

    Science.gov (United States)

    Clearing, 1992

    1992-01-01

    Defines ozone layer and the meaning, evidence, causes, and significance of ozone depletion. Summarizes solutions to the problem of ozone depletion and government action concerning the issue. Graphically depicts ozone depletion, global ozone loss, and how ozone is destroyed. Provides a lesson plan and listing for additional educational resources.…

  10. Sea-ice loss boosts visual search: fish foraging and changing pelagic interactions in polar oceans.

    Science.gov (United States)

    Langbehn, Tom J; Varpe, Øystein

    2017-12-01

    Light is a central driver of biological processes and systems. Receding sea ice changes the lightscape of high-latitude oceans and more light will penetrate into the sea. This affects bottom-up control through primary productivity and top-down control through vision-based foraging. We model effects of sea-ice shading on visual search to develop a mechanistic understanding of how climate-driven sea-ice retreat affects predator-prey interactions. We adapt a prey encounter model for ice-covered waters, where prey-detection performance of planktivorous fish depends on the light cycle. We use hindcast sea-ice concentrations (past 35 years) and compare with a future no-ice scenario to project visual range along two south-north transects with different sea-ice distributions and seasonality, one through the Bering Sea and one through the Barents Sea. The transect approach captures the transition from sub-Arctic to Arctic ecosystems and allows for comparison of latitudinal differences between longitudes. We find that past sea-ice retreat has increased visual search at a rate of 2.7% to 4.2% per decade from the long-term mean; and for high latitudes, we predict a 16-fold increase in clearance rate. Top-down control is therefore predicted to intensify. Ecological and evolutionary consequences for polar marine communities and energy flows would follow, possibly also as tipping points and regime shifts. We expect species distributions to track the receding ice-edge, and in particular expect species with large migratory capacity to make foraging forays into high-latitude oceans. However, the extreme seasonality in photoperiod of high-latitude oceans may counteract such shifts and rather act as a zoogeographical filter limiting poleward range expansion. The provided mechanistic insights are relevant for pelagic ecosystems globally, including lakes where shifted distributions are seldom possible but where predator-prey consequences would be much related. As part of the discussion

  11. Preferred M2 Polarization by ASC-Based Hydrogel Accelerated Angiogenesis and Myogenesis in Volumetric Muscle Loss Rats

    Directory of Open Access Journals (Sweden)

    Hong Huang

    2017-01-01

    Full Text Available Volumetric muscle loss (VML injury resulted from massive muscle defects and diseases for which there are still no effective therapeutic treatments. This study aimed to investigate the effects of rat adipose-derived mesenchymal stem cells (rASCs and rASCs-conditioned medium- (CM- based type I collagen hydrogel on macrophage (MP transition, myogenesis, and vascularization in the rat VML model. Laser Doppler results demonstrated much higher blood flow in the rASC- and CM-based hydrogel groups. qRT-PCR, hematoxylin and eosin, immunofluorescence, and Sirius Red staining manifested that both rASCs and CM-based hydrogel implantation accelerated muscle repair with upregulated angiogenesis and myogenesis, attenuated inflammation while facilitating M2 transition, and decreased the collagen deposition compared with the hydrogel group. In vitro experiments indicated that factors secreted from polarized M2 MPs could accelerate the migration and tube formation capacities of HUVECs. These results suggested that rASCs exerted immunomodulatory effects on MPs which further enhanced the proangiogenic potential on ECs to promote myogenesis and angiogenesis during muscle repair. These fundamental results support further clinical applications of ASCs for muscle loss injury.

  12. Polarization-Sensitive Optical Coherence Tomographic Documentation of Choroidal Melanin Loss in Chronic Vogt-Koyanagi-Harada Disease.

    Science.gov (United States)

    Miura, Masahiro; Makita, Shuichi; Yasuno, Yoshiaki; Tsukahara, Rintaro; Usui, Yoshihiko; Rao, Narsing A; Ikuno, Yasushi; Uematsu, Sato; Agawa, Tetsuya; Iwasaki, Takuya; Goto, Hiroshi

    2017-09-01

    Vogt-Koyanagi-Harada (VKH) disease is a systemic autoimmune disorder that affects organs with melanocytes. The sunset glow fundus (SGF) in VKH disease was evaluated with polarization-sensitive optical coherence tomography (PS-OCT). The study involved 28 eyes from 14 patients with chronic VKH disease, 21 eyes from 21 age-matched controls, and 22 eyes from 22 high-myopic patients with a tessellated fundus. VKH eyes were grouped into sunset or non-sunset groups on the basis of color fundus images. The presence of melanin in the choroid was determined by using the degree of polarization uniformity (DOPU) obtained by PS-OCT. The sunset glow index (SGI) was calculated by using color fundus images. Presence of an SGF was evaluated by using DOPU, SGI, subfoveal choroidal thicknesses, near-infrared images, and autofluorescence images at 488 nm (SW-AF) and 785 nm (NIR-AF). There were 16 eyes in the sunset group and 12 eyes in the non-sunset group. For all eyes in the sunset group, the disappearance of choroidal melanin was clearly detected with PS-OCT. Percentage areas of low DOPU in the choroidal interstitial stroma of the sunset group were significantly lower than those of other groups and showed no overlap with other groups. The distribution of choroidal thicknesses and SGI in the sunset group substantially overlapped with other groups. The subjective analyses of the sunset and non-sunset groups, using near infrared, SW-AF, or NIR-AF, showed substantial inconsistencies with the PS-OCT results. PS-OCT provides an in vivo objective evaluation of choroidal melanin loss of the SGF in chronic VKH disease.

  13. High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure.

    Science.gov (United States)

    Huang, Zhe; Parrott, Edward P J; Park, Hongkyu; Chan, Hau Ping; Pickwell-MacPherson, Emma

    2014-02-15

    A thin-film terahertz polarizer is proposed and realized via a tunable bilayer metal wire-grid structure to achieve high extinction ratios and good transmission. The polarizer is fabricated on top of a thin silica layer by standard micro-fabrication techniques to eliminate the multireflection effects. The tunable alignment of the bilayer aluminum-wire grid structure enables tailoring of the extinction ratio and transmission characteristics. Using terahertz time-domain spectroscopy (THz-TDS), a fabricated polarizer is characterized, with extinction ratios greater than 50 dB and transmission losses below 1 dB reported in the 0.2-1.1 THz frequency range. These characteristics can be improved by further tuning the polarizer parameters such as the pitch, metal film thickness, and lateral displacement.

  14. Extreme events in total ozone over Arosa – Part 1: Application of extreme value theory

    Directory of Open Access Journals (Sweden)

    H. E. Rieder

    2010-10-01

    Full Text Available In this study ideas from extreme value theory are for the first time applied in the field of stratospheric ozone research, because statistical analysis showed that previously used concepts assuming a Gaussian distribution (e.g. fixed deviations from mean values of total ozone data do not adequately address the structure of the extremes. We show that statistical extreme value methods are appropriate to identify ozone extremes and to describe the tails of the Arosa (Switzerland total ozone time series. In order to accommodate the seasonal cycle in total ozone, a daily moving threshold was determined and used, with tools from extreme value theory, to analyse the frequency of days with extreme low (termed ELOs and high (termed EHOs total ozone at Arosa. The analysis shows that the Generalized Pareto Distribution (GPD provides an appropriate model for the frequency distribution of total ozone above or below a mathematically well-defined threshold, thus providing a statistical description of ELOs and EHOs. The results show an increase in ELOs and a decrease in EHOs during the last decades. The fitted model represents the tails of the total ozone data set with high accuracy over the entire range (including absolute monthly minima and maxima, and enables a precise computation of the frequency distribution of ozone mini-holes (using constant thresholds. Analyzing the tails instead of a small fraction of days below constant thresholds provides deeper insight into the time series properties. Fingerprints of dynamical (e.g. ENSO, NAO and chemical features (e.g. strong polar vortex ozone loss, and major volcanic eruptions, can be identified in the observed frequency of extreme events throughout the time series. Overall the new approach to analysis of extremes provides more information on time series properties and variability than previous approaches that use only monthly averages and/or mini-holes and mini-highs.

  15. GLOBAL DECREASES IN TOTAL OZONE DURING THE WINTER MONTHS

    OpenAIRE

    タカオ, トシノリ; Toshinori, TAKAO

    1990-01-01

    Global network of total ozone measurements by Dobson spectrophotometer shows ozone decrease in recent years. At midlatitudes of the Northern Hemisphere, ozone loss was significant during the winter months of 1983 and 1985. In some regions, there is a positive correlation between the annual mean of total ozone amounts and the solar cycle.

  16. Reply to "Comment on 'Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change' by Rolf Müller and Jens-Uwe Grooß"

    Science.gov (United States)

    Lu, Q.-B.

    2014-04-01

    In their Comment, Müller and Grooß continuously use problematic "observed data" and misleading arguments to make a case against our CRE mechanism of the ozone hole and CFC-warming mechanism of global climate change. They make the groundless assertion that the CRE theory cannot be considered as an independent process for ozone loss in the polar stratosphere. Their claim that the impact of the CRE mechanism on polar chlorine activation and ozone loss in the stratosphere would be limited does not agree with the observed data over the past decades. They also make many contradictory and fact-distorting arguments that "There is no polar ozone loss in darkness, there is no apparent 11-year periodicity in polar total ozone measurements, the age of air in the polar lower stratosphere is much older than 1-2 years, and the reported detection of a pronounced recovery (by about 20-25%) in Antarctic total ozone measurements by the year 2010 is in error." These assertions ignore and contradict a great deal of robust observed data from both laboratory and field measurements reported in the literature including their own publications. Their new argument for the photodissociation of CFCs on PSCs also contradicts their previous extraordinary efforts including the use of fabricated "ACE-FTS satellite data" to argue for no physical/chemical loss of CFCs in the winter lower polar stratosphere. Finally, they do not provide any scientific evidence to support their criticism for the no physical basis of the CFC-warming theory and its conclusions. In summary, their misleading arguments and false "data" do not change the convincing conclusion reached by robust observations in my recent paper that both the CRE mechanism and the CFC-warming mechanism not only provide new fundamental understandings of the O3 hole and global climate change but have superior predictive capabilities, compared with the conventional models.

  17. Ozone threat

    International Nuclear Information System (INIS)

    Rajput, M.A.

    1995-01-01

    Ozone hole was first discovered in 1980. Thus 15 years even after the first warming, the world is no where near to the elimination of man made gases that threaten to destroy the ozone layer. Ozone depletion has become a matter of enormous threat which remains to be solved by the Scientists and intelligentia of the world. Ozone (O3) is a pungent poisonous gas. It forms a layer at a distance of about 15 miles above the earth's surface which helps shield living things from the sun shearing ultra violet light. If ozone is lost, more ultra violet light reaches the earth, which can lead to increasing rate of skin cancer, the death of micro organisms and the failure of crops and plants. It was in 1974 when it was discovered that Chlorofluorocarbons (CFCs) cold rise slowly to the upper atmosphere and destroy the earth's fragile ozone shield. Chlorofluorocarbons are commonly used as coolants (such as Freon) for home and automobile air conditioners and in the making of fast food containers. CFCs take about 100 years or more to reach he stratosphere to damage the ozone layers. In 1988, Scientists confirmed that upto 3% of the ozone layer over the more populated Northern Hemisphere has been destroyed. it is believed that for every 1% decrease in ozone, skin cancers are expected to rise 5 to 6 per cent due to the increase of ultraviolet light. Cases of cataracts and certain human immune system diseases are also expected to rise. (author)

  18. Will climate change increase ozone depletion from low-energy-electron precipitation?

    Directory of Open Access Journals (Sweden)

    A. J. G. Baumgaertner

    2010-10-01

    Full Text Available We investigate the effects of a strengthened stratospheric/mesospheric residual circulation on the transport of nitric oxide (NO produced by energetic particle precipitation. During periods of high geomagnetic activity, energetic electron precipitation (EEP is responsible for winter time ozone loss in the polar middle atmosphere between 1 and 6 hPa. However, as climate change is expected to increase the strength of the Brewer-Dobson circulation including extratropical downwelling, the enhancements of EEP NOx concentrations are expected to be transported to lower altitudes in extratropical regions, becoming more significant in the ozone budget. Changes in the mesospheric residual circulation are also considered. We use simulations with the chemistry climate model system EMAC to compare present day effects of EEP NOx with expected effects in a climate change scenario for the year 2100. In years of strong geomagnetic activity, similar to that observed in 2003, an additional polar ozone loss of up to 0.4 μmol/mol at 5 hPa is found in the Southern Hemisphere. However, this would be approximately compensated by an ozone enhancement originating from a stronger poleward transport of ozone from lower latitudes caused by a strengthened Brewer-Dobson circulation, as well as by slower photochemical ozone loss reactions in a stratosphere cooled by risen greenhouse gas concentrations. In the Northern Hemisphere the EEP NOx effect appears to lose importance due to the different nature of the climate-change induced circulation changes.

  19. Chemistry, Dynamics, and Radiation of Ozone Loss: Airborne Measurements of OH, HO2, N02, Cl0, BrO, IO, ClON02, BrON02, CIOOCl, and H2O

    Science.gov (United States)

    Anderson, James G.

    2005-01-01

    This research addresses, through a combination of in situ and remote aircraft-borne Which mechanisms are responsible for the continuing erosion of ozone over midlatitudes of the Northern Hemisphere? Will the rapid loss of ozone over the Arctic in late winter continue to worsen over the next two decades? Are these large losses dynamically coupled to midlatitudes? Which mechanisms dictate the rate of exchange of material between the troposphere and stratosphere? How will these processes change in response to changes in climate? Will regional scale pollution episodes, that are emerging as predictable seasonal events, significantly affect the middle-to-upper troposphere chemical composition. If so, how will these changes alter the chemical composition of the middle world? What changes are predicted for the overworld? Why has the arctic stratosphere become colder in the late winter phase in recent years? Have increases in tropical upper troposphere temperatures increased the temperature gradient such as to change the trajectories of vertically propagating waves, thus reducing the effectiveness of the meridional circulation for transport of heat, momentum and ozone from the tropics to high latitudes?

  20. Chemistry, Dynamics, and Radiation of Ozone Loss: Airborne Measurements of OH, HO2, NO2, ClO, BrO, IO, ClONO2, BrONO2, ClOOCl, and H2O

    Science.gov (United States)

    Anderson, James G.

    2005-01-01

    This grant continued the research initially funded under NAG1-01095. This research addresses, through a combination of in situ and remote aircraft-borne instruments, the following scientific questions: Which mechanisms are responsible for the continuing erosion of ozone over midlatitudes of the Northern Hemisphere? Will the rapid loss of ozone over the Arctic in late winter continue to worsen over the next two decades? Are these large losses dynamically coupled to midlatitudes? Which mechanisms dictate the rate of exchange of material between the troposphere and stratosphere? How will these processes change in response to changes in climate? Will regional scale pollution episodes, that are emerging as predictable seasonal events, significantly affect the middle-to-upper troposphere chemical composition. If so, how will these changes alter the chemical composition of the middle world? What changes are predicted for the overworld? Why has the arctic stratosphere become colder in the late winter phase in recent years? Have increases in tropical upper troposphere temperatures increased the temperature gradient such as to change the trajectories of vertically propagating waves, thus reducing the effectiveness of the meridional circulation for transport of heat, momentum and ozone from the tropics to high latitudes?

  1. Impacts of ozone on trees and crops

    International Nuclear Information System (INIS)

    Felzer, B.S.; Cronina, T.; Melillo, J.M.; Reilly, J.M.; Xiaodong, Wang

    2007-01-01

    In this review article, we explore how surface-level ozone affects trees and crops with special emphasis on consequences for productivity and carbon sequestration. Vegetation exposure to ozone reduces photosynthesis, growth, and other plant functions. Ozone formation in the atmosphere is a product of NO x , which are also a source of nitrogen deposition. Reduced carbon sequestration of temperate forests resulting from ozone is likely offset by increased carbon sequestration from nitrogen fertilization. However, since fertilized crop-lands are generally not nitrogen-limited, capping ozone-polluting substances in the USA, Europe, and China can reduce future crop yield loss substantially. (authors)

  2. Direct hyperpolarization of micro- and nanodiamonds for bioimaging applications - Considerations on particle size, functionalization and polarization loss

    Science.gov (United States)

    Kwiatkowski, Grzegorz; Jähnig, Fabian; Steinhauser, Jonas; Wespi, Patrick; Ernst, Matthias; Kozerke, Sebastian

    2018-01-01

    Due to the inherently long relaxation time of 13C spins in diamond, the nuclear polarization enhancement obtained with dynamic nuclear polarization can be preserved for a time on the order of about one hour, opening up an opportunity to use diamonds as a new class of long-lived contrast agents. The present communication explores the feasibility of using 13C spins in directly hyperpolarized diamonds for MR imaging including considerations for potential in vivo applications.

  3. Increasing nest predation will be insufficient to maintain polar bear body condition in the face of sea ice loss.

    Science.gov (United States)

    Dey, Cody J; Richardson, Evan; McGeachy, David; Iverson, Samuel A; Gilchrist, Hugh G; Semeniuk, Christina A D

    2017-05-01

    Climate change can influence interspecific interactions by differentially affecting species-specific phenology. In seasonal ice environments, there is evidence that polar bear predation of Arctic bird eggs is increasing because of earlier sea ice breakup, which forces polar bears into nearshore terrestrial environments where Arctic birds are nesting. Because polar bears can consume a large number of nests before becoming satiated, and because they can swim between island colonies, they could have dramatic influences on seabird and sea duck reproductive success. However, it is unclear whether nest foraging can provide an energetic benefit to polar bear populations, especially given the capacity of bird populations to redistribute in response to increasing predation pressure. In this study, we develop a spatially explicit agent-based model of the predator-prey relationship between polar bears and common eiders, a common and culturally important bird species for northern peoples. Our model is composed of two types of agents (polar bear agents and common eider hen agents) whose movements and decision heuristics are based on species-specific bioenergetic and behavioral ecological principles, and are influenced by historical and extrapolated sea ice conditions. Our model reproduces empirical findings that polar bear predation of bird nests is increasing and predicts an accelerating relationship between advancing ice breakup dates and the number of nests depredated. Despite increases in nest predation, our model predicts that polar bear body condition during the ice-free period will continue to decline. Finally, our model predicts that common eider nests will become more dispersed and will move closer to the mainland in response to increasing predation, possibly increasing their exposure to land-based predators and influencing the livelihood of local people that collect eider eggs and down. These results show that predator-prey interactions can have nonlinear responses to

  4. Strategic Ozone Sounding Networks: Review of Design and Accomplishments

    Science.gov (United States)

    Thompson, Anne M.; Oltmans, Samuel J.; Tarasick, David W.; von der Gathen, Peter; Smit, Herman G. J.; Witte, Jacquelyn C.

    2011-01-01

    Ozone soundings are used to integrate models, satellite, aircraft and ground-based measurements for better interpretation of ozone variability, including atmospheric losses (predominantly in the stratosphere) and pollution (troposphere). A well-designed network of ozonesonde stations gives information with high vertical and horizontal resolution on a number of dynamical and chemical processes, allowing us to answer questions not possible with aircraft campaigns or current satellite technology. Strategic ozonesonde networks are discussed for high, mid- and low latitude studies. The Match sounding network was designed specifically to follow ozone depletion within the polar vortex; the standard sites are at middle to high northern hemisphere latitudes and typically operate from December through mid-March. Three mid-latitude strategic networks (the IONS series) operated over North America in July-August 2004, March-May and August 2006, and April and June-July-2008. These were designed to address questions about tropospheric ozone budgets and sources, including stratosphere-troposphere transport, and to validate satellite instruments and models. A global network focusing on processes in the equatorial zone, SHADOZ (Southern Hemisphere Additional Ozonesondes), has operated since 1998 in partnership with NOAA, NASA and the Meteorological Services of host countries. Examples of important findings from these networks are described,

  5. The Effect of Climate Change on Ozone Depletion through Changes in Stratospheric Water Vapour

    Science.gov (United States)

    Kirk-Davidoff, Daniel B.; Hintsa, Eric J.; Anderson, James G.; Keith, David W.

    1999-01-01

    Several studies have predicted substantial increases in Arctic ozone depletion due to the stratospheric cooling induced by increasing atmospheric CO2 concentrations. But climate change may additionally influence Arctic ozone depletion through changes in the water vapor cycle. Here we investigate this possibility by combining predictions of tropical tropopause temperatures from a general circulation model with results from a one-dimensional radiative convective model, recent progress in understanding the stratospheric water vapor budget, modelling of heterogeneous reaction rates and the results of a general circulation model on the radiative effect of increased water vapor. Whereas most of the stratosphere will cool as greenhouse-gas concentrations increase, the tropical tropopause may become warmer, resulting in an increase of the mean saturation mixing ratio of water vapor and hence an increased transport of water vapor from the troposphere to the stratosphere. Stratospheric water vapor concentration in the polar regions determines both the critical temperature below which heterogeneous reactions on cold aerosols become important (the mechanism driving enhanced ozone depletion) and the temperature of the Arctic vortex itself. Our results indicate that ozone loss in the later winter and spring Arctic vortex depends critically on water vapor variations which are forced by sea surface temperature changes in the tropics. This potentially important effect has not been taken into account in previous scenarios of Arctic ozone loss under climate change conditions.

  6. Ozone modeling

    International Nuclear Information System (INIS)

    McIllvaine, C.M.

    1994-01-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO 2 ), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO x concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO x coordinates of the point, known as the NMOC/NO x ratio. Results obtained by the described model are presented

  7. Assessment of growth and yield losses in two Zea mays L. cultivars (quality protein maize and nonquality protein maize) under projected levels of ozone.

    Science.gov (United States)

    Singh, Aditya Abha; Agrawal, S B; Shahi, J P; Agrawal, Madhoolika

    2014-02-01

    Rapid industrialization and economic developments have increased the tropospheric ozone (O3) budget since preindustrial times, and presently, it is supposed to be a major threat to crop productivity. Maize (Zea mays L.), a C4 plant is the third most important staple crop at global level with a great deal of economic importance. The present study was conducted to evaluate the performance of two maize cultivars [HQPM1: quality protein maize (QPM)] and [DHM117: nonquality protein maize (NQPM)] to variable O3 doses. Experimental setup included filtered chambers, nonfiltered chambers (NFC), and two elevated doses of O3 viz. NFC+15 ppb O3 (NFC+15) and NFC+30 ppb O3 (NFC+30). During initial growth period, both QPM and NQPM plants showed hormetic effect that is beneficial due to exposure of low doses of a toxicant (NFC and NFC+15 ppb O3), but at later stages, growth attributes were negatively affected by O3. Growth indices showed the variable pattern of photosynthate translocation under O3 stress. Foliar injury in the form of interveinal chlorosis and reddening of leaves due to increased production of anthocyanin pigments was observed at higher concentrations of O3. One-dimensional gel electrophoresis of leaves taken from NFC+30 showed reductions of major photosynthetic proteins, and differential response was observed between the two test cultivars. Decline in the number of male flowers at elevated O3 doses suggested damaging effect of O3 on reproductive structures which might be a cause of productivity losses. Variable carbon allocation pattern particularly to husk leaves, foliar injury, and damage of photosynthetic proteins led to significant reductions in economic yield at higher O3 doses. PCA showed that both the cultivars responded more or less similarly to O3 stress in their respective groupings of growth and yield parameters, but magnitude of their response was variable. It is further supported by difference in the significance of correlations between variables of

  8. Loss of PodJ in Agrobacterium tumefaciens Leads to Ectopic Polar Growth, Branching, and Reduced Cell Division.

    Science.gov (United States)

    Anderson-Furgeson, James C; Zupan, John R; Grangeon, Romain; Zambryski, Patricia C

    2016-07-01

    Agrobacterium tumefaciens is a rod-shaped Gram-negative bacterium that elongates by unipolar addition of new cell envelope material. Approaching cell division, the growth pole transitions to a nongrowing old pole, and the division site creates new growth poles in sibling cells. The A. tumefaciens homolog of the Caulobacter crescentus polar organizing protein PopZ localizes specifically to growth poles. In contrast, the A. tumefaciens homolog of the C. crescentus polar organelle development protein PodJ localizes to the old pole early in the cell cycle and accumulates at the growth pole as the cell cycle proceeds. FtsA and FtsZ also localize to the growth pole for most of the cell cycle prior to Z-ring formation. To further characterize the function of polar localizing proteins, we created a deletion of A. tumefaciens podJ (podJAt). ΔpodJAt cells display ectopic growth poles (branching), growth poles that fail to transition to an old pole, and elongated cells that fail to divide. In ΔpodJAt cells, A. tumefaciens PopZ-green fluorescent protein (PopZAt-GFP) persists at nontransitioning growth poles postdivision and also localizes to ectopic growth poles, as expected for a growth-pole-specific factor. Even though GFP-PodJAt does not localize to the midcell in the wild type, deletion of podJAt impacts localization, stability, and function of Z-rings as assayed by localization of FtsA-GFP and FtsZ-GFP. Z-ring defects are further evidenced by minicell production. Together, these data indicate that PodJAt is a critical factor for polar growth and that ΔpodJAt cells display a cell division phenotype, likely because the growth pole cannot transition to an old pole. How rod-shaped prokaryotes develop and maintain shape is complicated by the fact that at least two distinct species-specific growth modes exist: uniform sidewall insertion of cell envelope material, characterized in model organisms such as Escherichia coli, and unipolar growth, which occurs in several

  9. Ozone Pollution

    Science.gov (United States)

    Known as tropospheric or ground-level ozone, this gas is harmful to human heath and the environment. Since it forms from emissions of volatile organic compounds (VOCs) and nitrogen oxides (NOx), these pollutants are regulated under air quality standards.

  10. The signs of Antarctic ozone hole recovery.

    Science.gov (United States)

    Kuttippurath, Jayanarayanan; Nair, Prijitha J

    2017-04-03

    Absorption of solar radiation by stratospheric ozone affects atmospheric dynamics and chemistry, and sustains life on Earth by preventing harmful radiation from reaching the surface. Significant ozone losses due to increases in the abundances of ozone depleting substances (ODSs) were first observed in Antarctica in the 1980s. Losses deepened in following years but became nearly flat by around 2000, reflecting changes in global ODS emissions. Here we show robust evidence that Antarctic ozone has started to recover in both spring and summer, with a recovery signal identified in springtime ozone profile and total column measurements at 99% confidence for the first time. Continuing recovery is expected to impact the future climate of that region. Our results demonstrate that the Montreal Protocol has indeed begun to save the Antarctic ozone layer.

  11. Endothelial Cell Migration and Vascular Endothelial Growth Factor Expression Are the Result of Loss of Breast Tissue Polarity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Amy; Cuevas, Ileana; Kenny, Paraic A; Miyake, Hiroshi; Mace, Kimberley; Ghajar, Cyrus; Boudreau, Aaron; Bissell, Mina; Boudreau, Nancy

    2009-05-26

    Recruiting a new blood supply is a rate-limiting step in tumor progression. In a three-dimensional model of breast carcinogenesis, disorganized, proliferative transformed breast epithelial cells express significantly higher expression of angiogenic genes compared with their polarized, growth-arrested nonmalignant counterparts. Elevated vascular endothelial growth factor (VEGF) secretion by malignant cells enhanced recruitment of endothelial cells (EC) in heterotypic cocultures. Significantly, phenotypic reversion of malignant cells via reexpression of HoxD10, which is lost in malignant progression, significantly attenuated VEGF expression in a hypoxia-inducible factor 1{alpha}-independent fashion and reduced EC migration. This was due primarily to restoring polarity: forced proliferation of polarized, nonmalignant cells did not induce VEGF expression and EC recruitment, whereas disrupting the architecture of growth-arrested, reverted cells did. These data show that disrupting cytostructure activates the angiogenic switch even in the absence of proliferation and/or hypoxia and restoring organization of malignant clusters reduces VEGF expression and EC activation to levels found in quiescent nonmalignant epithelium. These data confirm the importance of tissue architecture and polarity in malignant progression.

  12. Loss of the Drosophila cell polarity regulator Scribbled promotes epithelial tissue overgrowth and cooperation with oncogenic Ras-Raf through impaired Hippo pathway signaling

    Directory of Open Access Journals (Sweden)

    Grusche Felix A

    2011-09-01

    Full Text Available Abstract Background Epithelial neoplasias are associated with alterations in cell polarity and excessive cell proliferation, yet how these neoplastic properties are related to one another is still poorly understood. The study of Drosophila genes that function as neoplastic tumor suppressors by regulating both of these properties has significant potential to clarify this relationship. Results Here we show in Drosophila that loss of Scribbled (Scrib, a cell polarity regulator and neoplastic tumor suppressor, results in impaired Hippo pathway signaling in the epithelial tissues of both the eye and wing imaginal disc. scrib mutant tissue overgrowth, but not the loss of cell polarity, is dependent upon defective Hippo signaling and can be rescued by knockdown of either the TEAD/TEF family transcription factor Scalloped or the transcriptional coactivator Yorkie in the eye disc, or reducing levels of Yorkie in the wing disc. Furthermore, loss of Scrib sensitizes tissue to transformation by oncogenic Ras-Raf signaling, and Yorkie-Scalloped activity is required to promote this cooperative tumor overgrowth. The inhibition of Hippo signaling in scrib mutant eye disc clones is not dependent upon JNK activity, but can be significantly rescued by reducing aPKC kinase activity, and ectopic aPKC activity is sufficient to impair Hippo signaling in the eye disc, even when JNK signaling is blocked. In contrast, warts mutant overgrowth does not require aPKC activity. Moreover, reducing endogenous levels of aPKC or increasing Scrib or Lethal giant larvae levels does not promote increased Hippo signaling, suggesting that aPKC activity is not normally rate limiting for Hippo pathway activity. Epistasis experiments suggest that Hippo pathway inhibition in scrib mutants occurs, at least in part, downstream or in parallel to both the Expanded and Fat arms of Hippo pathway regulation. Conclusions Loss of Scrib promotes Yorkie/Scalloped-dependent epithelial tissue

  13. The 2002 Antarctic Ozone Hole

    Science.gov (United States)

    Newman, P. A.; Nash, E. R.; Douglass, A. R.; Kawa, S. R.

    2003-01-01

    Since 1979, the ozone hole has grown from near zero size to over 24 Million km2. This area is most strongly controlled by levels of inorganic chlorine and bromine oncentrations. In addition, dynamical variations modulate the size of the ozone hole by either cooling or warming the polar vortex collar region. We will review the size observations, the size trends, and the interannual variability of the size. Using a simple trajectory model, we will demonstrate the sensitivity of the ozone hole to dynamical forcing, and we will use these observations to discuss the size of the ozone hole during the 2002 Austral spring. We will further show how the Cly decreases in the stratosphere will cause the ozone hole to decrease by 1-1.5% per year. We will also show results from a 3-D chemical transport model (CTM) that has been continuously run since 1999. These CTM results directly show how strong dynamics acts to reduce the size of the ozone hole.

  14. Optical remote measurement of ozone in cirrus clouds; Optische Fernmessung von Ozon in Zirruswolken

    Energy Technology Data Exchange (ETDEWEB)

    Reichardt, J. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Physikalische und Chemische Analytik

    1998-12-31

    The subject of this thesis is theoretical and experimental investigations into the simultaneous optical remote measurement of atmospheric ozone concentration and particle properties. A lidar system was developed that combines the Raman-lidar and the polarization-lidar with the Raman-DIAL technique. An error analysis is given for ozone measurements in clouds. It turns out that the wavelength dependencies of photon multiple scattering and of the particle extinction coefficient necessitate a correction of the measured ozone concentration. To quantify the cloud influence, model calculations based on particle size distributions of spheres are carried out. The most important experimental result of this thesis is the measured evidence of pronounced minima in the ozone distribution in a humid upper troposphere shortly before and during cirrus observation. Good correlation between ozone-depleted altitude ranges and ice clouds is found. This finding is in contrast to ozone profiles measured in a dry and cloud-free troposphere. (orig.) 151 refs.

  15. 1,2-Dichlorohexafluoro-Cyclobutane (1,2-c-C4F6Cl2, R-316c) a Potent Ozone Depleting Substance and Greenhouse Gas: Atmospheric Loss Processes, Lifetimes, and Ozone Depletion and Global Warming Potentials for the (E) and (Z) stereoisomers

    Science.gov (United States)

    Papadimitriou, Vassileios C.; McGillen, Max R.; Smith, Shona C.; Jubb, Aaron M.; Portmann, Robert W.; Hall, Bradley D.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2013-01-01

    The atmospheric processing of (E)- and (Z)-1,2-dichlorohexafluorocyclobutane (1,2-c-C4F6Cl2, R-316c) was examined in this work as the ozone depleting (ODP) and global warming (GWP) potentials of this proposed replacement compound are presently unknown. The predominant atmospheric loss processes and infrared absorption spectra of the R-316c isomers were measured to provide a basis to evaluate their atmospheric lifetimes and, thus, ODPs and GWPs. UV absorption spectra were measured between 184.95 to 230 nm at temperatures between 214 and 296 K and a parametrization for use in atmospheric modeling is presented. The Cl atom quantum yield in the 193 nm photolysis of R- 316c was measured to be 1.90 +/- 0.27. Hexafluorocyclobutene (c-C4F6) was determined to be a photolysis co-product with molar yields of 0.7 and 1.0 (+/-10%) for (E)- and (Z)-R-316c, respectively. The 296 K total rate coefficient for the O(1D) + R-316c reaction, i.e., O(1D) loss, was measured to be (1.56 +/- 0.11) × 10(exp -10)cu cm/ molecule/s and the reactive rate coefficient, i.e., R-316c loss, was measured to be (1.36 +/- 0.20) × 10(exp -10)cu cm/molecule/s corresponding to a approx. 88% reactive yield. Rate coefficient upper-limits for the OH and O3 reaction with R-316c were determined to be global annually averaged lifetimes for the (E)- and (Z)-R-316c isomers were calculated using a 2-D atmospheric model to be 74.6 +/- 3 and 114.1 +/-10 years, respectively, where the estimated uncertainties are due solely to the uncertainty in the UV absorption spectra. Stratospheric photolysis is the predominant atmospheric loss process for both isomers with the O(1D) reaction making a minor, approx. 2% for the (E) isomer and 7% for the (Z) isomer, contribution to the total atmospheric loss. Ozone depletion potentials for (E)- and (Z)-R-316c were calculated using the 2-D model to be 0.46 and 0.54, respectively. Infrared absorption spectra for (E)- and (Z)-R-316c were measured at 296 K and used to estimate their

  16. Novel porous fiber based on dual-asymmetry for low-loss polarization maintaining THz wave guidance

    DEFF Research Database (Denmark)

    Islam, Raonaqul; Habib, Selim; Hasanuzzaman, G.K.M.

    2016-01-01

    to achieve an ultra-high birefringence. Besides, only circular air holes have been used to represent the structure, which makes the fiber remarkably simple. The transmission characteristics have been numerically examined based on an efficient finite element method (FEM). The numerical results confirm a high......In this Letter, we suggest a novel kind of porous-core photonic crystal fiber (PCF) (to the best of our knowledge) for efficient transportation of polarization maintaining (PM) terahertz (THz) waves. We introduce an asymmetry in both the porous-core and the porous-cladding of the structure...

  17. Variation in the response of an Arctic top predator experiencing habitat loss: feeding and reproductive ecology of two polar bear populations

    Science.gov (United States)

    Rode, Karyn D.; Regehr, Eric V.; Douglas, David C.; Durner, George; Derocher, Andrew E.; Thiemann, Gregory W.; Budge, Suzanne M.

    2014-01-01

    Polar bears (Ursus maritimus) have experienced substantial changes in the seasonal availability of sea ice habitat in parts of their range, including the Beaufort, Chukchi, and Bering Seas. In this study, we compared the body size, condition, and recruitment of polar bears captured in the Chukchi and Bering Seas (CS) between two periods (1986–1994 and 2008–2011) when declines in sea ice habitat occurred. In addition, we compared metrics for the CS population 2008–2011 with those of the adjacent southern Beaufort Sea (SB) population where loss in sea ice habitat has been associated with declines in body condition, size, recruitment, and survival. We evaluated how variation in body condition and recruitment were related to feeding ecology. Comparing habitat conditions between populations, there were twice as many reduced ice days over continental shelf waters per year during 2008–2011 in the SB than in the CS. CS polar bears were larger and in better condition, and appeared to have higher reproduction than SB bears. Although SB and CS bears had similar diets, twice as many bears were fasting in spring in the SB than in the CS. Between 1986–1994 and 2008–2011, body size, condition, and recruitment indices in the CS were not reduced despite a 44-day increase in the number of reduced ice days. Bears in the CS exhibited large body size, good body condition, and high indices of recruitment compared to most other populations measured to date. Higher biological productivity and prey availability in the CS relative to the SB, and a shorter recent history of reduced sea ice habitat, may explain the maintenance of condition and recruitment of CS bears. Geographic differences in the response of polar bears to climate change are relevant to range-wide forecasts for this and other ice-dependent species.

  18. Stratospheric ozone chemistry in the Antarctic: what determines the lowest ozone values reached and their recovery?

    Directory of Open Access Journals (Sweden)

    J.-U. Grooß

    2011-12-01

    Full Text Available Balloon-borne observations of ozone from the South Pole Station have been reported to reach ozone mixing ratios below the detection limit of about 10 ppbv at the 70 hPa level by late September. After reaching a minimum, ozone mixing ratios increase to above 1 ppmv on the 70 hPa level by late December. While the basic mechanisms causing the ozone hole have been known for more than 20 yr, the detailed chemical processes determining how low the local concentration can fall, and how it recovers from the minimum have not been explored so far. Both of these aspects are investigated here by analysing results from the Chemical Lagrangian Model of the Stratosphere (CLaMS. As ozone falls below about 0.5 ppmv, a balance is maintained by gas phase production of both HCl and HOCl followed by heterogeneous reaction between these two compounds in these simulations. Thereafter, a very rapid, irreversible chlorine deactivation into HCl can occur, either when ozone drops to values low enough for gas phase HCl production to exceed chlorine activation processes or when temperatures increase above the polar stratospheric cloud (PSC threshold. As a consequence, the timing and mixing ratio of the minimum ozone depends sensitively on model parameters, including the ozone initialisation. The subsequent ozone increase between October and December is linked mainly to photochemical ozone production, caused by oxygen photolysis and by the oxidation of carbon monoxide and methane.

  19. Are we approaching an Arctic ozone hole

    International Nuclear Information System (INIS)

    Braathen, Geir

    1999-01-01

    Observations during the last decade in the Arctic areas mainly made by satellite, on the ground and by probes and sensors in the stratosphere are presented. Future perspectives are deducted from the results. Factors that may influence the ozone layer negatively are: Emission rate of ozone destroying compounds, the rapidly increasing use of some substitutes, increased concentrations of steam from aeroplanes and increased amount of methane, decreasing temperature in the stratosphere due to increasing amounts of climatic gases, large volcanic eruptions and altered timing for the polar whirl dissolution. It is concluded that the ozone reduction will be larger than observed at present in the next 10 to 20 years

  20. The Antarctic Ozone Hole

    Science.gov (United States)

    Jones, Anna E.

    2008-01-01

    Since the mid 1970s, the ozone layer over Antarctica has experienced massive destruction during every spring. In this article, we will consider the atmosphere, and what ozone and the ozone layer actually are. We explore the chemistry responsible for the ozone destruction, and learn about why conditions favour ozone destruction over Antarctica. For…

  1. Evidence for midwinter chemical ozone destruction over Antartica

    Energy Technology Data Exchange (ETDEWEB)

    Voemel, H. [Univ. of Colorado, Boulder, CO (United States); Hoffmann, D.J.; Oltmans, S.J.; Harris, J.M. [NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, CO (United States)

    1995-09-01

    Two ozone profiles on June 15 and June 19, obtained over McMurdo, Antartica, showed a strong depletion in stratospheric ozone, and a simultaneous profile of water vapor on June 19 showed the first clear signs of dehydration. The observation of Polar Stratospheric Clouds (PSCs) beginning with the first sounding showing ozone depletion, the indication of rehydration layers, which could be a sign for recent dehydration, and trajectory calculations indicate that the observed low ozone was not the result of transport from lower latitudes. during this time the vortex was strongly distorted, transporting PSC processed air well into sunlit latitudes where photochemical ozone destruction may have occurred. The correlation of ozone depletion and dehydration indicates that water ice PSCs provided the dominant surface for chlorine activation. An analysis of the time when the observed air masses could have formed type II PSCs for the first time limits the time scale for the observed ozone destruction to about 4 days.

  2. Emergence of healing in the Antarctic ozone layer.

    Science.gov (United States)

    Solomon, Susan; Ivy, Diane J; Kinnison, Doug; Mills, Michael J; Neely, Ryan R; Schmidt, Anja

    2016-07-15

    Industrial chlorofluorocarbons that cause ozone depletion have been phased out under the Montreal Protocol. A chemically driven increase in polar ozone (or "healing") is expected in response to this historic agreement. Observations and model calculations together indicate that healing of the Antarctic ozone layer has now begun to occur during the month of September. Fingerprints of September healing since 2000 include (i) increases in ozone column amounts, (ii) changes in the vertical profile of ozone concentration, and (iii) decreases in the areal extent of the ozone hole. Along with chemistry, dynamical and temperature changes have contributed to the healing but could represent feedbacks to chemistry. Volcanic eruptions have episodically interfered with healing, particularly during 2015, when a record October ozone hole occurred after the Calbuco eruption. Copyright © 2016, American Association for the Advancement of Science.

  3. Emergence of healing in the Antarctic ozone layer

    Science.gov (United States)

    Solomon, Susan; Ivy, Diane J.; Kinnison, Doug; Mills, Michael J.; Neely, Ryan R.; Schmidt, Anja

    2016-07-01

    Industrial chlorofluorocarbons that cause ozone depletion have been phased out under the Montreal Protocol. A chemically driven increase in polar ozone (or “healing”) is expected in response to this historic agreement. Observations and model calculations together indicate that healing of the Antarctic ozone layer has now begun to occur during the month of September. Fingerprints of September healing since 2000 include (i) increases in ozone column amounts, (ii) changes in the vertical profile of ozone concentration, and (iii) decreases in the areal extent of the ozone hole. Along with chemistry, dynamical and temperature changes have contributed to the healing but could represent feedbacks to chemistry. Volcanic eruptions have episodically interfered with healing, particularly during 2015, when a record October ozone hole occurred after the Calbuco eruption.

  4. A reanalysis of ozone on Mars from assimilation of SPICAM observations

    Science.gov (United States)

    Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.; Lefèvre, Franck

    2018-03-01

    We have assimilated for the first time SPICAM retrievals of total ozone into a Martian global circulation model to provide a global reanalysis of the ozone cycle. Disagreement in total ozone between model prediction and assimilation is observed between 45°S-10°S from LS = 135-180° and at northern polar (60°N-90°N) latitudes during northern fall (LS = 150-195°). Large percentage differences in total ozone at northern fall polar latitudes identified through the assimilation process are linked with excessive northward transport of water vapour west of Tharsis and over Arabia Terra. Modelling biases in water vapour can also explain the underestimation of total ozone between 45°S-10°S from LS = 135-180°. Heterogeneous uptake of odd hydrogen radicals are unable to explain the outstanding underestimation of northern polar total ozone in late northern fall. Assimilation of total ozone retrievals results in alterations of the modelled spatial distribution of ozone in the southern polar winter high altitude ozone layer. This illustrates the potential use of assimilation methods in constraining total ozone where SPICAM cannot observe, in a region where total ozone is especially important for potential investigations of the polar dynamics.

  5. Effect of in-material losses on terahertz absorption, transmission, and reflection in photonic crystals made of polar dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Serebryannikov, Andriy E., E-mail: andser@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań (Poland); Nanotechnology Research Center—NANOTAM, Bilkent University, 06800 Ankara (Turkey); Nojima, S. [Yokohama City University, Department of Nanosystem Science, Graduate School of Nanobioscience, Kanazawa Ku, 22-2 Seto, Yokohama, Kanagawa 2360027 (Japan); Alici, K. B. [TUBITAK Marmara Research Center, Materials Institute, 41470 Gebze, Kocaeli (Turkey); Ozbay, Ekmel [Nanotechnology Research Center—NANOTAM, Bilkent University, 06800 Ankara (Turkey)

    2015-10-07

    The effect of the material absorption factor on terahertz absorption (A), transmittance (T), and reflectance (R) for slabs of PhC that comprise rods made of GaAs, a polar dielectric, is studied. The main goal was to illustrate how critical a choice of the absorption factor for simulations is and to indicate the importance of the possible modification of the absorption ability by using either active or lossy impurities. The spectra of A, T, and R are strongly sensitive to the location of the polaritonic gap with respect to the photonic pass and stop bands connected with periodicity that enables the efficient combination of the effects of material and structural parameters. It will be shown that the spectra can strongly depend on the utilized value of the material absorption factor. In particular, both narrow and wide absorption bands may appear owing to a variation of the material parameters with a frequency in the vicinity of the polaritonic gap. The latter are often achieved at wideband suppression of transmission, so that an ultra-wide stop band can appear as a result of adjustment of the stop bands having different origin. The results obtained at simultaneous variation of the absorption factor and frequency, and angle of incidence and frequency, indicate the possibility of the existence of wide ranges of tolerance, in which the basic features do remain. This allows for mitigating the accuracy requirements for the absorption factor in simulations and promises the efficient absorption of nonmonochromatic waves and beams with a wide angular spectrum. Suppression of narrowband effects in transmission is demonstrated at rather large values of the absorption factor, when they appear due to either the defect modes related to structural defects or dispersion inspired variations of the material parameters in the vicinity of the polaritonic gap. Comparison with auxiliary structures helps one to detect the common features and differences of homogeneous slabs and slabs of a

  6. Ozone zonal asymmetry and planetary wave characterization during Antarctic spring

    Directory of Open Access Journals (Sweden)

    I. Ialongo

    2012-03-01

    Full Text Available A large zonal asymmetry of ozone has been observed over Antarctica during winter-spring, when the ozone hole develops. It is caused by a planetary wave-driven displacement of the polar vortex. The total ozone data by OMI (Ozone Monitoring Instrument and the ozone profiles by MLS (Microwave Limb Sounder and GOMOS (Global Ozone Monitoring by Occultation of Stars were analysed to characterize the ozone zonal asymmetry and the wave activity during Antarctic spring. Both total ozone and profile data have shown a persistent zonal asymmetry over the last years, which is usually observed from September to mid-December. The largest amplitudes of planetary waves at 65° S (the perturbations can achieve up to 50% of zonal mean values is observed in October. The wave activity is dominated by the quasi-stationary wave 1 component, while the wave 2 is mainly an eastward travelling wave. Wave numbers 1 and 2 generally explain more than the 90% of the ozone longitudinal variations. Both GOMOS and MLS ozone profile data show that ozone zonal asymmetry covers the whole stratosphere and extends up to the altitudes of 60–65 km. The wave amplitudes in ozone mixing ratio decay with altitude, with maxima (up to 50% below 30 km.

    The characterization of the ozone zonal asymmetry has become important in the climate research. The inclusion of the polar zonal asymmetry in the climate models is essential for an accurate estimation of the future temperature trends. This information might also be important for retrieval algorithms that rely on ozone a priori information.

  7. BNL alternating gradient synchrotron with four helical magnets to minimize the losses of the polarized proton beam

    Directory of Open Access Journals (Sweden)

    N. Tsoupas

    2013-04-01

    Full Text Available The principle of using multiple partial helical magnets to preserve the polarization of the proton beam during its acceleration was applied successfully to the alternating gradient synchrotron (AGS which currently operates with two partial helical magnets. In this paper we further explore this idea by using four partial helical magnets placed symmetrically in the AGS ring. This provides many advantages over the present setup of the AGS, which uses two partial helical magnets. First, the symmetric placement of the four helical magnets and their relatively lower field of operation allows for better control of the AGS optics with reduced values of the beta functions especially near beam injection and allows both the vertical and horizontal tunes to be placed within the “spin tune gap,” therefore eliminating the horizontal and vertical intrinsic spin resonances of the AGS during the acceleration cycle. Second, it provides a wider spin tune gap. Third, the vertical spin direction during beam injection and extraction is closer to vertical. Although the spin tune gap, which is created with four partial helices, can also be created with a single or two partial helices, the high field strength of a single helical magnet which is required to generate such a spin tune gap makes the use of the single helical magnet impractical, and that of the two helical magnets rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare them with those from the present setup of the AGS that uses two partial helical magnets. Although in this paper we specifically discuss the effect of the four partial helices on the AGS, this method which can eliminate simultaneously the vertical and horizontal intrinsic spin resonances is a general method and can be applied to any medium energy synchrotron which operates in similar energy range like the AGS and provides the required space to

  8. Effect of Substrate Character on Heterogeneous Ozone Reaction Rate with Individual PAHs and Their Reaction Mixtures

    Science.gov (United States)

    Holmen, B. A.; Stevens, T.

    2009-12-01

    Vehicle exhaust contains many unregulated chemical compounds that are harmful to human health and the natural environment, including polycyclic aromatic hydrocarbons (PAH), a class of organic compounds derived from fuel combustion that can be carcinogenic and mutagenic. PAHs have been quantified in vehicle-derived ultrafine particles (Dphealth problems, including respiratory and cardiac disease. Once emitted into the atmosphere, particle-bound PAHs can undergo “aging” reactions with oxidants, such as ozone, to form more polar species. These polar reaction products include species such as quinones that can be more toxic than the parent PAH compounds. Here, 0.4ppm ozone was reacted over a 24-hour period with the 16 EPA priority PAHs plus coronene adsorbed to (i) a quartz fiber filter and (ii) NIST diesel PM. The difference in the PAH/O3 heterogeneous reaction rate resulting from the two substrates will be discussed. The experiments were completed by spiking a known PAH mixture to the solid, reacting the samples with gas-phase ozone, and determining both PAH loss over time and products formed, using thermal-desorption gas chromatography / mass spectrometry (TD-GC/MS). The individual PAHs anthracene, phenanthrene, and fluorene, adsorbed to a QFF were also separately reacted with 0.4 ppm ozone. A volatilization control and the collection of volatilized PAHs using a Tenax-packed thermal desorption vial completed the mass balance and aided determination parent-product relationships. Heterogeneous reaction products analyzed directly without derivatization indicate the formation of 9,10-anthracenedione, 9H-fluoren-9-one, and (1,1’-biphenyl)-2,2’-dicarboxaldehyde from the reaction of ozone with the PAH mix on a QFF, but only 9,10-anthracenedione was detected for the diesel PM reaction. The implications of these results for aging of diesel particulate in urban environments will be discussed.

  9. Ozone and Water Stress: Effects on the Behaviour of Two White Clover Biotypes

    Directory of Open Access Journals (Sweden)

    Massimo Fagnano

    Full Text Available ozone pollution, water stress, stomata conductance, ozone uptake, clover, OTC.Ozone is a strong oxidizing pollutant which derives by alteration of the photolytic NOx cycle and it accumulates in the troposphere spreading in rural areas and therefore determining injuries on natural vegetation and crops. Since its penetration occurs mainly through stomata, all factors which alter plant-atmosphere relations could be able to modify plant response to ozone. Interaction between ozone and water stress in Mediterranean environment was studied on ozone resistant and sensitive biotypes of white clover, which were grown in charcoal filtered and notfiltered Open Top Chambers in factorial combination with different levels of water supply. Measurements of biomass, leaf area and stomatal conductance were made during the growth period. Ozone injuries were estimated as not-filtered/filtered OTC yield ratio; the stomatal flux of ozone was estimated multiplying stomata conductance x diffusivity ratio between ozone and water vapour (0.613 x ozone hourly concentrations. The hourly values of ozone uptake were cumulated throughout the cropping periods of the two years. In the sensitive biotype, water stress reduced yield losses due to ozone from 38% to 22%, as well as yield losses due to water stress were reduced by the presence of ozone from 43% to 29%, while no interaction between ozone and water stress was observed in the resistant biotype. Biomass yield losses of the sensitive biotype were strictly correlated to cumulated ozone uptake (R2 = 0.99, while biomass yield losses of the resistant biotype were not affected by the ozone fluxes variations created by the treatments. Flux based models could better estimate yield losses due to ozone in Mediterranean environments in which other stresses could be contemporary present; therefore, the new European directives might replace the actual thresholds based

  10. La destruction de la couche d'ozone et ses implications en Région wallonne

    OpenAIRE

    Mahieu, Emmanuel

    2007-01-01

    Stratospheric ozone is an important constituent of the Earth's atmosphere since it protects the biosphere from the most harmful ultraviolet radiations emitted by the sun. Some human activiites such as the use of man-mande chlorofluorocarbons have resulted in major destruction of ozone, in particular in the polar regions of the stratosphere. The Montreal Protocol has been successful in limiting the emissions of ozone depleting substances such as the complete ozone recovery is expected to take ...

  11. Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models

    Directory of Open Access Journals (Sweden)

    V. Eyring

    2010-10-01

    return of total column ozone to its 1980 level. The latest return of total column ozone is projected to occur over Antarctica (~2045–2060 whereas it is not likely that full ozone recovery is reached by the end of the 21st century in this region. Arctic total column ozone is projected to return to 1980 levels well before polar stratospheric halogen loading does so (~2025–2030 for total column ozone, cf. 2050–2070 for Cly+60×Bry and it is likely that full recovery of total column ozone from the effects of ODSs has occurred by ~2035. In contrast to the Antarctic, by 2100 Arctic total column ozone is projected to be above 1960 levels, but not in the fixed GHG simulation, indicating that climate change plays a significant role.

  12. Climate Chemistry Coupling: Ozone Loss Linked to the Unique Dynamical Structure of the Summertime Stratosphere Over the U.S. Using In Situ Aircraft, Satellite and NEXRAD Radar Observations

    Science.gov (United States)

    Anderson, J. G.; Wilmouth, D. M.; Smith, J. B.; Dykema, J. A.; Leroy, S. S.; Koby, T.; Clapp, C.; Bowman, K. P.

    2015-12-01

    A remarkable combination of meteorological and catalytic chemical factors place the summertime lower stratosphere over the U.S. in a unique position at the intersection of climate forcing and potential ozone loss in the stratosphere. The factors that conspire to establish this circumstance engages four independent considerations. First is the occurrence of severe storms in the U.S. Mid-West caused by the intersection of moist airflow from the Gulf of Mexico with airflow from higher latitudes in spring and summer. These storms are characterized by a combination of tornadoes, hail, heavy precipitation and high winds, the frequency and intensity of which are increasing with increased forcing of the climate system by the addition of CO2, CH4, N2O CFCs, and other infrared active species to the atmosphere associated with human activity. Second is the recognition that these severe storms are capable of injecting water vapor deep into the stratosphere over the U.S., with injection depths reaching the altitude of increasing inorganic halogen species formed by the photolytic breakdown of organic chorine and bromine transported into the stratosphere. Third is the recognition that the catalytic conversion of inorganic halogen species to radicals, specifically ClO and BrO, that are the rate limiting catalytic species that destroy ozone, occurs on ubiquitous sulfate-water aerosols wherever and whenever the temperature-water vapor conditions are met. These conditions are met in the Antarctic and Arctic winter vortices by virtue of temperatures below 200K at 5 ppmv water vapor, and in the summertime lower stratosphere over the U.S. by virtue of temperatures between 200 and 205K in combination with convectively injected water vapor concentrations in the range of 8 ppmv or greater. Fourth, is the recognition that the flow pattern of the lower stratosphere over the U.S. in summer is repeatedly under the control of the North American monsoon that forms an anti-cyclonic (clockwise

  13. Ozone and UV research at Finnish Meteorological Inst.: review of selected results

    Energy Technology Data Exchange (ETDEWEB)

    Taalas, P.; Koskela, T.; Damski, J.; Supperi, A. [Finnish Meteorological Inst., Helsinki (Finland). Section of Ozone and UV Research; Kyroe, E. [Finnish Meteorologican Inst., Sodankylae (Finland). Sodankylae Observatory; Ginzburg, M. [Servicio Meteorologico Nacional, Buenos Aires (Argentina); Dijkhuis, J.L. [Finnish Meteorological Inst., Helsinki (Finland). EUMETSAT

    1995-12-31

    Ozone and UV radiation research have become an important part of atmospheric research at Finnish Meteorological Institute after the discovery of chlorine based ozone loss in the Antarctic stratosphere

  14. Breeding of ozone resistant rice: Relevance, approaches and challenges

    International Nuclear Information System (INIS)

    Frei, Michael

    2015-01-01

    Tropospheric ozone concentrations have been rising across Asia, and will continue to rise during the 21st century. Ozone affects rice yields through reductions in spikelet number, spikelet fertility, and grain size. Moreover, ozone leads to changes in rice grain and straw quality. Therefore the breeding of ozone tolerant rice varieties is warranted. The mapping of quantitative trait loci (QTL) using bi-parental populations identified several tolerance QTL mitigating symptom formation, grain yield losses, or the degradation of straw quality. A genome-wide association study (GWAS) demonstrated substantial natural genotypic variation in ozone tolerance in rice, and revealed that the genetic architecture of ozone tolerance in rice is dominated by multiple medium and small effect loci. Transgenic approaches targeting tolerance mechanisms such as antioxidant capacity are also discussed. It is concluded that the breeding of ozone tolerant rice can contribute substantially to the global food security, and is feasible using different breeding approaches. - Highlights: • Tropospheric ozone affects millions of hectares of rice land. • Ozone affects rice yield and quality. • Breeding approaches to adapt rice to high ozone are discussed. • Challenges in the breeding of ozone resistant rice are discussed. - This review summarizes the effects of tropospheric ozone on rice and outlines approaches and challenges in the breeding of adapted varieties

  15. Plasmadynamic ozone generator

    Science.gov (United States)

    Gordeev, Yu. N.; Ogurechnikov, V. A.; Chizhov, Yu. L.

    2009-10-01

    The formation of ozone in a low-temperature supersonic flow of a mixture of air and partly dissociated oxygen supplied from a discharge plasmatron has been experimentally studied. For an oxygen mass fraction of 1.1% in the total gas flow supplied to this ozone generator, an ozone-air mixture containing 4.88 × 10-3 kg/m3 ozone is obtained at a specific energy consumption of 25.8 MJ/(kg ozone). In this regime, the ozone generator could operate for several dozen minutes.

  16. In-line Fiber Polarizer

    OpenAIRE

    Perumalsamy, Priya

    1998-01-01

    Polarizers and polarization devices are important components in fiber optic communication and sensor systems. There is a growing need for efficient low loss components that are compatible with optical fibers. An all fiber in-line polarizer is a more desirable alternative that could be placed at appropriate intervals along communication links. An in-line fiber polarizer was fabricated and tested. The in-line fiber polarizer operates by coupling optical energy propagatin...

  17. Understanding Differences in Chemistry Climate Model Projections of Stratospheric Ozone

    Science.gov (United States)

    Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.

    2014-01-01

    Chemistry climate models (CCMs) are used to project future evolution of stratospheric ozone as concentrations of ozone-depleting substances (ODSs) decrease and greenhouse gases increase, cooling the stratosphere. CCM projections exhibit not only many common features but also a broad range of values for quantities such as year of ozone return to 1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to ODS concentration change from that due to climate change. We show that the sensitivity of lower stratospheric ozone to chlorine change Delta Ozone/Delta inorganic chlorine is a near-linear function of partitioning of total inorganic chlorine into its reservoirs; both inorganic chlorine and its partitioning are largely controlled by lower stratospheric transport. CCMs with best performance on transport diagnostics agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035, differences in Delta Ozone/Delta inorganic chlorine contribute little to the spread in CCM projections as the anthropogenic contribution to inorganic chlorine becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change Delta Ozone/Delta T due to different contributions from various ozone loss processes, each with its own temperature dependence. Ozone decrease in the tropical lower stratosphere caused by a projected speedup in the Brewer-Dobson circulation may or may not be balanced by ozone increases in the middle- and high-latitude lower stratosphere and upper troposphere. This balance, or lack thereof, contributes most to the spread in late 21st century projections.

  18. The search for signs of recovery of the ozone layer.

    Science.gov (United States)

    Weatherhead, Elizabeth C; Andersen, Signe Bech

    2006-05-04

    Evidence of mid-latitude ozone depletion and proof that the Antarctic ozone hole was caused by humans spurred policy makers from the late 1980s onwards to ratify the Montreal Protocol and subsequent treaties, legislating for reduced production of ozone-depleting substances. The case of anthropogenic ozone loss has often been cited since as a success story of international agreements in the regulation of environmental pollution. Although recent data suggest that total column ozone abundances have at least not decreased over the past eight years for most of the world, it is still uncertain whether this improvement is actually attributable to the observed decline in the amount of ozone-depleting substances in the Earth's atmosphere. The high natural variability in ozone abundances, due in part to the solar cycle as well as changes in transport and temperature, could override the relatively small changes expected from the recent decrease in ozone-depleting substances. Whatever the benefits of the Montreal agreement, recovery of ozone is likely to occur in a different atmospheric environment, with changes expected in atmospheric transport, temperature and important trace gases. It is therefore unlikely that ozone will stabilize at levels observed before 1980, when a decline in ozone concentrations was first observed.

  19. Polar zoobenthos blue carbon storage increases with sea ice losses, because across-shelf growth gains from longer algal blooms outweigh ice scour mortality in the shallows.

    Science.gov (United States)

    Barnes, David K A

    2017-12-01

    One of the major climate-forced global changes has been white to blue to green; losses of sea ice extent in time and space around Arctic and West Antarctic seas has increased open water and the duration (though not magnitude) of phytoplankton blooms. Blueing of the poles has increases potential for heat absorption for positive feedback but conversely the longer phytoplankton blooms have increased carbon export to storage and sequestration by shelf benthos. However, ice shelf collapses and glacier retreat can calve more icebergs, and the increased open water allows icebergs more opportunities to scour the seabed, reducing zoobenthic blue carbon capture and storage. Here the size and variability in benthic blue carbon in mega and macrobenthos was assessed in time and space at Ryder and Marguerite bays of the West Antarctic Peninsula (WAP). In particular the influence of the duration of primary productivity and ice scour are investigated from the shallows to typical shelf depths of 500 m. Ice scour frequency dominated influence on benthic blue carbon at 5 m, to comparable with phytoplankton duration by 25 m depth. At 500 m only phytoplankton duration was significant and influential. WAP zoobenthos was calculated to generate ~10 7 , 4.5 × 10 6 and 1.6 × 10 6 tonnes per year (between 2002 and 2015) in terms of production, immobilization and sequestration of carbon respectively. Thus about 1% of annual primary productivity has sequestration potential at the end of the trophic cascade. Polar zoobenthic blue carbon capture and storage responses to sea ice losses, the largest negative feedback on climate change, has been underestimated despite some offsetting of gain by increased ice scouring with more open water. Equivalent survey of Arctic and sub-Antarctic shelves, for which new projects have started, should reveal the true extent of this feedback and how much its variability contributes to uncertainty in climate models. © 2017 John Wiley & Sons Ltd.

  20. Polarization Optics

    OpenAIRE

    Fressengeas, Nicolas

    2010-01-01

    The physics of polarization optics *Polarized light propagation *Partially polarized light; DEA; After a brief introduction to polarization optics, this lecture reviews the basic formalisms for dealing with it: Jones Calculus for totally polarized light and Stokes parameters associated to Mueller Calculus for partially polarized light.

  1. Nicotiana tabacum as model for ozone - plant surface reactions

    Science.gov (United States)

    Jud, Werner; Fischer, Lukas; Wohlfahrt, Georg; Tissier, Alain; Canaval, Eva; Hansel, Armin

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. The ensuing injuries have been related to the uptake of ozone through the stomatal pores and oxidative effects damaging the internal leaf tissue. A striking question of current research is the environment and plant specific partitioning of ozone loss between gas phase, stomatal or plant surface sink terms. Here we show results from ozone fumigation experiments using various Nicotiana Tabacum varieties, whose surfaces are covered with different amounts of unsaturated diterpenoids exuded by their glandular trichomes. Exposure to elevated ozone levels (50 to 150 ppbv) for 5 to 15 hours in an exceptionally clean cuvette system did neither result in a reduction of photosynthesis nor caused any visible leaf damage. Both these ozone induced stress effects have been observed previously in ozone fumigation experiments with the ozone sensitive tobacco line Bel-W3. In our case ozone fumigation was accompanied by a continuous release of oxygenated volatile organic compounds, which could be clearly associated to their condensed phase precursors for the first time. Gas phase reactions of ozone were avoided by choosing a high enough gas exchange rate of the plant cuvette system. In the case of the Ambalema variety, that is known to exude only the diterpenoid cis-abienol, ozone fumigation experiments yield the volatiles formaldehyde and methyl vinyl ketone (MVK). The latter could be unequivocally separated from isomeric methacrolein (MACR) by the aid of a Selective Reagent Ion Time-of-Flight Mass Spectrometer (SRI-ToF-MS), which was switched every six minutes from H3O+ to NO+ primary ion mode and vice versa. Consistent with the picture of an ozone protection mechanism caused by reactive diterpenoids at the leaf surface are the results from dark-light experiments. The ozone loss obtained from the

  2. Basic Ozone Layer Science

    Science.gov (United States)

    Learn about the ozone layer and how human activities deplete it. This page provides information on the chemical processes that lead to ozone layer depletion, and scientists' efforts to understand them.

  3. Ozone Layer Observations

    Science.gov (United States)

    McPeters, Richard; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The US National Aeronautics and Space Administration (NASA) has been monitoring the ozone layer from space using optical remote sensing techniques since 1970. With concern over catalytic destruction of ozone (mid-1970s) and the development of the Antarctic ozone hole (mid-1980s), long term ozone monitoring has become the primary focus of NASA's series of ozone measuring instruments. A series of TOMS (Total Ozone Mapping Spectrometer) and SBUV (Solar Backscatter Ultraviolet) instruments has produced a nearly continuous record of global ozone from 1979 to the present. These instruments infer ozone by measuring sunlight backscattered from the atmosphere in the ultraviolet through differential absorption. These measurements have documented a 15 Dobson Unit drop in global average ozone since 1980, and the declines in ozone in the antarctic each October have been far more dramatic. Instruments that measure the ozone vertical distribution, the SBUV and SAGE (Stratospheric Aerosol and Gas Experiment) instruments for example, show that the largest changes are occurring in the lower stratosphere and upper troposphere. The goal of ozone measurement in the next decades will be to document the predicted recovery of the ozone layer as CFC (chlorofluorocarbon) levels decline. This will require a continuation of global measurements of total column ozone on a global basis, but using data from successor instruments to TOMS. Hyperspectral instruments capable of measuring in the UV will be needed for this purpose. Establishing the relative roles of chemistry and dynamics will require instruments to measure ozone in the troposphere and in the stratosphere with good vertical resolution. Instruments that can measure other chemicals important to ozone formation and destruction will also be needed.

  4. Ozone Exposure-Response in Field Grown Soybean: Characterizing Intraspecific Variability of Physiology and Biochemistry

    Science.gov (United States)

    Crop losses due to rising tropospheric ozone concentrations ([ozone]) in 2000 were estimated to cost $1.8 to $3.9 billion in the U.S. and $3.0 to $5.5 billion in China, and are expected to grow with the predicted 25% increase in background [ozone] over the next 30 to 50 years. This challenge provide...

  5. Polarization at SLC

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-07-01

    The SLAC Linear Collider has been designed to readily accommodate polarized electron beams. Considerable effort has been made to implement a polarized source, a spin rotation system, and a system to monitor the beam polarization. Nearly all major components have been fabricated. At the current time, several source and polarimeter components have been installed. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. It is expected that a beam polarization of 45% will be achieved with no loss in luminosity. 13 refs., 15 figs

  6. Quantifying the contributions to stratospheric ozone changes from ozone depleting substances and greenhouse gases

    Directory of Open Access Journals (Sweden)

    D. A. Plummer

    2010-09-01

    Full Text Available A state-of-the-art chemistry climate model coupled to a three-dimensional ocean model is used to produce three experiments, all seamlessly covering the period 1950–2100, forced by different combinations of long-lived Greenhouse Gases (GHGs and Ozone Depleting Substances (ODSs. The experiments are designed to quantify the separate effects of GHGs and ODSs on the evolution of ozone, as well as the extent to which these effects are independent of each other, by alternately holding one set of these two forcings constant in combination with a third experiment where both ODSs and GHGs vary. We estimate that up to the year 2000 the net decrease in the column amount of ozone above 20 hPa is approximately 75% of the decrease that can be attributed to ODSs due to the offsetting effects of cooling by increased CO2. Over the 21st century, as ODSs decrease, continued cooling from CO2 is projected to account for more than 50% of the projected increase in ozone above 20 hPa. Changes in ozone below 20 hPa show a redistribution of ozone from tropical to extra-tropical latitudes with an increase in the Brewer-Dobson circulation. In addition to a latitudinal redistribution of ozone, we find that the globally averaged column amount of ozone below 20 hPa decreases over the 21st century, which significantly mitigates the effect of upper stratospheric cooling on total column ozone. Analysis by linear regression shows that the recovery of ozone from the effects of ODSs generally follows the decline in reactive chlorine and bromine levels, with the exception of the lower polar stratosphere where recovery of ozone in the second half of the 21st century is slower than would be indicated by the decline in reactive chlorine and bromine concentrations. These results also reveal the degree to which GHG-related effects mute the chemical effects of N2O on ozone in the standard future scenario used for the WMO Ozone Assessment. Increases in the

  7. Earth's ozone layer

    International Nuclear Information System (INIS)

    Lasa, J.

    1991-01-01

    The paper contain the actual results of investigations of the influence of the human activity on the Earth's ozone layer. History of the ozone measurements and of the changes in its concentrations within the last few years are given. The influence of the trace gases on both local and global ozone concentrations are discussed. The probable changes of the ozone concentrations are presented on the basis of the modelling investigations. The effect of a decrease in global ozone concentration on human health and on biosphere are also presented. (author). 33 refs, 36 figs, 5 tabs

  8. Uncertainties in modelling heterogeneous chemistry and Arctic ozone depletion in the winter 2009/2010

    Directory of Open Access Journals (Sweden)

    I. Wohltmann

    2013-04-01

    Full Text Available Stratospheric chemistry and denitrification are simulated for the Arctic winter 2009/2010 with the Lagrangian Chemistry and Transport Model ATLAS. A number of sensitivity runs is used to explore the impact of uncertainties in chlorine activation and denitrification on the model results. In particular, the efficiency of chlorine activation on different types of liquid aerosol versus activation on nitric acid trihydrate clouds is examined. Additionally, the impact of changes in reaction rate coefficients, in the particle number density of polar stratospheric clouds, in supersaturation, temperature or the extent of denitrification is investigated. Results are compared to satellite measurements of MLS and ACE-FTS and to in-situ measurements onboard the Geophysica aircraft during the RECONCILE measurement campaign. It is shown that even large changes in the underlying assumptions have only a small impact on the modelled ozone loss, even though they can cause considerable differences in chemical evolution of other species and in denitrification. Differences in column ozone between the sensitivity runs stay below 10% at the end of the winter. Chlorine activation on liquid aerosols alone is able to explain the observed magnitude and morphology of the mixing ratios of active chlorine, reservoir gases and ozone. This is even true for binary aerosols (no uptake of HNO3 from the gas-phase allowed in the model. Differences in chlorine activation between sensitivity runs are within 30%. Current estimates of nitric acid trihydrate (NAT number density and supersaturation imply that, at least for this winter, NAT clouds play a relatively small role compared to liquid clouds in chlorine activation. The change between different reaction rate coefficients for liquid or solid clouds has only a minor impact on ozone loss and chlorine activation in our sensitivity runs.

  9. Natural and anthropogenic perturbations of the stratospheric ozone layer

    Science.gov (United States)

    Brasseur, Guy P.

    1992-01-01

    The paper reviews potential causes for reduction in the ozone abundance. The response of stratospheric ozone to solar activity is discussed. Ozone changes are simulated in relation with the potential development of a fleet of high-speed stratospheric aircraft and the release in the atmosphere of chlorofluorocarbons. The calculations are performed by a two-dimensional chemical-radiative-dynamical model. The importance of heterogeneous chemistry in polar stratospheric clouds and in the Junge layer (sulfate aerosol) is emphasized. The recently reported ozone trend over the last decade is shown to have been largely caused by the simultaneous effects of increasing concentrations of chlorofluorocarbons and heterogeneous chemistry. The possibility for a reduction in stratospheric ozone following a large volcanic eruption such as that of Mount Pinatubo in 1991 is discussed.

  10. Extreme events in total ozone over Arosa – Part 2: Fingerprints of atmospheric dynamics and chemistry and effects on mean values and long-term changes

    Directory of Open Access Journals (Sweden)

    H. E. Rieder

    2010-10-01

    Full Text Available In this study the frequency of days with extreme low (termed ELOs and extreme high (termed EHOs total ozone values and their influence on mean values and trends are analyzed for the world's longest total ozone record (Arosa, Switzerland. The results show (i an increase in ELOs and (ii a decrease in EHOs during the last decades and (iii that the overall trend during the 1970s and 1980s in total ozone is strongly dominated by changes in these extreme events. After removing the extremes, the time series shows a strongly reduced trend (reduction by a factor of 2.5 for trend in annual mean. Excursions in the frequency of extreme events reveal "fingerprints" of dynamical factors such as ENSO or NAO, and chemical factors, such as cold Arctic vortex ozone losses, as well as major volcanic eruptions of the 20th century (Gunung Agung, El Chichón, Mt. Pinatubo. Furthermore, atmospheric loading of ozone depleting substances leads to a continuous modification of column ozone in the Northern Hemisphere also with respect to extreme values (partly again in connection with polar vortex contributions. Application of extreme value theory allows the identification of many more such "fingerprints" than conventional time series analysis of annual and seasonal mean values. The analysis shows in particular the strong influence of dynamics, revealing that even moderate ENSO and NAO events have a discernible effect on total ozone. Overall the approach to extremal modelling provides new information on time series properties, variability, trends and the influence of dynamics and chemistry, complementing earlier analyses focusing only on monthly (or annual mean values.

  11. Evolution of stratospheric ozone during winter 2002/2003 as observed by a ground-based millimetre wave radiometer at Kiruna, Sweden

    Directory of Open Access Journals (Sweden)

    U. Raffalski

    2005-01-01

    Full Text Available We present ozone measurements from the millimetre wave radiometer installed at the Swedish Institute of Space Physics (Institutet för rymdfysik, IRF in Kiruna (67.8° N, 20.4° E, 420 m asl. Nearly continuous operation in the winter of 2002/2003 allows us to give an overview of ozone evolution in the stratosphere between 15 and 55 km. In this study we present a detailed analysis of the Arctic winter 2002/2003. By means of a methodology using equivalent latitudes we investigate the meteorological processes in the stratosphere during the entire winter/spring period. During the course of the winter strong mixing into the vortex took place in the middle and upper stratosphere as a result of three minor and one major warming event, but no evidence was found for significant mixing in the lower stratosphere. Ozone depletion in the lower stratosphere during this winter was estimated by measurements on those days when Kiruna was well inside the Arctic polar vortex. The days were carefully chosen using a definition of the vortex edge based on equivalent latitudes. At the 475 K isentropic level a cumulative ozone loss of about 0.5 ppmv was found starting in January and lasting until mid-March. The early ozone loss is probably a result of the very cold temperatures in the lower stratosphere in December and the geographical extension of the vortex to lower latitudes where solar irradiation started photochemical ozone loss in the pre-processed air. In order to correct for dynamic effects of the ozone variation due to diabatic subsidence of air masses inside the vortex, we used N2O measurements from the Odin satellite for the same time period. The derived ozone loss in the lower stratosphere between mid-December and mid-March varies between 1.1±0.1 ppmv on the 150 ppbv N2O isopleth and 1.7±0.1 ppmv on the 50 ppbv N2O isopleth.

  12. Plasmachemical and heterogeneous processes in ozonizers with oxygen activation by a dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Mankelevich, Yu. A., E-mail: ymankelevich@mics.msu.su; Voronina, E. N.; Poroykov, A. Yu.; Rakhimov, T. V.; Voloshin, D. G.; Chukalovsky, A. A. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2016-10-15

    Plasmachemical and heterogeneous processes of generation and loss of ozone in the atmosphericpressure dielectric barrier discharge in oxygen are studied theoretically. Plasmachemical and electronic kinetics in the stage of development and decay of a single plasma filament (microdischarge) are calculated numerically with and without allowance for the effects of ozone vibrational excitation and high initial ozone concentration. The developed analytical approach is applied to determine the output ozone concentration taking into account ozone heterogeneous losses on the Al{sub 2}O{sub 3} dielectric surface. Using the results of quantummechanical calculations by the method of density functional theory, a multistage catalytic mechanism of heterogeneous ozone loss based on the initial passivation of a pure Al{sub 2}O{sub 3} surface by ozone and the subsequent interaction of O{sub 3} molecules with the passivated surface is proposed. It is shown that the conversion reaction 2O{sub 3} → 3O{sub 2} of a gas-phase ozone molecule with a physically adsorbed ozone molecule can result in the saturation of the maximum achievable ozone concentration at high specific energy depositions, the nonstationarity of the output ozone concentration, and its dependence on the prehistory of ozonizer operation.

  13. Interhemispheric differences in polar stratospheric HNO3, H2O, ClO, and O3

    Science.gov (United States)

    Santee, M. L.; Read, W. G.; Waters, J. W.; Froidevaux, L.; Manney, G. L.; Flower, D. A.; Jarnot, R. F.; Harwood, R. S.; Peckham, G. E.

    1995-01-01

    Simultaneous global measurements of nitric acid (HNO3), water (H2O), chlorine monoxide (ClO), and ozone (O3) in the stratosphere have been obtained over complete annual cycles in both hemispheres by the Microwave Limb Sounder on the Upper Atmosphere Research Satellite. A sizeable decrease in gas-phase HNO3 was evident in the lower stratospheric vortex over Antarctica by early June 1992, followed by a significant reduction in gas-phase H2O after mid-July. By mid-August, near the time of peak ClO, abundances of gas-phase HNO3 and H2O were extremely low. The concentrations of HNO3 and H2O over Antarctica remained depressed into November, well after temperatures in the lower stratosphere had risen above the evaporation threshold for polar stratospheric clouds, implying that denitrification and dehydration had occurred. No large decreases in either gas-phase HNO3 or H2O were observed in the 1992-1993 Arctic winter vortex. Although ClO was enhanced over the Arctic as it was over the Antarctic, Arctic O3 depletion was substantially smaller than that over Antarctica. A major factor currently limiting the formation of an Arctic ozone 'hole' is the lack of denitrification in the northern polar vortex, but future cooling of the lower stratosphere could lead to more intense denitrification and consequently larger losses of Arctic ozone.

  14. The stratospheric ozone and the ozone layer

    International Nuclear Information System (INIS)

    Zea Mazo, Jorge Anibal; Leon Aristizabal Gloria Esperanza; Eslava Ramirez Jesus Antonio

    2000-01-01

    An overview is presented of the principal characteristics of the stratospheric ozone in the Earth's atmosphere, with particular emphasis on the tropics and the ozone hole over the poles. Some effects produced in the atmosphere as a consequence of the different human activities will be described, and some data on stratospheric ozone will be shown. We point out the existence of a nucleus of least ozone in the tropics, stretching from South America to central Africa, with annual mean values less than 240 DU, a value lower than in the middle latitudes and close to the mean values at the South Pole. The existence of such a minimum is confirmed by mean values from measurements made on satellites or with earthbound instruments, for different sectors in Colombia, like Medellin, Bogota and Leticia

  15. Tropospheric ozone as a fungal elicitor

    Indian Academy of Sciences (India)

    Prakash

    one of CO2 (and consequently a certain facility to penetrate plant tissues), solubility in water 10 times higher than CO2 and tendency to react with water in a sub-basic environment. (Izuta 2006). Its noxious activity towards ...... Arteca R N and Pell E J 1995. Ozone-induced ethylene emission accelerates the loss of ribulose-1 ...

  16. Strategic Polarization.

    Science.gov (United States)

    Kalai, Adam; Kalai, Ehud

    2001-08-01

    In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.

  17. On the Size of the Antarctic Ozone Hole

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph

    2002-01-01

    The Antarctic ozone hole is a region of extremely large ozone depletion that is roughly centered over the South Pole. Since 1979, the area coverage of the ozone hole has grown from near zero size to over 24 Million sq km. In the 8-year period from 1981 to 1989, the area expanded by 18 Million sq km. During the last 5 years, the hole has been observed to exceed 25 Million sq km over brief periods. In the spring of 2002, the size of the ozone hole barely reached 20 Million sq km for only a couple of days. We will review these size observations, the size trends, and the interannual variability of the size. The area is derived from the area enclosed by the 220 DU total ozone contour. We will discuss the rationale for the choice of 220 DU: 1) it is located near the steep gradient between southern mid-latitudes and the polar region, and 2) 220 DU is a value that is lower than the pre-1979 ozone observations over Antarctica during the spring period. The phenomenal growth of the ozone hole was directly caused by the increases of chlorine and bromine compounds in the stratosphere. In this talk, we will show the relationship of the ozone hole's size to the interannual variability of Antarctic spring temperatures. In addition, we will show the relationship of these same temperatures to planetary-scale wave forcings.

  18. Changes in stratospheric ozone.

    Science.gov (United States)

    Cicerone, R J

    1987-07-03

    The ozone layer in the upper atmosphere is a natural feature of the earth's environment. It performs several important functions, including shielding the earth from damaging solar ultraviolet radiation. Far from being static, ozone concentrations rise and fall under the forces of photochemical production, catalytic chemical destruction, and fluid dynamical transport. Human activities are projected to deplete substantially stratospheric ozone through anthropogenic increases in the global concentrations of key atmospheric chemicals. Human-induced perturbations may be occurring already.

  19. RHIC Polarized proton operation

    International Nuclear Information System (INIS)

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D'Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.E.; Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-01-01

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP 4 . A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above

  20. RHIC Polarized proton operation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D' Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R,; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; J.; Severino, F.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J. Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP{sup 4}. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above

  1. Extreme ozone depletion in the 2010–2011 Arctic winter stratosphere as observed by MIPAS/ENVISAT using a 2-D tomographic approach

    Directory of Open Access Journals (Sweden)

    E. Arnone

    2012-10-01

    Full Text Available We present observations of the 2010–2011 Arctic winter stratosphere from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS onboard ENVISAT. Limb sounding infrared measurements were taken by MIPAS during the Northern polar winter and into the subsequent spring, giving a continuous vertically resolved view of the Arctic dynamics, chemistry and polar stratospheric clouds (PSCs. We adopted a 2-D tomographic retrieval approach to account for the strong horizontal inhomogeneity of the atmosphere present under vortex conditions, self-consistently comparing 2011 to the 2-D analysis of 2003–2010. Unlike most Arctic winters, 2011 was characterized by a strong stratospheric vortex lasting until early April. Lower stratospheric temperatures persistently remained below the threshold for PSC formation, extending the PSC season up to mid-March, resulting in significant chlorine activation leading to ozone destruction. On 3 January 2011, PSCs were detected up to 30.5 ± 0.9 km altitude, representing the highest PSCs ever reported in the Arctic. Through inspection of MIPAS spectra, 83% of PSCs were identified as supercooled ternary solution (STS or STS mixed with nitric acid trihydrate (NAT, 17% formed mostly by NAT particles, and only two cases by ice. In the lower stratosphere at potential temperature 450 K, vortex average ozone showed a daily depletion rate reaching 100 ppbv day−1. In early April at 18 km altitude, 10% of vortex measurements displayed total depletion of ozone, and vortex average values dropped to 0.6 ppmv. This corresponds to a chemical loss from early winter greater than 80%. Ozone loss was accompanied by activation of ClO, associated depletion of its reservoir ClONO2, and significant denitrification, which further delayed the recovery of ozone in spring. Once the PSC season halted, ClO was reconverted primarily into ClONO2. Compared to MIPAS observed 2003–2010 Arctic average values

  2. Pollution Control Using Ozone

    DEFF Research Database (Denmark)

    2017-01-01

    This invention relates to a method for cleaning air comprising one or more pollutants, the method comprising contacting the air with thermal decompositions products of ozone.......This invention relates to a method for cleaning air comprising one or more pollutants, the method comprising contacting the air with thermal decompositions products of ozone....

  3. Errors and ozone measurement

    Science.gov (United States)

    Mcpeters, Richard D.; Gleason, James F.

    1993-01-01

    It is held that Mimm's (1993) comparison of hand-held TOPS instrument data with the Nimbus 7 satellite's Total Ozone Mapping Spectrometer's (TOMS) ozone data was intrinsically flawed, in that the TOMS data were preliminary and therefore unsuited for quantitative analysis. It is noted that the TOMS calibration was in error.

  4. Post-treatment of Fly Ash by Ozone in a Fixed Bed Reactor

    DEFF Research Database (Denmark)

    Pedersen, Kim Hougaard; Melia, M. C.; Jensen, Anker Degn

    2009-01-01

    to be fast. A kinetic model has been formulated, describing the passivation of carbon, and it includes the stoichiometry of the ozone consumption (0.8 mol of O-3/kg of C) and an ineffective ozone loss caused by catalytic decomposition. The simulated results correlated well with the experimental data....... prevents the AEA to be adsorbed. In the present work, two fly ashes have been ozonated in a fixed bed reactor and the results showed that ozonation is a potential post-treatment method that can lower the AEA requirements of a fly ash up to 6 times. The kinetics of the carbon oxidation by ozone was found...

  5. Trends of Ozone in Switzerland since 1992 (TROZOS)

    International Nuclear Information System (INIS)

    Ordonez, C.; Mathis, H.; Furger, M.; Prevot, A.S.H.

    2004-07-01

    This work reports on the trends of the daily afternoon (noon to midnight) maximum ozone concentrations at 15 of the 16 stations of the Swiss air quality monitoring network (NABEL) during the period 1992-2002. The use of numerous meteorological parameters and additional data allowed a detailed seasonal analysis of the influence of the weather on the ozone maxima at the different stations. An analysis of covariance (ANCOVA) was performed separately for each station and season in order to detect the parameters which best explain the variability of the daily ozone maximum concentrations. During the warm seasons (summer and spring) the most explanatory parameters are those related to the ozone production, in particular the afternoon temperature. In winter, the most explanatory variables are the ones influencing the vertical mixing and thus the ozone destruction by titration with NO and dry deposition, like the afternoon global radiation. The trends of both the measured and meteorologically corrected ozone maxima were calculated. The year-to-year variability in the ozone maxima was lowered by a factor of 3 by the meteorological correction. Significantly positive trends of corrected ozone maxima of 0.3 - 1.1 ppb/year were found at the low altitude stations in winter and autumn as well as at Lausanne - urban station - in all the seasons, mainly due to the lower loss of ozone by reaction with NO as a consequence of the decreased emissions of primary pollutants during the 90s. This could be partially confirmed by the lower trends of O X (sum O 3 of and NO 2 ) maxima compared to the trends in ozone maxima. The absence of negative trends of the median or mean ozone maxima north of the Alps in summer suggests that the decrease in the emissions of ozone precursors did not have a strong impact on the afternoon maximum ozone concentrations during the last decade. In contrast to the project TOSS (Trends of Ozone in Southern Switzerland), no significantly negative trends of ozone

  6. Antarctic ozone hole as observed by IASI/MetOp for 2008–2010

    Directory of Open Access Journals (Sweden)

    C. Scannell

    2012-01-01

    Full Text Available In this paper we present a study of the ozone hole as observed by the Infrared Atmospheric Sounding Interferometer (IASI on-board the MetOp-A European satellite platform from the beginning of data dissemination, August 2008, to the end of December 2010. Here we demonstrate IASI's ability to capture the seasonal characteristics of the ozone hole, in particular during polar night. We compare IASI ozone total columns and vertical profiles with those of the Global Ozone Monitoring Experiment 2 (GOME-2, also on-board MetOp-A and electrochemical concentration cell (ECC ozone sonde measurements. Total ozone column from IASI and GOME-2 were found to be in excellent agreement for this region with a correlation coefficient of 0.97, for September, October and November 2009. On average IASI exhibits a positive bias of approximately 7% compared to the GOME-2 measurements over the entire ozone hole period. Comparisons between IASI and ozone sonde measurements were also found to be in good agreement with the difference between both ozone profile measurements being less than ±30% over the altitude range of 0–40 km. The vertical structure of the ozone profile inside the ozone hole is captured remarkably well by IASI.

  7. Investigating Dry Deposition of Ozone to Vegetation

    Science.gov (United States)

    Silva, Sam J.; Heald, Colette L.

    2018-01-01

    Atmospheric ozone loss through dry deposition to vegetation is a critically important process for both air quality and ecosystem health. The majority of atmospheric chemistry models calculate dry deposition using a resistance-in-series parameterization by Wesely (1989), which is dependent on many environmental variables and lookup table values. The uncertainties contained within this parameterization have not been fully explored, ultimately challenging our ability to understand global scale biosphere-atmosphere interactions. In this work, we evaluate the GEOS-Chem model simulation of ozone dry deposition using a globally distributed suite of observations. We find that simulated daytime deposition velocities generally reproduce the magnitude of observations to within a factor of 1.4. When correctly accounting for differences in land class between the observations and model, these biases improve, most substantially over the grasses and shrubs land class. These biases do not impact the global ozone burden substantially; however, they do lead to local absolute changes of up to 4 ppbv and relative changes of 15% in summer surface concentrations. We use MERRA meteorology from 1979 to 2008 to assess that the interannual variability in simulated annual mean ozone dry deposition due to model input meteorology is small (generally less than 5% over vegetated surfaces). Sensitivity experiments indicate that the simulation is most sensitive to the stomatal and ground surface resistances, as well as leaf area index. To improve ozone dry deposition models, more measurements are necessary over rainforests and various crop types, alongside constraints on individual depositional pathways and other in-canopy ozone loss processes.

  8. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  9. Are Antarctic ozone variations a manifestation of dynamics or chemistry?

    Science.gov (United States)

    Tung, K.-K.; Ko, M. K. W.; Rodriguez, J. M.; Sze, N. D.

    1986-01-01

    The existence of a reverse circulation cell with rising motion in the polar lower stratosphere is suggested as an explanation for the temporal behavior of the ozone column density in the Antarctic region. The upwelling brings ozone-poor air from below 100 mbar to the stratosphere, possibly contributing to the observed ozone decline in early spring. At the same time, the Antarctic stratosphere might contain a very low concentration of NO(x), a condition that could favor a greatly enhanced catalytic removal of O3 by halogen species. It is argued that heterogeneous processes and formation of OClO by the reaction BrO+ClO - OClO+Br before and after the polar night might help to suppress the NO(x) levels during the early spring period.

  10. The Hole in the Ozone Layer.

    Science.gov (United States)

    Hamers, Jeanne S.; Jacob, Anthony T.

    This document contains information on the hole in the ozone layer. Topics discussed include properties of ozone, ozone in the atmosphere, chlorofluorocarbons, stratospheric ozone depletion, effects of ozone depletion on life, regulation of substances that deplete the ozone layer, alternatives to CFCs and Halons, and the future of the ozone layer.…

  11. Fundamentals of ISCO Using Ozone

    Science.gov (United States)

    In situ chemical oxidation (ISCO) using ozone involves the introduction of ozone gas (O3) into the subsurface to degrade organic contaminants of concern. Ozone is tri-molecular oxygen (O2) that is a gas under atmospheric conditions and is a strong oxidant. Ozone may react with ...

  12. Ozone as an air pollutant

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    1996-01-01

    A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995.......A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995....

  13. What Controls the Size of the Antarctic Ozone Hole?

    Science.gov (United States)

    Bhartia, P. K. (Technical Monitor); Newman, Paul A.; Kawa, S. Randolph; Nash, Eric R.

    2002-01-01

    The Antarctic ozone hole is a region of extremely large ozone depletion that is roughly centered over the South Pole. Since 1979, the area coverage of the ozone hole has grown from near zero size to over 24 Million square kilometers. In the 8-year period from 1981 to 1989, the area expanded by 18 Million square kilometers. During the last 5 years, the hole has been observed to exceed 25 Million square kilometers over brief periods. We will review these size observations, the size trends, and the interannual variability of the size. The area is derived from the area enclosed by the 220 DU total ozone contour. We will discuss the rationale for the choice of 220 DU: 1) it is located near the steep gradient between southern mid-latitudes and the polar region, and 2) 220 DU is a value that is lower than the pre- 1979 ozone observations over Antarctica during the spring period. The phenomenal growth of the ozone hole was directly caused by the increases of chlorine and bromine compounds in the stratosphere. In this talk, we will show the relationship of the ozone hole's size to the interannual variability of Antarctic spring temperatures. In addition, we will show the relationship of these same temperatures to planetary-scale wave forcings.

  14. Continuous requirement of ErbB2 kinase activity for loss of cell polarity and lumen formation in a novel ErbB2/Neu-driven murine cell line model of metastatic breast cancer

    Directory of Open Access Journals (Sweden)

    Cesar F Ortega-Cava

    2011-01-01

    Full Text Available Background: Well over a quarter of human breast cancers are ErbB2-driven and constitute a distinct subtype with substantially poorer prognosis. Yet, there are substantial gaps in our understanding of how ErbB2 tyrosine kinase activity unleashes a coordinated program of cellular and extracellular alterations that culminate in aggressive breast cancers. Cellular models that exhibit ErbB2 kinase dependency and can induce metastatic breast cancer in immune competent hosts are likely to help bridge this gap. Materials and Methods: Here, we derived and characterized a cell line model obtained from a transgenic ErbB2/Neu-driven mouse mammary adenocarcinoma. Results: The MPPS1 cell line produces metastatic breast cancers when implanted in the mammary fat pads of immune-compromised as well as syngeneic immune-competent hosts. MPPS1 cells maintain high ErbB2 overexpression when propagated in DFCI-1 or related media, and their growth is ErbB2-dependent, as demonstrated by concentration-dependent inhibition of proliferation with the ErbB kinase inhibitor Lapatinib. When grown in 3-dimensional (3-D culture on Matrigel, MPPS1 cells predominantly form large irregular cystic and solid structures. Remarkably, low concentrations of Lapatinib led to a switch to regular acinar growth on Matrigel. Immunofluorescence staining of control vs. Lapatinib-treated acini for markers of epithelial polarity revealed that inhibition of ErbB2 signaling led to rapid resumption of normal mammary epithelium-like cell polarity. Conclusions: The strict dependence of the MPPS1 cell system on ErbB2 signals for proliferation and alterations in cell polarity should allow its use to dissect ErbB2 kinase-dependent signaling pathways that promote loss of cell polarity, a key component of the epithelial mesenchymal transition and aggressiveness of ErbB2-driven breast cancers.

  15. EOS Aura and Future Satellite Studies of the Ozone Layer

    Science.gov (United States)

    Schoeberl, Mark R.

    2007-01-01

    The EOS Aura mission, launched in 2004, provides a comprehensive assessment of the stratospheric dynamics and chemistry. This talk will focus on results from Aura including the chemistry of polar ozone depletion. The data from Aura can be directly linked to UARS data to produce long term trends in stratospheric trace gases.

  16. Reducing Uncertainty in Chemistry Climate Model Predictions of Stratospheric Ozone

    Science.gov (United States)

    Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.

    2014-01-01

    Chemistry climate models (CCMs) are used to predict the future evolution of stratospheric ozone as ozone-depleting substances decrease and greenhouse gases increase, cooling the stratosphere. CCM predictions exhibit many common features, but also a broad range of values for quantities such as year of ozone-return-to-1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to chlorine change from that due to climate change. We show that the sensitivity of lower atmosphere ozone to chlorine change deltaO3/deltaCly is a near linear function of partitioning of total inorganic chlorine (Cly) into its reservoirs; both Cly and its partitioning are controlled by lower atmospheric transport. CCMs with realistic transport agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035 differences in response to chlorine contribute little to the spread in CCM results as the anthropogenic contribution to Cly becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change deltaO3/deltaT due to different contributions from various ozone loss processes, each with their own temperature dependence. In the lower atmosphere, tropical ozone decreases caused by a predicted speed-up in the Brewer-Dobson circulation may or may not be balanced by middle and high latitude increases, contributing most to the spread in late 21st century predictions.

  17. Observations and analysis of polar stratospheric clouds detected by POAM III and SAGE III during the SOLVE II/VINTERSOL campaign in the 2002/2003 Northern Hemisphere winter

    Science.gov (United States)

    Alfred, J.; Fromm, M.; Bevilacqua, R.; Nedoluha, G.; Strawa, A.; Poole, L.; Wickert, J.

    2007-05-01

    The Polar Ozone and Aerosol Measurement and Stratospheric Aerosol and Gas Experiment instruments both observed high numbers of polar stratospheric clouds (PSCs) in the polar region during the second SAGE Ozone Loss and Validation (SOLVE II) and Validation of INTERnational Satellites and Study of Ozone Loss (VINTERSOL) campaign, conducted during the 2002/2003 Northern Hemisphere winter. Between 15 November 2002 (14 November 2002) and 18 March 2003 (21 March 2003) SAGE (POAM) observed 122 (151) aerosol extinction profiles containing PSCs. PSCs were observed on an almost daily basis, from early December through 15 January, in both instruments. No PSCs were observed from either instrument from 15 January until 4 February, and from then only sparingly in three periods in mid- and late February and mid-March. In early December, PSCs were observed in the potential temperature range from roughly 375 K to 750 K. Throughout December the top of this range decreases to near 600 K. In February and March, PSC observations were primarily constrained to potential temperatures below 500 K. The PSC observation frequency as a function of ambient temperature relative to the nitric acid-trihydrate saturation point (using a nitric acid profile prior to denitrification) was used to infer irreversible denitrification. By late December 38% denitrification was inferred at both the 400-475 K and 475-550 K potential temperature ranges. By early January extensive levels of denitrification near 80% were inferred at both potential temperature ranges, and the air remained denitrified at least through early March.

  18. Impact of parameterization choices on the restitution of ozone deposition over vegetation

    Science.gov (United States)

    Le Morvan-Quéméner, Aurélie; Coll, Isabelle; Kammer, Julien; Lamaud, Eric; Loubet, Benjamin; Personne, Erwan; Stella, Patrick

    2018-04-01

    Ozone is a potentially phyto-toxic air pollutant, which can cause leaf damage and drastically alter crop yields, causing serious economic losses around the world. The VULNOZ (VULNerability to OZone in Anthropised Ecosystems) project is a biology and modeling project that aims to understand how plants respond to the stress of high ozone concentrations, then use a set of models to (i) predict the impact of ozone on plant growth, (ii) represent ozone deposition fluxes to vegetation, and finally (iii) estimate the economic consequences of an increasing ozone background the future. In this work, as part of the VULNOZ project, an innovative representation of ozone deposition to vegetation was developed and implemented in the CHIMERE regional chemistry-transport model. This type of model calculates the average amount of ozone deposited on a parcel each hour, as well as the integrated amount of ozone deposited to the surface at the regional or country level. Our new approach was based on a refinement of the representation of crop types in the model and the use of empirical parameters specific to each crop category. The results obtained were compared with a conventional ozone deposition modeling approach, and evaluated against observations from several agricultural areas in France. They showed that a better representation of the distribution between stomatal and non-stomatal ozone fluxes was obtained in the empirical approach, and they allowed us to produce a new estimate of the total amount of ozone deposited on the subtypes of vegetation at the national level.

  19. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Directory of Open Access Journals (Sweden)

    L. Xia

    2017-10-01

    Full Text Available A range of solar radiation management (SRM techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air

  20. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Science.gov (United States)

    Xia, Lili; Nowack, Peer J.; Tilmes, Simone; Robock, Alan

    2017-10-01

    A range of solar radiation management (SRM) techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air pollution. In conclusion

  1. Climate change and atmospheric chemistry: how will the stratospheric ozone layer develop?

    Science.gov (United States)

    Dameris, Martin

    2010-10-25

    The discovery of the ozone hole over Antarctica in 1985 was a surprise for science. For a few years the reasons of the ozone hole was speculated about. Soon it was obvious that predominant meteorological conditions led to a specific situation developing in this part of the atmosphere: Very low temperatures initiate chemical processes that at the end cause extreme ozone depletion at altitudes of between about 15 and 30 km. So-called polar stratospheric clouds play a key role. Such clouds develop at temperatures below about 195 K. Heterogeneous chemical reactions on cloud particles initiate the destruction of ozone molecules. The future evolution of the ozone layer will not only depend on the further development of concentrations of ozone-depleting substances, but also significantly on climate change.

  2. Comparative study of ozonized olive oil and ozonized sunflower oil

    Directory of Open Access Journals (Sweden)

    Díaz Maritza F.

    2006-01-01

    Full Text Available In this study the ozonized olive and sunflower oils are chemical and microbiologically compared. These oils were introduced into a reactor with bubbling ozone gas in a water bath at room temperature until they were solidified. The peroxide, acidity and iodine values along with antimicrobial activity were determined. Ozonization effects on the fatty acid composition of these oils were analyzed using Gas-Liquid Chromatographic Technique. An increase in peroxidation and acidity values was observed in both oils but they were higher in ozonized sunflower oil. Iodine value was zero in ozonized olive oil whereas in ozonized sunflower was 8.8 g Iodine per 100 g. The antimicrobial activity was similar for both ozonized oils except for Minimum Bactericidal Concentrations of Pseudomona aeruginosa. Composition of fatty acids in both ozonized oils showed gradual decrease in unsaturated fatty acids (C18:1, C18:2 with gradual increase in ozone doses.

  3. Time Domain Induced Polarization

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest

    2012-01-01

    Time-domain-induced polarization has significantly broadened its field of reference during the last decade, from mineral exploration to environmental geophysics, e.g., for clay and peat identification and landfill characterization. Though, insufficient modeling tools have hitherto limited the use...... of time-domaininduced polarization for wider purposes. For these reasons, a new forward code and inversion algorithm have been developed using the full-time decay of the induced polarization response, together with an accurate description of the transmitter waveform and of the receiver transfer function......%. Furthermore, the presence of low-pass filters in time-domain-induced polarization instruments affects the early times of the acquired decays (typically up to 100 ms) and has to be modeled in the forward response to avoid significant loss of resolution. The developed forward code has been implemented in a 1D...

  4. Application of computational fluid dynamics modelling to an ozone ...

    African Journals Online (AJOL)

    driniev

    2004-01-01

    Jan 1, 2004 ... Turbulent kinetic energy m2·s-2 km. Disinfection rate constant for .... modelling the kinetic reactions to achieve the most efficient use of the ozone dosed to the system. The USEPA techniques .... be globally categorised into off-gas losses, consumption, and loss by self-decomposition. (Bredtmann, 1982).

  5. Ozone exposure affects leaf wettability and tree water balance

    NARCIS (Netherlands)

    Schreuder, M.D.J.; Hove, van L.W.A.; Brewer, C.A.

    2001-01-01

    Relatively little is known about the influences of growing-season background ozone (O3) concentrations on leaf cuticles and foliar water loss. Using fumigation chambers, leaf wettability and foliar water loss were studied in two poplar species, Populus nigra and P. euramericana, and a conifer,

  6. Addressing Ozone Layer Depletion

    Science.gov (United States)

    Access information on EPA's efforts to address ozone layer depletion through regulations, collaborations with stakeholders, international treaties, partnerships with the private sector, and enforcement actions under Title VI of the Clean Air Act.

  7. Ozone health effects

    International Nuclear Information System (INIS)

    Easterly, C.

    1994-01-01

    Ozone is a principal component of photochemical air pollution endogenous to numerous metropolitan areas. It is primarily formed by the oxidation of NOx in the presence of sunlight and reactive organic compounds. Ozone is a highly active oxidizing agent capable of causing injury to the lung. Lung injury may take the form of irritant effects on the respiratory tract that impair pulmonary function and result in subjective symptoms of respiratory discomfort. These symptoms include, but are not limited to, cough and shortness of breath, and they can limit exercise performance. The effects of ozone observed in humans have been primarily limited to alterations in respiratory function, and a range of respiratory physiological parameters have been measured as a function of ozone exposure in adults and children. These affects have been observed under widely varying (clinical experimental and environmental settings) conditions

  8. Ozone Therapy in Dentistry

    Science.gov (United States)

    Domb, William C

    2014-01-01

    Summary The 21st century dental practice is quite dynamic. New treatment protocols and new materials are being developed at a rapid pace. Ozone dental therapy falls into the category of new treatment protocols in dentistry, yet ozone is not new at all. Ozone therapy is already a major treatment modality in Europe, South America and a number of other countries. What is provided here will not be an exhaustive scientific treatise so much as a brief general introduction into what dentists are now doing with ozone therapies and the numerous oral/systemic links that make this subject so important for physicians so that, ultimately, they may serve their patients more effectively and productively. PMID:25363268

  9. 2001 Ozone Design Value

    Data.gov (United States)

    U.S. Environmental Protection Agency — Ozone is generated by a complex atmoshperic chemical process. Industrial and automobile pollutants in the form of oxides of nitrogen and hydrocarbons react in the...

  10. Polarization Diversity DPSK Demodulator on the Silicon-on-Insulator Platform with Simple Fabrication

    DEFF Research Database (Denmark)

    Ding, Yunhong; Huang, Bo; Ou, Haiyan

    2013-01-01

    We demonstrate a novel polarization diversity DPSK demodulator on the SOI platform with low polarization dependent loss (1.6 dB) and low polarization dependent extinction ratio (<3 dB). System experiments verify the low polarization dependency....

  11. Climate Response to the Increase in Tropospheric Ozone since Preindustrial Times: A Comparison between Ozone and Equivalent CO2 Forcings

    Science.gov (United States)

    Mickley L. J.; Jacob, D. J.; Field, B. D.; Rind, D.

    2004-01-01

    We examine the characteristics of the climate response to anthropogenic changes in tropospheric ozone. Using a general circulation model, we have carried out a pair of equilibrium climate simulations with realistic present-day and preindustrial ozone distributions. We find that the instantaneous radiative forcing of 0.49 W m(sup -2) due to the increase in tropospheric ozone since preindustrial times results in an increase in global mean surface temperature of 0.28 C. The increase is nearly 0.4 C in the Northern Hemisphere and about 0.2 C in the Southern Hemisphere. The largest increases (greater than 0.8 C) are downwind of Europe and Asia and over the North American interior in summer. In the lower stratosphere, global mean temperatures decrease by about 0.2 C due to the diminished upward flux of radiation at 9.6 micrometers. The largest stratospheric cooling, up to 1.0 C, occurs over high northern latitudes in winter, with possibly important implications for the formation of polar stratospheric clouds. To identify the characteristics of climate forcing unique to tropospheric ozone, we have conducted two additional climate equilibrium simulations: one in which preindustrial tropospheric ozone concentrations were increased everywhere by 18 ppb, producing the same global radiative forcing as present-day ozone but without the heterogeneity; and one in which CO2 was decreased by 25 ppm relative to present day, with ozone at present-day values, to again produce the same global radiative forcing but with the spectral signature of CO2 rather than ozone. In the first simulation (uniform increase of ozone), the global mean surface temperature increases by 0.25 C, with an interhemispheric difference of only 0.03 C, as compared with nearly 0.2 C for the heterogeneous ozone increase. In the second simulation (equivalent CO2), the global mean surface temperature increases by 0.36 C, 30% higher than the increase from tropospheric ozone. The stronger surface warming from CO2 is

  12. Ozone depletion calculations

    International Nuclear Information System (INIS)

    Luther, F.M.; Chang, J.S.; Wuebbles, D.J.; Penner, J.E.

    1992-01-01

    Models of stratospheric chemistry have been primarily directed toward an understanding of the behavior of stratospheric ozone. Initially this interest reflected the diagnostic role of ozone in the understanding of atmospheric transport processes. More recently, interest in stratospheric ozone has arisen from concern that human activities might affect the amount of stratospheric ozone, thereby affecting the ultraviolet radiation reaching the earth's surface and perhaps also affecting the climate with various potentially severe consequences for human welfare. This concern has inspired a substantial effort to develop both diagnostic and prognostic models of stratospheric ozone. During the past decade, several chemical agents have been determined to have potentially significant impacts on stratospheric ozone if they are released to the atmosphere in large quantities. These include oxides of nitrogen, oxides of hydrogen, chlorofluorocarbons, bromine compounds, fluorine compounds and carbon dioxide. In order to assess the potential impact of the perturbations caused by these chemicals, mathematical models have been developed to handle the complex coupling between chemical, radiative, and dynamical processes. Basic concepts in stratospheric modeling are reviewed

  13. The ozone backlash

    International Nuclear Information System (INIS)

    Taubes, G.

    1993-01-01

    While evidence for the role of chlorofluorocarbons in ozone depletion grows stronger, researchers have recently been subjected to vocal public criticism of their theories-and their motives. Their understanding of the mechanisms of ozone destruction-especially the annual ozone hole that appears in the Antarctic-has grown stronger, yet everywhere they go these days, they seem to be confronted by critics attacking their theories as baseless. For instance, Rush Limbaugh, the conservative political talk-show host and now-best-selling author of The Way Things Ought to Be, regularly insists that the theory of ozone depletion by CFCs is a hoax: bladerdash and poppycock. Zoologist Dixy Lee Ray, former governor of the state of Washington and former head of the Atomic Energy Commission, makes the same argument in her book, Trashing the Planet. The Wall Street Journal and National Review have run commentaries by S. Fred Singer, a former chief scientists for the Department of Transportation, purporting to shoot holes in the theory of ozone depletion. Even the June issue of Omni, a magazine with a circulation of more than 1 million that publishes a mixture of science and science fiction, printed a feature article claiming to expose ozone research as a politically motivated scam

  14. Air-snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS - Part 1: In-snow bromine activation and its impact on ozone

    Science.gov (United States)

    Toyota, K.; McConnell, J. C.; Staebler, R. M.; Dastoor, A. P.

    2013-08-01

    To provide a theoretical framework towards better understanding of ozone depletion events (ODEs) and atmospheric mercury depletion events (AMDEs) in the polar boundary layer, we have developed a one-dimensional model that simulates multiphase chemistry and transport of trace constituents from porous snowpack and through the atmospheric boundary layer (ABL) as a unified system. In this paper, we describe a general configuration of the model and the results of simulations related to reactive bromine release from the snowpack and ODEs during the Arctic spring. The model employs a chemical mechanism adapted from the one previously used for the simulation of multiphase halogen chemistry involving deliquesced sea-salt aerosols in the marine boundary layer. A common set of aqueous-phase reactions describe chemistry both in the liquid-like (or brine) layer on the grain surface of the snowpack and in "haze" aerosols mainly composed of sulfate in the atmosphere. The process of highly soluble/reactive trace gases, whether entering the snowpack from the atmosphere or formed via gas-phase chemistry in the snowpack interstitial air (SIA), is simulated by the uptake on brine-covered snow grains and subsequent reactions in the aqueous phase while being traveled vertically within the SIA. A "bromine explosion", by which, in a conventional definition, HOBr formed in the ambient air is deposited and then converted heterogeneously to Br2, is a dominant process of reactive bromine formation in the top 1 mm (or less) layer of the snowpack. Deeper in the snowpack, HOBr formed within the SIA leads to an in-snow bromine explosion, but a significant fraction of Br2 is also produced via aqueous radical chemistry in the brine on the surface of the snow grains. These top- and deeper-layer productions of Br2 both contribute to the Br2 release into the atmosphere, but the deeper-layer production is found to be more important for the net outflux of reactive bromine. Although ozone is removed via

  15. Causes and effects of a hole. [in Antarctic ozone layer

    Science.gov (United States)

    Margitan, J. J.

    1987-01-01

    Preliminary results from the U.S. National Ozone Expedition (NOZE) to Antarctica are reviewed. The NOZE ozonesonde measurements showed significant vertical structure in the hole, with 80 percent depletion in some of the 1 km layers but only 20 percent in adjacent layers. The depletion was confined to the 12-20 km region, beginning first at higher altitude and progressing downward. This is strong evidence against the theory that the ozone hole is due to solar activity producing odd nitrogen at high altitudes which is transported downwards, leading to enhanced odd-nitrogen catalytic cycles that destroy ozone. Nitrous oxide data show unusually low concentrations within the polar vortex, which is evidence against the theory that the hole is caused by a purely dynamical mechanism in which rising air motions within the polar vortex lead to reduced column densities of ozone. It is tentatively concluded that a chemical mechanism involving man-made chlorofluorocarbons is the likely cause of ozone depletion in the hole.

  16. Ozone: The secret greenhouse gas

    International Nuclear Information System (INIS)

    Berntsen, Terje; Tjernshaugen, Andreas

    2001-01-01

    The atmospheric ozone not only protects against harmful ultraviolet radiation; it also contributes to the greenhouse effect. Ozone is one of the jokers to make it difficult to calculate the climatic effect of anthropogenic emissions. The greenhouse effect and the ozone layer should not be confused. The greenhouse effect creates problems when it becomes enhanced, so that the earth becomes warmer. The problem with the ozone layer, on the contrary, is that it becomes thinner and so more of the harmful ultraviolet radiation gets through to the earth. However, ozone is also a greenhouse gas and so the greenhouse effect and the ozone layer are connected

  17. What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated?

    OpenAIRE

    P. A. Newman; L. D. Oman; A. R. Douglass; E. L. Fleming; S. M. Frith; M. M. Hurwitz; S. R. Kawa; C. H. Jackman; N. A. Krotkov; E. R. Nash; J. E. Nielsen; S. Pawson; R. S. Stolarski; G. J. M. Velders

    2009-01-01

    Ozone depletion by chlorofluorocarbons (CFCs) was first proposed by Molina and Rowland in their 1974 Nature paper. Since that time, the scientific connection between ozone losses and CFCs and other ozone depleting substances (ODSs) has been firmly established with laboratory measurements, atmospheric observations, and modeling research. This science research led to the implementation of international agreements that largely stopped the production of ODSs. In this study we use a fully-c...

  18. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  19. A cloud-ozone data product from Aura OMI and MLS satellite measurements

    Directory of Open Access Journals (Sweden)

    J. R. Ziemke

    2017-11-01

    Full Text Available Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low-troposphere/boundary-layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H2O, OH production, and cloud microphysics/transport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI and Microwave Limb Sounder (MLS satellite measurements to generate a new research product of monthly-mean ozone concentrations in deep convective clouds between 30° S and 30° N for October 2004–April 2016. These measurements represent mean ozone concentration primarily in the upper levels of thick clouds and reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of  ∼ 10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and India/east Asia; connections with tropical ENSO events; and intraseasonal/Madden–Julian oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary-layer pollution and elevated ozone inside thick clouds over landmass regions including southern Africa and India/east Asia.

  20. A cloud-ozone data product from Aura OMI and MLS satellite measurements

    Science.gov (United States)

    Ziemke, Jerald R.; Strode, Sarah A.; Douglass, Anne R.; Joiner, Joanna; Vasilkov, Alexander; Oman, Luke D.; Liu, Junhua; Strahan, Susan E.; Bhartia, Pawan K.; Haffner, David P.

    2017-11-01

    Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low-troposphere/boundary-layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H2O, OH production, and cloud microphysics/transport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) satellite measurements to generate a new research product of monthly-mean ozone concentrations in deep convective clouds between 30° S and 30° N for October 2004-April 2016. These measurements represent mean ozone concentration primarily in the upper levels of thick clouds and reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of ˜ 10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and India/east Asia; connections with tropical ENSO events; and intraseasonal/Madden-Julian oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary-layer pollution and elevated ozone inside thick clouds over landmass regions including southern Africa and India/east Asia.

  1. The Ozone Problem | Ground-level Ozone | New England | US ...

    Science.gov (United States)

    2017-04-10

    Many factors impact ground-level ozone development, including temperature, wind speed and direction, time of day, and driving patterns. Due to its dependence on weather conditions, ozone is typically a summertime pollutant and a chief component of summertime smog.

  2. Dobson total ozone series of Oxford: Reevaluation and applications

    Science.gov (United States)

    Vogler, C.; BröNnimann, S.; Staehelin, J.; Griffin, R. E. M.

    2007-10-01

    We have reevaluated the original total ozone measurements made in Oxford between 1924 and 1957, with a view to extending backward in time the existing total ozone series from 1957 to 1975. The Oxford measurements are the oldest Dobson observations in the world. Their prime importance, when coupled with the series from Arosa (since 1926) and Tromsø (since 1935), is for increasing basic understanding of stratospheric ozone and dynamics, while in relation to studies of the recent ozone depletion they constitute a baseline of considerable (and unique) significance and value. However, the reevaluation was made difficult on account of changes to the instruments and wavelengths as the early data collection methods evolved, while unknowns due to the influence of aerosols and the possible presence of dioxides of sulphur and nitrogen created additional problems. Our reevaluation was based on statistical procedures (comparisons with meteorological upper air data and ozone series from Arosa) and also on corrections suggested by Dobson himself. The comparisons demonstrate that the data are internally consistent and of good quality. Nevertheless, as post-1957 data were not assessed in this study, the series cannot be recommended at present for trend analysis, though the series can be used for climatological studies. By supplementing the Oxford data with other existing series, we present a European total ozone climatology for 1924-1939, 1950-1965, and 1988-2000 and analyze the data with respect to variables measuring the strength and the temperature of the polar vortex.

  3. Total ozone decrease in the Arctic after REP events

    Directory of Open Access Journals (Sweden)

    V. C. Roldugin

    2000-03-01

    Full Text Available Eight periods of relativistic electron precipitation (REP with electron energies of more than 300 keV are identified from VLF data (10-14 kHz monitored along the Aldra (Norway - Apatity (Kola peninsula radio trace. In these cases, anomalous ionization below 55-50 km occurred without disturbing the higher layers of the ionosphere. The daily total ozone values in Murmansk for six days before and six days after the REP events are compared. In seven of eight events a decrease in the total ozone of about 20 DU is observed. In one event of 25 March, 1986, the mean total ozone value for six days before the REP is bigger than that for six days after, but this a case of an extremely high ozone increase (144 DU during the six days. However, on days 3 and 4 there was a minimum of about 47 DU with regard to REP days, so this case also confirms the concept of the ozone decrease after REP. The difference between mean ozone values for periods six days before and six days after the REPs was found also for 23 points in Arctic on TOMS data. The difference was negative only in Murmansk longitudinal sector. Along the meridian of the trace it was negative at high latitudes in both hemispheres and was near zero at low latitudes.Key words: Atmospheric composition and structure (middle atmosphere - composition and chemistry - Meteorology and atmospheric dynamics (polar meteorology

  4. A Multi-wavelength Ozone Lidar for the EASOE Experiment

    Science.gov (United States)

    Godin, S.; Ancellet, G.; David, C.; Porteneuve, J.; Leroy, C.; Mitev, V.; Emery, Y.; Flesia, C.; Rizi, V.; Visconti, G.

    1992-01-01

    The study of the ozone layer during winter and springtime in high latitude regions is a major issue in atmospheric research. For a better understanding of these problems, an important experimental campaign called EASOE (European Arctic Stratospheric Ozone Experiment) was organized by the European Community during the winter 1991-1992. Its main objective was to establish a budget of the ozone destruction processes on the whole northern hemisphere. This implied the simultaneous operation of different types of instruments located in both high and mid-latitude regions in order to study the destruction processes as well as the evolution of the ozone layer during the period of the campaign. A description will be given here of a mobile ozone lidar instrument specially designed for operation during the EASOE campaign. This system, which performs ozone measurements in the 5 to 40 km altitude range was located in Sodankyla, Finland as part of the ELSA experiment which also includes operation of another multi-wavelength lidar designed for polar stratospheric cloud measurements.

  5. Ozone modeling within plasmas for ozone sensor applications

    OpenAIRE

    Arshak, Khalil; Forde, Edward; Guiney, Ivor

    2007-01-01

    peer-reviewed Ozone (03) is potentially hazardous to human health and accurate prediction and measurement of this gas is essential in addressing its associated health risks. This paper presents theory to predict the levels of ozone concentration emittedfrom a dielectric barrier discharge (DBD) plasma for ozone sensing applications. This is done by postulating the kinetic model for ozone generation, with a DBD plasma at atmospheric pressure in air, in the form of a set of rate equations....

  6. Children's Models of the Ozone Layer and Ozone Depletion.

    Science.gov (United States)

    Christidou, Vasilia; Koulaidis, Vasilis

    1996-01-01

    The views of 40 primary students on ozone and its depletion were recorded through individual, semi-structured interviews. The data analysis resulted in the formation of a limited number of models concerning the distribution and role of ozone in the atmosphere, the depletion process, and the consequences of ozone depletion. Identifies five target…

  7. CONTRIBUTION TO INDOOR OZONE LEVELS OF AN OZONE GENERATOR

    Science.gov (United States)

    This report gives results of a study of a commonly used commercially available ozone generator, undertaken to determine its impact on indoor ozone levels. xperiment were conducted in a typical mechanically ventilated office and in a test house. he generated ozone and the in-room ...

  8. Ozone Oxidation of Self-Assembled Monolayers on SiOx-Coated Zinc Selenide Surfaces

    Science.gov (United States)

    McIntire, T. M.; Ryder, O. S.; Finlayson-Pitts, B. J.

    2008-12-01

    Airborne particles are important for visibility, human health, climate, and atmospheric reactions. Atmospheric particles contain a significant fraction of organics and such compounds present on airborne particles are susceptible to oxidation by atmospheric oxidants, such as OH, ozone, halogen atoms, and nitrogen trioxide. Oxidized organics associated with airborne particles are thought to be polar, hygroscopic species with enhanced cloud-nucleating properties. Oxide layers on silicon, or SiO2-coated substrates, act as models of environmentally relevant surfaces such as dust particles upon which organics adsorb. We have shown previously that ozone oxidation of unsaturated self-assembled monolayers (SAMs) on silicon attenuated total reflectance (ATR) crystals leads to the formation of carbonyl groups and micron-sized, hydrophobic organic aggregates surrounded by carbon depleted substrate that do not have increased water uptake as previously assumed. Reported here are further ATR-FTIR studies of the oxidation of alkene SAMs on ZnSe and SiO2-coated ZnSe. These substrates have the advantage that they transmit below 1500 cm-1, allowing detection of additional product species. These experiments show that the loss of C=C and formation of carbonyl groups is also accompanied by formation of a peak at 1110 cm-1, attributed to the secondary ozonide. Details concerning the products and mechanism of ozonolysis of alkene SAMs on surfaces based on these new data are presented and the implications for the oxidation of alkenes on airborne dust particles are discussed.

  9. Polarization, political

    NARCIS (Netherlands)

    Wojcieszak, M.; Mazzoleni, G.; Barnhurst, K.G.; Ikeda, K.; Maia, R.C.M.; Wessler, H.

    2015-01-01

    Polarization has been studied in three different forms: on a social, group, and individual level. This entry first focuses on the undisputed phenomenon of elite polarization (i.e., increasing adherence of policy positions among the elites) and also outlines different approaches to assessing mass

  10. Ozone-depleting Substances (ODS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This site includes all of the ozone-depleting substances (ODS) recognized by the Montreal Protocol. The data include ozone depletion potentials (ODP), global warming...

  11. Health Effects of Ozone Pollution

    Science.gov (United States)

    Inhaling ozone can cause coughing, shortness of breath, worse asthma or bronchitis symptoms, and irritation and damage to airways.You can reduce your exposure to ozone pollution by checking air quality where you live.

  12. Air Quality Guide for Ozone

    Science.gov (United States)

    GO! Local Air Quality Conditions Zip Code: State : My Current Location Air Quality Guide for Ozone Ground-level ozone is one of our nation’s most common air pollutants. Use the chart below to help reduce ...

  13. A multi-sensor upper tropospheric ozone product (MUTOP based on TES Ozone and GOES water vapor: derivation

    Directory of Open Access Journals (Sweden)

    S. R. Felker

    2011-07-01

    Full Text Available The Tropospheric Emission Spectrometer (TES, a hyperspectral infrared instrument on the Aura satellite, retrieves a vertical profile of tropospheric ozone. However, polar-orbiting instruments like TES provide limited nadir-view coverage. This work illustrates the value of these observations when taken in context with geostationary imagery describing synoptic-scale weather patterns. The goal of this study is to create map-view products of upper troposphere (UT ozone through the integration of TES ozone measurements with two synoptic dynamic tracers of stratospheric influence: specific humidity derived from the GOES Imager water vapor absorption channel, and potential vorticity (PV from an operational forecast model. As a mixing zone between tropospheric and stratospheric reservoirs, the upper troposphere (UT exhibits a complex chemical makeup. Determination of ozone mixing ratios in this layer is especially difficult without direct in situ measurement. However, it is well understood that UT ozone is correlated with dynamical tracers like low specific humidity and high potential vorticity. Blending the advantages of two remotely sensed quantities (GOES water vapor and TES ozone is at the core of the Multi-sensor Upper Tropospheric Ozone Product (MUTOP.

    Our results suggest that 72 % of TES-observed UT ozone variability can be explained by its correlation with dry air and high PV. MUTOP reproduces TES retrievals across the GOES-West domain with a root mean square error (RMSE of 18 ppbv (part per billion by volume. There are several advantages to this multi-sensor derived product approach: (1 it is calculated from two operational fields (GOES specific humidity and GFS PV, so maps of layer-average ozone can be created and used in near real-time; (2 the product provides the spatial resolution and coverage of a geostationary image as it depicts the variable distribution of ozone in the UT; and (3 the 6 h temporal resolution of the derived

  14. A multi-sensor upper tropospheric ozone product (MUTOP) based on TES Ozone and GOES water vapor: derivation

    Science.gov (United States)

    Felker, S. R.; Moody, J. L.; Wimmers, A. J.; Osterman, G.; Bowman, K.

    2011-07-01

    The Tropospheric Emission Spectrometer (TES), a hyperspectral infrared instrument on the Aura satellite, retrieves a vertical profile of tropospheric ozone. However, polar-orbiting instruments like TES provide limited nadir-view coverage. This work illustrates the value of these observations when taken in context with geostationary imagery describing synoptic-scale weather patterns. The goal of this study is to create map-view products of upper troposphere (UT) ozone through the integration of TES ozone measurements with two synoptic dynamic tracers of stratospheric influence: specific humidity derived from the GOES Imager water vapor absorption channel, and potential vorticity (PV) from an operational forecast model. As a mixing zone between tropospheric and stratospheric reservoirs, the upper troposphere (UT) exhibits a complex chemical makeup. Determination of ozone mixing ratios in this layer is especially difficult without direct in situ measurement. However, it is well understood that UT ozone is correlated with dynamical tracers like low specific humidity and high potential vorticity. Blending the advantages of two remotely sensed quantities (GOES water vapor and TES ozone) is at the core of the Multi-sensor Upper Tropospheric Ozone Product (MUTOP). Our results suggest that 72 % of TES-observed UT ozone variability can be explained by its correlation with dry air and high PV. MUTOP reproduces TES retrievals across the GOES-West domain with a root mean square error (RMSE) of 18 ppbv (part per billion by volume). There are several advantages to this multi-sensor derived product approach: (1) it is calculated from two operational fields (GOES specific humidity and GFS PV), so maps of layer-average ozone can be created and used in near real-time; (2) the product provides the spatial resolution and coverage of a geostationary image as it depicts the variable distribution of ozone in the UT; and (3) the 6 h temporal resolution of the derived product imagery allows

  15. Ozone depletion update.

    Science.gov (United States)

    Coldiron, B M

    1996-03-01

    Stratospheric ozone depletion due to chlorofluorocarbons an d increased ultraviolet radiation penetration has long been predicted. To determine if predictions of ozone depletion are correct and, if so, the significance of this depletion. Review of the English literature regarding ozone depletion and solar ultraviolet radiation. The ozone layer is showing definite thinning. Recently, significantly increased ultraviolet radiation transmission has been detected at ground level at several metering stations. It appears that man-made aerosols (air pollution) block increased UVB transmission in urban areas. Recent satellite measurements of stratospheric fluorine levels more directly implicate chlorofluorocarbons as a major source of catalytic stratospheric chlorine, although natural sources may account for up to 40% of stratospheric chlorine. Stratospheric chlorine concentrations, and resultant increased ozone destruction, will be enhanced for at least the next 70 years. The potential for increased transmission of ultraviolet radiation will exist for the next several hundred years. While little damage due to increased ultraviolet radiation has occurred so far, the potential for long-term problems is great.

  16. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  17. Mass-dependent and non-mass-dependent isotope effects in ozone photolysis: Resolving theory and experiments

    International Nuclear Information System (INIS)

    Cole, Amanda S.; Boering, Kristie A.

    2006-01-01

    In addition to the anomalous 17 O and 18 O isotope effects in the three-body ozone formation reaction O+O 2 +M, isotope effects in the destruction of ozone by photolysis may also play a role in determining the isotopic composition of ozone and other trace gases in the atmosphere. While previous experiments on ozone photolysis at 254 nm were interpreted as evidence for preferential loss of light ozone that is anomalous (or 'non-mass-dependent'), recent semiempirical theoretical calculations predicted a preferential loss of heavy ozone at that wavelength that is mass dependent. Through photochemical modeling results presented here, we resolve this apparent contradiction between experiment and theory. Specifically, we show that the formation of ozone during the UV photolysis experiments is not negligible, as had been assumed, and that the well-known non-mass-dependent isotope effects in ozone formation can account for the non-mass-dependent enrichment of the heavy isotopologs of ozone observed in the experiment. Thus, no unusual non-mass-dependent fractionation in ozone photolysis must be invoked to explain the experimental results. Furthermore, we show that theoretical predictions of a mass-dependent preferential loss of the heavy isotopologs of ozone during UV photolysis are not inconsistent with the experimental data, particularly if mass-dependent isotope effects in the chemical loss reactions of ozone during the photolysis experiments or experimental artifacts enrich the remaining ozone in 17 O and 18 O. Before the calculated fractionation factors can be quantitatively evaluated, however, further investigation of possible mass-dependent isotope effects in the reactions of ozone with O( 1 D), O( 3 P), O 2 ( 1 Δ), and O 2 ( 1 Σ) is needed through experiments we suggest here

  18. Ozone bioindicator sampling and estimation

    Science.gov (United States)

    Gretchen C, Smith; William D. Smith; John W. Coulston

    2007-01-01

    Ozone is an important forest stressor that has been measured at known phytotoxic levels at forest locations across the United States. The percent forest exhibiting negative impacts from ozone air pollution is one of the Montreal Process indicators of forest health and vitality. The ozone bioindicator data of the U.S. Forest Service Forest Inventory and Analysis Program...

  19. Ozonated Olive Oils and Troubles

    Directory of Open Access Journals (Sweden)

    Bulent Uysal

    2014-04-01

    Full Text Available One of the commonly used methods for ozone therapy is ozonated oils. Most prominent type of used oils is extra virgin olive oil. But still, each type of unsaturated oils may be used for ozonation. There are a lot of wrong knowledge on the internet about ozonated oils and its use as well. Just like other ozone therapy studies, also the studies about ozone oils are inadequate to avoid incorrect knowledge. Current data about ozone oil and its benefits are produced by supplier who oversees financial interests and make misinformation. Despite the rapidly increasing ozone oil sales through the internet, its quality and efficacy is still controversial. Dozens of companies and web sites may be easily found to buy ozonated oil. But, very few of these products are reliable, and contain sufficiently ozonated oil. This article aimed to introduce the troubles about ozonated oils and so to inform ozonated oil users. [J Intercult Ethnopharmacol 2014; 3(2.000: 49-50

  20. Ozonation for source treatment of pharmaceuticals in hospital wastewater - ozone lifetime and required ozone dose

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Spiliotopoulou, Aikaterini; Chhetri, Ravi Kumar

    2016-01-01

    Ozonation aimed at removing pharmaceuticals was studied in an effluent from an experimental pilot system using staged moving bed biofilm reactor (MBBR) tanks for the optimal biological treatment of wastewater from a medical care unit of Aarhus University Hospital. Dissolved organic carbon (DOC......) and pH in samples varied considerably, and the effect of these two parameters on ozone lifetime and the efficiency of ozone in removing pharmaceuticals were determined. The pH in the effluent varied from 5.0 to 9.0 resulting in approximately a doubling of the required ozone dose at the highest p......H for each pharmaceutical. DOC varied from 6 to 20 mg-DOC/L. The ozone required for removing each pharmaceutical, varied linearly with DOC and thus, ozone doses normalized to DOC (specific ozone dose) agreed between water samples (typically within 15%). At neutral pH the specific ozone dose required...

  1. Airborne lidar measurements of surface ozone depletion over Arctic sea ice

    Directory of Open Access Journals (Sweden)

    J. A. Seabrook

    2013-06-01

    Full Text Available A differential absorption lidar (DIAL for measurement of atmospheric ozone concentration was operated aboard the Polar 5 research aircraft in order to study the depletion of ozone over Arctic sea ice. The lidar measurements during a flight over the sea ice north of Barrow, Alaska, on 3 April 2011 found a surface boundary layer depletion of ozone over a range of 300 km. The photochemical destruction of surface level ozone was strongest at the most northern point of the flight, and steadily decreased towards land. All the observed ozone-depleted air throughout the flight occurred within 300 m of the sea ice surface. A back-trajectory analysis of the air measured throughout the flight indicated that the ozone-depleted air originated from over the ice. Air at the surface that was not depleted in ozone had originated from over land. An investigation into the altitude history of the ozone-depleted air suggests a strong inverse correlation between measured ozone concentration and the amount of time the air directly interacted with the sea ice.

  2. Polar Bears

    Science.gov (United States)

    Amstrup, Steven C.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Polar bears (Ursus maritimus) are hunted throughout most of their range. In addition to hunting polar bears of the Beaufort Sea region are exposed to mineral and petroleum extraction and related human activities such as shipping road-building, and seismic testing (Stirling 1990).Little was known at the start of this project about how polar bears move about in their environment, and although it was understood that many bears travel across political borders, the boundaries of populations had not been delineated (Amstrup 1986, Amstrup et al. 1986, Amstrup and DeMaster 1988, Garner et al. 1994, Amstrup 1995, Amstrup et al. 1995, Amstrup 2000).As human populations increase and demands for polar bears and other arctic resources escalate, managers must know the sizes and distributions of the polar bear populations. Resource managers also need reliable estimates of breeding rates, reproductive intervals, litter sizes, and survival of young and adults.Our objectives for this research were 1) to determine the seasonal and annual movements of polar bears in the Beaufort Sea, 2) to define the boundaries of the population(s) using this region, 3) to determine the size and status of the Beaufort Sea polar bear population, and 4) to establish reproduction and survival rates (Amstrup 2000).

  3. Ozone and cardiovascular injury

    Directory of Open Access Journals (Sweden)

    Rainaldi Giuseppe

    2009-06-01

    Full Text Available Abstract Air pollution is increasingly recognized as an important and modifiable determinant of cardiovascular diseases in urban communities. The potential detrimental effects are both acute and chronic having a strong impact on morbidity and mortality. The acute exposure to pollutants has been linked to adverse cardiovascular events such as myocardial infarction, heart failure and life-threatening arrhythmias. The long-terms effects are related to the lifetime risk of death from cardiac causes. The WHO estimates that air pollution is responsible for 3 million premature deaths each year. The evidence supporting these data is very strong nonetheless, epidemiologic and observational data have the main limitation of imprecise measurements. Moreover, the lack of clinical experimental models makes it difficult to demonstrate the individual risk. The other limitation is related to the lack of a clear mechanism explaining the effects of pollution on cardiovascular mortality. In the present review we will explore the epidemiological, clinical and experimental evidence of the effects of ozone on cardiovascular diseases. The pathophysiologic consequences of air pollutant exposures have been extensively investigated in pulmonary systems, and it is clear that some of the major components of air pollution (e.g. ozone and particulate matter can initiate and exacerbate lung disease in humans 1. It is possible that pulmonary oxidant stress mediated by particulate matter and/or ozone (O3 exposure can result in downstream perturbations in the cardiovasculature, as the pulmonary and cardiovascular systems are intricately associated, and it is well documented that specific environmental toxins (such as tobacco smoke 2 introduced through the lungs can initiate and/or accelerate cardiovascular disease development. Indeed, several epidemiologic studies have proved that there is an association between PM and O3 and the increased incidence of cardiovascular morbidity

  4. Comparison of ozone and HO· induced conversion of effluent organic matter (EfOM) using ozonation and UV/H2O2 treatment.

    Science.gov (United States)

    Audenaert, W T M; Vandierendonck, D; Van Hulle, S W H; Nopens, I

    2013-05-01

    This study experimentally examined the impact of oxidation on the properties of effluent organic matter (EfOM) using two different oxidation techniques: ozonation and UV/H2O2 treatment. Multiple surrogates for EfOM related to its spectral properties, molecular size, concentration, polarity and biodegradability were used to study the oxidant induced conversions. Spectral calculations as differential absorbance spectra (DAS) and absorbance slope index (ASI) were applied for the first time to describe EfOM oxidation and proved to be useful to unravel differences in working mechanism between ozone and hydroxyl radical (HO) induced transformation of EfOM. Effluent ozonation inherently led to significant HO production as a result of electron transfers between ozone and electron rich moieties of EfOM. HO production increased as function of ozone dose and was strongly correlated to UV absorption at 254 nm (UV254). During the UV moderated process, pseudo steady-state behaviour of the HO concentration was observed. Ozone decomposition was extremely sensitive to EfOM reactivity. Most likely, the degree of dissociation of EfOM controlled its reactivity towards ozone. The pH effect was quantified by calculating the pseudo-first order decay constant for ozone as function of reaction time and pH. Treatment with both processes led to more oxygen rich, less hydrophobic and more biodegradable EfOM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Epithelial cell polarity, stem cells and cancer

    DEFF Research Database (Denmark)

    Martin-Belmonte, Fernando; Perez-Moreno, Mirna

    2011-01-01

    After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related......, deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis....

  6. Treatment of waste thermal waters by ozonation and nanofiltration.

    Science.gov (United States)

    Kiss, Z L; Szép, A; Kertész, S; Hodúr, C; László, Z

    2013-01-01

    After their use for heating, e.g. in greenhouses, waste thermal waters may cause environmental problems due to their high contents of ions, and in some cases organic matter (associated with an oxygen demand) or toxic compounds. The aims of this work were to decrease the high organic content of waste thermal water by a combination of ozone treatment and membrane separation, and to investigate the accompanying membrane fouling. The results demonstrated that the chemical oxygen demand and the total organic content can be effectively decreased by a combination of ozone pretreatment and membrane filtration. Ozone treatment is more effective for phenol elimination than nanofiltration alone: with a combination of the two processes, 100% elimination efficiency can be achieved. The fouling index b proved to correlate well with the fouling and polarization layer resistances.

  7. DEVELOPMENTS IN OZONATION OF WATERS

    Directory of Open Access Journals (Sweden)

    Ensar OĞUZ

    2001-03-01

    Full Text Available Ozone, has been used in both industrial and synthetic chemistry. From this point of view, ozone-organic chemistry related papaers have been published by many researcher. Forthermore; its role in air and water pollution problems is more important today. As a result of ozone researches, it is clear that ozone is to be the brightest expection for future in industrial, domestic, and driking water treatment. Ozone, a high grade oxidation matter, has been used for removing the pollutants and toxic materials from waste waters.

  8. Measurement of Ozone Production Sensor

    Directory of Open Access Journals (Sweden)

    M. Cazorla

    2010-05-01

    Full Text Available A new ambient air monitor, the Measurement of Ozone Production Sensor (MOPS, measures directly the rate of ozone production in the atmosphere. The sensor consists of two 11.3 L environmental chambers made of UV-transmitting Teflon film, a unit to convert NO2 to O3, and a modified ozone monitor. In the sample chamber, flowing ambient air is exposed to the sunlight so that ozone is produced just as it is in the atmosphere. In the second chamber, called the reference chamber, a UV-blocking film over the Teflon film prevents ozone formation but allows other processes to occur as they do in the sample chamber. The air flows that exit the two chambers are sampled by an ozone monitor operating in differential mode so that the difference between the two ozone signals, divided by the exposure time in the chambers, gives the ozone production rate. High-efficiency conversion of NO2 to O3 prior to detection in the ozone monitor accounts for differences in the NOx photostationary state that can occur in the two chambers. The MOPS measures the ozone production rate, but with the addition of NO to the sampled air flow, the MOPS can be used to study the sensitivity of ozone production to NO. Preliminary studies with the MOPS on the campus of the Pennsylvania State University show the potential of this new technique.

  9. Ozone Layer Educator's Guide.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    This guide has been developed through a collaborative effort involving the U.S. Environmental Protection Agency (EPA), the National Oceanic and Atmospheric Administration (NOAA), and the National Aeronautics and Space Administration (NASA). It is part of an ongoing commitment to ensure that the results of scientific research on ozone depletion are…

  10. Dobson ozone spectrophotometer modification.

    Science.gov (United States)

    Komhyr, W. D.; Grass, R. D.

    1972-01-01

    Description of a modified version of the Dobson ozone spectrophotometer in which several outdated electronic design features have been replaced by circuitry embodying more modern design concepts. The resulting improvement in performance characteristics has been obtained without changing the principle of operation of the original instrument.

  11. Our Shrinking Ozone Layer

    Indian Academy of Sciences (India)

    Depletion of the Earth's ozone layer is one of the major environmental concerns for the new millennium having serious implications on human health, agriculture and cli- mate. In the past decades, research by the international scientific community has been directed towards under- standing the impact of human interference ...

  12. Chemical Observations of a Polar Vortex Intrusion

    Science.gov (United States)

    Schoeberl, M. R.; Kawa, S. R.; Douglass, A. R.; McGee, T. J.; Browell, E.; Waters, J.; Livesey, N.; Read, W.; Froidevaux, L.

    2006-01-01

    An intrusion of vortex edge air in D the interior of the Arctic polar vortex was observed on the January 31,2005 flight of the NASA DC-8 aircraft. This intrusion was identified as anomalously high values of ozone by the AROTAL and DIAL lidars. Our analysis shows that this intrusion formed when a blocking feature near Iceland collapsed, allowing edge air to sweep into the vortex interior. along the DC-8 flight track also shows the intrusion in both ozone and HNO3. Polar Stratospheric Clouds (PSCs) were observed by the DIAL lidar on the DC-8. The spatial variability of the PSCs can be explained using MLS HNO3 and H2O observations and meteorological analysis temperatures. We also estimate vortex denitrification using the relationship between N2O and HNO3. Reverse domain fill back trajectory calculations are used to focus on the features in the MLS data. The trajectory results improve the agreement between lidar measured ozone and MLS ozone and also improve the agreement between the HNO3 measurements PSC locations. The back trajectory calculations allow us to compute the local denitrification rate and reduction of HCl within the filament. We estimate a denitrification rate of about lO%/day after exposure to below PSC formation temperature. Analysis of Aura MLS observations made

  13. Biomarkers of Oxidative Stress Study IV. Are Antioxidants Markers of Ozone Exposure?

    Science.gov (United States)

    To determine whether the oxidative effects of ozone would result in losses of antioxidants from plasma, and possibly bronchoalveolar lavage fluid (BALF). This research is part of a comprehensive, multilaboratory validation study searching for noninvasive biomarkers of oxidative ...

  14. Impact of lower stratospheric ozone on seasonal prediction systems

    Directory of Open Access Journals (Sweden)

    Kelebogile Mathole

    2014-03-01

    Full Text Available We conducted a comparison of trends in lower stratospheric temperatures and summer zonal wind fields based on 27 years of reanalysis data and output from hindcast simulations using a coupled ocean-atmospheric general circulation model (OAGCM. Lower stratospheric ozone in the OAGCM was relaxed to the observed climatology and increasing greenhouse gas concentrations were neglected. In the reanalysis, lower stratospheric ozone fields were better represented than in the OAGCM. The spring lower stratospheric/ upper tropospheric cooling in the polar cap observed in the reanalysis, which is caused by a direct ozone depletion in the past two decades and is in agreement with previous studies, did not appear in the OAGCM. The corresponding summer tropospheric response also differed between data sets. In the reanalysis, a statistically significant poleward trend of the summer jet position was found, whereas no such trend was found in the OAGCM. Furthermore, the jet position in the reanalysis exhibited larger interannual variability than that in the OAGCM. We conclude that these differences are caused by the absence of long-term lower stratospheric ozone changes in the OAGCM. Improper representation or non-inclusion of such ozone variability in a prediction model could adversely affect the accuracy of the predictability of summer rainfall forecasts over South Africa.

  15. Validation of Suomi NPP OMPS Limb Profiler Ozone Measurements

    Science.gov (United States)

    Buckner, S. N.; Flynn, L. E.; McCormick, M. P.; Anderson, J.

    2017-12-01

    The Ozone Mapping and Profiler Suite (OMPS) Limb Profiler onboard the Suomi National Polar-Orbiting Partnership satellite (SNPP) makes measurements of limb-scattered solar radiances over Ultraviolet and Visible wavelengths. These measurements are used in retrieval algorithms to create high vertical resolution ozone profiles, helping monitor the evolution of the atmospheric ozone layer. NOAA is in the process of implementing these algorithms to make near-real-time versions of these products. The main objective of this project is to generate estimates of the accuracy and precision of the OMPS Limb products by analysis of matchup comparisons with similar products from the Earth Observing System Microwave Limb Sounder (EOS Aura MLS). The studies investigated the sources of errors, and classified them with respect to height, geographic location, and atmospheric and observation conditions. In addition, this project included working with the algorithm developers in an attempt to develop corrections and adjustments. Collocation and zonal mean comparisons were made and statistics were gathered on both a daily and monthly basis encompassing the entire OMPS data record. This validation effort of the OMPS-LP data will be used to help validate data from the Stratosphere Aerosol and Gas Experiment III on the International Space Station (SAGE III ISS) and will also be used in conjunction with the NOAA Total Ozone from Assimilation of Stratosphere and Troposphere (TOAST) product to develop a new a-priori for the NOAA Unique Combined Atmosphere Processing System (NUCAPS) ozone product. The current NUCAPS ozone product uses a combination of Cross-track Infrared Sounder (CrIS) data for the troposphere and a tropopause based climatology derived from ozonesonde data for the stratosphere a-priori. The latest version of TOAST uses a combination of both CrIS and OMPS-LP data. We will further develop the newest version of TOAST and incorporate it into the NUCAPS system as a new a

  16. [Ozone concentration distribution of urban].

    Science.gov (United States)

    Yin, Yong-quan; Li, Chang-mei; Ma, Gui-xia; Cui, Zhao-jie

    2004-11-01

    The increase of ozone concentration in urban is one of the most important research topics on environmental science. With the increase of nitrogen oxides and hydrogen-carbon compounds which are exhausted from cars, the ozone concentration in urban is obviously increased on sunlight, and threat of photochemistry smog will be possible. Therefore, it is very important to monitor and study the ozone concentration distribution in urban. The frequency-distribution, diurnal variation and monthly variation of ozone concentration were studied on the campus of Shandong University during six months monitoring. The influence of solar radiation and weather conditions on ozone concentration were discussed. The frequency of ozone concentration less than 200 microg/m3 is 96.88%. The ozone concentration has an obvious diurnal variation. The ozone concentration in the afternoon is higher than in the morning and in the evening. The maximum appears in June, when it is the strong solar radiation and high air-temperature. The weather conditions also influence the ozone concentration. The ozone concentration in clear day is higher than in rainy and cloudy day.

  17. Zeolite Membranes: Ozone Detemplation, Modeling, and Performance Characterization

    OpenAIRE

    Kuhn, J.

    2009-01-01

    Membrane technology plays an increasingly important role in developing a more sustainable process industry. Zeolites are a novel class of membrane materials with unique properties enabling molecular sieving and affinity based separations. This thesis proposes some new concepts in zeolite membrane synthesis, application, and modeling. The influence of zeolite polarity is assessed and the use of a hydrophobic zeolite membrane for water separation is explored. Ozonication, a novel method for zeo...

  18. Comparative study of ozonized olive oil and ozonized sunflower oil

    OpenAIRE

    Díaz,Maritza F.; Hernández,Rebeca; Martínez,Goitybell; Vidal,Genny; Gómez,Magali; Fernández,Harold; Garcés,Rafael

    2006-01-01

    In this study the ozonized olive and sunflower oils are chemical and microbiologically compared. These oils were introduced into a reactor with bubbling ozone gas in a water bath at room temperature until they were solidified. The peroxide, acidity and iodine values along with antimicrobial activity were determined. Ozonization effects on the fatty acid composition of these oils were analyzed using Gas-Liquid Chromatographic Technique. An increase in peroxidation and acidity values was observ...

  19. Nighttime mesospheric ozone enhancements during the 2002 southern hemispheric major stratospheric warming

    Science.gov (United States)

    Smith-Johnsen, Christine; Orsolini, Yvan; Stordal, Frode; Limpasuvan, Varavut; Pérot, Kristell

    2018-03-01

    Sudden Stratospheric Warmings (SSW) affect the chemistry and dynamics of the middle atmosphere. Major warmings occur roughly every second winter in the Northern Hemisphere (NH), but has only been observed once in the Southern Hemisphere (SH), during the Antarctic winter of 2002. Observations by the Global Ozone Monitoring by Occultation of Stars (GOMOS, an instrument on board Envisat) during this rare event, show a 40% increase of ozone in the nighttime secondary ozone layer at subpolar latitudes compared to non-SSW years. This study investigates the cause of the mesospheric nighttime ozone increase, using the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model with specified dynamics (SD-WACCM). The 2002 SH winter was characterized by several reductions of the strength of the polar night jet in the upper stratosphere before the jet reversed completely, marking the onset of the major SSW. At the time of these wind reductions, corresponding episodic increases can be seen in the modelled nighttime secondary ozone layer. This ozone increase is attributed largely to enhanced upwelling and the associated cooling of the altitude region in conjunction with the wind reversal. This is in correspondence to similar studies of SSW induced ozone enhancements in NH. But unlike its NH counterpart, the SH secondary ozone layer appeared to be impacted less by episodic variations in atomic hydrogen. Seasonally decreasing atomic hydrogen plays however a larger role in SH compared to NH.

  20. Reductions in India's crop yield due to ozone

    Science.gov (United States)

    Ghude, Sachin D.; Jena, Chinmay; Chate, D. M.; Beig, G.; Pfister, G. G.; Kumar, Rajesh; Ramanathan, V.

    2014-08-01

    This bottom-up modeling study, supported by emission inventories and crop production, simulates ozone on local to regional scales. It quantifies, for the first time, potential impact of ozone on district-wise cotton, soybeans, rice, and wheat crops in India for the first decade of the 21st century. Wheat is the most impacted crop with losses of 3.5 ± 0.8 million tons (Mt), followed by rice at 2.1 ± 0.8 Mt, with the losses concentrated in central and north India. On the national scale, this loss is about 9.2% of the cereals required every year (61.2 Mt) under the provision of the recently implemented National Food Security Bill (in 2013) by the Government of India. The nationally aggregated yield loss is sufficient to feed about 94 million people living below poverty line in India.

  1. Health Effects of Ozone and Particle Pollution

    Science.gov (United States)

    ... this page: Health Effects of Ozone and Particle Pollution Two types of air pollution dominate in the ... So what are ozone and particle pollution? Ozone Pollution It may be hard to imagine that pollution ...

  2. Secular variations of tropospheric ozone

    Energy Technology Data Exchange (ETDEWEB)

    Khrgian, A.KH.

    1988-02-01

    The dependence of secular variations of tropospheric ozone on decreases of temperature and cloud growth in Central Europe is assessed on the basis of Vienna, Paris, and Athens data for 1853-1920. Decreases in ozone content occurring with a certain time lag after major volcanic eruptions (e.g., Krakatoa) are examined. The effect of the Tungusk-meteorite fall on ozone content is also discussed. 13 references.

  3. Secular variations of tropospheric ozone

    Science.gov (United States)

    Khrgian, A. Kh.

    1988-02-01

    The dependence of secular variations of tropospheric ozone on decreases of temperature and cloud growth in Central Europe is assessed on the basis of Vienna, Paris, and Athens data for 1853-1920. Decreases in ozone content occurring with a certain time lag after major volcanic eruptions (e.g., Krakatoa) are examined. The effect of the Tungusk-meteorite fall on ozone content is also discussed.

  4. Pole-to-pole validation of GOME WFDOAS total ozone with groundbased data

    Directory of Open Access Journals (Sweden)

    M. Weber

    2005-01-01

    Full Text Available This paper summarises the validation of GOME total ozone retrieved using the Weighting Function Differential Optical Absorption Spectroscopy (WFDOAS algorithm Version 1.0. This algorithm has been described in detail in a companion paper by Coldewey-Egbers et al. (2005. Compared to the operational GDP (GOME Data Processor V3, several improvements to the total ozone retrieval have been introduced that account for the varying ozone dependent contribution to rotational Raman scattering, includes a new cloud scheme, and uses the GOME measured effective albedo in the retrieval. In this paper the WFDOAS results have been compared with selected ground-based measurements from the WOUDC (World Ozone and UV Radiation Data Centre that collects total ozone measurements from a global network of stations covering all seasons. From the global validation excellent agreement between WFDOAS and ground data was observed. The agreement lies within ±1%, and very little seasonal variations in the differences are found. In the polar regions and at high solar zenith angles, however, a positive bias varying between 5 and 8% is found near the polar night period. As a function of solar zenith angle as well as of the retrieved total ozone, the WFDOAS differences to ground polar data, however, show a much weaker dependence as compared to the operational GOME Data Processor Version 3 of GOME that represents a significant improvement. Very few stations carry out simultaneous measurements by Brewer and Dobson spectrometers over an extended period (three years or more. Simultaneous Brewer and Dobson measurements from Hradec Kralove, Czech Republic (50.2N, 15.8E and Hohenpeissenberg, Germany (47.8N, 11.0E covering the period 1996-1999 have been compared with our GOME results. Agreement with Brewers are generally better than with the simultaneous Dobson measurements and this may be explained by the neglect of stratospheric (ozone temperature correction in the standard ozone

  5. The photochemistry and kinetics of chlorine compounds important to stratospheric mid-latitude ozone destruction

    Science.gov (United States)

    Goldfarb, Leah

    1997-09-01

    The catalytic destruction of stratospheric ozone via chlorinated species was first proposed in the 1970's. Since that time a decline in column ozone abundance in the polar regions as well as at mid-latitudes has been observed. Much of this reduction has been attributed to the increases in anthropogenic chlorine compounds such as CFCs. This study summarizes experimental results obtained using pulsed-photolysis resonance fluorescence and pulsed- photolysis long-path absorption methods to study processes important to chlorine-catalyzed ozone destruction: the quantum yields of the products in the dissociation of ClONO2 and the reactions of free radicals with ClONO2 and ClO. The quantum yields for the production of O, Cl and ClO from ClONO2 were studied at specific laser wavelengths (193, 222, 248, and 308 nm). Cl and ClO yields were comparable at nearly all the wavelengths, expect for 193 nm, where the O atom yield was appreciable. The yields at 308 nm (a wavelength available in the stratosphere) were 0.64 ± 0.17 for Cl, 0.37 ± 0.18 for ClO and product yield for the former reaction, previously unreported, was determined to be ~1. The kinetics of the reaction of O atoms with ClO were measured using a new experimental system built specifically to investigate such radical-radical reactions. A slight negative temperature dependence (E/B = -90 ± 30) was observed over the temperature range (227-363 K). From the measured Arrhenius equation the rate constant at 240 K is 4.1 × 10-11 cm3molecule-1s-1 which is in excellent agreement (l.4% greater) with the currently recommended value. This observation is significant, since this reaction is the rate limiting the dominate chlorine catalytic cycle that destroys O3 near 40 km. To analyze the implications of the kinetic and photochemical information from this work, a box model was constructed. The vertical profile of ozone concentrations and loss rates calculated by this simple model compare well with atmospheric measurements and

  6. Political polarization

    OpenAIRE

    Dixit, Avinash K.; Weibull, Jörgen W.

    2007-01-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  7. Political polarization.

    Science.gov (United States)

    Dixit, Avinash K; Weibull, Jörgen W

    2007-05-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  8. Combination of ozone and packaging treatments maintained the quality and improved the shelf life of tomato fruit

    Science.gov (United States)

    Zainuri; Jayaputra; Sauqi, A.; Sjah, T.; Desiana, R. Y.

    2018-01-01

    Tomato is very important vegetable crop but has short shelf life. The objective of this research was to determine the effect of ozone and packaging combination treatment on the quality and the storage life of tomato fruit. There were six treatments including: control (without ozone and packaging); without ozone and packaged with polyethylene bag; without ozone and polyethylene terephtalate punnet; with ozone but without packaging; with ozone and packaged with polyethylene bag; and with ozone and polyethylene terephtalate punnet. Each treatment was made into 3 replications. Tomato samples were harvested at turning stage. Ozone treatment was applied for 60 seconds. Tomatoes were then treated with and without packaging. The fruit were then stored at room temperature for up to 12 days. The parameters for assessment were water content, color, texture, weight loss and the population of naturally contamination Escherichia coli. Each parameter was assessed on day 0, 6 and 12 of storage. The results indicated that combination of ozone and packaging treatments significantly affected the physical and biochemical changes (water content, color, texture and weight loss) of the fruit, suppressed the microbiological contamination on the fruit and maintained fruit freshness or quality after 12 days of storage. The combination of ozone and perforated polyethylene packaging treatment was the best treatment to maintain the quality and prolonged the shelf life of tomato fruit to be 12 days at room temperature.

  9. Polar low monitoring

    Science.gov (United States)

    Bobylev, Leonid; Zabolotskikh, Elizaveta; Mitnik, Leonid

    2010-05-01

    Polar lows are intense mesoscale atmospheric low pressure weather systems, developing poleward of the main baroclinic zone and associated with high surface wind speeds. Small size and short lifetime, sparse in-situ observations in the regions of their development complicate polar low study. Our knowledge of polar lows and mesocyclones has come almost entirely during the period of satellite remote sensing since, by virtue of their small horizontal scale, it was rarely possible to analyse these lows on conventional weather charts using only the data from the synoptic observing network. However, the effects of intense polar lows have been felt by coastal communities and seafarers since the earliest times. These weather systems are thought to be responsible for the loss of many small vessels over the centuries, although the nature of the storms was not understood and their arrival could not be predicted. The actuality of the polar low research is stipulated by their high destructive power: they are a threat to such businesses as oil and gas exploration, fisheries and shipping. They could worsen because of global warming: a shrinking of sea ice around the North Pole, which thawed to its record minimum in the summer of 2007, is likely to give rise to more powerful storms that form only over open water and can cause hurricane-strength winds. Therefore, study of polar lows, their timely detection, tracking and forecasting represents a challenge for today meteorology. Satellite passive microwave data, starting from Special Sensor Microwave Imager (SSM/I) onboard Defense Meteorological Satellite Program (DMSP) satellite, remain invaluable source of regularly available remotely sensed data to study polar lows. The sounding in this spectral range has several advantages in comparison with observations in visible and infrared ranges and Synthetic Aperture Radar (SAR) data: independence on day time and clouds, regularity and high temporal resolution in Polar Regions. Satellite

  10. Understanding Differences in Upper Stratospheric Ozone Response to Changes in Chlorine and Temperature as Computed Using CCMVal Models

    Science.gov (United States)

    Douglass, A. R.; Stolarski, R. S.; Strahan, S. E.; Oman, L. D.

    2012-01-01

    Projections of future ozone levels are made using models that couple a general circulation model with a representation of atmospheric photochemical processes, allowing interactions among photochemical processes, radiation, and dynamics. Such models are known as chemistry and climate models (CCMs). Although developed from common principles and subject to the same boundary conditions, simulated ozone time series vary for projections of changes in ozone depleting substances (ODSs) and greenhouse gases. In the upper stratosphere photochemical processes control ozone level, and ozone increases as ODSs decrease and temperature decreases due to greenhouse gas increase. Simulations agree broadly but there are quantitative differences in the sensitivity of ozone to chlorine and to temperature. We obtain insight into these differences in sensitivity by examining the relationship between the upper stratosphere annual cycle of ozone and temperature as produced by a suite of models. All simulations conform to expectation in that ozone is less sensitive to temperature when chlorine levels are highest because chlorine catalyzed loss is nearly independent of temperature. Differences in sensitivity are traced to differences in simulated temperature, ozone and reactive nitrogen when chlorine levels are close to background. This work shows that differences in the importance of specific processes underlie differences in simulated sensitivity of ozone to composition change. This suggests a) the multi-model mean is not a best estimate of the sensitivity of upper ozone to changes in ODSs and temperature; b) the spread of values is not an appropriate measure of uncertainty.

  11. Extreme Events: low and high total ozone over Arosa, Switzerland

    Science.gov (United States)

    Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Ribatet, M.; Stübi, R.; Weihs, P.; Holawe, F.; Peter, T.; Davison, A. C.

    2009-04-01

    The frequency distribution of days with extreme low (termed ELOs) and high (termed EHOs) total ozone is analyzed for the world's longest total ozone record (Arosa, Switzerland - for details see Staehelin et al.,1998a,b), with new tools from extreme value theory (e.g. Coles, 2001; Ribatet, 2007). A heavy-tail focused approach is used through the fitting of the Generalized Pareto Distribution (GPD) to the Arosa time series. Asymptotic arguments (Pickands, 1975) justify the use of the GPD for modeling exceedances over a high (or below a low) enough threshold (Coles, 2001). The analysis shows that the GPD is appropriate for modeling the frequency distribution in total ozone above or below a mathematically well-defined threshold. While previous studies focused on so termed ozone mini-holes and mini-highs (e.g. Bojkov and Balis, 2001, Koch et al., 2005), this study is the first to present a mathematical description of extreme events in low and high total ozone for a northern mid-latitudes site (Rieder et al., 2009). The results show (a) an increase in days with extreme low (ELOs) and (b) a decrease in days with extreme high total ozone (EHOs) during the last decades, (c) that the general trend in total ozone is strongly determined by these extreme events and (d) that fitting the GPD is an appropriate method for the estimation of the frequency distribution of so-called ozone mini-holes. Furthermore, this concept allows one to separate the effect of Arctic ozone depletion from that of in situ mid-latitude ozone loss. As shown by this study, ELOs and EHOs have a strong influence on mean values in total ozone and the "extremes concept" could be further used also for validation of Chemistry-Climate-Models (CCMs) within the scientific community. References: Bojkov, R. D., and Balis, D.S.: Characteristics of episodes with extremely low ozone values in the northern middle latitudes 1975-2000, Ann. Geophys., 19, 797-807, 2001. Coles, S.: An Introduction to Statistical Modeling of

  12. Carbon nanotube fiber terahertz polarizer

    Energy Technology Data Exchange (ETDEWEB)

    Zubair, Ahmed [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Tsentalovich, Dmitri E.; Young, Colin C. [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005 (United States); Heimbeck, Martin S. [Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Everitt, Henry O. [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Pasquali, Matteo [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005 (United States); Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Kono, Junichiro, E-mail: kono@rice.edu [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (United States)

    2016-04-04

    Conventional, commercially available terahertz (THz) polarizers are made of uniformly and precisely spaced metallic wires. They are fragile and expensive, with performance characteristics highly reliant on wire diameters and spacings. Here, we report a simple and highly error-tolerant method for fabricating a freestanding THz polarizer with nearly ideal performance, reliant on the intrinsically one-dimensional character of conduction electrons in well-aligned carbon nanotubes (CNTs). The polarizer was constructed on a mechanical frame over which we manually wound acid-doped CNT fibers with ultrahigh electrical conductivity. We demonstrated that the polarizer has an extinction ratio of ∼−30 dB with a low insertion loss (<0.5 dB) throughout a frequency range of 0.2–1.1 THz. In addition, we used a THz ellipsometer to measure the Müller matrix of the CNT-fiber polarizer and found comparable attenuation to a commercial metallic wire-grid polarizer. Furthermore, based on the classical theory of light transmission through an array of metallic wires, we demonstrated the most striking difference between the CNT-fiber and metallic wire-grid polarizers: the latter fails to work in the zero-spacing limit, where it acts as a simple mirror, while the former continues to work as an excellent polarizer even in that limit due to the one-dimensional conductivity of individual CNTs.

  13. Chemical Data Assimilation Estimates of Continental US Ozone and Nitrogen Budgets during INTEX-A

    Science.gov (United States)

    Pierce, Robert B.; Schaack, Todd K.; Al-Saadi, Jassim A.; Fairlie, T. Duncan; Kittaka, Chieko; Lingenfelser, Gretchen; Natarajan, Murali; Olson, Jennifer; Soja, Amber; Zapotocny, Tom; hide

    2007-01-01

    Global ozone analyses, based on assimilation of stratospheric profile and ozone column measurements, and NOy predictions from the Real-time Air Quality Modeling System (RAQMS) are used to estimate the ozone and NOy budget over the Continental US during the July-August 2004 Intercontinental Chemical Transport Experiment-North America (INTEX-A). Comparison with aircraft, satellite, surface, and ozonesonde measurements collected during the INTEX-A show that RAQMS captures the main features of the global and Continental US distribution of tropospheric ozone, carbon monoxide, and NOy with reasonable fidelity. Assimilation of stratospheric profile and column ozone measurements is shown to have a positive impact on the RAQMS upper tropospheric/lower stratosphere ozone analyses, particularly during the period when SAGE III limb scattering measurements were available. Eulerian ozone and NOy budgets during INTEX-A show that the majority of the Continental US export occurs in the upper troposphere/lower stratosphere poleward of the tropopause break, a consequence of convergence of tropospheric and stratospheric air in this region. Continental US photochemically produced ozone was found to be a minor component of the total ozone export, which was dominated by stratospheric ozone during INTEX-A. The unusually low photochemical ozone export is attributed to anomalously cold surface temperatures during the latter half of the INTEX-A mission, which resulted in net ozone loss during the first 2 weeks of August. Eulerian NOy budgets are shown to be very consistent with previously published estimates. The NOy export efficiency was estimated to be 24 percent, with NOx+PAN accounting for 54 percent of the total NOy export during INTEX-A.

  14. The Antarctic Ice Sheet, Sea Ice, and the Ozone Hole: Satellite Observations of how they are Changing

    Science.gov (United States)

    Parkinson, Claire L.

    2012-01-01

    Antarctica is the Earth's coldest and highest continent and has major impacts on the climate and life of the south polar vicinity. It is covered almost entirely by the Earth's largest ice sheet by far, with a volume of ice so great that if all the Antarctic ice were to go into the ocean (as ice or liquid water), this would produce a global sea level rise of about 60 meters (197 feet). The continent is surrounded by sea ice that in the wintertime is even more expansive than the continent itself and in the summertime reduces to only about a sixth of its wintertime extent. Like the continent, the expansive sea ice cover has major impacts, reflecting the sun's radiation back to space, blocking exchanges between the ocean and the atmosphere, and providing a platform for some animal species while impeding other species. Far above the continent, the Antarctic ozone hole is a major atmospheric phenomenon recognized as human-caused and potentially quite serious to many different life forms. Satellites are providing us with remarkable information about the ice sheet, the sea ice, and the ozone hole. Satellite visible and radar imagery are providing views of the large scale structure of the ice sheet never seen before; satellite laser altimetry has produced detailed maps of the topography of the ice sheet; and an innovative gravity-measuring two-part satellite has allowed mapping of regions of mass loss and mass gain on the ice sheet. The surrounding sea ice cover has a satellite record that goes back to the 1970s, allowing trend studies that show a decreasing sea ice presence in the region of the Bellingshausen and Amundsen seas, to the west of the prominent Antarctic Peninsula, but increasing sea ice presence around much of the rest of the continent. Overall, sea ice extent around Antarctica has increased at an average rate of about 17,000 square kilometers per year since the late 1970s, as determined from satellite microwave data that can be collected under both light and

  15. Validation of GOME ozone profiles by means of the ALOMAR ozone lidar

    Directory of Open Access Journals (Sweden)

    G. Hansen

    Full Text Available Ozone vertical profiles derived from nadir measurements of the GOME instrument on board the ERS-2 satellite, by means of the FURM algorithm of the University of Bremen, are validated against measurements with the stratospheric ozone lidar at the ALOMAR facility in North-Norway. A set of 43 measurements, taken in the period August 1996 to September 1999 with a maximum distance between the ground-based site and the GOME pixel centre of 650 km, is used. The comparison shows a satisfactory agreement within less than ± 7% in the altitude range 15 to 30 km, independent of the season of the year. At lower altitudes, average deviations of the GOME profiles from lidar measurements of up to - 15% occur in spring, the reason for which has to be found in the FURM algorithm, while the agreement is within ± 5% in both winter and summer/autumn months. At altitudes above 30 km, significant seasonally varying discrepancies occur, being largest in winter ( - 40% on average at 40 km altitude and smallest in summer (less than - 10%. The source of these deviations is most likely related to a radiance and irradiance calibration problem in the GOME data below 300 nm, which are used to derive ozone at the highest altitudes. The validation also shows that it is very important to choose the right ozone climatology for initialisation. Satisfactory results in spring 1997, when the polar stratospheric vortex was very stable, are only achieved, if a winter (vortex profile is used.

    Key words. Atmospheric composition and structure (middle atmosphere-composition and chemistry; instruments and techniques; general or miscellaneous

  16. Validation of GOME ozone profiles by means of the ALOMAR ozone lidar

    Directory of Open Access Journals (Sweden)

    G. Hansen

    2003-08-01

    Full Text Available Ozone vertical profiles derived from nadir measurements of the GOME instrument on board the ERS-2 satellite, by means of the FURM algorithm of the University of Bremen, are validated against measurements with the stratospheric ozone lidar at the ALOMAR facility in North-Norway. A set of 43 measurements, taken in the period August 1996 to September 1999 with a maximum distance between the ground-based site and the GOME pixel centre of 650 km, is used. The comparison shows a satisfactory agreement within less than ± 7% in the altitude range 15 to 30 km, independent of the season of the year. At lower altitudes, average deviations of the GOME profiles from lidar measurements of up to - 15% occur in spring, the reason for which has to be found in the FURM algorithm, while the agreement is within ± 5% in both winter and summer/autumn months. At altitudes above 30 km, significant seasonally varying discrepancies occur, being largest in winter ( - 40% on average at 40 km altitude and smallest in summer (less than - 10%. The source of these deviations is most likely related to a radiance and irradiance calibration problem in the GOME data below 300 nm, which are used to derive ozone at the highest altitudes. The validation also shows that it is very important to choose the right ozone climatology for initialisation. Satisfactory results in spring 1997, when the polar stratospheric vortex was very stable, are only achieved, if a winter (vortex profile is used.Key words. Atmospheric composition and structure (middle atmosphere-composition and chemistry; instruments and techniques; general or miscellaneous

  17. Evaluation of the flux gradient technique for measurement of ozone surface fluxes over snowpack at Summit, Greenland

    Directory of Open Access Journals (Sweden)

    F. Bocquet

    2011-10-01

    Full Text Available A multi-step procedure for investigating ozone surface fluxes over polar snow by the tower gradient method was developed and evaluated. These measurements were then used to obtain five months (April–August 2004 of turbulent ozone flux data at the Summit research camp located in the center of the Greenland ice shield. Turbulent fluxes were determined by the gradient method incorporating tower measurements of (a ozone gradients measured by commercial ultraviolet absorption analyzers, (b ambient temperature gradients using aspirated thermocouple sensors, and (c wind speed gradients determined by cup anemometers. All gradient instruments were regularly inter-compared by bringing sensors or inlets to the same measurement height. The developed protocol resulted in an uncertainty on the order of 0.1 ppbv for 30-min averaged ozone gradients that were used for the ozone flux calculations. This protocol facilitated a lower sensitivity threshold for the ozone flux determination of ∼8 × 10−3μg m−2 s−1, respectively ∼0.01 cm s−1 for the ozone deposition velocity for typical environmental conditions encountered at Summit. Uncertainty in the 30-min ozone exchange measurements (evaluated by the Monte Carlo statistical approach was on the order of 10−2 cm s−1. This uncertainty typically accounted to ~20–100% of the ozone exchange velocities that were determined. These measurements are among the most sensitive ozone deposition determinations reported to date. This flux experiment allowed for measurements of the relatively low ozone uptake rates encountered for polar snow, and thereby the study of their environmental and spring-versus-summer dependencies.

  18. Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean.

    Science.gov (United States)

    Read, Katie A; Mahajan, Anoop S; Carpenter, Lucy J; Evans, Mathew J; Faria, Bruno V E; Heard, Dwayne E; Hopkins, James R; Lee, James D; Moller, Sarah J; Lewis, Alastair C; Mendes, Luis; McQuaid, James B; Oetjen, Hilke; Saiz-Lopez, Alfonso; Pilling, Michael J; Plane, John M C

    2008-06-26

    Increasing tropospheric ozone levels over the past 150 years have led to a significant climate perturbation; the prediction of future trends in tropospheric ozone will require a full understanding of both its precursor emissions and its destruction processes. A large proportion of tropospheric ozone loss occurs in the tropical marine boundary layer and is thought to be driven primarily by high ozone photolysis rates in the presence of high concentrations of water vapour. A further reduction in the tropospheric ozone burden through bromine and iodine emitted from open-ocean marine sources has been postulated by numerical models, but thus far has not been verified by observations. Here we report eight months of spectroscopic measurements at the Cape Verde Observatory indicative of the ubiquitous daytime presence of bromine monoxide and iodine monoxide in the tropical marine boundary layer. A year-round data set of co-located in situ surface trace gas measurements made in conjunction with low-level aircraft observations shows that the mean daily observed ozone loss is approximately 50 per cent greater than that simulated by a global chemistry model using a classical photochemistry scheme that excludes halogen chemistry. We perform box model calculations that indicate that the observed halogen concentrations induce the extra ozone loss required for the models to match observations. Our results show that halogen chemistry has a significant and extensive influence on photochemical ozone loss in the tropical Atlantic Ocean boundary layer. The omission of halogen sources and their chemistry in atmospheric models may lead to significant errors in calculations of global ozone budgets, tropospheric oxidizing capacity and methane oxidation rates, both historically and in the future.

  19. Ozone (Environmental Health Student Portal)

    Science.gov (United States)

    ... Water Waterborne Diseases & Illnesses Water Cycle Water Treatment Videos Games Experiments For Teachers Home Air Pollution Ozone Print ... website; how individual choices, environmental factors, and different types of land use can affect air ... Videos Ozone - Good Up High, Bad Nearby (U.S. Environmental ...

  20. AROTAL Ozone and Temperature Vertical Profile Measurements from the NASA DC-8 during the SOLVE II Campaign

    Science.gov (United States)

    McGee, Thomas J.; Twigg, Laurence; Sumnicht, Grant; Hoegy, Walter; Burris, John; Silbert, Donald; Heaps, William; Neuber, R.; Trepte, C. R.

    2004-01-01

    The AROTAL instrument (Airborne Raman Ozone Temperature and Aerosol Lidar) - a collaboration between scientists at NASA Goddard Space Flight Center, and Langley Research Center - was flown on the NASA DC-8 during the SOLVE II Campaign during January and February, 2003. The flights were flown from the Arena Arctica in Kiruna, Sweden. We report measurements of temperature and ozone profiles showing approximately a 600 ppbv loss in ozone near 17.5 km, over the time frame of the aircraft campaign. Comparisons of ozone profiles from AROTAL are made with the SAGE III instrument.

  1. Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system

    Science.gov (United States)

    Goldberg, Mitchell D.; Kilcoyne, Heather; Cikanek, Harry; Mehta, Ajay

    2013-12-01

    next generation polar-orbiting environmental satellite system, designated as the Joint Polar Satellite System (JPSS), was proposed in February 2010, as part of the President's Fiscal Year 2011 budget request, to be the Civilian successor to the restructured National Polar-Orbiting Operational Environmental Satellite System (NPOESS). Beginning 1 October 2013, the JPSS baseline consists of a suite of five instruments: advanced microwave and infrared sounders critical for short- and medium-range weather forecasting; an advanced visible and infrared imager needed for environmental assessments such as snow/ice cover, droughts, volcanic ash, forest fires and surface temperature; ozone sensor primarily used for global monitoring of ozone and input to weather and climate models; and an Earth radiation budget sensor for monitoring the Earth's energy budget. NASA will fund the Earth radiation budget sensor and the ozone limb sensor for the second JPSS operational satellite--JPSS-2. JPSS is implemented through a partnership between NOAA and the U.S. National Aeronautics and Space Administration (NASA). NOAA is responsible for overall funding; maintaining the high-level requirements; establishing international and interagency partnerships; developing the science and algorithms, and user engagement; NOAA also provides product data distribution and archiving of JPSS data. NASA's role is to serve as acquisition Center of Excellence, providing acquisition of instruments, spacecraft and the multimission ground system, and early mission implementation through turnover to NOAA for operations.

  2. Is the Ozone Hole over Your Classroom?

    Science.gov (United States)

    Cordero, Eugene C.

    2002-01-01

    Reports on a survey of first year university science students regarding their understanding of the ozone layer, ozone depletion, and the effect of ozone depletion on Australia. Suggests that better teaching resources for environmental issues such as ozone depletion and global warming are needed before improvements in student understanding can be…

  3. Dynamics of ozone layer under Serbia and solar activity: Previous statement

    Directory of Open Access Journals (Sweden)

    Ducić Vladan

    2008-01-01

    Full Text Available The aim of this paper is to identify ozone layer dynamics under Serbian area, as well as possible relations of change in stratospheric ozone concentration with some parameters of solar activity. During the period 1979-2005, the statistical decrease of ozone concentration was noticed under Serbian territory cumulatively for 24.5 DU (7.2%, apropos 9.4 DU (2.8% by decade. These changes are consistent with the changes in surrounding countries. From absolute minimum 1993, flexible trend of ozone layer pentad values validate hypotheses of its recovery. Correspondence of ozone thickness extreme period with Wolf's number and with the greatest volcanic eruptions shows that interannual variations of stratospheric ozone concentration are still in the function of natural factors above all, as are solar and volcanic activities. Investigation of larger number solar activity parameters shows statistically important antiphase synchronous between the number of polar faculae on the Sun and stratospheric ozone dynamics under Serbia. Respecting that relation between these two features until now isn't depicted, some possible causal mechanisms are proposed.

  4. The impact of high altitude aircraft on the ozone layer in the stratosphere

    Science.gov (United States)

    Tie, Xue XI; Brasseur, Guy; Lin, Xing; Friedlingstein, P.; Granier, Claire; Rasch, Philip

    1994-01-01

    The paper discusses the potential effects on the ozone layer of gases released by the engines of proposed high altitude supersonic aircraft. The major problem arises from the emissions of nitrogen oxides which have the potential to destroy significant quantities of ozone in the stratosphere. The magnitude of the perturbation is highly dependent on the cruise altitude of the aircraft. Furthermore, the depletion of ozone is substantially reduced when heterogeneous conversion of nitrogen oxides into nitric acid on sulfate aerosol particles is taken into account in the calculation. The sensitivity of the aerosol load on stratospheric ozone is investigated. First, the model indicates that the aerosol load induced by the SO2 released by aircraft is increased by about 10-20% above the background aerosols at mid-high latitude of the Northern Hemisphere at 15 km for the NASA emission scenario A (the NASA emission scenarios are explained in Tables I to III). This increase in aerosol has small effects on stratospheric ozone. Second, when the aerosol load is increased following a volcanic eruption similar to the eruption of El Chichon (Mexico, April 1982), the ozone column in spring increases by as much as 9% in response to the injection of NOx from the aircraft with the NASA emission scenario A. Finally, the modeled suggests that significant ozone depletion could result from the formation of additional polar stratospheric clouds produced by the injection of H2O and HNO3 by the aircraft engines.

  5. 3D QSPR models for the removal of trace organic contaminants by ozone and free chlorine.

    Science.gov (United States)

    Lei, Hongxia; Snyder, Shane A

    2007-10-01

    Endocrine-disrupting compounds (EDCs) and pharmaceuticals and personal care products (PPCPs) have been detected at low levels in water resources around the world and one impact of their detection is the continuous concern on their fate and removal by various water treatment processes. In this research, a 3D quantitative structure-property relationship (QSPR) model characterized by the utilization of 3D molecular structures is explored as a potential tool to prescreen these compounds and help focus research on more persistent compounds during typical water treatment processes. Monte Carlo (MC) statistical mechanics simulations were utilized to generate 3D molecular descriptors and physicochemical properties for the development of multiple linear regression analysis. The relevance of each parameter to removals of target compounds by ozone (O3) and free chlorine was determined based on data matrices generated in bench- and pilot-scale experiments. Calculated removals were correlated with experimental data with linear regression coefficients of 0.84 for ozonation and 0.71 for chlorination. The increased predictability of ozone removal reflects the fundamental simplicity of ozone reaction mechanisms, which is dominated by oxidation reactions. Interestingly, the weakly polar surface area, in addition to the pi surface area of these molecules, seems critical to ozone removal. The removal of these compounds by free chlorine is related to their ozone removal, ionization potential and three other parameters. The developed QSPR models help disclose the removal mechanism during ozonation and chlorination.

  6. Apico-basal polarity complex and cancer

    Indian Academy of Sciences (India)

    Loss of cell polarity is a hallmark for carcinoma, and its underlying molecular mechanism is beginning to emerge from studies on model organisms and cancer cell lines. Moreover, deregulated expression of apico-basal polarity complex components has been reported in human tumours. In this review, we provide an ...

  7. Can polar bear hairs absorb environmental energy?

    OpenAIRE

    He Ji-Huan; Wang Qing-Li; Sun Jie

    2011-01-01

    A polar bear (Ursus maritimus) has superior ability to survive in harsh Arctic regions, why does the animal have such an excellent thermal protection? The present paper finds that the unique labyrinth cavity structure of the polar bear hair plays an important role. The hair can not only prevent body temperature loss but can also absorb energy from the environment.

  8. Can polar bear hairs absorb environmental energy?

    Directory of Open Access Journals (Sweden)

    He Ji-Huan

    2011-01-01

    Full Text Available A polar bear (Ursus maritimus has superior ability to survive in harsh Arctic regions, why does the animal have such an excellent thermal protection? The present paper finds that the unique labyrinth cavity structure of the polar bear hair plays an important role. The hair can not only prevent body temperature loss but can also absorb energy from the environment.

  9. Retrieval of Polar Stratospheric Cloud Microphysical Properties from Lidar Measurements: Dependence on Particle Shape Assumptions

    Science.gov (United States)

    Reichardt, J.; Reichardt, S.; Yang, P.; McGee, T. J.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    A retrieval algorithm has been developed for the microphysical analysis of polar stratospheric cloud (PSC) optical data obtained using lidar instrumentation. The parameterization scheme of the PSC microphysical properties allows for coexistence of up to three different particle types with size-dependent shapes. The finite difference time domain (FDTD) method has been used to calculate optical properties of particles with maximum dimensions equal to or less than 2 mu m and with shapes that can be considered more representative of PSCs on the scale of individual crystals than the commonly assumed spheroids. Specifically. these are irregular and hexagonal crystals. Selection of the optical parameters that are input to the inversion algorithm is based on a potential data set such as that gathered by two of the lidars on board the NASA DC-8 during the Stratospheric Aerosol and Gas Experiment 0 p (SAGE) Ozone Loss Validation experiment (SOLVE) campaign in winter 1999/2000: the Airborne Raman Ozone and Temperature Lidar (AROTEL) and the NASA Langley Differential Absorption Lidar (DIAL). The 0 microphysical retrieval algorithm has been applied to study how particle shape assumptions affect the inversion of lidar data measured in leewave PSCs. The model simulations show that under the assumption of spheroidal particle shapes, PSC surface and volume density are systematically smaller than the FDTD-based values by, respectively, approximately 10-30% and approximately 5-23%.

  10. Determination of total ozone from DMSP multichannel filter radiometer measurements

    International Nuclear Information System (INIS)

    Luther, F.M.; Weichel, R.L.

    1992-01-01

    The multichannel filter radiometer (MFR) infrared sensor was first flown in 1977 on a Defense Meteorological Satellite Program (DMSP) Block 5D series satellite operated by the US Air Force. The first four satellites in this series carried MFR sensors from which total atmospheric column ozone amounts may be derived. The MFR sensor was the first cross-track scanning sensor capable of measuring ozone. MFR sensor infrared measurements are taken day and night. The satellites are in polar sun-synchronous orbits providing daily global coverage. The series of four sensors spans a data period of nearly three years. The MFR sensor measures infrared radiances for 16 channels. Total ozone amounts are determined from sets of radiance measurements using an empirical relationship that is developed using linear regression analysis. Total ozone is modeled as a linear combination of terms involving functions of the MFR radiances for four channels (1, 3, 7 and 16) and the secant of the zenith angle. The MFR scans side to side in discrete steps of 40. The MFR sensor takes infrared radiance measurements at 25 cross-track scanning locations every 32 seconds. The instrument could take a theoretical maximum of 67,500 measurements per day, although typically 35,000 - 45,000 measurements are taken per day

  11. Impact of future nitrous oxide and carbon dioxide emissions on the stratospheric ozone layer

    Science.gov (United States)

    Stolarski, Richard S.; Douglass, Anne R.; Oman, Luke D.; Waugh, Darryn W.

    2015-03-01

    The atmospheric levels of human-produced chlorocarbons and bromocarbons are projected to make only small contributions to ozone depletion by 2100. Increases in carbon dioxide (CO2) and nitrous oxide (N2O) will become increasingly important in determining the future of the ozone layer. N2O increases lead to increased production of nitrogen oxides (NOx), contributing to ozone depletion. CO2 increases cool the stratosphere and affect ozone levels in several ways. Cooling decreases the rate of many photochemical reactions, thus slowing ozone loss rates. Cooling also increases the chemical destruction of nitrogen oxides, thereby moderating the effect of increased N2O on ozone depletion. The stratospheric ozone level projected for the end of this century therefore depends on future emissions of both CO2 and N2O. We use a two-dimensional chemical transport model to explore a wide range of values for the boundary conditions for CO2 and N2O, and find that all of the current scenarios for growth of greenhouse gases project the global average ozone to be larger in 2100 than in 1960.

  12. Surface ozone exposures measured at clean locations around the world.

    Science.gov (United States)

    Lefohn, A S; Krupa, S V; Winstanley, D

    1990-01-01

    experienced ozone exposures in the range between those values experienced at the South Pole and Mauna Loa NOAA GMCC sites. The 7-month average of the daily 7 h average ozone concentration at 'clean' sites located in the continental United States and southern Canada ranged from 0.028 to 0.050 ppm. Our analysis indicates that seasonal 7 h average values of 0.025 ppm and below, used by some vegetation researchers as a reference point, may be too low and that estimates of crop losses and tree damage in many locations may have been too high. Our analysis indicates that a more appropriate reference point in North America might be between 0.030 and 0.045 ppm. We have observed that the subtle effects of changing distribution patterns of hourly average ozone concentrations may be obscured with the use of exposure indices such as the monthly average. Future assessments of the effects associated with ground-level ozone should involve the use of exposure indices sensitive to changes in the distribution patterns of hourly average ozone concentrations.

  13. Correlative studies of satellite ozone sensor measurements

    International Nuclear Information System (INIS)

    Lovill, J.E.; Ellis, J.S.

    1983-01-01

    Comparisons are made between total ozone measurements made by four satellite ozone sensors (TOMS, SBUV, TOVS and MFR). The comparisons were made during July 1979 when all sensors were operating simultaneously. The TOMS and SBUV sensors were observed to measure less total ozone than the MFR sensor, 10 and 15 Dobson units (DU) respectively. The MFR and TOMS sensors measured less ozone than the TOVS sensor, 19 an 28 DU, respectively. Latitudinal variability of the total ozone comparisons is discussed

  14. A compact, fast UV photometer for measurement of ozone from research aircraft

    Directory of Open Access Journals (Sweden)

    R. S. Gao

    2012-09-01

    Full Text Available In situ measurements of atmospheric ozone (O3 are performed routinely from many research aircraft platforms. The most common technique depends on the strong absorption of ultraviolet (UV light by ozone. As atmospheric science advances to the widespread use of unmanned aircraft systems (UASs, there is an increasing requirement for minimizing instrument space, weight, and power while maintaining instrument accuracy, precision and time response. The design and use of a new, dual-beam, UV photometer instrument for in situ O3 measurements is described. A polarization optical-isolator configuration is utilized to fold the UV beam inside the absorption cells, yielding a 60-cm absorption length with a 30-cm cell. The instrument has a fast sampling rate (2 Hz at <200 hPa, 1 Hz at 200–500 hPa, and 0.5 Hz at ≥ 500 hPa, high accuracy (3% excluding operation in the 300–450 hPa range, where the accuracy may be degraded to about 5%, and excellent precision (1.1 × 1010 O3 molecules cm−3 at 2 Hz, which corresponds to 3.0 ppb at 200 K and 100 hPa, or 0.41 ppb at 273 K and 1013 hPa. The size (36 l, weight (18 kg, and power (50–200 W make the instrument suitable for many UASs and other airborne platforms. Inlet and exhaust configurations are also described for ambient sampling in the troposphere and lower stratosphere (1000–50 hPa that control the sample flow rate to maximize time response while minimizing loss of precision due to induced turbulence in the sample cell. In-flight and laboratory intercomparisons with existing O3 instruments show that measurement accuracy is maintained in flight.

  15. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    International Nuclear Information System (INIS)

    Chan, Wai Kit; Jouët, Justine; Heng, Samuel; Yeung, King Lun; Schrotter, Jean-Christophe

    2012-01-01

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: ► Novel reactor using membranes for ozone distributor, reaction contactor and water separator. ► Designed to achieve an order of magnitude enhancement over traditional reactor. ► Al 2 O 3 and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. ► High surface area coating prevents polarization and improves membrane separation and life.

  16. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Wai Kit, E-mail: kekyeung@ust.hk [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Joueet, Justine; Heng, Samuel; Yeung, King Lun [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Schrotter, Jean-Christophe [Water Research Center of Veolia, Anjou Recherche, Chemin de la Digue, BP 76. 78603, Maisons Laffitte, Cedex (France)

    2012-05-15

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: Black-Right-Pointing-Pointer Novel reactor using membranes for ozone distributor, reaction contactor and water separator. Black-Right-Pointing-Pointer Designed to achieve an order of magnitude enhancement over traditional reactor. Black-Right-Pointing-Pointer Al{sub 2}O{sub 3} and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. Black-Right-Pointing-Pointer High surface area coating prevents polarization and improves membrane separation and life.

  17. Ozone Applications in Food Industry

    Directory of Open Access Journals (Sweden)

    Elif Savaş

    2014-03-01

    Full Text Available Known as active oxygen Ozone (O3, are among the most effective antimicrobials. The sun's ultraviolet rays and ozone caused by electric arcs of lightning occurring instantly around the world, and is available as a protective shield protects the animals against the effects of the sun's radiation. In the food industry, directly or indirectly in contact with food during processing of foods and chemical treatment of water disinfection bacteriological emerges as an alternative protection method. In this study, the effects of the ozone applications will evaluated as an alternative to conventional disinfectants in food industry.

  18. Dobson spectrophotometer ozone measurements during international ozone rocketsonde intercomparison

    Science.gov (United States)

    Parsons, C. L.

    1980-01-01

    Measurements of the total ozone content of the atmosphere, made with seven ground based instruments at a site near Wallops Island, Virginia, are discussed in terms for serving as control values with which the rocketborne sensor data products can be compared. These products are profiles of O3 concentration with altitude. By integrating over the range of altitudes from the surface to the rocket apogee and by appropriately estimating the residual ozone amount from apogee to the top of the atmosphere, a total ozone amount can be computed from the profiles that can be directly compared with the ground based instrumentation results. Dobson spectrophotometers were used for two of the ground-based instruments. Preliminary data collected during the IORI from Dobson spectrophotometers 72 and 38 are presented. The agreement between the two and the variability of total ozone overburden through the experiment period are discussed.

  19. Determination of the Optimum Ozone Product on the Plasma Ozonizer

    International Nuclear Information System (INIS)

    Agus Purwadi; Widdi Usada; Suryadi; Isyuniarto; Sri Sukmajaya

    2002-01-01

    An experiment of the optimum ozone product determination on the cylindrical plasma ozonizer has been done. The experiment is carried out by using alternating high voltage power supply, oscilloscope CS-1577 A, flow meter and spectronik-20 instrument for the absorbance solution samples which produced by varying the physics parameter values of the discharge alternating high voltage and velocity of oxygen gas input. The plasma ozonizer is made of cylinder stainless steel as the electrode and cylinder glass as the dielectric with 1.00 mm of the discharge gap and 7.225 mm 3 of the discharge tube volume. The experiment results shows that the optimum ozone product is 0.360 mg/s obtained at the the discharge of alternating high voltage of 25.50 kV, the frequency of 1.00 kHz and the rate of oxygen gas input of 1.00 lpm. (author)

  20. Ozone and Ozonated Oils in Skin Diseases: A Review

    Directory of Open Access Journals (Sweden)

    V. Travagli

    2010-01-01

    Full Text Available Although orthodox medicine has provided a variety of topical anti-infective agents, some of them have become scarcely effective owing to antibiotic- and chemotherapeutic-resistant pathogens. For more than a century, ozone has been known to be an excellent disinfectant that nevertheless had to be used with caution for its oxidizing properties. Only during the last decade it has been learned how to tame its great reactivity by precisely dosing its concentration and permanently incorporating the gas into triglycerides where gaseous ozone chemically reacts with unsaturated substrates leading to therapeutically active ozonated derivatives. Today the stability and efficacy of the ozonated oils have been already demonstrated, but owing to a plethora of commercial products, the present paper aims to analyze these derivatives suggesting the strategy to obtain products with the best characteristics.

  1. Regional differences in tropospheric ozone

    Energy Technology Data Exchange (ETDEWEB)

    Builtjes, P.; Esser, P. [TNO Inst. of Environmental Sciences, Energy Research and Process Innovation Apeldoorn (Netherlands)

    1997-07-01

    Analysis of ozone measurements over Europe, as well as model calculations indicate large differences in the relative importance of the phenomena controlling ozone over different areas in Europe. The ozone budget, consisting of chemistry, deposition and horizontal and vertical transport, shows differences due to differences in emission density and in dry deposition values, best exemplified by the land-sea effect. In this paper, some initial results will be presented of an analysis of regional differences, using the results of the 3-D Eulerian grid model LOTOS (Long Term Ozone Simulation) over 1994, based on the hourly O{sub 3} results of LOTOS on a grid scale of 1/2 deg. Latitude * 1 deg. Longitude. (au)

  2. Ozone Nonattainment Areas - 1 Hour

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer identifies areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for Ozone - 1hour (Legacy...

  3. Ecosystem Effects of Ozone Pollution

    Science.gov (United States)

    Ground level ozone is absorbed by the leaves of plants, where it can reduce photosynthesis, damage leaves and slow growth. It can also make sensitive plants more susceptible to certain diseases, insects, harsh weather and other pollutants.

  4. Modeled population exposures to ozone

    Data.gov (United States)

    U.S. Environmental Protection Agency — Population exposures to ozone from APEX modeling for combinations of potential future air quality and demographic change scenarios. This dataset is not publicly...

  5. Validation of OSIRIS Ozone Inversions

    Science.gov (United States)

    Gudnason, P.; Evans, W. F.; von Savigny, C.; Sioris, C.; Halley, C.; Degenstein, D.; Llewellyn, E. J.; Petelina, S.; Gattinger, R. L.; Odin Team

    2002-12-01

    The OSIRIS instrument onboard the Odin satellite, that was launched on February 20, 2001, is a combined optical spectrograph and infrared imager that obtains profil sets of atmospheric spectra from 280 to 800 nm when Odin scans the terrestrial limb. It has been possible to make a preliminary analysis of the ozone profiles using the Chappuis absorption feature. Three algorithms have been developed for ozone profile inversions from these limb spectra sets. We have dubbed these the Gattinger, Von Savigny-Flittner and DOAS methods. These are being evaluated against POAM and other satellite data. Based on performance, one of these will be selected for the operational algorithm. The infrared imager data have been used by Degenstein with the tomographic inversion procedure to derive ozone concentrations above 60 km. This paper will present some of these initial observations and indicate the best algorithm potential of OSIRIS to make spectacular advances in the study of terrestrial ozone.

  6. SUMO: Solar Ultraviolet Monitor and Ozone Nanosatellite

    Science.gov (United States)

    Damé, L.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Keckhut, P.; Sarkissian, A.; Godin-Beekman, S.; Rogers, D. J.; Bove, P.; Lagage, P. O.; DeWitte, S.

    2014-12-01

    SUMO is an innovative proof-of-concept nanosatellite aiming to measure on the same platform the different components of the Earth radiation budget (ERB), the solar energy input and the energy reemitted at the top of the Earth atmosphere, with a particular focus on the far UV (FUV) part of the spectrum and on the ozone layer. The FUV is the only wavelength band with energy absorbed in the high atmosphere (stratosphere), in the ozone (Herzberg continuum, 200-220 nm) and oxygen bands, and its high variability is most probably at the origin of a climate influence (UV affects stratospheric dynamics and temperatures, altering interplanetary waves and weather patterns both poleward and downward to the lower stratosphere and tropopause). A simultaneous observation of incoming FUV and ozone production would bring an invaluable information on this process of solar-climate forcing. Space instruments have already measured the different components of the ERB but this is the first time that all instruments will operate on the same platform. This characteristic by itself guarantees original scientific results. SUMO is a 3.6 kg, 3W, 10x10x30 cm3 nanosatellite ("3U"), with a "1U" payload of nanosatellite program of Polytechnic School and CNES (following QB50) for a flight in 2018. Follow-up is 2 fold: on one part more complete measurements using SUMO miniaturized instruments on a larger satellite; on the other part, increase of the coverage in local time and latitude using a constellation of SUMO nanosatellites around the Earth to further geolocalize the Sun influence on our planet. Nanosatellites, with cost and risk limited, are also excellent platforms to evaluate technologies for future missions, e.g. nanotechnology ZnO protection barriers to limit contamination from solar panels in the UV and reduce reflection losses in the visible, or MgZnO solar blind detectors (R&D initiatives proposed to CNES).

  7. Ozone as an ecotoxicological problem

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, L. [National Environmental Research Inst., Dept. of Atmospheric Environment, Roskilde (Denmark)

    1996-11-01

    Ozone is quantitatively the dominating oxidant in photochemical air pollution. Other compounds like hydrogen peroxide, aldehydes, formate, peroxyacetyl nitrate (PAN) and nitrogen dioxide are present too, and several of these are known to be phytotoxic, but under Danish conditions the concentration of these gases are without significance for direct effects on vegetation. Therefore, it is the effects of ozone on plant growth that will be described below. (EG) 65 refs.

  8. All-fiber polarization switch

    Science.gov (United States)

    Knape, Harald; Margulis, Walter

    2007-03-01

    We report an all-fiber polarization switch made out of silica-based microstructured fiber suitable for Q-switching all-fiber lasers. Nanosecond high-voltage pulses are used to heat and expand an internal electrode to cause λ/2-polarization rotation in less than 10 ns for 1.5 μm light. The 10 cm long component has an experimentally measured optical insertion loss of 0.2 dB and a 0-10 kHz repetition frequency capacity and has been durability tested for more than 109 pulses.

  9. The Antarctic ozone minimum - Relationship to odd nitrogen, odd chlorine, the final warming, and the 11-year solar cycle

    Science.gov (United States)

    Callis, L. B.; Natarajan, M.

    1986-01-01

    Photochemical calculations along 'diabatic trajectories' in the meridional phase are used to search for the cause of the dramatic springtime minimum in Antarctic column ozone. The results indicate that the minimum is principally due to catalytic destruction of ozone by high levels of total odd nitrogen. Calculations suggest that these levels of odd nitrogen are transported within the polar vortex and during the polar night from the middle to upper stratosphere and lower mesosphere to the lower stratosphere. The possibility that these levels are related to the 11-year solar cycle and are increased by enhanced formation in the thermosphere and mesosphere during solar maximum conditions is discussed.

  10. Aromatic VOCs global influence in the ozone production

    Science.gov (United States)

    Cabrera-Perez, David; Pozzer, Andrea

    2016-04-01

    Aromatic hydrocarbons are a subgroup of Volatile Organic Compounds (VOCs) of special interest in the atmosphere of urban and semi-urban areas. Aromatics form a high fraction of VOCs, are highly reactive and upon oxidation they are an important source of ozone. These group of VOCs are released to the atmosphere by processes related to biomass burning and fossil fuel consumption, while they are removed from the atmosphere primarily by OH reaction and by dry deposition. In addition, a branch of aromatics (ortho-nitrophenols) produce HONO upon photolysis, which is responsible of certain amount of the OH recycling. Despite their importance in the atmosphere in anthropogenic polluted areas, the influence of aromatics in the ozone production remains largely unknown. This is of particular relevance, being ozone a pollutant with severe side effects on air quality, health and climate. In this work the atmospheric impacts at global scale of the most emitted aromatic VOCs in the gas phase (benzene, toluene, xylenes, ethylbenzene, styrene, phenol, benzaldehyde and trimethylbenzenes) are analysed and assessed. Specifically, the impact on ozone due to aromatic oxidation is estimated, as this is of great interest in large urban areas and can be helpful for developing air pollution control strategies. Further targets are the quantification of the NOx loss and the OH recycling due to aromatic oxidation. In order to investigate these processes, two simulations were performed with the numerical chemistry and climate simulation ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The simulations compare two cases, one with ozone concentrations when aromatics are present or the second one when they are missing. Finally, model simulated ozone is compared against a global set of observations in order to better constrain the model accuracy.

  11. Rates and regimes of photochemical ozone production over Central East China in June 2006: a box model analysis using comprehensive measurements of ozone precursors

    Directory of Open Access Journals (Sweden)

    Y. Kanaya

    2009-10-01

    Full Text Available An observation-based box model approach was undertaken to estimate concentrations of OH, HO2, and RO2 radicals and the net photochemical production rate of ozone at the top of Mount Tai, located in the middle of Central East China, in June 2006. The model calculation was constrained by the measurements of O3, H2O, CO, NO, NO2, hydrocarbon, HCHO, and CH3CHO concentrations, and temperature and J values. The net production rate of ozone was estimated to be 6.4 ppb h−1 as a 6-h average (09:00–15:00 CST, suggesting 58±37 ppb of ozone is produced in one day. Thus the daytime buildup of ozone recorded at the mountain top as ~23 ppb on average is likely affected by in situ photochemistry as well as by the upward transport of polluted air mass in the daytime. On days with high ozone concentrations (hourly values exceeding 100 ppb at least once, in situ photochemistry was more active than it was on low ozone days, suggesting that in situ photochemistry is an important factor controlling ozone concentrations. Sensitivity model runs for which different NOx and hydrocarbon concentrations were assumed suggested that the ozone production occurred normally under NOx-limited conditions, with some exceptional periods (under volatile-organic-compound-limited conditions in which there was fresh pollution. We also examined the possible influence of the heterogeneous loss of gaseous HO2 radicals in contact with aerosol particle surfaces on the rate and regimes of ozone production.

  12. Precessing deuteron polarization

    International Nuclear Information System (INIS)

    Sitnik, I.M.; Volkov, V.I.; Kirillov, D.A.; Piskunov, N.M.; Plis, Yu.A.

    2002-01-01

    The feasibility of the acceleration in the Nuclotron of deuterons polarized in the horizontal plane is considered. This horizontal polarization is named precessing polarization. The effects of the main magnetic field and synchrotron oscillations are included. The precessing polarization is supposed to be used in studying the polarization parameters of the elastic dp back-scattering and other experiments

  13. Catalytic ozonation of oxalate with a cerium supported palladium oxide: An efficient degradation not relying on hydroxyl radical oxidation

    KAUST Repository

    Zhang, Tao

    2011-11-01

    The cerium supported palladium oxide (PdO/CeO 2) at a low palladium loading was found very effective in catalytic ozonation of oxalate, a probe compound that is difficult to be efficiently degraded in water with hydroxyl radical oxidation and one of the major byproducts in ozonation of organic matter. The oxalate was degraded into CO 2 during the catalytic ozonation. The molar ratio of oxalate degraded to ozone consumption increased with increasing catalyst dose and decreasing ozone dosage and pH under the conditions of this study. The maximum molar ratio reached around 1, meaning that the catalyst was highly active and selective for oxalate degradation in water. The catalytic ozonation, which showed relatively stable activity, does not promote hydroxyl radical generation from ozone. Analysis with ATR-FTIR and in situ Raman spectroscopy revealed that 1) oxalate was adsorbed on CeO 2 of the catalyst forming surface complexes, and 2) O 3 was adsorbed on PdO of the catalyst and further decomposed to surface atomic oxygen (*O), surface peroxide (*O 2), and O 2 gas in sequence. The results indicate that the high activity of the catalyst is related to the synergetic function of PdO and CeO 2 in that the surface atomic oxygen readily reacts with the surface cerium-oxalate complex. This kind of catalytic ozonation would be potentially effective for the degradation of polar refractory organic pollutants and hydrophilic natural organic matter. © 2011 American Chemical Society.

  14. New dynamic NNORSY ozone profile climatology

    Science.gov (United States)

    Kaifel, A. K.; Felder, M.; Declercq, C.; Lambert, J.-C.

    2012-01-01

    Climatological ozone profile data are widely used as a-priori information for total ozone using DOAS type retrievals as well as for ozone profile retrieval using optimal estimation, for data assimilation or evaluation of 3-D chemistry-transport models and a lot of other applications in atmospheric sciences and remote sensing. For most applications it is important that the climatology represents not only long term mean values but also the links between ozone and dynamic input parameters. These dynamic input parameters should be easily accessible from auxiliary datasets or easily measureable, and obviously should have a high correlation with ozone. For ozone profile these parameters are mainly total ozone column and temperature profile data. This was the outcome of a user consultation carried out in the framework of developing a new, dynamic ozone profile climatology. The new ozone profile climatology is based on the Neural Network Ozone Retrieval System (NNORSY) widely used for ozone profile retrieval from UV and IR satellite sounder data. NNORSY allows implicit modelling of any non-linear correspondence between input parameters (predictors) and ozone profile target vector. This paper presents the approach, setup and validation of a new family of ozone profile climatologies with static as well as dynamic input parameters (total ozone and temperature profile). The neural network training relies on ozone profile measurement data of well known quality provided by ground based (ozonesondes) and satellite based (SAGE II, HALOE, and POAM-III) measurements over the years 1995-2007. In total, four different combinations (modes) for input parameters (date, geolocation, total ozone column and temperature profile) are available. The geophysical validation spans from pole to pole using independent ozonesonde, lidar and satellite data (ACE-FTS, AURA-MLS) for individual and time series comparisons as well as for analysing the vertical and meridian structure of different modes of

  15. A Model of the Effect of Ozone Depletion on Lower-Stratospheric Structure

    Science.gov (United States)

    Olsen, Mark A.; Stolarski, Richard S.; Gupta, Mohan L.; Nielsen, J. Eric; Pawson, Steven

    2005-01-01

    We have run two twenty-year integrations of a global circulation model using 1978-1980 and 1998-2000 monthly mean ozone climatologies. The ozone climatology is used solely in the radiation scheme of the model. Several key differences between the model runs will be presented. The temperature and potential vorticity (PV) structure of the lower stratosphere, particularly in the Southern Hemisphere, is significantly changed using the 1998-2000 ozone climatology. In the Southern Hemisphere summer, the lapse rate and PV-defined polar tropopauses are both at altitudes on the order of several hundred meters greater than the 1978-1980 climatological run. The 380 K potential temperature surf= is likewise at a greater altitude. The mass of the extratropical lowermost stratosphere (between the tropopause and 380 K surface) remains unchanged. The altitude differences are not observed in the Northern Hemisphere. The different ozone fields do not produce a significant change in the annual extratropical stratosphere-troposphere exchange of mass although slight variations in the spatial distribution of the exchange exist. We are also investigating a delay in the breakup of the Southern Hemisphere polar vortex due to the differing ozone climatologies.

  16. APPLICATION OF DNPH DERIVATIZATION WITH LC/MS TO THE IDENTIFICATION OF POLAR CARBONYL DRINKING WATER DISINFECTION BY-PRODUCTS IN DRINKING WATER

    Science.gov (United States)

    A qualitative method using 2,4-dinitrophenylhydrazine (DNPH) derivatization followed by analysis with liquid chromatography (LC)/negative ion-electrospray mass spectrometry (MS) was developed for analyzing and identifying highly polar aldehydes and ketones in ozonated drinking wa...

  17. [The ozone layer and its modification by N2O and inhalation anesthetics].

    Science.gov (United States)

    Radke, J; Fabian, P

    1991-08-01

    As a result of human activities the ozone layer in the stratosphere, which is necessary for life on earth, has changed. The main causes of ozone destruction are chlorofluorcarbons (CFCs) 11 and 12. Recently, caring anesthetists have wondered if and to what degree N2O and popular potent inhalation anesthetics may also contribute to ozone loss. Having consulted the literature, we attempt to answer that question. The ozone-destroying N2O is chiefly produced by burning fossil elements and nitrogenous fertilizing used in agriculture; the share of medically used N2O lies below 2%. Halothane, enflurane, and isoflurane are halogenated anesthetics that contain ozone-destroying halogens (bromine, chlorine, fluorine) to different extents. Complicated experimental calculations for these volatile anesthetics result in a potential for ozone destruction of 0.36 for halothane and 0.02 for enflurane and isoflurane if the potential for ozone destruction by CFCs is set at 1.0. The lifespan of the inhalation anesthetics in the troposphere is with less than 3 years, dramatically less than that of CFCs (70-140 years). The two most important CFCs, 11 and 12, are considered to be currently produced in a quantity of about 800,000 tons per year. On the other hand, the worldwide production of inhalation anesthetics is said to be only 2,000 tons. In view of the experimental calculations and the low worldwide production, the small greenhouse effect, the shorter lifespan in the troposphere, and the low potential for ozone destruction, the negative effects of medically used N2O and inhalation anesthetics on the ozone layer seem negligible. All in all, the inhalation anesthetics are considered to be responsible for only 0.0005% of the ozone destruction at present.

  18. Mortality tradeoff between air quality and skin cancer from changes in stratospheric ozone

    Science.gov (United States)

    Eastham, Sebastian D.; Keith, David W.; Barrett, Steven R. H.

    2018-03-01

    Skin cancer mortality resulting from stratospheric ozone depletion has been widely studied. Similarly, there is a deep body of literature on surface ozone and its health impacts, with modeling and observational studies demonstrating that surface ozone concentrations can be increased when stratospheric air mixes to the Earth’s surface. We offer the first quantitative estimate of the trade-off between these two effects, comparing surface air quality benefits and UV-related harms from stratospheric ozone depletion. Applying an idealized ozone loss term in the stratosphere of a chemistry-transport model for modern-day conditions, we find that each Dobson unit of stratospheric ozone depletion results in a net decrease in the global annual mortality rate of ~40 premature deaths per billion population (d/bn/DU). The impacts are spatially heterogeneous in sign and magnitude, composed of a reduction in premature mortality rate due to ozone exposure of ~80 d/bn/DU concentrated in Southeast Asia, and an increase in skin cancer mortality rate of ~40 d/bn/DU, mostly in Western Europe. This is the first study to quantify air quality benefits of stratospheric ozone depletion, and the first to find that marginal decreases in stratospheric ozone around modern-day values could result in a net reduction in global mortality due to competing health impact pathways. This result, which is subject to significant methodological uncertainty, highlights the need to understand the health and environmental trade-offs involved in policy decisions regarding anthropogenic influences on ozone chemistry over the 21st century.

  19. Polar Processes in a 50-year Simulation of Stratospheric Chemistry and Transport

    Science.gov (United States)

    Kawa, S.R.; Douglass, A. R.; Patrick, L. C.; Allen, D. R.; Randall, C. E.

    2004-01-01

    The unique chemical, dynamical, and microphysical processes that occur in the winter polar lower stratosphere are expected to interact strongly with changing climate and trace gas abundances. Significant changes in ozone have been observed and prediction of future ozone and climate interactions depends on modeling these processes successfully. We have conducted an off-line model simulation of the stratosphere for trace gas conditions representative of 1975-2025 using meteorology from the NASA finite-volume general circulation model. The objective of this simulation is to examine the sensitivity of stratospheric ozone and chemical change to varying meteorology and trace gas inputs. This presentation will examine the dependence of ozone and related processes in polar regions on the climatological and trace gas changes in the model. The model past performance is base-lined against available observations, and a future ozone recovery scenario is forecast. Overall the model ozone simulation is quite realistic, but initial analysis of the detailed evolution of some observable processes suggests systematic shortcomings in our description of the polar chemical rates and/or mechanisms. Model sensitivities, strengths, and weaknesses will be discussed with implications for uncertainty and confidence in coupled climate chemistry predictions.

  20. Hearing loss

    Science.gov (United States)

    Decreased hearing; Deafness; Loss of hearing; Conductive hearing loss; Sensorineural hearing loss; Presbycusis ... Conductive hearing loss (CHL) occurs because of a mechanical problem in the outer or middle ear. This may be ...

  1. Transient cortical blindness after intradiscal oxygen-ozone therapy.

    Science.gov (United States)

    Vaiano, Agostino Salvatore; Valente, Cristiana; De Benedetti, Giacomo; Caramello, Guido

    2016-12-01

    A 54-year-old caucasian male developed bilateral blindness during an oxygen-ozone injection for disc herniation. The visual loss (VL) was immediately followed by severe frontal headache, vomiting, and nausea. The patient underestimated the VL showing Anton's syndrome, with a complete visual recovery after 2-month follow-up. Magnetic resonance data were consistent with recent ischemic lesions in bilateral vascular territories of posterior cerebral arteries.

  2. Transient cortical blindness after intradiscal oxygen–ozone therapy

    Directory of Open Access Journals (Sweden)

    Agostino Salvatore Vaiano

    2016-01-01

    Full Text Available A 54-year-old caucasian male developed bilateral blindness during an oxygen–ozone injection for disc herniation. The visual loss (VL was immediately followed by severe frontal headache, vomiting, and nausea. The patient underestimated the VL showing Anton's syndrome, with a complete visual recovery after 2-month follow-up. Magnetic resonance data were consistent with recent ischemic lesions in bilateral vascular territories of posterior cerebral arteries.

  3. Depletion of ozone layer and health

    International Nuclear Information System (INIS)

    Kripke, M.L.

    1990-01-01

    A decrease in food supply, rather than an increase in cancers, could turn out to be the greatest danger from the loss of the Earth's ozone shield says the author. This could result from alterations in plants and animals that are more sensitive than humans to increased levels of ultraviolet radiation. Increasing ambient ultraviolet radiation within a short time would exert dramatic selective pressure on all living organisms, but the global consequences of such an occurrence cannot be predicted. Common skin cancer is the best understood link with ultraviolet radiation. In fact, the link is so straightforward that precise calculations are possible: a 1% decrease in ozone equals a 2% increase in ultraviolet radiation, which translates into a 3 to 6% increase in common skin cancers in the US. If the immune system is damaged, the body cannot survive the continual onslaught of infectious agents present in the environment. People's willingness to protect themselves against sunlight exposure has been dictated by fashion. The fashionability of hats and sunglasses is beneficial for reducing the risk of cataracts; on the other hand, the fashionability of sun-tans has probably contributed to the rising incidence of skin cancer among Caucasians. The best remedy she advises is to avoid overexposure to sunlight

  4. Polare maskuliniteter

    Directory of Open Access Journals (Sweden)

    Marit Anne Hauan

    2012-05-01

    Full Text Available In this paper my aim is to read and understand the journal of Gerrit de Veer from the last journey of William Barents to the Arctic Regions in 1596 and the journal of captain Junge on his hunting trip from Tromsø to Svalbard in 1834.It is nearly 240 years between this to voyages. The first journal is known as the earliest report from the arctic era. Gerrit de Veer adds instructive copper engravings to his text and give us insight in the crews meeting with this new land. Captain Junges journal is found together with his dead crew in a house in a fjord nearby Ny-Ålesund and has no drawings, but word. Both of these journals may be read as sources of the knowledge and understanding of the polar region. They might also unveil the ideas of how to deal with and survive under the challenges that is given. In addition one can ask if the sources can tell us more about how men describe their challenges. Can the way they expressed themselves in the journals give us an understanding of masculinity? And not least help us to create good questions of the change in the ideas of masculinities which is said to follow the change in understanding of the wilderness.

  5. First steps towards the assimilation of IASI ozone data into the MOCAGE-PALM system

    Directory of Open Access Journals (Sweden)

    J. Hadji-Lazaro

    2009-07-01

    Full Text Available With the use of data assimilation, we study the quality of the Infrared Atmospheric Sounding Interferometer (IASI total ozone column measurements. The IASI data are provided by the inversion of IASI radiances performed at the Laboratoire ATmosphères, Milieux, Observations Spatiales (LATMOS. This data set is initially compared on a five-month period to a three-dimensional time varying ozone field that we take as a reference. This reference field results from the combined assimilation of ozone profiles from the Microwave Limb Sounder (MLS instrument and of total ozone columns from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY instrument. It has low systematic and random errors when compared to ozonesondes and Ozone Monitoring Instrument (OMI data. The comparison shows that on average, the LATMOS-IASI data tends to overestimate the total ozone columns by 2% to 8%. The random observation error of the LATMOS-IASI data is estimated to about 7%, except over polar regions and deserts where it is higher. The daytime data have generally lower biases but higher random error than the nighttime data. Using this information, the LATMOS-IASI data are then assimilated, combined with the MLS data. This first LATMOS-IASI data assimilation experiment shows that the resulting analysis is quite similar to the one obtained from the combined MLS and SCIAMACHY data assimilation. The differences are mainly due to the lack of SCIAMACHY measurements during polar night, and to the higher LATMOS-IASI random errors especially over the southern polar region.

  6. Extending the NOAA SBUV(/2) Ozone Profile Record

    Science.gov (United States)

    Frith, S. M.; Wild, J.; Long, C. S.

    2017-12-01

    Since the signing of the Montreal Protocol in 1987 and its subsequent agreements banning anthropogenic ozone depleting substances (ODS) the climate community has been anticipating the ability to detect the recovery of the ozone layer. This recovery is complicated by climate changes associated with the increase of CO2 in the both the troposphere and stratosphere. The Climate Prediction Center (CPC) has generated a long term total column and profile ozone climate data record (CDR) based on the SBUV and SBUV/2 on Nimbus 7 and the NOAA Polar Orbiting Environmental Satellites (POES): NOAA-9, -11, -14, -16, -17, -18 and -19 spanning 38 years from 1978 to 2016. This dataset uses observations from a single instrument for each time period and an adjustment scheme to remove inter-satellite differences. The last of these SBUV/2 instruments resides on NOAA-19 launched in 2009, and with drifting equatorial crossing time will soon loose latitudinal coverage, and be impacted by an increasing solar zenith angle. The Ozone Mapping and Profiler Suite (OMPS) instrument has replaced the SBUV/2 as the primary ozone monitoring instrument at NOAA. It is taking observations on the Suomi-NPOESS Preparatory Project (S-NPP) satellite which was launched in 2011 and will be on future JPSS satellites. JPSS-1 is expected to be launched in late 2017, and later JPSS satellites will additionally carry the OMPS instrument. Reprocessed OMPS Nadir Profile (NP) and Nadir Mapper (NM) level 2 data has been made available by NESDIS/STAR covering the period from 2012 through 2016. The OMPS NP has been characterized and calibrated to be very similar to the SBUV/2. Results of extending the SBUV(/2) dataset with ozone profile data from OMPS will be reviewed. Stability of ozone recovery trend estimates using these datasets will be explored using the Hockey Stick approach of Reinsel (2002) near-globally (50N-50S), tropically and at mid-latitudes. Seasonality of the trend results will be examined. Reinsel, G

  7. Iodine chemistry in the troposphere and its effect on ozone

    Science.gov (United States)

    Saiz-Lopez, A.; Fernandez, R. P.; Ordóñez, C.; Kinnison, D. E.; Gómez Martín, J. C.; Lamarque, J.-F.; Tilmes, S.

    2014-12-01

    Despite the potential influence of iodine chemistry on the oxidizing capacity of the troposphere, reactive iodine distributions and their impact on tropospheric ozone remain almost unexplored aspects of the global atmosphere. Here we present a comprehensive global modelling experiment aimed at estimating lower and upper limits of the inorganic iodine burden and its impact on tropospheric ozone. Two sets of simulations without and with the photolysis of IxOy oxides (i.e. I2O2, I2O3 and I2O4) were conducted to define the range of inorganic iodine loading, partitioning and impact in the troposphere. Our results show that the most abundant daytime iodine species throughout the middle to upper troposphere is atomic iodine, with an annual average tropical abundance of (0.15-0.55) pptv. We propose the existence of a "tropical ring of atomic iodine" that peaks in the tropical upper troposphere (~11-14 km) at the equator and extends to the sub-tropics (30° N-30° S). Annual average daytime I / IO ratios larger than 3 are modelled within the tropics, reaching ratios up to ~20 during vigorous uplift events within strong convective regions. We calculate that the integrated contribution of catalytic iodine reactions to the total rate of tropospheric ozone loss (IOx Loss) is 2-5 times larger than the combined bromine and chlorine cycles. When IxOy photolysis is included, IOx Loss represents an upper limit of approximately 27, 14 and 27% of the tropical annual ozone loss for the marine boundary layer (MBL), free troposphere (FT) and upper troposphere (UT), respectively, while the lower limit throughout the tropical troposphere is ~9%. Our results indicate that iodine is the second strongest ozone-depleting family throughout the global marine UT and in the tropical MBL. We suggest that (i) iodine sources and its chemistry need to be included in global tropospheric chemistry models, (ii) experimental programs designed to quantify the iodine budget in the troposphere should include

  8. Assimilation of MLS and OMI Ozone Data

    Science.gov (United States)

    Stajner, I.; Wargan, K.; Chang, L.-P.; Hayashi, H.; Pawson, S.; Froidevaux, L.; Livesey, N.

    2005-01-01

    Ozone data from Aura Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) were assimilated into the ozone model at NASA's Global Modeling and Assimilation Office (GMAO). This assimilation produces ozone fields that are superior to those from the operational GMAO assimilation of Solar Backscatter Ultraviolet (SBUV/2) instrument data. Assimilation of Aura data improves the representation of the "ozone hole" and the agreement with independent Stratospheric Aerosol and Gas Experiment (SAGE) III and ozone sonde data. Ozone in the lower stratosphere is captured better: mean state, vertical gradients, spatial and temporal variability are all improved. Inclusion of OMI and MLS data together, or separately, in the assimilation system provides a way of checking how consistent OMI and MLS data are with each other, and with the ozone model. We found that differences between OMI total ozone column data and model forecasts decrease after MLS data are assimilated. This indicates that MLS stratospheric ozone profiles are consistent with OMI total ozone columns. The evaluation of error characteristics of OMI and MLS ozone will continue as data from newer versions of retrievals becomes available. We report on the initial step in obtaining global assimilated ozone fields that combine measurements from different Aura instruments, the ozone model at the GMAO, and their respective error characteristics. We plan to use assimilated ozone fields in estimation of tropospheric ozone. We also plan to investigate impacts of assimilated ozone fields on numerical weather prediction through their use in radiative models and in the assimilation of infrared nadir radiance data from NASA's Advanced Infrared Sounder (AIRS).

  9. The effects of greenhouse gases on the Antarctic ozone hole in the past, present, and future

    Science.gov (United States)

    Newman, P. A.; Li, F.; Lait, L. R.; Oman, L.

    2017-12-01

    The Antarctic ozone hole is primarily caused by human-produced ozone depleting substances such as chlorine-containing chlorofluorocarbons (CFCs) and bromine-containing halons. The large ozone spring-time depletion relies on the very-cold conditions of the Antarctic lower stratosphere, and the general containment of air by the polar night jet over Antarctica. Here we show the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM) coupled ocean-atmosphere-chemistry model for exploring the impact of increasing greenhouse gases (GHGs). Model simulations covering the 1960-2010 period are shown for: 1) a control ensemble with observed levels of ODSs and GHGs, 2) an ensemble with fixed 1960 GHG concentrations, and 3) an ensemble with fixed 1960 ODS levels. We look at a similar set of simulations (control, 2005 fixed GHG levels, and 2005 fixed ODS levels) with a new version of GEOSCCM over the period 2005-2100. These future simulations show that the decrease of ODSs leads to similar ozone recovery for both the control run and the fixed GHG scenarios, in spite of GHG forced changes to stratospheric ozone levels. These simulations demonstrate that GHG levels will have major impacts on the stratosphere by 2100, but have only small impacts on the Antarctic ozone hole.

  10. Impacts of ozone air pollution and temperature extremes on crop yields: Spatial variability, adaptation and implications for future food security

    Science.gov (United States)

    Tai, Amos P. K.; Val Martin, Maria

    2017-11-01

    Ozone air pollution and climate change pose major threats to global crop production, with ramifications for future food security. Previous studies of ozone and warming impacts on crops typically do not account for the strong ozone-temperature correlation when interpreting crop-ozone or crop-temperature relationships, or the spatial variability of crop-to-ozone sensitivity arising from varietal and environmental differences, leading to potential biases in their estimated crop losses. Here we develop an empirical model, called the partial derivative-linear regression (PDLR) model, to estimate the spatial variations in the sensitivities of wheat, maize and soybean yields to ozone exposures and temperature extremes in the US and Europe using a composite of multidecadal datasets, fully correcting for ozone-temperature covariation. We find generally larger and more spatially varying sensitivities of all three crops to ozone exposures than are implied by experimentally derived concentration-response functions used in most previous studies. Stronger ozone tolerance is found in regions with high ozone levels and high consumptive crop water use, reflecting the existence of spatial adaptation and effect of water constraints. The spatially varying sensitivities to temperature extremes also indicate stronger heat tolerance in crops grown in warmer regions. The spatial adaptation of crops to ozone and temperature we find can serve as a surrogate for future adaptation. Using the PDLR-derived sensitivities and 2000-2050 ozone and temperature projections by the Community Earth System Model, we estimate that future warming and unmitigated ozone pollution can combine to cause an average decline in US wheat, maize and soybean production by 13%, 43% and 28%, respectively, and a smaller decline for European crops. Aggressive ozone regulation is shown to offset such decline to various extents, especially for wheat. Our findings demonstrate the importance of considering ozone regulation

  11. Frequency dependent polarization in blazars

    International Nuclear Information System (INIS)

    Bjoernsson, C.I.

    1984-10-01

    It is argued that the intrinsic frequency dependent polarization in blazars finds its most straightforward explanations in terms of a single rather than a multicomponent sourcemodel. In order to reproduce the observations, under the assumption that the emission mechanism is optically thin synchrotron radiation, both a well ordered magnetic field and an electron distribution with a sharp break or cuttoff are necessary. Non-uniform pitch angle distribution and/or environments where synchrotron losses are important are both conducive to producing strong frequency dependent polarization. Reasons are put forth as to why such conditions ar expected to occur in blazars. Two specific models are discussed in detail and it is shown that they are both able to produce strong frequency dependent polarization, even when the spectral index changes by a small amount only. (orig.)

  12. Electron Beam Polarization Measurement Using Touschek Lifetime Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Changchun; /Duke U., DFELL; Li, Jingyi; /Duke U., DFELL; Mikhailov, Stepan; /Duke U., DFELL; Popov, Victor; /Duke U., DFELL; Wu, Wenzhong; /Duke U., DFELL; Wu, Ying; /Duke U., DFELL; Chao, Alex; /SLAC; Xu, Hong-liang; /Hefei, NSRL; Zhang, Jian-feng; /Hefei, NSRL

    2012-08-24

    Electron beam loss due to intra-beam scattering, the Touschek effect, in a storage ring depends on the electron beam polarization. The polarization of an electron beam can be determined from the difference in the Touschek lifetime compared with an unpolarized beam. In this paper, we report on a systematic experimental procedure recently developed at Duke FEL laboratory to study the radiative polarization of a stored electron beam. Using this technique, we have successfully observed the radiative polarization build-up of an electron beam in the Duke storage ring, and determined the equilibrium degree of polarization and the time constant of the polarization build-up process.

  13. Spatio-temporal variability of the polar middle atmosphere. Insights from over 30 years of research satellite observations

    Energy Technology Data Exchange (ETDEWEB)

    Lahoz, W.A.; Orsolini, Y.J.; Manney, G.L.; Minschwaner, K.; Allen, D.R.; Errera, Q.; Jackson, D.R.; Lambert, A.; Lee, J.; Pumphrey, H.; Schwartz, M.; Wu, D.

    2012-07-01

    We discuss the insights that research satellite observations from the last 30 years have provided on the spatio-temporal variability of the polar middle atmosphere. Starting from the time of the NASA LIMS (Limb Infrared Monitor of the Stratosphere) and TOMS (Total Ozone Mapping Spectrometer) instruments, both launched in 1978, we show how these observations have augmented our knowledge of the polar middle atmosphere, in particular how information on ozone and tracers has augmented our knowledge of: (i) the spatial and temporal characteristics of the wintertime polar stratosphere and the summertime circulation; and (ii) the roles of chemistry and transport in determining the stratospheric ozone distribution. We address the increasing joint use of observations and models, in particular in data assimilation, in contributing to this understanding. Finally, we outline requirements to allow continuation of the wealth of information on the polar middle atmosphere provided by research satellites over the last 30 years.(Author)

  14. Mechanisms and Feedbacks Causing Changes in Upper Stratospheric Ozone in the 21st Century

    Science.gov (United States)

    Oman, Luke; Waugh, D. W.; Kawa, S. R.; Stolarski, R. S.; Douglass, A. R.; Newman, P. A.

    2009-01-01

    Stratospheric ozone is expected to increase during the 21st century as the abundance of halogenated ozone-depleting substances decrease to 1960 values. However, climate change will likely alter this "recovery" of stratospheric ozone by changing stratospheric temperatures, circulation, and abundance of reactive chemical species. Here we quantity the contribution of different mechanisms to changes in upper stratospheric ozone from 1960 to 2100 in the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM), using multiple linear regression analysis applied to simulations using either Alb or A2 greenhouse gas (GHG) scenarios. In both these scenarios upper stratospheric ozone has a secular increase over the 21st century. For the simulation using the Alb GHG scenario, this increase is determined by the decrease in halogen amounts and the greenhouse gas induced cooling, with roughly equal contributions from each mechanism. There is a larger cooling in the simulation using the A2 GHG scenario, but also enhanced loss from higher NOy and HOx concentrations, which nearly offsets the increase due to cooler temperatures. The resulting ozone evolutions are similar in the A2 and Alb simulations. The response of ozone due to feedbacks from temperature and HOx changes, related to changing halogen concentrations, are also quantified using simulations with fixed halogen concentrations.

  15. Stratospheric Ozone destruction by the Bronze-Age Minoan eruption (Santorini Volcano, Greece).

    Science.gov (United States)

    Cadoux, Anita; Scaillet, Bruno; Bekki, Slimane; Oppenheimer, Clive; Druitt, Timothy H

    2015-07-24

    The role of volcanogenic halogen-bearing (i.e. chlorine and bromine) compounds in stratospheric ozone chemistry and climate forcing is poorly constrained. While the 1991 eruption of Pinatubo resulted in stratospheric ozone loss, it was due to heterogeneous chemistry on volcanic sulfate aerosols involving chlorine of anthropogenic rather than volcanogenic origin, since co-erupted chlorine was scavenged within the plume. Therefore, it is not known what effect volcanism had on ozone in pre-industrial times, nor what will be its role on future atmospheres with reduced anthropogenic halogens present. By combining petrologic constraints on eruption volatile yields with a global atmospheric chemistry-transport model, we show here that the Bronze-Age 'Minoan' eruption of Santorini Volcano released far more halogens than sulfur and that, even if only 2% of these halogens reached the stratosphere, it would have resulted in strong global ozone depletion. The model predicts reductions in ozone columns of 20 to >90% at Northern high latitudes and an ozone recovery taking up to a decade. Our findings emphasise the significance of volcanic halogens for stratosphere chemistry and suggest that modelling of past and future volcanic impacts on Earth's ozone, climate and ecosystems should systematically consider volcanic halogen emissions in addition to sulfur emissions.

  16. Polarization Bremsstrahlung

    CERN Document Server

    Korol, Andrey V

    2014-01-01

    This book introduces and reviews both theory and applications of polarizational bremsstrahlung, i.e. the electromagnetic radiation emitted during collisions of charged particles with structured, thus polarizable targets, such as atoms, molecules and clusters.   The subject, following the first experimental evidence a few decades ago, has gained importance through a number of modern applications.  Thus, the study of several radiative mechanisms is expected to lead to the design of novel light sources, operating in various parts of the electromagnetic spectrum. Conversely, the analysis of the spectral and angular distribution of the photon emission constitutes a new tool for extracting information on the interaction of the colliding particles, and on their internal structure and dynamical properties.   Last but not least, accurate quantitative descriptions of the photon emission processes determine the radiative energy losses of particles in various media, thereby providing essential  information required f...

  17. NODA for EPA's Updated Ozone Transport Modeling

    Science.gov (United States)

    Find EPA's NODA for the Updated Ozone Transport Modeling Data for the 2008 Ozone National Ambient Air Quality Standard (NAAQS) along with the ExitExtension of Public Comment Period on CSAPR for the 2008 NAAQS.

  18. Empirical ozone isopleths as a tool to identify ozone production regimes

    Science.gov (United States)

    Thielmann, Axel; Prévôt, André S. H.; Grüebler, Franca C.; Staehelin, Johannes

    Ozone isopleths plotted with measured values of ozone, hydrocarbons and total reactive nitrogen (NOy) are proposed to visualize ozone production regimes at distinct locations. The applicability of the concept is confirmed with measurements at two distinct sites in the Italian Po Basin. Empirical ozone isopleths at the urban site clearly show ROG-sensitive ozone production, with ozone increasing with increasing ROG concentrations and decreasing with increasing ambient levels of NOx. At the rural site NOx-sensitive ozone production prevails, in accordance with previous results.

  19. Chemical and Dynamical Impacts of Stratospheric Sudden Warmings on Arctic Ozone Variability

    Science.gov (United States)

    Strahan, S. E.; Douglass, A. R.; Steenrod, S. D.

    2016-01-01

    We use the Global Modeling Initiative (GMI) chemistry and transport model with Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields to quantify heterogeneous chemical ozone loss in Arctic winters 2005-2015. Comparisons to Aura Microwave Limb Sounder N2O and O3 observations show the GMI simulation credibly represents the transport processes and net heterogeneous chemical loss necessary to simulate Arctic ozone. We find that the maximum seasonal ozone depletion varies linearly with the number of cold days and with wave driving (eddy heat flux) calculated from MERRA fields. We use this relationship and MERRA temperatures to estimate seasonal ozone loss from 1993 to 2004 when inorganic chlorine levels were in the same range as during the Aura period. Using these loss estimates and the observed March mean 63-90N column O3, we quantify the sensitivity of the ozone dynamical resupply to wave driving, separating it from the sensitivity of ozone depletion to wave driving. The results show that about 2/3 of the deviation of the observed March Arctic O3 from an assumed climatological mean is due to variations in O3 resupply and 13 is due to depletion. Winters with a stratospheric sudden warming (SSW) before mid-February have about 1/3 the depletion of winters without one and export less depletion to the midlatitudes. However, a larger effect on the spring midlatitude ozone comes from dynamical differences between warm and cold Arctic winters, which can mask or add to the impact of exported depletion.

  20. Ozone ensemble forecast with machine learning algorithms

    OpenAIRE

    Mallet , Vivien; Stoltz , Gilles; Mauricette , Boris

    2009-01-01

    International audience; We apply machine learning algorithms to perform sequential aggregation of ozone forecasts. The latter rely on a multimodel ensemble built for ozone forecasting with the modeling system Polyphemus. The ensemble simulations are obtained by changes in the physical parameterizations, the numerical schemes, and the input data to the models. The simulations are carried out for summer 2001 over western Europe in order to forecast ozone daily peaks and ozone hourly concentrati...

  1. Oxidation of variable valence cations by ozone

    International Nuclear Information System (INIS)

    Nikitina, G.P.; Ivanov, Yu.E.; Shumkov, V.G.; Egorova, V.P.

    1975-01-01

    This paper deals with some aspects concerning the behavior of ozone in nitric acid solutions. The distribution of ozone between aqueous solutions and gaseous phase and the kinetics of ozone degradation in these solutions are studied. The mechanisms of this degradation are discussed. Ozone interaction with ions of Np(4), Pu(4) and some other metals is considered. Stoichiometric coefficients, rate constants and thermodynamic factors of the activation of these reactions are determined. The probable mechanisms of these reactions have been proposed

  2. 21 CFR 184.1563 - Ozone.

    Science.gov (United States)

    2010-04-01

    ...: Category of food Maximum treatment level in food Functional use Bottled water that prior to ozonation meets... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ozone. 184.1563 Section 184.1563 Food and Drugs... Substances Affirmed as GRAS § 184.1563 Ozone. (a) Ozone (O3, CAS Reg. No. 10028-15-6) is an unstable blue gas...

  3. Kinetic Studies of Catalytic Ozonation of Atrazine

    OpenAIRE

    Tepuš, Brigita; Simonič, Marjana

    2008-01-01

    The aim of our work was to degrade atrazine by the ozone treatment of both a model and the original drinking water samples, using Pt-catalyst, and to evaluate the performance of this catalyst. The rate constant for the reaction of atrazine with ozone was determined in the model water sample. The activation energies and the reaction orders of ozone decomposition were determined in both the model and the drinking water samples. Ozone treatment using Pt-catalyst has some influence...

  4. Radiative effects of ozone on the climate of a Snowball Earth

    Directory of Open Access Journals (Sweden)

    J. Yang

    2012-12-01

    Full Text Available Some geochemical and geological evidence has been interpreted to suggest that the concentration of atmospheric oxygen was only 1–10 % of the present level in the time interval from 750 to 580 million years ago when several nearly global glaciations or Snowball Earth events occurred. This low concentration of oxygen would have been accompanied by a lower ozone concentration than exists at present. Since ozone is a greenhouse gas, this change in ozone concentration would alter surface temperature, and thereby could have an important influence on the climate of the Snowball Earth. Previous works that have focused either on initiation or deglaciation of the proposed Snowball Earth has not taken the radiative effects of ozone changes into account. We address this issue herein by performing a series of simulations using an atmospheric general circulation model with various ozone concentrations.

    Our simulation results demonstrate that, as ozone concentration is uniformly reduced from 100 % to 50 %, surface temperature decreases by approximately 0.8 K at the Equator, with the largest decreases located in the middle latitudes reaching as high as 2.5 K. When ozone concentration is reduced and its vertical and horizontal distribution is simultaneously modulated, surface temperature decreases by 0.4–1.0 K at the Equator and by 4–7 K in polar regions. These results here have uncertainties, depending on model parameterizations of cloud, surface snow albedo, and relevant feedback processes, while they are qualitatively consistent with radiative-convective model results that do not involve such parameterizations and feedbacks. These results suggest that ozone variations could have had a moderate impact on the climate during the Neoproterozoic glaciations.

  5. Plant Species Sensitivity Distributions for ozone exposure

    International Nuclear Information System (INIS)

    Goethem, T.M.W.J. van; Azevedo, L.B.; Zelm, R. van; Hayes, F.; Ashmore, M.R.; Huijbregts, M.A.J.

    2013-01-01

    This study derived Species Sensitivity Distributions (SSD), representing a cumulative stressor-response distribution based on single-species sensitivity data, for ozone exposure on natural vegetation. SSDs were constructed for three species groups, i.e. trees, annual grassland and perennial grassland species, using species-specific exposure–response data. The SSDs were applied in two ways. First, critical levels were calculated for each species group and compared to current critical levels for ozone exposure. Second, spatially explicit estimates of the potentially affected fraction of plant species in Northwestern Europe were calculated, based on ambient ozone concentrations. We found that the SSD-based critical levels were lower than for the current critical levels for ozone exposure, with conventional critical levels for ozone relating to 8–20% affected plant species. Our study shows that the SSD concept can be successfully applied to both derive critical ozone levels and estimate the potentially affected species fraction of plant communities along specific ozone gradients. -- Highlights: ► Plant Species Sensitivity Distributions were derived for ozone exposure. ► Annual grassland species, as a species assemblage, tend to be most sensitive to ozone. ► Conventional critical levels for ozone relate to 8–20% affected plant species. ► The affected fraction of plant species for current ozone exposure in Northwestern Europe is estimated. -- Species Sensitivity Distributions offer opportunities in ozone risk assessment to both derive critical levels and estimate the affected fraction of a plant community

  6. Tracking Continental Scale Background Ozone with CMAQ

    Science.gov (United States)

    As the National Ambient Air Quality Standards (NAAQS) for ozone become more stringent, there has been growing attention on characterizing the contributions and the uncertainties in ozone from outside the US to the ozone concentrations within the US. Modeling techniques readily av...

  7. Ozone, Climate, and Global Atmospheric Change.

    Science.gov (United States)

    Levine, Joel S.

    1992-01-01

    Presents an overview of global atmospheric problems relating to ozone depletion and global warming. Provides background information on the composition of the earth's atmosphere and origin of atmospheric ozone. Describes causes, effects, and evidence of ozone depletion and the greenhouse effect. A vignette provides a summary of a 1991 assessment of…

  8. Generation and delivery device for ozone gas

    Science.gov (United States)

    Andrews, Craig C. (Inventor); Murphy, Oliver J. (Inventor)

    2002-01-01

    The present invention provides an ozone generation and delivery system that lends itself to small scale applications and requires very low maintenance. The system preferably includes an anode reservoir and a cathode phase separator each having a hydrophobic membrane to allow phase separation of produced gases from water. The hydrogen gas, ozone gas and water containing ozone may be delivered under pressure.

  9. Tropospheric Ozone and Photochemical Smog

    Science.gov (United States)

    Sillman, S.

    2003-12-01

    The question of air quality in polluted regions represents one of the issues of geochemistry with direct implications for human well-being. Human health and well-being, along with the well-being of plants, animals, and agricultural crops, are dependent on the quality of air we breathe. Since the start of the industrial era, air quality has become a matter of major importance, especially in large cities or urbanized regions with heavy automobile traffic and industrial activity.Concern over air quality existed as far back as the 1600s. Originally, polluted air in cities resulted from the burning of wood or coal, largely as a source of heat. The industrial revolution in England saw a great increase in the use of coal in rapidly growing cities, both for industrial use and domestic heating. London suffered from devastating pollution events during the late 1800s and early 1900s, with thousands of excess deaths attributed to air pollution (Brimblecombe, 1987). With increasing use of coal, other instances also occurred in continental Europe and the USA. These events were caused by directly emitted pollutants (primary pollutants), including sulfur dioxide (SO2), carbon monoxide (CO), and particulates. They were especially acute in cities with northerly locations during fall and winter when sunlight is at a minimum. These original pollution events gave rise to the term "smog" (a combination of smoke and fog). Events of this type have become much less severe since the 1950s in Western Europe and the US, as natural gas replaced coal as the primary source of home heating, industrial smokestacks were designed to emit at higher altitudes (where dispersion is more rapid), and industries were required to install pollution control equipment.Beginning in the 1950s, a new type of pollution, photochemical smog, became a major concern. Photochemical smog consists of ozone (O3) and other closely related species ("secondary pollutants") that are produced photochemically from directly

  10. Overview for the reanalysis of Mariner 9 UV spectrometer data for ozone, cloud, and dust abundances, and their interaction over climate timescales

    Science.gov (United States)

    Lindner, Bernhard Lee

    1992-01-01

    Mariner 9 UV spectrometer data were reinverted for the ozone abundance, cloud abundance, dust abundance, and polar-cap albedo. The original reduction of the spectra ignored the presence of atmospheric dust and clouds, even though their abundance is substantial and can mask appreciable amounts of ozone if not accounted for (Lindner, 1988). The Mariner 9 ozone data has been used as a benchmark in all theoretical models of atmospheric composition, escape, and photochemistry. A second objective is to examine the data for the interrelationship of the ozone cycle, dust cycle, and cloud cycle, on an annual, inter-annual, and climatic basis, testing predictions by Lindner (1988). This also has implications for many terrestrial ozone studies, such as the ozone hole, acid rain, and ozone-smog. A third objective is to evaluate the efficacy of the reflectance spectroscopy technique at retrieving the ozone abundance on Mars. This would be useful for planning ozone observations on future Mars missions or the terrestrial troposphere.

  11. Seasonal development of ozone-induced foliar injury on tall milkweed (Asclepias exaltata) in Great Smoky Mountains National Park.

    Science.gov (United States)

    Souza, Lara; Neufeld, Howard S; Chappelka, Arthur H; Burkey, Kent O; Davison, Alan W

    2006-05-01

    The goals of this study were to document the development of ozone-induced foliar injury, on a leaf-by-leaf basis, and to develop ozone exposure relationships for leaf cohorts and individual tall milkweeds (Asclepias exaltata L.) in Great Smoky Mountains National Park. Plants were classified as either ozone-sensitive or insensitive based on the amount of foliar injury. Sensitive plants developed injury earlier in the season and to a greater extent than insensitive plants. Older leaf cohorts were more likely to belong to high injury classes by the end of each of the two growing seasons. In addition, leaf loss was more likely for older cohorts (2000) and lower leaf positions (2001) than younger cohorts and upper leaves, respectively. Most leaves abscised without prior ozone-like stippling or chlorosis. Failure to take this into account can result in underestimation of the effects of ozone on these plants.

  12. The exhibition to ozone diminishes the adherence and increases the membrane permeability of macrophages alveolar of rate

    International Nuclear Information System (INIS)

    Garcia, J.

    2000-01-01

    Ozone gas is generated photochemically in areas with high levels of automotive or industrial emissions, and causes irritation and inflammation of the airways if inhaled. Rat alveolar macrophages were obtained by lung lavage from male Sprague Dawley rats and used as a model to assess ozone induced cell damage (0,594 ppm for up to 60 minutes). Ozone exposure caused loss of cell adherence to a polystyrene substrate and increased membrane permeability, as noted by increases in specific 51 Cr release and citoplasmic calcium levels. The results indicate that the cell membrane is a target for ozone damage. Elevations of cytoplasmic calcium could mediate other macrophage responses to ozone , including eicosanoid and nitric oxide production, with concomitant decreases in phagocytic ability and superoxide production. (Author) [es

  13. Global distribution of total ozone and lower stratospheric temperature variations

    Directory of Open Access Journals (Sweden)

    W. Steinbrecht

    2003-01-01

    Full Text Available This study gives an overview of interannual variations of total ozone and 50 hPa temperature. It is based on newer and longer records from the 1979 to 2001 Total Ozone Monitoring Spectrometer (TOMS and Solar Backscatter Ultraviolet (SBUV instruments, and on US National Center for Environmental Prediction (NCEP reanalyses. Multiple linear least squares regression is used to attribute variations to various natural and anthropogenic explanatory variables. Usually, maps of total ozone and 50 hPa temperature variations look very similar, reflecting a very close coupling between the two. As a rule of thumb, a 10 Dobson Unit (DU change in total ozone corresponds to a 1 K change of 50 hPa temperature. Large variations come from the linear trend term, up to -30 DU or -1.5 K/decade, from terms related to polar vortex strength, up to 50 DU or 5 K (typical, minimum to maximum, from tropospheric meteorology, up to 30 DU or 3 K, or from the Quasi-Biennial Oscillation (QBO, up to 25 DU or 2.5 K. The 11-year solar cycle, up to 25 DU or 2.5 K, or El Niño/Southern Oscillation (ENSO, up to 10 DU or 1 K, are contributing smaller variations. Stratospheric aerosol after the 1991 Pinatubo eruption lead to warming up to 3 K at low latitudes and to ozone depletion up to 40 DU at high latitudes. Variations attributed to QBO, polar vortex strength, and to a lesser degree to ENSO, exhibit an inverse correlation between low latitudes and higher latitudes. Variations related to the solar cycle or 400 hPa temperature, however, have the same sign over most of the globe. Variations are usually zonally symmetric at low and mid-latitudes, but asymmetric at high latitudes. There, position and strength of the stratospheric anti-cyclones over the Aleutians and south of Australia appear to vary with the phases of solar cycle, QBO or ENSO.

  14. The contribution of anthropogenic bromine emissions to past stratospheric ozone trends: a modelling study

    Directory of Open Access Journals (Sweden)

    B.-M. Sinnhuber

    2009-04-01

    Full Text Available Bromine compounds play an important role in the depletion of stratospheric ozone. We have calculated the changes in stratospheric ozone in response to changes in the halogen loading over the past decades, using a two-dimensional (latitude/height model constrained by source gas mixing ratios at the surface. Model calculations of the decrease of total column ozone since 1980 agree reasonably well with observed ozone trends, in particular when the contribution from very short-lived bromine compounds is included. Model calculations with bromine source gas mixing ratios fixed at 1959 levels, corresponding approximately to a situation with no anthropogenic bromine emissions, show an ozone column reduction between 1980 and 2005 at Northern Hemisphere mid-latitudes of only ≈55% compared to a model run including all halogen source gases. In this sense anthropogenic bromine emissions are responsible for ≈45% of the model estimated column ozone loss at Northern Hemisphere mid-latitudes. However, since a large fraction of the bromine induced ozone loss is due to the combined BrO/ClO catalytic cycle, the effect of bromine would have been smaller in the absence of anthropogenic chlorine emissions. The chemical efficiency of bromine relative to chlorine for global total ozone depletion from our model calculations, expressed by the so called α-factor, is 64 on an annual average. This value is much higher than previously published results. Updates in reaction rate constants can explain only part of the differences in α. The inclusion of bromine from very short-lived source gases has only a minor effect on the global mean α-factor.

  15. Effects and mechanism on Kapton film under ozone exposure in a ground near space simulator

    Science.gov (United States)

    Wei, Qiang; Yang, Guimin; Liu, Gang; Jiang, Haifu; Zhang, Tingting

    2018-05-01

    The effect on aircraft materials in the near space environment is a key part of air-and-space integration research. Ozone and aerodynamic fluids are important organizational factors in the near space environment and both have significant influences on the performance of aircraft materials. In the present paper a simulated ozone environment was used to test polyimide material that was rotated at the approximate velocity of 150-250 m/s to form an aerodynamic fluid field. The goal was to evaluate the performance evolution of materials under a comprehensive environment of ozone molecular corrosion and aerodynamic fluids. The research results show that corrosion and sputtering by ozone molecules results in Kapton films exhibiting a rugged "carpet-like" morphology exhibits an increase in surface roughness. The morphology after ozone exposure led to higher surface roughness and an increase in surface optical diffuse reflection, which is expressed by the lower optical transmittance and the gradual transition from light orange to brown. The mass loss test, XPS, and FTIR analysis show that the molecular chains on the surface of the Kapton film are destroyed resulting in Csbnd C bond breaking to form small volatile molecules such as CO2 or CO, which are responsible for a linear increase in mass loss per unit area. The Csbnd N and Csbnd O structures exhibit weakening tendency under ozone exposure. The present paper explores the evaluation method for Kapton's adaptability under the ozone exposure test in the near space environment, and elucidates the corrosion mechanism and damage mode of the polyimide material under the combined action of ozone corrosion and the aerodynamic fluid. This work provides a methodology for studying materials in the near-space environment.

  16. Assessment of the economic impact of ozone on the agricultural sector in Ontario, Canada

    International Nuclear Information System (INIS)

    Jallala, A.M.

    1990-05-01

    Ozone is the most damaging secondary pollutant to agricultural production, according to the literature. It is estimated that 90% of crop losses due to air pollution are caused by ozone. The economic impact of ozone on 20 agricultural commodities in Ontario is assessed in two steps. In the first, ozone contour maps are generated for the province. The results suggest an average ozone concentration of 40 ppB, higher than the natural background of 20 ppB. The second step measures the change in consumer and producer surplus that results from reductions in ozone levels in Ontario from 40 ppB to 20 ppB. Consumer plus producer surpluses correspond to the area below the demand curve and above the supply curve to the left of their intersection. A nonlinear programming model that maximizes consumer and producer surpluses, subject to a set of constraints, was run twice. The first run incorporates realized yields and production costs, and the second incorporates biological yield changes owing to ozone and the associated changes in production costs. The difference in value of the objective functions between the two runs shows the net benefits of reduced ozone levels. Results indicate an average net benefit of $64.3 million/y or 5.8% of the total value of all the crops considered. Average annual consumer benefits are $44.1 million and producer benefits $20.2 million. Not all producers benefit from ozone reductions; producers of fresh vegetables lose while producers of grain corn, soybeans, and winter wheat gain. 54 refs., 6 figs., 15 tabs

  17. Slow electrons kill the ozone

    International Nuclear Information System (INIS)

    Maerk, T.

    2001-01-01

    A new method and apparatus (Trochoidal electron monochromator) to study the interactions of electrons with atoms, molecules and clusters was developed. Two applications are briefly reported: a) the ozone destruction in the atmosphere is caused by different reasons, a new mechanism is proposed, that slow thermal electrons are self added to the ozone molecule (O 3 ) with a high frequency, then O 3 is destroyed ( O 3 + e - → O - + O 2 ); b) another application is the study of the binding energy of the football molecule C60. (nevyjel)

  18. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  19. OZONE CONCENTRATION ATTRIBUTABLE PREMATURE DEATH IN POLAND

    Directory of Open Access Journals (Sweden)

    Krzysztof Skotak

    2010-03-01

    Full Text Available Ozone in the lower part of the atmosphere (troposphere, strong photochemical oxidant, is not directly emitted to the atmosphere but formed through a series of complex reactions. Ozone concentrations depends on ozone precursors air contamination (mainly nitrogen dioxide and non-methane volatile organic compounds and meteorological conditions (temperature and solar radiation. The main sectors emitted ozone precursors are road transport, power and heat generation plants, household (heating, industry, and petrol storage and distribution. Ozone and some of its precursors are also transported long distances in the atmosphere and are therefore considered a transboundary problem. As a result, the ozone concentrations are often low in busy urban areas and higher in suburban and rural areas. Nowadays, instead of particulate matter, ozone is one of the most widespread global air pollution problems. In and around urban areas, relatively large gradients of ozone can be observed. Because of its high reactivity in elevated concentrations ozone causes serious health problems and damage to ecosystems, agricultural crops and materials. Main ill-health endpoints as a results of ozone concentrations can be characterised as an effect of pulmonary and cardiovascular system, time morbidity and mortality series, development of atherosclerosis and asthma and finally reduction in life expectancy. The associations with increased daily mortality due to ozone concentrations are confirmed by many researches and epidemiological studies. Estimation of the level selected ill-health endpoints (mortality in total and due to cardiovascular and respiratory causes as a result of the short-term ozone exposure in Poland was the main aim of the project. Final results have been done based on estimation method elaborated by WHO, ozone measurements from National Air Quality Monitoring System and statistical information such as mortality rate and populations. All analysis have been done in

  20. Dynamic nuclear polarization of irradiated target materials

    International Nuclear Information System (INIS)

    Seely, M.L.

    1982-01-01

    Polarized nucleon targets used in high energy physics experiments usually employ the method of dynamic nuclear polarization (DNP) to polarize the protons or deuterons in an alcohol. DNP requires the presence of paramagnetic centers, which are customarily provided by a chemical dopant. These chemically doped targets have a relatively low polarizable nucleon content and suffer from loss of polarization when subjected to high doses of ionizing radiation. If the paramagnetic centers formed when the target is irradiated can be used in the DNP process, it becomes possible to produce targets using materials which have a relatively high polarizable nucleon content, but which are not easily doped by chemical means. Furthermore, the polarization of such targets may be much more radiation resistant. Dynamic nuclear polarization in ammonia, deuterated ammonia, ammonium hydroxide, methylamine, borane ammonia, butonal, ethane and lithium borohydride has been studied. These studies were conducted at the Stanford Linear Accelerator Center using the Yale-SLAC polarized target system. Results indicate that the use of ammonia and deuterated ammonia as polarized target materials would make significant increases in polarized target performance possible

  1. Ozone Control Strategies | Ground-level Ozone | New ...

    Science.gov (United States)

    2017-09-05

    The Air Quality Planning Unit's primary goal is to protect your right to breathe clean air. Guided by the Clean Air Act, we work collaboratively with states, communities, and businesses to develop and implement strategies to reduce air pollution from a variety of sources that contribute to the ground-level ozone or smog problem.

  2. Diagnosis of Photochemical Ozone Production Rates and Limiting Factors based on Observation-based Modeling Approach over East Asia: Impact of Radical Chemistry Mechanism and Ozone-Control Implications

    Science.gov (United States)

    Kanaya, Y.

    2015-12-01

    Growth of tropospheric ozone, causing health and climate impacts, is concerned over East Asia, because emissions of precursors have dramatically increased. Photochemical production rates of ozone and limiting factors, primarily studied for urban locations, have been poorly assessed within a perspective of regional-scale air pollution over East Asia. We performed comprehensive observations of ozone precursors at several locations with regional representativeness and made such assessment based on the observation-based modeling approach. Here, diagnosis at Fukue Island (32.75°N, 128.68°E) remotely located in western Japan (May 2009) is highlighted, where the highest 10% of hourly ozone concentrations reached 72‒118 ppb during May influenced by Asian continental outflow. The average in-situ ozone production rate was estimated to be 6.8 ppb per day, suggesting that in-travel production was still active, while larger buildup must have occurred beforehand. Information on the chemical status of the air mass arriving in Japan is important, because it affects how further ozone production occurs after precursor addition from Japanese domestic emissions. The main limiting factor of ozone production was usually NOx, suggesting that domestic NOx emission control is important in reducing further ozone production and the incidence of warning issuance (>120 ppb). VOCs also increased the ozone production rate, and occasionally (14% of time) became dominant. This analysis implies that the VOC reduction legislation recently enacted should be effective. The uncertainty in the radical chemistry mechanism governing ozone production had a non-negligible impact, but the main conclusion relevant to policy was not altered. When chain termination was augmented by HO2-H2O + NO/NO2 reactions and by heterogeneous loss of HO2 on aerosol particle surfaces, the daily ozone production rate decreased by <24%, and the fraction of hours when the VOC-limited condition occurred varied from 14% to 13

  3. Ozone air pollution effects on tree-ring growth,{delta}{sup 13}C, visible foliar injury and leaf gas exchange in three ozone-sensitive woody plant species

    Energy Technology Data Exchange (ETDEWEB)

    Novak, K. [Swiss Federal Inst. for Forest, Snow and Landscape Research, Birmensdorf (Switzerland); Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, Zurich (Switzerland); Saurer, M. [Paul Scherrer Inst. Villigen (Switzerland); Fuhrer, J. [Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, Zurich (Switzerland); Skelly, J.M. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Plant Pathology; Krauchi, N.; Schaub, M. [Swiss Federal Inst. for Forest, Snow and Landscape Research, Birmensdorf (Switzerland)

    2007-07-15

    Species specific plant responses to tropospheric ozone pollution depend on a range of morphological, biochemical and physiological characteristics as well as environmental factors. The effects of ambient tropospheric ozone on annual tree-ring growth, {delta}{sup 13} C in the rings, leaf gas exchange and ozone-induced visible foliar injury in three ozone-sensitive woody plant species in southern Switzerland were assessed during the 2001 and 2002 growing seasons. Seedlings of Populus nigra L., Viburnum lantana L. and Fraxinus excelsior L. were exposed to charcoal-filtered air and non-filtered air in open-top chambers, and to ambient air (AA) in open plots. The objective was to determine if a relationship exists between measurable ozone-induced effects at the leaf level and subsequent changes in annual tree-ring growth and {delta} {sup 13} C signatures. The visible foliar injury, early leaf senescence and premature leaf loss in all species was attributed to the ambient ozone exposures in the region. Ozone had pronounced negative effects on net photosynthesis and stomatal conductance in all species in 2002 and in V. lantana and F. excelsior in 2001. Water-use efficiency decreased and intercellular carbon dioxide concentrations increased in all species in response to ozone in 2002 only. The width and {delta}{sup 13} C of the 2001 and 2002 growth rings were measured for all species at the end of the 2002 growing season. Significant ozone-induced effects at the leaf level did not correspond to reduced tree-ring growth or increased {delta}{sup 13} C in all species, suggesting that the timing of ozone exposure and extent of leaf-level responses may be relevant in determining the sensitivity of tree productivity to ozone exposure. 48 refs., 4 tabs., 2 figs.

  4. Bending loss of terahertz pipe waveguides.

    Science.gov (United States)

    Lu, Jen-Tang; Hsueh, Yu-Chun; Huang, Yu-Ru; Hwang, Yuh-Jing; Sun, Chi-Kuang

    2010-12-06

    We present an experimental study on the bending loss of terahertz (THz) pipe waveguide. Bending loss of pipe waveguides is investigated for various frequencies, polarizations, core diameters, cladding thicknesses, and cladding materials. Our results indicate that the pipe waveguides with lower guiding loss suffer lower bending loss due to stronger mode confinement. The unexpected low bending loss in the investigated simple leaky waveguide structure promises variety of flexible applications.

  5. Experimental and theoretical investigation of stratospheric ozone depletion in the northern hemisphere caused by heterogeneous chemistry

    Science.gov (United States)

    Storvold, Rune

    University of Oslo SCTM-1 model. They were selected because the SLIMCAT is designed for process studies and comparison with measured data while the SCTM-1 is designed for prognostic and sensitivity studies aimed at predicting future development of the stratospheric ozone layer. We have used the models to study the sensitivity of the heterogeneous chemistry to stratospheric meteorological conditions and the effect of sulfuric acid aerosols and polar stratospheric clouds on the stratospheric ozone abundance and ozone chemistry at high- and mid-latitudes in the Northern Hemisphere.

  6. Whole-tree water use efficiency is decreased by ambient ozone and not affected by O3-induced stomatal sluggishness.

    Directory of Open Access Journals (Sweden)

    Yasutomo Hoshika

    Full Text Available Steady-state and dynamic gas exchange responses to ozone visible injury were investigated in an ozone-sensitive poplar clone under field conditions. The results were translated into whole tree water loss and carbon assimilation by comparing trees exposed to ambient ozone and trees treated with the ozone-protectant ethylenediurea (EDU. Steady-state stomatal conductance and photosynthesis linearly decreased with increasing ozone visible injury. Dynamic responses simulated by severing of a leaf revealed that stomatal sluggishness increased until a threshold of 5% injury and was then fairly constant. Sluggishness resulted from longer time to respond to the closing signal and slower rate of closing. Changes in photosynthesis were driven by the dynamics of stomata. Whole-tree carbon assimilation and water loss were lower in trees exposed to ambient O(3 than in trees protected by EDU, both under steady-state and dynamic conditions. Although stomatal sluggishness is expected to increase water loss, lower stomatal conductance and premature leaf shedding of injured leaves aggravated O(3 effects on whole tree carbon gain, while compensating for water loss. On average, WUE of trees exposed to ambient ozone was 2-4% lower than that of EDU-protected control trees in September and 6-8% lower in October.

  7. Applications of ozone therapy in dentistry

    Directory of Open Access Journals (Sweden)

    Shiva Gupta

    2016-01-01

    Full Text Available Ozone is an allotropic form of oxygen, which is effectively used in the treatment of different diseases for more than 100 years. In the present era of increasing antibiotic resistance, ozone therapy is an alternative medical treatment that rationales to increase the amount of oxygen to the body through institution of ozone into the body. Owing to its beneficial biological properties including antimicrobial and immune-stimulating effects, ozone therapy has opened new vistas in treatment modalities of dental pathologies for patients of all ages. The objective of this article is to review the literature available on applications of ozone in dentistry.

  8. Defense meteorological satellite measurements of total ozone

    International Nuclear Information System (INIS)

    Lovill, J.E.; Ellis, J.S.; Luther, F.M.; Sullivan, R.J.; Weichel, R.L.

    1992-01-01

    A multichannel filter radiometer (MFR) on Defense Meteorological Satellites (DMS) that measured total ozone on a global-scale from March 1977 - February 1980 is described. The total ozone data measured by the MFR were compared with total ozone data taken by surfaced-based Dobson spectrophotometers. When comparisons were made for five months, the Dobson spectrophotometer measured 2-5% more total ozone than the MFR. Comparisons between the Dobson spectrophotometer and the MFR showed a reduced RMS difference as the comparisons were made at closer proximity. A Northern Hemisphere total ozone distribution obtained from MFR data is presented

  9. Detecting recovery of the stratospheric ozone layer

    Science.gov (United States)

    Chipperfield, Martyn P.; Bekki, Slimane; Dhomse, Sandip; Harris, Neil R. P.; Hassler, Birgit; Hossaini, Ryan; Steinbrecht, Wolfgang; Thiéblemont, Rémi; Weber, Mark

    2017-09-01

    As a result of the 1987 Montreal Protocol and its amendments, the atmospheric loading of anthropogenic ozone-depleting substances is decreasing. Accordingly, the stratospheric ozone layer is expected to recover. However, short data records and atmospheric variability confound the search for early signs of recovery, and climate change is masking ozone recovery from ozone-depleting substances in some regions and will increasingly affect the extent of recovery. Here we discuss the nature and timescales of ozone recovery, and explore the extent to which it can be currently detected in different atmospheric regions.

  10. Sub-micrometer refractory carbonaceous particles in the polar stratosphere

    Science.gov (United States)

    Schütze, Katharina; Wilson, James Charles; Weinbruch, Stephan; Benker, Nathalie; Ebert, Martin; Günther, Gebhard; Weigel, Ralf; Borrmann, Stephan

    2017-10-01

    Eleven particle samples collected in the polar stratosphere during SOLVE (SAGE III Ozone loss and validation experiment) from January until March 2000 were characterized in detail by high-resolution transmission and scanning electron microscopy (TEM/SEM) combined with energy-dispersive X-ray microanalysis. A total of 4202 particles (TEM = 3872; SEM = 330) were analyzed from these samples, which were collected mostly inside the polar vortex in the altitude range between 17.3 and 19.9 km. Particles that were volatile in the microscope beams contained ammonium sulfates and hydrogen sulfates and dominated the samples. Some particles with diameters ranging from 20 to 830 nm were refractory in the electron beams. Carbonaceous particles containing additional elements to C and O comprised from 72 to 100 % of the refractory particles. The rest were internal mixtures of these materials with sulfates. The median number mixing ratio of the refractory particles, expressed in units of particles per milligram of air, was 1.1 (mg air)-1 and varied between 0.65 and 2.3 (mg air)-1. Most of the refractory carbonaceous particles are completely amorphous, a few of the particles are partly ordered with a graphene sheet separation distance of 0.37 ± 0.06 nm (mean value ± standard deviation). Carbon and oxygen are the only detected major elements with an atomic O/C ratio of 0.11 ± 0.07. Minor elements observed include Si, S, Fe, Cr and Ni with the following atomic ratios relative to C: Si/C: 0.010 ± 0.011; S/C: 0.0007 ± 0.0015; Fe/C: 0.0052 ± 0.0074; Cr/C: 0.0012 ± 0.0017; Ni/C: 0.0006 ± 0.0011 (all mean values ± standard deviation).High-resolution element distribution images reveal that the minor elements are distributed within the carbonaceous matrix; i.e., heterogeneous inclusions are not observed. No difference in size, nanostructure and elemental composition was found between particles collected inside and outside the polar vortex. Based on chemistry and nanostructure

  11. "OZONE SOURCE APPORTIONMENT IN CMAQ' | Science ...

    Science.gov (United States)

    Ozone source attribution has been used to support various policy purposes including interstate transport (Cross State Air Pollution Rule) by U.S. EPA and ozone nonattainment area designations by State agencies. Common scientific applications include tracking intercontinental transport of ozone and ozone precursors and delineating anthropogenic and non-anthropogenic contribution to ozone in North America. As in the public release due in September 2013, CMAQ’s Integrated Source Apportionment Method (ISAM) attributes PM EC/OC, sulfate, nitrate, ammonium, ozone and its precursors NOx and VOC, to sectors/regions of users’ interest. Although the peroxide-to-nitric acid productions ratio has been the most common indicator to distinguish NOx-limited ozone production from VOC-limited one, other indicators are implemented in addition to allowing for an ensemble decision based on a total of 9 available indicator ratios. Moreover, an alternative approach of ozone attribution based on the idea of chemical sensitivity in a linearized system that has formed the basis of chemical treatment in forward DDM/backward adjoint tools has been implemented in CMAQ. This method does not require categorization into either ozone regime. In this study, ISAM will simulate the 2010 North America ozone using all of the above gas-phase attribution methods. The results are to be compared with zero-out difference out of those sectors in the host model runs. In addition, ozone contribution wil

  12. Ozone Reductions Using Residential Building Envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S.; Sherman, Max; Nazaroff, William W.

    2009-02-01

    Ozone is an air pollutant with that can have significant health effects and a significant source of ozone in some regions of California is outdoor air. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone could lead to improved health for many California residents. Ozone is removed from indoor air by surface reactions and can also be filtered by building envelopes. The magnitude of the envelope impact depends on the specific building materials that the air flows over and the geometry of the air flow paths through the envelope that can be changes by mechanical ventilation operation. The 2008 Residential Building Standards in California include minimum requirements for mechanical ventilation by referencing ASHRAE Standard 62.2. This study examines the changes in indoor ozone depending on the mechanical ventilation system selected to meet these requirements. This study used detailed simulations of ventilation in a house to examine the impacts of different ventilation systems on indoor ozone concentrations. The simulation results showed that staying indoors reduces exposure to ozone by 80percent to 90percent, that exhaust ventilation systems lead to lower indoor ozone concentrations, that opening of windows should be avoided at times of high outdoor ozone, and that changing the time at which mechanical ventilation occurs has the ability to halve exposure to ozone. Future work should focus on the products of ozone reactions in the building envelope and the fate of these products with respect to indoor exposures.

  13. Ozone Damages to Mediterranean Crops: Physiological Responses

    Directory of Open Access Journals (Sweden)

    Massimo Fagnano

    2011-02-01

    Full Text Available In this brief review we analyzed some aspects of tropospheric ozone damages to crop plants. Specifically, we addressed this issue to Mediterranean environments, where plant response to multiple stresses may either exacerbate or counteract deleterious ozone effects. After discussing the adequacy of current models to predict ozone damages to Mediterranean crops, we present a few examples of physiological responses to drought and salinity stress that generally overlap with seasonal ozone peaks in Southern Italy. The co-existence of multiple stresses is then analyzed in terms of stomatal vs. non-stomatal control of ozone damages. Recent results on osmoprotectant feeding experiments, as a non-invasive strategy to uncouple stomatal vs. non stomatal contribution to ozone protection, are also presented. In the final section, we discuss critical needs in ozone research and the great potential of plant model systems to unravel multiple stress responses in agricultural crops.

  14. A brief history of stratospheric ozone research

    Directory of Open Access Journals (Sweden)

    Rolf Müller

    2009-03-01

    Full Text Available Ozone is one of the most important trace species in the atmosphere. Therefore, the history of research on ozone has also received a good deal of attention. Here a short overview of ozone research (with a focus on the stratosphere is given, starting from the first atmospheric measurements and ending with current developments. It is valuable to study the history of ozone research, because much can be learned for current research from an understanding of how previous discoveries were made. Moreover, since the 1970s, the history of ozone research has also encompassed also the history of the human impact on the ozone layer and thus the history of policy measures taken to protect the ozone layer, notably the Montreal Protocol and its amendments and adjustments. The history of this development is particularly important because it may serve as a prototype for the development of policy measures for the protection of the Earth's climate.

  15. Ozone: Does It Affect Me?

    Science.gov (United States)

    Wilson, Karla G.

    This curriculum unit on the ozone is intended for high school students and contains sections on environmental science and chemistry. It has been structured according to a learning cycle model and contains numerous activities, some of which are in a cooperative learning format. Skills emphasized include laboratory procedures, experimental design,…

  16. Satellite Ozone Analysis Center (SOAC)

    International Nuclear Information System (INIS)

    Lovill, J.E.; Sullivan, T.J.; Knox, J.B.; Korver, J.A.

    1976-08-01

    Many questions have been raised during the 1970's regarding the possible modification of the ozonosphere by aircraft operating in the stratosphere. Concern also has been expressed over the manner in which the ozonosphere may change in the future as a result of fluorocarbon releases. There are also other ways by which the ozonosphere may be significantly altered, both anthropogenic and natural. Very basic questions have been raised, bearing upon the amount of ozone which would be destroyed by the NO/sub x/ produced in atmospheric nuclear explosions. Studies of the available satellite data have suggested that the worldwide increase of ozone during the past decade, which was observed over land stations, may have been biased by a poor distribution of stations and/or a shift of the planetary wave. Additional satellite data will be required to resolve this issue. Proposals are presented for monitoring of the Earth's ozone variability from the present time into the 1980's to establish a baseline upon which regional, as well as global, ozone trends can be measured

  17. Development of an instrument for direct ozone production rate measurements: measurement reliability and current limitations

    Science.gov (United States)

    Sklaveniti, Sofia; Locoge, Nadine; Stevens, Philip S.; Wood, Ezra; Kundu, Shuvashish; Dusanter, Sébastien

    2018-02-01

    Ground-level ozone (O3) is an important pollutant that affects both global climate change and regional air quality, with the latter linked to detrimental effects on both human health and ecosystems. Ozone is not directly emitted in the atmosphere but is formed from chemical reactions involving volatile organic compounds (VOCs), nitrogen oxides (NOx = NO + NO2) and sunlight. The photochemical nature of ozone makes the implementation of reduction strategies challenging and a good understanding of its formation chemistry is fundamental in order to develop efficient strategies of ozone reduction from mitigation measures of primary VOCs and NOx emissions. An instrument for direct measurements of ozone production rates (OPRs) was developed and deployed in the field as part of the IRRONIC (Indiana Radical, Reactivity and Ozone Production Intercomparison) field campaign. The OPR instrument is based on the principle of the previously published MOPS instrument (Measurement of Ozone Production Sensor) but using a different sampling design made of quartz flow tubes and a different Ox (O3 and NO2) conversion-detection scheme composed of an O3-to-NO2 conversion unit and a cavity attenuated phase shift spectroscopy (CAPS) NO2 monitor. Tests performed in the laboratory and in the field, together with model simulations of the radical chemistry occurring inside the flow tubes, were used to assess (i) the reliability of the measurement principle and (ii) potential biases associated with OPR measurements. This publication reports the first field measurements made using this instrument to illustrate its performance. The results showed that a photo-enhanced loss of ozone inside the sampling flow tubes disturbs the measurements. This issue needs to be solved to be able to perform accurate ambient measurements of ozone production rates with the instrument described in this study. However, an attempt was made to investigate the OPR sensitivity to NOx by adding NO inside the instrument

  18. Ozonation control and effects of ozone on water quality in recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Spiliotopoulou, Aikaterini; Rojas-Tirado, Paula Andrea; Chetri, Ravi K.

    2018-01-01

    To address the undesired effect of chemotherapeutants in aquaculture, ozone has been suggested as an alternative to improve water quality. To ensure safe and robust treatment, it is vital to define the ozone demand and ozone kinetics of the specific water matrix to avoid ozone overdose. Different...... ozone dosages were applied to water in freshwater recirculating aquaculture systems (RAS). Experiments were performed to investigate ozone kinetics and demand, and to evaluate the effects on the water quality, particularly in relation to fluorescent organic matter. This study aimed at predicting...

  19. Spectropolarimetric Measurements of Scattered Sunlight in the Huggins Bands: Retrieval of Tropospheric Ozone Profiles

    Science.gov (United States)

    Fu, D.; Sander, S. P.; Stutz, J.; Pongetti, T. J.; Yung, Y. L.; Wong, M.; Natraj, V.; Li, K.; Shia, R.

    2009-12-01

    Ozone concentrations in the troposphere have increased over the past century as a result of anthropogenic emissions of NOx and volatile organic compounds. In addition to being harmful to human health and plant life, ozone is an important greenhouse gas, especially in the middle and upper troposphere. Therefore, accurate monitoring of tropospheric ozone vertical distributions is crucial for a better understanding of air quality and climate change. Simulations of vector radiative transfer in the near ultraviolet region have shown that tropospheric ozone profiles can be retrieved using polarization measurements. However, to date there has been no experimental test of this method. A new compact, portable spectropolarimeter has been built for atmospheric remote sensing. The first comprehensive description of the configuration and performance of this instrument for ground-based operation is provided and sample atmospheric scattered sunlight spectra are shown. Using optimal estimation retrieval theory we study the information content of polarization spectra in the Huggins band and uncertainties in the retrieval associated with the measurement parameters, such as aerosol scattering.

  20. Influence of an Internally-Generated QBO on Modeled Stratospheric Dynamics and Ozone

    Science.gov (United States)

    Hurwitz, M. M.; Newman, P. A.; Song, I. S.

    2011-01-01

    A GEOS V2 CCM simulation with an internally generated quasi-biennial oscillation (QBO) signal is compared to an otherwise identical simulation without a QBO. In a present-day climate, inclusion of the modeled QBO makes a significant difference to stratospheric dynamics and ozone throughout the year. The QBO enhances variability in the tropics, as expected, but also in the polar stratosphere in some seasons. The modeled QBO also affects the mean stratospheric climate. Because tropical zonal winds in the baseline simulation are generally easterly, there is a relative increase in zonal wind magnitudes in tropical lower and middle stratosphere in the QBO simulation. Extra-tropical differences between the QBO and 'no QBO' simulations thus reflect a bias toward the westerly phase of the QBO: a relative strengthening and poleward shifting the polar stratospheric jets, and a reduction in Arctic lower stratospheric ozone.

  1. Geographical Income Polarization

    DEFF Research Database (Denmark)

    Azhar, Hussain; Jonassen, Anders Bruun

    inter municipal income inequality. Counter factual simulations show that rising property prices to a large part explain the rise in polarization. One side-effect of polarization is tendencies towards a parallel polarization of residence location patterns, where low skilled individuals tend to live......In this paper we estimate the degree, composition and development of geographical income polarization based on data at the individual and municipal level in Denmark from 1984 to 2002. Rising income polarization is reconfirmed when applying new polarization measures, the driving force being greater...

  2. Efficient propagation of TM polarized light in photonic crystal components exhibiting band gaps for TE polarized light

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Thorhauge, Morten

    2003-01-01

    D finite-difference-time-domain method. The simulated spectra are in excellent agreement with the experimental results, which show a propagation loss as low as 2.5±4 dB/mm around 1525 nm and bend losses at 2.9±0.2 dB for TM polarized light. We demonstrate a high coupling for TM polarized light......We have investigated the properties of TM polarized light in planar photonic crystal waveguide structures, which exhibit photonic band gaps for TE polarized light. Straight and bent photonic crystal waveguides and couplers have been fabricated in silicon-on-insulator material and modelled using a 3...

  3. Comparison of Ozone Retrievals from the Pandora Spectrometer System and Dobson Spectrophotometer in Boulder, Colorado

    Science.gov (United States)

    Herman, J.; Evans, R.; Cede, A.; Abuhassan, N.; Petropavlovskikh, I.; McConville, G.

    2015-01-01

    A comparison of retrieved total column ozone (TCO) amounts between the Pandora #34 spectrometer system and the Dobson #061 spectrophotometer from direct-sun observations was performed on the roof of the Boulder, Colorado, NOAA building. This paper, part of an ongoing study, covers a 1-year period starting on 17 December 2013. Both the standard Dobson and Pandora TCO retrievals required a correction, TCO(sub corr) = TCO (1 + C(T)), using a monthly varying effective ozone temperature, T(sub E), derived from a temperature and ozone profile climatology. The correction is used to remove a seasonal difference caused by using a fixed temperature in each retrieval algorithm. The respective corrections C(T(sub E)) are C(sub Pandora) = 0.00333(T(sub E) - 225) and C(sub Dobson) = -0.0013(T(sub E) - 226.7) per degree K. After the applied corrections removed most of the seasonal retrieval dependence on ozone temperature, TCO agreement between the instruments was within 1% for clear-sky conditions. For clear-sky observations, both co-located instruments tracked the day-to-day variation in total column ozone amounts with a correlation of r(exp 2) = 0.97 and an average offset of 1.1 +/- 5.8 DU. In addition, the Pandora TCO data showed 0.3% annual average agreement with satellite overpass data from AURA/OMI (Ozone Monitoring Instrument) and 1% annual average offset with Suomi-NPP/OMPS (Suomi National Polar-orbiting Partnership, the nadir viewing portion of the Ozone Mapper Profiler Suite).

  4. Ozone oxidative post-conditioning reduces oxidative protein damage in patients with disc hernia.

    Science.gov (United States)

    León Fernández, Olga Sonia; Pantoja, Marelis; Díaz Soto, María Teresa; Dranguet, Jaqueline; García Insua, Martina; Viebhan-Hánsler, Renata; Menéndez Cepero, Silvia; Calunga Fernández, José L

    2012-01-01

    Although inflammation in disc hernia (DH) has been recognized and it is a well-known process mediated by loss of the cellular redox balance, only a few studies about the impact of chronic oxidative stress on this neurological disorder have been made. Ozone therapy has been widely used with clinical efficacy in DH. This work aimed at characterizing the systemic redox status of patients with low back pain and neck pain as well as studying if ozone oxidative post-conditioning modified the pathological oxidative stress and protected against oxidative protein damage and if there is any relationship between oxidative changes and pain in both DH. Redox status of 33 patients with diagnosis of DH by computerized axial tomography, nuclear magnetic resonance, and clinical evaluations was studied. Ozone was administered by paravertebral way. After ozone treatment, plasmatic levels of antioxidant/pro-oxidant markers, pain, and life quality disability parameters were evaluated. One hundred percent of patients showed a severe oxidative stress. Major changes in superoxide dismutase activity, total hydroperoxides, advanced oxidation protein products, fructolysine content, and malondialdehyde were observed. After ozone oxidative post-conditioning, there was a re-establishment of patients' cellular redox balance as well as a decrease in pain in both DH. A relationship between indicators of oxidative protein damage and pain was demonstrated. Ozone therapy protected against oxidation of proteins and reduced the pain. Relationship between markers of oxidative protein damage, disability parameters, and pain suggests the role of oxidative stress in the pathological processes involved in DH.

  5. Ozone kinetics in low-pressure discharges

    Science.gov (United States)

    Guerra, Vasco; Marinov, Daniil; Guaitella, Olivier; Rousseau, Antoine

    2012-10-01

    Ozone kinetics is quite well established at atmospheric pressure, due to the importance of ozone in atmospheric chemistry and to the development of industrial ozone reactors. However, as the pressure is decreased and the dominant three-body reactions lose importance, the main mechanisms involved in the creation and destruction of ozone are still surrounded by important uncertainties. In this work we develop a self-consistent model for a pulsed discharge and its afterglow operating in a Pyrex reactor with inner radius 1 cm, at pressures in the range 1-5 Torr and discharge currents of 40-120 mA. The model couples the electron Boltzmann equation with a system of equations for the time evolution of the heavy particles. The calculations are compared with time-dependent measurements of ozone and atomic oxygen. Parametric studies are performed in order to clarify the role of vibrationally excited ozone in the overall kinetics and to establish the conditions where ozone production on the surface may become important. It is shown that vibrationally excited ozone does play a significant role, by increasing the time constants of ozone formation. Moreover, an upper limit for the ozone formation at the wall in these conditions is set at 10(-4).

  6. The natural oscillations in stratospheric ozone observed by the GROMOS microwave radiometer at the NDACC station Bern

    Directory of Open Access Journals (Sweden)

    L. Moreira

    2016-08-01

    Full Text Available A multilinear parametric regression analysis was performed to assess the seasonal and interannual variations of stratospheric ozone profiles from the GROMOS (GROund-based Millimeter-wave Ozone Spectrometer microwave radiometer at Bern, Switzerland (46.95° N, 7.44° E; 577 m. GROMOS takes part in the Network for the Detection of Atmospheric Composition Change (NDACC. The study covers the stratosphere from 50 to 0.5 hPa (from 21 to 53 km and extends over the period from January 1997 to January 2015. The natural variability was fitted during the regression analysis through the annual and semi-annual oscillations (AO, SAO, the quasi-biennial oscillation (QBO, the El Niño–Southern Oscillation (ENSO and the solar activity cycle. Seasonal ozone variations mainly appear as an annual cycle in the middle and upper stratosphere and a semi-annual cycle in the upper stratosphere. Regarding the interannual variations, they are primarily present in the lower and middle stratosphere. In the lower and middle stratosphere, ozone variations are controlled predominantly by transport processes, due to the long lifetime of ozone, whereas in the upper stratosphere its lifetime is relatively short and ozone is controlled mainly by photochemistry. The present study shows agreement in the observed naturally induced ozone signatures with other studies. Further, we present an overview of the possible causes of the effects observed in stratospheric ozone due to natural oscillations at a northern midlatitude station. For instance regarding the SAO, we find that polar winter stratopause warmings contribute to the strength of this oscillation since these temperature enhancements lead to a reduction in upper stratospheric ozone. We have detected a strong peak amplitude of about 5 % for the solar cycle in lower stratospheric ozone for our 1.5 cycles of solar activity. Though the 11-year ozone oscillation above Bern is in phase with the solar cycle, we suppose

  7. The natural oscillations in stratospheric ozone observed by the GROMOS microwave radiometer at the NDACC station Bern

    Science.gov (United States)

    Moreira, Lorena; Hocke, Klemens; Navas-Guzmán, Francisco; Eckert, Ellen; von Clarmann, Thomas; Kämpfer, Niklaus

    2016-08-01

    A multilinear parametric regression analysis was performed to assess the seasonal and interannual variations of stratospheric ozone profiles from the GROMOS (GROund-based Millimeter-wave Ozone Spectrometer) microwave radiometer at Bern, Switzerland (46.95° N, 7.44° E; 577 m). GROMOS takes part in the Network for the Detection of Atmospheric Composition Change (NDACC). The study covers the stratosphere from 50 to 0.5 hPa (from 21 to 53 km) and extends over the period from January 1997 to January 2015. The natural variability was fitted during the regression analysis through the annual and semi-annual oscillations (AO, SAO), the quasi-biennial oscillation (QBO), the El Niño-Southern Oscillation (ENSO) and the solar activity cycle. Seasonal ozone variations mainly appear as an annual cycle in the middle and upper stratosphere and a semi-annual cycle in the upper stratosphere. Regarding the interannual variations, they are primarily present in the lower and middle stratosphere. In the lower and middle stratosphere, ozone variations are controlled predominantly by transport processes, due to the long lifetime of ozone, whereas in the upper stratosphere its lifetime is relatively short and ozone is controlled mainly by photochemistry. The present study shows agreement in the observed naturally induced ozone signatures with other studies. Further, we present an overview of the possible causes of the effects observed in stratospheric ozone due to natural oscillations at a northern midlatitude station. For instance regarding the SAO, we find that polar winter stratopause warmings contribute to the strength of this oscillation since these temperature enhancements lead to a reduction in upper stratospheric ozone. We have detected a strong peak amplitude of about 5 % for the solar cycle in lower stratospheric ozone for our 1.5 cycles of solar activity. Though the 11-year ozone oscillation above Bern is in phase with the solar cycle, we suppose that the strong amplitude is

  8. Polarized Light Corridor Demonstrations.

    Science.gov (United States)

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  9. Stratospheric Ozone Response in Experiments G3 and G4 of the Geoengineering Model Intercomparison Project (GeoMIP)

    Science.gov (United States)

    Pitari, Giovanni; Aquila, Valentina; Kravitz, Ben; Watanabe, Shingo; Tilmes, Simone; Mancini, Eva; DeLuca, Natalia; DiGenova, Glauco

    2013-01-01

    Geoengineering with stratospheric sulfate aerosols has been proposed as a means of temporarily cooling the planet, alleviating some of the side effects of anthropogenic CO2 emissions. However, one of the known side effects of stratospheric injections of sulfate aerosols is a decrease in stratospheric ozone. Here we show results from two general circulation models and two coupled chemistry climate models that have simulated stratospheric sulfate aerosol geoengineering as part of the Geoengineering Model Intercomparison Project (GeoMIP). Changes in photolysis rates and upwelling of ozone-poor air in the tropics reduce stratospheric ozone, suppression of the NOx cycle increases stratospheric ozone, and an increase in available surfaces for heterogeneous chemistry modulates reductions in ozone. On average, the models show a factor 20-40 increase of the sulfate aerosol surface area density (SAD) at 50 hPa in the tropics with respect to unperturbed background conditions and a factor 3-10 increase at mid-high latitudes. The net effect for a tropical injection rate of 5 Tg SO2 per year is a decrease in globally averaged ozone by 1.1-2.1 DU in the years 2040-2050 for three models which include heterogeneous chemistry on the sulfate aerosol surfaces. GISS-E2-R, a fully coupled general circulation model, performed simulations with no heterogeneous chemistry and a smaller aerosol size; it showed a decrease in ozone by 9.7 DU. After the year 2050, suppression of the NOx cycle becomes more important than destruction of ozone by ClOx, causing an increase in total stratospheric ozone. Contribution of ozone changes in this experiment to radiative forcing is 0.23 W m-2 in GISS-E2-R and less than 0.1 W m-2 in the other three models. Polar ozone depletion, due to enhanced formation of both sulfate aerosol SAD and polar stratospheric clouds, results in an average 5 percent increase in calculated surface UV-B.

  10. Observations of depleted ozone within the boundary layer of the western North Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, C.M.; Busness, K.M.; Chapman, E.G. [Pacific Northwest Labs., Richland, WA (United States)] [and others

    1995-06-20

    Ozone measurements taken between 0.90 and 2.5 km above the surface and extending over an 800-km radius from Halifax, Nova Scotia, are presented from aircraft flights between August 21 and September 14, 1992. The mean ozone mixing ratio was found generally to be greater above the top of the mixed layer than near the sea surface. Eleven of the 32 vertical profiles displayed an abrupt transition at the top of the boundary layer, with surface ozone mixing ratios having values of {approx}15-20 ppb and values above the boundary layer increasing to {approx}50-60 ppb. This transition below low and high mixing ratios was observed to occur over a vertical scale of less than 0.5 km in surroundings taken within 4 hours of each other over horizontal distances of the order of several hundred kilometers. There was a well-mixed boundary layer in all cases where these sudden transitions in the ozone profiles were observed. These profiles are associated with subsidence over land, followed by dry deposition within a hydrocarbon-poor, well-mixed continental boundary layer. Ozone loss through surface deposition exceeded ozone production by the time the air masses arrived at the maritime coastal waters. Two other broad categories of profiles are described, the most common having the ozone mixing ratio increasing linearly with height to the top of the sampling domain at 2.5 km. A third category had only a local maximum in ozone with much smaller values higher and lower in the atmosphere. 26 refs., 11 figs., 3 tabs.

  11. The Ozone Budget in the Upper Troposphere from Global Modeling Initiative (GMI)Simulations

    Science.gov (United States)

    Rodriquez, J.; Duncan, Bryan N.; Logan, Jennifer A.

    2006-01-01

    Ozone concentrations in the upper troposphere are influenced by in-situ production, long-range tropospheric transport, and influx of stratospheric ozone, as well as by photochemical removal. Since ozone is an important greenhouse gas in this region, it is particularly important to understand how it will respond to changes in anthropogenic emissions and changes in stratospheric ozone fluxes.. This response will be determined by the relative balance of the different production, loss and transport processes. Ozone concentrations calculated by models will differ depending on the adopted meteorological fields, their chemical scheme, anthropogenic emissions, and treatment of the stratospheric influx. We performed simulations using the chemical-transport model from the Global Modeling Initiative (GMI) with meteorological fields from (It)h e NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), (2) the atmospheric GCM from NASA's Global Modeling and Assimilation Office(GMAO), and (3) assimilated winds from GMAO . These simulations adopt the same chemical mechanism and emissions, and adopt the Synthetic Ozone (SYNOZ) approach for treating the influx of stratospheric ozone -. In addition, we also performed simulations for a coupled troposphere-stratosphere model with a subset of the same winds. Simulations were done for both 4degx5deg and 2degx2.5deg resolution. Model results are being tested through comparison with a suite of atmospheric observations. In this presentation, we diagnose the ozone budget in the upper troposphere utilizing the suite of GMI simulations, to address the sensitivity of this budget to: a) the different meteorological fields used; b) the adoption of the SYNOZ boundary condition versus inclusion of a full stratosphere; c) model horizontal resolution. Model results are compared to observations to determine biases in particular simulations; by examining these comparisons in conjunction with the derived budgets, we may pinpoint

  12. Wide-band Polarization Splitter and Rotator with Large Fabrication Tolerance and Simple Fabrication Process

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Peucheret, Christophe

    2013-01-01

    We demonstrate a polarization splitter and rotator built on the silicon-on-insulator platform. The device shows low insertion loss (0.6 dB), low polarization crosstalk (<-12 dB), wide bandwidth (~100 nm), and large fabrication tolerance (60 nm).......We demonstrate a polarization splitter and rotator built on the silicon-on-insulator platform. The device shows low insertion loss (0.6 dB), low polarization crosstalk (fabrication tolerance (60 nm)....

  13. Global impacts of surface ozone changes on crop yields and land use

    Science.gov (United States)

    Chuwah, Clifford; van Noije, Twan; van Vuuren, Detlef P.; Stehfest, Elke; Hazeleger, Wilco

    2015-04-01

    Exposure to surface ozone has detrimental impacts on vegetation and crop yields. In this study, we estimate ozone impacts on crop production and subsequent impacts on land use in the 2005-2050 period using results of the TM5 atmospheric chemistry and IMAGE integrated assessment model. For the crops represented in IMAGE, we compute relative yield losses based on published exposure-response functions. We examine scenarios with either constant or declining emission factors in a weak climate policy future (radiative forcing target of 6.0 W/m2 at the end of the century), as well as co-benefits of stringent climate policy (targeted at 2.6 W/m2). Without a large decrease in air pollutant emissions, higher ozone concentrations could lead to an increase in crop damage of up to 20% locally in 2050 compared to the situation in which the changes in ozone are not accounted for. This may lead to a 2.5% global increase in crop area, and a regional increase of 8.9% in Asia. Implementation of air pollution policies could limit crop yield losses due to ozone to maximally 10% in 2050 in the most affected regions. Similar effects can be obtained as a result of co-benefits from climate policy (reducing ozone precursor emissions). We also evaluated the impact of the corresponding land-use changes on the carbon cycle. Under the worst-case scenario analysed in this study, future ozone increases are estimated to increase the cumulative net CO2 emissions between 2005 and 2050 by about 3.7 Pg C, which corresponds to about 10% of baseline land use emissions over the same period.

  14. Polarized Moessbauer transitions

    International Nuclear Information System (INIS)

    Barb, D.

    1975-01-01

    Theoretical aspects of the emission, absorption and scattering of polarized gamma rays are reviewed for a general case of combined magnetic and electric hyperfine interactions; various possibilities of obtaining polarized gamma sources are described and examples are given of the applications of Moessbauer spectroscopy with polarized gamma rays in solving problems of solid state physics. (A.K.)

  15. Hair Loss

    Science.gov (United States)

    ... conditions can cause hair loss, including: Hormonal changes. Hormonal changes and imbalances can cause temporary hair loss. This could be due to pregnancy, childbirth or the onset of menopause. Hormone levels are also affected by the thyroid ...

  16. Hair Loss

    Science.gov (United States)

    ... overall hair thinning and not bald patches. Full-body hair loss. Some conditions and medical treatments, such as ... in the loss of hair all over your body. The hair usually grows back. Patches of scaling that spread ...

  17. Comparisons of global ozone trends inferred from the BUV experiment on Nimbus 4 and the ground-based network

    Science.gov (United States)

    Heath, D. F.

    1981-01-01

    Preliminary comparisons between global ozone burdens derived from the backscattered ultraviolet (BUV) experiment on Nimbus 4 and those inferred from an analysis of ground-based network data seem to indicate significant differences in the inter-annual variability of ozone. Some of the observed differences may be due to improper weighting of the ground-based network data, slowly changing planetary wave structure over the fixed station, of small inter-annual changes in meridional transport parameters. There is also some evidence which indicates that the polar stratosphere at high latitudes may represent an important ozone storage resevoir which tends to compensate for large scale changes observed in the regions outside of the polar stratosphere. Possible consequences of this are that the global trends derived from ground based ozone measurements may not be valid and furthermore that the current satellite techniques by themselves may be sufficient. An ozone monitoring system which includes observations from satellites, ground-based stations, balloons and rockets may be necessary.

  18. Budget of ozone and precursors over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Roemer, M.G.M.; Bosman, R.; Thijsse, T.; Builtjes, P.J.H.; Esser, P. [IMW-TNO, Delft (Netherlands); Beck, J.P. [RIVM-LLO, Bilthoven (Netherlands); Vosbeek, M. [KEMA, Arnhem (Netherlands)

    1997-12-31

    A three dimensional model for the European boundary layer (the LOTOS model) was used to calculate the budget of ozone and precursors over Europe. For two summer months (July and August) in 1990 the net chemical production of ozone is about 21 Tg/m. By dry deposition 17 Tg/m is lost and transport accounts for a net export of 4 Tg/m into the free troposphere. Large differences in chemical ozone production occur for different regions in Europe. Though the ozone efficiency in terms of ozone produced per NO{sub x} molecule oxidised is much lower in western Europe than elsewhere in Europe the ozone chemically produced per unit area is the highest in western Europe due to the high NO{sub x} emission in this region. (orig.)

  19. Ozone pollution and ozone biomonitoring in European cities Part II. Ozone-induced plant injury and its relationship with descriptors of ozone pollution

    DEFF Research Database (Denmark)

    Klumpp, A.; Ansel, W.; Klumpp, G.

    2006-01-01

    . This is because the actual ozone flux into the leaf, which is modified by various environmental factors, rather than ambient ozone concentration determines the effects on plants. The advantage of sensitive bioindicators like tobacco Bel-W3 is that the impact of the effectively absorbed ozone dose can directly......-exposed sites. The tobacco plants were exposed to ambient air for biweekly periods at up to 100 biomonitoring sites from 2000 to 2002. Special emphasis was placed upon methodological standardisation of plant cultivation, field exposure and injury assessment. Ozone-induced leaf injury showed a clearly increasing...... gradient from northern and northwestern Europe to central and southern European locations. The strongest ozone impact occurred at the exposure sites in Lyon and Barcelona, while in Edinburgh, Sheffield, Copenhagen and Düsseldorf only weak to moderate ozone effects were registered. Between-site differences...

  20. Ambient ozone and pulmonary innate immunity

    Science.gov (United States)

    Al-Hegelan, Mashael; Tighe, Robert M.; Castillo, Christian; Hollingsworth, John W.

    2013-01-01

    Ambient ozone is a criteria air pollutant that impacts both human morbidity and mortality. The effect of ozone inhalation includes both toxicity to lung tissue and alteration of the host immunologic response. The innate immune system facilitates immediate recognition of both foreign pathogens and tissue damage. Emerging evidence supports that ozone can modify the host innate immune response and that this response to inhaled ozone is dependent on genes of innate immunity. Improved understanding of the complex interaction between environmental ozone and host innate immunity will provide fundamental insight into the pathogenesis of inflammatory airways disease. We review the current evidence supporting that environmental ozone inhalation: (1) modifies cell types required for intact innate immunity, (2) is partially dependent on genes of innate immunity, (3) primes pulmonary innate immune responses to LPS, and (4) contributes to innate-adaptive immune system cross-talk. PMID:21132467

  1. Ozone killing action against bacterial and fungal species; microbiological testing of a domestic ozone generator.

    OpenAIRE

    Dyas, A; Boughton, B J; Das, B C

    1983-01-01

    The action of ozone generated from a small domestic device was examined with a view to using it in clinical isolation units accommodating immunosuppressed patients. Over a six-hour period in an average size room the device did not generate sufficient ozone to suppress bacterial and fungal growth. A useful bactericidal action, against a variety of human pathogens was achieved with ozone concentrations between 0.3 to 0.9 ppm. Bactericidal ozone concentrations are close to the limit permitted fo...

  2. Ozonation control and effects of ozone on water quality in recirculating aquaculture systems.

    Science.gov (United States)

    Spiliotopoulou, Aikaterini; Rojas-Tirado, Paula; Chhetri, Ravi K; Kaarsholm, Kamilla M S; Martin, Richard; Pedersen, Per B; Pedersen, Lars-Flemming; Andersen, Henrik R

    2018-04-15

    To address the undesired effect of chemotherapeutants in aquaculture, ozone has been suggested as an alternative to improve water quality. To ensure safe and robust treatment, it is vital to define the ozone demand and ozone kinetics of the specific water matrix to avoid ozone overdose. Different ozone dosages were applied to water in freshwater recirculating aquaculture systems (RAS). Experiments were performed to investigate ozone kinetics and demand, and to evaluate the effects on the water quality, particularly in relation to fluorescent organic matter. This study aimed at predicting a suitable ozone dosage for water treatment based on daily ozone demand via laboratory studies. These ozone dosages will be eventually applied and maintained at these levels in pilot-scale RAS to verify predictions. Selected water quality parameters were measured, including natural fluorescence and organic compound concentration changes during ozonation. Ozone reactions were described by first order kinetics. Organic matter, assessed as chemical oxygen demand and fluorescence, decreased by 25% (low O 3 ), 30% (middle O 3 ) and 53% (high O 3 ), while water transmittance improved by 15% over an 8-day period. No fish mortality was observed. Overall, this study confirms that ozone can improve RAS water quality, provides a better understanding of the ozone decay mechanisms that can be used to define further safe ozone treatment margins, and that fluorescence could be used as a monitoring tool to control ozone. This study might be used as a tool to design ozone systems for full-scale RAS by analysing water sample from the specific RAS in the laboratory. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Discharge cell for ozone generator

    Science.gov (United States)

    Nakatsuka, Suguru

    2000-01-01

    A discharge cell for use in an ozone generator is provided which can suppress a time-related reduction in ozone concentration without adding a catalytic gas such as nitrogen gas to oxygen gas as a raw material gas. The discharge cell includes a pair of electrodes disposed in an opposed spaced relation with a discharge space therebetween, and a dielectric layer of a three-layer structure consisting of three ceramic dielectric layers successively stacked on at least one of the electrodes, wherein a first dielectric layer of the dielectric layer contacting the one electrode contains no titanium dioxide, wherein a second dielectric layer of the dielectric layer exposed to the discharge space contains titanium dioxide in a metal element ratio of not lower than 10 wt %.

  4. LANDFILL LEACHATES PRETREATMENT BY OZONATION

    Directory of Open Access Journals (Sweden)

    Jacek Leszczyński

    2016-06-01

    Full Text Available In this paper, the application of ozonation processes for stabilized landfill leachate treatment was investigated. The leachate came from a municipal sanitary landfill located nearby Bielsk Podlaski. The average values of its main parameters were: pH 8.23; COD 870 mgO2/dm3; BOD 90 mgO2/dm3; NH4+ 136.2 mgN/dm3; UV254 absorbance 0.312 and turbidity 14 NTU. The ozone dosages used were in the range of 115.5 to 808.5 mgO3/dm3 of the leachate. The maximum COD, color and UV254 absorbance removal wa.5 mgO3/dm3. After oxidation, the ratio of BOD/COD was increased from 0.1 up to 0.23.

  5. Associations between ozone and morbidity using the Spatial Synoptic Classification system

    Directory of Open Access Journals (Sweden)

    Arora Gurmeet

    2011-05-01

    Full Text Available Abstract Background Synoptic circulation patterns (large-scale tropospheric motion systems affect air pollution and, potentially, air-pollution-morbidity associations. We evaluated the effect of synoptic circulation patterns (air masses on the association between ozone and hospital admissions for asthma and myocardial infarction (MI among adults in North Carolina. Methods Daily surface meteorology data (including precipitation, wind speed, and dew point for five selected cities in North Carolina were obtained from the U.S. EPA Air Quality System (AQS, which were in turn based on data from the National Climatic Data Center of the National Oceanic and Atmospheric Administration. We used the Spatial Synoptic Classification system to classify each day of the 9-year period from 1996 through 2004 into one of seven different air mass types: dry polar, dry moderate, dry tropical, moist polar, moist moderate, moist tropical, or transitional. Daily 24-hour maximum 1-hour ambient concentrations of ozone were obtained from the AQS. Asthma and MI hospital admissions data for the 9-year period were obtained from the North Carolina Department of Health and Human Services. Generalized linear models were used to assess the association of the hospitalizations with ozone concentrations and specific air mass types, using pollutant lags of 0 to 5 days. We examined the effect across cities on days with the same air mass type. In all models we adjusted for dew point and day-of-the-week effects related to hospital admissions. Results Ozone was associated with asthma under dry tropical (1- to 5-day lags, transitional (3- and 4-day lags, and extreme moist tropical (0-day lag air masses. Ozone was associated with MI only under the extreme moist tropical (5-day lag air masses. Conclusions Elevated ozone levels are associated with dry tropical, dry moderate, and moist tropical air masses, with the highest ozone levels being associated with the dry tropical air mass. Certain

  6. Ozone decay in chemical reactor for ozone-dynamical disintegration of used tyres

    International Nuclear Information System (INIS)

    Golota, V.I.; Manuilenko, O.V.; Taran, G.V.; Dotsenko, Yu.V.; Pismenetskii, A.S.; Zamuriev, A.A.; Benitskaja, V.A.

    2011-01-01

    The ozone decay kinetics in the chemical reactor intended for used tyres disintegration is investigated experimentally and theoretically. Ozone was synthesized in barrierless ozonizers based on the streamer discharge. The chemical reactor for tyres disintegration in the ozone-air environment represents the cylindrical chamber, which feeds from the ozonizer by ozone-air mixture with the specified rate of volume flow, and with known ozone concentration. The output of the used mixture, which rate of volume flow is also known, is carried out through the ozone destructor. As a result of ozone decay in the volume and on the reactor walls, and output of the used mixture from the reactor, the ozone concentration in the reactor depends from time. In the paper, the analytical expression for dependence of ozone concentration in the reactor from time and from the parameters of a problem such as the volumetric feed rate, ozone concentration on the input in the reactor, volume flow rate of the used mixture, the volume of the reactor and the area of its internal surface is obtained. It is shown that experimental results coincide with good accuracy with analytical ones.

  7. Towards the retrieval of tropospheric ozone with the ozone monitoring instrument (OMI)

    NARCIS (Netherlands)

    Mielonen, T.; De Haan, J.F.; Van Peet, J.C.A.; Eremenko, M.; Veefkind, J.P.

    2015-01-01

    We have assessed the sensitivity of the operational Ozone Monitoring Instrument (OMI) ozone profile retrieval algorithm to a number of a priori and radiative transfer assumptions. We studied the effect of stray light correction, surface albedo assumptions and a priori ozone profiles on the retrieved

  8. Efficient ozone generator for ozone layer enrichment from high altitude balloon

    Science.gov (United States)

    Filiouguine, Igor V.; Kostiouchenko, Sergey V.; Koudriavtsev, Nikolay N.; Starikovskaya, Svetlana M.

    1994-01-01

    The possibilities of ozone production at low gas pressures by nanosecond high voltage discharge has been investigated. The measurements of ozone synthesis in N2-O2 mixtures have been performed. The explanation of experimental results is suggested. The possible ways of ozone yield growth are analyzed.

  9. Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations

    Directory of Open Access Journals (Sweden)

    J.-H. Koo

    2012-10-01

    Full Text Available Arctic ozone depletion events (ODEs are caused by halogen catalyzed ozone loss. In situ chemistry, advection of ozone-poor air mass, and vertical mixing in the lower troposphere are important factors affecting ODEs. To better characterize the ODEs, we analyze the combined set of surface, ozonesonde, and aircraft in situ measurements of ozone and bromine compounds during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS, the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC, and the Arctic Intensive Ozonesonde Network Study (ARCIONS experiments (April 2008. Tropospheric BrO columns retrieved from satellite measurements and back trajectory calculations are also used to investigate the characteristics of observed ODEs. In situ observations from these field experiments are inadequate to validate tropospheric BrO columns derived from satellite measurements. In view of this difficulty, we construct an ensemble of tropospheric column BrO estimates from two satellite (OMI and GOME-2 measurements and with three independent methods of calculating stratospheric BrO columns. Furthermore, we select analysis methods that do not depend on the absolute magnitude of column BrO, such as time-lagged correlation analysis of ozone and tropospheric column BrO, to understand characteristics of ODEs. Time-lagged correlation analysis between in situ (surface and ozonesonde measurements of ozone and satellite derived tropospheric BrO columns indicates that the ODEs are due to either local halogen-driven ozone loss or short-range (∼1 day transport from nearby regions with ozone depletion. The effect of in situ ozone loss is also evident in the diurnal variation difference between low (10th and 25th percentiles and higher percentiles of surface ozone concentrations at Alert, Canada. Aircraft observations indicate low-ozone air mass transported from adjacent high-BrO regions. Correlation analyses of ozone

  10. Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing

    Directory of Open Access Journals (Sweden)

    I. Cionni

    2011-11-01

    Full Text Available A continuous tropospheric and stratospheric vertically resolved ozone time series, from 1850 to 2099, has been generated to be used as forcing in global climate models that do not include interactive chemistry. A multiple linear regression analysis of SAGE I+II satellite observations and polar ozonesonde measurements is used for the stratospheric zonal mean dataset during the well-observed period from 1979 to 2009. In addition to terms describing the mean annual cycle, the regression includes terms representing equivalent effective stratospheric chlorine (EESC and the 11-yr solar cycle variability. The EESC regression fit coefficients, together with pre-1979 EESC values, are used to extrapolate the stratospheric ozone time series backward to 1850. While a similar procedure could be used to extrapolate into the future, coupled chemistry climate model (CCM simulations indicate that future stratospheric ozone abundances are likely to be significantly affected by climate change, and capturing such effects through a regression model approach is not feasible. Therefore, the stratospheric ozone dataset is extended into the future (merged in 2009 with multi-model mean projections from 13 CCMs that performed a simulation until 2099 under the SRES (Special Report on Emission Scenarios A1B greenhouse gas scenario and the A1 adjusted halogen scenario in the second round of the Chemistry-Climate Model Validation (CCMVal-2 Activity. The stratospheric zonal mean ozone time series is merged with a three-dimensional tropospheric data set extracted from simulations of the past by two CCMs (CAM3.5 and GISS-PUCCINI and of the future by one CCM (CAM3.5. The future tropospheric ozone time series continues the historical CAM3.5 simulation until 2099 following the four different Representative Concentration Pathways (RCPs. Generally good agreement is found between the historical segment of the ozone database and satellite observations, although it should be noted that

  11. Pulmonary biochemical alterations resulting from ozone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa, M.G.; Lee, S.D.

    1976-07-01

    Metabolic response of lung tissue to ozone was studied in rats and monkeys after exposure of animals to various levels of ozone (0.1 to 0.8 ppM) for 1 to 30 days. In rats, 0.8 ppM ozone exposure resulted in a 40 to 50 percent augmentation of oxygen utilization in lung homogenate in the presence of an added substrate (e.g., succinate or 2-oxoglutarate). Activities of marker enzymes, viz. mitochondrial succinate-cytochrome c reductase; microsomal NADPH-cytochrome c reductase and cytosolic glucose-6-phosphate dehydrogenase, increased maximally (40 to 70 percent over control) after 3 to 4 days of exposure, and remained elevated throughout the 0.8 ppM ozone exposure for 30 days. In monkeys, the observations were the same except that the magnitude of biochemical changes was relatively smaller. Exposure of animals to lower levels of ozone resulted in proportionately smaller biochemical changes in the lung, and ozone effects were detectable up to the 0.2 ppM level. While 0.1 ppM ozone exposure was ineffective, dietary deficiency of vitamin E, a natural antioxidant, increased the sensitivity of rat lungs to this concentration of ozone. The results suggest that low-level ozone exposures may cause metabolic alterations in the lung, and that dietary supplementation of vitamin E may offer protection against oxidant stress.

  12. Investigation of the structure and dynamics of the ozone layer in the Eastern Arctic region during EASOE Campaign

    Science.gov (United States)

    Khattatov, V.; Yushkov, V.; Rudakov, V.; Zaitsev, I.; Rosen, J.; Kjome, N.

    1994-01-01

    Balloon measurements of the vertical distribution of ozone and aerosol were made at Dickson Island (73 deg N, 81 deg E), Kiruna (68 deg N, 20 deg E) and Heiss Island (81 deg N, 58 deg E) from December 1991 to March 1992. To acquire data on the seasonal variability of the vertical ozone distribution, electrochemical ozonesondes ECC-4A were flown three times a week. With ozonesondes on the same balloons, backscattersondes were flown on the average of two or three times per month. Using these instruments, altitude profiles of backscatter ratio were measured at two wavelengths centered at 490 nm and 940 nm. Additionally, at Heiss Island, Dickson, and Yakutsk (63 deg N, 130 deg E) regular total ozone measurements were obtained using Brewer spectrophotometers. Based on measurements of backscatter ratio it was found that after the Pinatubo eruption in June 1991 significant amount of stratospheric aerosols were formed and transported to the Arctic before the polar vortex was well developed. Analysis of ozone data has shown a deep decrease of ozone concentration in the lower stratosphere in times of intensive transportation of air masses from low latitudes to the polar region in the second half of January and also for some periods in February and March of 1992. When the values of backscatter ratio beta were more than 8-10 at a wavelength of 940 nm strong anticorrelation occurred between aerosol loading and ozone concentration in the lower stratosphere. At 50-70 deg N, the mean monthly values of total ozone in winter-spring 1992 proved to be much lower than the climatic mean values.

  13. The Physics of Polarization

    Science.gov (United States)

    Landi Degl'Innocenti, Egidio

    2015-10-01

    The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.

  14. Treatment of soft drink process wastewater by ozonation, ozonation-H₂O₂ and ozonation-coagulation processes.

    Science.gov (United States)

    García-Morales, M A; Roa-Morales, G; Barrera-Díaz, C; Balderas-Hernández, P

    2012-01-01

    In this research, we studied the treatment of wastewater from the soft drink process using oxidation with ozone. A scheme composed of sequential ozonation-peroxide, ozonation-coagulation and coagulation-ozonation treatments to reduce the organic matter from the soft drink process was also used. The samples were taken from the conventional activated sludge treatment of the soft drink process, and the experiments using chemical oxidation with ozone were performed in a laboratory using a reactor through a porous plate glass diffuser with air as a feedstock for the generation of ozone. Once the sample was ozonated, the treatments were evaluated by considering the contact time, leading to greater efficiency in removing colour, turbidity and chemical oxygen demand (COD). The effect of ozonation and coagulant coupled with treatment efficiency was assessed under optimal conditions, and substantial colour and turbidity removal were found (90.52% and 93.33%, respectively). This was accompanied by a 16.78% reduction in COD (initial COD was 3410 mg/L). The absorbance spectra of the oxidised products were compared using UV-VIS spectroscopy to indicate the level of oxidation of the wastewater. We also determined the kinetics of decolouration and the removal of turbidity with the best treatment. The same treatment was applied to the sample taken from the final effluent of the activated sludge system, and a COD removal efficiency of 100% during the first minute of the reaction with ozone was achieved. As a general conclusion, we believe that the coagulant polyaluminum chloride - ozone (PAC- ozone) treatment of wastewater from the manufacturing of soft drinks is the most efficient for removing turbidity and colour and represents an advantageous option to remove these contaminants because their removal was performed in minutes compared to the duration of traditional physical, chemical and biological processes that require hours or days.

  15. The Response of Lower Atmospheric Ozone to ENSO in Aura Measurements and a Chemistry-Climate Simulation

    Science.gov (United States)

    Oman, L. D.; Douglass, A. R.; Ziemke, J. R.; Rodriquez, J. M.; Waugh, D. W.; Nielsen, J. E.

    2012-01-01

    The El Nino-Southern Oscillation (ENSO) is the dominant mode of tropical variability on interannual time scales. ENSO appears to extend its influence into the chemical composition of the tropical troposphere. Recent work has revealed an ENSO-induced wave-1 anomaly in observed tropical tropospheric column ozone. This results in a dipole over the western and eastern tropical Pacific, whereby differencing the two regions produces an ozone anomaly with an extremely high correlation to the Nino 3.4 Index. We have successfully reproduced this feature using the Goddard Earth Observing System Version 5 (GEOS-5) general circulation model coupled to a comprehensive stratospheric and tropospheric chemical mechanism forced with observed sea surface temperatures over the past 25 years. An examination of the modeled ozone field reveals the vertical contributions of tropospheric ozone to the column over the western and eastern Pacific region. We will show composition sensitivity in observations from NASA s Aura satellite Microwave Limb Sounder (MLS) and the Tropospheric Emissions Spectrometer (TES) and a simulation to provide insight into the vertical structure of these ENSO-induced ozone changes. The ozone changes due to the Quasi-Biennial Oscillation (QBO) in the extra-polar upper troposphere and lower stratosphere in MLS measurements will also be discussed.

  16. Total ozone trends from 1979 to 2016 derived from five merged observational datasets - the emergence into ozone recovery

    Science.gov (United States)

    Weber, Mark; Coldewey-Egbers, Melanie; Fioletov, Vitali E.; Frith, Stacey M.; Wild, Jeannette D.; Burrows, John P.; Long, Craig S.; Loyola, Diego

    2018-02-01

    We report on updated trends using different merged datasets from satellite and ground-based observations for the period from 1979 to 2016. Trends were determined by applying a multiple linear regression (MLR) to annual mean zonal mean data. Merged datasets used here include NASA MOD v8.6 and National Oceanic and Atmospheric Administration (NOAA) merge v8.6, both based on data from the series of Solar Backscatter UltraViolet (SBUV) and SBUV-2 satellite instruments (1978-present) as well as the Global Ozone Monitoring Experiment (GOME)-type Total Ozone (GTO) and GOME-SCIAMACHY-GOME-2 (GSG) merged datasets (1995-present), mainly comprising satellite data from GOME, the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and GOME-2A. The fifth dataset consists of the monthly mean zonal mean data from ground-based measurements collected at World Ozone and UV Data Center (WOUDC). The addition of four more years of data since the last World Meteorological Organization (WMO) ozone assessment (2013-2016) shows that for most datasets and regions the trends since the stratospheric halogen reached its maximum (˜ 1996 globally and ˜ 2000 in polar regions) are mostly not significantly different from zero. However, for some latitudes, in particular the Southern Hemisphere extratropics and Northern Hemisphere subtropics, several datasets show small positive trends of slightly below +1 % decade-1 that are barely statistically significant at the 2σ uncertainty level. In the tropics, only two datasets show significant trends of +0.5 to +0.8 % decade-1, while the others show near-zero trends. Positive trends since 2000 have been observed over Antarctica in September, but near-zero trends are found in October as well as in March over the Arctic. Uncertainties due to possible drifts between the datasets, from the merging procedure used to combine satellite datasets and related to the low sampling of ground-based data, are not accounted for in the trend

  17. Calibration of the QCM/SAW Cascade Impactor for Measurement of Ozone

    Science.gov (United States)

    Williams, Cassandra K.; Peterson, C. B.; Morris, V. R.

    1997-01-01

    The Quartz Crystal Microbalance Surface Acoustic Wave (QCM/SAW) cascade impactor is an instrument designed to collect size-fractionated distributions of aerosols on a series of quartz crystals and employ SAW devices coated with chemical sensors for gas detection. We are calibrating the cascade impactor in our laboratory for future deployment for in-situ experiments to measure ozone. Experiments have been performed to characterize the QCM and SAW mass loading, saturation limits, mass frequency relationships, and sensitivity. The characteristics of mass loading, saturation limits, mass-frequency relationships, sensitivity, and the loss of ozone on different materials have been quantified.

  18. POLARIZED BEAMS: 2 - Partial Siberian Snake rescues polarized protons at Brookhaven

    International Nuclear Information System (INIS)

    Huang, Haixin

    1994-01-01

    To boost the level of beam polarization (spin orientation), a partial 'Siberian Snake' was recently used to overcome imperfection depolarizing resonances in the Brookhaven Alternating Gradient Synchrotron (AGS). This 9-degree spin rotator recently permitted acceleration with no noticeable polarization loss. The intrinsic AGS depolarizing resonances (which degrade the polarization content) had been eliminated by betatron tune jumps, but the imperfection resonances were compensated by means of harmonic orbit corrections. However, at high energies these orbit corrections are difficult and tedious and a Siberian Snake became an attractive alternative

  19. Extraction of wind and temperature information from hybrid 4D-Var assimilation of stratospheric ozone using NAVGEM

    Directory of Open Access Journals (Sweden)

    D. R. Allen

    2018-03-01

    perfect global ozone is assimilated in addition to radiance observations, wind and temperature error decreases of up to ∼ 3 m s−1 and ∼ 1 K occur in the tropical upper stratosphere. Assimilation of noisy global ozone (2 % errors applied results in error reductions of ∼ 1 m s−1 and ∼ 0.5 K in the tropics and slightly increased temperature errors in the Northern Hemisphere polar region. Reduction of the ozone sampling frequency also reduces the benefit of ozone throughout the stratosphere, with noisy polar-orbiting data having only minor impacts on wind and temperature when assimilated with radiances. An examination of ensemble cross-correlations between ozone and other variables shows that a single ozone observation behaves like a potential vorticity (PV charge, or a monopole of PV, with rotation about a vertical axis and vertically oriented temperature dipole. Further understanding of this relationship may help in designing observation systems that would optimize the impact of ozone on the dynamics.

  20. Extraction of wind and temperature information from hybrid 4D-Var assimilation of stratospheric ozone using NAVGEM

    Science.gov (United States)

    Allen, Douglas R.; Hoppel, Karl W.; Kuhl, David D.

    2018-03-01

    assimilated in addition to radiance observations, wind and temperature error decreases of up to ˜ 3 m s-1 and ˜ 1 K occur in the tropical upper stratosphere. Assimilation of noisy global ozone (2 % errors applied) results in error reductions of ˜ 1 m s-1 and ˜ 0.5 K in the tropics and slightly increased temperature errors in the Northern Hemisphere polar region. Reduction of the ozone sampling frequency also reduces the benefit of ozone throughout the stratosphere, with noisy polar-orbiting data having only minor impacts on wind and temperature when assimilated with radiances. An examination of ensemble cross-correlations between ozone and other variables shows that a single ozone observation behaves like a potential vorticity (PV) charge, or a monopole of PV, with rotation about a vertical axis and vertically oriented temperature dipole. Further understanding of this relationship may help in designing observation systems that would optimize the impact of ozone on the dynamics.

  1. Properties of a Variable-Delay Polarization Modulator

    Science.gov (United States)

    Chuss, David T.; Wollack, Edward J.; Henry, Ross; Hui, Howard; Juarez, Aaron J.; Krenjy, Megan; Moseley, Harvey; Novak, Giles

    2011-01-01

    We investigate the polarization modulation properties of a variable-delay polarization modulator (VPM). The VPM modulates polarization via a variable separation between a polarizing grid and a parallel mirror. We find that in the limit where the wavelength is much larger than the diameter of the metal wires that comprise the grid, the phase delay derived from the geometric separation between the mirror and the grid is sufficient to characterize the device. However, outside of this range, additional parameters describing the polarizing grid geometry must be included to fully characterize the modulator response. In this paper, we report test results of a VPM at wavelengths of 350 micron and 3 mm. Electromagnetic simulations of wire grid polarizers were performed and are summarized using a simple circuit model that incorporates the loss and polarization properties of the device.

  2. Ozone's impact on public health: Contributions from indoor exposures to ozone and products of ozone-initiated chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.

    2006-01-01

    affect human health (e.g., formaldehyde, acrolein, hydro-peroxides, fine and ultrafine particles). Indirect evidence supports connections between morbidity/mortality and exposures to indoor ozone and its oxidation products. For example, cities with stronger associations between outdoor ozone...

  3. Sensitivity Modeling Study for an Ozone Occurrence during the 1996 Paso Del Norte Ozone Campaign

    Directory of Open Access Journals (Sweden)

    Duanjun Lu

    2008-11-01

    Full Text Available Surface ozone pollution has been a persistent environmental problem in the US and Europe as well as the developing countries. A key prerequisite to find effective alternatives to meeting an ozone air quality standard is to understand the importance of local anthropogenic emissions, the significance of biogenic emissions, and the contribution of long-range transport. In this study, an air quality modeling system that includes chemistry and transport, CMAQ, an emission processing model, SMOKE, and a mesoscale numerical meteorological model, WRF, has been applied to investigate an ozone event occurring during the period of the 1996 Paso del Norte Ozone Campaign. The results show that the modeling system exhibits the capability to simulate this high ozone occurrence by providing a comparable temporal variation of surface ozone concentration at one station and to capture the spatial evolution of the event. Several sensitivity tests were also conducted to identify the contributions to high surface ozone concentration from eight VOC subspecies, biogenic VOCs, anthropogenic VOCs and long-range transportation of ozone and its precursors. It is found that the reductions of ETH, ISOP, PAR, OLE and FORM help to mitigate the surface ozone concentration, and like anthropogenic VOCs, biogenic VOC plays a nonnegligible role in ozone formation. But for this case, long-range transport of ozone and its precursors appears to produce an insignificant contribution.

  4. Sensitivity modeling study for an ozone occurrence during the 1996 Paso Del Norte Ozone Campaign.

    Science.gov (United States)

    Lu, Duanjun; Reddy, Remata S; Fitzgerald, Rosa; Stockwell, William R; Williams, Quinton L; Tchounwou, Paul B

    2008-12-01

    Surface ozone pollution has been a persistent environmental problem in the US and Europe as well as the developing countries. A key prerequisite to find effective alternatives to meeting an ozone air quality standard is to understand the importance of local anthropogenic emissions, the significance of biogenic emissions, and the contribution of long-range transport. In this study, an air quality modeling system that includes chemistry and transport, CMAQ, an emission processing model, SMOKE, and a mesoscale numerical meteorological model, WRF, has been applied to investigate an ozone event occurring during the period of the 1996 Paso del Norte Ozone Campaign. The results show that the modeling system exhibits the capability to simulate this high ozone occurrence by providing a comparable temporal variation of surface ozone concentration at one station and to capture the spatial evolution of the event. Several sensitivity tests were also conducted to identify the contributions to high surface ozone concentration from eight VOC subspecies, biogenic VOCs, anthropogenic VOCs and long-range transportation of ozone and its precursors. It is found that the reductions of ETH, ISOP, PAR, OLE and FORM help to mitigate the surface ozone concentration, and like anthropogenic VOCs, biogenic VOC plays a nonnegligible role in ozone formation. But for this case, long-range transport of ozone and its precursors appears to produce an insignificant contribution.

  5. The global impact of ozone on agricultural crop yields under current and future air quality legislation

    Science.gov (United States)

    Van Dingenen, Rita; Dentener, Frank J.; Raes, Frank; Krol, Maarten C.; Emberson, Lisa; Cofala, Janusz

    In this paper we evaluate the global impact of surface ozone on four types of agricultural crop. The study is based on modelled global hourly ozone fields for the year 2000 and 2030, using the global 1°×1° 2-way nested atmospheric chemical transport model (TM5). Projections for the year 2030 are based on the relatively optimistic "current legislation (CLE) scenario", i.e. assuming that currently approved air quality legislation will be fully implemented by the year 2030, without a further development of new abatement policies. For both runs, the relative yield loss due to ozone damage is evaluated based on two different indices (accumulated concentration above a 40 ppbV threshold and seasonal mean daytime ozone concentration respectively) on a global, regional and national scale. The cumulative metric appears to be far less robust than the seasonal mean, while the seasonal mean shows satisfactory agreement with measurements in Europe, the US, China and Southern India and South-East Asia. Present day global relative yield losses are estimated to range between 7% and 12% for wheat, between 6% and 16% for soybean, between 3% and 4% for rice, and between 3% and 5% for maize (range resulting from different metrics used). Taking into account possible biases in our assessment, introduced through the global application of "western" crop exposure-response functions, and through model performance in reproducing ozone-exposure metrics, our estimates may be considered as being conservative. Under the 2030 CLE scenario, the global situation is expected to deteriorate mainly for wheat (additional 2-6% loss globally) and rice (additional 1-2% loss globally). India, for which no mitigation measures have been assumed by 2030, accounts for 50% of these global increase in crop yield loss. On a regional-scale, significant reductions in crop losses by CLE-2030 are only predicted in Europe (soybean) and China (wheat). Translating these assumed yield losses into total global economic

  6. Seasonal development of ozone-induced foliar injury on tall milkweed (Asclepias exaltata) in Great Smoky Mountains National Park

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Lara [Department of Biology, 572 Rivers Street, Appalachian State University, Boone, NC 28608 (United States)]. E-mail: lsouza@utk.edu; Neufeld, Howard S. [Department of Biology, 572 Rivers Street, Appalachian State University, Boone, NC 28608 (United States); Chappelka, Arthur H. [School of Forestry and Wildlife Sciences, 108 M White-Smith Hall, Auburn University, Auburn, AL 36849 (United States); Burkey, Kent O. [US Department of Agriculture, Agricultural Research Service, Plant Science Research Unit and Department of Crop Science, North Carolina State University, 3908 Inwood Road, Raleigh, NC 26703 (United States); Davison, Alan W. [School of Biology, Ridley Building, University of Newcastle, Newcastle Upon Tyne, NE1 7RU (United Kingdom)

    2006-05-15

    The goals of this study were to document the development of ozone-induced foliar injury, on a leaf-by-leaf basis, and to develop ozone exposure relationships for leaf cohorts and individual tall milkweeds (Asclepias exaltata L.) in Great Smoky Mountains National Park. Plants were classified as either ozone-sensitive or insensitive based on the amount of foliar injury. Sensitive plants developed injury earlier in the season and to a greater extent than insensitive plants. Older leaf cohorts were more likely to belong to high injury classes by the end of each of the two growing seasons. In addition, leaf loss was more likely for older cohorts (2000) and lower leaf positions (2001) than younger cohorts and upper leaves, respectively. Most leaves abscised without prior ozone-like stippling or chlorosis. Failure to take this into account can result in underestimation of the effects of ozone on these plants. - Leaf loss was not necessarily accompanied by symptoms of foliar ozone injury.

  7. Seasonal development of ozone-induced foliar injury on tall milkweed (Asclepias exaltata) in Great Smoky Mountains National Park

    International Nuclear Information System (INIS)

    Souza, Lara; Neufeld, Howard S.; Chappelka, Arthur H.; Burkey, Kent O.; Davison, Alan W.

    2006-01-01

    The goals of this study were to document the development of ozone-induced foliar injury, on a leaf-by-leaf basis, and to develop ozone exposure relationships for leaf cohorts and individual tall milkweeds (Asclepias exaltata L.) in Great Smoky Mountains National Park. Plants were classified as either ozone-sensitive or insensitive based on the amount of foliar injury. Sensitive plants developed injury earlier in the season and to a greater extent than insensitive plants. Older leaf cohorts were more likely to belong to high injury classes by the end of each of the two growing seasons. In addition, leaf loss was more likely for older cohorts (2000) and lower leaf positions (2001) than younger cohorts and upper leaves, respectively. Most leaves abscised without prior ozone-like stippling or chlorosis. Failure to take this into account can result in underestimation of the effects of ozone on these plants. - Leaf loss was not necessarily accompanied by symptoms of foliar ozone injury

  8. Development of Compact Ozonizer with High Ozone Output by Pulsed Power

    Science.gov (United States)

    Tanaka, Fumiaki; Ueda, Satoru; Kouno, Kanako; Sakugawa, Takashi; Akiyama, Hidenori; Kinoshita, Youhei

    Conventional ozonizer with a high ozone output using silent or surface discharges needs a cooling system and a dielectric barrier, and therefore becomes a large machine. A compact ozonizer without the cooling system and the dielectric barrier has been developed by using a pulsed power generated discharge. The wire to plane electrodes made of metal have been used. However, the ozone output was low. Here, a compact and high repetition rate pulsed power generator is used as an electric source of a compact ozonizer. The ozone output of 6.1 g/h and the ozone yield of 86 g/kWh are achieved at 500 pulses per second, input average power of 280 W and an air flow rate of 20 L/min.

  9. Does UV instrumentation effectively measure ozone abundance?

    Science.gov (United States)

    Lindner, Bernhard Lee

    1992-01-01

    Measurements of O3 on Mars provide significant information about the chemistry and composition of the atmosphere, including long-term changes. The most extensive and accurate data were inferred from the Mariner 9 UV spectrometer experiment. Mars O3 shows strong seasonal and latitudinal variation, with column abundances ranging from 0.2 microns at equatorial latitudes to 60 microns over the northern winter polar latitudes (1 micron-atm is a column abundance of 2.689 x 10(exp 15) molecules cm(exp-2)). The Mariner 9 UV spectrometer scanned from 2100 to 3500 Angstroms in one of its two spectral channels every 3 seconds with a spectral resolution of 15 Angstroms and an effective field-of-view of approximately 300 km(exp 2). Measurements were made for almost half a Martian year, with winter and spring in the Northern Hemisphere and summer and fall in the Southern Hemisphere. The detectability limit of the spectrometer was approximately 3 microns of ozone. The UV spectrometer on Mariner 9 was incapable of penetrating the dust during dust storms; the single-scattering albedo and phase function of airborne dust and cloud ice are not known to the degree required to extract the small UV signal reflected up from near the surface. The reflectance spectroscopy technique would also have difficulty detecting the total column abundance of O3 in cases where large dust abundances exist together with the polar hood, especially at high latitudes where large solar zenith angles magnify those optical depths; yet these cases would contain the maximum O3, based on theoretical results. It is quite possible that the maximum O3 column abundance observed by Mariner 9 of 60 microns is common. In fact, larger quantities may exist in some of the colder areas with optically thick clouds and dust. As the Viking period often had more atmospheric dust loading than did that of Mariner 9, the reflectance spectroscopy technique may even have been incapable of detecting the entire O3 column abundance

  10. A network of autonomous surface ozone monitors in Antarctica: technical description and first results

    Directory of Open Access Journals (Sweden)

    S. J.-B. Bauguitte

    2011-04-01

    Full Text Available A suite of 10 autonomous ozone monitoring units, each powered using renewable energy, was developed and built to study surface ozone in Antarctica during the International Polar Year (2007–2009. The monitoring systems were deployed in a network around the Weddell Sea sector of coastal Antarctica with a transect up onto the Antarctic Plateau. The aim was to measure for a full year, thus gaining a much-improved broader view of boundary layer ozone seasonality at different locations as well as of factors affecting the budget of surface ozone in Antarctica. Ozone mixing ratios were measured based on UV photometry using a modified version of the commercial 2B Technologies Inc. Model 202 instrument. All but one of the autonomous units measured successfully within its predefined duty cycle throughout the year, with some differences in performance dependent on power availability and ambient temperature. Mean data recovery after removal of outliers was on average 70% (range 44–83% and precision varied between 1.5 and 8 ppbv, thus was sufficiently good to resolve year-round the main ozone features of scientific interest. We conclude that, with adequate power, and noting a minor communication problem, our units would be able to operate successfully at ambient temperatures down to −60 °C. Systems such as the one described in this paper, or derivatives of it, could therefore be deployed either as local or regional networks elsewhere in the Arctic or Antarctic. Here we present technical information and first results from the experiment.

  11. Evaluation of linear ozone photochemistry parametrizations in a stratosphere-troposphere data assimilation system

    Directory of Open Access Journals (Sweden)

    A. J. Geer

    2007-01-01

    Full Text Available This paper evaluates the performance of various linear ozone photochemistry parametrizations using the stratosphere-troposphere data assimilation system of the Met Office. A set of experiments were run for the period 23 September 2003 to 5 November 2003 using the Cariolle (v1.0 and v2.1, LINOZ and Chem2D-OPP (v0.1 and v2.1 parametrizations. All operational meteorological observations were assimilated, together with ozone retrievals from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS. Experiments were validated against independent data from the Halogen Occultation Experiment (HALOE and ozonesondes. Additionally, a simple offline method for comparing the parametrizations is introduced. It is shown that in the upper stratosphere and mesosphere, outside the polar night, ozone analyses are controlled by the photochemistry parametrizations and not by the assimilated observations. The most important factor in getting good results at these levels is to pay attention to the ozone and temperature climatologies in the parametrizations. There should be no discrepancies between the climatologies and the assimilated observations or the model, but there is also a competing demand that the climatologies be objectively accurate in themselves. Conversely, in the lower stratosphere outside regions of heterogeneous ozone depletion, the ozone analyses are dominated by observational increments and the photochemistry parametrizations have little influence. We investigate a number of known problems in LINOZ and Cariolle v1.0 in more detail than previously, and we find discrepancies in Cariolle v2.1 and Chem2D-OPP v2.1, which are demonstrated to have been removed in the latest available versions (v2.8 and v2.6 respectively. In general, however, all the parametrizations work well through much of the stratosphere, helped by the presence of good quality assimilated MIPAS observations.

  12. Effects of ozone-vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks

    Science.gov (United States)

    Sadiq, Mehliyar; Tai, Amos P. K.; Lombardozzi, Danica; Martin, Maria Val

    2017-02-01

    Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone-vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land-atmosphere simulations. With ozone-vegetation coupling, present-day surface ozone is simulated to be higher by up to 4-6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ˜ 40-100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity are found to play a smaller role in contributing to the ozone-vegetation feedbacks. Our results highlight the need to consider two-way ozone-vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.

  13. Ozone concentration dependent autohaemotherapy effects on ...

    African Journals Online (AJOL)

    Although ozone is widely used as an alternative medicine, its safety and efficiency are met with scepticism. To shed some light on this, we assessed the effect of ozone-autohaemotherapy, using an. O2/O3 gas mixture containing three different O3 concentrations (20, 40 and 80 ìg/ml), on the antioxidant status and lymphocyte ...

  14. Absorption of ozone by porous particles

    Energy Technology Data Exchange (ETDEWEB)

    Afanas' ev, V.P.; Dorofeev, S.B.; Sinitsyn, V.I.; Smirnov, B.M.

    1981-11-01

    The absorption of ozone by porous zeolite, silica gel, and activated carbon particles has been studied experimentally. It was shown that in addition to absorption, dissociation of ozone on the surface plays an important and sometimes decisive role. The results obtained were used to analyze the nature of ball lightning.

  15. Tropospheric ozone. Formation, properties, effects. Expert opinion

    International Nuclear Information System (INIS)

    Elstner, E.F.

    1996-01-01

    The formation and dispersion of tropospheric ozone are discussed only marginally in this expert opinion; the key interest is in the effects of ground level ozone on plants, animals, and humans. The expert opinion is based on an analysis of the available scientific publications. (orig./MG) [de

  16. Global Warming: Lessons from Ozone Depletion

    Science.gov (United States)

    Hobson, Art

    2010-01-01

    My teaching and textbook have always covered many physics-related social issues, including stratospheric ozone depletion and global warming. The ozone saga is an inspiring good-news story that's instructive for solving the similar but bigger problem of global warming. Thus, as soon as students in my physics literacy course at the University of…

  17. Ozone: Good Up High, Bad Nearby

    Science.gov (United States)

    ... occurs in two layers of the atmosphere. The layer closest to the Earth’s surface is the troposphere. Here, ground- level or “ ... or use. Over time, these chemicals damage the earth’s protective ozone layer. What is Happening to the “Good” Ozone Layer? ...

  18. Tropospheric ozone as a fungal elicitor

    Indian Academy of Sciences (India)

    Tropospheric ozone has been proven to trigger biochemical plant responses that are similar to the ones induced by an attack of fungal pathogens, i.e. it resembles fungal elicitors. This suggests that ozone can represent a valid tool for the study of stress responses and induction of resistance to pathogens. This review ...

  19. Stable ozone layer in Norway and USSR

    Science.gov (United States)

    Henriksen, K.; Svenoe, T.; Terez, E. I.; Terez, G. A.; Roldugin, V.; Larsen, S. H. H.

    1994-01-01

    Long-term column ozone density measurements have been carried out in Norway and USSR. Data from Tromso and two meridional chains in USSR are analyzed, and most of the stations show that no significant decreasing trend in ozone has occurred during the last two decades.

  20. College Students' Understanding of Atmospheric Ozone Formation

    Science.gov (United States)

    Howard, Kristen E.; Brown, Shane A.; Chung, Serena H.; Jobson, B. Thomas; VanReken, Timothy M.

    2013-01-01

    Research has shown that high school and college students have a lack of conceptual understanding of global warming, ozone, and the greenhouse effect. Most research in this area used survey methodologies and did not include concepts of atmospheric chemistry and ozone formation. This study investigates college students' understandings of atmospheric…

  1. [Review] Polarization and Polarimetry

    Science.gov (United States)

    Trippe, Sascha

    2014-02-01

    Polarization is a basic property of light and is fundamentally linked to the internal geometry of a source of radiation. Polarimetry complements photometric, spectroscopic, and imaging analyses of sources of radiation and has made possible multiple astrophysical discoveries. In this article I review (i) the physical basics of polarization: electromagnetic waves, photons, and parameterizations; (ii) astrophysical sources of polarization: scattering, synchrotron radiation, active media, and the Zeeman, Goldreich-Kylafis, and Hanle effects, as well as interactions between polarization and matter (like birefringence, Faraday rotation, or the Chandrasekhar-Fermi effect); (iii) observational methodology: on-sky geometry, influence of atmosphere and instrumental polarization, polarization statistics, and observational techniques for radio, optical, and X/γ wavelengths; and (iv) science cases for astronomical polarimetry: solar and stellar physics, planetary system bodies, interstellar matter, astrobiology, astronomical masers, pulsars, galactic magnetic fields, gamma-ray bursts, active galactic nuclei, and cosmic microwave background radiation.

  2. Ozone depletion and climate change: impacts on UV radiation.

    Science.gov (United States)

    Bais, A F; McKenzie, R L; Bernhard, G; Aucamp, P J; Ilyas, M; Madronich, S; Tourpali, K

    2015-01-01

    We assess the importance of factors that determine the intensity of UV radiation at the Earth's surface. Among these, atmospheric ozone, which absorbs UV radiation, is of considerable importance, but other constituents of the atmosphere, as well as certain consequences of climate change, can also be major influences. Further, we assess the variations of UV radiation observed in the past and present, and provide projections for the future. Of particular interest are methods to measure or estimate UV radiation at the Earth's surface. These are needed for scientific understanding and, when they are sufficiently sensitive, they can serve as monitors of the effectiveness of the Montreal Protocol and its amendments. Also assessed are several aspects of UV radiation related to biological effects and health. The implications for ozone and UV radiation from two types of geoengineering methods that have been proposed to combat climate change are also discussed. In addition to ozone effects, the UV changes in the last two decades, derived from measurements, have been influenced by changes in aerosols, clouds, surface reflectivity, and, possibly, by solar activity. The positive trends of UV radiation observed after the mid-1990s over northern mid-latitudes are mainly due to decreases in clouds and aerosols. Despite some indications from measurements at a few stations, no statistically significant decreases in UV-B radiation attributable to the beginning of the ozone recovery have yet been detected. Projections for erythemal irradiance (UVery) suggest the following changes by the end of the 21(st) century (2090-2100) relative to the present time (2010-2020): (1) Ozone recovery (due to decreasing ozone-depleting substances and increasing greenhouse gases) would cause decreases in UVery, which will be highest (up to 40%) over Antarctica. Decreases would be small (less than 10%) outside the southern Polar Regions. A possible decline of solar activity during the 21(st) century

  3. The protective effect of prophylactic ozone administration against retinal ischemia-reperfusion injury.

    Science.gov (United States)

    Kal, Ali; Kal, Oznur; Akillioglu, Ishak; Celik, Esin; Yilmaz, Mustafa; Gonul, Saban; Solmaz, Merve; Onal, Ozkan

    2017-03-01

    Retinal ischemia-reperfusion (IR) injury is associated with many ocular diseases. Retinal IR injury leads to the death of retinal ganglion cells (RGCs), loss of retinal function and ultimately vision loss. The aim of this study was to show the protective effects of prophylactic ozone administration against retinal IR injury. A sham group (S) (n = 7) was administered physiological saline (PS) intraperitoneally (i.p.) for 7 d. An ischemia reperfusion (IR) group (n = 7) was subjected to retinal ischemia followed by reperfusion for 2 h. An ozone group (O) (n = 7) was administered 1 mg/kg of ozone i.p. for 7 d. In the ozone + IR (O + IR) group (n = 7), 1 mg/kg of ozone was administered i.p. for 7 d before the IR procedure and at 8 d, the IR injury was created (as in IR group). The rats were anesthetized after second hour of reperfusion and their intracardiac blood was drawn completely and they were sacrificed. Blood samples were sent to a laboratory for analysis of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), total oxidant score (TOS) and total antioxidant capacity (TAC). The degree of retinal injury was evaluated according to changes in retinal cells and necrotic and apoptotic cells using the TUNEL method. Data were evaluated statistically with the Kruskal-Wallis test. The number of RGCs and the inner retinal thickness were significantly decreased after ischemia, and treatment with ozone significantly inhibited retinal ischemic injury. In the IR group, the degree of retinal injury was found to be the highest. In the O + IR group, retinal injury was found to be decreased in comparison to the IR group. In the ozone group without retinal IR injury, the retinal injury score was the lowest. The differences in the antioxidant parameters SOD, GSH-Px and TAC were increased in the ozone group and the lowest in the IR group. The oxidant parameters MDA and TOS were found to be the highest in the IR group and

  4. Polarization feedback laser stabilization

    Science.gov (United States)

    Esherick, P.; Owyoung, A.

    1987-09-28

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other. 4 figs.

  5. Polarization in Sagittarius A*

    OpenAIRE

    Bower, Geoffrey C.

    2000-01-01

    We summarize the current state of polarization observations of Sagittarius A*, the compact radio source and supermassive black hole candidate in the Galactic Center. These observations are providing new tools for understanding accretion disks, jets and their environments. Linear polarization observations have shown that Sgr A* is unpolarized at frequencies as high as 86 GHz. However, recent single-dish observations indicate that Sgr A* may have strong linear polarization at frequencies higher...

  6. Trends of tropospheric ozone over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Roemer, M.

    1996-12-31

    The purpose of the study on the title subject is to investigate the phenomena which have contributed to the observed trends of surface concentrations of ozone (O{sub 3}) and related species in The Netherlands and nearby countries. The presence in the European troposphere of relatively high concentrations of so-called ozone precursors establish a net chemical production of ozone. Since the atmospheric residence time of methane (CH{sub 4}) is much longer than that of all other VOC-species the rest is often referred to as non-methane volatile organic compounds (NMVOCs). The photo-stationary state relations are a set of three chemical reactions which rapidly converts ozone and nitrogen monoxide (NO) into nitrogen dioxide and oxygen (O{sub 2}) and vice versa. In NO{sub x}-rich environments such as in The Netherlands, this set of reactions transforms much of the ozone into NO{sub 2} which therefore can be regarded as potential ozone. Under such conditions it is convenient to use oxidant which is a conserved quantity for the photo-stationary state relations. The combination of NO{sub x} and VOCs produces ozone, but also other secondary species such as peroxyacetylnitrate (PAN). There are, however, a few differences between the formation of ozone and PAN and there are differences in their background levels as well. PAN concentrations in Europe are strongly determined by local (European) production, much more than the ozone concentrations in Europe. Therefore, studying trends of PAN concentrations is useful in distinguishing the contributions of different processes to the trends of ozone. Important aspects which possibly have contributed to trends of ozone concentrations are mentioned and discussed. Several aspects concerning the quantitative analysis of trends of surface concentrations of ozone, oxidant, PAN, NOX and NMVOS were investigated. The emphasis in this study is on the contribution of European emission changes since 1980 to the trends of ozone and oxidant

  7. Solar response in tropical stratospheric ozone: a 3-D chemical transport model study using ERA reanalyses

    Directory of Open Access Journals (Sweden)

    S. Dhomse

    2011-12-01

    Full Text Available We have used an off-line 3-D chemical transport model (CTM to investigate the 11-yr solar cycle response in tropical stratospheric ozone. The model is forced with European Centre for Medium-Range Weather Forecasts (ECMWF (reanalysis (ERA-40/operational and ERA-Interim data for the 1979–2005 time period. We have compared the modelled solar response in ozone to observation-based data sets that are constructed using satellite instruments such as Total Ozone Mapping Spectrometer (TOMS, Solar Backscatter UltraViolet instrument (SBUV, Stratospheric Aerosol and Gas Experiment (SAGE and Halogen Occultation Experiment (HALOE. A significant difference is seen between simulated and observed ozone during the 1980s, which is probably due to inhomogeneities in the ERA-40 reanalyses. In general, the model with ERA-Interim dynamics shows better agreement with the observations from 1990 onwards than with ERA-40. Overall both standard model simulations are partially able to simulate a "double peak"-structured ozone solar response with a minimum around 30 km, and these are in better agreement with HALOE than SAGE-corrected SBUV (SBUV/SAGE or SAGE-based data sets. In the tropical lower stratosphere (TLS, the modelled solar response with time-varying aerosols is amplified through aliasing with a volcanic signal, as the model overestimates ozone loss during high aerosol loading years. However, the modelled solar response with fixed dynamics and constant aerosols shows a positive signal which is in better agreement with SBUV/SAGE and SAGE-based data sets in the TLS. Our model simulations suggests that photochemistry contributes to the ozone solar response in this region. The largest model-observation differences occur in the upper stratosphere where SBUV/SAGE and SAGE-based data show a significant (up to 4% solar response whereas the standard model and HALOE do not. This is partly due to a positive solar response in the ECMWF upper stratospheric temperatures which

  8. Computational analysis of ozonation in bubble columns

    International Nuclear Information System (INIS)

    Quinones-Bolanos, E.; Zhou, H.; Otten, L.

    2002-01-01

    This paper presents a new computational ozonation model based on the principle of computational fluid dynamics along with the kinetics of ozone decay and microbial inactivation to predict the performance of ozone disinfection in fine bubble columns. The model can be represented using a mixture two-phase flow model to simulate the hydrodynamics of the water flow and using two transport equations to track the concentration profiles of ozone and microorganisms along the height of the column, respectively. The applicability of this model was then demonstrated by comparing the simulated ozone concentrations with experimental measurements obtained from a pilot scale fine bubble column. One distinct advantage of this approach is that it does not require the prerequisite assumptions such as plug flow condition, perfect mixing, tanks-in-series, uniform radial or longitudinal dispersion in predicting the performance of disinfection contactors without carrying out expensive and tedious tracer studies. (author)

  9. Information content of ozone retrieval algorithms

    Science.gov (United States)

    Rodgers, C.; Bhartia, P. K.; Chu, W. P.; Curran, R.; Deluisi, J.; Gille, J. C.; Hudson, R.; Mateer, C.; Rusch, D.; Thomas, R. J.

    1989-01-01

    The algorithms are characterized that were used for production processing by the major suppliers of ozone data to show quantitatively: how the retrieved profile is related to the actual profile (This characterizes the altitude range and vertical resolution of the data); the nature of systematic errors in the retrieved profiles, including their vertical structure and relation to uncertain instrumental parameters; how trends in the real ozone are reflected in trends in the retrieved ozone profile; and how trends in other quantities (both instrumental and atmospheric) might appear as trends in the ozone profile. No serious deficiencies were found in the algorithms used in generating the major available ozone data sets. As the measurements are all indirect in someway, and the retrieved profiles have different characteristics, data from different instruments are not directly comparable.

  10. Ozone depletion and chlorine loading potentials

    Science.gov (United States)

    Pyle, John A.; Wuebbles, Donald J.; Solomon, Susan; Zvenigorodsky, Sergei; Connell, Peter; Ko, Malcolm K. W.; Fisher, Donald A.; Stordal, Frode; Weisenstein, Debra

    1991-01-01

    The recognition of the roles of chlorine and bromine compounds in ozone depletion has led to the regulation or their source gases. Some source gases are expected to be more damaging to the ozone layer than others, so that scientific guidance regarding their relative impacts is needed for regulatory purposes. Parameters used for this purpose include the steady-state and time-dependent chlorine loading potential (CLP) and the ozone depletion potential (ODP). Chlorine loading potentials depend upon the estimated value and accuracy of atmospheric lifetimes and are subject to significant (approximately 20-50 percent) uncertainties for many gases. Ozone depletion potentials depend on the same factors, as well as the evaluation of the release of reactive chlorine and bromine from each source gas and corresponding ozone destruction within the stratosphere.

  11. The depletion of the stratospheric ozone layer

    International Nuclear Information System (INIS)

    Sabogal Nelson

    2000-01-01

    The protection of the Earth's ozone layer is of the highest importance to mankind. The dangers of its destruction are by now well known. The depletion of that layer has reached record levels. The Antarctic ozone hole covered this year a record area. The ozone layer is predicted to begin recovery in the next one or two decades and should be restored to pre-1980 levels by 2050. This is the achievement of the regime established by the 1985 Vienna Convention for the Protection of the Ozone Layer and the 1987 Montreal Protocol on Substances that Deplete the Ozone Layer. The regime established by these two agreements has been revised, and made more effective in London (1990), Copenhagen (1992), Vienna (1995), and Beijing (1999)

  12. Improved reference models for middle atmosphere ozone

    Science.gov (United States)

    Keating, G. M.; Pitts, M. C.; Chen, C.

    This paper describes the improvements introduced into the original version of ozone reference model of Keating and Young (1985, 1987) which is to be incorporated in the next COSPAR International Reference Atmosphere (CIRA). The ozone reference model will provide information on the global ozone distribution (including the ozone vertical structure as a function of month and latitude from 25 to 90 km) combining data from five recent satellite experiments: the Nimbus 7 LIMS, Nimbus 7 SBUV, AE-2 Stratospheric Aerosol Gas Experiment (SAGE), Solar Mesosphere Explorer (SME) UV Spectrometer, and SME 1.27 Micron Airglow. The improved version of the reference model uses reprocessed AE-2 SAGE data (sunset) and extends the use of SAGE data from 1981 to the 1981-1983 time period. Comparisons are presented between the results of this ozone model and various nonsatellite measurements at different levels in the middle atmosphere.

  13. Ozone reaction on slime mold. [Physarum polycephalum

    Energy Technology Data Exchange (ETDEWEB)

    Kanoh, F.

    1972-01-01

    To determine the effect of ozone, the motive force responsible for protoplasmic streaming in the slime mold, Physarum polycephalum was measured by the Double chamber method which was developed by Kamiya. The effects of ozone on the motive force were investigated by comparison of the Dynamoplasmogram of controls with that of ozone exposure. In the case of high concentration exposure, thickening of plasmagel, inversion of the period of flow and reduction of the extreme point were observed. Succinoxidase of exposed homogenates showed stronger activity than that of controls. It is certain that the Pasteur reaction takes place when plasmodium is kept under high ozone exposure condition. It appears that ozone inhibited a part of the process of glycolysis. 32 references, 8 figures.

  14. Ozone Gardens for the Citizen Scientist

    Science.gov (United States)

    Pippin, Margaret; Reilly, Gay; Rodjom, Abbey; Malick, Emily

    2016-01-01

    NASA Langley partnered with the Virginia Living Museum and two schools to create ozone bio-indicator gardens for citizen scientists of all ages. The garden at the Marshall Learning Center is part of a community vegetable garden designed to teach young children where food comes from and pollution in their area, since most of the children have asthma. The Mt. Carmel garden is located at a K-8 school. Different ozone sensitive and ozone tolerant species are growing and being monitored for leaf injury. In addition, CairClip ozone monitors were placed in the gardens and data are compared to ozone levels at the NASA Langley Chemistry and Physics Atmospheric Boundary Layer Experiment (CAPABLE) site in Hampton, VA. Leaf observations and plant measurements are made two to three times a week throughout the growing season.

  15. Ozone and organic nitrates over the eastern United States: Sensitivity to isoprene chemistry

    Science.gov (United States)

    Mao, Jingqiu; Paulot, Fabien; Jacob, Daniel J.; Cohen, Ronald C.; Crounse, John D.; Wennberg, Paul O.; Keller, Christoph A.; Hudman, Rynda C.; Barkley, Michael P.; Horowitz, Larry W.

    2013-10-01

    implement a new isoprene oxidation mechanism in a global 3-D chemical transport model (GEOS-Chem). Model results are evaluated with observations for ozone, isoprene oxidation products, and related species from the International Consortium for Atmospheric Research on Transport and Transformation aircraft campaign over the eastern United States in summer 2004. The model achieves an unbiased simulation of ozone in the boundary layer and the free troposphere, reflecting canceling effects from recent model updates for isoprene chemistry, bromine chemistry, and HO2 loss to aerosols. Simulation of the ozone-CO correlation is improved relative to previous versions of the model, and this is attributed to a lower and reversible yield of isoprene nitrates, increasing the ozone production efficiency per unit of nitrogen oxides (NOx ≡ NO + NO2). The model successfully reproduces the observed concentrations of organic nitrates (∑ANs) and their correlations with HCHO and ozone. ∑ANs in the model is principally composed of secondary isoprene nitrates, including a major contribution from nighttime isoprene oxidation. The correlations of ∑ANs with HCHO and ozone then provide sensitive tests of isoprene chemistry and argue in particular against a fast isomerization channel for isoprene peroxy radicals. ∑ANs can provide an important reservoir for exporting NOx from the U.S. boundary layer. We find that the dependence of surface ozone on isoprene emission is positive throughout the U.S., even if NOx emissions are reduced by a factor of 4. Previous models showed negative dependences that we attribute to erroneous titration of OH by isoprene.

  16. Airborne Laser Polarization Sensor

    Science.gov (United States)

    Kalshoven, James, Jr.; Dabney, Philip

    1991-01-01

    Instrument measures polarization characteristics of Earth at three wavelengths. Airborne Laser Polarization Sensor (ALPS) measures optical polarization characteristics of land surface. Designed to be flown at altitudes of approximately 300 m to minimize any polarizing or depolarizing effects of intervening atmosphere and to look along nadir to minimize any effects depending on look angle. Data from measurements used in conjunction with data from ground surveys and aircraft-mounted video recorders to refine mathematical models used in interpretation of higher-altitude polarimetric measurements of reflected sunlight.

  17. Enhanced bio-recalcitrant organics removal by combined adsorption and ozonation.

    Science.gov (United States)

    Merle, T; Pic, J S; Manero, M H; Debellefontaine, H

    2009-01-01

    Removal of bio-recalcitrant and toxic compounds from wastewaters has been a major objective of industrial manufacturers for a few years. Due to the potential risk toward public health, regulations are becoming increasingly strict and classical treatments like biological treatments are not efficient. Other techniques such as incineration, oxidation or adsorption provide higher levels of removal but with a high energy and capital cost. A coupled process involving adsorption and oxidation is studied. Four adsorbents are tested and compared according to two objectives, their adsorption capacity and their capability to decompose ozone into powerful hydroxyl radicals. Two model compounds were chosen: 2,4-dichlorophenol and nitrobenzene. Experimental results allow comparing coupled process with results obtained during ozonation alone. Zeolite (Faujasite Y) gave disappointing results in term of both adsorption kinetics and ozone decomposition. On the contrary, activated carbons showed fast adsorptions and important capabilites to decompose ozone into radicals, almost in nitrobenzene experiments. S-23 activated carbon proved to be the most interesting adsorbent for better mechanical and chemical stabilities over time. Sequential adsorption/ozonation experiments were conducted, showing a strong loss of adsorption efficiency after the first operation, but the positive point is that the adsorption capacity remains almost constant during further cycles.

  18. Total ozone patterns over the northern mid-latitudes: spatial correlations, extreme events and dynamical contributions

    Science.gov (United States)

    Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Ribatet, M.; Bodeker, G. E.; Davison, A. C.

    2009-04-01

    Tools from geostatistics and extreme value theory are applied to analyze spatial correlations in total ozone for the northern mid-latitudes. The dataset used in this study is the NIWA combined total ozone dataset (Bodeker et al., 2001; Müller et al., 2008). New tools from extreme value theory (Coles, 2001; Ribatet, 2007) have recently been applied to the world's longest total ozone record from Arosa, Switzerland (e.g. Staehelin 1998a,b), in order to describe extreme events in low and high total ozone (Rieder et al., 200x). Within the current study, patterns in spatial correlation and frequency distributions of extreme events (e.g. ELOs and EHOs) are studied for the northern mid-latitudes. New insights in spatial patterns of total ozone for the northern mid-latitudes are presented. Koch et al. (2005) found that the increase in fast isentropic transport of tropical air to northern mid-latitudes contributed significantly to ozone changes between 1980 and 1989. Within this study the influence of changes in atmospheric dynamics (e.g. tropospheric and lower stratospheric pressure systems) on column ozone over the northern mid-latitudes is analyzed for the time period 1979-2007. References: Bodeker, G.E., J.C. Scott, K. Kreher, and R.L. McKenzie, Global ozone trends in potential vorticity coordinates using TOMS and GOME intercompared against the Dobson network: 1978-1998, J. Geophys. Res., 106 (D19), 23029-23042, 2001. Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Koch, G., H. Wernli, C. Schwierz, J. Staehelin, and T. Peter (2005), A composite study on the structure and formation of ozone miniholes and minihighs over central Europe, Geophys. Res. Lett., 32, L12810, doi:10.1029/2004GL022062. Müller, R., Grooß, J.-U., Lemmen, C., Heinze, D., Dameris, M., and Bodeker, G.: Simple measures of ozone depletion in the polar stratosphere, Atmos. Chem. Phys., 8, 251-264, 2008. Ribatet

  19. Improved Superlattices for Spin-Polarized Electron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Mamaev, Yu.A.; Gerchikov, L.G.; Yashin, Yu.P.; Kuz-michev, V.; Vasiliev, D.; /St. Petersburg Polytechnic Inst.; Maruymama, T.; Clendenin, J.E.; /SLAC; Ustinov, V.M.; Zhukov, A.E.; /Ioffe Phys. Tech. Inst.

    2006-12-08

    Photoemission of polarized electrons from heterostructures based on InAlGaAs/GaAs superlattices with minimum conduction-band offsets is investigated. The comparison of the excitation energy dependence of the photoemission polarization degree with the calculated spectra makes it possible to determine the polarization losses at different stages of the photoemission. A maximum polarization of P = 91% and a quantum efficiency of QE = 0.5% are close to the best results obtained for photocathodes that are based on strained semiconductor superlattices.

  20. Reliable and effective oxygen-ozone therapy at a crossroads with ozonated saline infusion and ozone rectal insufflation.

    Science.gov (United States)

    Bocci, Velio; Zanardi, Iacopo; Borrelli, Emma; Travagli, Valter

    2012-04-01

    This review aims to highlight the advantages and safety of oxygen-ozone therapy (OOT) and to suggest ways to enhance its acceptance. The treatment of a herniated disk by injecting a gaseous oxygen-ozone mixture inside the nucleus pulposus is a great clinical success. However, the use of OOT lags for a number of reasons, including lack of standardization, the need for numerous treatments, lack of knowledge and even denial. Anecdotally, several million treatments by OOT have been performed worldwide indicating its usefulness, mainly in peripheral arterial diseases and age-related macular degeneration. The scepticism that accompanies the systemic use of ozone can only be overcome by demonstrating the validity of OOT in controlled and randomized clinical trials. Cheaper and quicker methods, such as ozonating physiological saline with successive infusion as well as ozone rectal insufflations, are becoming popular, however, such alternative procedures are erratic, unstable and liable to be toxic, with deleterious consequences, and are likely to discredit the beneficial use of ozone. The approval of ozone in terms of both therapeutic efficacy and safety will depend on the results achieved by authoritative clinical trials. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.

  1. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    International Nuclear Information System (INIS)

    Marinov, Daniil; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine; Guerra, Vasco

    2013-01-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1–5 Torr and discharge currents ∼40–120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O 3 * , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O 3 * is strongly coupled with those of atomic oxygen and O 2 (a 1 Δ g ) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established. (paper)

  2. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    Science.gov (United States)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  3. Ozone therapy and restorative dentistry: a literature review ...

    African Journals Online (AJOL)

    This approach is being further reinforced with the emergence of ozone therapy in the management of tooth decay. Ozone therapy is the treatment of the tooth with a mixture of oxygen and ozone. The aim of this review was to provide a comprehensive literature on ozone therapy and on the different areas of restorative dental ...

  4. 40 CFR 52.282 - Control strategy and regulations: Ozone.